Sample records for target pest species

  1. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    PubMed

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  2. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs.

    PubMed

    Guedes, R N C; Smagghe, G; Stark, J D; Desneux, N

    2016-01-01

    More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carson's Silent Spring, pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.

  3. Resolving cryptic species complexes of major tephritid pests

    PubMed Central

    Hendrichs, Jorge; Vera, M. Teresa; De Meyer, Marc; Clarke, Anthony R.

    2015-01-01

    Abstract An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, Bactrocera papayae, Bactrocera philippinensis and Bactrocera invadens, the latter three species were synonymized with Bactrocera dorsalis. Of the five target pest taxa studied, only Bactrocera dorsalis and Bactrocera carambolae remain as

  4. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control.

    PubMed

    Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A

    2017-02-01

    RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.

  5. How well will stacked transgenic pest/herbicide resistances delay pests from evolving resistance?

    PubMed

    Gressel, Jonathan; Gassmann, Aaron J; Owen, Micheal Dk

    2017-01-01

    Resistance has evolved to single transgenic traits engineered into crops for arthropod and herbicide resistances, and can be expected to evolve to the more recently introduced pathogen resistances. Combining transgenes against the same target pest is being promoted as the solution to the problem. This solution will work if used pre-emptively, but where resistance has evolved to one member of a stack, resistance should easily evolve for the second gene in most cases. We propose and elaborate criteria that could be used to evaluate the value of stacked traits for pest resistance management. Stacked partners must: target the same pest species; be in a tandem construct to preclude segregation; be synchronously expressed in the same tissues; have similar tissue persistence; target pest species that are still susceptible to at least two stacked partners. Additionally, transgene products must not be degraded in the same manner, and there should be a lack of cross-resistance to stacked transgenes or to their products. With stacked herbicide resistance transgenes, both herbicides must be used and have the same persistence. If these criteria are followed, and integrated with other pest management practices, resistance may be considerably delayed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Risk maps for targeting exotic plant pest detection programs in the United States

    Treesearch

    R.D. Magarey; D.M. Borchert; J.S. Engle; M Garcia-Colunga; Frank H. Koch; et al

    2011-01-01

    In the United States, pest risk maps are used by the Cooperative Agricultural Pest Survey for spatial and temporal targeting of exotic plant pest detection programs. Methods are described to create standardized host distribution, climate and pathway risk maps for the top nationally ranked exotic pest targets. Two examples are provided to illustrate the risk mapping...

  7. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.

    PubMed

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2016-06-01

    The adoption of transgenic Bt cotton has, in some cases, led to environmental and economic benefits through reduced insecticide use. However, the distribution of these benefits and associated risks among cotton growers and cotton-growing regions has been uneven due in part to outbreaks of non-target or secondary pests, thereby requiring the continued use of synthetic insecticides. In the southeastern USA, Bt cotton adoption has resulted in increased abundance of and damage from stink bug pests, Euschistus servus and Nezara viridula (Heteroptera: Pentatomidae). While the impact of increased stink bug abundance has been well-documented, the causes have remained unclear. We hypothesize that release from competition with Bt-susceptible target pests may drive stink bug outbreaks in Bt cotton. We first examined the evidence for competitive release of stink bugs through meta-analysis of previous studies. We then experimentally tested if herbivory by Bt-susceptible Helicoverpa zea increases stink bug leaving rates and deters oviposition on non-Bt cotton. Consistent with previous studies, we found differences in leaving rates only for E servus, but we found that both species strongly avoided ovipositing on H. zea-damaged plants. Considering all available evidence, competitive release of stink bug populations in Bt cotton likely contributes to outbreaks, though the relative importance of competitive release remains an open question. Ecological risk assessments of Bt crops and other transgenic insecticidal crops would benefit from greater understanding of the ecological mechanisms underlying non-target pest outbreaks and greater attention to indirect ecological effects more broadly.

  8. Susceptibility of non-target invertebrates to Brazilian microbial pest control agents.

    PubMed

    Oliveira-Filho, Eduardo Cyrino; Muniz, Daphne Heloisa Freitas; Freire, Ingrid Souza; Ramos, Felipe Rosa; Alves, Roberto Teixeira; Jonsson, Claudio Martin; Grisolia, Cesar Koppe; Monnerat, Rose Gomes

    2011-08-01

    Microbial pest control agents or entomopathogens have been considered an interesting alternative to use instead of chemical insecticides. Knowledge of ecotoxicity data is very important to predict the hazard of any product released in the environment and subsidize the regulation of these products by governmental agencies. In the present study four new Brazilian strains of Bacillus and one fungus were tested to evaluate their acute toxicity to the microcrustacean Daphnia similis, the snail Biomphalaria glabrata and the dung beetle Digitonthophagus gazella. The microcrustaceans and the snails were exposed to entomopathogens in synthetic softwater and the beetles were exposed directly in cattle dung. Obtained data reveal low susceptibility of the non-target species to tested microorganisms, with lethal concentrations being observed only at much higher concentrations than that effective against target insects. These results show that the tested strains are selective in their action mode and seem to be non-hazardous to non-target species.

  9. Pest risk maps for invasive alien species: a roadmap for improvement

    Treesearch

    Robert C. Venette; Darren J. Kriticos; Roger D. Magarey; Frank H. Koch; Richard H.A. Baker; Susan P. Worner; Nadilia N. Gomez Raboteaux; Daniel W. McKenney; Erhard J. Dobesberger; Denys Yemshanov; Paul J. De Barro; William D. Hutchison; Glenn Fowler; Tom M. Kalaris; John Pedlar

    2010-01-01

    Pest risk maps are powerful visual communication tools to describe where invasive alien species might arrive, establish, spread, or cause harmful impacts. These maps inform strategic and tactical pest management decisions, such as potential restrictions on international trade or the design of pest surveys and domestic quarantines. Diverse methods are available to...

  10. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    PubMed

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  11. Pest risk maps for invasive alien species: a roadmap for improvement

    Treesearch

    Robert C. Venette; Darren J. Kriticos; Roger D. Magarey; Frank H. Koch; Richard H. A. Baker; Susan P. Worner; Nadila N. Gomez Raboteaux; Daniel W. McKenney; Erhard J. Dobesberger; Denys Yemshanov; Paul J. De Barro; William D. Hutchinson; Glenn Fowler; Tom M. Kalaris; John Pedlar

    2010-01-01

    Pest risk maps are powerful visual communication tools to describe where invasive alien species might arrive, establish, spread, or cause harmful impacts. These maps inform strategic and tactical pest management decisions, such as potential restrictions on international trade or the design of pest surveys and domestic quarantines. Diverse methods are available to...

  12. Mapping host-species abundance of three major exotic forest pests

    Treesearch

    Randall S. Morin; Andrew M. Liebhold; Eugene R. Luzader; Andrew J. Lister; Kurt W. Gottschalk; Daniel B. Twardus

    2005-01-01

    Periodically over the last century, forests of the Eastern United States devastated by invasive pests. We used existing data to predict the geographical extent of future damage from beech bark disease (BBD), hemlock woolly adelgid (HWA), and gypsy moth. The distributions of host species of these alien pests were mapped in 1-km2 cells by interpolating host basal area/ha...

  13. Using DNA chips for identification of tephritid pest species.

    PubMed

    Chen, Yen-Hou; Liu, Lu-Yan; Tsai, Wei-Huang; Haymer, David S; Lu, Kuang-Hui

    2014-08-01

    The ability correctly to identify species in a rapid and reliable manner is critical in many situations. For insects in particular, the primary tools for such identification rely on adult-stage morphological characters. For a number of reasons, however, there is a clear need for alternatives. This paper reports on the development of a new method employing DNA biochip technology for the identification of pest species within the family Tephritidae. The DNA biochip developed and tested here quickly and efficiently identifies and discriminates between several tephritid species, except for some that are members of a complex of closely related taxa and that may in fact not represent distinct biological species. The use of these chips offers a number of potential advantages over current methods. Results can be obtained in less than 5 h using material from any stage of the life cycle and with greater sensitivity than other methods currently available. This technology provides a novel tool for the rapid and reliable identification of several major pest species that may be intercepted in imported fruits or other commodities. The existing chips can also easily be expanded to incorporate additional markers and species as needed. © 2013 Society of Chemical Industry.

  14. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  15. Main predators of insect pests: screening and evaluation through comprehensive indices.

    PubMed

    Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian

    2017-11-01

    Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. COI barcode based species-specific primers for identification of five species of stored-product pests from genus Cryptolestes (Coleoptera: Laemophloeidae).

    PubMed

    Varadínová, Z; Wang, Y J; Kučerová, Z; Stejskal, V; Opit, G; Cao, Y; Li, F J; Li, Z H

    2015-04-01

    Flat grain beetles of the genus Cryptolestes (Coleoptera: Laemophloeidae) are one of the economically most important stored-product pests which feed on many kinds of agricultural products, especially grains. Nine of more than 40 described Cryptolestes species are recognized as stored-product pests and two of the pest species have a cosmopolitan distribution. Given the rapid growth in global trade of food products, ecological barriers to the spread of pests are easily overcome. Therefore, development of reliable systems for routine quarantine inspection and early infestation detection is vital. In the present study, we established a new rapid and accurate cytochrome c oxidase subunit I-based system for molecular identification of five common stored-product Cryptolestes species, namely, Cryptolestes capensis, Cryptolestes ferrugineus, Cryptolestes pusilloides, Cryptolestes pusillus and Cryptolestes turcicus. Five species-specific primer pairs for traditional uniplex polymerase chain reaction assay are described and their specificity and sensitivity for the identification process is evaluated using larval samples of 12 different populations from three continents (Asia, Europe and North America).

  17. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors.

    PubMed

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.

  18. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors

    PubMed Central

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors. PMID:28555175

  19. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    PubMed Central

    Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.

    2014-01-01

    Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063

  20. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    PubMed Central

    Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.

    2017-01-01

    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets. PMID:28133568

  1. Lepidopteran HMG-CoA reductase is a potential selective target for pest control.

    PubMed

    Li, Yuan-Mei; Kai, Zhen-Peng; Huang, Juan; Tobe, Stephen S

    2017-01-01

    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta , whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata . The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets.

  2. Identification and Characterization of Trichoderma Species Damaging Shiitake Mushroom Bed-Logs Infested by Camptomyia Pest.

    PubMed

    Kim, Jun Young; Kwon, Hyuk Woo; Yun, Yeo Hong; Kim, Seong Hwan

    2016-05-28

    The shiitake mushroom industry has suffered from Camptomyia (gall midges) pest, which feeds on the mycelium of shiitake mushroom during its cultivation. It has been postulated that fungal damage of shiitake bed-logs is associated with infestation by the insect pest, but this is not well understood. To understand the fungal damage associated with Camptomyia pest, various Trichoderma species were isolated, identified, and characterized. In addition to two previously known Trichoderma species, T. citrinoviride and T. deliquescens, two other Trichoderma species, T. harzianum and T. atroviride, were newly identified from the pestinfested bed-log samples obtained at three mushroom farms in Cheonan, Korea. Among these four species, T. harzianum was the most evident. The results of a chromogenic media-based assay for extracellular enzymes showed that these four species have the ability to produce amylase, carboxyl-methyl cellulase, avicelase, pectinase, and β-glucosidase, thus indicating that they can degrade wood components. A dual culture assay on PDA indicated that T. harzianum, T. atroviride, and T. citrinoviride were antagonistic against the mycelial growth of a shiitake strain (Lentinula edodes). Inoculation tests on shiitake bed-logs revealed that all four species were able to damage the wood of bed-logs. Our results provide evidence that the four green mold species are the causal agents involved in fungal damage of shiitake bed-logs infested by Camptomyia pest.

  3. Integrating drivers influencing the detection of plant pests carried in the international cut flower trade.

    PubMed

    Areal, F J; Touza, J; MacLeod, A; Dehnen-Schmutz, K; Perrings, C; Palmieri, M G; Spence, N J

    2008-12-01

    This paper analyses the cut flower market as an example of an invasion pathway along which species of non-indigenous plant pests can travel to reach new areas. The paper examines the probability of pest detection by assessing information on pest detection and detection effort associated with the import of cut flowers. We test the link between the probability of plant pest arrivals, as a precursor to potential invasion, and volume of traded flowers using count data regression models. The analysis is applied to the UK import of specific genera of cut flowers from Kenya between 1996 and 2004. There is a link between pest detection and the Genus of cut flower imported. Hence, pest detection efforts should focus on identifying and targeting those imported plants with a high risk of carrying pest species. For most of the plants studied, efforts allocated to inspection have a significant influence on the probability of pest detection. However, by better targeting inspection efforts, it is shown that plant inspection effort could be reduced without increasing the risk of pest entry. Similarly, for most of the plants analysed, an increase in volume traded will not necessarily lead to an increase in the number of pests entering the UK. For some species, such as Carthamus and Veronica, the volume of flowers traded has a significant and positive impact on the likelihood of pest detection. We conclude that analysis at the rank of plant Genus is important both to understand the effectiveness of plant pest detection efforts and consequently to manage the risk of introduction of non-indigenous species.

  4. Sublethal effects in pest management: a surrogate species perspective on fruit fly control

    USDA-ARS?s Scientific Manuscript database

    Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co...

  5. Sampling stored product insect pests: a comparison of four statistical sampling models for probability of pest detection

    USDA-ARS?s Scientific Manuscript database

    Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...

  6. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  7. Current situation of pests targeted by Bt crops in Latin America.

    PubMed

    Blanco, C A; Chiaravalle, W; Dalla-Rizza, M; Farias, J R; García-Degano, M F; Gastaminza, G; Mota-Sánchez, D; Murúa, M G; Omoto, C; Pieralisi, B K; Rodríguez, J; Rodríguez-Maciel, J C; Terán-Santofimio, H; Terán-Vargas, A P; Valencia, S J; Willink, E

    2016-06-01

    Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown

  8. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    PubMed

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  9. Chemical Ecology of Chemosensation in Asteroidea: Insights Towards Management Strategies of Pest Species.

    PubMed

    Motti, Cherie A; Bose, Utpal; Roberts, Rebecca E; McDougall, Carmel; Smith, Meaghan K; Hall, Michael R; Cummins, Scott F

    2018-02-01

    Within the Phylum Echinodermata, the class Asteroidea, commonly known as starfish and sea stars, encompasses a large number of benthos inhabiting genera and species with various feeding modalities including herbivores, carnivores, omnivores and detritivores. The Asteroidea rely on chemosensation throughout their life histories including hunting prey, avoiding or deterring predators, in the formation of spawning aggregations, synchronizing gamete release and targeting appropriate locations for larval settlement. The identities of many of the chemical stimuli that mediate these physiological and behavioural processes remain unresolved even though evidence indicates they play pivotal roles in the functionality of benthic communities. Aspects of chemosensation, as well as putative chemically-mediated behaviours and the molecular mechanisms of chemoreception, within the Asteroidea are reviewed here, with particular reference to the coral reef pest the Crown-of-Thorns starfish Acanthaster planci species complex, in the context of mitigation of population outbreaks.

  10. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator

    PubMed Central

    Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera

    2016-01-01

    Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1–7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries. PMID:27092527

  11. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator.

    PubMed

    Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera

    2016-04-15

    Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  12. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    PubMed

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  13. [Dynamics and combined injuries of main pest species in rice cropping zones of Yunnan, Southwest China].

    PubMed

    Dong, Kun; Dong, Yan; Wang, Hai-Long; Zhang, Li-Min; Zan, Qing-An; Chen, Bin; Li, Zheng-Yue

    2014-01-01

    A series of rice pest injuries (due to pathogens, insects, and weeds) were surveyed in 286 farmers' fields for major rice varieties of three rice cropping zones of Yunnan Province, Southwest China. The composition and dynamics of main pest species were analyzed, and the trend of rice pest succession in Yunnan was discussed based upon landmark publications. The results showed that the three rice cropping zones had different pest characteristics as regard to main species, dynamics and combined injuries. Sheath rot, bacterial leaf blight, rice stripe, leaf hoppers, armyworms and stem borers were serious in the japonica rice zone. Sheath blight and rice stripe were serious in the japonica-indica interlacing zone. Leaf blast, sheath blight, leaf folders and weeds above rice crop canopy were serious in the indica rice zone. False smut, plant hoppers and weeds below rice crop canopy were ubiquitous and serious in the three kinds of rice cropping zones. Many kinds of weed infestation emerged in the whole rice cropping seasons. Echinochloa crusgalli, Sagittaria pygmaea, Potamogeton distinctus and Spirodela polyrhiza were the main species of weeds in the rice cropping zones of Yunnan. Overall, levels of combined injuries due to pests in the japonica rice zone and the indica rice zone were higher than that in the japonica-indica interlacing zone. In terms of the trend of rice pest succession in Yunnan, injuries due to false smut, sheath blight and plant hoppers seemed to be in a worse tendency in all rice cropping zones of Yunnan, while dominants species of weeds in the paddy fields are shifting from the annual weeds to the perennial malignant weeds.

  14. Reducing the risk of invasive forest pests and pathogens: Combining legislation, targeted management and public awareness.

    PubMed

    Klapwijk, Maartje J; Hopkins, Anna J M; Eriksson, Louise; Pettersson, Maria; Schroeder, Martin; Lindelöw, Åke; Rönnberg, Jonas; Keskitalo, E Carina H; Kenis, Marc

    2016-02-01

    Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens.

  15. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest

    PubMed Central

    Dickey, Aaron M.; Kumar, Vivek; Hoddle, Mark S.; Funderburk, Joe E.; Morgan, J. Kent; Jara-Cavieres, Antonella; Shatters, Robert G. Jr.; Osborne, Lance S.; McKenzie, Cindy L.

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251

  16. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling.

    PubMed

    Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar

    2018-03-12

    Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.

  17. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism.

    PubMed

    Chardonnet, Floriane; Capdevielle-Dulac, Claire; Chouquet, Bastien; Joly, Nicolas; Harry, Myriam; Le Ru, Bruno; Silvain, Jean-François; Kaiser, Laure

    2014-10-01

    The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management. © 2014. Published by The Company of Biologists Ltd.

  18. 5.0 Monitoring methods for forests vulnerable to non-native invasive pest species

    Treesearch

    David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans

    2008-01-01

    Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...

  19. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased.

    PubMed

    Ikegawa, Yusuke; Himuro, Chihiro

    2017-05-21

    The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Connecting scales: achieving in-field pest control from areawide and landscape ecology studies.

    PubMed

    Schellhorn, Nancy A; Parry, Hazel R; Macfadyen, Sarina; Wang, Yongmo; Zalucki, Myron P

    2015-02-01

    Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  1. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests.

    PubMed

    Knorr, Eileen; Fishilevich, Elane; Tenbusch, Linda; Frey, Meghan L F; Rangasamy, Murugesan; Billion, Andre; Worden, Sarah E; Gandra, Premchand; Arora, Kanika; Lo, Wendy; Schulenberg, Greg; Valverde-Garcia, Pablo; Vilcinskas, Andreas; Narva, Kenneth E

    2018-02-01

    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T 0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.

  2. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci

    PubMed Central

    Fakhfakh, Hatem; Belkadhi, Mohamed Sadok

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest. PMID:28972992

  3. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci.

    PubMed

    Ben Abdelkrim, Ahmed; Hattab, Tarek; Fakhfakh, Hatem; Belkadhi, Mohamed Sadok; Gorsane, Faten

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.

  4. A pest is a pest is a pest? The dilemma of neotropical leaf-cutting ants: Keystone taxa of natural ecosystems

    NASA Astrophysics Data System (ADS)

    Fowler, Harold G.; Pagani, Maria Inez; da Silva, Osvaldo Aulino; Forti, Luis Carlos; da Silva, Virgilio Pereira; de Vasconcelos, Heraldo Luis

    1989-11-01

    Leaf-cutting ants of the genera Acromyrmex and Atta are considered the principal polyphagous pests of the Neotropics Although some members of these genera are of economic importance, have a broad geographic distribution, and are extremely good colonizers, others are endemic and closely interact with native ecosystems. Control is generally practiced against any colony, irrespective of its taxonomic status. Indiscriminate control coupled with habitat destruction threatens endemic species with extinction, and, through habitat simplification, favors other pest species. As nests of Atta are large, having several square meters of nest surface, the endemic taxa can be easily used as environmental indicators for natural ecosystems Likewise, the pest species can be used to detect environmental disturbance As these ants are keystone species and easily identified by nonspecialists, efforts should be made to integrate these into viable conservation programs

  5. Relative resistance or susceptibility of maple (Acer) species, hybrids and cultivars to six arthropod pests of production nurseries.

    PubMed

    Seagraves, Bonny L; Redmond, Carl T; Potter, Daniel A

    2013-01-01

    Maples (Acer spp.) in production nurseries are vulnerable to numerous arthropod pests that can stunt or even kill the young trees. Seventeen cultivars representing various Acer species and hybrids were evaluated for extent of infestation or injury by shoot and trunk borers (Proteoteras aesculana, Chrysobothris femorata), potato leafhopper (Empoasca fabae), Japanese beetle (Popillia japonica), maple spider mite (Oligonychus aceris) and calico scale (Eulecanium cerasorum). Evaluations were done in replicated field plots in central and western Kentucky. All of the maples were susceptible, to varying degrees, to one or more key pest(s). Red maples (A. rubrum) were relatively vulnerable to potato leafhopper injury and borers but nearly free of Japanese beetle feeding and spider mites. Sugar maples sustained conspicuous Japanese beetle damage but had very low mite populations, whereas the opposite was true for Freeman maples (A. × freemanii). A. campestre was heavily infested by calico scale. Within each species or hybrid there were cultivar differences in degree of infestation or damage by particular pests. The results should help growers to focus pest management efforts on those plantings at greatest risk from particular pests, and to choose cultivars requiring fewer insecticide inputs to produce a quality tree. Copyright © 2012 Society of Chemical Industry.

  6. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius

    PubMed Central

    FOUNTAIN, TOBY; DUVAUX, LUDOVIC; HORSBURGH, GAVIN; REINHARDT, KLAUS; BUTLIN, ROGER K

    2014-01-01

    The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations. PMID:24446663

  7. Nonrandom extinction patterns can modulate pest control service decline.

    PubMed

    Karp, Daniel S; Moeller, Holly V; Frishkoff, Luke O

    2013-06-01

    Changes in biodiversity will mediate the consequences of agricultural intensification and expansion for ecosystem services. Regulating services, like pollination and pest control, generally decline with species loss. In nature, however, relationships between service provision and species richness are not always strong, partially because anthropogenic disturbances purge species from communities in nonrandom orders. The same traits that make for effective service providers may also confer resistance or sensitivity to anthropogenic disturbances, which may either temper or accelerate declines in service provision with species loss. We modeled a community of predators interacting with insect pest prey, and identified the contexts in which pest control provision was most sensitive to species loss. We found pest populations increased rapidly when functionally unique and dietary-generalist predators were lost first, with up to 20% lower pest control provision than random loss. In general, pest abundance increased most in the scenarios that freed more pest species from predation. Species loss also decreased the likelihood that the most effective service providers were present. In communities composed of species with identical traits, predators were equally effective service providers and, when competing predators went extinct, remaining community members assumed their functional roles. In more realistic trait-diverse communities, predators differed in pest control efficacy, and remaining predators could not fully compensate for the loss of their competitors, causing steeper declines in pest control provision with predator species loss. These results highlight diet breadth in particular as a key predictor of service provision, as it affects both the way species respond to and alter their environments. More generally, our model provides testable hypotheses for predicting how nonrandom species loss alters relationships between biodiversity and pest control provision.

  8. Using Next-Generation Sequencing to Contrast the Diet and Explore Pest-Reduction Services of Sympatric Bird Species in Macadamia Orchards in Australia.

    PubMed

    Crisol-Martínez, Eduardo; Moreno-Moyano, Laura T; Wormington, Kevin R; Brown, Philip H; Stanley, Dragana

    2016-01-01

    Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems.

  9. Using Next-Generation Sequencing to Contrast the Diet and Explore Pest-Reduction Services of Sympatric Bird Species in Macadamia Orchards in Australia

    PubMed Central

    Crisol-Martínez, Eduardo; Moreno-Moyano, Laura T.; Wormington, Kevin R.; Brown, Philip H.; Stanley, Dragana

    2016-01-01

    Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems. PMID:26930484

  10. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    PubMed

    Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.

  11. An analysis of using entomopathogenic nematodes against above-ground pests.

    PubMed

    Arthurs, S; Heinz, K M; Prasifka, J R

    2004-08-01

    Applications of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae have traditionally been targeted against soil insects. Nonetheless, research over the last two decades highlights the potential of such agents against above-ground pests under certain circumstances. A general linear model was used to test for patterns in efficacy among 136 published trials with Steinernema carpocapsae Weiser, the most common species applied against foliar and other above-ground pests. The focus was on field and greenhouse assessments, rather than laboratory assays where relevant ecological barriers to infection are typically removed. The model showed differences in nematode treatment efficacy depending on the pests' target habitat (bore holes > cryptic foliage > exposed foliage) and trial location (greenhouse > field studies). Relative humidity and temperature during and up to 8 h post-application were also predicted to influence rates of nematode infection obtained. Conversely, spray adjuvants (both wetting agents and anti-desiccants) and nematode dosage applied (both concentration and use of consecutive applications 3-4 days apart) did not explain a significant amount of variance in nematode performance. With reference to case studies the model is used to discuss the relative importance of different factors on nematode efficacy and highlight priorities for workers considering using entomopathogenic nematodes to target pests in novel environments.

  12. Differential effects of plant species on a mite pest (Tetranychus utricae) and its predator (Phytoseiulus persimilis): implications for biological control.

    PubMed

    Skirvin, D J; de Courcy Williams, M

    1999-06-01

    The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.

  13. Effects of Drought, Pest Pressure and Light Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree Species across a Tropical Rainfall Gradient

    PubMed Central

    Gaviria, Julian; Engelbrecht, Bettina M. J.

    2015-01-01

    Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests

  14. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks

    PubMed Central

    Macfadyen, Sarina; Nash, Michael A.

    2017-01-01

    Background Pesticide application is the dominant control method for arthropod pests in broad-acre arable systems. In Australia, organophosphate pesticides are often applied either prophylactically, or reactively, including at higher concentrations, to control crop establishment pests such as false wireworms and earth mite species. Organophosphates are reported to be disruptive to beneficial species, such as natural enemies, but this has not been widely assessed in Australian systems. Neither has the risk that secondary outbreaks may occur if the natural enemy community composition or function is altered. Methods We examine the abundance of ground-dwelling invertebrate communities in an arable field over successive seasons under rotation; barley, two years of wheat, then canola. Two organophosphates (chlorpyrifos and methidathion) were initially applied at recommended rates. After no discernible impact on target pest species, the rate for chlorpyrifos was doubled to elicit a definitive response to a level used at establishment when seedling damage is observed. Invertebrates were sampled using pitfalls and refuge traps throughout the experiments. We applied measures of community diversity, principal response curves and multiple generalised linear modelling techniques to understand the changes in pest and natural enemy communities. Results There was large variability due to seasonality and crop type. Nevertheless, both pest (e.g., mites and aphids) and natural enemy (e.g., predatory beetles) invertebrate communities were significantly affected by application of organophosphates. When the rate of chlorpyrifos was increased there was a reduction in the number of beetles that predate on slug populations. Slugs displayed opposite trends to many of the other target pests, and actually increased in numbers under the higher rates of chlorpyrifos in comparison to the other treatments. Slug numbers in the final rotation of canola resulted in significant yield loss regardless

  15. Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA.

    PubMed

    Steffan, Shawn A; Singleton, Merritt E; Sojka, Jayne; Chasen, Elissa M; Deutsch, Annie E; Zalapa, Juan E; Guédot, Christelle

    2017-02-26

    The cranberry fruitworm ( Acrobasis vaccinii Riley), sparganothis fruitworm ( Sparganothis sulfureana Clemens), and blackheaded fireworm ( Rhopobota naevana Hübner) are historically significant pests of cranberries ( Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant's developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.

  16. PsOr1, a potential target for RNA interference-based pest management.

    PubMed

    Zhao, Y Y; Liu, F; Yang, G; You, M S

    2011-02-01

    Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.

  17. Arthropod Pest Control for UK Oilseed Rape - Comparing Insecticide Efficacies, Side Effects and Alternatives.

    PubMed

    Zhang, Han; Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G

    2017-01-01

    Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users' health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0-1 t/ha less). Alternatives for future oilseed rape protection

  18. Training for Certification: Forest Pest Control.

    ERIC Educational Resources Information Center

    Parker, Robert C., Comp.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on forest pest control, this publication examines plant and animal pest control practices for southern tree species. Contents include: (1) identification of insects, diseases, and weed tree species;…

  19. Threat of invasive pests from within national borders.

    PubMed

    Paini, Dean R; Worner, Susan P; Cook, David C; De Barro, Paul J; Thomas, Matthew B

    2010-11-16

    Predicting and ranking potential invasive species present significant challenges to researchers and biosecurity agencies. Here we analyse a worldwide database of pest species assemblages to generate lists of the top 100 insect pests most likely to establish in the United States and each of its 48 contiguous states. For the United States as a whole, all of the top 100 pest species have already established. Individual states however tend to have many more 'gaps' with most states having at least 20 species absent from their top 100 list. For all but one state, every exotic pest species currently absent from a state's top 100 can be found elsewhere in the contiguous United States. We conclude that the immediate threat from known invasive insect pests is greater from within the United States than without. Our findings have potentially significant implications for biosecurity policy, emphasizing the need to consider biosecurity measures beyond established national border interventions.

  20. Using Mitochondrial and Nuclear Sequence Data for Disentangling Population Structure in Complex Pest Species: A Case Study with Dermanyssus gallinae

    PubMed Central

    Roy, Lise; Buronfosse, Thierry

    2011-01-01

    Among global changes induced by human activities, association of breakdown of geographical barriers and impoverishered biodiversity of agroecosystems may have a strong evolutionary impact on pest species. As a consequence of trade networks' expansion, secondary contacts between incipient species, if hybrid incompatibility is not yet reached, may result in hybrid swarms, even more when empty niches are available as usual in crop fields and farms. By providing important sources of genetic novelty for organisms to adapt in changing environments, hybridization may be strongly involved in the emergence of invasive populations. Because national and international trade networks offered multiple hybridization opportunities during the previous and current centuries, population structure of many pest species is expected to be the most intricate and its inference often blurred when using fast-evolving markers. Here we show that mito-nuclear sequence datasets may be the most helpful in disentangling successive layers of admixture in the composition of pest populations. As a model we used D. gallinae s. l., a mesostigmatid mite complex of two species primarily parasitizing birds, namely D. gallinae L1 and D. gallinae s. str. The latter is a pest species, considered invading layer farms in Brazil. The structure of the pest as represented by isolates from both wild and domestic birds, from European (with a focus on France), Australian and Brazilian farms, revealed past hybridization events and very recent contact between deeply divergent lineages. The role of wild birds in the dissemination of mites appears to be null in European and Australian farms, but not in Brazilian ones. In French farms, some recent secondary contact is obviously consecutive to trade flows. Scenarios of populations' history were established, showing five different combinations of more or less dramatic bottlenecks and founder events, nearly interspecific hybridizations and recent population mixing within D

  1. Using mitochondrial and nuclear sequence data for disentangling population structure in complex pest species: a case study with Dermanyssus gallinae.

    PubMed

    Roy, Lise; Buronfosse, Thierry

    2011-01-01

    Among global changes induced by human activities, association of breakdown of geographical barriers and impoverishered biodiversity of agroecosystems may have a strong evolutionary impact on pest species. As a consequence of trade networks' expansion, secondary contacts between incipient species, if hybrid incompatibility is not yet reached, may result in hybrid swarms, even more when empty niches are available as usual in crop fields and farms. By providing important sources of genetic novelty for organisms to adapt in changing environments, hybridization may be strongly involved in the emergence of invasive populations. Because national and international trade networks offered multiple hybridization opportunities during the previous and current centuries, population structure of many pest species is expected to be the most intricate and its inference often blurred when using fast-evolving markers. Here we show that mito-nuclear sequence datasets may be the most helpful in disentangling successive layers of admixture in the composition of pest populations. As a model we used D. gallinae s. l., a mesostigmatid mite complex of two species primarily parasitizing birds, namely D. gallinae L1 and D. gallinae s. str. The latter is a pest species, considered invading layer farms in Brazil. The structure of the pest as represented by isolates from both wild and domestic birds, from European (with a focus on France), Australian and Brazilian farms, revealed past hybridization events and very recent contact between deeply divergent lineages. The role of wild birds in the dissemination of mites appears to be null in European and Australian farms, but not in Brazilian ones. In French farms, some recent secondary contact is obviously consecutive to trade flows. Scenarios of populations' history were established, showing five different combinations of more or less dramatic bottlenecks and founder events, nearly interspecific hybridizations and recent population mixing within D

  2. Trading biodiversity for pest problems.

    PubMed

    Lundgren, Jonathan G; Fausti, Scott W

    2015-07-01

    Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species' abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function.

  3. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioral, and c

    USDA-ARS?s Scientific Manuscript database

    Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly morphologically and genetically similar to the destructive pest, th...

  4. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  5. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    PubMed

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  6. Arthropod Pest Control for UK Oilseed Rape – Comparing Insecticide Efficacies, Side Effects and Alternatives

    PubMed Central

    Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G.

    2017-01-01

    Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users’ health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0–1 t/ha less). Alternatives for future oilseed rape

  7. Rapid assessment of target species: Byssate bivalves in a large tropical port.

    PubMed

    Minchin, Dan; Olenin, Sergej; Liu, Ta-Kang; Cheng, Muhan; Huang, Sheng-Chih

    2016-11-15

    Rapid assessment sampling for target species is a fast cost-effective method aimed at determining the presence, abundance and distribution of alien and native harmful aquatic organisms and pathogens that may have been introduced by shipping. In this study, the method was applied within a large tropical port expected to have a high species diversity. The port of Kaohsiung was sampled for bivalve molluscan species that attach using a byssus. Such species, due to their biological traits, are spread by ships to ports worldwide. We estimated the abundance and distribution range of one dreissenid (Mytilopsis sallei) and four mytilids (Brachidontes variabilis, Arcuatula senhousa, Mytilus galloprovincialis, Perna viridis) known to be successful invaders and identified as potential pests, or high-risk harmful native or non-native species. We conclude that a rapid assessment of their abundance and distribution within a port, and its vicinity, is efficient and can provide sufficient information for decision making by port managers where IMO port exemptions may be sought. Copyright © 2016. Published by Elsevier Ltd.

  8. Mating Disruption as a Suppression Tactic in Programs Targeting Regulated Lepidopteran Pests in US.

    PubMed

    Lance, David R; Leonard, Donna S; Mastro, Victor C; Walters, Michelle L

    2016-07-01

    Mating disruption, the broadcast application of sex-attractant pheromone to reduce the ability of insects to locate mates, has proven to be an effective method for suppressing populations of numerous moth pests. Since the conception of mating disruption, the species-specificity and low toxicity of pheromone applications has led to their consideration for use in area-wide programs to manage invasive moths. Case histories are presented for four such programs where the tactic was used in the United States: Pectinophora gossypiella (pink bollworm), Lymantria dispar (gypsy moth), Epiphyas postvittana (light brown apple moth), and Lobesia botrana (European grapevine moth). Use of mating disruption against P. gossypiella and L. botrana was restricted primarily to agricultural areas and relied in part (P. gossypiella) or wholly (L. botrana) on hand-applied dispensers. In those programs, mating disruption was integrated with other suppression tactics and considered an important component of overall efforts that are leading toward eradication of the invasive pests from North America. By contrast, L. dispar and E. postvittana are polyphagous pests, where pheromone formulations have been applied aerially as stand-alone treatments across broad areas, including residential neighborhoods. For L. dispar, mating disruption has been a key component in the program to slow the spread of the infestation of this pest, and the applications generally have been well tolerated by the public. For E. postvittana, public outcry halted the use of aerially applied mating disruption after an initial series of treatments, effectively thwarting an attempt to eradicate this pest from California. Reasons for the discrepancies between these two programs are not entirely clear.

  9. Unaspis lansivora sp. n. (Hemiptera: Diaspididae), a new pest of Lansium domesticum (Meliaceae), and a key to Unaspis species.

    PubMed

    Watson, Gillian W

    2015-01-13

    Since 2004, an undescribed species of Unaspis (Hemiptera: Diaspididae) has become a damaging pest on Lansium domesticum Corrêa in the Philippines. Its attack on the leaves causes premature senescence and defoliation, resulting in the production of few, underdeveloped, sour fruit and sometimes killing the trees. The scale was misidentified initially as Lepidosaphes ulmi (Linnaeus) and then as Unaspis citri (Comstock), but further study indicated that it was an undescribed species of potential plant quarantine significance. The pest is described as U. lansivora sp. n. and an identification key to all 19 species of Unaspis is provided. Its distribution, host range and prospects for its biological control are discussed.

  10. F1 -ATP synthase α-subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis.

    PubMed

    Hu, Jun; Xia, Yuxian

    2016-07-01

    The migratory locust is one of the most destructive agricultural pests worldwide. ATP synthase (F0 F1 -ATPase) uses proton or sodium motive force to produce 90% of the cellular ATP, and the α-subunit of F1 -ATP synthase (ATP5A) is vital for F1 -ATP synthase. Here, we tested whether ATP5A could be a potential target for RNAi-mediated pest management of L. migratoria. Lm-ATP5A was cloned and characterised. Lm-ATP5A is expressed in all tissues. Injection of 100 ng of the double-stranded RNA of ATP5A (dsATP5A) knocked down the transcription of the target gene and caused mortality in 1.5-5 days. The Lm-ATP5A protein level, the oligomycin-sensitive ATP synthetic and hydrolytic activities and the ATP content were correspondingly reduced following dsATP5A injection. These findings demonstrated the essential roles of Lm-ATP5A in L. migratoria and identified it as a potential target for insect pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Oral delivery of dsRNA by microbes: Beyond pest control.

    PubMed

    Abrieux, Antoine; Chiu, Joanna C

    2016-01-01

    RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for integrated pest management (IPM), especially with respect to addressing the need to reduce off-target effect and slow down resistance development to chemical insecticides. Employing the natural association existing between insect and yeast, we developed a novel method to enable the knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our "yeast biopesticide" showed a significant decrease in fitness. In this perspective article, we postulate that this approach could be adapted to a large number of species, given the great diversity of symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also serve to facilitate reverse genetic applications, specifically in non-model organisms.

  12. Chemical environment manipulation for pest insects control

    NASA Astrophysics Data System (ADS)

    Greenblatt, J. A.; Lewis, W. J.

    1983-01-01

    The chemical environment of pest species may be considered a habitat susceptible to management Management may be by means of manipulation of the environment of the pest for population suppression or for enhancement of natural enemies Examples of each are reviewed here Chemical stimuli influencing the behavior of phytophagous insects include host plant originated stimuli and pheromones The latter, especially sex pheromones, have proved most successful as tools for manipulation of pest population dynamics Factors influencing search behavior of natural enemies include habitat characteristics such as crop, associated plants and plant assemblages, host plant characteristics, influence of associated organisms, and characteristics of the searching entomophage Recent studies have shown potential for simultaneous management of a pest species and enhancement of natural enemies using pest pheromones

  13. A high incidence of parthenogenesis in agricultural pests.

    PubMed

    Hoffmann, Ary A; Reynolds, K Tracy; Nash, Michael A; Weeks, Andrew R

    2008-11-07

    Parthenogenetic species are assumed to represent evolutionary dead ends, yet parthenogenesis is common in some groups of invertebrates particularly in those found in relatively constant environments. This suggests that parthenogenetic reproduction might be common in pest invertebrates from uniform agricultural environments. Based on the evaluations of two databases from North America and Italy, we found that parthenogenetic species comprised 45 per cent (North America) or 48 per cent (Italy) of pest species derived from genera where parthenogenesis occurred, compared with an overall incidence of 10 per cent or 16 per cent in these genera. In establishing these patterns, we included only genera containing at least some member species that reproduced by parthenogenesis. The high incidence of parthenogenesis in pest species is spread across different families and several insect orders. Parthenogenetic reproduction may be favoured in agricultural environments when particular clones have a high fitness across multiple generations. Increasing the complexity and variability of agricultural environments represents one way of potentially controlling parthenogenetic pest species.

  14. A high incidence of parthenogenesis in agricultural pests

    PubMed Central

    Hoffmann, Ary A; Tracy Reynolds, K; Nash, Michael A; Weeks, Andrew R

    2008-01-01

    Parthenogenetic species are assumed to represent evolutionary dead ends, yet parthenogenesis is common in some groups of invertebrates particularly in those found in relatively constant environments. This suggests that parthenogenetic reproduction might be common in pest invertebrates from uniform agricultural environments. Based on the evaluations of two databases from North America and Italy, we found that parthenogenetic species comprised 45 per cent (North America) or 48 per cent (Italy) of pest species derived from genera where parthenogenesis occurred, compared with an overall incidence of 10 per cent or 16 per cent in these genera. In establishing these patterns, we included only genera containing at least some member species that reproduced by parthenogenesis. The high incidence of parthenogenesis in pest species is spread across different families and several insect orders. Parthenogenetic reproduction may be favoured in agricultural environments when particular clones have a high fitness across multiple generations. Increasing the complexity and variability of agricultural environments represents one way of potentially controlling parthenogenetic pest species. PMID:18647717

  15. Forest nursery pest management in Cuba

    Treesearch

    Rene Alberto Lopez Castilla; Angela Duarte Casanova; Celia Guerra Rivero; Haylett Cruz Escoto; Natividad Triguero Issasi

    2002-01-01

    A systematic survey of methods to detect pests in forest nurseries before they damage plants was done. These surveys recorded the most important forest nursery pests during 18 years (from 1980 to 1998) and their geographical and temporal distribution in the principal enterprises in Cuba. Approximately a dozen insect species and three fungi species responsible for the...

  16. Assessing risks to non-target species during poison baiting programs for feral cats.

    PubMed

    Buckmaster, Tony; Dickman, Christopher R; Johnston, Michael J

    2014-01-01

    Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus). These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV) that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia's 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii) was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access.

  17. Assessing Risks to Non-Target Species during Poison Baiting Programs for Feral Cats

    PubMed Central

    Buckmaster, Tony; Dickman, Christopher R.; Johnston, Michael J.

    2014-01-01

    Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus). These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV) that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia's 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii) was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access. PMID:25229348

  18. PEST reduces bias in forced choice psychophysics.

    PubMed

    Taylor, M M; Forbes, S M; Creelman, C D

    1983-11-01

    Observers performed several different detection tasks using both the PEST adaptive psychophysical procedure and a fixed-level (method of constant stimuli) psychophysical procedure. In two experiments, PEST runs targeted at P (C) = 0.80 were immediately followed by fixed-level detection runs presented at the difficulty level resulting from the PEST run. The fixed-level runs yielded P (C) about 0.75. During the fixed-level runs, the probability of a correct response was greater when the preceding response was correct than when it was wrong. Observers, even highly trained ones, perform in a nonstationary manner. The sequential dependency data can be used to determine a lower bound for the observer's "true" capability when performing optimally; this lower bound is close to the PEST target, and well above the forced choice P (C). The observer's "true" capability is the measure used by most theories of detection performance. A further experiment compared psychometric functions obtained from a set of PEST runs using different targets with those obtained from blocks of fixed-level trials at different levels. PEST results were more stable across observers, performance at all but the highest signal levels was better with PEST, and the PEST psychometric functions had shallower slopes. We hypothesize that PEST permits the observer to keep track of what he is trying to detect, whereas in the fixed-level method performance is disrupted by memory failure. Some recently suggested "more virulent" versions of PEST may be subject to biases similar to those of the fixed-level procedures.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics.

    PubMed

    Gross, Kevin; Rosenheim, Jay A

    2011-10-01

    Secondary pest outbreaks occur when the use of a pesticide to reduce densities of an unwanted target pest species triggers subsequent outbreaks of other pest species. Although secondary pest outbreaks are thought to be familiar in agriculture, their rigorous documentation is made difficult by the challenges of performing randomized experiments at suitable scales. Here, we quantify the frequency and monetary cost of secondary pest outbreaks elicited by early-season applications of broad-spectrum insecticides to control the plant bug Lygus spp. (primarily L. hesperus) in cotton grown in the San Joaquin Valley, California, USA. We do so by analyzing pest-control management practices for 969 cotton fields spanning nine years and 11 private ranches. Our analysis uses statistical methods to draw formal causal inferences from nonexperimental data that have become popular in public health and economics, but that are not yet widely known in ecology or agriculture. We find that, in fields that received an early-season broad-spectrum insecticide treatment for Lygus, 20.2% +/- 4.4% (mean +/- SE) of late-season pesticide costs were attributable to secondary pest outbreaks elicited by the early-season insecticide application for Lygus. In 2010 U.S. dollars, this equates to an additional $6.00 +/- $1.30 (mean +/- SE) per acre in management costs. To the extent that secondary pest outbreaks may be driven by eliminating pests' natural enemies, these figures place a lower bound on the monetary value of ecosystem services provided by native communities of arthropod predators and parasitoids in this agricultural system.

  20. Competitive interactions among four pest species of earth mites (Acari: Penthaleidae).

    PubMed

    Umina, P A; Hoffmann, A A

    2005-04-01

    Earth mites are major winter pests of a variety of crops and pastures in southern Australia. Competition between four earth mite species was investigated using field and shadehouse experiments. The influence of different plant hosts on the frequency and intensity of competitive interactions also were examined. This information is important, because control attempts that eradicate one species of mite could be directly followed by an increase in abundance of another earth mite species. There were strong effects of intraspecific competition on the reproductive rate of species, while interspecific interactions between Halotydeus destructor (Tucker) and Penthaleus species and between the three Penthaleus species also were detected. Competitive abilities were altered on the different plant types. On pasture, the competitive advantage swayed between Penthaleus major (Dugés), H. destructor, and Penthaleus falcatus (Qin & Halliday). Penthaleus sp. x was the strongest competitor in a mixture of wheat, Triticum aestivum (L.), and oats, Avena sativa (L.), whereas on canola, Brassica napus (L.), and bristly ox-tongue, Picris echioides (L.), P. falcatus, and H. destructor were superior competitors. These results suggest that competition is a strong force influencing the abundance of earth mites in the field and that host plant factors are important in shaping the type of interactions. This highlights the importance of identifying mite species when considering control options and suggests that effective control recommendations need to be developed for each individual species.

  1. Plant domestication slows pest evolution.

    PubMed

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  2. Use of plant extracts for tea pest management in India.

    PubMed

    Roy, Somnath; Handique, Gautam; Muraleedharan, Narayanannair; Dashora, Kavya; Roy, Sudipta Mukhopadhyay; Mukhopadhyay, Ananda; Babu, Azariah

    2016-06-01

    India is the second largest producer of black tea in the world. The biggest challenge for tea growers of India nowadays is to combat pests and diseases. Tea crop in India is infested by not less than 720 insect and mite species. At least four sucking pests and six chewing pests have well established themselves as regular pests causing substantial damage to this foliage crop. Various synthetic pesticides are widely used for the management of tea pests in India. Applications of such large quantity of pesticides could cause various problems such as development of resistance, deleterious effects on non-target organisms such as insect predators and parasitoids, upsetting the ecological balance, and accumulation of pesticide residues on tea leaves. There is a growing demand for organic tea or at least pesticide residue free tea in the international market which affects the export price. There is also a higher emphasis of implementation of new regulations on internationally traded foods and implementation of Plant Protection Code (PPC) for tea by the Government of India. This necessitates a relook into the usage pattern of synthetic pesticides on this crop. There are various non-chemical interventions which are being worked out for their sustainability, compatibility, and eco-friendly properties which can gradually replace the use of toxic chemicals. The application of plant extracts with insecticidal properties provides an alternative to the synthetic pesticides. Botanical products, especially neem-based products, have made a relatively moderate impact in tea pest control. Research has also demonstrated the potential of 67 plant species as botanical insecticides against tea pests. The majority of plant products used in pest management of tea in India are in the form of crude extracts prepared locally in tea garden itself, and commercial standardized formulations are not available for most of the plants due to lack of scientific research in the area. Apart from systematic

  3. Gregarines (Apicomplexa, Gregarinasina) in psocids (Insecta, Psocoptera) including a new species description and their potential use as pest control agents.

    PubMed

    Rueckert, Sonja; Devetak, Dušan

    2017-08-01

    Gregarine apicomplexans are unicellular organisms that infect invertebrate hosts in marine, freshwater and terrestrial habitats. The largest group of invertebrates infested on land is the insects. The insect order Psocoptera (booklice) has recently gained wider interest due to specimens occurring in stored food products and therefore being considered pest organisms. Biological control agents are often used to eliminate pest organisms. In this study we examined the psocid Dorypteryx domestica, an invasive psocid species that is spreading all over the world. We were able to isolate and describe a new gregarine species (Enterocystis dorypterygis sp. n.) infecting D. domestica. The trophozoites are panduri- or pyriform and their association/syzygy is caudo-frontal. The surface is inscribed by longitudinal epicytic folds covering the complete cell. Phylogenetic analyses of the SSU rDNA gene revealed an only weakly supported relationship with two Gregarina species G. ormieri and G. basiconstrictonea, both from tenebrionid beetles. Gregarines have been proposed to have some potential as biological control agents for several insects. Identifying the gregarine species infecting pest organisms like psocids is a first step and prerequisite for the probable utilization of these parasites as biological control agents in the future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Trading biodiversity for pest problems

    PubMed Central

    Lundgren, Jonathan G.; Fausti, Scott W.

    2015-01-01

    Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species’ abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function. PMID:26601223

  5. Pest control and resistance management through release of insects carrying a male-selecting transgene.

    PubMed

    Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke

    2015-07-16

    Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli

  6. Feeding and attraction of non-target flies to spinosad-based fruit fly bait.

    PubMed

    Wang, Xin-Geng; Messing, Russell H

    2006-10-01

    A spinosad-based fruit fly bait, GF-120, has recently become a primary tool for area-wide suppression or eradication of pest tephritid fruit flies. The present study assessed the attraction and feeding of five non-target fly species to GF-120 in Hawaii. These non-target flies include three beneficial tephritid species [Eutreta xanthochaeta (Aldrich), Tetreuaresta obscuriventris (Loew), Ensina sonchi (L.)] introduced for weed biological control, an endemic Hawaiian tephritid [Trupanea dubautiae (Bryan)] (all Diptera: Tephritidae) and the cosmopolitan Drosophila melanogaster Meigen (Diptera: Drosophilidae). All five non-target fly species were susceptible to GF-120, as was the target pest Mediterranean fruit fly Ceratitis capitata (Wiedemann). Feeding on, or even brief tasting of, GF-120 killed all fly species within 2 h. When individual flies were provided with a choice of GF-120 or honey solution, there was no difference in the frequency of first food encounter by E. xanthochaeta, D. melanogaster or C. capitata. The other three non-target species approached honey more often than GF-120 in their first food encounter. Feeding times on GF-120 and honey were not significantly different for D. melanogaster and C. capitata, while the other four non-target species fed longer on honey than on GF-120. There was no significant difference in feeding time on honey versus GF-120 between males and females of each species. These results suggest that area-wide treatment using GF-120 for the purpose of eradication of pest fruit flies has potential negative impacts on these and other non-target fly species in Hawaii.

  7. Effects of weed cover composition on insect pest and natural enemy abundance in a field of Dracaena marginata (Asparagales: Asparagaceae) in Costa Rica.

    PubMed

    Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J

    2014-04-01

    Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.

  8. RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases

    USDA-ARS?s Scientific Manuscript database

    Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...

  9. Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.

    PubMed

    Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun

    2018-05-11

    Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    PubMed

    Li, Hang; Jiang, Weihua; Zhang, Zan; Xing, Yanru; Li, Fei

    2013-01-01

    The beet armyworm, Spodoptera exigua (Hübner), is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st) to 5(th) instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl) into the 4(th) instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3%) after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (P<0.05). About 80% of the surviving insects in the siRNA-treated group of five genes (PGCP, chitinase1, tubulin1, tubulin2 and helicase) showed retarded development. In chitinase1-siRNA and chitinase7-siRNA administered groups, 12.5% survivors exhibited "half-ecdysis". In arf1-siRNA and arf2-siRNA groups, the body color of 15% became black 48 h after injections. In summary, the transcriptome could be a valuable genetic resource for identification of genes in S. exigua and this study provided putative targets for RNAi pest control.

  11. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua

    PubMed Central

    Zhang, Zan; Xing, Yanru; Li, Fei

    2013-01-01

    The beet armyworm, Spodoptera exigua (Hübner), is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1st to 5th instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl) into the 4th instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20–94.3%) after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (P<0.05). About 80% of the surviving insects in the siRNA-treated group of five genes (PGCP, chitinase1, tubulin1, tubulin2 and helicase) showed retarded development. In chitinase1-siRNA and chitinase7-siRNA administered groups, 12.5% survivors exhibited “half-ecdysis”. In arf1-siRNA and arf2-siRNA groups, the body color of 15% became black 48 h after injections. In summary, the transcriptome could be a valuable genetic resource for identification of genes in S. exigua and this study provided putative targets for RNAi pest control. PMID

  12. The Exotic Pest Plant Council

    Treesearch

    Brian Bowen

    1998-01-01

    The Exotic Pest Plant Council (EPPC) is a proactive organization established to raise awareness about the threat posed by invasive exotic pest plants in natural areas and acts to stop the continued spread of invasive species. EPPC provides fora for sharing information and provides networking opportunities regarding all matters concerning this issue. EPPC was first...

  13. Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature.

    PubMed

    Wan, Guijun; Dang, Zhihao; Wu, Gang; Parajulee, Megha N; Ge, Feng; Chen, Fajun

    2014-05-01

    The approval of transgenic Bacillus thuringiensis (Bt) rice by China was momentous for biotech crops, although it has yet to be approved for commercial production. Non-target pest problems in rice paddies, such as the three ecologically similar species of planthoppers Nilaparvata lugens, Laodelphax striatellus and Sogatella furcifera, could become increasingly serious under global climate change. Fused (Cry1Ab/Cry1Ac) and single (Cry1Ab) transgenic Bt rice were evaluated for effects on species-specific responses of planthoppers to elevated carbon dioxide (CO2) and temperature. Transgenic Bt rice lines significantly modified species-specific responses of the planthoppers to elevated CO2 and temperature. High temperature appears to favour outbreaks of S. furcifera relative to N. lugens and L. striatellus when feeding upon fused transgenic Bt rice, especially at elevated CO2 . Elevated CO2 at high temperature appears to be a factor reducing S. furcifera occurrence when feeding upon single transgenic Bt rice. Different types of transgenic Bt rice alter the species-specific responses of non-target planthoppers to elevated CO2 and temperature. Compared with their non-transgenic parental lines, the single transgenic Bt rice shows better performance in controlling the non-target planthopper S. furcifera by comparison with the fused transgenic Bt rice under elevated CO2 and temperature. It is suggested that multitypes of transgenic Bt rice be used in the field simultaneously in order to take advantage of high transgenic diversity for optimal performance against all pests in paddy fields. © 2013 Society of Chemical Industry.

  14. Insecticide-induced hormesis and arthropod pest management.

    PubMed

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  15. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control

    PubMed Central

    Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe

    2016-01-01

    Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis) and maize (Ostrinia furnacalis), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field. PMID:27763554

  16. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control.

    PubMed

    Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe

    2016-10-18

    Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis ( Bt ) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice ( Chilo suppressalis , Scirpophaga incertulas , and Cnaphalocrocis medinalis ) and maize ( Ostrinia furnacalis ), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field.

  17. Accounting for spatially heterogeneous conditions in local-scale surveillance strategies: case study of the biosecurity insect pest, grape phylloxera (Daktulosphaira vitifoliae (Fitch)).

    PubMed

    Triska, Maggie D; Powell, Kevin S; Collins, Cassandra; Pearce, Inca; Renton, Michael

    2018-04-29

    Surveillance strategies are often standardized and completed on grid patterns to detect pest incursions quickly; however, it may be possible to improve surveillance through more targeted surveillance that accounts for landscape heterogeneity, dispersal and the habitat requirements of the invading organism. We simulated pest spread at a local-scale, using grape phylloxera (Daktulosphaira vitifoliae (Fitch)) as a case study, and assessed the influence of incorporating spatial heterogeneity into surveillance strategies compared to current, standard surveillance strategies. Time to detection, spread within and spread beyond the vineyard were reduced by conducting surveys that target sampling effort in soil that is highly suitable to the invading pest in comparison to standard surveillance strategies. However, these outcomes were dependent on the virulence level of phylloxera as phylloxera is a complex pest with multiple genotypes that influence spread and detectability. Targeting surveillance strategies based on local-scale spatial heterogeneity can decrease the time to detection without increasing the survey cost and surveillance that targets highly suitable soil is the most efficient strategy for detecting new incursions. Additionally, combining targeted surveillance strategies with buffer zones and hygiene procedures, and updating surveillance strategies as additional species information becomes available, will further decrease the risk of pest spread. This article is protected by copyright. All rights reserved.

  18. Evidence of weak genetic structure and recent gene flow between Bactrocera dorsalis s.s. and B. papayae, across Southern Thailand and West Malaysia, supporting a single target pest for SIT applications.

    PubMed

    Aketarawong, Nidchaya; Isasawin, Siriwan; Thanaphum, Sujinda

    2014-06-14

    . papayae forms in Southern Thailand and West Malaysia. Both forms can be treated as a single target pest for the SIT program in an area-wide sense. Additionally, the result of species identification based on molecular data and morphological character are not congruent. The use of independent, multiple approaches in the characterization of the target population may ensure the effectiveness and feasibility of SIT-based control in the target area.

  19. Evidence of weak genetic structure and recent gene flow between Bactrocera dorsalis s.s. and B. papayae, across Southern Thailand and West Malaysia, supporting a single target pest for SIT applications

    PubMed Central

    2014-01-01

    between B. dorsalis s.s. and B. papayae forms in Southern Thailand and West Malaysia. Both forms can be treated as a single target pest for the SIT program in an area-wide sense. Additionally, the result of species identification based on molecular data and morphological character are not congruent. The use of independent, multiple approaches in the characterization of the target population may ensure the effectiveness and feasibility of SIT-based control in the target area. PMID:24929425

  20. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities

    PubMed Central

    Morris, Jonathan R.; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676

  1. Floral attractants for monitoring pest moths

    USDA-ARS?s Scientific Manuscript database

    Many species of moths, including pest species, are known to be attracted to volatile compounds emitted by flowers. Some of the flower species studied included glossy abelia, night-blooming jessamine, three species of Gaura, honeysuckle, lesser butterfly orchid, and Oregongrape. The volatiles relea...

  2. Insect Pathogenic Bacteria in Integrated Pest Management

    PubMed Central

    Ruiu, Luca

    2015-01-01

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed. PMID:26463190

  3. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites.

    PubMed

    Lin, Lianyun; Liu, Chen; Qin, Juan; Wang, Jie; Dong, Shengjie; Chen, Wei; He, Weiyi; Gao, Qingzhi; You, Minsheng; Yuchi, Zhiguang

    2018-01-01

    Ryanodine receptors (RyRs) are large calcium-release channels located in sarcoplasmic reticulum membrane. They play a central role in excitation-contraction coupling of muscle cells. Three commercialized insecticides targeting pest RyRs generate worldwide sales over 2 billion U.S. dollars annually, but the structure of insect RyRs remains elusive, hindering our understanding of the mode of action of RyR-targeting insecticides and the development of insecticide resistance in pests. Here we present the crystal structure of RyR N-terminal domain (NTD) (residue 1-205) at 2.84 Å resolution from the diamondback moth (DBM), Plutella xylostella, a destructive pest devouring cruciferous crops all over the world. Similar to its mammalian homolog, DBM RyR NTD consists of a beta-trefoil folding motif and a flanking alpha helix. Interestingly, two regions in NTD interacting with neighboring domains showed distinguished conformations in DBM relative to mammalian RyRs. Using homology modeling and molecular dynamics simulation, we created a structural model of the N-terminal three domains, showing two unique binding pockets that could be targeted by potential species-specific insecticides. Thermal melt experiment showed that the stability of DBM RyR NTD was higher than mammalian RyRs, probably due to a stable intra-domain disulfide bond observed in the crystal structure. Previously DBM NTD was shown to be one of the two critical regions to interact with insecticide flubendiamide, but isothermal titration calorimetry experiments negated DBM NTD alone as a major binding site for flubendiamide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region

    PubMed Central

    Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc

    2015-01-01

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186

  5. Climate change induced invasions by native and exotic pests

    Treesearch

    Jesse A. Logan

    2007-01-01

    The importance of effective risk assessment for introduction and establishment of exotic pest species has dramatically increased with an expanded global economy and the accompanying increase in international trade. Concurrently, recent climate warming has resulted in potential invasion of new habitats by native pest species. The time frame of response to changing...

  6. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens.

    PubMed

    Wang, Weixia; Wan, Pinjun; Lai, Fengxiang; Zhu, Tingheng; Fu, Qiang

    2018-07-01

    Calmodulin (CaM) is an essential protein in cellular activity and plays important roles in many processes in insect development. RNA interference (RNAi) has been hypothesized to be a promising method for pest control. CaM is a good candidate for RNAi target. However, the sequence and function of CaM in Nilaparvata lugens are unknown. Furthermore, the double-stranded RNA (dsRNA) target to CaM gene in pest control is still unavailable. In the present study, two alternatively spliced variants of CaM transcripts, designated NlCaM1 and NlCaM2, were cloned from N. lugens. The two cDNA sequences exhibited 100% identity to each other in the open reading frame (ORF), and only differed in the 3' untranslated region (UTR). NlCaM including NlCaM1 and NlCaM2 mRNA was detectable in all developmental stages and tissues of N. lugens, with significantly increased expression in the salivary glands. Knockdown of NlCaM expression by RNAi with different dsRNAs led to an inability to molt properly, increased mortality, which ranged from 49.7 to 92.5%, impacted development of the ovaries and led to female infertility. There were no significant reductions in the transcript levels of vitellogenin and its receptor or in the total vitellogenin protein level relative to the control group. However, a significant reduction in vitellogenin protein was detected in ovaries injected with dsNlCaM. In addition, a specific dsRNA of NlCaM for control of N. lugens was designed and tested. NlCaM plays important roles mainly in nymph development and uptake of vitellogenin by ovaries in vitellogenesis in N. lugens. dsRNA derived from the less conserved 3'-UTR of NlCaM shows great potential for RNAi-based N. lugens management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Environmental risk assessment for plant pests: a procedure to evaluate their impacts on ecosystem services.

    PubMed

    Gilioli, G; Schrader, G; Baker, R H A; Ceglarska, E; Kertész, V K; Lövei, G; Navajas, M; Rossi, V; Tramontini, S; van Lenteren, J C

    2014-01-15

    The current methods to assess the environmental impacts of plant pests differ in their approaches and there is a lack of the standardized procedures necessary to provide accurate and consistent results, demonstrating the complexity of developing a commonly accepted scheme for this purpose. By including both the structural and functional components of the environment threatened by invasive alien species (IAS), in particular plant pests, we propose an environmental risk assessment scheme that addresses this complexity. Structural components are investigated by evaluating the impacts of the plant pest on genetic, species and landscape diversity. Functional components are evaluated by estimating how plant pests modify ecosystem services in order to determine the extent to which an IAS changes the functional traits that influence ecosystem services. A scenario study at a defined spatial and temporal resolution is then used to explore how an IAS, as an exogenous driving force, may trigger modifications in the target environment. The method presented here provides a standardized approach to generate comparable and reproducible results for environmental risk assessment as a component of Pest Risk Analysis. The method enables the assessment of overall environmental risk which integrates the impacts on different components of the environment and their probabilities of occurrence. The application of the proposed scheme is illustrated by evaluating the environmental impacts of the invasive citrus long-horn beetle, Anoplophora chinensis. © 2013.

  8. Apple orchard pest control strategies affect bird communities in southeastern France.

    PubMed

    Bouvier, Jean-Charles; Ricci, Benoît; Agerberg, Julia; Lavigne, Claire

    2011-01-01

    Birds are regarded as appropriate biological indicators of how changes in agricultural practices affect the environment. They are also involved in the biocontrol of pests. In the present study, we provide an assessment of the impact of pest control strategies on bird communities in apple orchards in southeastern France. We compared the structure (abundance, species richness, and diversity) of breeding bird communities in 15 orchards under conventional or organic pest control over a three-year period (2003-2005). Pest control strategies and their evolution over time were characterized by analyzing farmers' treatment schedules. The landscape surrounding the orchards was characterized using a Geographic Information System. We observed 30 bird species overall. Bird abundance, species richness, and diversity were all affected by pest control strategies, and were highest in organic orchards and lowest in conventional orchards during the three study years. The pest control strategy affected insectivores more than granivores. We further observed a tendency for bird communities in integrated pest management orchards to change over time and become increasingly different from communities in organic orchards, which also corresponded to changes in treatment schedules. These findings indicate that within-orchard bird communities may respond quickly to changes in pesticide use and may, in turn, influence biocontrol of pests by birds. © 2010 SETAC.

  9. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens.

    PubMed

    Li, Tengchao; Chen, Jie; Fan, Xiaobin; Chen, Weiwen; Zhang, Wenqing

    2017-07-01

    Two RNA silencing pathways in insects are known to exist that are mediated by short interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been hypothesised to be promising methods for insect pest control. However, a comparison between miRNA and siRNA in pest control is still unavailable, particularly in targeting chitin synthase gene A (CHSA). The dsRNA for Nilaparvata lugens CHSA (dsNlCHSA) and the microR-2703 (miR-2703) mimic targeting NlCHSA delivered via feeding affected the development of nymphs, reduced their chitin content and led to lethal phenotypes. The protein level of NlCHSA was downregulated after female adults were injected with dsNlCHSA or the miR-2703 mimic, but there were no significant differences in vitellogenin (NlVg) expression or in total oviposition relative to the control group. However, 90.68 and 46.13% of the eggs laid by the females injected with dsNlCHSA and miR-2703 mimic were unable to hatch, respectively. In addition, a second-generation miRNA and RNAi effect on N. lugens was observed. Ingested miR-2703 seems to be a good option for killing N. lugens nymphs, while NlCHSA may be a promising target for RNAi-based pest management. These findings provide important evidence for applications of small non-coding RNAs (snRNAs) in insect pest management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    PubMed

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Economic and physical determinants of the global distributions of crop pests and pathogens

    PubMed Central

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-01-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. PMID:24517626

  12. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects.

    PubMed

    Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N

    2017-03-01

    Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.

  13. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N

    2016-11-01

    Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.

  14. Integrated Pest Management in a Predator-Prey System with Allee Effects.

    PubMed

    Costa, M I S; dos Anjos, L

    2015-08-01

    A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.

  15. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity.

    PubMed

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z; Sastry, Sarita K

    2014-02-01

    Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.

  16. Pathogenicity of Fusarium semitectum against crop pests and its biosafety to non-target organisms.

    PubMed

    Mikunthan, G; Manjunatha, M

    2006-01-01

    Microbial control is receiving more attention, since these alternative tactics, compared to chemical control methods, are energy saving, non polluting, ecologically sound and sustainable. A mycopathogen, Fusarium semitectum Berk. and Rav. (ARSEF 7233) was isolated from diseased cadavers of aphid (Aphis gossypii) and cultured in Saboraud Maltose Agar supplemented with Yeast extract medium (SMAY). Being isolated first time from the chilli ecosystem its potential was evaluated. Experiments were conducted to understand its pathogenicity against crop pests as well as to ensure its safety to non target organisms such as silk worm (Bombyx mor), honey bee (Apis indica) and earthworm (Eisenia foetida). A paper-thrips-paper sandwich method for thrips and detached-leaf bioassay method for mites were used. Test insects and mites either reared in laboratory or obtained from the field were topically applied with spore suspension of F. semitectum (1x10(9) spores/ml). Mortality was recorded and dead animals were surface sterilized with 0.5% NaOCl and placed in SMAY medium to confirm pathogenicity. Mulberry leaves sprayed with the fungal suspension were fed to larvae of B. mori and reared. Newly emerged A. indica were topically applied with fungus. The fungus grown in cow dung for two weeks was used to assess the composting ability of E. foetida. F. semitectum produced mycosis and caused mortality to sucking pests such as chilli thrips (Scirtothrips dorsalis), broad mite (Polyphagotarsonemus latus), sugarcane wooly aphid (Ceratavacuna lanigera), spiraling whitefly (Aleyrodicus disperses), whitefly (Bemisia tabaci, A. gossypii and coconut mite (Aceria guerroronis). The fungus did not cause mortality on larvae of lepidopteran insect pests and ladybird beetle (Menochilus sexmaculatus), predatory mite (Amblysius ovalis) and larval parasitoid (Goniozus nephantidis). F. semitectum failed to infect the larvae of B. mori and newly emerged A. indica and its brood. The mycopathogen had no

  17. [The analysis of climatic and biological parameters for the pest spread risk modelling of the wood nematode species Bursaphelenchus spp. and Devibursaphelenchus teratospicularis (Rhabditida: Aphelenchoidea)].

    PubMed

    Ryss, A Y; Mokrousov, M V

    2014-01-01

    Based on the forest woody species wilt areassurvey in Nizhniy Novgorod region in August 2014, the possible factors of the pest spread risk modelling were analysed on six species of the genus Bursaphelenchus and Devibursaphelenchus teratospicularis using six parameters: plant host species, beetle vector species, average temperatures in July and January, annual precipitation. It was concluded that these parameters in the evaluated wilt spots correspond to climatic and biological data of the already published woody plants wilt records in Europe and Asia caused by the same nematode pest species. It was speculated that the annual precipitation of 600 mm and average July temperature of 25 degrees C or higher, are the critical combination that may be used to develop the predicative risk modelling in the forests' and parks' wilt monitoring.

  18. Forest Insect Pest Management and Forest Management in China: An Overview

    NASA Astrophysics Data System (ADS)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  19. Forest insect pest management and forest management in China: an overview.

    PubMed

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  20. North Dakota Sunflower Insect Pest Survey, 2006-2008

    USDA-ARS?s Scientific Manuscript database

    The major insect pest species that cause economic losses to sunflower producers in North Dakota are banded sunflower moth (Cochylis hospes Walsingham), red sunflower seed weevil (Smicronyx fulvus Le Conte), and sunflower midge (Contarinia schulzi Gagne). New emerging insect pests include lygus bugs ...

  1. Economic and physical determinants of the global distributions of crop pests and pathogens.

    PubMed

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-05-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Qpais: A Web-Based Expert System for Assistedidentification of Quarantine Stored Insect Pests

    NASA Astrophysics Data System (ADS)

    Huang, Han; Rajotte, Edwin G.; Li, Zhihong; Chen, Ke; Zhang, Shengfang

    Stored insect pests can seriously depredate stored products causing worldwide economic losses. Pests enter countries traveling with transported goods. Inspection and Quarantine activities are essential to prevent the invasion and spread of pests. Identification of quarantine stored insect pests is an important component of the China's Inspection and Quarantine procedure, and it is necessary not only to identify whether the species captured is an invasive species, but determine control procedures for stored insect pests. With the development of information technologies, many expert systems that aid in the identification of agricultural pests have been developed. Expert systems for the identification of quarantine stored insect pests are rare and are mainly developed for stand-alone PCs. This paper describes the development of a web-based expert system for identification of quarantine stored insect pests as part of the China 11th Five-Year National Scientific and Technological Support Project (115 Project). Based on user needs, textual knowledge and images were gathered from the literature and expert interviews. ASP.NET, C# and SQL language were used to program the system. Improvement of identification efficiency and flexibility was achieved using a new inference method called characteristic-select-based spatial distance method. The expert system can assist identifying 150 species of quarantine stored insect pests and provide detailed information for each species. The expert system has also been evaluated using two steps: system testing and identification testing. With a 85% rate of correct identification and high efficiency, the system evaluation shows that this expert system can be used in identification work of quarantine stored insect pests.

  3. Lepidopterous pests of tomato: biology, ecology and management

    USDA-ARS?s Scientific Manuscript database

    Tomato, Solanum lycopersicum L., serves as a host to a diverse array of arthropod pests including several species of Lepidoptera. Some of these pests are more problematic and more widespread than others. This book chapter concerns nine of the particularly problematic lepidopterans (Helicoverpa armig...

  4. Sex-pairing pheromone in the Asian termite pest species Odontotermes formosanus.

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Liu, Shu-Wen; Liu, Cong; Sillam-Dussès, David

    2012-05-01

    The sex-pairing pheromone of the black winged subterranean termite, Odontotermes formosanus (Shiraki) (Isoptera, Termitidae), was investigated using headspace-SPME, GC-MS, GC-EAD, and attraction bioassays. Females secrete the pheromone from their sternal gland to attract males. The sex-pairing pheromone is composed of (Z,Z)-dodeca-3,6-dien-1-ol and (Z)-dodec-3-en-1-ol, estimated at 9 to 16.64 ng and 0.2 to 0.54 ng, respectively. Both short- and long-distance sex attraction bioassays were employed to show that these compounds act in synergy at long distance, but only (Z,Z)-dodeca-3,6-dien-1-ol is active at short distance. The pheromone may be useful in efforts to control this pest, which is considered one of the most harmful termite species in Southeast Asia.

  5. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    PubMed Central

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  6. Editorial overview: Pests and resistance: Shedding the albatross of resistance starts by embracing the ecological complexities of its evolution

    USDA-ARS?s Scientific Manuscript database

    Adaptation of a species to a pest control measure, such as an insecticide, involves essentially the same evolutionary processes that result in adaptation to any environmental stressor. The living insects targeted by a control tactic are the latest product of countless generations of natural selectio...

  7. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings

    PubMed Central

    Querner, Pascal

    2015-01-01

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them. PMID:26463205

  8. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    PubMed

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  9. Bt maize and integrated pest management--a European perspective.

    PubMed

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests. Copyright © 2011 Society of Chemical Industry.

  10. Diversity and population dynamics of pests and predators in irrigated rice fields with treated and untreated pesticide.

    PubMed

    Rattanapun, W

    2012-01-01

    The monitoring of rice pests and their predators in pesticide untreated and treated rice fields was conducted at the southern of Thailand. Twenty-two species in 15 families and 6 orders of rice pests were sampled from untreated rice field. For treated rice field, 22 species in 14 families and 5 orders of rice pest were collected. Regardless of treatment type, dominant species and individual number of rice pest varied to physiological stage of rice. Lepidopteran pests had highest infestation during the vegetative stage of rice growth, while hemipteran pests composed of hopper species (Hemipetra: Auchenorrhyncha) and heteropteran species (Hemiptera: Heteroptera) were dominant groups during the reproductive stage and grain formation and ripening stage of rice growth. In contrast, dominant species of predator did not change throughout rice growing season. There were 35 species in 25 families and seven orders and 40 species in 29 families and seven orders of predators collected from untreated and treated rice field, respectively. Major predators of both rice fields were Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae), Tetragnatha sp. (Araneae: Tetragnathidae) and Agriocnemis pygmaea Rambur (Odonata: Agrionidae). The population dynamic of predators were not related with rice pest population in both treatments. However, the fluctuation of population pattern of rice pests in the untreated treatment were more distinctly synchronized with their predators than that of the treated treatment. There were no significant differences in the total number of rice pest and predator between two treatments at vegetative and reproductive stages of rice growth. Untreated rice field had a higher population number of predator and a lower population number of rice pest than that of treated rice field during grain formation and ripening stages. These results indicated the ago-ecosystem balance in rice fields could be produced through minimal pesticide application, in order to allow

  11. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient.

    PubMed

    Brenes-Arguedas, Tania; Coley, Phyllis D; Kursar, Thomas A

    2009-07-01

    Understanding the mechanisms that shape the distribution of organisms can help explain patterns of local and regional biodiversity and predict the susceptibility of communities to environmental change. In the species-rich tropics, a gradient in rainfall between wet evergreen and dry seasonal forests correlates with turnover of plant species. The strength of the dry season has previously been shown to correlate with species composition. Herbivores and pathogens (pests) have also been hypothesized to be important drivers of plant distribution, although empirical evidence is lacking. In this study we experimentally tested the existence of a gradient in pest pressure across a rainfall gradient in the Isthmus of Panama and measured the influence of pests relative to drought on species turnover. We established two common gardens on the dry and wet sides of the Isthmus using seedlings from 24 plant species with contrasting distributions along the Isthmus. By experimentally manipulating water availability and insect herbivore access, we showed that pests are not as strong a determinant of plant distributions as is seasonal drought. Seasonal drought in the dry site excluded wet-distribution species by significantly increasing their seedling mortality. Pathogen mortality and insect herbivore damage were both higher in the wet site, supporting the existence of a gradient in pest pressure. However, contrary to predictions, we found little evidence that dry-distribution species suffered significantly more pest attack than wet-distribution species. Instead, we hypothesize that dry-distribution species are limited from colonizing wetter forests by their inherently slower growth rates imposed by drought adaptations. We conclude that mechanisms limiting the recruitment of dry-distribution species in wet forests are not nearly as strong as those limiting wet-distribution species from dry forests.

  12. Assessment of psyllid double-stranded Ribonucleic acid, RNA, off-target effects on a ladybird beetle predator

    USDA-ARS?s Scientific Manuscript database

    Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...

  13. Cost-benefit analysis for biological control programs that target insects pests of eucalypts in urban landscapes of California

    Treesearch

    T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson

    2015-01-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....

  14. Cyprinid herpesvirus 3 as a potential biological control agent for carp (Cyprinus carpio) in Australia: susceptibility of non-target species.

    PubMed

    McColl, K A; Sunarto, A; Slater, J; Bell, K; Asmus, M; Fulton, W; Hall, K; Brown, P; Gilligan, D; Hoad, J; Williams, L M; Crane, M St J

    2017-09-01

    Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp. © 2016 John Wiley & Sons Ltd.

  15. New technology for using meteorological information in forest insect pest forecast and warning systems.

    PubMed

    Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng

    2017-12-01

    Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Toxins for Transgenic Resistance to Hemipteran Pests

    PubMed Central

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  17. Management of plant species for controlling pests, by peasant farmers at Lagoa Seca, Paraíba state, Brazil: an ethnoecological approach

    PubMed Central

    Guimarães, Andréia de Souza; Mourão, José da Silva

    2006-01-01

    Ethnoecological knowledge may be understood as spontaneous knowledge, culturally referenced of any society's members, learned and transmitted through social interactions and that are targeted at resolution of daily routine situations. The traditional knowledge in small scale economy societies as well as the non-academic knowledge in urban-industrial societies might be included in this concept. An ethnoecological approach study was performed here on people living at the communities of Alvinho, Almeida, Chã do Marinho, Floriano, and Chã de Oiti, all located in the municipality of Lagoa Seca, Paraíba state, Northeast Brazil. The general objective pursued here was to study the knowledge that peasant farmers have on management of plant species utilized for pest control. For this, the methodological instruments employed here to investigate the ethnoecological knowledge were: direct observation, structured and semi-structured interviews, and tours conducted by local peasant farmers. We analyzed the data obtained under an emic/etic view and also by comparing the local knowledge with those obtained from the literature. The results showed that people in those communities utilize management alternatives for controlling pests, which are mainly: (i) fallowing; (ii) crop rotation; (iii) destruction of crop remains and fruits attacked by pests; (iv) alternations of crops with repellent plants; and/or (v) mixed cropping; (vi) insect's larvae covered with soil; (vii) crops irrigated abundantly; and (viii) soil preparation. The recovery and comprehension we get about this knowledge as well as the farmers' savoir faire, are extremely important to the revival of ancient agricultural practices, which have been forgotten due to advances in modern agriculture. The data obtained here showed that a huge body of knowledge the farmers have on many forms or strategies of management are generally compatible with scientific knowledge. PMID:17026748

  18. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    PubMed

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    PubMed

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Invasive forest pest surveillance: survey development and reliability

    Treesearch

    John W. Coulston; Frank H. Koch; William D. Smith; Frank J. Sapio

    2008-01-01

    Worldwide, a large number of potential pest species are introduced to locations outside their native ranges; under the best possible prevention scheme, some are likely to establish one or more localized populations. A comprehensive early detection and rapid-response protocol calls for surveillance to determine if a pest has invaded additional locations outsides its...

  1. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.

    PubMed

    Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz

    2014-01-01

    Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the

  2. Incidence of pests and viral disease on pepino (Solanum muricatum Ait.) in Kanagawa Prefecture, Japan.

    PubMed

    Kim, Ok-Kyung; Ishikawa, Tadashi; Yamada, Yoshihiro; Sato, Takuma; Shinohara, Hirosuke; Takahata, Ken

    2017-01-01

    The solanaceous fruit crop pepino ( Solanum muricatum Ait.), originating in the Andes, is grown commercially in South American countries and New Zealand. In these areas, pests and diseases of pepino have been identified well; however, to date, these have seldom been investigated in detail in Japan. Herein, we attempt to reconstruct an agricultural production system for commercial pepino crops in Japan, and evaluate the incidence of pests and viral diseases on pepino. The findings of this study will facilitate in developing a better crop system for the commercial cultivation of healthy pepino fruits. A total of 11 species, comprising nine insects and two mites, were recognized as pests of pepino plants in our experimental fields in Kanagawa Prefecture, central Honshu, Japan. Of these pest species, the two-spotted spider mite Tetranychus urticae Koch, 1836 and the cotton aphid Aphis gossypii Glover, 1877, were remarkably abundant than the other pest species. Eventually, 13 species, including two previously recorded, are currently recognized as the pests of pepino in Japan. With regard to viruses, we tested two species Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV), as well as three genera Carlavirus , Potexvirus , and Potyvirus . No virus was detected in symptomatic pepino leaves collected in our experimental fields. This is a first report on the identification of pests on pepino plants in Kanagawa Prefecture, Japan and elucidates the relationship between currently occurring pests of pepino plants and potential viral pathogens that they can transmit.

  3. Pest Cockroaches May Overcome Environmental Restriction Due to Anthropization.

    PubMed

    Schapheer, Constanza; Sandoval, Gino; Villagra, Cristian A

    2018-06-08

    Our species have altered their surroundings since its early dispersion on Earth. Unfortunately, thanks to human-modified habitats, several pest organisms such as domiciliary insects have expanded their distributions. Moreover, pest-related microorganisms may also be aided by anthropization. Pest cockroaches are globally distributed and capable of carrying several diseases. We explored if urbanization may buffer environmental conditions allowing pest insects to expand their distribution. Specifically, we suggest that human settlements may generate suitable microhabitats for synanthropic cockroaches, helping them to survive and establish with disregard to overall climatic restrictions. To test this idea we studied the distribution of pest cockroaches spanning the length of Chilean territory. Chile, along its 4270 km length north to south extent, is a country offering a formidable sampling of Earth's climatic diversity accompanied by dense urbanizations. We studied entomological collections and spatially analyzed pest cockroach distribution found in Chile and discovered that synanthropic cockroach populations are consistently concentrated near most urban developed zones of the country and not limited by overall temperature. Furthermore, health-concern pest cockroach species were widely distributed in Chilean territory, found even in its most southern urban centers as well as Easter Island. Therefore, these disease vectors could exist even in isolated and extreme climatic zones as long as urbanization provides the adequate microhabitat. We discuss the need for further research in order to assess if these distributions can be extrapolated to the pathogenic strains these pest insects may be carrying as reported in other regions of the planet.

  4. Quantifying short-term foraging movements in a marsupial pest to improve targeted lethal control and disease surveillance.

    PubMed

    Yockney, Ivor J; Latham, M Cecilia; Rouco, Carlos; Cross, Martin L; Nugent, Graham

    2015-01-01

    In New Zealand, the introduced marsupial brushtail possum (Trichosurus vulpecula) is a pest species subject to control measures, primarily to limit its ability to transmit bovine tuberculosis (TB) to livestock and for conservation protection. To better define parameters for targeted possum control and TB surveillance, we here applied a novel approach to analyzing GPS data obtained from 44 possums fitted with radio-tracking collars, producing estimates of the animals' short-term nocturnal foraging patterns based on 1-, 3- or 5-nights' contiguous data. Studies were conducted within two semi-arid montane regions of New Zealand's South Island High Country: these regions support low-density possum populations (<2 possums/ha) in which the animals' home ranges are on average larger than in high-density populations in forested habitat. Possum foraging range width (FRW) estimates increased with increasing monitoring periods, from 150-200 m based on a single night's movement data to 300-400 m based on 5 nights' data. The largest average FRW estimates were recorded in winter and spring, and the smallest in summer. The results suggest that traps or poison-bait stations (for lethal control) or monitoring devices (for TB surveillance), set for > 3 consecutive nights at 150 m interval spacings, would likely place >95% of the possums in this type of habitat at risk of encountering these devices, year-round. Modelling control efficacy against operational expenditure, based on these estimations, identified the relative cost-effectiveness of various strategies that could be applied to a typical aerial poisoning operation, to reduce the ongoing TB vectorial risk that possums pose in the High Country regions. These habitat-specific findings are likely to be more relevant than the conventional pest control and monitoring methodologies developed for possums in their more typical forested habitat.

  5. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  6. Historical perspective on the synonymization of the four major pest species belonging to the Bactrocera dorsalis species complex (Diptera, Tephritidae)

    PubMed Central

    Hee, Alvin K.W.; Wee, Suk-Ling; Nishida, Ritsuo; Ono, Hajime; Hendrichs, Jorge; Haymer, David S.; Tan, Keng-Hong

    2015-01-01

    Abstract An FAO/IAEA-sponsored coordinated research project on integrative taxonomy, involving close to 50 researchers from at least 20 countries, culminated in a significant breakthrough in the recognition that four major pest species, Bactrocera dorsalis, Bactrocera philippinensis, Bactrocera papayae and Bactrocera invadens, belong to the same biological species, Bactrocera dorsalis. The successful conclusion of this initiative is expected to significantly facilitate global agricultural trade, primarily through the lifting of quarantine restrictions that have long affected many countries, especially those in regions such as Asia and Africa that have large potential for fresh fruit and vegetable commodity exports. This work stems from two taxonomic studies: a revision in 1994 that significantly increased the number of described species in the Bactrocera dorsalis species complex; and the description in 2005 of Bactrocera invadens, then newly incursive in Africa. While taxonomically valid species, many biologists considered that these were different names for one biological species. Many disagreements confounded attempts to develop a solution for resolving this taxonomic issue, before the FAO/IAEA project commenced. Crucial to understanding the success of that initiative is an accounting of the historical events and perspectives leading up to the international, multidisciplinary collaborative efforts that successfully achieved the final synonymization. This review highlights the 21 year journey taken to achieve this outcome. PMID:26798266

  7. Enumerating lepidopteran species associated with maize as a first step in risk assessment in the USA.

    PubMed

    Losey, John E; Hufbauer, Ruth A; Hartzler, Robert G

    2003-01-01

    Pest management can have substantial impacts on non-target species both within and outside the units being managed. Assessment of these impacts is hampered by the lack of even the most basic checklist of the species present in most systems. The maize agroecosytem is of particular interest because of the large area covered and the intensity of widely varying forms of pest management. In this study a database of lepidopteran species that occur within the maize agroecosystem in the United States was compiled. The process was initiated by developing a list of plants present in maize using published sources and the first-hand knowledge of "weed" experts. This list of plant species associated with maize was then cross-listed with lepidopteran host feeding records using published sources. Finally, phenological profiles and conservation rankings were added. Although our list is not exhaustive, we found 132 plant species in 33 families associated with maize, and 229 lepidopteran species in 21 families that feed on these plants. The database of plants and lepidopteran species can be a starting point for assessment of risk to non-target Lepidoptera in maize from chemical control, biological control, and the use of transgenic Bt maize. The lepidopteran species associated with maize were found to be significantly less imperiled, as measured by their conservation rankings, than lepidopteran species as a whole in all habitats. This finding suggests that rare or endangered lepidopteran species are unlikely to be impacted by pest management in maize. Based on the likely lack of impact of pest management in maize on individual species, future studies should focus on potential impacts on the ecological services that lepidopteran species provide.

  8. Use of anticoagulant rodenticides by pest management professionals in Massachusetts, USA.

    PubMed

    Memmott, Kristin; Murray, Maureen; Rutberg, Allen

    2017-01-01

    Secondary exposure to chemical rodenticides, specifically second-generation anticoagulant rodenticides (SGARs), poses a threat to non-target wildlife including birds of prey. Federal regulations in the United States currently limit homeowner access to SGARs as a way of minimizing this threat. With legal access to SGARs, pest management professionals (PMPs) represent a potential linkage to non-target exposure. There is limited research focused on rodent control practices, chemical rodenticide preferences, level of concern and awareness, or opinions on rodenticide regulations as they relate to PMPs. An online survey was sent to PMP companies across Massachusetts, USA, between October and November 2015. Thirty-five responses were obtained, a 20 % response rate. The preferred rodent control method among responding PMP companies was chemical rodenticides, specifically the SGAR bromadiolone. Respondents varied in their level of concern regarding the impact of chemical rodenticides on non-target species and showed a low level of awareness regarding SGAR potency and half-life. All responding companies reported using integrated pest management (IPM) strategies, with nearly all utilizing chemical rodenticides at some point. Enhanced education focused on SGAR potency, bioaccumulation potential, exposure routes, and negative impacts on non-target wildlife may improve efforts made by PMPs to minimize risk to wildlife and decrease dependence on chemical rodenticide use. Future studies evaluating use of anticoagulant rodenticide (ARs) by PMPs and the association with AR residues found in non-target wildlife is necessary to determine if current EPA regulations need to be modified to effectively reduce the risk of SGARs to non-target wildlife.

  9. Incidence of pests and viral disease on pepino (Solanum muricatum Ait.) in Kanagawa Prefecture, Japan

    PubMed Central

    Kim, Ok-Kyung; Yamada, Yoshihiro; Sato, Takuma; Shinohara, Hirosuke; Takahata, Ken

    2017-01-01

    Abstract Background The solanaceous fruit crop pepino (Solanum muricatum Ait.), originating in the Andes, is grown commercially in South American countries and New Zealand. In these areas, pests and diseases of pepino have been identified well; however, to date, these have seldom been investigated in detail in Japan. Herein, we attempt to reconstruct an agricultural production system for commercial pepino crops in Japan, and evaluate the incidence of pests and viral diseases on pepino. The findings of this study will facilitate in developing a better crop system for the commercial cultivation of healthy pepino fruits. New information A total of 11 species, comprising nine insects and two mites, were recognized as pests of pepino plants in our experimental fields in Kanagawa Prefecture, central Honshu, Japan. Of these pest species, the two-spotted spider mite Tetranychus urticae Koch, 1836 and the cotton aphid Aphis gossypii Glover, 1877, were remarkably abundant than the other pest species. Eventually, 13 species, including two previously recorded, are currently recognized as the pests of pepino in Japan. With regard to viruses, we tested two species Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV), as well as three genera Carlavirus, Potexvirus, and Potyvirus. No virus was detected in symptomatic pepino leaves collected in our experimental fields. This is a first report on the identification of pests on pepino plants in Kanagawa Prefecture, Japan and elucidates the relationship between currently occurring pests of pepino plants and potential viral pathogens that they can transmit. PMID:28947875

  10. Bt crops benefit natural enemies to control non-target pests

    PubMed Central

    Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M.

    2015-01-01

    Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM. PMID:26559133

  11. Bt crops benefit natural enemies to control non-target pests.

    PubMed

    Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M

    2015-11-12

    Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.

  12. Review of crop pests targeted by neonicotinoid seed treatments

    USDA-ARS?s Scientific Manuscript database

    Seed treatment with neonicotinoid insecticides is an increasingly popular crop protection practice, intended to reduce damage due to early season pests. A large proportion of major U.S. crops are planted with neonicotinoid-treated seed. Use of the three most popular neonicotinoids (imidacloprid, thi...

  13. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.

    PubMed

    Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose

    2014-01-01

    The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.

  14. Spatial and numerical relationships of arthropod communities associated with key pests of maize

    USDA-ARS?s Scientific Manuscript database

    Pest management largely focuses on managing individual pest species with little concern for the diverse communities that co-occur with key pests and potentially shape their population dynamics. During anthesis, we described the foliar arthropod communities on 53 maize farms throughout the region of ...

  15. Target-site resistance to neonicotinoids.

    PubMed

    Crossthwaite, Andrew J; Rendine, Stefano; Stenta, Marco; Slater, Russell

    2014-10-01

    Neonicotinoid insecticides selectively target the invertebrate nicotinic acetylcholine receptor and disrupt excitatory cholinergic neurotransmission. First launched over 20 years ago, their broad pest spectrum, variety of application methods and relatively low risk to nontarget organisms have resulted in this class dominating the insecticide market with global annual sales in excess of $3.5 bn. This remarkable commercial success brings with it conditions in the field that favour selection of resistant phenotypes. A number of important pest species have been identified with mutations at the nicotinic acetylcholine receptor associated with insensitivity to neonicotinoids. The detailed characterization of these mutations has facilitated a greater understanding of the invertebrate nicotinic acetylcholine receptor.

  16. Perceived damage and areas of needed research for wildlife pests of California agriculture.

    PubMed

    Baldwin, Roger A; Salmon, Terrell P; Schmidt, Robert H; Timm, Robert M

    2014-06-01

    Many wildlife species cause extensive damage to a variety of agricultural commodities in California, with estimates of damage in the hundreds of millions annually. Given the limited availability of resources to solve all human-wildlife conflicts, we should focus management efforts on issues that provide the greatest benefit to agricultural commodities in California. This survey provides quantitative data on research needs to better guide future efforts in developing more effective, practical and appropriate methods for managing these species. We found that ground squirrels, pocket gophers, birds, wild pigs, coyotes and voles were the most common agricultural wildlife pest species in California. The damage caused by these species could be quite high, but varied by agricultural commodity. For most species, common forms of damage included loss of crop production and direct death of the plant, although livestock depredation was the greatest concern for coyotes. Control methods used most frequently and those deemed most effective varied by pest species, although greater advancements in control methods were listed as a top research priority for all species. Collectively, the use of toxicants, biocontrol and trapping were the most preferred methods for control, but this varied by species. In general, integrated pest management practices were used to control wildlife pests, with a special preference for those approaches that were efficacious and quick and inexpensive to apply. This information and survey design should be useful in establishing research and management priorities for wildlife pest species in California and other similar regions. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  17. Molecular analysis of faecal samples from birds to identify potential crop pests and useful biocontrol agents in natural areas.

    PubMed

    King, R A; Symondson, W O C; Thomas, R J

    2015-06-01

    Wild habitats adjoining farmland are potentially valuable sources of natural enemies, but also of pests. Here we tested the utility of birds as 'sampling devices', to identify the diversity of prey available to predators and particularly to screen for pests and natural enemies using natural ecosystems as refugia. Here we used PCR to amplify prey DNA from three sympatric songbirds foraging on small invertebrates in Phragmites reedbed ecosystems, namely the Reed Warbler (Acrocephalus scirpaceus), Sedge Warbler (Acrocephalus schoenobaenus) and Cetti's Warbler (Cettia cetti). A recently described general invertebrate primer pair was used for the first time to analyse diets. Amplicons were cloned and sequenced, then identified by reference to the Barcoding of Life Database and to our own sequences obtained from fresh invertebrates. Forty-five distinct prey DNA sequences were obtained from 11 faecal samples, of which 39 could be identified to species or genus. Targeting three warbler species ensured that species-specific differences in prey choice broadened the range of prey taken. Amongst the prey found in reedbeds were major pests (including the tomato moth Lacanobia oleracea) as well as many potentially valuable natural enemies including aphidophagous hoverflies and braconid wasps. Given the mobility of birds, this approach provides a practical way of sampling a whole habitat at once, providing growers with information on possible invasion by locally resident pests and the colonization potential of natural enemies from local natural habitats.

  18. Advocating a need for suitable breeding approaches to boost integrated pest management: a European perspective.

    PubMed

    Lamichhane, Jay Ram; Arseniuk, Edward; Boonekamp, Piet; Czembor, Jerzy; Decroocq, Veronique; Enjalbert, Jérome; Finckh, Maria R; Korbin, Małgorzata; Koppel, Mati; Kudsk, Per; Mesterhazy, Akos; Sosnowska, Danuta; Zimnoch-Guzowska, Ewa; Messéan, Antoine

    2018-06-01

    Currently, European farmers do not have access to sufficient numbers and diversity of crop species/varieties. This prevents them from designing cropping systems more resilient to abiotic and biotic stresses. Crop diversification is a key lever to reduce pest (pathogens, animal pests and weeds) pressures at all spatial levels from fields to landscapes. In this context, plant breeding should consist of: (1) increased efforts in the development of new or minor crop varieties to foster diversity in cropping systems, and (2) focus on more resilient varieties showing local adaptation. This new breeding paradigm, called here 'breeding for integrated pest management (IPM)', may boost IPM through the development of cultivars with tolerance or resistance to key pests, with the goal of reducing reliance on conventional pesticides. At the same time, this paradigm has legal and practical implications for future breeding programs, including those targeting sustainable agricultural systems. By putting these issues into the context, this article presents the key outcomes of a questionnaire survey and experts' views expressed during an EU workshop entitled 'Breeding for IPM in sustainable agricultural systems'. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    PubMed Central

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996

  20. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    DOE PAGES

    Schoville, Sean D.; Chen, Yolanda H.; Andersson, Martin N.; ...

    2018-01-31

    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome andmore » are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. In conclusion, the L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.« less

  1. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoville, Sean D.; Chen, Yolanda H.; Andersson, Martin N.

    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome andmore » are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. In conclusion, the L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.« less

  2. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    PubMed

    Schoville, Sean D; Chen, Yolanda H; Andersson, Martin N; Benoit, Joshua B; Bhandari, Anita; Bowsher, Julia H; Brevik, Kristian; Cappelle, Kaat; Chen, Mei-Ju M; Childers, Anna K; Childers, Christopher; Christiaens, Olivier; Clements, Justin; Didion, Elise M; Elpidina, Elena N; Engsontia, Patamarerk; Friedrich, Markus; García-Robles, Inmaculada; Gibbs, Richard A; Goswami, Chandan; Grapputo, Alessandro; Gruden, Kristina; Grynberg, Marcin; Henrissat, Bernard; Jennings, Emily C; Jones, Jeffery W; Kalsi, Megha; Khan, Sher A; Kumar, Abhishek; Li, Fei; Lombard, Vincent; Ma, Xingzhou; Martynov, Alexander; Miller, Nicholas J; Mitchell, Robert F; Munoz-Torres, Monica; Muszewska, Anna; Oppert, Brenda; Palli, Subba Reddy; Panfilio, Kristen A; Pauchet, Yannick; Perkin, Lindsey C; Petek, Marko; Poelchau, Monica F; Record, Éric; Rinehart, Joseph P; Robertson, Hugh M; Rosendale, Andrew J; Ruiz-Arroyo, Victor M; Smagghe, Guy; Szendrei, Zsofia; Thomas, Gregg W C; Torson, Alex S; Vargas Jentzsch, Iris M; Weirauch, Matthew T; Yates, Ashley D; Yocum, George D; Yoon, June-Sun; Richards, Stephen

    2018-01-31

    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.

  3. Agamermis (Nematoda: Mermithidae) Infection in South Carolina Agricultural Pests

    PubMed Central

    Stubbins, Francesca L.; Agudelo, Paula; Reay-Jones, Francis P. F.; Greene, Jeremy K.

    2016-01-01

    Native and invasive stink bugs (Hemiptera: Pentatomidae) and the closely related invasive Megacopta cribraria (Hemiptera: Plataspidae) are agricultural pests in the southeastern United States. Natural enemies, from various phyla, parasitize these pests and contribute to population regulation. We specifically investigated Nematoda infections in pentatomid and plataspid pests in one soybean field in South Carolina in 2015. Nematodes were identified through molecular and morphological methods and assigned to family Mermithidae, genus Agamermis. This study reports mermithid nematode infection in immature M. cribraria for the first time and provides the first mermithid host record for the stink bugs Chinavia hilaris, Euschistus servus, and another Euschistus species, and a grasshopper (Orthoptera: Acrididae) in South Carolina. The same Agamermis species infected all hosts. The broad host range and prevalence suggests that Agamermis may be an important contributor to natural mortality of pentatomid and plataspid pests. Previous mermithid host records for the Pentatomidae and Plataspidae worldwide are summarized. Further work is needed to assess the impact of infection on populations over a broader range of agricultural fields and geographic localities. PMID:28154435

  4. Agamermis (Nematoda: Mermithidae) Infection in South Carolina Agricultural Pests.

    PubMed

    Stubbins, Francesca L; Agudelo, Paula; Reay-Jones, Francis P F; Greene, Jeremy K

    2016-12-01

    Native and invasive stink bugs (Hemiptera: Pentatomidae) and the closely related invasive Megacopta cribraria (Hemiptera: Plataspidae) are agricultural pests in the southeastern United States. Natural enemies, from various phyla, parasitize these pests and contribute to population regulation. We specifically investigated Nematoda infections in pentatomid and plataspid pests in one soybean field in South Carolina in 2015. Nematodes were identified through molecular and morphological methods and assigned to family Mermithidae, genus Agamermis . This study reports mermithid nematode infection in immature M. cribraria for the first time and provides the first mermithid host record for the stink bugs Chinavia hilaris , Euschistus servus , and another Euschistus species, and a grasshopper (Orthoptera: Acrididae) in South Carolina. The same Agamermis species infected all hosts. The broad host range and prevalence suggests that Agamermis may be an important contributor to natural mortality of pentatomid and plataspid pests. Previous mermithid host records for the Pentatomidae and Plataspidae worldwide are summarized. Further work is needed to assess the impact of infection on populations over a broader range of agricultural fields and geographic localities.

  5. Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii

    USDA-ARS?s Scientific Manuscript database

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...

  6. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    PubMed Central

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  7. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    PubMed

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  8. The need to implement the landscape of fear within rodent pest management strategies.

    PubMed

    Krijger, Inge M; Belmain, Steven R; Singleton, Grant R; Groot Koerkamp, Peter Wg; Meerburg, Bastiaan G

    2017-12-01

    Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting-harvest rates or giving-up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  9. Forest Pest Control. Bulletin 759.

    ERIC Educational Resources Information Center

    Coleman, V. Rodney

    This manual describes the major forest types, the major species, seed orchards, and tree nurseries. Methods of identifying forest insect pests and diseases are given. The most common types of insecticides, fungicides, and herbicides are described. Both sprayer and granular applicator methods are discussed. Environmental considerations are…

  10. New developments in bait stations for control of pest Tephritids

    USDA-ARS?s Scientific Manuscript database

    Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...

  11. Cost-Benefit Analysis for Biological Control Programs That Targeted Insect Pests of Eucalypts in Urban Landscapes of California.

    PubMed

    Paine, T D; Millar, J G; Hanks, L M; Gould, J; Wang, Q; Daane, K; Dahlsten, D L; Mcpherson, E G

    2015-12-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests. Independent estimates of the total number of eucalypt street trees in California ranged from a high of 476,527 trees (based on tree inventories from 135 California cities) to a low of 190,666 trees (based on 49 tree inventories). Based on a survey of 3,512 trees, the estimated mean value of an individual eucalypt was US$5,978. Thus, the total value of eucalypt street trees in California ranged from more than US$1.0 billion to more than US$2.8 billion. Biological control programs that targeted pests of eucalypts in California have cost US$2,663,097 in extramural grants and University of California salaries. Consequently, the return derived from protecting the value of this resource through the biological control efforts, per dollar expended, ranged from US$1,070 for the high estimated number of trees to US$428 for the lower estimate. The analyses demonstrate both the tremendous value of urban street trees, and the benefits that stem from successful biological control programs aimed at preserving these trees. Economic analyses such as this, which demonstrate the substantial rates of return from successful biological control of invasive pests, may play a key role in developing both grass-roots and governmental support for future urban biological control efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Pest Prevalence and Evaluation of Community-Wide Integrated Pest Management for Reducing Cockroach Infestations and Indoor Insecticide Residues.

    PubMed

    Zha, Chen; Wang, Changlu; Buckley, Brian; Yang, Ill; Wang, Desen; Eiden, Amanda L; Cooper, Richard

    2018-04-02

    Pest infestations in residential buildings are common, but community-wide pest survey data are lacking. Frequent insecticide applications for controlling indoor pests leave insecticide residues and pose potential health risks to residents. In this study, a community-wide pest survey was carried out in a housing complex consisting of 258 units in 40 buildings in New Brunswick, New Jersey. It was immediately followed by implementation of an integrated pest management (IPM) program in all the cockroach-infested apartments and two bed bug apartments with the goal of eliminating pest infestations, reducing pyrethroid residues, and increasing resident satisfaction with pest control services. The IPM-treated apartments were revisited and treated biweekly or monthly for 7 mo. Initial inspection found the top three pests and their infestation rates to be as follows: German cockroaches (Blattella germanica L. [Blattodea: Blattellidae]), 28%; rodents, 11%; and bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), 8%. Floor wipe samples were collected in the kitchens and bedrooms of 20 apartments for pyrethroid residue analysis before the IPM implementation; 17 of the 20 apartments were resampled again at 7 mo. The IPM program reduced cockroach counts per apartment by 88% at 7 wk after initial treatment. At 7 mo, 85% of the cockroach infestations found in the initial survey were eliminated. The average number of pyrethroids detected decreased significantly from 6 ± 1 (mean ± SEM) and 5 ± 1 to 2 ± 1 and 3 ± 1 in the kitchens and bedrooms, respectively. The average concentrations of targeted pyrethroids residue also decreased significantly in the kitchens and bedrooms.

  13. Two sides of the same coin? Rare and pest plants native to the United States and Canada.

    PubMed

    Schmidt, John Paul; Stephens, Patrick R; Drake, John M

    2012-07-01

    Plant biodiversity is at risk, with as many as 10% of native species in the United States being threatened with extinction. Habitat loss has led a growing number of plant species to become rare or threatened, while the introduction or expansion of pest species has led some habitats to be dominated by relatively few, mostly nonindigenous, species. As humans continue to alter many landscapes and vegetation types, understanding how biological traits determine the location of species along a spectrum from vulnerability to pest status is critical to designing risk assessment protocols, setting conservation priorities, and developing monitoring programs. We used boosted regression trees to predict rarity (based on The Nature Conservancy global rankings) and pest status (defined as legal pest status) from data on traits for the native vascular flora of the United States and Canada including Hawaii, Puerto Rico, and the Virgin Islands (n approximately = 15,000). Categories were moderately to highly predictable (AUCpest = 0.87 on 25% holdout test set, AUCrarity = 0.80 on 25% holdout test set). Key predictors were chromosome number, ploidy, seed mass, and a suite of traits suggestive of specialist vs. generalist adaptations (e.g., facultative wetland habitat association and phenotypic variability in growth form and life history). Specifically, pests were associated with high chromosome numbers, polyploidy, and seed masses ranging from 0.1 to 100 mg, whereas rare species were associated with low chromosome numbers, low ploidy, and large (>1000 mg) seed masses. In addition, pest species were disproportionately likely to be facultatively associated with wetlands, and variable in growth form and life history, whereas rare species exhibited an opposite pattern. These results suggest that rare and pest species contrast along trait axes related to dispersal and performance in disturbed or novel habitats.

  14. Thrips pests of China and the United States

    USDA-ARS?s Scientific Manuscript database

    Thrips are among the most significant agricultural pests in China and the United States. Thrips can damage crops by their direct feeding and oviposition damage, and by the ability of some species to vector plant viruses. Four highly invasive species, Frankliniella occidentalis (Pergande), Scirtoth...

  15. Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance.

    PubMed

    Campos, Mateus R; Rodrigues, Agna Rita S; Silva, Wellington M; Silva, Tadeu Barbosa M; Silva, Vitória Regina F; Guedes, Raul Narciso C; Siqueira, Herbert Alvaro A

    2014-01-01

    The introduction of an agricultural pest species into a new environment is a potential threat to agroecosystems of the invaded area. The phytosanitary concern is even greater if the introduced pest's phenotype expresses traits that will impair the management of that species. The invasive tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one such species and the characterization of the insecticide resistance prevailing in the area of origin is important to guide management efforts in new areas of introduction. The spinosad is one the main insecticides currently used in Brazil for control of the tomato borer; Brazil is the likely source of the introduction of the tomato borer into Europe. For this reason, spinosad resistance in Brazilian populations of this species was characterized. Spinosad resistance has been reported in Brazilian field populations of this pest species, and one resistant population that was used in this study was subjected to an additional seven generations of selection for spinosad resistance reaching levels over 180,000-fold. Inheritance studies indicated that spinosad resistance is monogenic, incompletely recessive and autosomal with high heritability (h(2) = 0.71). Spinosad resistance was unstable without selection pressure with a negative rate of change in the resistance level ( = -0.51) indicating an associated adaptive cost. Esterases and cytochrome P450-dependent monooxygenases titration decreased with spinosad selection, indicating that these detoxification enzymes are not the underlying resistance mechanism. Furthermore, the cross-resistance spectrum was restricted to the insecticide spinetoram, another spinosyn, suggesting that altered target site may be the mechanism involved. Therefore, the suspension of spinosyn use against the tomato borer would be a useful component in spinosad resistance management for this species. Spinosad use against this species in introduced areas should be carefully monitored to

  16. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards

    PubMed Central

    Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-01-01

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators (‘concealed-nectar plants’); (2) natural enemies (‘open-nectar plants’); or (3) both groups concurrently (i.e., ‘multi-functional’ mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that ‘multi-functional’ flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards. PMID:28930157

  17. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards.

    PubMed

    Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-09-20

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.

  18. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    PubMed

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Development of a DNA microarray for species identification of quarantine aphids.

    PubMed

    Lee, Won Sun; Choi, Hwalran; Kang, Jinseok; Kim, Ji-Hoon; Lee, Si Hyeock; Lee, Seunghwan; Hwang, Seung Yong

    2013-12-01

    Aphid pests are being brought into Korea as a result of increased crop trading. Aphids exist on growth areas of plants, and thus plant growth is seriously affected by aphid pests. However, aphids are very small and have several sexual morphs and life stages, so it is difficult to identify species on the basis of morphological features. This problem was approached using DNA microarray technology. DNA targets of the cytochrome c oxidase subunit I gene were generated with a fluorescent dye-labelled primer and were hybridised onto a DNA microarray consisting of specific probes. After analysing the signal intensity of the specific probes, the unique patterns from the DNA microarray, consisting of 47 species-specific probes, were obtained to identify 23 aphid species. To confirm the accuracy of the developed DNA microarray, ten individual blind samples were used in blind trials, and the identifications were completely consistent with the sequencing data of all individual blind samples. A microarray has been developed to distinguish aphid species. DNA microarray technology provides a rapid, easy, cost-effective and accurate method for identifying aphid species for pest control management. © 2013 Society of Chemical Industry.

  20. Pest risk assessment of the importation into the United States of unprocessed logs and chips of eighteen Eucalypt species from Australia.

    Treesearch

    John T. Kliejunas; Harold H., Jr. Burdsall; Gregg A. DeNitto; Andris Eglitis; Dennis A. Haugen; Michael I. Harverty; Jessie A. Micales; Mark R. Powell

    2003-01-01

    The unmitigated pest risk potential for the importation of unprocessed logs and chips of 18 species of eucalypts (Eucalyptus amygdalina, E. cloeziana, E. delegatensis, E. diversicolor, E. dunnii, E. globulus, E. grandis, E. nitens, E. obliqua, E. ovata, E. pilularis, E. regnans, E. saligna, E. sieberi, E. viminalis, Corymbia calophylla, C. citriodora, and C. maculata)...

  1. Activity of eight strains of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) against five stored product pests.

    PubMed

    de Carvalho Barbosa Negrisoli, Carla Ruth; Negrisoli Júnior, Aldomario Santo; Bernardi, Daniel; Garcia, Mauro Silveira

    2013-07-01

    Stored product pests are responsible for losses that can amount 10% during cereal storage in the world. Aiming to find an alternative method to the chemicals used for the stored-product pests, eight strains of entomopathogenic nematodes (EPNs) were tested against five species of stored product pests. The bioassays were conducted in microtubes containing paper, inoculated with EPNs and insect diet. All the insect species were susceptible to the EPNs strains. Anagasta kuehniella and Tenebrio molitor larvae and Acanthoscelides obtectus adults were highly sensitive to the higher doses with most species and/or strains of EPNs. Adults of Sitophilus oryzae and Sitophilus zeamais were relatively less sensitive to all EPNs. Therefore, EPNs show as potential control agents for stored products pests in prophylactic applications in warehouses. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Species Diversity in the Parasitoid Genus Asobara (Hymenoptera: Braconidae) from the Native Area of the Fruit Fly Pest Drosophila suzukii (Diptera: Drosophilidae).

    PubMed

    Guerrieri, Emilio; Giorgini, Massimo; Cascone, Pasquale; Carpenito, Simona; van Achterberg, Cees

    2016-01-01

    Drosophila suzukii (Matsumura), commonly known as Spotted Wing Drosophila (SWD), is a worldwide serious economic threat to the production of berries and stone fruits. The chemical control widely used against this pest is often not able to preventing yield losses because wild flora offers an abundance of fruits to D. suzukii where the pest is able to reproduce and from where it recolonizes neighbouring cultivated fields. Alternatively, within Integrated Pest Management protocols for D. suzukii, biological control could play a key role by reducing its populations particularly in non-cultivated habitats, thus increasing the effectiveness and reducing the side negative effects of other management strategies. Because of the scarcity and of the low efficiency of autochthonous parasitoids in the new invaded territories, in the last few years, a number of surveys started in the native area of D. suzukii to find parasitoid species to be evaluated in quarantine structures and eventually released in the field, following a classical biological control approach. This paper reports the results of these surveys carried out in South Korea and for the first time in China. Among the parasitoids collected, those belonging to the genus Asobara Foerster resulted dominant both by number and species diversity. By combining morphological characters and the mitochondrial COI gene as a molecular marker, we identified seven species of Asobara, of which two associated with D. suzukii, namely A. japonica and A leveri, and five new to science, namely Asobara brevicauda, A. elongata, A mesocauda, A unicolorata, A. triangulata. Our findings offer new opportunity to find effective parasitoids to be introduced in classical biological control programmes in the territories recently invaded by D. suzukii.

  3. The need to implement the landscape of fear within rodent pest management strategies

    PubMed Central

    Belmain, Steven R; Singleton, Grant R; Groot Koerkamp, Peter WG; Meerburg, Bastiaan G

    2017-01-01

    Abstract Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting‐harvest rates or giving‐up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28556521

  4. Thiamethoxam seed treatments hav no impact on pest numbers or yield in cultivated sunflowers

    USDA-ARS?s Scientific Manuscript database

    The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a diverse and abundant community of beneficial, non-target organisms which may be negatively affected by pest management...

  5. Strategies for Enhanced Crop Resistance to Insect Pests.

    PubMed

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  6. Genomic basis for the pest status of two Helicoverpa species

    USDA-ARS?s Scientific Manuscript database

    Background: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative and population genomics an...

  7. Home - Pest Tracker - CAPS Services

    Science.gov Websites

    sponsored by the Plant Protection and Quarantine division of USDA Animal and Plant Inspection Services STOP EXOTIC PESTS outreach collection image Plant Native Species Stopping exotic invaders is a working with APHIS Plant Safety and Research staff members removed onionweed from their landscapes. In

  8. Complex Dynamics of an Impulsive Control System in which Predator Species Share a Common Prey

    NASA Astrophysics Data System (ADS)

    Pei, Yongzhen; Liu, Shaoying; Li, Changguo

    2009-06-01

    In an ecosystem, multiple predator species often share a common prey and the interactions between the predators are neutral. In view of this fact, we propose a three-species prey-predator system with the functional responses and impulsive controls to model the process of pest management. It is proved that the system has a locally stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value. In particular, two single control strategies (biological control alone or chemical control alone) are proposed. Finally, we compare three pest control strategies and find that if we choose narrow-spectrum pesticides that are targeted to a specific pest’s life cycle to kill the pest, then the combined strategy is preferable. Numerical results show that our system has complex dynamics including period-doubling bifurcation, quasi-periodic oscillation, chaos, intermittency and crises.

  9. Chrysomelids American diabroticines Hosts and natural enemies. Biology-feasibility for control of pest species (Crisomelidos Diabroticinos americanos Hospederos y enemigos naturales Biologia y factibili manejo especies plagas

    USDA-ARS?s Scientific Manuscript database

    The chrysomelids in the Diabroticites include some of the most important pest species of the American continent. The chemical and management techniques used to date to control them are: crop rotation to prevent re-infection of host crops, especially in the species that display an egg diapause; insec...

  10. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants

    PubMed Central

    2011-01-01

    Background Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. Conclusion The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters. PMID:21682882

  11. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants.

    PubMed

    Rodovalho, Cynara M; Ferro, Milene; Fonseca, Fernando Pp; Antonio, Erik A; Guilherme, Ivan R; Henrique-Silva, Flávio; Bacci, Maurício

    2011-06-17

    Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.

  12. The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae).

    PubMed

    Schellhorn, N A; Glatz, R V; Wood, G M

    2010-10-01

    Interactions among insect pests, crops and weeds are well recognised. In fact, the elimination of weed hosts outside of the crop is a common practice to control many insect-vectored viruses. However, little is known about interactions among insect pests, crops and native vegetation, and whether native plants may be used to revegetate areas where weed hosts have been eliminated as part of horticultural management regimes. We used the Northern Adelaide Plains horticultural region (South Australia, Australia) as a model system to study the potential of various plant taxa in hosting four pest thrips (three exotic, one native; Frankliniella occidentalis, F. schultzei, Thrips tabaci and T. imaginis) when located adjacent to, and distant from, horticultural crops. Flower funnels were used for standardised sampling of thrips on flowers from 19 exotic weed and 12 native plant species, representing 13 and three families, respectively. Flowers were sampled monthly over a year, and statistical analyses were performed to identify significant determinants of probability of thrips occurrence and density. Plant family was found to significantly influence both measures for each thrips species. In addition, crop proximity influenced the probability of occurrence for the two Frankliniella species (but only influenced density of the key pest F. occidentalis), and season influenced density of all four pest thrips. All native plant species tested had a low likelihood of hosting the three exotic thrips species. Overall, results suggest that judicious choice of surrounding vegetation has potential to be an important component of integrated pest management (IPM) while increasing biodiversity conservation.

  13. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    PubMed

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Update on monitoring of resistance to Bt cotton in key lepidopteran pests in the USA

    USDA-ARS?s Scientific Manuscript database

    Producers sprayed more Bollgard II to control target lepidopteran pests in 2010 than in previous years, and therefore concerns have been expressed that the susceptibility of the target lepidopteran pests to the Bt Cry1Ac and Cry2Ab proteins in Bollgard II has significantly decreased. However, resist...

  15. Integrated Pest Management (IPM)

    Science.gov Websites

    National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management Home Page Pest Control Integrated Pest Management (IPM) Related Topics: Using Pesticides Around Pets

  16. Responses to colour and host odour cues in three cereal pest species, in the context of ecology and control.

    PubMed

    Arnold, S E J; Stevenson, P C; Belmain, S R

    2015-08-01

    Many insects show a greater attraction to multimodal cues, e.g. odour and colour combined, than to either cue alone. Despite the potential to apply the knowledge to improve control strategies, studies of multiple stimuli have not been undertaken for stored product pest insects. We tested orientation towards a food odour (crushed white maize) in combination with a colour cue (coloured paper with different surface spectral reflectance properties) in three storage pest beetle species, using motion tracking to monitor their behaviour. While the maize weevil, Sitophilus zeamais (Motsch.), showed attraction to both odour and colour stimuli, particularly to both cues in combination, this was not observed in the bostrichid pests Rhyzopertha dominica (F.) (lesser grain borer) or Prostephanus truncatus (Horn) (larger grain borer). The yellow stimulus was particularly attractive to S. zeamais, and control experiments showed that this was neither a result of the insects moving towards darker-coloured areas of the arena, nor their being repelled by optical brighteners in white paper. Visual stimuli may play a role in location of host material by S. zeamais, and can be used to inform trap design for the control or monitoring of maize weevils. The lack of visual responses by the two grain borers is likely to relate to their different host-seeking behaviours and ecological background, which should be taken into account when devising control methods.

  17. Invasive alien pests threaten the carbon stored in Europe's forests.

    PubMed

    Seidl, Rupert; Klonner, Günther; Rammer, Werner; Essl, Franz; Moreno, Adam; Neumann, Mathias; Dullinger, Stefan

    2018-04-24

    Forests mitigate climate change by sequestering large amounts of carbon (C). However, forest C storage is not permanent, and large pulses of tree mortality can thwart climate mitigation efforts. Forest pests are increasingly redistributed around the globe. Yet, the potential future impact of invasive alien pests on the forest C cycle remains uncertain. Here we show that large parts of Europe could be invaded by five detrimental alien pests already under current climate. Climate change increases the potential range of alien pests particularly in Northern and Eastern Europe. We estimate the live C at risk from a potential future invasion as 1027 Tg C (10% of the European total), with a C recovery time of 34 years. We show that the impact of introduced pests could be as severe as the current natural disturbance regime in Europe, calling for increased efforts to halt the introduction and spread of invasive alien species.

  18. Using comparative genomics to develop a molecular diagnostic for the identification of an emerging pest Drosophila suzukii.

    PubMed

    Murphy, K A; Unruh, T R; Zhou, L M; Zalom, F G; Shearer, P W; Beers, E H; Walton, V M; Miller, B; Chiu, J C

    2015-06-01

    Drosophila suzukii (Spotted Wing Drosophila) has recently become a serious invasive pest of fruit crops in the USA, Canada, and Europe, leading to substantial economic losses. D. suzukii is a direct pest, ovipositing directly into ripe or ripening fruits; in contrast, other Drosophilids utilize decaying or blemished fruits and are nuisance pests at worst. Immature stages of D. suzukii are difficult to differentiate from other Drosophilids, posing problems for research and for meeting quarantine restrictions designed to prevent the spread of this pest in fruit exports. Here we used a combined phylogenetic and bioinformatic approach to discover genetic markers suitable for a species diagnostic protocol of this agricultural pest. We describe a molecular diagnostic for rapid identification of single D. suzukii larva using multiplex polymerase chain reaction. Our molecular diagnostic was validated using nine different species of Drosophila for specificity and 19 populations of D. suzukii from different geographical regions to ensure utility within species.

  19. Analysis of area-wide management of insect pests based on sampling

    Treesearch

    David W. Onstad; Mark S. Sisterson

    2011-01-01

    The control of invasive species greatly depends on area-wide pest management (AWPM) in heterogeneous landscapes. Decisions about when and where to treat a population with pesticide are based on sampling pest abundance. One of the challenges of AWPM is sampling large areas with limited funds to cover the cost of sampling. Additionally, AWPM programs are often confronted...

  20. Broadening the application of evolutionarily based genetic pest management.

    PubMed

    Gould, Fred

    2008-02-01

    Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

  1. Population dynamics in changing environments: the case of an eruptive forest pest species.

    PubMed

    Kausrud, Kyrre; Okland, Bjørn; Skarpaas, Olav; Grégoire, Jean-Claude; Erbilgin, Nadir; Stenseth, Nils Chr

    2012-02-01

    In recent decades we have seen rapid and co-occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi-annual landscape-wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co-occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed-species and age-heterogeneous forests with good site-matching tend to be less susceptible to large-scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and

  2. Applicator Training Manual for: Industrial, Institutional, Structural and Health-Related Pest Control.

    ERIC Educational Resources Information Center

    Christensen, Christian M.; Scheibner, R. A.

    This manual gives descriptions and diagrams for identification of the following types of pests: four species of cockroach; ants; bees and wasps; parasitic pests of man such as bedbugs, fleas, and ticks; occasional invaders such as flies and millipedes; silverfish and firebrats; beetles; termites; moths; fungi; and vertebrates including rodents,…

  3. Modified atmosphere treatments as a potential disinfestation technique for arthropod pests in greenhouses.

    PubMed

    Held, D W; Potter, D A; Gates, R S; Anderson, R G

    2001-04-01

    Incidental transport of arthropods on plant material can be a significant mode of pest entry into greenhouses. We evaluated the use of controlled atmosphere treatments as a potential way to eliminate arthropod pests on plant propagules (i.e., cuttings or small rooted plants). Lethal exposures to CO2 or N2 were determined for common greenhouse pests including fungus gnat larvae, Bradysia sp.; green peach aphid, Myzus persicae (Sulzer); sweetpotato whitefly, Bemisia sp.; twospotted spider mite, Tetranychus urticae Koch; and western flower thrips, Frankliniella occidentalis (Pergande). We also studied the effect of pest species, life stage, and presence or absence of plants on efficacy of modified atmosphere treatments. Finally, effects of modified atmospheres on plant quality were evaluated for several bedding plant species including begonia, Begonia semperflorens-cultorum Hort. 'Cocktail Series', chrysanthemum, Dendranthema grandiflora Tzvelev., geranium, Pelargonium X hortorum L.H. Bailey, and impatiens, Impatiens wallerana Hook f., and among cultivars of geranium and chrysanthemum. Exposure for 12-18 h to >99% N2 or CO2 caused complete mortality of aphids, mites, thrips, and whiteflies. Fungus gnat larvae were more tolerant of hypoxic conditions. Adult mites and eggs were equally susceptible. For most pests, there was no difference in response to atmospheres modified by CO2 or N2. However, there was variation in response among plant species and cultivars, with effects ranging from delayed flowering to mortality. Despite the possibility of adverse effects on some plants, this work indicates that use of modified atmospheres has potential to eliminate arthropod pests on plant propagules before they are introduced into greenhouses.

  4. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    PubMed Central

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  5. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  6. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management

    PubMed Central

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-01-01

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918

  7. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids.

    PubMed

    Zhang, Jiang; Khan, Sher Afzal; Hasse, Claudia; Ruf, Stephanie; Heckel, David G; Bock, Ralph

    2015-02-27

    Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA. Transplastomic potato plants producing dsRNAs targeted against the β-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides. Copyright © 2015, American Association for the Advancement of Science.

  8. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifuamore » and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.« less

  9. How to Identify Your Pest

    Science.gov Websites

    Pest Pest-specific Information (by name) Pest Control Tips Integrated Pest Management (IPM) Fact Sheets National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management

  10. OfftargetFinder: a web tool for species-specific RNAi design.

    PubMed

    Good, R T; Varghese, T; Golz, J F; Russell, D A; Papanicolaou, A; Edwards, O; Robin, C

    2016-04-15

    RNA interference (RNAi) technology is being developed as a weapon for pest insect control. To maximize the specificity that such an approach affords we have developed a bioinformatic web tool that searches the ever-growing arthropod transcriptome databases so that pest-specific RNAi sequences can be identified. This will help technology developers finesse the design of RNAi sequences and suggests which non-target species should be assessed in the risk assessment process. http://rnai.specifly.org crobin@unimelb.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Chirosurveillance: The use of native bats to detect invasive agricultural pests.

    PubMed

    Maslo, Brooke; Valentin, Rafael; Leu, Karen; Kerwin, Kathleen; Hamilton, George C; Bevan, Amanda; Fefferman, Nina H; Fonseca, Dina M

    2017-01-01

    Invasive insect pests cost the agricultural industry billions of dollars annually in crop losses. Timely detection of pests is critical for management efficiency. Innovative pest detection strategies, such as environmental DNA (eDNA) techniques, combined with efficient predators, maximize sampling resolution across space and time and may improve surveillance. We tested the hypothesis that temperate insectivorous bats can be important sentinels of agricultural insect pest surveillance. Specifically, we used a new high-sensitivity molecular assay for invasive brown marmorated stink bugs (Halyomorpha halys) to examine the extent to which big brown bats (Eptesicus fuscus) detect agricultural pests in the landscape. We documented consistent seasonal predation of stink bugs by big brown bats. Importantly, bats detected brown marmorated stink bugs 3-4 weeks earlier than the current standard monitoring tool, blacklight traps, across all sites. We highlight here the previously unrecognized potential ecosystem service of bats as agents of pest surveillance (or chirosurveillance). Additional studies examining interactions between other bat and insect pest species, coupled with comparisons of detectability among various conventional monitoring methods, are needed to verify the patterns extracted from this study. Ultimately, robust economic analyses will be needed to assess the cost-effectiveness of chirosurveillance as a standard strategy for integrated pest management.

  12. A suite of models to support the quantitative assessment of spread in pest risk analysis.

    PubMed

    Robinet, Christelle; Kehlenbeck, Hella; Kriticos, Darren J; Baker, Richard H A; Battisti, Andrea; Brunel, Sarah; Dupin, Maxime; Eyre, Dominic; Faccoli, Massimo; Ilieva, Zhenya; Kenis, Marc; Knight, Jon; Reynaud, Philippe; Yart, Annie; van der Werf, Wopke

    2012-01-01

    Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.

  13. A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis

    PubMed Central

    Robinet, Christelle; Kehlenbeck, Hella; Kriticos, Darren J.; Baker, Richard H. A.; Battisti, Andrea; Brunel, Sarah; Dupin, Maxime; Eyre, Dominic; Faccoli, Massimo; Ilieva, Zhenya; Kenis, Marc; Knight, Jon; Reynaud, Philippe; Yart, Annie; van der Werf, Wopke

    2012-01-01

    Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice. PMID:23056174

  14. A remote sensing assessment of pest infestation on sorghum

    NASA Astrophysics Data System (ADS)

    Singh, D.; Sao, R.; Singh, K. P.

    The damage caused by the pest to crop is well known. The major aspects of remote sensing are timely estimates of agriculture crop yield, prediction of pest. Therefore, in this paper, an attempt has been made to investigate the utility and potential application of microwave remote sensing for detection of pest infestation within sorghum field. The studies were made on crop sorghum (Meethi Sudan) that is a forage variety and the pest observed was a species of grasshopper. The beds of crop sorghum were specially prepared for pests as well as microwave scattering measurements. In first phase of study, dependence of occurrence of pests on sorghum plant parameters (i.e., crop covered moist soil (SM), plant height (PH), leaf area index (LAI), percentage biomass (BIO), total chlorophyll (TC)) have been observed and analyzed and it was noticed that pests were more dependent on sorghum chlorophyll than other plant parameters, while climatic conditions were taken as constant. An empirical relationship has been developed between occurrence of pests and TC with quite significant values of coefficient of determination ( r2 = 0.82). These crop parameters are easily assessable through microwave remote sensing and therefore they can form the basis for prediction of pest remotely. In the second phase of this study, several observations were carried out for various growth stages of sorghum using scatterometer for both like polarizations (i.e., HH- and VV-) and different incidence angles at X-band (9.5 GHz). Linear regression analysis was carried out to obtain the best suitable incidence angle and polarization to assess the sorghum TC. VV-pol gives better results than HH-pol and incidence angle should be more than 40° for both like polarizations for assessing the sorghum TC at X-band. A negative correlation has been obtained between TC and scattering coefficient with the r2 values (0.69 and 0.75 for HH- and VV-pol, respectively). The TC assessed by the microwave measurements was

  15. Seasonal Population Dynamics of Three Potato Pests in Washington State.

    PubMed

    D'Auria, Elizabeth M; Wohleb, Carrie H; Waters, Timothy D; Crowder, David W

    2016-08-01

    Pest phenology models allow producers to anticipate pest outbreaks and deploy integrated pest management (IPM) strategies. Phenology models are particularly useful for cropping systems with multiple economically damaging pests throughout a season. Potato (Solanum tuberosum L.) crops of Washington State, USA, are attacked by many insect pests including the potato tuberworm (Phthorimaea operculella Zeller), the beet leafhopper (Circulifer tenellus Baker), and the green peach aphid (Myzus persicae Sulzer). Each of these pests directly damages potato foliage or tubers; C. tenellus and M. persicae also transmit pathogens that can drastically reduce potato yields. We monitored the seasonal population dynamics of these pests by conducting weekly sampling on a network of commercial farms from 2007 to 2014. Using these data, we developed phenology models to characterize the seasonal population dynamics of each pest based on accumulated degree-days (DD). All three pests exhibited consistent population dynamics across seasons that were mediated by temperature. Of the three pests, C. tenellus was generally the first detected in potato crops, with 90% of adults captured by 936 DD. In contrast, populations of P. operculella and M. persicae built up more slowly over the course of the season, with 90% cumulative catch by 1,590 and 2,634 DD, respectively. Understanding these seasonal patterns could help potato producers plan their IPM strategies while allowing them to move away from calendar-based applications of insecticides. More broadly, our results show how long-term monitoring studies that explore dynamics of multiple pest species can aid in developing IPM strategies in crop systems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Pest and Disease Management: Why We Shouldn't Go against the Grain

    PubMed Central

    Skelsey, Peter; With, Kimberly A.; Garrett, Karen A.

    2013-01-01

    Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal (‘humpbacked’) relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. PMID:24098739

  17. Pest and disease management: why we shouldn't go against the grain.

    PubMed

    Skelsey, Peter; With, Kimberly A; Garrett, Karen A

    2013-01-01

    Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness.

  18. Examination of the pest status of corn-infesting Ulidiidae (Diptera).

    PubMed

    Goyal, Gaurav; Nuessly, Gregg S; Seal, Dakshina R; Steck, Gary J; Capinera, John L; Meagher, Robert L

    2012-10-01

    Larvae of 11 species of picture-winged flies (Diptera: Ulididae) are known to feed on corn plants (Zea mays L.) in the western hemisphere. Larvae emerge from eggs deposited in leaf axils and corn silk to feed mostly within ears, but the primary versus secondary nature (i.e., pest status) of their infestation is not known for all of these species. Choice and no-choice tests by using a split-plot design were conducted in greenhouse and field trials to determine the pest status on sweet corn of three of these species found in Florida: Chaetopsis massyla (Walker), Euxesta eluta Loew, and E. stigmatias Loew. The main treatments (uninfested ears and ears experimentally infested with either Spodoptera frugiperda [Lepidoptera: Noctuidae] or E. eluta larvae) were applied at first silk. The subtreatments (C. massyla, E. eluta, or E. stigmatias adults caged on ears) were applied 7 d later and maintained for 10 d. All three fly species were reared from uninfested and experimentally infested ears in both choice and no-choice tests in greenhouse and field trials confirming both primary and secondary modes of ear infestation. More flies of all three species emerged from ears that were preinfested with S. frugiperda compared with uninfested ears suggesting either preference for or greater survival within ears previously infested by S. frugiperda. Fewer E. eluta and E. stigmatias emerged from ears preinfested with E. eluta in no-choice field tests, suggesting that previous infestation by this fly may negatively affect oviposition or that older fly larvae affect survival of neonate larvae. All three species studied here should be considered primary pests that can render unprotected sweet corn ears unmarketable.

  19. Northwest forest plants defeat pests and diseases!

    Treesearch

    Natasha Vizcarra; Rick Kelsey; Joe Karchesy

    2017-01-01

    Societies use biologically active chemicals as medicines and pesticides to protect human and agricultural health. But widespread use of synthetic compounds raises concerns about their safety, and resistance development in targeted pests.To find safer alternatives, scientists turned to native plants and trees in Pacific Northwest forests...

  20. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens.

    PubMed

    Tay, W T; Elfekih, S; Polaszek, A; Court, L N; Evans, G A; Gordon, K H J; De Barro, P J

    2017-03-27

    Museum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan Bemisia emiliae cotype puparium, and of a 1942 Japanese Bemisia puparium are characterised using a Next-Generation Sequencing approach. Whiteflies are small sap-sucking insects including B. tabaci pest species complex. Bemisia emiliae's draft mitogenome showed a high degree of homology with published B. tabaci mitogenomes, and exhibited 98-100% partial mitochondrial DNA Cytochrome Oxidase I (mtCOI) gene identity with the B. tabaci species known as Asia II-7. The partial mtCOI gene of the Japanese specimen shared 99% sequence identity with the Bemisia 'JpL' genetic group. Metagenomic analysis identified bacterial sequences in both Bemisia specimens, while hymenopteran sequences were also identified in the Japanese Bemisia puparium, including complete mtCOI and rRNA genes, and various partial mtDNA genes. At 88-90% mtCOI sequence identity to Aphelinidae wasps, we concluded that the 1942 Bemisia nymph was parasitized by an Eretmocerus parasitoid wasp. Our approach enables the characterisation of genomes and associated metagenomic communities of museum specimens using 1.5 ng gDNA, and to infer historical tritrophic relationships in Bemisia whiteflies.

  1. Array of Synthetic Oligonucleotides to Generate Unique Multi-Target Artificial Positive Controls and Molecular Probe-Based Discrimination of Liposcelis Species

    PubMed Central

    Arif, Mohammad; Opit, George; Mendoza-Yerbafría, Abigail; Dobhal, Shefali; Li, Zhihong; Kučerová, Zuzana; Ochoa-Corona, Francisco M.

    2015-01-01

    Several species of the genus Liposcelis are common insect pests that cause serious qualitative and quantitative losses to various stored grains and processed grain products. They also can contaminate foods, transmit pathogenic microorganisms and cause allergies in humans. The common occurrence of multi-species infestations and the fact that it is difficult to identify and discriminate Liposcelis spp. make accurate, rapid detection and discriminatory tools absolutely necessary for confirmation of their identity. In this study, PCR primers and probes specific to different Liposcelis spp. were designed based on nucleotide sequences of the cytochrome oxidase 1 (CO1) gene. Primer sets ObsCo13F/13R, PeaCo15F/14R, BosCO7F/7R, BruCo5F/5R, and DecCo11F/11R were used to specifically detect Liposcelis obscura Broadhead, Liposcelis pearmani Lienhard, Liposcelis bostrychophila Badonnel, Liposcelis brunnea Motschulsky and Liposcelis decolor (Pearman) in multiplex endpoint PCRs, which amplified products of 438-, 351-, 191-, 140-, and 87-bp, respectively. In multiplex TaqMan qPCR assays, orange, yellow, red, crimson and green channels corresponding to reporter dyes 6-ROXN, HEX, Cy5, Quasar705 and 6-FAM specifically detected L. obscura, L. brunnea, L. bostrychophila, L. pearmani and L. decolor, respectively. All developed primer and probe sets allowed specific amplification of corresponding targeted Liposcelis species. The development of multiplex endpoint PCR and multiplex TaqMan qPCR will greatly facilitate psocid identification and their management. The use of APCs will streamline and standardize PCR assays. APC will also provide the opportunity to have all positive controls in a single tube, which reduces maintenance cost and labor, but increases the accuracy and reliability of the assays. These novel methods from our study will have applications in pest management, biosecurity, quarantine, food safety, and routine diagnostics. PMID:26086728

  2. Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.

    PubMed

    Bianchi, F J J A; Schellhorn, N A; Buckley, Y M; Possingham, H P

    2010-12-01

    explanatory variable. In conclusion, the spatial arrangement of source habitats for natural enemies of agricultural pest species can have profound effects on their potential to colonize crops and suppress pest populations.

  3. Pesticide-mediated interspecific competition between local and invasive thrips pests.

    PubMed

    Zhao, Xueyin; Reitz, Stuart R; Yuan, Huiguo; Lei, Zhongren; Paini, Dean Ronald; Gao, Yulin

    2017-01-13

    Competitive interactions between species can be mitigated or even reversed in the presence of anthropogenic influences. The thrips species Frankliniella occidentalis and Thrips tabaci are highly invasive and damaging agricultural pests throughout the world. Where the species co-occur, one species tends to eventually predominate over the other. Avermectin and beta-cypermethrin are commonly used insecticides to manage thrips in China, and laboratory bioassays demonstrated that F. occidentalis is significantly less susceptible than T. tabaci to these insecticides. In laboratory cage trials in which both species were exposed to insecticide treated cabbage plants, F. occidentalis became the predominant species. In contrast, T. tabaci completely displaced F. occidentalis on plants that were not treated with insecticides. In field trials, the species co-existed on cabbage before insecticide treatments began, but with T. tabaci being the predominant species. Following application of avermectin or beta-cypermethrin, F. occidentalis became the predominant species, while in plots not treated with insecticides, T. tabaci remained the predominant species. These results indicate that T. tabaci is an intrinsically superior competitor to F. occidentalis, but its competitive advantage can be counteracted through differential susceptibilities of the species to insecticides. These results further demonstrate the importance of external factors, such as insecticide applications, in mediating the outcome of interspecific interactions and produce rapid unanticipated shifts in the demographics of pest complexes.

  4. Pesticide-mediated interspecific competition between local and invasive thrips pests

    PubMed Central

    Zhao, Xueyin; Reitz, Stuart R.; Yuan, Huiguo; Lei, Zhongren; Paini, Dean Ronald; Gao, Yulin

    2017-01-01

    Competitive interactions between species can be mitigated or even reversed in the presence of anthropogenic influences. The thrips species Frankliniella occidentalis and Thrips tabaci are highly invasive and damaging agricultural pests throughout the world. Where the species co-occur, one species tends to eventually predominate over the other. Avermectin and beta-cypermethrin are commonly used insecticides to manage thrips in China, and laboratory bioassays demonstrated that F. occidentalis is significantly less susceptible than T. tabaci to these insecticides. In laboratory cage trials in which both species were exposed to insecticide treated cabbage plants, F. occidentalis became the predominant species. In contrast, T. tabaci completely displaced F. occidentalis on plants that were not treated with insecticides. In field trials, the species co-existed on cabbage before insecticide treatments began, but with T. tabaci being the predominant species. Following application of avermectin or beta-cypermethrin, F. occidentalis became the predominant species, while in plots not treated with insecticides, T. tabaci remained the predominant species. These results indicate that T. tabaci is an intrinsically superior competitor to F. occidentalis, but its competitive advantage can be counteracted through differential susceptibilities of the species to insecticides. These results further demonstrate the importance of external factors, such as insecticide applications, in mediating the outcome of interspecific interactions and produce rapid unanticipated shifts in the demographics of pest complexes. PMID:28084404

  5. Corn insect pests

    USDA-ARS?s Scientific Manuscript database

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  6. Malaria Elimination: Time to Target All Species.

    PubMed

    Lover, Andrew A; Baird, J Kevin; Gosling, Roly; Price, Ric

    2018-05-14

    Important strides have been made within the past decade toward malaria elimination in many regions, and with this progress, the feasibility of eradication is once again under discussion. If the ambitious goal of eradication is to be achieved by 2040, all species of Plasmodium infecting humans will need to be targeted with evidence-based and concerted interventions. In this perspective, the potential barriers to achieving global malaria elimination are discussed with respect to the related diversities in host, parasite, and vector populations. We argue that control strategies need to be reorientated from a sequential attack on each species, dominated by Plasmodium falciparum to one that targets all species in parallel. A set of research themes is proposed to mitigate the potential setbacks on the pathway to a malaria-free world.

  7. Landscape changes have greater effects than climate changes on six insect pests in China.

    PubMed

    Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng

    2016-06-01

    In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.

  8. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    PubMed

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  9. Molecular and morphological identification of mealybug species (Hemiptera: Pseudococcidae) in Brazilian vineyards.

    PubMed

    Pacheco da Silva, Vitor C; Bertin, Aline; Blin, Aurélie; Germain, Jean-François; Bernardi, Daniel; Rignol, Guylène; Botton, Marcos; Malausa, Thibaut

    2014-01-01

    Mealybugs (Hemiptera: Pseudococcidae) are pests constraining the international trade of Brazilian table grapes. They damage grapes by transmitting viruses and toxins, causing defoliation, chlorosis, and vigor losses and favoring the development of sooty mold. Difficulties in mealybug identification remain an obstacle to the adequate management of these pests. In this study, our primary aim was to identify the principal mealybug species infesting the major table grape-producing regions in Brazil, by morphological and molecular characterization. Our secondary aim was to develop a rapid identification kit based on species-specific Polymerase Chain Reactions, to facilitate the routine identification of the most common pest species. We surveyed 40 sites infested with mealybugs and identified 17 species: Dysmicoccus brevipes (Cockerell), Dysmicoccus sylvarum Williams and Granara de Willink, Dysmicoccus texensis (Tinsley), Ferrisia cristinae Kaydan and Gullan, Ferrisia meridionalis Williams, Ferrisia terani Williams and Granara de Willink, Phenacoccus baccharidis Williams, Phenacoccus parvus Morrison, Phenacoccus solenopsis Tinsley, Planococcus citri (Risso), Pseudococcus viburni (Signoret), Pseudococcus cryptus Hempel, four taxa closely related each of to Pseudococcus viburni, Pseudococcus sociabilis Hambleton, Pseudococcus maritimus (Ehrhorn) and Pseudococcus meridionalis Prado, and one specimen from the genus Pseudococcus Westwood. The PCR method developed effectively identified five mealybug species of economic interest on grape in Brazil: D. brevipes, Pl. citri, Ps. viburni, Ph. solenopsis and Planococcus ficus (Signoret). Nevertheless, it is not possible to assure that this procedure is reliable for taxa that have not been sampled already and might be very closely related to the target species.

  10. Molecular and Morphological Identification of Mealybug Species (Hemiptera: Pseudococcidae) in Brazilian Vineyards

    PubMed Central

    Pacheco da Silva, Vitor C.; Bertin, Aline; Blin, Aurélie; Germain, Jean-François; Bernardi, Daniel; Rignol, Guylène; Botton, Marcos; Malausa, Thibaut

    2014-01-01

    Mealybugs (Hemiptera: Pseudococcidae) are pests constraining the international trade of Brazilian table grapes. They damage grapes by transmitting viruses and toxins, causing defoliation, chlorosis, and vigor losses and favoring the development of sooty mold. Difficulties in mealybug identification remain an obstacle to the adequate management of these pests. In this study, our primary aim was to identify the principal mealybug species infesting the major table grape-producing regions in Brazil, by morphological and molecular characterization. Our secondary aim was to develop a rapid identification kit based on species-specific Polymerase Chain Reactions, to facilitate the routine identification of the most common pest species. We surveyed 40 sites infested with mealybugs and identified 17 species: Dysmicoccus brevipes (Cockerell), Dysmicoccus sylvarum Williams and Granara de Willink, Dysmicoccus texensis (Tinsley), Ferrisia cristinae Kaydan and Gullan, Ferrisia meridionalis Williams, Ferrisia terani Williams and Granara de Willink, Phenacoccus baccharidis Williams, Phenacoccus parvus Morrison, Phenacoccus solenopsis Tinsley, Planococcus citri (Risso), Pseudococcus viburni (Signoret), Pseudococcus cryptus Hempel, four taxa closely related each of to Pseudococcus viburni, Pseudococcus sociabilis Hambleton, Pseudococcus maritimus (Ehrhorn) and Pseudococcus meridionalis Prado, and one specimen from the genus Pseudococcus Westwood. The PCR method developed effectively identified five mealybug species of economic interest on grape in Brazil: D. brevipes, Pl. citri, Ps. viburni, Ph. solenopsis and Planococcus ficus (Signoret). Nevertheless, it is not possible to assure that this procedure is reliable for taxa that have not been sampled already and might be very closely related to the target species. PMID:25062012

  11. Coconut leaf bioactivity toward generalist maize insect pests

    USDA-ARS?s Scientific Manuscript database

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  12. Evaluation of disease and pest damage on soybean cultivars released from 1923 through 2008 under field conditions in Central Illinois

    USDA-ARS?s Scientific Manuscript database

    Diseases and pests of soybean often reduce soybean yields. Targeted breeding that incorporates known genes for resistance and non-targeted breeding that eliminates susceptible plants in breeding populations reduces the impact of soybean pathogens and pests. Maturity group III soybean cultivars relea...

  13. Allee effects in tritrophic food chains: some insights in pest biological control.

    PubMed

    Costa, Michel Iskin da S; Dos Anjos, Lucas

    2016-12-01

    Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  14. Sensitivity and cost considerations for the detection and eradication of marine pests in ports.

    PubMed

    Hayes, Keith R; Cannon, Rob; Neil, Kerry; Inglis, Graeme

    2005-08-01

    Port surveys are being conducted in Australia, New Zealand and around the world to confirm the presence or absence of particular marine pests. The most critical aspect of these surveys is their sensitivity-the probability that they will correctly identify a species as present if indeed it is present. This is not, however, adequately addressed in the relevant national and international standards. Simple calculations show that the sensitivity of port survey methods is closely related to their encounter rate-the average number of target individuals expected to be detected by the method. The encounter rate (which reflects any difference in relative pest density), divided by the cost of the method, provides one way to compare the cost-effectiveness of different survey methods. The most cost-effective survey method is site- and species-specific but, in general, will involve sampling from the habitat with the highest expected population of target individuals. A case study of Perna viridis in Trinity Inlet, Cairns, demonstrates that plankton trawls processed with gene probes provide the same level of sensitivity for a fraction of the cost associated with the next best available method-snorkel transects in bad visibility (secchi depth=0.72 m). Visibility and the adult/larvae ratio, however, are critical to these arguments. If visibility were good (secchi depth=10 m), the two approaches would be comparable. Diver deployed quadrats were at least three orders of magnitude less cost-effective in this case study. It is very important that environmental managers and scientists perform sensitivity calculations before embarking on port surveys to ensure the highest level of sensitivity is achieved for any given budget.

  15. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition.

    PubMed

    Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying

    2016-12-01

    Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.

  16. Evolutionary history predicts plant defense against an invasive pest.

    PubMed

    Desurmont, Gaylord A; Donoghue, Michael J; Clement, Wendy L; Agrawal, Anurag A

    2011-04-26

    It has long been hypothesized that invasive pests may be facilitated by the evolutionary naïveté of their new hosts, but this prediction has never been examined in a phylogenetic framework. To address the hypothesis, we have been studying the invasive viburnum leaf beetle (Pyrrhalta viburni), which is decimating North American native species of Viburnum, a clade of worldwide importance as understory shrubs and ornamentals. In a phylogenetic field experiment using 16 species of Viburnum, we show that old-world Viburnum species that evolved in the presence of Pyrrhalta beetles mount a massive defensive wound response that crushes eggs of the pest insect; in contrast, naïve North American species that share no evolutionary history with Pyrrhalta beetles show a markedly lower response. This convergent continental difference in the defensive response of Viburnum spp. against insect oviposition contrasts with little difference in the quality of leaves for beetle larvae. Females show strong oviposition preferences that correspond with larval performance regardless of continental origin, which has facilitated colonization of susceptible North American species. Thus, although much attention has been paid to escape from enemies as a factor in the establishment and spread of nonnative organisms, the colonization of undefended resources seems to play a major role in the success of invasive species such as the viburnum leaf beetle.

  17. Early pest development and loss of biological control are associated with urban warming.

    PubMed

    Meineke, Emily K; Dunn, Robert R; Frank, Steven D

    2014-11-01

    Climate warming is predicted to cause many changes in ectotherm communities, one of which is phenological mismatch, wherein one species' development advances relative to an associated species or community. Phenological mismatches already lead to loss of pollination services, and we predict that they also cause loss of biological control. Here, we provide evidence that a pest develops earlier due to urban warming but that phenology of its parasitoid community does not similarly advance. This mismatch is associated with greater egg production that likely leads to more pests on trees. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Effects of seed mixture sowing with resistant and susceptible rice on population dynamics of target planthoppers and non-target stemborers and leaffolders.

    PubMed

    Li, Zhuo; Wan, Guijun; Wang, Long; Parajulee, Megha N; Zhao, Zihua; Chen, Fajun

    2018-07-01

    The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impact on both target and non-target pests worldwide. In this study, we examined the potential effects of six seed mixture ratios of insect-resistance dominance [100% (R100), 95% (S05R95), 90% (S10R90), 80% (S20R80), 60% (S40R60), and 0% (S100)] on target and non-target pests in a 2-year field trial in southern China. The occurrence of the target pests Nilaparvata lugens and Sogatella furcifera decreased with an increase in the ratio of resistant rice, and mixture ratios with ≥90% resistant rice significantly increased the pest suppression efficiency, with the lowest occurrences of the non-target pests Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis for S100 and S10R90 seed mixture ratios. Furthermore, there were no significant differences in the 1000-grain dry weight and grain yield between R100 and other treatments with ≥80% resistant seeds in the mixture (S20R80, S10R90 and S05R95). S10R90 produced a good yield and provided the most effective control of both target and non-target pests, with the potential to significantly reduce the application of chemical pesticides for integrated pest management in paddy fields. It is further presumed that the strategy of seed mixture with resistant and susceptible rice would be advantageous for rice yield stability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Detection capacity, information gaps and the design of surveillance programs for invasive forest pests

    Treesearch

    Denys Yemshanov; Frank Koch; Yakov Ben-Haim; William Smith

    2010-01-01

    Integrated pest risk maps and their underlying assessments provide broad guidance for establishing surveillance programs for invasive species, but they rarely account for knowledge gaps regarding the pest of interest or how these can be reduced. In this study we demonstrate how the somewhat competing notions of robustness to uncertainty and potential knowledge gains...

  20. Pear Thrips on Forest Trees (Pest Alert)

    Treesearch

    James O' Brien; Parker Snowden

    1989-01-01

    The pear thrips, Taeniothrips inconsequens (Uzel), an imported species first noted in California in 1904 and now throughout the United States, is a common thrips found on many plants, but particularly fruit trees. Pear thrips have been considered a serious forest pest only recently (1979, when they, along with Thrips calcaratus Uzel, caused widespread defoliation in...

  1. Exotic pests: major threats to forest health

    Treesearch

    J. Robert Bridges

    1995-01-01

    Over 360 exotic forest insects and about 20 exotic diseases have become established in the U.S. Many of these organisms have become serious pests, causing great economic impacts and irreversible ecological harm. Despite efforts to exclude exotic species, forest insects and disease organisms continue to be introduced at a rather rapid rate. In the last few years, one...

  2. Big-Eyed Bugs Have Big Appetite for Pests

    USDA-ARS?s Scientific Manuscript database

    Many kinds of arthropod natural enemies (predators and parasitoids) inhabit crop fields in Arizona and can have a large negative impact on several pest insect species that also infest these crops. Geocoris spp., commonly known as big-eyed bugs, are among the most abundant insect predators in field c...

  3. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops.

    PubMed

    Douglas, Margaret R; Tooker, John F

    2015-04-21

    Neonicotinoids are the most widely used class of insecticides worldwide, but patterns of their use in the U.S. are poorly documented, constraining attempts to understand their role in pest management and potential nontarget effects. We synthesized publicly available data to estimate and interpret trends in neonicotinoid use since their introduction in 1994, with a special focus on seed treatments, a major use not captured by the national pesticide-use survey. Neonicotinoid use increased rapidly between 2003 and 2011, as seed-applied products were introduced in field crops, marking an unprecedented shift toward large-scale, preemptive insecticide use: 34-44% of soybeans and 79-100% of maize hectares were treated in 2011. This finding contradicts recent analyses, which concluded that insecticides are used today on fewer maize hectares than a decade or two ago. If current trends continue, neonicotinoid use will increase further through application to more hectares of soybean and other crop species and escalation of per-seed rates. Alternatively, our results, and other recent analyses, suggest that carefully targeted efforts could considerably reduce neonicotinoid use in field crops without yield declines or economic harm to farmers, reducing the potential for pest resistance, nontarget pest outbreaks, environmental contamination, and harm to wildlife, including pollinator species.

  4. Transgenic cry1C(⁎) gene rough rice line T1C-19 does not change the host preferences of the non-target stored product pest, Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), and its parasitoid wasp, Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae).

    PubMed

    Sun, Xiao; Yan, Miao-Jun; Zhang, Aijun; Wang, Man-Qun

    2015-10-01

    Rough rice grains are often stored for extended periods before they are used or consumed. However, during storage, the rough rice is vulnerable to insect infestation, resulting in significant economic loss. Previous studies have shown that volatiles cues, physical characteristics, and taste chemicals on the grains could be the important key behavior factors for storage insect pests to locate the hosts and select oviposition sites. It is also well known that the transgenic Bt rough rice line T1C-19, which expresses a cry1C(⁎) gene has a high resistance to Lepidoptera pests. However, there were no evidences to show the consequences of host preference for non-target insect pests after growing Bt transgenic rice. In this study, the potential key factors of Bt rough rice were investigated for their impacts on the behaviors of non-target pest lesser grain borer Rhyzopertha dominica, the main weevil pest of grain and its parasitic wasps Anisopteromalus calandrae, the natural enemy of the beetle. Both electronic nose and electronic tongue analyses showed that the parameters of Bt rough rice were analogous to those of the non-Bt rough rice. The volatile profiles of Bt and non-Bt rough rice examined by gas chromatographic mass spectrometry (GC-MS) were similar. For most volatile compounds, there were no significantly quantitative differences in compound quantities between Bt and non-Bt rough rice. The densities of sclereids and trichomes on the rough rice husk surface were statistically equal in Bt and non-Bt rough rice. The non-target pest, R. dominica, and its parasitoid wasp, A. calandrae, were attracted to both rough rice and could not distinguish the transgenic T1C-19 from the isogenic rough rice. These results demonstrated that Bt rough rice has no negative impacts on the host preference behaviors of non-target stored product pest R. dominica and its parasitoid A. calandrae. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pest persistence and eradication conditions in a deterministic model for sterile insect release.

    PubMed

    Gordillo, Luis F

    2015-01-01

    The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.

  6. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  7. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    PubMed

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  8. Feltia submontana (Noctuidae, Noctuinae): Redescription, Taxonomy, Life Cycle, and Spatial Distribution of a Neglected South American Potential Pest Species.

    PubMed

    Dias, F M S; Specht, A; Roque-Specht, V F; San Blas, G; Casagrande, M M; Mielke, O H H

    2018-06-06

    Feltia submontana (Köhler, 1961) is redescribed based on specimens from Northwestern Argentina and Central and Southeastern Brazil. Taxonomic comments, photographs of the adults, characters of taxonomic importance, and illustrations of structures of the labial palpus, legs, and male and female genitalia are provided. The species is compared with similar-looking and supposedly closely related species, such as F. hispidula (Guenée, 1852) and F. lilacina (Zerny, 1916). The species, originally described for Argentina, is reported for Brazil for the first time. Most Brazilian specimens come from the "Cerrado" but also from Southeastern Atlantic Forests. The life cycle of F. submontana specimens collected in Planaltina, Distrito Federal, Brazil, is described; the species probably has only a single generation per year and imagines are on the wing in the late autumn and early winter months; the last instar prepupa and pupa pass through aestival diapause. The abundance of F. submontana relative to other species of Agrotis Ochsenheimer, 1816, and Feltia Walker, 1856, in the above-cited locality is accessed through 4 years of standardized collecting with light trap; the species is the second most abundant species of these genera in the area, with about one fifth of the captures, second only to A. ipsilon (Hufnagel, 1766), with about two thirds of the captures, and about two times more abundant than F. subterranea (Fabricius, 1794); the latter two are regarded as important pest species in South America.

  9. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-02-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone.

  10. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed Central

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-01-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone. PMID:12618417

  11. The Trojan female technique: a novel, effective and humane approach for pest population control.

    PubMed

    Gemmell, Neil J; Jalilzadeh, Aidin; Didham, Raphael K; Soboleva, Tanya; Tompkins, Daniel M

    2013-12-22

    Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.

  12. Interaction between juniper Juniperus communis L. and its fruit pest insects: Pest abundance, fruit characteristics and seed viability

    NASA Astrophysics Data System (ADS)

    García, Daniel

    1998-12-01

    The relationships between the fruit features of Juniperus communis and the presence of fruit pests were studied in Sierra Nevada, SE Spain. The abundance of two insect species — a pulp-sucking scale and a seed-predator wasp — was surveyed with respect both to fruit characteristics and to viability of seeds contained therein. Seed-predator pressure was not significantly related to any fruit characteristics; however, pulp suckers tended to be more abundant in plants with low pulp: seed ratios and high fruit-water content. In addition, fruits with high levels of pulp-sucker attack tended to have higher water content. A multi-factor ANOVA, considering the identity of the plant and the attack of the different pests as factors, showed that plant identity accounts for most of the variation in fruit characteristics. The viability of seeds tended to be lower in plants strongly attacked by both pests. Fruits attacked by seed predators showed significantly lower proportions of viable and unviable seeds than did unattacked fruits. Seed viability was also lower in those fruits heavily attacked by pulp suckers, but this pattern is strongly mediated by plant identity. Pest activity proved to be clearly associated with a direct decrease in juniper reproductive capacity. This loss involved a reduction of the viable-seed number, mainly related to the seed predator, as well as a reduction of fruit attractiveness to frugivorous dispersers, related to the pulp sucker.

  13. Who Wants To Be an IPM Super Sleuth? Integrated Pest Management Educational Activities & Resources for Kids of All Ages.

    ERIC Educational Resources Information Center

    Walejko, Gina K.; Colon, Joseph L.

    This guide presents games and activities on integrated pest management (IPM) for home targeting grades 1-7. The activities and games use a problem-solving approach based on pest knowledge to develop an understanding of pest management. Three cases are presented: (1) "Inspection is the Key to IPM Success" includes two…

  14. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy.

    PubMed

    Wu, Hua; Zhang, Guo-An; Zeng, Shuiyun; Lin, Kai-chun

    2009-09-01

    Isothiocyanates (ITCs) extracted from Armoracia rusticana Gaertn., May & Scherb. have been shown previously to have insecticidal activity. Allyl isothiocyanate (AITC), a major component of ITCs with high volatility, was therefore extracted using different methods and tested as a fumigant against four major pest species of stored products, maize weevil Sitophilus zeamais (Motsch.), lesser grain borer Rhizopertha dominica (F.), Tribolium ferrugineum (F.) and book louse Liposcelis entomophila (Enderlein). Whereas there was no significant difference between hydrodistillation and supercritical carbon dioxide fluid extraction in extraction rate for AITC from A. rusticana, both methods resulted in higher extraction efficiency than water extraction. AITC fumigation showed strong toxicity to the four species of stored-product pests. Adult mortality of 100% of all four pest species, recorded after 72 h exposure to AITC fumes at an atmospheric concentration of 3 microg mL(-1), showed no significant difference from that of insects exposed to phosphine at 5 microg mL(-1), the recommended dose for phosphine. The results suggest good insecticidal efficacy of AITC against the four stored-product pests, with non-gaseous residuals on stored products. AITC obtained from A. rusticana may be an alternative to phosphine and methyl bromide against the four pest species. Copyright 2009 Society of Chemical Industry.

  15. Inversion of Attributes and Full Waveforms of Ground Penetrating Radar Data Using PEST

    NASA Astrophysics Data System (ADS)

    Jazayeri, S.; Kruse, S.; Esmaeili, S.

    2015-12-01

    We seek to establish a method, based on freely available software, for inverting GPR signals for the underlying physical properties (electrical permittivity, magnetic permeability, target geometries). Such a procedure should be useful for classroom instruction and for analyzing surface GPR surveys over simple targets. We explore the applicability of the PEST parameter estimation software package for GPR inversion (www.pesthomepage.org). PEST is designed to invert data sets with large numbers of parameters, and offers a variety of inversion methods. Although primarily used in hydrogeology, the code has been applied to a wide variety of physical problems. The PEST code requires forward model input; the forward model of the GPR signal is done with the GPRMax package (www.gprmax.com). The problem of extracting the physical characteristics of a subsurface anomaly from the GPR data is highly nonlinear. For synthetic models of simple targets in homogeneous backgrounds, we find PEST's nonlinear Gauss-Marquardt-Levenberg algorithm is preferred. This method requires an initial model, for which the weighted differences between model-generated data and those of the "true" synthetic model (the objective function) are calculated. In order to do this, the Jacobian matrix and the derivatives of the observation data in respect to the model parameters are computed using a finite differences method. Next, the iterative process of building new models by updating the initial values starts in order to minimize the objective function. Another measure of the goodness of the final acceptable model is the correlation coefficient which is calculated based on the method of Cooley and Naff. An accepted final model satisfies both of these conditions. Models to date show that physical properties of simple isolated targets against homogeneous backgrounds can be obtained from multiple traces from common-offset surface surveys. Ongoing work examines the inversion capabilities with more complex

  16. Review of anthraquinone applications for pest management and agricultural crop protection.

    PubMed

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  17. Pest Management Specialist (AFSC 56650).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This eight-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for pest management specialists. Covered in the individual volumes are civil engineering; pest management (entomology, pest management planning and coordination, and safety and protective equipment); pest management chemicals and…

  18. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance

    PubMed Central

    Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323

  19. Modelling the impacts of pests and diseases on agricultural systems.

    PubMed

    Donatelli, M; Magarey, R D; Bregaglio, S; Willocquet, L; Whish, J P M; Savary, S

    2017-07-01

    The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.

  20. Targeting Conserved Genes in Fusarium Species.

    PubMed

    Gil-Serna, Jéssica; Patiño, Belén; Jurado, Miguel; Mirete, Salvador; Vázquez, Covadonga; González-Jaén, M Teresa

    2017-01-01

    Fumonisins are important mycotoxins contaminating foods and feeds which are mainly produced by F. verticillioides and F. proliferatum. Additionally, both are pathogens of maize and other cereals. We describe two highly sensitive, rapid, and species-specific PCR protocols which enable detection and discrimination of these closely related species in cereal flour or grain samples. The specific primer pairs of these assays were based on the intergenic spacer region of the multicopy rDNA unit which highly improves the sensitivity of the PCR assay in comparison with single-copy target regions.

  1. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    PubMed

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  2. LANDSCAPE CHANGES IN A LOWLAND IN BENIN: ECOLOGICAL IMPACT ON PESTS AND NATURAL ENEMIES.

    PubMed

    Boucher, A; Silvie, P; Menozzi, P; Adda, C; Auzoux, S; Jean, J; Huat, J

    2015-01-01

    Habitat management involving conservative biological control could be a good crop pest management option in poor African countries. A survey was conducted from August 2013 to July 2014 in a rainfed lowland region near Pélébina, northern Benin, in order to characterize spatiotemporal landscape changes and investigate their influence on the main crop pests and their associated natural enemies. The area was mapped mainly regarding crop fields and fallows. Visual observations were recorded and a database was compiled. Major landscape composition changes were noted between rainy and dry seasons, which affected the presence of both pests and natural enemies. Cereals (rice, maize and sorghum) and cotton were grown in the humid season, and then okra (Abelmoschus esculentus) was the dominant vegetable crop in dry season. These modifications impacted fallow abundance throughout the lowland. Different cotton (e.g. Helicoverpa armigera, Dysdercus sp., Zonocerus variegatus) or rice (e.g. Diopsis longicornis, D. apicalis) pests were observed during dry season in okra crops. Dry season surveys of Poaceae in two types of fallows ('humid', 'dry') revealed the presence of very few stem borers: only 0.04% of stems sampled were infested by stem borers, with a mean of 1.13 larvae per stem. Known cereal stem borer species such as Busseola fusco, Coniesta ignefusalis, Sesamia calamistis were not clearly identified among these larvae because of their diapausing stage and white color. Unexpected pollinators (Hymenoptera Apidae, genus Braunsapis, Ceratina and Xylocopa) and predators (Crabronidae, genus Dasyproctus) were found in the stems. Sweep-net collection of insects in humid fallows allowed us to describe for the first time in Benin seven Diopsidae species (23% of adults bearing Laboulbeniomycetes ectoparasitic fungi). Some of these species were captured in rice fields during rainy season. Parasitoids (adult Chalcidoidae and Ichneumonoidae) were observed during both seasons but their

  3. Hemlock Borer (Pest Alert)

    Treesearch

    USDA Forest Service

    2000-01-01

    The hemlock borer, Melanophila fulvoguttata (Harris), is a pest of eastern hemlock, Tsuga canadensis (L.) Carr., throughout its natural range. Although normally considered a secondary pest and seldom abundant, the borer can develop to outbreak conditions following wind-throw, drought, excessive stand openings, or attacks by other primary pests such as the hemlock...

  4. Origin and phylogeography of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera : Cephidae): implications for pest management

    USDA-ARS?s Scientific Manuscript database

    he wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage by this species has recently expanded southward. Current pest management practices are not very effective and uncertainties regarding its origin and i...

  5. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs

    NASA Astrophysics Data System (ADS)

    Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.

    2016-03-01

    Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.

  6. From pest data to abundance-based risk maps combining eco-physiological knowledge, weather, and habitat variability.

    PubMed

    Lacasella, Federica; Marta, Silvio; Singh, Aditya; Stack Whitney, Kaitlin; Hamilton, Krista; Townsend, Phil; Kucharik, Christopher J; Meehan, Timothy D; Gratton, Claudio

    2017-03-01

    Noxious species, i.e., crop pest or invasive alien species, are major threats to both natural and managed ecosystems. Invasive pests are of special importance, and knowledge about their distribution and abundance is fundamental to minimize economic losses and prioritize management activities. Occurrence models are a common tool used to identify suitable zones and map priority areas (i.e., risk maps) for noxious species management, although they provide a simplified description of species dynamics (i.e., no indication on species density). An alternative is to use abundance models, but translating abundance data into risk maps is often challenging. Here, we describe a general framework for generating abundance-based risk maps using multi-year pest data. We used an extensive data set of 3968 records collected between 2003 and 2013 in Wisconsin during annual surveys of soybean aphid (SBA), an exotic invasive pest in this region. By using an integrative approach, we modelled SBA responses to weather, seasonal, and habitat variability using generalized additive models (GAMs). Our models showed good to excellent performance in predicting SBA occurrence and abundance (TSS = 0.70, AUC = 0.92; R 2  = 0.63). We found that temperature, precipitation, and growing degree days were the main drivers of SBA trends. In addition, a significant positive relationship between SBA abundance and the availability of overwintering habitats was observed. Our models showed aphid populations were also sensitive to thresholds associated with high and low temperatures, likely related to physiological tolerances of the insects. Finally, the resulting aphid predictions were integrated using a spatial prioritization algorithm ("Zonation") to produce an abundance-based risk map for the state of Wisconsin that emphasized the spatiotemporal consistency and magnitude of past infestation patterns. This abundance-based risk map can provide information on potential foci of pest outbreaks where

  7. Population genomics of a symbiont in the early stages of a pest invasion.

    PubMed

    Brown, Amanda M V; Huynh, Lynn Y; Bolender, Caitlin M; Nelson, Kelly G; McCutcheon, John P

    2014-03-01

    Invasive species often depend on microbial symbionts, but few studies have examined the evolutionary dynamics of symbionts during the early stages of an invasion. The insect Megacopta cribraria and its bacterial nutritional symbiont Candidatus Ishikawaella capsulata invaded the southeastern US in 2009. While M. cribraria was initially discovered on wild kudzu plants, it was found as a pest on soybeans within 1 year of infestation. Because prior research suggests Ishikawaella confers the pest status--that is, the ability to thrive on soybeans--in some Megacopta species, we performed a genomic study on Ishikawaella from US. Megacopta cribraria populations to understand the role of the symbiont in driving host plant preferences. We included Ishikawaella samples collected in the first days of the invasion in 2009 and from 23 locations across the insect's 2011 US range. The 0.75 Mb symbiont genome revealed only 47 fixed differences from the pest-conferring Ishikawaella in Japan, with only one amino acid change in a nutrition-provisioning gene. This similarity, along with a lack of fixed substitutions in the US symbiont population, indicates that Ishikawella likely arrived in the US capable of being a soybean pest. Analyses of allele frequency changes between 2009 and 2011 uncover signatures of both positive and negative selection and suggest that symbionts on soybeans and kudzu experience differential selection for genes related to nutrient provisioning. Our data reveal the evolutionary trajectory of an important insect-bacteria symbiosis in the early stages of an invasion, highlighting the role microbial symbionts may play in the spread of invasive species. © 2013 John Wiley & Sons Ltd.

  8. Experimental hybridization and reproductive isolation between two sympatric species of tephritid fruit flies in the Anastrepha fraterculus species group.

    PubMed

    Rull, Juan; Tadeo, Eduardo; Lasa, Rodrigo; Rodríguez, Christian L; Altuzar-Molina, Alma; Aluja, Martín

    2017-06-06

    Among tephritid fruit flies, hybridization has been found to produce local adaptation and speciation, and in the case of pest species, induce behavioral and ecological alterations that can adversely impact efficient pest management. The fraterculus species group within Anastrepha (Diptera: Tephritidae), is a rapidly radiating aggregate, which includes cryptic species complexes, numerous sister species, and several pest species. Molecular studies have highlighted the possibility of introgression between A. fraterculus and A. obliqua. Reproductive isolation has been studied among morphotypes of the A. fraterculus species complex as a tool for species delimitation. Here we examined the existence and strength of prezygotic and postzygotic isolation between sympatric populations of two closely related species within the highly derived fraterculus group (A. fraterculus and A. obliqua), coexisting in nature. Although adults of both species showed a strong tendency for assortative mating, a small proportion of hybrid pairings in both directions were observed. We also observed asymmetric postzygotic isolation, with one hybrid cross displaying a strong reduction in fecundity and F1 egg fertility. Survival was greater for the progeny of homotypic and hybrid crosses in the maternal host. There was a marked female biased sex ratio distortion for both F1 hybrid adults. Hybridization between A. fraterculus and A. obliqua in nature may be difficult but possible; these two species display stronger reproductive isolation than all pairs of species previously examined in the A. fraterculus species complex. Asymmetric postzygotic isolation is suggestive of Wolbachia mediated cytoplasmic incompatibilities that may be exploited in area-wide pest management. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  9. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  10. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    PubMed

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  11. Vertebrate Pest Control. Sale Publication 4077.

    ERIC Educational Resources Information Center

    Stimmann, M. W.; Clark, Dell O.

    This guide gives descriptions of common vertebrate pests and guidelines for using some common pesticides. The pests discussed are rats, mice, bats, moles, muskrats, ground squirrels, and gophers. Information is given for each pest on the type of damage the pest can do, the habitat and biology of the pest, and the most effective control methods.…

  12. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework.

    PubMed

    Colunga-Garcia, Manuel; Magarey, Roger A; Haack, Robert A; Gage, Stuart H; Qi, Jiaquo

    2010-03-01

    Urban areas are hubs of international transport and therefore are major gateways for exotic pests. Applying an urban gradient to analyze this pathway could provide insight into the ecological processes involved in human-mediated invasions. We defined an urban gradient for agricultural and forest ecosystems in the contiguous United States to (1) assess whether ecosystems nearer more urbanized areas were at greater risk of invasion, and (2) apply this knowledge to enhance early detection of exotic pests. We defined the gradient using the tonnage of imported products in adjacent urban areas and their distance to nearby agricultural or forest land. County-level detection reports for 39 exotic agricultural and forest pests of major economic importance were used to characterize invasions along the gradient. We found that counties with more exotic pests were nearer the urban end of the gradient. Assuming that the exotic species we analyzed represent typical invaders, then early detection efforts directed at 21-26% of U.S. agricultural and forest land would likely be able to detect 70% of invaded counties and 90% of the selected species. Applying an urban-gradient framework to current monitoring strategies should enhance early detection efforts of exotic pests, facilitating optimization in allocating resources to areas at greater risk of future invasions.

  13. Parasitoid diversity reduces the variability in pest control services across time on farms

    PubMed Central

    Macfadyen, Sarina; Craze, Paul G.; Polaszek, Andrew; van Achterberg, Kees; Memmott, Jane

    2011-01-01

    Recent declines in biodiversity have increased interest in the link between biodiversity and the provision and sustainability of ecosystem services across space and time. We mapped the complex network of interactions between herbivores and parasitoids to examine the relationship between parasitoid species richness, functional group diversity and the provision of natural pest control services. Quantitative food webs were constructed for 10 organic and 10 conventional farms. Parasitoid species richness varied from 26 to 58 species and we found a significant positive relationship between parasitoid species richness and temporal stability in parasitism rates. Higher species richness was associated with lower variation in parasitism rate. A functional group analysis showed significantly greater parasitoid species complementarity on organic farms, with on average more species in each functional group. We simulated parasitoid removal to predict whether organic farms experienced greater robustness of parasitism in the face of local extinctions. This analysis showed no consistent differences between the organic and conventional farm pairs in terms of loss of pest control service. Finally, it was found that the different habitats that make up each farm do not contribute equally to parasitoid species diversity, and that hedgerows produced more parasitoid species, significantly more so on organic farms. PMID:21450736

  14. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    PubMed

    Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng

    2012-01-01

    The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

  15. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    PubMed

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  16. Pest Control in the School Environment: Adopting Integrated Pest Management.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    As the public becomes more aware of the health and environmental risks pesticides may pose, its interest in seeking the use of equally effective alternative pest control methods increases. School administrators and other persons who have pest control decision-making responsibilities for school buildings and grounds can use this guide to become…

  17. Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests.

    PubMed

    Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K

    2014-06-01

    We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.

  18. Prospect of nitric oxide as a new fumigant for postharvest pest control

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a newly discovered fumigant for postharvest pest control. In laboratory tests, complete control was achieved against all insect and mite species tested to date with 0.2% to 5% NO fumigations in 2 h to 48 h at 2 to 25°C depending on species and life stages. Nitric oxide reacts ...

  19. Evolution of Multiple Sensory Systems Drives Novel Egg-Laying Behavior in the Fruit Pest Drosophila suzukii.

    PubMed

    Karageorgi, Marianthi; Bräcker, Lasse B; Lebreton, Sébastien; Minervino, Caroline; Cavey, Matthieu; Siju, K P; Grunwald Kadow, Ilona C; Gompel, Nicolas; Prud'homme, Benjamin

    2017-03-20

    The rise of a pest species represents a unique opportunity to address how species evolve new behaviors and adapt to novel ecological niches [1]. We address this question by studying the egg-laying behavior of Drosophila suzukii, an invasive agricultural pest species that has spread from Southeast Asia to Europe and North America in the last decade [2]. While most closely related Drosophila species lay their eggs on decaying plant substrates, D. suzukii oviposits on ripening fruit, thereby causing substantial economic losses to the fruit industry [3-8]. D. suzukii has evolved an enlarged, serrated ovipositor that presumably plays a key role by enabling females to pierce the skin of ripe fruit [9]. Here, we explore how D. suzukii selects oviposition sites, and how this behavior differs from that of closely related species. We have combined behavioral experiments in multiple species with neurogenetics and mutant analysis in D. suzukii to show that this species has evolved a specific preference for oviposition on ripe fruit. Our results also establish that changes in mechanosensation, olfaction, and presumably gustation have contributed to this ecological shift. Our observations support a model in which the emergence of D. suzukii as an agricultural pest is the consequence of the progressive modification of several sensory systems, which collectively underlie a radical change in oviposition behavior. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Developing risk hypotheses and selecting species for assessing non-target impacts of GM trees with novel traits: the case of altered-lignin pine trees.

    PubMed

    Malone, Louise A; Todd, Jacqui H; Burgess, Elisabeth P J; Walter, Christian; Wagner, Armin; Barratt, Barbara I P

    2010-01-01

    A procedure is presented for developing environmental risk hypotheses associated with the deployment of forest trees genetically modified to have altered wood properties and for selecting non-target species to test these hypotheses. Altered-lignin Pinus radiata trees intended for use in New Zealand are used as a hypothetical case study to illustrate our approach. Firstly, environmental management goals (such as wood production, flood control or preservation of biodiversity) were identified and linked to the forest attributes they require. Necessary conditions for each attribute were listed and appropriate assessment endpoints for them developed. For example, biological control of pests may be one condition necessary for a forest to have healthy trees, and the diversity and abundance of natural enemy species in the forest could be an appropriate assessment endpoint for measuring this condition. A conceptual model describing the relationships between an altered-lignin GM pine tree and potentially affected invertebrates and micro-organisms in a plantation forest was used to develop a set of risk hypotheses describing how the GM trees might affect each assessment endpoint. Because purified lignin does not represent the properties it imparts to wood, maximum hazard dose tests with non-target organisms, as are used to inform toxin risk assessment, cannot be conducted. Alternative experiments, based on current knowledge of the responses of organisms to lignin, must be designed. A screening method was adapted and applied to a database of invertebrate species known to inhabit New Zealand pine forests to identify and prioritize non-target invertebrate species that could be used as experimental subjects for examining these hypotheses. The screening model and its application are presented, along with a set of recommendations for pre-release tests with GM pines and potentially affected invertebrates and micro-organisms. © ISBR, EDP Sciences, 2011.

  1. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    PubMed

    Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  2. RNA Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept

    PubMed Central

    Heath, George; Childs, Darcy; Docker, Margaret F.; McCauley, David W.; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  3. Structural Pest Control.

    ERIC Educational Resources Information Center

    Kahn, M. S.; Hoffman, W. M.

    This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…

  4. Representing human-mediated pathways in forest pest risk mapping

    Treesearch

    Frank H. Koch; William D. Smith

    2010-01-01

    Historically, U.S. forests have been invaded by a variety of nonindigenous insects and pathogens. Some of these pests have catastrophically impacted important species over a relatively short timeframe. To curtail future changes of this magnitude, agencies such as the U.S. Department of Agriculture Forest Service have devoted substantial resources to assessing the risks...

  5. [Risk assessment and control strategies of pests in Lycium barbarum fields under different managements].

    PubMed

    Zhao, Zi-Hua; Zhang, Rong; He, Da-Han; Wang, Fang; Zhang, Ting-Ting; Zhang, Zong-Shan

    2009-04-01

    In the risk assessment of pests, both the community structure and the environmental factors should be considered at the same time, because of their mutual effects on the outbreak of disaster pests. This paper established a comprehensive assessment system, including 2 sub-systems, 5 respects, and 14 indices. In the meanwhile, risk assessment indices and experience formula were used to analyze the risk degree of pests in Lycium barbarum fields under different managements. It was found that using risk assessment indices and experience formula could obtain similar results. In abandoned field, Aceria palida, Aphis sp., and Paratrioza sinica were the frequent disaster pests, Lema decempunctata, Neoceratitis asiatica, Jaapiella sp., and Phthorimaea sp. were the incidental disaster pests, and Psylliodes obscurofaciata and Phthorimaea sp. were general pests. In organic field, the frequent disaster pests were the same species as those in abandoned field, while P. indicus, Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. In chemical control field, A. palida, Aphis sp., P. sinica, and P. indicus were the frequent disaster pests, while Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. Optimal 5 separations most fitted the division of pest sub-communities in L. barbarum fields, which were infancy period (from March 28 to April 15), outbreak I period (from April 15 to July 18), dormancy period (from July 18 to September 8), outbreak II period (from September 8 to October 15), and recession period (after October 15). The matrix of correlation coefficient showed that the dynamics of pests in L. barbarum fields under different managements were significantly correlated with each other, suggesting that the dynamics of pest populations was similar in different L. barbarum fields, which had two population establishment stages and one exponential growth stage in every year. The optimal controlling stages were from late infancy period to early and

  6. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  7. Compatibility of Two Systematic Neonicotinoids, Imidacloprid and Thiamethoxam with various Natural Enemies of Agricultural Pests.

    USDA-ARS?s Scientific Manuscript database

    Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of a number of insect pests in cotton, vegetables, and citrus. We evaluated their impact on six species of beneficial arthropods including four parasitoid species, Aphytis melinus Gonatocerus ashmeadi, ...

  8. Sensitivity of some nitrogen fixers and the target pest Fusarium oxysporum to fungicide thiram.

    PubMed

    Osman, Awad G; Sherif, Ashraf M; Elhussein, Adil A; Mohamed, Afrah T

    2012-03-01

    This study was carried out to investigate the toxic effects of the fungicide thiram (TMTD) against five nitrogen fixers and the thiram target pest Fusarium oxysporum under laboratory conditions. Nitrogen fixing bacteria Falvobacterium showed the highest values of LD(50) and proved to be the most resistant to the fungicide followed by Fusarium oxysporum, while Pseudomonas aurentiaca was the most affected microorganism. LD(50) values for these microorganisms were in 2-5 orders of magnitude lower in comparison with LD(50) value for Fusarium oxysporum. Thiram was most toxic to Pseudomonas aurentiaca followed by Azospirillum. The lowest toxicity index was recorded for Fusarium oxysporum and Flavobacterium. The slope of the curve for Azomonas, Fusarium oxysporum and Flavobacterium is more steep than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. Thiram was more selective to Pseudomonas aurentiaca followed by Azospirillum, Rhizobium meliloti and Azomonas. The lowest selectivity index of the fungicide was recorded for Falvobacterium followed by Fusarium oxysporum. The highest safety coefficient of the fungicide was assigned for Flavobacterium, while Pseudomonas aurentiaca showed the lowest value.

  9. Make your trappings count: The mathematics of pest insect monitoring. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by Petrovskii et al.

    NASA Astrophysics Data System (ADS)

    Blasius, Bernd

    2014-09-01

    Since the beginnings of agriculture the production of crops is characterized by an ongoing battle between farmers and pests [1]. Already during biblical times swarms of the desert locust, Schistocerca gregaria, were known as major pest that can devour a field of corn within an hour. Even today, harmful organisms have the potential to threaten food production worldwide. It is estimated that about 37% of all potential crops are destroyed by pests. Harmful insects alone destroy 13%, causing financial losses in the agricultural industry of millions of dollars each year [2-4]. These numbers emphasize the importance of pest insect monitoring as a crucial step of integrated pest management [1]. The main approach to gain information about infestation levels is based on trapping, which leads to the question of how to extrapolate the sparse population counts at singularly disposed traps to a spatial representation of the pest species distribution. In their review Petrovskii et al. provide a mathematical framework to tackle this problem [5]. Their analysis reveals that this seemingly inconspicuous problem gives rise to surprisingly deep mathematical challenges that touch several modern contemporary concepts of statistical physics and complex systems theory. The review does not aim for a collection of numerical recipes to support crop growers in the analysis of their trapping data. Instead the review identifies the relevant biological and physical processes that are involved in pest insect monitoring and it presents the mathematical techniques that are required to capture these processes.

  10. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers' Net Returns in West Africa

    PubMed Central

    Daghela Bisseleua, Hervé Bertin; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan

    2013-01-01

    Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451

  11. Rapid evolution in insect pests: the importance of space and time in population genomics studies.

    PubMed

    Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D

    2018-04-01

    Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Using habitat suitability models to target invasive plant species surveys.

    PubMed

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less

  13. Optimising the application of multiple-capture traps for invasive species management using spatial simulation.

    PubMed

    Warburton, Bruce; Gormley, Andrew M

    2015-01-01

    Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single

  14. Bioactivity of compounds from Acmella oleracea against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and selectivity to two non-target species.

    PubMed

    Moreno, Shaiene C; Carvalho, Geraldo A; Picanço, Marcelo C; Morais, Elisangela G F; Pereira, Rogério M

    2012-03-01

    Tropical plants are recognised sources of bioactive compounds that can be used for pest control. The objective of this study was to evaluate the biological activity of compounds present in Acmella oleracea (Asteracea) against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), which is the main pest of tomato crops in Latin America. The selectivity of these compounds to the predator Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) and to the pollinator Tetragonisca angustula (Latr.) (Hymenoptera: Apidae: Meliponinae) was also of interest. A bioassay screening with hexane and ethanol extracts from 23 plants was performed. The hexane extract of A. oleraceae was the most active of the extracts and was selected for further study. The following three alkamides were isolated from a hexane extract of the aerial parts of A. oleracea: spilanthol, (E)-N-isobutylundeca-2-en-8,10-diynamide and (R, E)-N-(2-methylbutyl)undeca-2-en-8,10-diynamide. All of the isolated compounds showed insecticidal activity, with spilanthol being the most active (LD(50) = 0.13 µg mg(-1) ) against T. absoluta. The alkamides were selective to both beneficial species studied. The crude hexane extract of A. oleraceae showed high insecticidal activity and can be used to control T. absoluta in organic or conventional crops. Quantification of LD(50) values of isolated compounds against T. absoluta showed that alkamides could serve as potent insecticides for T. absoluta control programmes. Spilanthol was the main alkamide active isolated. This alkamide is the most promising as it has the highest insecticidal activity and is selective to non-target organisms. Copyright © 2011 Society of Chemical Industry.

  15. Should I fight or should I flight? How studying insect aggression can help integrated pest management.

    PubMed

    Benelli, Giovanni

    2015-07-01

    Aggression plays a key role all across the animal kingdom, as it allows the acquisition and/or defence of limited resources (food, mates and territories) in a huge number of species. A large part of our knowledge on aggressive behaviour has been developed on insects of economic importance. How can this knowledge be exploited to enhance integrated pest management? Here, I highlight how knowledge on intraspecific aggression can help IPM both in terms of insect pests (with a focus on the enhancement of the sterile insect technique) and in terms of biological control agents (with a focus on mass-rearing optimisation). Then, I examine what implications for IPM can be outlined from knowledge about interspecific aggressive behaviour. Besides predator-pest aggressive interactions predicted by classic biological control, I focus on what IPM can learn from (i) interspecific aggression among pest species (with special reference to competitive displacement), (ii) defensive behaviour exhibited by prey against predaceous insects and (iii) conflicts among predaceous arthropods sharing the same trophic niche (with special reference to learning/sensitisation practices and artificial manipulation of chemically mediated interactions). © 2015 Society of Chemical Industry.

  16. Bayesian Networks to Compare Pest Control Interventions on Commodities Along Agricultural Production Chains.

    PubMed

    Holt, J; Leach, A W; Johnson, S; Tu, D M; Nhu, D T; Anh, N T; Quinlan, M M; Whittle, P J L; Mengersen, K; Mumford, J D

    2018-02-01

    The production of an agricultural commodity involves a sequence of processes: planting/growing, harvesting, sorting/grading, postharvest treatment, packing, and exporting. A Bayesian network has been developed to represent the level of potential infestation of an agricultural commodity by a specified pest along an agricultural production chain. It reflects the dependency of this infestation on the predicted level of pest challenge, the anticipated susceptibility of the commodity to the pest, the level of impact from pest control measures as designed, and any variation from that due to uncertainty in measure efficacy. The objective of this Bayesian network is to facilitate agreement between national governments of the exporters and importers on a set of phytosanitary measures to meet specific phytosanitary measure requirements to achieve target levels of protection against regulated pests. The model can be used to compare the performance of different combinations of measures under different scenarios of pest challenge, making use of available measure performance data. A case study is presented using a model developed for a fruit fly pest on dragon fruit in Vietnam; the model parameters and results are illustrative and do not imply a particular level of fruit fly infestation of these exports; rather, they provide the most likely, alternative, or worst-case scenarios of the impact of measures. As a means to facilitate agreement for trade, the model provides a framework to support communication between exporters and importers about any differences in perceptions of the risk reduction achieved by pest control measures deployed during the commodity production chain. © 2017 Society for Risk Analysis.

  17. Applicability of ion mobility spectrometry for detection of quarantine pests in wood

    NASA Astrophysics Data System (ADS)

    Ewing, K. J.; Sanghera, J.; Myers, S. W.; Ervin, A. M.; Carey, C.; Gleason, G.; Mosser, L.; Levy, L.; Hennessey, M. K.; Bulluck, R.

    2016-05-01

    Visual inspection is the most commonly used method for detecting quarantine pests in agricultural cargo items at ports. For example, solid wood packing material (SWPM) at ports may be a pathway for wood pests and is a frequent item of inspection at ports. The inspection process includes examination of the external surface of the item and often destructive sampling to detect internal pest targets. There are few tools available to inspectors to increase the efficiency of inspection and reduce the labor involved. Ion mobility spectrometry (IMS) has promise as an aid for inspection. Because pests emit volatile organic compounds (VOCs) such as hormone like substances, Ion Mobility Spectrometry (IMS) was investigated for possible utility for detecting pests during inspection. SWPM is a major pest pathway in trade, and fumigation of many kinds of wood, including SWPM, with methyl bromide (MeBr) following a published schedule1 is regularly conducted for phytosanitary reasons prior to shipment to the United States. However, the question remains as to how long the methyl bromide remains in the wood samples after fumigation such that it could act as an interferent to the detection of pest related VOC emissions. This work investigates the capability of ion mobility spectrometry to detect the presence of residual methyl bromide in fumigated maple and poplar wood samples at different times post fumigation up to 118 days after fumigation. Data show that MeBr can be detected in the less dense poplar wood up to 118 days after fumigation while MeBr can be detected in the denser maple wood 55 days after fumigation.

  18. Fruit Crop Pests. MEP 312.

    ERIC Educational Resources Information Center

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  19. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  20. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests.

    PubMed

    Pochon, Xavier; Bott, Nathan J; Smith, Kirsty F; Wood, Susanna A

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1-V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide.

  1. Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age.

    PubMed

    Naidoo, Sanushka; Külheim, Carsten; Zwart, Lizahn; Mangwanda, Ronishree; Oates, Caryn N; Visser, Erik A; Wilken, Febé E; Mamni, Thandekile B; Myburg, Alexander A

    2014-09-01

    Long-lived tree species are subject to attack by various pests and pathogens during their lifetime. This problem is exacerbated by climate change, which may increase the host range for pathogens and extend the period of infestation by pests. Plant defences may involve preformed barriers or induced resistance mechanisms based on recognition of the invader, complex signalling cascades, hormone signalling, activation of transcription factors and production of pathogenesis-related (PR) proteins with direct antimicrobial or anti-insect activity. Trees have evolved some unique defence mechanisms compared with well-studied model plants, which are mostly herbaceous annuals. The genome sequence of Eucalyptus grandis W. Hill ex Maiden has recently become available and provides a resource to extend our understanding of defence in large woody perennials. This review synthesizes existing knowledge of defence mechanisms in model plants and tree species and features mechanisms that may be important for defence in Eucalyptus, such as anatomical variants and the role of chemicals and proteins. Based on the E. grandis genome sequence, we have identified putative PR proteins based on sequence identity to the previously described plant PR proteins. Putative orthologues for PR-1, PR-2, PR-4, PR-5, PR-6, PR-7, PR-8, PR-9, PR-10, PR-12, PR-14, PR-15 and PR-17 have been identified and compared with their orthologues in Populus trichocarpa Torr. & A. Gray ex Hook and Arabidopsis thaliana (L.) Heynh. The survey of PR genes in Eucalyptus provides a first step in identifying defence gene targets that may be employed for protection of the species in future. Genomic resources available for Eucalyptus are discussed and approaches for improving resistance in these hardwood trees, earmarked as a bioenergy source in future, are considered. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Spinosad and the Tomato Borer Tuta absoluta: A Bioinsecticide, an Invasive Pest Threat, and High Insecticide Resistance

    PubMed Central

    Campos, Mateus R.; Rodrigues, Agna Rita S.; Silva, Wellington M.; Silva, Tadeu Barbosa M.; Silva, Vitória Regina F.; Guedes, Raul Narciso C.; Siqueira, Herbert Alvaro A.

    2014-01-01

    The introduction of an agricultural pest species into a new environment is a potential threat to agroecosystems of the invaded area. The phytosanitary concern is even greater if the introduced pest’s phenotype expresses traits that will impair the management of that species. The invasive tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one such species and the characterization of the insecticide resistance prevailing in the area of origin is important to guide management efforts in new areas of introduction. The spinosad is one the main insecticides currently used in Brazil for control of the tomato borer; Brazil is the likely source of the introduction of the tomato borer into Europe. For this reason, spinosad resistance in Brazilian populations of this species was characterized. Spinosad resistance has been reported in Brazilian field populations of this pest species, and one resistant population that was used in this study was subjected to an additional seven generations of selection for spinosad resistance reaching levels over 180,000-fold. Inheritance studies indicated that spinosad resistance is monogenic, incompletely recessive and autosomal with high heritability (h 2 = 0.71). Spinosad resistance was unstable without selection pressure with a negative rate of change in the resistance level ( = −0.51) indicating an associated adaptive cost. Esterases and cytochrome P450-dependent monooxygenases titration decreased with spinosad selection, indicating that these detoxification enzymes are not the underlying resistance mechanism. Furthermore, the cross-resistance spectrum was restricted to the insecticide spinetoram, another spinosyn, suggesting that altered target site may be the mechanism involved. Therefore, the suspension of spinosyn use against the tomato borer would be a useful component in spinosad resistance management for this species. Spinosad use against this species in introduced areas should be carefully monitored to

  3. Shades of yellow: interactive effects of visual and odour cues in a pest beetle

    PubMed Central

    Stevenson, Philip C.; Belmain, Steven R.

    2016-01-01

    Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses. Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species), in an open-loop setup. Results: Some visual stimuli—in particular, one shade of yellow, solid black and high-contrast black-against-white stimuli—elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-on-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus. Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect. PMID:27478707

  4. Glyphosate sub-lethal toxicity to non-target organisms occurring in Jatropha curcas plantations in Brazil.

    PubMed

    de Saraiva, Althiéris Souza; Sarmento, Renato Almeida; Pedro-Neto, Marçal; Teodoro, Adenir Vieira; Erasmo, Eduardo Andrea Lemus; Belchior, Diana Cléssia Vieira; de Azevedo, Emiliano Brandão

    2016-10-01

    Weed management in physic nut plantations has generally been performed by spraying the herbicide glyphosate. However, the effects of glyphosate on non-target organisms present in the crop system are unknown. Here, we evaluated the toxicity of glyphosate (Roundup Transorb(®)) against the pest species Polyphagotarsonemus latus (Acari: Tarsonemidae) and Tetranychus bastosi (Acari: Tetranychidae) which can be exposed by drift. These mites are considered pests of the physic nut; however, they can also feed and reside on weeds associated with the crop, serving as food sources for predatory mites. When subjected to residue (by ingestion of sap of treated plants), and direct contact to glyphosate, P. latus reproduction was affected but T. bastosi was affected only by the residual effect. Although the herbicide caused a reduction in the number of eggs laid by the females of both pest mites, it is suggested that sublethal effects of glyphosate stimulates oviposition of P. latus and T. bastosi: both species displayed higher reproductive rates when exposed to 0.36 kg ha(-1) of the herbicide. We conclude that glyphosate negatively affects the arthropod herbivores studied and we discuss possible implications on their biological control in Jatropha curcas plantations.

  5. Urban Pest Management. Selected Readings.

    ERIC Educational Resources Information Center

    Cowles, Kathleen Letcher, Comp.; And Others

    These readings provide basic background information on urban integrated pest management and the development of Integrated Pest Management (IPM) programs for the control of rodents, cockroaches, and head lice. IPM is a decision-making process for deciding if pest supprssion treatments are needed, when they should be initiated, where they should be…

  6. Integrated Pest Management.

    ERIC Educational Resources Information Center

    Council on Environmental Quality, Washington, DC.

    After a brief discussion of the problems of pesticide use and the status of current pest control practices, a definition of integrated pest management is given along with some examples of its successful application, and a description of some of the reasons why the concept has not been applied more widely. The major techniques which can be used as…

  7. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    PubMed

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-04-01

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC 50  = 123 μg/L) and compared with free biocide (LC 50  = 211 μg/L) and unloaded material (LC 50  > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  8. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  9. Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields

    PubMed Central

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  10. Managing Pests in Schools

    EPA Pesticide Factsheets

    Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information

  11. Unwelcome Guests: Extoic Forest Pests

    Treesearch

    Sun Jiang-Hua

    2002-01-01

    Exotic forest pests cost China and the United States billions of dollars each year. Current regulatory systems worldwide are over-whelmed with the increasing volume of international trade. Trade in nursery stock, wood products, pallets and dunnage have proven the most common means of transport for exotic forest pests. Despite our best efforts, pests such as chestnut...

  12. Impacts of biological control and invasive species on a non-target native Hawaiian insect.

    PubMed

    Johnson, M Tracy; Follett, Peter A; Taylor, Andrew D; Jones, Vincent P

    2005-02-01

    The potential for classical biological control to cause unintended harm to native species was evaluated in the case of the endemic Hawaiian koa bug, Coleotichus blackburniae White (Hemiptera: Scutelleridae), and parasitoids introduced to Hawaii for control of an agricultural pest, the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Parasitism of C. blackburniae eggs, nymphs and adults by biocontrol agents was quantified across a wide range of habitats and compared to other sources of mortality. Egg mortality due to the biocontrol agent Trissolcus basalis Wollaston (Hymenoptera: Scelionidae) was low (maximum 26%) and confined to elevations below 500 m on a single host plant. Predation, mainly by alien spiders and ants, was the greatest source of egg mortality (maximum 87%). Parasitism of adult C. blackburniae by the biocontrol agent Trichopoda pilipes (F.) (Diptera: Tachinidae) was near zero at 21 of 24 sites surveyed. Three sites with high bug density had higher levels of T. pilipes parasitism, reaching maxima of 70% among adult female bugs, 100% among males and 50% among fifth instars. Male-biased parasitism indicated that T. pilipes is adapted to using male aggregation pheromone for finding C. blackburniae hosts. The relative impacts of biocontrol agents and other sources of mortality were compared using life tables. Invasive species, particularly generalist egg predators, had the greatest impacts on C. blackburniae populations. Effects of intentionally introduced parasitoids were relatively minor, although the tachinid T. pilipes showed potential for large impacts at individual sites. In retrospect, non-target attacks by biological control agents on C. blackburniae were predictable, but the environmental range and magnitude of impacts would have been difficult to foresee.

  13. An indirect approach to assess the pests on sorghum by remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, D.; Sao, R.

    In today's world of advanced technology various techniques are being used to study ecological parameter and gathering data for agricultural benefits. The major aspects of remote sensing are timely estimates of agriculture crop yield, prediction of pest etc. The damage caused by the pest to crop is well known. Therefore, in this paper, an attempt has to be made to estimate the number of pests on sorghum by remote sensing technique. The studies were made on crop Sorghum (Meethi Sudan) that is a forage variety and the pest observed is a species of grasshopper. The beds of crop sorghum were specially prepared for pests as well as microwave scattering measurements. In first phase of study, dependence of number of pests on sorghum plant parameters (i.e., crop covered moist soil (SM), plant height (PH), leaf area index (LAI), percentage Biomass (BIO), Total chlorophyll (TC)) have been observed by the regression analyses and it was found that pests were more dependent on sorghum chlorophyll than other plant parameters, while climatic conditions were taken as constant. A linear relationship has been obtained between number of pests and TC with quite significant values of coefficient of determination (r^2=0.86). These crop parameters are easily assessable through microwave remote sensing so they can form the basis for prediction of pest remotely. In second phase of study, several observations were carried out for various growth stages of sorghum using bistatic scatterometer for both like polarizations (i.e., HH- and VV-) and different incidence angles at X-band (9.5 GHz). Linear, and multiple regression analysis were carried out to check dependence of scattering coefficient on these crop parameters and it was noticed that scattering coefficient was more dependent on sorghum TC than other plant parameters at X-band. A negative correlation has been obtained between TC and scattering coefficient with quite good values of r^2 (0.82). VV-pol gives better results than HH-pol and

  14. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster.

    PubMed

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-10-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.

  15. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster

    PubMed Central

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-01-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control. PMID:26495040

  16. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  17. Economic Thresholds in Soybean-Integrated Pest Management: Old Concepts, Current Adoption, and Adequacy.

    PubMed

    Bueno, A F; Paula-Moraes, S V; Gazzoni, D L; Pomari, A F

    2013-10-01

    Increasing global demands for food underline the need for higher crop yields. The relatively low costs of the most commonly used insecticides in combination with increasing soybean market prices led growers and technical advisors to debate the adequacy of recommended economic thresholds (ETs). The adoption of ETs and pest sampling has diminished in Brazil, leading to excessive pesticide use on soybean. The reduced efficacy of natural biological control, faster pest resurgence, and environment contamination are among the side-effects of pesticide abuse. To address these problems and maximize agricultural production, pest control programs must be guided by a proper integrated pest management (IPM) approach, including the ET concept. Therefore, the most appropriate time to initiate insecticide spraying in soybean is indicated by the available ETs which are supported by experiments over the last 40 years in different edapho-climatic conditions and regions with distinct soybean cultivars. Published scientific data indicate that preventive insecticide use is an expensive and harmful use of chemicals that increases the negative impact of pesticides in agroecosystems. However, the established ETs are for a limited number of species (key pests), and they only address the use of chemicals. There is a lack of information regarding secondary pests and other control strategies in addition to insecticides. It is clear then that much progress is still needed to improve ETs for pest management decisions. Nevertheless, using the current ETs provides a basis for reducing the use of chemicals in agriculture without reducing yields and overall production, thereby improving sustainability.

  18. Using habitat suitability models to target invasive plant species surveys

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be

  19. Investigating the influence of geospatial attributes on spider species richness and diversity

    USDA-ARS?s Scientific Manuscript database

    The maintenance of biodiversity is an important aspect of the long-term sustainability of agricultural production. Maintaining biodiversity, especially in regards to predator species, promotes natural pest control and many other ecosystem services. Spiders (Araneae) often prey upon common pest speci...

  20. A Landscape Approach to Invasive Species Management.

    PubMed

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  1. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    PubMed

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  2. A Pest of Importance

    USDA-ARS?s Scientific Manuscript database

    Potato cyst nematodes (PCN), G. rostochiensis and G. pallida, are internationally-recognized quarantine pests and considered the most devastating pests of potatoes worldwide. PCNs continue to spread throughout North America and were recently detected in Idaho (G. pallida) and Quebec and Alberta, Can...

  3. Emamectin, a novel insecticide for controlling field crop pests.

    PubMed

    Ishaaya, Isaac; Kontsedalov, Svetlana; Horowitz, A Rami

    2002-11-01

    Emamectin is a macrocyclic lactone insecticide with low toxicity to non-target organisms and the environment, and is considered an important component in pest-management programmes for controlling field crop pests. It is a powerful compound for controlling the cotton bollworm Helicoverpa armigera (Hübner). A spray concentration of 25 mg AI litre-1 in a cotton field resulted in over 90% suppression of H armigera larvae up to day 28 after treatment, while similar mortality of the Egyptian cotton leafworm Spodoptera littoralis Boisduval, under the same conditions, was maintained for 3 days only. Emamectin is a potent compound for controlling the western flower thrips Frankliniella occidentalis (Pergande) under both laboratory and field conditions and its activity on adults was over 10-fold greater than that of abamectin. Spray concentrations of 10 and 50 mg AI litre-1 in Ageratum houstonianum Mill flowers resulted in total suppression of adults up to day 11 and of larvae up to day 20 after treatment. Under standard laboratory conditions, emamectin exhibits a considerable activity on the whitefly Bemisia tabaci (Gennadius) and the leafminer Liriomyza huidobrensis (Blanchard). Further studies are required to evaluate its potential activity on the latter pests under field conditions.

  4. Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and virbrational detection of movement

    USDA-ARS?s Scientific Manuscript database

    Crawling or running, scraping or shuffling, and wriggling activity of three stored-product pests, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and Stegobium paniceum (L.) (Coleoptera: Anobiidae), and two urban pests, Blattella germanic...

  5. Historical Accumulation of Nonindigenous Forest Pests in the Continental United States

    Treesearch

    J.E. Aukema; D.G. McCullough; B.V. Holle; A.M. Liebhold; S.J. Frankel

    2010-01-01

    Nonindigenous forest insects and pathogens affect a range of ecosystems, industries, and property owners in the United States. Evaluating temporal patterns in the accumulation of these nonindigenous forest pests can inform regulatory and policy decisions. We compiled a comprehensive species list to assess the accumulation rates of nonindigenous forest insects and...

  6. Historical accumulation of nonindigenous forest pests in the Continental United States

    Treesearch

    J.E. Aukema; D.G. McCullough; B. Von Holle; Andrew Liebhold; Kerry Britton; S.J. Frankel

    2010-01-01

    Nonindigenous forest insects and pathogens affect a range of ecosystems, industries, and property owners in the United States. Evaluating temporal patterns in the accumulation of these nonindigenous forest pests can inform regulatory and policy decisions. We compiled a comprehensive species list to assess the accumulation rates of nonindigenous forest insects and...

  7. Forest Pest Control. Sale Publication 4072.

    ERIC Educational Resources Information Center

    Stimmann, M. W., Ed.

    The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)

  8. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    PubMed

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. FRAMES-2.0 Software System: Frames 2.0 Pest Integration (F2PEST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castleton, Karl J.; Meyer, Philip D.

    2009-06-17

    The implementation of the FRAMES 2.0 F2PEST module is described, including requirements, design, and specifications of the software. This module integrates the PEST parameter estimation software within the FRAMES 2.0 environmental modeling framework. A test case is presented.

  10. Field infestation of rambutan fruits by internal-feeding pests in Hawaii.

    PubMed

    McQuate, G T; Follett, P A; Yoshimoto, J M

    2000-06-01

    More than 47,000 mature fruits of nine different varieties of rambutan (Nephelium lappaceum L.) were harvested from orchards in Hawaii to assess natural levels of infestation by tephritid fruit flies and other internal feeding pests. Additionally, harvested, mature fruits of seven different rambutan varieties were artificially infested with eggs or first-instars of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) to assess host suitability. When all varieties were combined over two field seasons of sampling, fruit infestation rates were 0.021% for oriental fruit fly, 0.097% for Cryptophlebia spp. (Lepidoptera: Tortricidae), and 0.85% for pyralids (Lepidoptera). Species of Cryptophlebia included both C. illepida (Butler), the native Hawaiian species, and C. ombrodelta (Lower), an introduced species from Australia. Cryptophlebia spp. had not previously been known to attack rambutan. The pyralid infestation was mainly attributable to Cryptoblabes gnidiella (Milliere), a species also not previously recorded on rambutan in Hawaii. Overall infestation rate for other moths in the families Blastobasidae, Gracillariidae, Tineidae, and Tortricidae was 0.061%. In artificially infested fruits, both species of fruit fly showed moderately high survivorship for all varieties tested. Because rambutan has such low rates of infestation by oriental fruit fly and Cryptophlebia spp., the two primary internal-feeding regulatory pests of rambutan in Hawaii, it may be amenable to the alternative treatment efficacy approach to postharvest quarantine treatment.

  11. Ecological and pest-management implications of sex differences in scarab landing patterns on grape vines.

    PubMed

    González-Chang, Mauricio; Boyer, Stéphane; Lefort, Marie-Caroline; Nboyine, Jerry; Wratten, Steve D

    2017-01-01

    Melolonthinae beetles, comprising different white grub species, are a globally-distributed pest group. Their larvae feed on roots of several crop and forestry species, and adults can cause severe defoliation. In New Zealand, the endemic scarab pest Costelytra zealandica (White) causes severe defoliation on different horticultural crops, including grape vines ( Vitis vinifera ). Understanding flight and landing behaviours of this pest can help inform pest management decisions. Adult beetles were counted and then removed from 96 grape vine plants from 21:30 until 23:00 h, every day from October 26 until December 2, during 2014 and 2015. Also, adults were removed from the grape vine foliage at dusk 5, 10, 15, 20 and 25 min after flight started on 2015. Statistical analyses were performed using generalised linear models with a beta-binomial distribution to analyse proportions and with a negative binomial distribution for beetle abundance. By analysing C. zealandica sex ratios during its entire flight season, it is clear that the proportion of males is higher at the beginning of the season, gradually declining towards its end. When adults were successively removed from the grape vines at 5-min intervals after flight activity begun, the mean proportion of males ranged from 6-28%. The male proportion suggests males were attracted to females that had already landed on grape vines, probably through pheromone release. The seasonal and daily changes in adult C. zealandica sex ratio throughout its flight season are presented for the first time. Although seasonal changes in sex ratio have been reported for other melolonthines, changes during their daily flight activity have not been analysed so far. Sex-ratio changes can have important consequences for the management of this pest species, and possibly for other melolonthines, as it has been previously suggested that C. zealandica females land on plants that produce a silhouette against the sky. Therefore, long-term management

  12. Role of two insect growth regulators in integrated pest management of citrus scales.

    PubMed

    Grafton-Cardwell, E E; Lee, J E; Stewart, J R; Olsen, K D

    2006-06-01

    Portions of two commercial citrus orchards were treated for two consecutive years with buprofezin or three consecutive years with pyriproxyfen in a replicated plot design to determine the long-term impact of these insect growth regulators (IGRs) on the San Joaquin Valley California integrated pest management program. Pyriproxyfen reduced the target pest, California red scale, Aonidiella aurantii Maskell, to nondetectable levels on leaf samples approximately 4 mo after treatment. Pyriproxyfen treatments reduced the California red scale parasitoid Aphytis melinus DeBach to a greater extent than the parasitoid Comperiella bifasciata Howard collected on sticky cards. Treatments of lemons Citrus limon (L.) Burm. f. infested with scale parasitized by A. melinus showed only 33% direct mortality of the parasitoid, suggesting the population reduction observed on sticky cards was due to low host density. Three years of pyriproxyfen treatments did not maintain citricola scale, Coccus pseudomagnoliarum (Kuwana), below the treatment threshold and cottony cushion scale, Icerya purchasi Maskell, was slowly but incompletely controlled. Buprofezin reduced California red scale to very low but detectable levels approximately 5 mo after treatment. Buprofezin treatments resulted in similar levels of reduction of the two parasitoids A. melinus and C. bifasciata collected on sticky cards. Treatments of lemons infested with scale parasitized by A. melinus showed only 7% mortality of the parasitoids, suggesting the population reduction observed on sticky cards was due to low host density. Citricola scale was not present in this orchard, and cottony cushion scale was slowly and incompletely controlled by buprofezin. These field plots demonstrated that IGRs can act as organophosphate insecticide replacements for California red scale control; however, their narrower spectrum of activity and disruption of coccinellid beetles can allow other scale species to attain primary pest status.

  13. Evaluating Detection Limits of Next-Generation Sequencing for the Surveillance and Monitoring of International Marine Pests

    PubMed Central

    Pochon, Xavier; Bott, Nathan J.; Smith, Kirsty F.; Wood, Susanna A.

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1–V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide. PMID:24023913

  14. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  15. Threshold conditions for integrated pest management models with pesticides that have residual effects.

    PubMed

    Tang, Sanyi; Liang, Juhua; Tan, Yuanshun; Cheke, Robert A

    2013-01-01

    Impulsive differential equations (hybrid dynamical systems) can provide a natural description of pulse-like actions such as when a pesticide kills a pest instantly. However, pesticides may have long-term residual effects, with some remaining active against pests for several weeks, months or years. Therefore, a more realistic method for modelling chemical control in such cases is to use continuous or piecewise-continuous periodic functions which affect growth rates. How to evaluate the effects of the duration of the pesticide residual effectiveness on successful pest control is key to the implementation of integrated pest management (IPM) in practice. To address these questions in detail, we have modelled IPM including residual effects of pesticides in terms of fixed pulse-type actions. The stability threshold conditions for pest eradication are given. Moreover, effects of the killing efficiency rate and the decay rate of the pesticide on the pest and on its natural enemies, the duration of residual effectiveness, the number of pesticide applications and the number of natural enemy releases on the threshold conditions are investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications and predator releases. Latin Hypercube Sampling/Partial Rank Correlation uncertainty and sensitivity analysis techniques are employed to investigate the key control parameters which are most significantly related to threshold values. The findings combined with Volterra's principle confirm that when the pesticide has a strong effect on the natural enemies, repeated use of the same pesticide can result in target pest resurgence. The results also indicate that there exists an optimal number of pesticide applications which can suppress the pest most effectively, and this may help in the design of an optimal control strategy.

  16. Industrial and Institutional Pest Control. Sale Publication 4073.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information needed to meet Environmental Protection Agency standards on industrial and institutional pest control, and to help prepare for certification. It gives descriptions and pictures of general insect pests, parasitic pests of man, occasional invaders, wood-destroying pests, stored product pests, vertebrates, and weeds. The…

  17. Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): 'Other Pests' Occasionally Found in Laboratory Animal Facilities.

    PubMed

    Clemmons, Elizabeth A; Taylor, Douglas K

    2016-11-01

    Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles (Tribolium spp.) are common stored-product pests that have previously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized.

  18. Pest measurement and management

    USDA-ARS?s Scientific Manuscript database

    Pest scouting, whether it is done only with ground scouting methods or using remote sensing with some ground-truthing, is an important tool to aid site-specific crop management. Different pests may be monitored at different times and using different methods. Remote sensing has the potential to provi...

  19. Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12

    PubMed Central

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean

    2013-01-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331

  20. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity

    PubMed Central

    Sekulic, Gregory; Rempel, Curtis B.

    2016-01-01

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species. PMID:27527233

  1. General Pest Control - Industrial. Manual 95.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the general pest control category. The text discusses general, parasitic and miscellaneous pests such as ants, ticks, and spiders; fabric, wood-destroying, and grain pests such as beetles, termites, and…

  2. Comparative effect of integrated pest management and farmers' standard pest control practice for managing insect pests on cabbage (Brassica spp.).

    PubMed

    Reddy, Gadi V P

    2011-08-01

    Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza-Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard-practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry.

  3. Climate change impact on the occurrence of selected pests in the regional scale in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Kocmankova, E.; Trnka, M.; Zalud, Z.; Semeradova, D.; Dubrovsky, M.; Juroch, J.; Mozny, M.

    2009-04-01

    Climate conditions exert significant influence over the the population dynamic, life cycle duration, infestation pressure and the overall occurrence of majority of agricultural pests and diseases. Particularly in the case of those pest species whose development is directly linked with the climate conditions the shift of their climatic niche or their infestation capability is to be expected under the changing climate. Te presented study is focused on the most important potato pest i.e Colorado potato beetle (Leptinotarsa decemlineata, Say 1824) and most important pest of grain maize i.e. European corn borer (Ostrinia nubilalis, Hübner 1796). Simulations of potential distribution of pests in the Czech Republic in the conditions of climate change were made with the usage of dynamical model CLIMEX and by the interpolation of output EI from 43 locations there are climate conditions of almost whole area of the Czech Republic considered as favorable for pest' survival. The models validation was based on the comparison of the modeled potential pests' distribution with the field observations in the current climate conditions. Under the expected climate conditions the pests will most likely be able to complete their development earlier and in higher population densities. Both mechanisms might cause a subsequent increase of the severity of the pest infestation. In addition to this the higher temperature and its earlier coming in the beginning of the vegetative season may support the mobility and faster local spread of some species. The estimates of the future climate is based on the assumption of slow increase of green house gases emissions and low climate sensitivity to their rising concentration (LOW B1) as well as the "opposite" scenario assuming rapid growth of emissions and the high sensitivity of the climate system (HIGH A2). Three GCM models that were driven by these emission scenarios included HadCM3, NCAR-PCM and ECHAM4. For Colorado potato beetle the realization of

  4. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    PubMed

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-06

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  6. Chlorophyll derivatives for pest and disease control: Are they safe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  7. Calibration of hydrological model with programme PEST

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Vidmar, Andrej; Kryžanowski, Andrej; Bezak, Nejc; Šraj, Mojca

    2016-04-01

    PEST is tool based on minimization of an objective function related to the root mean square error between the model output and the measurement. We use "singular value decomposition", section of the PEST control file, and Tikhonov regularization method for successfully estimation of model parameters. The PEST sometimes failed if inverse problems were ill-posed, but (SVD) ensures that PEST maintains numerical stability. The choice of the initial guess for the initial parameter values is an important issue in the PEST and need expert knowledge. The flexible nature of the PEST software and its ability to be applied to whole catchments at once give results of calibration performed extremely well across high number of sub catchments. Use of parallel computing version of PEST called BeoPEST was successfully useful to speed up calibration process. BeoPEST employs smart slaves and point-to-point communications to transfer data between the master and slaves computers. The HBV-light model is a simple multi-tank-type model for simulating precipitation-runoff. It is conceptual balance model of catchment hydrology which simulates discharge using rainfall, temperature and estimates of potential evaporation. Version of HBV-light-CLI allows the user to run HBV-light from the command line. Input and results files are in XML form. This allows to easily connecting it with other applications such as pre and post-processing utilities and PEST itself. The procedure was applied on hydrological model of Savinja catchment (1852 km2) and consists of twenty one sub-catchments. Data are temporary processed on hourly basis.

  8. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status.

    PubMed

    Tuda, M; Rönn, J; Buranapanichpan, S; Wasano, N; Arnqvist, G

    2006-10-01

    Despite the fact that many plant-feeding insects are pests, little effort has been made to identify key evolutionary trait transitions that allow taxa to acquire or lose pest status. A large proportion of species in the genus Callosobruchus are economically important pests of stored, dry postharvest beans of the tribe Phaseoleae. However, the evolution of this feeding habit is poorly understood. Here, we present a reconstruction of the phylogeny of the Asian and African Callosobruchus based on three mitochondrial genes, and assess which traits have been associated with the evolutionary origin or loss of ability to reproduce on dry beans. Our phylogenetic analysis showed that species group into the chinensis and the maculatus clades, which are also supported by genital morphology, and an additional paraphyletic group. Ancestral ability to use dry beans has been lost in the chinensis clade but acquired again in C. chinensis. Dry-bean use and host-plant use were both phylogenetically constrained and transitions in the two were significantly correlated. Host shifts from the subtribe Phaseolinae to Cajaninae were more common than the reverse and were more likely in species using young beans. The ability to use dry beans was more likely gained when using Phaseolinae hosts and promoted habitat shifts from tropical to temperate regions. Adaptation to arid climate was also associated with the ability to reproduce on dry beans and on Phaseolinae. Thus, our analysis suggests that physiological adaptations to an arid climate and to Phaseolinae hosts both render beetles predisposed to become pests of cultivated beans.

  9. Neo-sex chromosomes and adaptive potential in tortricid pests

    PubMed Central

    Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František

    2013-01-01

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222

  10. Fire, competition and forest pests: landscape treatment to sustain ecosystem function

    Treesearch

    Geral I. McDonald; A. E. Harvey; J. R. Tonn

    2000-01-01

    Fire, competition for light and water, and native forest pests have interacted for millennia in western forests to produce a countryside dominated by seral species of conifers. These conifer-dominated ecosystems exist in six kinds of biotic communities. We divided one of these communities, the Rocky Mountain Montane Conifer Forest, into 31 subseries based on the...

  11. Integrated nursery pest management

    Treesearch

    R. Kasten Dumroese

    2012-01-01

    What is integrated pest management? Take a look at the definition of each word to better understand the concept. Two of the words (integrated and management) are relatively straightforward. Integrated means to blend pieces or concepts into a unified whole, and management is the wise use of techniques to successfully accomplish a desired outcome. A pest is any biotic (...

  12. Double impact of sterilizing pathogens: added value of increased life expectancy on pest control effectiveness.

    PubMed

    Berec, Luděk; Maxin, Daniel

    2012-06-01

    Sterilizing pathogens are commonly assumed not to affect longevity of infected individuals, and if they do then negatively. Examples abound, however, of species in which the absence of reproduction actually increases life expectancy. This happens because by decreasing the energy outlay on reproduction individuals with lowered reproduction can live longer. Alternatively, fertile individuals are more susceptible to predators or parasitoids if the latter can capitalize on mating signals of the former. Here we develop and analyze an SI epidemiological model to explore whether and to what extent does such a life expectancy prolongation due to sterilizing pathogens affect host dynamics. In particular, we are interested in an added value of increased life expectancy on the possibility of successful pest control, that is, the effect of increased lifespan and hence increased potential of the infected individuals to spread the disease on pest control effectiveness. We show that although the parameter range in which we observe an effect of increased lifespan of the sterilized individuals is not large, the effect itself can be significant. In particular, the increase in pest control effectiveness can be very dramatic when disease transmission efficiency is close to birth rate, mortality rate of susceptibles is relatively high (i.e., the species is relatively short-lived), and sterilization efficiency is relatively high. Our results thus characterize pathogens that are promising candidates for an effective pest control and that might possibly be engineered if not occurring naturally.

  13. A Practical Guide to Management of Common Pests in Schools. Integrated Pest Management.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Public Health, Springfield.

    This 3-part manual is designed to assist school officials understand the principles of Integrated Pest Management and aid them in implementing those principles into a comprehensive pest control program in their facilities. Developed for Illinois, this guide can be applied in part or in total to other areas of the country. Part 1 explains what an…

  14. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    PubMed

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  15. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Christmas Tree Pest Manual

    Treesearch

    Department of Entomology Michigan State University

    1998-01-01

    This manual can help you identify and control damaging Christmas tree pests in the North Central region of the United States. Most of the information also applies to the northeastern states and to the southern portions of the Canadian Provinces that border these states. You do not have to be a pest specialist to use this information; we wrote the manual in everyday...

  17. Effects of seed mixture sowing with transgenic Bt rice and its parental line on the population dynamics of target stemborers and leafrollers, and non-target planthoppers.

    PubMed

    Li, Zhuo; Li, Li-Kun; Liu, Bin; Wang, Long; Parajulee, Megha N; Chen, Fa-Jun

    2018-01-24

    The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impacts on both target and non-target pests. In this study, we examined the potential effects of intra-specific seed mixture sowing with transgenic Bt rice (Bt) and its parental non-transgenic line (Nt) (100% Bt rice [Bt 100 ], 5% Nt+95% Bt [Nt 05 Bt 95 ], 10% Nt+90% Bt [Nt 10 Bt 90 ], 20% Nt+80% Bt [Nt 20 Bt 80 ], 40% Nt+60% Bt [Nt 40 Bt 60 ] and 100% Nt rice [Nt 100 ]) on target and non-target pests in a 2-year field trial in southern China. The occurrence of target pests, Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis, decreased with the increased ratio of Bt rice, and the mixture ratios with more than 90% Bt rice (Bt 100 and Nt 05 Bt 95 ) significantly increased the pest suppression efficiency, with the lowest occurrences of non-target planthoppers, Nilaparvata lugens and Sogatella furcifera in Nt 100 and Nt 05 Bt 95 . Furthermore, there were no significant differences in 1000-grain dry weight and grain dry weight per 100 plants between Bt 100 and Nt 05 Bt 95 . Seed mixture sowing of Bt rice with ≤10% (especially 5%) of its parent line was sufficient to overcome potential compliance issues that exist with the use of block or structured refuge to provide most effective control of both target and non-target pests without compromising the grain yield. It is also expected that the strategy of seed mixture sowing with transgenic Bt rice and the non-transgenic parental line would provide rice yield stability while decreasing the insecticide use frequency in rice production. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  18. Complete Mitochondrial Genome Sequence of Aethina tumida (Coleoptera: Nitidulidae), a Beekeeping Pest.

    PubMed

    Duquesne, Véronique; Delcont, Aurélie; Huleux, Anthéa; Beven, Véronique; Touzain, Fabrice; Ribière-Chabert, Magali

    2017-11-02

    We report here the full mitochondrial genome sequence of Aethina tumida , a Nitidulidae species beetle, that is a pest of bee hives. The obtained sequence is 16,576 bp in length and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNAs. Copyright © 2017 Duquesne et al.

  19. Investigation on penetration of three conventional foodstuffs packaging polymers with two different thicknesses by larvae and adults of major species of stored-product pest insects.

    PubMed

    Allahvaisi, Somayeh; Purmirza, Ali Asghar; Safaralizade, Mohamad Hasan

    2009-01-01

    Despite modern methods of packaging, stored agricultural products are still under attack by stored-insect pests. Therefore, determination of the best polymer and appropriate thickness inhibiting the penetration of the insects must be considered. In this study, we investigated the ability of penetration and the rates of contamination by nine important stored product pest insects for three conventional flexible polymers (polyethylene, cellophane and polypropylene) at two thicknesses (16.5 and 29 microm), which are used as pouches for packing of agricultural products. We used adults of T. castaneum (Coleoptera), S. granarius (Coleoptera), R. dominica (Coleoptera), C. maculates (Coleoptera), O. surinamensis (Coleoptera), and larvae of P. interpunctella (Lepidoptera), E. kuehniella (Lepidoptera), S. cerealella (Lepidoptera) and T. granarium (Coleoptera). Results showed that for most of the species penetration occurred between 4 days and 2 weeks, but there were significant differences (p < or = 0.05) in the penetration of three polymers (cellophane, polyethylene and polypropylene) by the insects. Among the polymers, polyethylene with a thickness of 16.5 microm showed the highest degree of penetration and was the most unsuitable polymer for packaging of foodstuffs. Application of this polymer led to a complete infestation of the product and a lot of punctures were created by the insects. In contrast, no penetration was observed in polypropylene polymer with a thickness of 29 microm. Furthermore, adults and larvae of all species showed a much lower penetration when there was no food present in the pouches and this was the case for all polymers tested.

  20. Towards integrated pest management in red clover seed production.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  1. APHIS (PPQ) exotic pest detection

    Treesearch

    David R. Lance

    2003-01-01

    The legally mandated responsibilities of APHIS Plant Protection and Quarantine (PPQ) include: (1) Protect American agriculture from foreign plant pest introduction and establishment, (2) facilitate export of American agricultural products, and (3) control or eradicate pests as authorized by legislation and regulation.

  2. Trading biodiversity for pest problems

    USDA-ARS?s Scientific Manuscript database

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  3. Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata

    PubMed Central

    Gomulski, Ludvik M; Dimopoulos, George; Xi, Zhiyong; Soares, Marcelo B; Bonaldo, Maria F; Malacrida, Anna R; Gasperi, Giuliano

    2008-01-01

    Background The medfly, Ceratitis capitata, is a highly invasive agricultural pest that has become a model insect for the development of biological control programs. Despite research into the behavior and classical and population genetics of this organism, the quantity of sequence data available is limited. We have utilized an expressed sequence tag (EST) approach to obtain detailed information on transcriptome signatures that relate to a variety of physiological systems in the medfly; this information emphasizes on reproduction, sex determination, and chemosensory perception, since the study was based on normalized cDNA libraries from embryos and adult heads. Results A total of 21,253 high-quality ESTs were obtained from the embryo and head libraries. Clustering analyses performed separately for each library resulted in 5201 embryo and 6684 head transcripts. Considering an estimated 19% overlap in the transcriptomes of the two libraries, they represent about 9614 unique transcripts involved in a wide range of biological processes and molecular functions. Of particular interest are the sequences that share homology with Drosophila genes involved in sex determination, olfaction, and reproductive behavior. The medfly transformer2 (tra2) homolog was identified among the embryonic sequences, and its genomic organization and expression were characterized. Conclusion The sequences obtained in this study represent the first major dataset of expressed genes in a tephritid species of agricultural importance. This resource provides essential information to support the investigation of numerous questions regarding the biology of the medfly and other related species and also constitutes an invaluable tool for the annotation of complete genome sequences. Our study has revealed intriguing findings regarding the transcript regulation of tra2 and other sex determination genes, as well as insights into the comparative genomics of genes implicated in chemosensory reception and

  4. Ecological and pest-management implications of sex differences in scarab landing patterns on grape vines

    PubMed Central

    Boyer, Stéphane; Lefort, Marie-Caroline; Nboyine, Jerry; Wratten, Steve D.

    2017-01-01

    Background Melolonthinae beetles, comprising different white grub species, are a globally-distributed pest group. Their larvae feed on roots of several crop and forestry species, and adults can cause severe defoliation. In New Zealand, the endemic scarab pest Costelytra zealandica (White) causes severe defoliation on different horticultural crops, including grape vines (Vitis vinifera). Understanding flight and landing behaviours of this pest can help inform pest management decisions. Methods Adult beetles were counted and then removed from 96 grape vine plants from 21:30 until 23:00 h, every day from October 26 until December 2, during 2014 and 2015. Also, adults were removed from the grape vine foliage at dusk 5, 10, 15, 20 and 25 min after flight started on 2015. Statistical analyses were performed using generalised linear models with a beta-binomial distribution to analyse proportions and with a negative binomial distribution for beetle abundance. Results By analysing C. zealandica sex ratios during its entire flight season, it is clear that the proportion of males is higher at the beginning of the season, gradually declining towards its end. When adults were successively removed from the grape vines at 5-min intervals after flight activity begun, the mean proportion of males ranged from 6–28%. The male proportion suggests males were attracted to females that had already landed on grape vines, probably through pheromone release. Discussion The seasonal and daily changes in adult C. zealandica sex ratio throughout its flight season are presented for the first time. Although seasonal changes in sex ratio have been reported for other melolonthines, changes during their daily flight activity have not been analysed so far. Sex-ratio changes can have important consequences for the management of this pest species, and possibly for other melolonthines, as it has been previously suggested that C. zealandica females land on plants that produce a silhouette against the

  5. Domestic cats and dogs create a landscape of fear for pest rodents around rural homesteads.

    PubMed

    Mahlaba, Themb'alilahlwa A M; Monadjem, Ara; McCleery, Robert; Belmain, Steven R

    2017-01-01

    Using domestic predators such as cats to control rodent pest problems around farms and homesteads is common across the world. However, practical scientific evidence on the impact of such biological control in agricultural settings is often lacking. We tested whether the presence of domestic cats and/or dogs in rural homesteads would affect the foraging behaviour of pest rodents. We estimated giving up densities (GUDs) from established feeding patches and estimated relative rodent activity using tracking tiles at 40 homesteads across four agricultural communities. We found that the presence of cats and dogs at the same homestead significantly reduced activity and increased GUDs (i.e. increased perception of foraging cost) of pest rodent species. However, if only cats or dogs alone were present at the homestead there was no observed difference in rodent foraging activity in comparison to homesteads with no cats or dogs. Our results suggest that pest rodent activity can be discouraged through the presence of domestic predators. When different types of predator are present together they likely create a heightened landscape of fear for foraging rodents.

  6. Community-based participatory research helps farmers and scientists to manage invasive pests in the Ecuadorian Andes.

    PubMed

    Dangles, O; Carpio, F C; Villares, M; Yumisaca, F; Liger, B; Rebaudo, F; Silvain, J F

    2010-06-01

    Participatory research has not been a conspicuous methodology in developing nations for studying invasive pests, an increasing threat to the sustainable development in the tropics. Our study presents a community-based monitoring system that focuses on three invasive potato tuber moth species (PTM). The monitoring was developed and implemented by young farmers in a remote mountainous area of Ecuador. Local participants collected data from the PTM invasion front, which revealed clear connection between the abundance of one of the species (Tecia solanivora) and the remoteness to the main market place. This suggests that mechanisms structuring invasive populations at the invasion front are different from those occurring in areas invaded for longer period. Participatory monitoring with local people may serve as a cost-effective early warning system to detect and control incipient invasive pest species in countries where the daily management of biological resources is largely in the hands of poor rural people.

  7. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides.

    PubMed

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-04-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.

  8. Spatial Distribution and Site-Specific Spraying of Main Sucking Pests of Elm Trees.

    PubMed

    Karimzadeh, R; Iranipour, S

    2017-06-01

    Elm trees are important landscape trees and sucking insects weaken the elm trees and produce large amounts of honeydew. The main objectives of this study were to identify main honeydew-producing pests of elm trees and do site-specific spraying against these pests. To map the spatial distribution of the sucking pests in the large scale, the study area was divided into 40 × 40 m grids and one tree was chosen randomly from each grid (a total of 55 trees). These trees were sampled twice a year in 2011 and 2012. Each sample was a 30-cm branch terminal. Eight samples were taken from each tree in four cardinal directions and two canopy levels. The number of sucking insects and leaves of each sample were counted and recorded. Spatial analysis of the data was carried out using geostatistics. Kriging was used for producing prediction maps. Insecticide application was restricted to the regions with populations higher than threshold. To identify within-tree distribution of the honeydew-producing pests, six and four elm trees were chosen in 2011 and 2012 respectively, and sampled weekly. These trees were sampled as described previously. European elm scale (EES), Gossyparia spuria (Modeer) and two species of aphids were the dominant honeydew-producing pests. The results revealed that the effects of direction, canopy level and their interactions on insect populations were not statistically significant (P < 0.05). Site-specific spraying decreased the amount of insecticides used by ca. 20%, while satisfactory control of the sucking pests and honeydew excretion was obtained. Considering the environmental and economic benefits of site-specific spraying, it is worth doing more complementary works in this area.

  9. 40 CFR 152.5 - Pests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND CLASSIFICATION PROCEDURES General Provisions § 152.5 Pests. An organism is declared to be a pest... or in processed food or processed animal feed, beverages, drugs (as defined in FFDCA sec. 201(g)(1)) and cosmetics (as defined in FFDCA sec. 201(i)). ...

  10. 40 CFR 152.5 - Pests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND CLASSIFICATION PROCEDURES General Provisions § 152.5 Pests. An organism is declared to be a pest... or in processed food or processed animal feed, beverages, drugs (as defined in FFDCA sec. 201(g)(1)) and cosmetics (as defined in FFDCA sec. 201(i)). ...

  11. Nun Moth: Potential New Pest (Pest Alert)

    Treesearch

    Melody Keena; Kathleen Shields

    1998-01-01

    The nun moth, Lymantria monacha (L.)(Lymantriidae), is a Eurasian pest of conifers that could be accidentally introduced into North America. Its establishment in this country would be disastrous because it feeds on a variety of vegetation and can migrate and colonize a variety of sites.

  12. Amplification and quantification of cold-associated microRNAs in the Colorado potato beetle (Leptinotarsa decemlineata) agricultural pest.

    PubMed

    Morin, M D; Frigault, J J; Lyons, P J; Crapoulet, N; Boquel, S; Storey, K B; Morin, P Jr

    2017-10-01

    The Colorado potato beetle [Leptinotarsa decemlineata (Say)] is an important insect pest that can inflict considerable damage to potato plants. This insect can survive extended periods of cold exposure, and yet the molecular switches underlying this phenomenon have not been fully elucidated. A better characterization of this process would highlight novel vulnerabilities associated with L. decemlineata that could serve as targets for the management of this devastating pest. Using high-throughput sequencing, the current work reveals a cold-associated signature group of microRNAs (miRNAs) in control (15 °C) and -5 °C-exposed L. decemlineata. The results show 42 differentially expressed miRNAs following cold exposure including miR-9a-3p, miR-210-3p, miR-276-5p and miR-277-3p. Functional analysis of predicted targets associated with these cold-responsive miRNAs notably linked these changes with vital metabolic and cellular processes. Overall, this study highlights the miRNAs probably responsible for facilitating cold adaptation in L. decemlineata and implicates miRNAs as a key molecular target to consider in the development of novel pest management strategies against these insects. © 2017 The Royal Entomological Society.

  13. Urban Pest Management of Ants in California

    USDA-ARS?s Scientific Manuscript database

    Keeping pace with the dynamic and evolving landscape of invasive ants in California presents a formidable challenge to the pest management industry. Pest management professionals (PMPs) are on the frontlines when it comes to battling these exotic ant pests, and are often the first ones to intercept ...

  14. The ABCs of Non-Toxic Pest Control.

    ERIC Educational Resources Information Center

    Cooper, Susan

    1990-01-01

    Although chemical-intensive pest control methods have proven reasonably effective, a growing awareness of health and environmental risks associated with pesticides has sharpened public interest in safer alternatives. An integrated pest management approach reduces risks from pests while minimizing human exposure and reducing the toxicity of applied…

  15. [A New Pest of Amomum villosum in Xishuangbanna].

    PubMed

    Peng, Jian-min; Wang, Yan-fang; Zhang, Li-xia; Li, Rong-ying; Ma, Xiao-jun

    2015-11-01

    To report a new pest of Amomum villosum and its distribution, occurrence regularity and damage situation, in order to provide reference for its control. Reared the pest larvae, observed the morphological characters, and made a preliminary investigation on its distribution, occurrence regularity and damage situation. Through macroscopic examination, the pest was identified as Anisodera rugulosa, which distributed in the main producing areas of Amomum villosum in Xishuangbanna, the pest larvae ate the inside of Amomum villosum fruit, which made the fruit formed holes, more seriously, it made the whole fruit rot black. The pest causes the fruit yield reduction of Amomum villosum. Pest control work needs to be carry out as soon as possible.

  16. Companion Plants for Aphid Pest Management

    PubMed Central

    Ben-Issa, Refka; Gomez, Laurent; Gautier, Hélène

    2017-01-01

    A potential strategy for controlling pests is through the use of “companion plants” within a crop system. This strategy has been used in several trials to fight against a major crop insect pest: the aphid. We reviewed the literature to highlight the major mechanisms by which a companion plant may act. Trials carried out under laboratory or field conditions revealed that companion plants operate through several mechanisms. A companion plant may be associated with a target crop for various reasons. Firstly, it can attract aphids and draw them away from their host plants. Secondly, it can alter the recognition of the host plant. This effect is mostly attributed to companion plant volatiles since they disturb the aphid host plant location, and additionally they may react chemically and physiologically with the host plant, making it an unsuitable host for aphids. Thirdly, it can attract natural enemies by providing shelter and food resources. In this review, the feasibility of using companion plants is discussed. We conclude that many factors need to be taken into account for a successful companion plant strategy. For the best long-term results, companion plant strategies have to be combined with other alternative approaches against aphids. PMID:29053585

  17. 7 CFR 319.56-5 - Pest-free areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Pest-free areas. 319.56-5 Section 319.56-5 Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-5 Pest-free areas. As... provided that the fruits or vegetables originate from an area that is free of a specific pest or pests. In...

  18. Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets

    NASA Astrophysics Data System (ADS)

    Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.

    2018-05-01

    A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+/D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 ±0.7 ) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 ±0.7 ) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

  19. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species.

    PubMed

    Papanicolaou, Alexie; Schetelig, Marc F; Arensburger, Peter; Atkinson, Peter W; Benoit, Joshua B; Bourtzis, Kostas; Castañera, Pedro; Cavanaugh, John P; Chao, Hsu; Childers, Christopher; Curril, Ingrid; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Dugan, Shannon; Friedrich, Markus; Gasperi, Giuliano; Geib, Scott; Georgakilas, Georgios; Gibbs, Richard A; Giers, Sarah D; Gomulski, Ludvik M; González-Guzmán, Miguel; Guillem-Amat, Ana; Han, Yi; Hatzigeorgiou, Artemis G; Hernández-Crespo, Pedro; Hughes, Daniel S T; Jones, Jeffery W; Karagkouni, Dimitra; Koskinioti, Panagiota; Lee, Sandra L; Malacrida, Anna R; Manni, Mosè; Mathiopoulos, Kostas; Meccariello, Angela; Munoz-Torres, Monica; Murali, Shwetha C; Murphy, Terence D; Muzny, Donna M; Oberhofer, Georg; Ortego, Félix; Paraskevopoulou, Maria D; Poelchau, Monica; Qu, Jiaxin; Reczko, Martin; Robertson, Hugh M; Rosendale, Andrew J; Rosselot, Andrew E; Saccone, Giuseppe; Salvemini, Marco; Savini, Grazia; Schreiner, Patrick; Scolari, Francesca; Siciliano, Paolo; Sim, Sheina B; Tsiamis, George; Ureña, Enric; Vlachos, Ioannis S; Werren, John H; Wimmer, Ernst A; Worley, Kim C; Zacharopoulou, Antigone; Richards, Stephen; Handler, Alfred M

    2016-09-22

    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.

  20. Detection probability of forest pests in current inspection protocols - a case study of the bronze birch borer

    Treesearch

    Bjorn Okland; Robert A. Haack; Gunnar. Wilhelmsen

    2012-01-01

    Increasing inter-continental trade of wood chips for biofuel represents a significant risk of introducing invasive pest species that can cause biome-scale impacts on forest ecosystems. Some potentially invasive species have the capacity to cause high tree mortality on the Eurasian continent and could cause significant impacts on biodiversity and ecosystem functions....

  1. Population dynamics of stored maize insect pests in warehouses in two districts of Ghana

    USDA-ARS?s Scientific Manuscript database

    Understanding what insect species are present and their temporal and spatial patterns of distribution is important for developing a successful integrated pest management strategy for food storage in warehouses. Maize in many countries in Africa is stored in bags in warehouses, but little monitoring ...

  2. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    PubMed

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    PubMed Central

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  4. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines.

    PubMed

    Navasero, Mario V; Candano, Randolph N; Hautea, Desiree M; Hautea, Randy A; Shotkoski, Frank A; Shelton, Anthony M

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO's, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides.

  5. Adopting Integrated Pest Management in Schools.

    ERIC Educational Resources Information Center

    Currie, William E.

    1991-01-01

    The development of an effective Integrated Pest Management program is discussed. Provided are the common goals and procedures involved in adopting an Integrated Pest Management program for schools. (CW)

  6. Cryptic Plutella species show deep divergence despite the capacity to hybridize.

    PubMed

    Perry, Kym D; Baker, Gregory J; Powis, Kevin J; Kent, Joanne K; Ward, Christopher M; Baxter, Simon W

    2018-05-29

    Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world's most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1

  7. Microinjection-based RNA interference knockdown of ecdysteroid biosynthetic genes in a non-model hemipteran pest, Lygus hesperus (western tarnished plant bug)

    USDA-ARS?s Scientific Manuscript database

    RNAi-mediated knockdown of target transcripts offers great potential, both in terms of insect functional genomics and the development of novel insect pest management strategies. Frequently, dsRNAs targeting transcripts of interest are introduced orally to the target organism via feeding. This delive...

  8. Ornamental, Turf and Nursery Pests. MEP 308.

    ERIC Educational Resources Information Center

    Morgan, Omar D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common turf and plant pests that can be found in the urban environment. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests such as…

  9. Field and Forage Crop Pests. MEP 310.

    ERIC Educational Resources Information Center

    Morgan, Omar, D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…

  10. Integrated Management of Structural Pests in Schools.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  11. Arthropod Pests and Predators Associated With Bittersweet Nightshade, a Noncrop Host of the Potato Psyllid (Hemiptera: Triozidae).

    PubMed

    Castillo Carrillo, C I; Fu, Z; Jensen, A S; Snyder, W E

    2016-08-01

    Bittersweet nightshade (Solanum dulcamara L.) is a key noncrop host of the potato psyllid (Bactericera cockerelli Šulc), proposed to be a source of the psyllids that colonize potato (Solanum tuberosum L.) fields in the northwestern United States. Here, we describe the broader community of arthropod potato pests, and also predatory arthropods, found in bittersweet nightshade patches. Over 2 yr, we sampled arthropods in patches of this weed spanning the potato-growing region of eastern Washington State. The potato psyllid was the most abundant potato pest that we found, with reproduction of these herbivores recorded throughout much of the growing season where this was measured. Aphid, beetle, and thrips pests of potato also were collected on bittersweet nightshade. In addition to these herbivores, we found a diverse community of >40 predatory arthropod taxa. Spiders, primarily in the Families Dictynidae and Philodromidae, made up 70% of all generalist predator individuals collected. Other generalist predators included multiple species of predatory mites, bugs, and beetles. The coccinellid beetle Stethorus punctillum (Weise) was observed eating psyllid eggs, while the parasitoid wasp Tamarixia triozae (Burks) was observed parasitizing potato psyllid nymphs. Overall, our survey verified the role of bittersweet nightshade as a potato psyllid host, while suggesting that other potato pests also use these plants. At the same time, we found that bittersweet nightshade patches were associated with species-rich communities of natural enemies. Additional work is needed to directly demonstrate movement of pests, and perhaps also predators, from bittersweet nightshade to potato fields. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Invasive species research in the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Carruthers, Raymond I

    2003-01-01

    Invasive pests cause huge losses both to agricultural production systems and to the natural environment through displacing native species and decreasing biodiversity. It is now estimated that many thousand exotic insect, weed and pathogen species have been established in the USA and that these invasive species are responsible for a large portion of the $130 billion losses estimated to be caused by pests each year. The Agricultural Research Service (ARS) has responded with extensive research and action programs aimed at understanding these problems and developing new management approaches for their control. This paper provides an overview of some of the ARS research that has been conducted on invasive species over the past few years and addresses both different categories of research and some specific pest systems of high interest to the US Department of Agriculture.

  13. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    PubMed

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  14. Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs

    PubMed Central

    Dong, Yong-Cheng; Wang, Zhi-Jian; Chen, Zhen-Zhong; Clarke, Anthony R.; Niu, Chang-Ying

    2016-01-01

    RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes must first be identified and then targeted with interference technology. With this goal, eight spermatogenesis related candidate genes were cloned and tested for potential activity in Bactrocera dorsalis. The knockdown of candidate genes by oral delivery of dsRNAs did not influence the mating of male flies, but significantly affected the daily average number of eggs laid by females, and reduced egg hatching rate by 16–60%. RNAi negatively affected spermatozoa quantitatively and qualitatively. Following the mating of lola-/topi-/rac-/rho-/upd-/magu-silenced males, we recorded a significant decrease in number and length of spermatozoa in female spermatheca compared to gfp-silenced control group. In a greenhouse trial, the number of damaged oranges and B. dorsalis larvae were significantly reduced in a dsrho-treated group compared with the dsgfp group. This study provides strong evidence for the use RNAi in pest management, especially for the improvement of SIT against B. dorsalis and other species. PMID:27767174

  15. cloudPEST - A python module for cloud-computing deployment of PEST, a program for parameter estimation

    USGS Publications Warehouse

    Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.

    2011-01-01

    This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).

  16. High effectiveness of tailored flower strips in reducing pests and crop plant damage

    PubMed Central

    Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H.; Jacot, Katja

    2015-01-01

    Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle (CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity (8–75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes. PMID:26311668

  17. High effectiveness of tailored flower strips in reducing pests and crop plant damage.

    PubMed

    Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H; Jacot, Katja

    2015-09-07

    Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle(CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity(8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.

  18. Impact of Kairomones on Moth Pest Management: Pear Ester and the Codling Moth

    USDA-ARS?s Scientific Manuscript database

    Codling moth (CM) is the major pest of apples, pears, and walnuts worldwide. Our focus is to develop novel, species-specific monitoring and control systems based on host-plant odors, kairomones. In 1998 ‘pear ester’ (PE), ethyl (2E, 4Z)-2,4-decadienoate, was identified as a powerful kairomonal attra...

  19. Forest pest management in a changing world

    Treesearch

    Andrew M. Liebhold

    2012-01-01

    The scope, context and science guiding forest pest management have evolved and are likely to continue changing into the future. Here, I present six areas of advice to guide practitioners in the implementation of forest pest management. First, human dimensions will continue to play a key role in most pest problems and should always be a primary consideration in...

  20. Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds.

    PubMed

    Rial, Carlos; Novaes, Paula; Varela, Rosa M; Molinillo, José M G; Macias, Francisco A

    2014-07-16

    Cardoon (Cynara cardunculus L.) is a native plant to the Iberian Peninsula and the European Atlantic coast and invasive in American environments. Different solvents were used to perform cardoon extracts that were tested in phytotoxic bioassays. The ethyl acetate extract had the highest inhibitory activity so this was tested on the germination and growth of standard target species (lettuce, watercress, tomato, and onion) and weeds (barnyardgrass and brachiaria). The ethyl acetate extract was very active on root growth in both standard target species and weeds and it was therefore fractionated by chromatography. The spectroscopic data showed that the major compounds were sesquiterpene lactones. Aguerin B, grosheimin, and cynaropicrin were very active on etiolated wheat coleoptile, standard target species, and weed growth. The presence of these compounds explains the bioactivity of the ethyl acetate extract. The strong phytotoxicity of these compounds on important weeds shows the potential of these compounds as natural herbicide models.

  1. A new avocado pest in Central America (Lepidoptera: Tortricidae) with a key to the Lepidoptera larvae threatening avocados in California

    USDA-ARS?s Scientific Manuscript database

    Cryptaspasma perseana Gilligan & Brown, new species, is described and illustrated from Mexico and Guatemala. The species is a potential pest of fruit of cultivated avocado, Persea americana (Lauraceae). Images of adults, male secondary structures, male and female genitalia, eggs, larvae, and pupae a...

  2. The Lesser of Two Weevils: Molecular-Genetics of Pest Palm Weevil Populations Confirm Rhynchophorus vulneratus (Panzer 1798) as a Valid Species Distinct from R. ferrugineus (Olivier 1790), and Reveal the Global Extent of Both

    PubMed Central

    Rugman-Jones, Paul F.; Hoddle, Christina D.; Hoddle, Mark S.; Stouthamer, Richard

    2013-01-01

    The red palm weevil (RPW) is a major pest of palms. It is native to southeast Asia and Melanesia, but in recent decades has vastly expanded its range as the result of multiple accidental anthropogenic introductions into the Middle East, Mediterranean Basin, Caribbean, and U.S.A. Currently regarded as a single species, Rhynchophorus ferrugineus (Olivier), RPW displays remarkable color variation across its range, and consequently has a taxonomic history littered with new species descriptions and synonymization. We compared DNA sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene from RPW populations throughout the native and invaded ranges, to investigate the specific status and invasion history of this serious economic pest, and to identify possible common routes of entry. Analyses of COI haplotype data provide conclusive support, corroborated by sequences of additional nuclear gene regions, for the existence of at least two predominantly allopatric species. The true R. ferrugineus is native only to the northern and western parts of continental southeast Asia, Sri Lanka and the Philippines, and is responsible for almost all invasive populations worldwide. In contrast, the second species, which is currently synonymized under R. ferrugineus and should be resurrected under the name R. vulneratus (Panzer), has a more southern distribution across Indonesia, and is responsible for only one invasive population; that in California, U.S.A. The distribution of COI haplotypes is used to discuss the possible existence of further cryptic species, sources and routes of entry of different invasive populations, and the implications of our findings for current control methods. PMID:24143263

  3. Occurrence, diversity and pattern of damage of Oplostomus species (Coleoptera: Scarabaeidae), honey bee pests in Kenya

    USDA-ARS?s Scientific Manuscript database

    Several arthropod pests including the hive beetles Aethina tumida and Oplostomus haroldi and the ectoparasite Varroa destructor have recently been identified as associated with honey bee colonies in Kenya. Here, we report the first documentation of O. fuligineus in Kenya, a related scarab of O. haro...

  4. Holistic pest management [Chapter 15

    Treesearch

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese

    2009-01-01

    As any experienced grower knows only too well, nursery management is a continuous process of solving problems. Murphy's Law of "anything that can go wrong, will go wrong" sounds as if it were meant for native plant production. One recurring problem is pests. Nursery managers have traditionally talked about "controlling" a pest. This approach...

  5. Novel and Viable Acetylcholinesterase Target Site for Developing Effective and Environmentally Safe Insecticides

    PubMed Central

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-01-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market. PMID:22280344

  6. Model selection for integrated pest management with stochasticity.

    PubMed

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2018-04-07

    In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Improving detection probabilities for pests in stored grain.

    PubMed

    Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant

    2010-12-01

    The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.

  8. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?

    PubMed

    Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E

    2015-11-04

    Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.

  9. Is Ground Cover Vegetation an Effective Biological Control Enhancement Strategy against Olive Pests?

    PubMed Central

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention. PMID:25646778

  10. The fruit and vegetable import pathway for potential invasive pest arrivals.

    PubMed

    Lichtenberg, Erik; Olson, Lars J

    2018-01-01

    The expansion of international trade in commodities increases the risk of alien species invasions. Invaders are difficult to detect on introduction, so prevention remains the preferred strategy for managing the threat of invasions. Propagule pressure has been shown to be a good predictor of invasion risk. Most studies to date, however, link potential invasive species arrivals with indirect measures of propagule pressure such as aggregate trade volumes. This paper estimates propagule pressure using data that measure actual arrivals. Specifically, it uses inspection data that covers almost all U.S. fruit and vegetable imports from 2005-2014 to estimate a logit model of the probability of potential invasive species arrival and expected propagule frequencies for 2,240 commodity/country of origin combinations. Clear patterns in the geographic origin and commodity pathways for potential pests are identified. The average probability of arrival is low, approximately 0.03, but is two to ten times higher for some commodities, most notably herbs. We identify commodities with a high number of expected arrivals due to either a large volume of trade, high interception rates, or a combination of both. Seven of the top ten countries of origin for propagule frequency are from the Western Hemisphere and further trade liberalization within the Western Hemisphere is likely to heighten challenges to enforcement of US phytosanitary standards. Patterns in the data can help identify the commodities and countries of origin in greatest need of technical assistance and guide targeting of surveillance for the pathways of greatest phytosanitary concern.

  11. The fruit and vegetable import pathway for potential invasive pest arrivals

    PubMed Central

    2018-01-01

    The expansion of international trade in commodities increases the risk of alien species invasions. Invaders are difficult to detect on introduction, so prevention remains the preferred strategy for managing the threat of invasions. Propagule pressure has been shown to be a good predictor of invasion risk. Most studies to date, however, link potential invasive species arrivals with indirect measures of propagule pressure such as aggregate trade volumes. This paper estimates propagule pressure using data that measure actual arrivals. Specifically, it uses inspection data that covers almost all U.S. fruit and vegetable imports from 2005–2014 to estimate a logit model of the probability of potential invasive species arrival and expected propagule frequencies for 2,240 commodity/country of origin combinations. Clear patterns in the geographic origin and commodity pathways for potential pests are identified. The average probability of arrival is low, approximately 0.03, but is two to ten times higher for some commodities, most notably herbs. We identify commodities with a high number of expected arrivals due to either a large volume of trade, high interception rates, or a combination of both. Seven of the top ten countries of origin for propagule frequency are from the Western Hemisphere and further trade liberalization within the Western Hemisphere is likely to heighten challenges to enforcement of US phytosanitary standards. Patterns in the data can help identify the commodities and countries of origin in greatest need of technical assistance and guide targeting of surveillance for the pathways of greatest phytosanitary concern. PMID:29451910

  12. Coupled information diffusion--pest dynamics models predict delayed benefits of farmer cooperation in pest management programs.

    PubMed

    Rebaudo, François; Dangles, Olivier

    2011-10-01

    Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.

  13. Identifying and assessing critical uncertainty thresholds in a forest pest risk model

    Treesearch

    Frank H. Koch; Denys Yemshanov

    2015-01-01

    Pest risk maps can provide helpful decision support for invasive alien species management, but often fail to address adequately the uncertainty associated with their predicted risk values. Th is chapter explores how increased uncertainty in a risk model’s numeric assumptions (i.e. its principal parameters) might aff ect the resulting risk map. We used a spatial...

  14. Can Prunus serotina be genetically engineered for reproductive sterility and insect pest resistance?

    Treesearch

    Ying Wang; Paula M. Pijut

    2014-01-01

    Black cherry (Prunus serotina) is a valuable hardwood timber species, and its value highly depends on the wood quality which is often threatened by insect pests. Transgenic black cherry plants that are more resistant to cambial-mining insects may reduce the occurrence of gummosis and have great economic benefits to landowners and the forest products...

  15. Stock assessment of fishery target species in Lake Koka, Ethiopia.

    PubMed

    Tesfaye, Gashaw; Wolff, Matthias

    2015-09-01

    Effective management is essential for small-scale fisheries to continue providing food and livelihoods for households, particularly in developing countries where other options are often limited. Studies on the population dynamics and stock assessment on fishery target species are thus imperative to sustain their fisheries and the benefits for the society. In Lake Koka (Ethiopia), very little is known about the vital population parameters and exploitation status of the fishery target species: tilapia Oreochromis niloticus, common carp Cyprinus carpio and catfish Clarias gariepinus. Our study, therefore, aimed at determining the vital population parameters and assessing the status of these target species in Lake Koka using length frequency data collected quarterly from commercial catches from 2007-2012. A total of 20,097 fish specimens (distributed as 7,933 tilapia, 6,025 catfish and 6,139 common carp) were measured for the analysis. Von Bertalarffy growth parameters and their confidence intervals were determined from modal progression analysis using ELEFAN I and applying the jackknife technique. Mortality parameters were determined from length-converted catch curves and empirical models. The exploitation status of these target species were then assessed by computing exploitation rates (E) from mortality parameters as well as from size indicators i.e., assessing the size distribution of fish catches relative to the size at maturity (Lm), the size that provides maximum cohort biomass (Lopt) and the abundance of mega-spawners. The mean value of growth parameters L∞, K and the growth performance index ø' were 44.5 cm, 0.41/year and 2.90 for O. niloticus, 74.1 cm, 0.28/year and 3.19 for C. carpio and 121.9 cm, 0.16/year and 3.36 for C. gariepinus, respectively. The 95 % confidence intervals of the estimates were also computed. Total mortality (Z) estimates were 1.47, 0.83 and 0.72/year for O. niloticus, C. carpio and C. gariepinus, respectively. Our study suggest that

  16. Interacting agricultural pests and their effect on crop yield: application of a Bayesian decision theory approach to the joint management of Bromus tectorum and Cephus cinctus.

    PubMed

    Keren, Ilai N; Menalled, Fabian D; Weaver, David K; Robison-Cox, James F

    2015-01-01

    Worldwide, the landscape homogeneity of extensive monocultures that characterizes conventional agriculture has resulted in the development of specialized and interacting multitrophic pest complexes. While integrated pest management emphasizes the need to consider the ecological context where multiple species coexist, management recommendations are often based on single-species tactics. This approach may not provide satisfactory solutions when confronted with the complex interactions occurring between organisms at the same or different trophic levels. Replacement of the single-species management model with more sophisticated, multi-species programs requires an understanding of the direct and indirect interactions occurring between the crop and all categories of pests. We evaluated a modeling framework to make multi-pest management decisions taking into account direct and indirect interactions among species belonging to different trophic levels. We adopted a Bayesian decision theory approach in combination with path analysis to evaluate interactions between Bromus tectorum (downy brome, cheatgrass) and Cephus cinctus (wheat stem sawfly) in wheat (Triticum aestivum) systems. We assessed their joint responses to weed management tactics, seeding rates, and cultivar tolerance to insect stem boring or competition. Our results indicated that C. cinctus oviposition behavior varied as a function of B. tectorum pressure. Crop responses were more readily explained by the joint effects of management tactics on both categories of pests and their interactions than just by the direct impact of any particular management scheme on yield. In accordance, a C. cinctus tolerant variety should be planted at a low seeding rate under high insect pressure. However as B. tectorum levels increase, the C. cinctus tolerant variety should be replaced by a competitive and drought tolerant cultivar at high seeding rates despite C. cinctus infestation. This study exemplifies the necessity of

  17. Information on Pests in Schools and Their Control

    EPA Pesticide Factsheets

    Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.

  18. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella).

    PubMed

    Huang, Yuping; Chen, Yazhou; Zeng, Baosheng; Wang, Yajun; James, Anthony A; Gurr, Geoff M; Yang, Guang; Lin, Xijian; Huang, Yongping; You, Minsheng

    2016-08-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mating vibrational signal transmission through and between plants of an agricultural pest, the Glassy-Winged Sharpshooter

    USDA-ARS?s Scientific Manuscript database

    The agricultural pest, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, relies primarily on successful vibrational communication across its home plant. Males and females engage in a vibrational duet to identify correct species, attractiveness of mate, and location on the plant. The signal...

  20. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives.

    PubMed

    Khandelwal, Neha; Barbole, Ranjit S; Banerjee, Shashwat S; Chate, Govind P; Biradar, Ankush V; Khandare, Jayant J; Giri, Ashok P

    2016-12-15

    One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Significance of Penicillium ochrochloron chitinase as a biocontrol agent against pest Helicoverpa armigera.

    PubMed

    Patil, Nilambari S; Jadhav, Jyoti P

    2015-06-01

    Penicillium ochrochloron chitinase purified by DEAE-cellulose ion exchange chromatography was evaluated for its antifeedant and growth inhibitory activities against Helicoverpa armigera at different concentrations of 2000, 1000, 500, 250 and 100 U mL(-1). It reduced the successful pupation and increased larval and pupal mortality, adult emergence in a dosage-dependent manner when applied topically. The highest mortalities were recorded for groups treated with 2000 U mL(-1) chitinase activity. The studies showed P.ochrochloron chitinase can affect the growth of H.armigera larvae. Since this insect pest species has developed resistance and resurgence to chemical insecticides, only alternate is the usage of enzyme-based pesticide formulations as an environmentally friendly pest management tool. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A theoretical approach on controlling agricultural pest by biological controls.

    PubMed

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  3. Range-expanding pests and pathogens in a warming world.

    PubMed

    Bebber, Daniel Patrick

    2015-01-01

    Crop pests and pathogens (CPPs) present a growing threat to food security and ecosystem management. The interactions between plants and their natural enemies are influenced by environmental conditions and thus global warming and climate change could affect CPP ranges and impact. Observations of changing CPP distributions over the twentieth century suggest that growing agricultural production and trade have been most important in disseminating CPPs, but there is some evidence for a latitudinal bias in range shifts that indicates a global warming signal. Species distribution models using climatic variables as drivers suggest that ranges will shift latitudinally in the future. The rapid spread of the Colorado potato beetle across Eurasia illustrates the importance of evolutionary adaptation, host distribution, and migration patterns in affecting the predictions of climate-based species distribution models. Understanding species range shifts in the framework of ecological niche theory may help to direct future research needs.

  4. Planting sentinel European trees in eastern Asia as a novel method to identify potential insect pest invaders.

    PubMed

    Roques, Alain; Fan, Jian-Ting; Courtial, Béatrice; Zhang, Yan-Zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-Hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  5. Planting Sentinel European Trees in Eastern Asia as a Novel Method to Identify Potential Insect Pest Invaders

    PubMed Central

    Roques, Alain; Fan, Jian-ting; Courtial, Béatrice; Zhang, Yan-zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  6. Evaluating critical uncertainty thresholds in a spatial model of forest pest invasion risk

    Treesearch

    Frank H. Koch; Denys Yemshanov; Daniel W. McKenney; William D. Smith

    2009-01-01

    Pest risk maps can provide useful decision support in invasive species management, but most do not adequately consider the uncertainty associated with predicted risk values. This study explores how increased uncertainty in a risk model’s numeric assumptions might affect the resultant risk map. We used a spatial stochastic model, integrating components for...

  7. Whole Genome Sequencing of the Braconid Parasitoid Wasp Fopius arisanus, an Important Biocontrol Agent of Pest Tepritid Fruit Flies

    PubMed Central

    Geib, Scott M.; Liang, Guang Hong; Murphy, Terence D.; Sim, Sheina B.

    2017-01-01

    The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis). The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ∼154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group. PMID:28584080

  8. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone.

    PubMed

    Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G

    2012-12-01

    Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. © 2012 Society for

  9. Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida.

    PubMed

    Nagoshi, Rodney N; Brambila, Julieta; Meagher, Robert L

    2011-01-01

    A critical component for sustaining adequate food production is the protection of local agriculture from invasive pest insects. Essential to this goal is the ability to accurately distinguish foreign from closely related domestic species, a process that has traditionally required identification using diagnostic morphological "keys" that can be both subtle and labor-intensive. This is the case for the Lepidopteran group of insects represented by Spodoptera, a genus of Noctuidae "armyworm" moths that includes several important agricultural pests. Two of the most destructive species, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and S. litura (F.) are not yet established in North America. To facilitate the monitoring for these pests, the feasibility of using DNA barcoding methodology for distinguishing between domestic and foreign Spodoptera species was tested. A DNA barcoding database was derived for a subset of Spodoptera species native to Florida, with an emphasis on those attracted to pheromone blends developed for S. litura or S. littoralis. These were then compared to the barcode sequences of S. litura collected from Taiwan and S. littoralis from Portugal. Consistent discrimination of the different species was obtained with phenetic relationships produced that were generally in agreement with phylogenetic studies using morphological characteristics. The data presented here indicate that DNA barcoding has the potential to be an efficient and accurate supplement to morphological methods for the identification of invasive Spodoptera pests in North America.

  10. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    PubMed

    Lipman, Stefan A; Burt, Sara A

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  11. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders’ intentions to engage in pest control

    PubMed Central

    Lipman, Stefan A.

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders’ intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry. PMID:29284047

  12. Regulation of mIκBNS stability through PEST-mediated degradation by proteasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Koog Chan; Jeong, Jiyeong; Kim, Keun Il, E-mail: kikim@sookmyung.ac.kr

    2014-01-24

    Highlights: • mIκBNS is degraded rapidly by proteasome without ubiquitylation. • N-terminal PEST sequence is responsible for the unstable nature of mIκBNS. • PEST sequence is not critical for nuclear localization of mIκBNS. • There is single bona fide NLS at the C-terminus of mIκBNS. - Abstract: Negative regulatory proteins in a cytokine signaling play a critical role in restricting unwanted excess activation of the signaling pathway. At the same time, negative regulatory proteins need to be removed rapidly from cells to respond properly to the next incoming signal. A nuclear IκB protein called IκBNS is known to inhibit amore » subset of NF-κB target genes upon its expression by NF-κB activation. Here, we show a mechanism to control the stability of mIκBNS which might be important for cells to prepare the next round signaling. We found that mIκBNS is a short-lived protein of which the stability is controlled by proteasome, independent of ubiquitylation process. We identified that the N-terminal PEST sequence in mIκBNS was critical for the regulation of stability.« less

  13. Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolina

    Treesearch

    David R. Coyle; Mark D. Coleman; Jaclin A. Durant; Lee A. Newman

    2006-01-01

    Populus species and hybrids have many practical applications, but there is a paucity of data regarding selections that perform well in the southeastern US. We compared pest susceptibility of 31 Populus clones over 3 years in South Carolina, USA. Cuttings were planted in spring 2001 on two study sites. Clones planted in the...

  14. Complementarity among natural enemies enhances pest suppression.

    PubMed

    Dainese, Matteo; Schneider, Gudrun; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2017-08-15

    Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture.

  15. Termite Pest Control - Industrial. Manual 96.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the termite pest control category. The text discusses general pests, especially ants, and wood-destroying organisms such as termites, beetles, and fungi. (CS)

  16. Public Health Pest Control Category Manual.

    ERIC Educational Resources Information Center

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. It presents pest control guidelines for those organisms of public health significance. Fact sheets with line drawings discuss pests such as cockroaches, bedbugs, lice, ants, beetles, bats, birds, and rodents. (CS)

  17. Insecticide Resistance: Challenge to Pest Management and Basic Research

    NASA Astrophysics Data System (ADS)

    Brattsten, L. B.; Holyoke, C. W.; Leeper, J. R.; Raffa, K. F.

    1986-03-01

    The agricultural use of synthetic insecticides usually protects crops but imposes strong selection pressures that can result in the development of resistance. The most important resistance mechanisms are enhancement of the capacity to metabolically detoxify insecticides and alterations in target sites that prevent insecticides from binding to them. Insect control methods must incorporate strategies to minimize resistance development and preserve the utility of the insecticides. The most promising approach, integrated pest management, includes the use of chemical insecticides in combination with improved cultural and biologically based techniques.

  18. Contingency Pest and Vector Surveillance

    DTIC Science & Technology

    2013-11-01

    Baseline Survey - conducted to determine the types of vectors and pests occurring in the area of operations, their respective breeding sites or...source habitat, and seasonal activity patterns. Operational Survey - data collected in an operational survey are used specifically to aid pest...management personnel in making decisions on when to start or stop control measures. Operational survey data is compared to baseline data and the

  19. Pest Control in the School Environment:Adopting Integrated Pest Management

    EPA Pesticide Factsheets

    Learn about establishing a school IPM program, including developing an official IPM policy statement, setting roles for participants and pest management objectives, inspecting sites, setting action threshold, applying IPM strategies and evaluating results.

  20. An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications

    PubMed Central

    Gebiola, Marco; Bernardo, Umberto; Ribes, Antoni; Gibson, Gary A P

    2015-01-01

    The species of Necremnus attacking two invasive pests of tomato and canola in Europe and North America, respectively, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), have been revised using an integrative taxonomy approach. Molecular data from the mitochondrial cytochrome oxidase c subunit I and the nuclear D2 expansion region of the 28S ribosomal subunit and internal transcribed spacer 2, the discovery of new morphological features, and study of type material resulted in the delineation of three species groups, the Necremnus artynes, Necremnus cosconius, and Necremnus tidius groups, the discovery of four new species, and the resurrection of three taxa from synonymy. Lectotypes have been designated for 13 species originally described in Eulophus by Walker. Although Necremnus has not been revised, an illustrated key is given to differentiate 23 recognized European species. The key, type images, and treatments of the three species groups will enable more accurate identification of the valid species of Necremnus in the future. They will also benefit biological control practitioners of pest species. The ecological consequences of the new taxonomic concepts are discussed. PMID:25745268

  1. The de novo Transcriptome and Its Analysis in the Worldwide Vegetable Pest, Delia antiqua (Diptera: Anthomyiidae)

    PubMed Central

    Zhang, Yu-Juan; Hao, Youjin; Si, Fengling; Ren, Shuang; Hu, Ganyu; Shen, Li; Chen, Bin

    2014-01-01

    The onion maggot Delia antiqua is a major insect pest of cultivated vegetables, especially the onion, and a good model to investigate the molecular mechanisms of diapause. To better understand the biology and diapause mechanism of the insect pest species, D. antiqua, the transcriptome was sequenced using Illumina paired-end sequencing technology. Approximately 54 million reads were obtained, trimmed, and assembled into 29,659 unigenes, with an average length of 607 bp and an N50 of 818 bp. Among these unigenes, 21,605 (72.8%) were annotated in the public databases. All unigenes were then compared against Drosophila melanogaster and Anopheles gambiae. Codon usage bias was analyzed and 332 simple sequence repeats (SSRs) were detected in this organism. These data represent the most comprehensive transcriptomic resource currently available for D. antiqua and will facilitate the study of genetics, genomics, diapause, and further pest control of D. antiqua. PMID:24615268

  2. Ecologically sustainable chemical recommendations for agricultural pest control?

    PubMed

    Thomson, Linda J; Hoffmann, Ary A

    2007-12-01

    Effective pest control remains an essential part of food production, and it is provided both by chemicals and by natural enemies within agricultural ecosystems. These methods of control are often in conflict because of the negative impact of chemicals on natural enemies. There are already well-established approaches such as those provided by the International Organization for Biological and Integrated Control-Pesticides and Beneficial Organisms for testing, collecting, and publishing information on responses of natural enemies to chemicals based on laboratory responses of specific organisms; however, these tests do not assess the cumulative impact of chemical inputs across an entire season or consider impacts on the complex communities of natural enemies that can provide effective pest control on a farm. Here, we explore the potential of different approaches for assessing the impact of chemicals on agricultural ecosystems and we propose a simple metric for sustainable chemical use on farms that minimizes overall impact on beneficial groups. We suggest ways in which the effectiveness of metrics can be extended to include persistence and habitat features. Such metrics can assist farmers in developing targets for sustainable chemical use as demonstrated in the viticultural industry.

  3. Biological control of livestock pests: Pathogens

    USDA-ARS?s Scientific Manuscript database

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  4. Microbial control of arthropod pests of tropical tree fruits.

    PubMed

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  5. Surveillance study of vector species on board passenger ships, Risk factors related to infestations

    PubMed Central

    Mouchtouri, Varvara A; Anagnostopoulou, Rimma; Samanidou-Voyadjoglou, Anna; Theodoridou, Kalliopi; Hatzoglou, Chrissi; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-01-01

    Background Passenger ships provide conditions suitable for the survival and growth of pest populations. Arthropods and rodents can gain access directly from the ships' open spaces, can be carried in shiploads, or can be found on humans or animals as ectoparasites. Vectors on board ships may contaminate stored foods, transmit illness on board, or, introduce diseases in new areas. Pest species, ship areas facilitating infestations, and different risk factors related to infestations were identified in 21 ferries. Methods 486 traps for insects and rodents were placed in 21 ferries. Archives of Public Health Authorities were reviewed to identify complaints regarding the presence of pest species on board ferries from 1994 to 2004. A detail questionnaire was used to collect data on ship characteristics and pest control practices. Results Eighteen ferries were infested with flies (85.7%), 11 with cockroaches (52.3%), three with bedbugs, and one with fleas. Other species had been found on board were ants, spiders, butterflies, beetles, and a lizard. A total of 431 Blattella germanica species were captured in 28 (9.96%) traps, and 84.2% of them were nymphs. One ship was highly infested. Cockroach infestation was negatively associated with ferries in which Hazard Analysis Critical Control Point system was applied to ensure food safety on board (Relative Risk, RR = 0.23, p = 0.03), and positively associated with ferries in which cockroaches were observed by crew (RR = 4.09, p = 0.007), no cockroach monitoring log was kept (RR = 5.00, p = 0.02), and pesticide sprays for domestic use were applied by crew (RR = 4.00, p = 0.05). Cockroach infested ships had higher age (p = 0.03). Neither rats nor mice were found on any ship, but three ferries had been infested with a rodent in the past. Conclusion Integrated pest control programs should include continuing monitoring for a variety of pest species in different ship locations; pest control measures should be more persistent in older

  6. Surveillance study of vector species on board passenger ships, risk factors related to infestations.

    PubMed

    Mouchtouri, Varvara A; Anagnostopoulou, Rimma; Samanidou-Voyadjoglou, Anna; Theodoridou, Kalliopi; Hatzoglou, Chrissi; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-03-27

    Passenger ships provide conditions suitable for the survival and growth of pest populations. Arthropods and rodents can gain access directly from the ships' open spaces, can be carried in shiploads, or can be found on humans or animals as ectoparasites. Vectors on board ships may contaminate stored foods, transmit illness on board, or, introduce diseases in new areas. Pest species, ship areas facilitating infestations, and different risk factors related to infestations were identified in 21 ferries. 486 traps for insects and rodents were placed in 21 ferries. Archives of Public Health Authorities were reviewed to identify complaints regarding the presence of pest species on board ferries from 1994 to 2004. A detail questionnaire was used to collect data on ship characteristics and pest control practices. Eighteen ferries were infested with flies (85.7%), 11 with cockroaches (52.3%), three with bedbugs, and one with fleas. Other species had been found on board were ants, spiders, butterflies, beetles, and a lizard. A total of 431 Blattella germanica species were captured in 28 (9.96%) traps, and 84.2% of them were nymphs. One ship was highly infested. Cockroach infestation was negatively associated with ferries in which Hazard Analysis Critical Control Point system was applied to ensure food safety on board (Relative Risk, RR = 0.23, p = 0.03), and positively associated with ferries in which cockroaches were observed by crew (RR = 4.09, p = 0.007), no cockroach monitoring log was kept (RR = 5.00, p = 0.02), and pesticide sprays for domestic use were applied by crew (RR = 4.00, p = 0.05). Cockroach infested ships had higher age (p = 0.03). Neither rats nor mice were found on any ship, but three ferries had been infested with a rodent in the past. Integrated pest control programs should include continuing monitoring for a variety of pest species in different ship locations; pest control measures should be more persistent in older ships. HACCP system aids in the

  7. Opportunities for microbial control of pulse crop pests

    USDA-ARS?s Scientific Manuscript database

    The insect pest complex in U.S. pulse crops is almost an “orphan” in terms of developed microbial control agents that the grower can use. There are almost no registered microbial pest control agents (MPCA) for the different pulse pests. In some cases a microbial is registered for use against specifi...

  8. The Scirtothrips perseae species-group (Thysanoptera), with one new species from avocado, Persea americana.

    PubMed

    Mound, Laurence A; Hoddle, Mark S

    2016-02-12

    Following recent molecular studies on avocado thrips, a new species is described from Costa Rica, Ecuador, and Colombia from the young leaves of avocado, Persea americana. Scirtothrips hansoni sp.n. is closely related to the Californian pest, S. perseae, and also to S. astrictus from Costa Rica that remains known from a single female. An illustrated key to these three species is provided.

  9. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    PubMed Central

    Santiago, Rogelio; Barros-Rios, Jaime; Malvar, Rosa A.

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among the same plant species, different tissues or even the same tissue at different developmental stages. Thus, it is important to highlight that the role of the cell wall components needs to be tested in diverse genotypes and specific tissues where the feeding or attacking by the pathogen takes place. Understanding the role of cell wall constituents as defense mechanisms may allow modifications of crops to withstand pests and diseases. PMID:23535334

  10. Contribution of pod borer pests to soybean crop production (case in Pondidaha, Konawe District, Southeast Sulawesi)

    NASA Astrophysics Data System (ADS)

    Rahayu, M.; Bande, LOS; Hasan, A.; Yuswana, A.; Rinambo, F.

    2018-02-01

    Soybean (Glycine max L.) is one of the most important crops which production continues to be improved in all areas of soybean cultivation centers in an effort to maintain the availability of soybean foods, including Southeast Sulawesi. The purpose of this study was to analyze the contribution of pod borer pests to soybean crop production. Methods of direct observation were made on observed variables, including species and population of pest pod borer, intensity, and crop production. The result that found four types of pod borer pests are Nezara viridula, Riptortus linearis, Etiella zinckenella, and Leptocorisa acuta, each with a different population and contribution to the intensity of pod damage. The result of path analysis showed that directly population of N. viridula (61.14) and E. zinckenella (66.44) gave positive contribution in increasing pod damage, by 0.332 and 0.502 respectively, while the negative contribution was shown by population of R. linearis and L. acuta. Damage of the pod causes increased production of low soybean is only about 0.202, therefore required appropriate control techniques to control pod borer pests populations in soybean crops.

  11. Effects of transgenic Bt cotton on the population density, oviposition behavior, development, and reproduction of a nontarget pest, Adelphocoris suturalis (Hemiptera: Miridae).

    PubMed

    Li, Guoping; Feng, Hongqiang; Chen, Peiyu; Wu, Shaoying; Liu, Bing; Qiu, Feng

    2010-08-01

    Transgenic cotton has shown great promise for the control of target pest insects; however, frequent outbreaks of nontarget pest mirids has been recorded in recent years in northern China. To test the hypothesis that transgenic cotton contributes to nontarget pest outbreaks, we studied the impact of transgenic Bt cottons (both Bt and Bt + CpTI) on the fitness of nontarget pest Adelphocoris suturalis Jakovlev. No significant differences were detected between population densities of A. suturalis in unsprayed nontransgenic cottons and in unsprayed transgenic Bt cottons in 2007, 2008, and 2009. No difference in preferred oviposition site or egg production was detected between transgenic and nontransgenic cottons in both free choice and no choice tests. No difference in life table parameters was detected for A. suturalis between Bt cottons and nontransgenic cottons. All these results indicated that transgenic crops did not contribute to the nontarget pest outbreaks when being compared with their parental lines. The possible reasons for intensified pest status of A. suturalis, such as decrease of pesticide application, deficient natural enemies, and area-wide shift of cotton varieties, were discussed.

  12. Using a network model to assess risk of forest pest spread via recreational travel

    Treesearch

    Frank H. Koch; Denys Yemshanov; Robert A. Haack; Roger D. Magarey

    2014-01-01

    Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially...

  13. Agricultural Plant Pest Control. Manual 93.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  14. Controlling range expansion in habitat networks by adaptively targeting source populations.

    PubMed

    Hock, Karlo; Wolff, Nicholas H; Beeden, Roger; Hoey, Jessica; Condie, Scott A; Anthony, Kenneth R N; Possingham, Hugh P; Mumby, Peter J

    2016-08-01

    Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected. © 2016 Society for Conservation Biology.

  15. Validating spatiotemporal predictions of an important pest of small grains.

    PubMed

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  16. Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?

    PubMed

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-01-01

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Reduced Insecticide Susceptibility in Aedes vexans (Diptera: Culicidae) Where Agricultural Pest Management Overlaps With Mosquito Abatement.

    PubMed

    Dunbar, Mike W; Bachmann, Amanda; Varenhorst, Adam J

    2018-05-04

    Mosquito abatement programs in Midwestern communities frequently exist within landscapes dominated by agriculture. Although separately managed, both agricultural pests and mosquitoes are targeted by similar classes of insecticides. As a result, there is the potential for unintended insecticide exposure to mosquito populations from agricultural pest management. To determine the impact that agricultural management practices have on mosquito insecticide susceptibility we compared the mortality of Aedes vexans (Meigen; Diptera: Culicidae) between populations sampled from locations with and without mosquito abatement in South Dakota, a region dominated by agricultural production. Collection locations were either within towns with mosquito abatement programs (n = 2; Brookings and Sioux Falls, SD) or located > 16 km from towns with mosquito abatement programs (n = 2; areas near Harrold and Willow Lake, SD). WHO bioassays were used to test susceptibly of adults to differing insecticide classes relative to their respective controls; 1) an organochlorine (dieldrin 4%), 2) an organophosphate (malathion 5%), and 3) a pyrethroid (lambda-cyhalothrin 0.05%). Corrected mortality did not significantly differ between locations with or without abatement; however, when locations were analized by proportion of developed land within the surrounding landscape pyrethroid mortality was significantly lower where crop production dominated the surrounding landscape and mosquito abatement was present. These data suggest that agricultural pest management may incidentally contribute to reduced mosquito susceptibility where overlap between agricultural pest management and mosquito abatement exists. Decoupling insecticide classes used by both agricultural and public health pest management programs may be necessary to ensure continued efficacy of pest management tools.

  18. A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Liu, Wanbo; Tao, Fennmei; Kang, Baolin; Cong, Jiguang

    In this paper, we propose a piecewise smooth SI pest control system to model the process of spraying pesticides and releasing infectious pests. We assume that the pest population consists of susceptible pests and infectious pests, and that the disease spreads horizontally between pests. We take the susceptible pest as the control index on whether to implement chemical control and biological control strategies. Based on the theory of Filippov system, the sliding-mode domain and conditions for the existence of real equilibria, virtual equilibria, pseudo-equilibrium and boundary equilibria are given. Further, we show the global stability of real equilibria (or boundary equilibria) and pseudo-equilibrium. Our results can provide theoretical guidance for the problem of pest control.

  19. Rapid adaptation of invertebrate pests to climatic stress?

    PubMed

    Hoffmann, Ary A

    2017-06-01

    There is surprisingly little information on adaptive responses of pests and disease vectors to climatic stresses even though the short generation times and large population sizes associated with pests make rapid adaptation likely. Most evidence of adaptive differentiation has been obtained from geographic comparisons and these can directly or indirectly indicate rates of adaptation where historical data on invasions are available. There is very little information on adaptive shifts in pests detected through molecular comparisons even though the genomes of many pests are now available and can help to identify markers underlying adaptation. While the limited evidence available points to frequent rapid adaptation that can affect pest and disease vector control, constraints to adaptation are also evident and a predictive framework around the likelihood and limits of rapid adaptation is required. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii

    PubMed Central

    Gough, Caroline S.; Fairlamb, Grace M.; Bell, Petra; Nachman, Ronald J.; Audsley, Neil

    2017-01-01

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 μM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii. PMID:29125862

  1. Extension Has Key Role in "Pest" Management

    ERIC Educational Resources Information Center

    Bay, Ovid

    1972-01-01

    This article describes the Department of Agriculture's new program which provides a combination of biological and cultural pest control techniques in combination with chemicals, as well as long-range pest control research. (Author/JB)

  2. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers.

    PubMed

    Dively, Galen P; Venugopal, P Dilip; Bean, Dick; Whalen, Joanne; Holmstrom, Kristian; Kuhar, Thomas P; Doughty, Hélène B; Patton, Terry; Cissel, William; Hutchison, William D

    2018-03-27

    Transgenic crops containing the bacterium Bacillus thuringiensis (Bt) genes reduce pests and insecticide usage, promote biocontrol services, and economically benefit growers. Area-wide Bt adoption suppresses pests regionally, with declines expanding beyond the planted Bt crops into other non-Bt crop fields. However, the offsite benefits to growers of other crops from such regional suppression remain uncertain. With data spanning 1976-2016, we demonstrate that vegetable growers benefit via decreased crop damage and insecticide applications in relation to pest suppression in the Mid-Atlantic United States. We provide evidence for the regional suppression of Ostrinia nubilalis (Hübner), European corn borer, and Helicoverpa zea (Boddie), corn earworm, populations in association with widespread Bt maize adoption (1996-2016) and decreased economic levels for injury in vegetable crops [peppers ( Capsicum annuum L.), green beans ( Phaseolus vulgaris L.), and sweet corn ( Zea mays L., convar. saccharata )] compared with the pre-Bt period (1976-1995). Moth populations of both species significantly declined in association with widespread Bt maize (field corn) adoption, even as increased temperatures buffered the population reduction. We show marked decreases in the number of recommended insecticidal applications, insecticides applied, and O. nubilalis damage in vegetable crops in association with widespread Bt maize adoption. These offsite benefits to vegetable growers in the agricultural landscape have not been previously documented, and the positive impacts identified here expand on the reported ecological effects of Bt adoption. Our results also underscore the need to account for offsite economic benefits of pest suppression, in addition to the direct economic benefits of Bt crops.

  3. Development and Evaluation of an Expert System for Diagnosing Pest Damage of Red Pine

    Treesearch

    Daniel L Schmoldt; George L. Martin

    1989-01-01

    An expert system for diagnosing pest damage of red pine stands in Wisconsin, PREDICT, runs on IBM or compatible microcomputers and is designed to be useful for field foresters with no advanced training in forest pathology or entomology. PREDICT recognizes 28 damaging agents including species of mammals, insects, and pathogens, as well as two types of abiotic damage....

  4. Household and Structural Pests. MEP 307.

    ERIC Educational Resources Information Center

    Wood, F. E.

    This pamphlet is a non-technical description of common household arthropod pests in Maryland. Since most of the pests can be found in houses throughout North America, this publication has a wide geographic range of use. General discussions of arthropod structure, growth and development, and metamorphosis are given before the pages on specific…

  5. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a...

  6. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a...

  7. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...

  8. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...

  9. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...

  10. The effects of invasive pests and pathogens on strategies for forest diversification.

    PubMed

    Macpherson, Morag F; Kleczkowski, Adam; Healey, John R; Quine, Christopher P; Hanley, Nick

    2017-04-24

    Diversification of the tree species composition of production forests is a frequently advocated strategy to increase resilience to pests and pathogens; however, there is a lack of a general framework to analyse the impact of economic and biological conditions on the optimal planting strategy in the presence of tree disease. To meet this need we use a novel bioeconomic model to quantitatively assess the effect of tree disease on the optimal planting proportion of two tree species. We find that diversifying the species composition can reduce the economic loss from disease even when the benefit from the resistant species is small. However, this key result is sensitive to a pathogen's characteristics (probability of arrival, time of arrival, rate of spread of infection) and the losses (damage of the disease to the susceptible species and reduced benefit of planting the resistant species). This study provides an exemplar framework which can be used to help understand the effect of a pathogen on forest management strategies.

  11. Problem prevention and holistic pest management [Chapter 14

    Treesearch

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese; Kim M. Wilkinson

    2014-01-01

    As any experienced grower knows only too well, nursery management is a continuous process of solving problems. One recurring problem is pests. In the past, nursery managers waited for an insect or disease to appear and then sprayed some toxic chemical to wipe out the pest or disease. This approach, however, also wipes out natural predators of the pest, resulting in an...

  12. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae.

    PubMed

    Errard, Audrey; Ulrichs, Christian; Kühne, Stefan; Mewis, Inga; Mishig, Narantuya; Maul, Ronald; Drungowski, Mario; Parolin, Pia; Schreiner, Monika; Baldermann, Susanne

    2016-01-01

    The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first

  13. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae

    PubMed Central

    Errard, Audrey; Ulrichs, Christian; Kühne, Stefan; Mewis, Inga; Mishig, Narantuya; Maul, Ronald; Drungowski, Mario; Parolin, Pia; Schreiner, Monika; Baldermann, Susanne

    2016-01-01

    The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first

  14. Procedures of Laboratory Fumigation for Pest Control with Nitric Oxide Gas.

    PubMed

    Liu, Yong-Biao; Yang, Xiangbing; Masuda, Tiffany

    2017-11-24

    Nitric oxide (NO) is a newly discovered fumigant for postharvest pest control. This paper provides detailed protocols for conducting NO fumigation on fresh products and procedures for residue analysis and product quality evaluation. An airtight fumigation chamber containing fresh fruit and vegetables is first flushed with nitrogen (N2) to establish an ultralow oxygen (ULO) environment followed by injection of NO. The fumigation chamber is then kept at a low temperature of 2 - 5 °C for a specified time period necessary to kill a target pest to complete a fumigation treatment. At the end of a fumigation treatment, the fumigation chamber is flushed with N2 to dilute NO prior to opening the chamber to ambient air to prevent the reaction between NO and O2, which produces NO2 and may damage delicate fresh products. At different times after NO fumigation, NO2 in headspace and nitrate and nitrite in liquid samples were measured as residues. Product quality was evaluated after 2 weeks of post-treatment cold storage to determine effects of NO fumigation on product quality. Keeping O2 from reacting with NO is critical to NO fumigation and is an important part of the protocols. Measuring NO levels is challenging and a practical solution is provided. Possible protocol modifications are also suggested for measuring NO levels in the fumigation chambers as well as residues. NO fumigation has the potential to be a practical alternative to methyl bromide fumigation for postharvest pest control on fresh and stored products. This publication is intended to assist other researchers in conducting NO fumigation research for postharvest pest control and accelerating the development of NO fumigation for practical applications.

  15. Presence of Native Prey Does Not Divert Predation on Exotic Pests by Harmonia axyridis in Its Indigenous Range

    PubMed Central

    Zhang, Gui Fen; Lövei, Gábor L; Wu, Xia; Wan, Fang Hao

    2016-01-01

    In China, two invasive pests, Bemisia tabaci MEAM1 (Gennadius) and Frankliniella occidentalis (Pergande), often co-occur with the native pest, Aphis gossypii (Glover), on plants of Malvaceae and Cucurbitaceae. All three are preyed on by the native ladybird, Harmonia axyridis (Pallas); however, the native predator might be expected to prefer native prey to the exotic ones due to a shared evolutionary past. In order to clarify whether the presence of native prey affected the consumption of these two invasive species by the native predator, field-cage experiments were conducted. A duplex qPCR was used to simultaneously detect both non-native pests within the gut of the predator. H. axyridis readily accepted both invasive prey species, but preferred B. tabaci. With all three prey species available, H. axyridis consumption of B. tabaci was 39.3±2.2% greater than consumption of F. occidentalis. The presence of A. gossypii reduced (by 59.9% on B. tabaci, and by 60.6% on F. occidentalis), but did not stop predation on the two exotic prey when all three were present. The consumption of B. tabaci was similar whether it was alone or together with A. gossypii. However, the presence of aphids reduced predation on the invasive thrips. Thus, some invasive prey may be incorporated into the prey range of a native generalist predator even in the presence of preferred native prey. PMID:27391468

  16. An evaluation of the species status of Bactrocera invadens and the Systematics of the Bactrocera dorsalis (Diptera: Tephritidae) complex

    USDA-ARS?s Scientific Manuscript database

    The genus Bactrocera (Tephritidae) contains over 500 species, including many severe pests of fruits and vegetables. While native to tropical and sub-tropical areas of Africa, India, Southeast Asia and Australasia, a number of the pest species, largely members of the Bactrocera dorsalis complex, have...

  17. Acidic deposition, plant pests, and the fate of forest ecosystems.

    PubMed

    Gragnani, A; Gatto, M; Rinaldi, S

    1998-12-01

    We present and analyze a nonlinear dynamical system modelling forest-pests interactions and the way they are affected by acidic deposition. The model includes mechanisms of carbon and nitrogen exchange between soil and vegetation, biomass decomposition and microbial mineralization, and defoliation by pest grazers, which are partially controlled by avian or mammalian predators. Acidic deposition is assumed to directly damage vegetation, to decrease soil pH, which in turn damages roots and inhibits microbial activity, and to predispose trees to increased pest attack. All the model parameters are set to realistic values except the inflow of protons to soil and the predation mortality inflicted to the pest which are allowed to vary inside reasonable ranges. A numerical bifurcation analysis with respect to these two parameters is carried out. Five functioning modes are uncovered: (i) pest-free equilibrium; (ii) pest persisting at endemic equilibrium; (iii) forest-pest permanent oscillations; (iv) bistable behavior with the system converging either to pest-free equilibrium or endemic pest presence in accordance with initial conditions; (v) bistable behavior with convergence to endemic pest presence or permanent oscillations depending on initial conditions. Catastrophic bifurcations between the different behavior modes are possible, provided the abundance of predators is not too small. Numerical simulation shows that increasing acidic load can lead the forest to collapse in a short time period without important warning signals. Copyright 1998 Academic Press.

  18. United States Department of Agriculture-Agricultural Research Service: advances in the molecular genetic analysis of insects and their application to pest management.

    PubMed

    Handler, Alfred M; Beeman, Richard W

    2003-01-01

    USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.

  19. The de novo transcriptome and its analysis in the worldwide vegetable pest, Delia antiqua (Diptera: Anthomyiidae).

    PubMed

    Zhang, Yu-Juan; Hao, Youjin; Si, Fengling; Ren, Shuang; Hu, Ganyu; Shen, Li; Chen, Bin

    2014-03-10

    The onion maggot Delia antiqua is a major insect pest of cultivated vegetables, especially the onion, and a good model to investigate the molecular mechanisms of diapause. To better understand the biology and diapause mechanism of the insect pest species, D. antiqua, the transcriptome was sequenced using Illumina paired-end sequencing technology. Approximately 54 million reads were obtained, trimmed, and assembled into 29,659 unigenes, with an average length of 607 bp and an N50 of 818 bp. Among these unigenes, 21,605 (72.8%) were annotated in the public databases. All unigenes were then compared against Drosophila melanogaster and Anopheles gambiae. Codon usage bias was analyzed and 332 simple sequence repeats (SSRs) were detected in this organism. These data represent the most comprehensive transcriptomic resource currently available for D. antiqua and will facilitate the study of genetics, genomics, diapause, and further pest control of D. antiqua. Copyright © 2014 Zhang et al.

  20. Use of DNA Barcodes to Identify Invasive Armyworm Spodoptera Species in Florida

    PubMed Central

    Nagoshi, Rodney N.; Brambila, Julieta; Meagher, Robert L.

    2011-01-01

    A critical component for sustaining adequate food production is the protection of local agriculture from invasive pest insects. Essential to this goal is the ability to accurately distinguish foreign from closely related domestic species, a process that has traditionally required identification using diagnostic morphological “keys” that can be both subtle and labor-intensive. This is the case for the Lepidopteran group of insects represented by Spodoptera, a genus of Noctuidae “armyworm” moths that includes several important agricultural pests. Two of the most destructive species, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and S. litura (F.) are not yet established in North America. To facilitate the monitoring for these pests, the feasibility of using DNA barcoding methodology for distinguishing between domestic and foreign Spodoptera species was tested. A DNA barcoding database was derived for a subset of Spodoptera species native to Florida, with an emphasis on those attracted to pheromone blends developed for S. litura or S. littoralis. These were then compared to the barcode sequences of S. litura collected from Taiwan and S. littoralis from Portugal. Consistent discrimination of the different species was obtained with phenetic relationships produced that were generally in agreement with phylogenetic studies using morphological characteristics. The data presented here indicate that DNA barcoding has the potential to be an efficient and accurate supplement to morphological methods for the identification of invasive Spodoptera pests in North America. PMID:22239735

  1. Integrated Pest Management Intervention in Child Care Centers Improves Knowledge, Pest Control, and Practices.

    PubMed

    Alkon, Abbey; Nouredini, Sahar; Swartz, Alicia; Sutherland, Andrew Mason; Stephens, Michelle; Davidson, Nita A; Rose, Roberta

    To reduce young children's exposure to pests and pesticides, an integrated pest management (IPM) intervention was provided for child care center staff. The 7-month IPM education and consultation intervention was conducted by trained nurse child care health consultants in 44 child care centers in California. IPM knowledge surveys were completed by child care staff, objective IPM assessments were completed by research assistants pre- and postintervention, and activity logs were completed by the nurses. There were significant increases in IPM knowledge for the child care staff who attended workshops. There were reductions in the prevalence of pests and increases in IPM practices at the postintervention compared with the preintervention time point. The nurses consulted an average of 5.4 hours per center. A nurse-led IPM intervention in child care centers can reduce exposure to harmful substances for young children attending child care centers. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  2. From laboratory to point of entry: development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species.

    PubMed

    Blaser, Simon; Diem, Hanspeter; von Felten, Andreas; Gueuning, Morgan; Andreou, Michael; Boonham, Neil; Tomlinson, Jennifer; Müller, Pie; Utzinger, Jürg; Frey, Jürg E; Bühlmann, Andreas

    2018-06-01

    Rapid genetic on-site identification methods at points of entry, such as seaports and airports, have the potential to become important tools to prevent the introduction and spread of economically harmful pest species that are unintentionally transported by the global trade of plant commodities. This paper reports the development and evaluation of a loop-mediated isothermal amplification (LAMP)-based identification system to prevent introduction of the three most frequently encountered regulated quarantine insect species groups at Swiss borders, Bemisia tabaci, Thrips palmi and several regulated fruit flies of the genera Bactrocera and Zeugodacus. The LAMP primers were designed to target a fragment of the mitochondrial cytochrome c oxidase subunit I gene and were generated based on publicly available DNA sequences. Laboratory evaluations analysing 282 insect specimens suspected to be quarantine organisms revealed an overall test efficiency of 99%. Additional on-site evaluation at a point of entry using 37 specimens performed by plant health inspectors with minimal laboratory training resulted in an overall test efficiency of 95%. During both evaluation rounds, there were no false-positives and the observed false-negatives were attributable to human-induced manipulation errors. To overcome the possibility of accidental introduction of pests as a result of rare false-negative results, samples yielding negative results in the LAMP method were also subjected to DNA barcoding. Our LAMP assays reliably differentiated between the tested regulated and non-regulated insect species within <1 h. Hence, LAMP assays represent suitable tools for rapid on-site identification of harmful pests, which might facilitate an accelerated import control process for plant commodities. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on

  3. Agricultural Animal Pest Control. Bulletin 767.

    ERIC Educational Resources Information Center

    Nolan, Maxcy P., Jr.

    Included in this training manual are descriptions and pictures of the following agricultural animal pests: mosquitoes, stable flies, horse flies and deer or yellow flies, house flies, horn flies, wound-infesting larvae, lice, mites, ticks, and bots and grubs. Information is given on the life-cycle and breeding habits of the pests. Methods of…

  4. Agricultural Plant Pest Control. Bulletin 763.

    ERIC Educational Resources Information Center

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  5. Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest

    Treesearch

    Denys Yemshanov; Frank H. Koch; Yakov Ben-Haim; William D. Smith

    2010-01-01

    In pest risk assessment it is frequently necessary to make management decisions regarding emerging threats under severe uncertainty. Although risk maps provide useful decision support for invasive alien species, they rarely address knowledge gaps associated with the underlying risk model or how they may change the risk estimates. Failure to recognize uncertainty leads...

  6. Options for pest and disease control in organic pecan

    USDA-ARS?s Scientific Manuscript database

    Although organic pecans typically command a higher wholesale and retail price, their production presents a unique set of challenges. Among these are issues of pest and disease management - it is not simply a modification of the conventional, pest and disease management paradigm. Despite these pest ...

  7. Lethal and Sublethal Effects of Mineral Oil on Potato Pests.

    PubMed

    Galimberti, Andrew; Alyokhin, Andrei

    2018-05-28

    Mineral oil is a product used to reduce Potato Virus Y transmission in potato fields. However, there is little information available about other effects that oil may have on insect pests of potato. To better understand how mineral oil affects potato pests, we performed a series of experiments testing the effects of oil on mortality, behavior, and development of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). All three species showed negative behavioral responses to oil-treated potato foliage. Oil treatment also increased aphid mortality. Colorado potato beetle mortality was not affected, but developing on oil-treated potato plants resulted in prolonged development and smaller adults. Additionally, oil acted synergistically with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae); Colorado potato beetle larvae were killed more rapidly when sprayed with both products compared with when sprayed with B. bassiana alone. Based on these results, mineral oil has the potential for expanded use in potato IPM programs.

  8. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control.

    PubMed

    Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas

    2004-10-19

    Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.

  9. Slowing and Combating Pest Resistance to Pesticides

    EPA Pesticide Factsheets

    Pesticides can be used to control a variety of pests, such as insects, weeds, rodents, bacteria, fungi, etc. Over time many pesticides have gradually lost effectiveness because pests develop resistance. Learn what EPA is doing to address resistance issues.

  10. Sampling plans for pest mites on physic nut.

    PubMed

    Rosado, Jander F; Sarmento, Renato A; Pedro-Neto, Marçal; Galdino, Tarcísio V S; Marques, Renata V; Erasmo, Eduardo A L; Picanço, Marcelo C

    2014-08-01

    The starting point for generating a pest control decision-making system is a conventional sampling plan. Because the mites Polyphagotarsonemus latus and Tetranychus bastosi are among the most important pests of the physic nut (Jatropha curcas), in the present study, we aimed to establish sampling plans for these mite species on physic nut. Mite densities were monitored in 12 physic nut crops. Based on the obtained results, sampling of P. latus and T. bastosi should be performed by assessing the number of mites per cm(2) in 160 samples using a handheld 20× magnifying glass. The optimal sampling region for T. bastosi is the abaxial surface of the 4th most apical leaf on the branch of the middle third of the canopy. On the abaxial surface, T. bastosi should then be observed on the side parts of the middle portion of the leaf, near its edge. As for P. latus, the optimal sampling region is the abaxial surface of the 4th most apical leaf on the branch of the apical third of the canopy on the abaxial surface. Polyphagotarsonemus latus should then be assessed on the side parts of the leaf's petiole insertion. Each sampling procedure requires 4 h and costs US$ 7.31.

  11. Assessing climate change impacts on fruit plant and pest phenology and their synchrony: the case of apple and codling moth

    NASA Astrophysics Data System (ADS)

    Felber, Raphael; Stöckli, Sibylle; Calanca, Pierluigi

    2017-04-01

    Temperature is a main climatic driver of plant phenology and the dominant abiotic factor directly affecting insect pests. Global warming is therefore expected to accelerate the development of plants and insects. Moreover, in the case of multivoltine pest species higher temperatures are expected to lead to the appearance of additional generations toward the end of the warm season. These changes could entail higher pest pressure and hence require an adaptation of pest management, but ultimately this would depend on whether plant and pest phenology remain synchronized or not. In this contribution we present an analysis of potential impacts of climate change on the phenology of the apple tree (Malus pumila L.), a fruit crop of economic relevance worldwide, and the codling moth (Cydia pomonella L.), one of its main pests. Key developmental stages of the apple and the codling moth were simulated by means of two heat summation models. The models were calibrated with lab and field data from Switzerland and subsequently run with observed weather data and various climate change scenarios. The time period between flowering termination and the harvest of the apples was compared to the appearance of the second and third generation of codling moth larvae to study the interlinkage between host and pest. To illustrate the potential for practical applications of the phenology models, we used spatial temperature data of Switzerland to produce risk maps that can serve as a basis for further studies and decision support.

  12. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  13. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  14. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  15. 33 CFR 274.6 - Division/district pest control programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...

  16. Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest.

    PubMed

    Yemshanov, Denys; Koch, Frank H; Ben-Haim, Yakov; Smith, William D

    2010-02-01

    In pest risk assessment it is frequently necessary to make management decisions regarding emerging threats under severe uncertainty. Although risk maps provide useful decision support for invasive alien species, they rarely address knowledge gaps associated with the underlying risk model or how they may change the risk estimates. Failure to recognize uncertainty leads to risk-ignorant decisions and miscalculation of expected impacts as well as the costs required to minimize these impacts. Here we use the information gap concept to evaluate the robustness of risk maps to uncertainties in key assumptions about an invading organism. We generate risk maps with a spatial model of invasion that simulates potential entries of an invasive pest via international marine shipments, their spread through a landscape, and establishment on a susceptible host. In particular, we focus on the question of how much uncertainty in risk model assumptions can be tolerated before the risk map loses its value. We outline this approach with an example of a forest pest recently detected in North America, Sirex noctilio Fabricius. The results provide a spatial representation of the robustness of predictions of S. noctilio invasion risk to uncertainty and show major geographic hotspots where the consideration of uncertainty in model parameters may change management decisions about a new invasive pest. We then illustrate how the dependency between the extent of uncertainties and the degree of robustness of a risk map can be used to select a surveillance network design that is most robust to knowledge gaps about the pest.

  17. Promise for plant pest control: root-associated pseudomonads with insecticidal activities

    PubMed Central

    Kupferschmied, Peter; Maurhofer, Monika; Keel, Christoph

    2013-01-01

    Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework. PMID:23914197

  18. Investigating effects of surrounding landscape composition and complexity on populations of two polyphagous insect pest groups in Iowa soybean

    NASA Astrophysics Data System (ADS)

    Kuntz, Cody Daniel

    The composition and complexity of agro-ecosystems are important factors influencing the population dynamics of insect pests. Understanding these interactions may improve our ability to predict the spatial occurrence of pest outbreaks, thereby informing scouting and management decisions. In 2012 and 2013, two concurrent studies were conducted to examine the relationship between landscapes surrounding Iowa soybean, Glycine max [L.] Merrill, fields and two polyphagous pest groups; Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), and stink bugs (Hemiptera: Pentatomidae). Population densities were monitored in soybean within simple and complex agricultural landscapes to determine the response of these pests to landscape complexity. Results revealed P. japonica populations were significantly greater in soybean fields within complex landscapes and were positively associated with area of uncultivated land. The specific compositions of surrounding landscapes were also analyzed to determine the landscape features that explain the greatest variation in P. japonica and stink bug population densities. Results suggested that the area of wooded and grass habitat around fields accounted for the greatest variation in P. japonica populations; however, no discernable relationships were observed with stink bug populations. Sampling also sought to survey the community of stink bugs present in Iowa soybean. The community was predominantly comprised of stink bugs in the genus Euschistus, comprising a combined 91.04% of all captures. Additional species included the green stink bug, Acrosternum hilare (Say) (4.48%); spined soldier bug, Podisus maculiventris (Say) (2.99%); and red shouldered stink bug, Thyanta custator accerra (McAtee) (1.49%). Future work will be needed to determine if the landscape effects on P. japonica in soybean reported here are representative of other similar polyphagous pests of soybean and if they extend to other host plants as well

  19. Targeted modulation of reactive oxygen species in the vascular endothelium.

    PubMed

    Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-15

    'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami

    NASA Astrophysics Data System (ADS)

    Herzig, Volker; Ikonomopoulou, Maria; Smith, Jennifer J.; Dziemborowicz, Sławomir; Gilchrist, John; Kuhn-Nentwig, Lucia; Rezende, Fernanda Oliveira; Moreira, Luciano Andrade; Nicholson, Graham M.; Bosmans, Frank; King, Glenn F.

    2016-07-01

    The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1-S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.