Sample records for target return signal

  1. Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.

    1984-01-01

    A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.

  2. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    DTIC Science & Technology

    2016-10-01

    RR–0436 ABSTRACT A novel wavelet-based sparse signal representation technique is used to separate the main and tail rotor blade components of a...helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades , the helicopter body...component signal com- prising of returns from the main body, the main and tail rotor hubs and blades . Temporal and Doppler characteristics of these

  3. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion

    PubMed Central

    Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.

    2014-01-01

    Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881

  4. Statistics of backscatter radar return from vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Chen, K. S.; Fung, A. K.

    1992-01-01

    The statistical characteristics of radar return from vegetation targets are investigated through a simulation study based upon the first-order scattered field. For simulation purposes, the vegetation targets are modeled as a layer of randomly oriented and spaced finite cylinders, needles, or discs, or a combination of them. The finite cylinder is used to represent a branch or a trunk, the needle for a stem or a coniferous leaf, and the disc for a decidous leaf. For a plane wave illuminating a vegetation canopy, simulation results show that the signal returned from a layer of disc- or needle-shaped leaves follows the Gamma distribution, and that the signal returned from a layer of branches resembles the log normal distribution. The Gamma distribution also represents the signal returned from a layer of a mixture of branches and leaves regardless of the leaf shapes. Results also indicate that the polarization state does not have a significant impact on signal distribution.

  5. Using an incoherent target return to adaptively focus through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.

    2016-03-01

    A laser beam propagating to a remote target through atmospheric turbulence acquires intensity fluctuations. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics can, in principle, correct these fluctuations. Generally, however, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the reflected field at a detector. We simulate an adaptive optics system that utilizes this relation to focus a beam through atmospheric turbulence onto the incoherent surface.

  6. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng

    2018-06-01

    High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.

  7. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  8. Laser remote sensing of backscattered light from a target sample

    DOEpatents

    Sweatt, William C [Albuquerque, NM; Williams, John D [Albuquerque, NM

    2008-02-26

    A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

  9. Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation

    NASA Astrophysics Data System (ADS)

    Yao, Lilin; Wang, Fu; Min, Min; Zhang, Ying; Guo, Jianping; Yu, Xiao; Chen, Binglong; Zhao, Yiming; Wang, Lidong

    2018-05-01

    The atmospheric composition induced extinction effect on return signals of space-based lidar remains incomprehensively understood, especially around 355 nm and 2051 nm channels. Here we simulated the extinction effects of atmospheric gases (e.g., H2O, CO2, and O3) and six types of aerosols (clean continental, clean marine, dust, polluted continental, polluted dust, and smoke) on return signals of space-based lidar system at 355 nm, 532 nm, 1064 nm, and 2051 nm channels, based on a robust lidar return signal simulator in combination with radiative transfer model (LBLRTM). Results show significant Rayleigh (molecular) scattering effects in the return signals at 355 nm and 532 nm channels, which markedly decays with increases in wavelength. The spectral transmittance of CO2 is nearly 0, yet the transmittance of H2O is approximately 100% at 2051 nm, which verifies this 2051 nm channel is suitable for CO2 retrieval. The spectral transmittance also reveals another possible window for CO2 and H2O detection at 2051.6 nm, since their transmittance both near 0.5. Moreover the corresponding Doppler return signals at 2051.6 nm channel can be used to retrieve wind field. Thus we suggest 2051 nm channel may better be centered at 2051.6 nm. Using the threshold for the signal-to-noise ratio (SNR) of return signals, the detection ranges for three representative distribution scenarios for the six types of aerosols at four typical lidar channels are determined. The results clearly show that high SNR values can be seen ubiquitously in the atmosphere ranging from the height of aerosol layer top to 25 km at 355 nm, and can been found at 2051.6 nm in the lower troposphere that highly depends on aerosol distribution scenario in the vertical. This indicates that the Doppler space-based lidar system with a double-channel joint detection mode is able to retrieve atmospheric wind field or profile from 0 to 25 km.

  10. Synchronized Radar-Target Simulator

    NASA Technical Reports Server (NTRS)

    Chin, B. C.

    1985-01-01

    Apparatus for testing radar system generates signals that simulate amplitude and phase characteristics of target returns and their variation with antenna-pointing direction. Antenna movement causes equipment to alter test signal in imitation of behavior of real signal received during tracking.

  11. Assessment of a Targeted Trap-Neuter-Return Pilot Study in Auckland, New Zealand

    PubMed Central

    Zito, Sarah; Vigeant, Shalsee; Dale, Arnja

    2018-01-01

    Simple Summary It is generally accepted that stray cats need to be managed to minimise the associated negative impacts and there is a need for effective and humane management tools. One such potential tool is trap-neuter-return (TNR), which anecdotally has been used in New Zealand to manage stray cats, but no concerted and targeted implementation of this technique has been reported, nor any formal assessments conducted. A targeted TNR (TTNR) programme for urban stray cats was implemented and assessed in one Auckland suburb. Assessment was based on the number of incoming felines; stray, unsocialised cats euthanased; unsocialised, unowned cats sterilised and returned (independently of the TTNR programme); and neonatal/underage euthanasias. Incoming stray feline, underage euthanasia, and unsocialised stray cat euthanasia numbers all reduced for the targeted suburb when these outcome measures were compared for the years before and after the programme. These outcome measures had a greater reduction in the targeted suburb compared to the other Auckland suburbs not targeted by the TTNR programme, although causation cannot be inferred, as a variety of reasons could have contributed to the changes. This pilot programme suggests that TTNR could be a valuable humane cat management tool in urban New Zealand, and further assessment is warranted. Abstract There is a need for effective and humane management tools to manage urban stray cats and minimise negative impacts associated with stray cats. One such tool is targeted trap-neuter-return (TTNR), but no concerted implementation of this technique or formal assessments have been reported. To address this deficit, a TTNR programme was implemented and assessed in one Auckland suburb from May 2015 to June 2016; the programme sterilised and returned 348 cats (4.2 cats/1000 residents). Assessment was based on the number of incoming felines; stray, unsocialised cats euthanased; unsocialised, unowned cats sterilised and returned

  12. Field programmable gate array processing of eye-safe all-fiber coherent wind Doppler lidar return signals

    NASA Astrophysics Data System (ADS)

    Abdelazim, S.; Santoro, D.; Arend, M.; Moshary, F.; Ahmed, S.

    2011-11-01

    A field deployable all-fiber eye-safe Coherent Doppler LIDAR is being developed at the Optical Remote Sensing Lab at the City College of New York (CCNY) and is designed to monitor wind fields autonomously and continuously in urban settings. Data acquisition is accomplished by sampling lidar return signals at 400 MHz and performing onboard processing using field programmable gate arrays (FPGAs). The FPGA is programmed to accumulate signal information that is used to calculate the power spectrum of the atmospherically back scattered signal. The advantage of using FPGA is that signal processing will be performed at the hardware level, reducing the load on the host computer and allowing for 100% return signal processing. An experimental setup measured wind speeds at ranges of up to 3 km.

  13. Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals

    NASA Astrophysics Data System (ADS)

    Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing

    2003-12-01

    Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.

  14. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  15. Assessment of a Targeted Trap-Neuter-Return Pilot Study in Auckland, New Zealand.

    PubMed

    Zito, Sarah; Aguilar, Glenn; Vigeant, Shalsee; Dale, Arnja

    2018-05-13

    There is a need for effective and humane management tools to manage urban stray cats and minimise negative impacts associated with stray cats. One such tool is targeted trap-neuter-return (TTNR), but no concerted implementation of this technique or formal assessments have been reported. To address this deficit, a TTNR programme was implemented and assessed in one Auckland suburb from May 2015 to June 2016; the programme sterilised and returned 348 cats (4.2 cats/1000 residents). Assessment was based on the number of incoming felines; stray, unsocialised cats euthanased; unsocialised, unowned cats sterilised and returned (independently of the TTNR programme); and neonatal/underage euthanasias. Incoming stray felines, underage euthanasias, and unsocialised stray cat euthanasias were all reduced for the targeted suburb when compared for the years before and after the programme (the percentage reduction in these parameters was −39, −17, −34, −7, and −47, respectively). These outcome measures had a greater reduction in the targeted suburb compared to the Auckland suburbs not targeted by the TTNR programme ( p < 0.01), although causation cannot be inferred, as a variety of reasons could have contributed to the changes. This pilot programme suggests that TTNR could be a valuable, humane cat management tool in urban New Zealand, and further assessment is warranted.

  16. Impact Craters and Impactites as Important Targets for Mars Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Cockell, C. S.; Pontefract, A.; Sapers, H. M.; Tornabene, L. L.

    2018-04-01

    Research conducted over the past few years reveals that meteorite impact craters provide substrates and habitats for life. We propose that craters and their products should be reconsidered as high priority targets for Mars Sample Return missions.

  17. Cue and Target Processing Modulate the Onset of Inhibition of Return

    ERIC Educational Resources Information Center

    Gabay, Shai; Chica, Ana B.; Charras, Pom; Funes, Maria J.; Henik, Avishai

    2012-01-01

    Inhibition of return (IOR) is modulated by task set and appears later in discrimination tasks than in detection tasks. Several hypotheses have been suggested to account for this difference. We tested three of these hypotheses in two experiments by examining the influence of cue and target level of processing on the onset of IOR. In the first…

  18. The effects of return current and target charging in short pulse high intensity laser interactions

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2003-10-01

    Since the introduction of the technique of chirped pulse amplification (CPA), peak laser intensities have increased dramatically. It is now possible to perform laser-plasma interaction experiments at intensities approaching 1021 Wcm-2. The electrons in the field of such lasers are highly relativistic (gamma 31) and the temperature of the hot electron distribution produced in a plasma at such extreme intensities can exceed 10 MeV. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. We present results from experiments performed at Rutherford Appleton Laboratory using the VULCAN laser facility (I> 5 x1019 Wcm-2). Single wire targets were used and in some shots a secondary wire or foil was placed near the target. Three main observations were made: (i) generation of a Z-pinch in the wire due to the return current, (ii) optical transition radiation at 2w and (iii) proton emission from both the primary wire target and the secondary wire or foil. The Z-pinch was observed to be m=0 unstable. The current was estimated to be about 0.8 MA using simple energy balance considerations. Intense second harmonic emission due to coherent optical transition radiation from both the primary target and secondary objects was observed and is likely due to electron bunches accelerated by the ponderomotive jxB force of the laser. The proton emission from the secondary wire or foil was likely due to field emission of electrons from the these objects in response to the large potential produced from charging of the primary target. Results of simulations to model these interactions will also be presented.

  19. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  20. Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and Hedgehog pathways.

    PubMed

    An, Songzhu Michael; Ding, Qiang Peter; Li, Ling-song

    2013-06-01

    One of the most exciting fields in biomedical research over the past few years is stem cell biology, and therapeutic application of stem cells to replace the diseased or damaged tissues is also an active area in development. Although stem cell therapy has a number of technical challenges and regulatory hurdles to overcome, the use of stem cells as tools in drug discovery supported by mature technologies and established regulatory paths is expected to generate more immediate returns. In particular, the targeting of stem cell signaling pathways is opening up a new avenue for drug discovery. Aberrations in these pathways result in various diseases, including cancer, fibrosis and degenerative diseases. A number of drug targets in stem cell signaling pathways have been identified. Among them, WNT and Hedgehog are two most important signaling pathways, which are the focus of this review. A hedgehog pathway inhibitor, vismodegib (Erivedge), has recently been approved by the US FDA for the treatment of skin cancer, while several drug candidates for the WNT pathway are entering clinical trials. We have discovered that the stem cell signaling pathways respond to traditional Chinese medicines. Substances isolated from herbal medicine may act specifically on components of stem cell signaling pathways with high affinities. As many of these events can be explained through molecular interactions, these phenomena suggest that discovery of stem cell-targeting drugs from natural products may prove to be highly successful.

  1. Research on key technologies of LADAR echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo

    2015-10-01

    LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.

  2. Antidepressive effects of targeting ELK-1 signal transduction.

    PubMed

    Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T

    2018-05-07

    Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.

  3. The Impact of an Integrated Program of Return-to-Field and Targeted Trap-Neuter-Return on Feline Intake and Euthanasia at a Municipal Animal Shelter

    PubMed Central

    Spehar, Daniel D.; Wolf, Peter J.

    2018-01-01

    Simple Summary Dramatic declines in the number of cats admitted to and euthanized at U.S. shelters have taken place in recent decades. Still, millions of cats, many of them free-roaming, enter shelters each year. At some facilities, as many as 70% of feline admissions are euthanized, and it is estimated that, nationally, up to one million or more cats are euthanized each year. New approaches, including return-to-field (RTF) and targeted trap-neuter-return (TNR) appear to have transformative potential. The present study examines changes in feline intake and euthanasia, as well as impacts on associated metrics, at a municipal animal shelter in Albuquerque, New Mexico, after formal RTF and targeted TNR protocols, collectively referred to as a community cat program (CCP), were added to ongoing community-based TNR efforts and a pilot RTF initiative. As part of the three-year CCP, 11,746 cats were trapped, sterilized, vaccinated and returned or adopted. Feline euthanasia at the Albuquerque Animal Welfare Department (AAWD) declined by 84.1% and feline intake dropped by 37.6%; the live release rate (LRR) increased by 47.7% due primarily to these reductions in both intake and euthanasia. Modest increases in the percentage of cats returned to owner (RTO) and the adoption rate were also observed, although both metrics decreased on an absolute basis, while the number of calls to the city about dead cats declined. Abstract Available evidence indicates that overall levels of feline intake and euthanasia at U.S. shelters have significantly declined in recent decades. Nevertheless, millions of cats, many of them free-roaming, continue to be admitted to shelters each year. In some locations, as many as 70% of cats, perhaps up to one million or more per year nationally, are euthanized. New approaches, including return-to-field (RTF) and targeted trap-neuter-return (TNR) appear to have transformative potential. The purpose of the present study was to examine changes in feline intake

  4. Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference (Preprint)

    DTIC Science & Technology

    2015-10-01

    scheduling for extended targets in radar using information theoretic measures , tracking etc can be seen in [45]–[50], [51]–[56], and the references...range gate, the measured snapshot vector consists of the target returns and the undesired returns, i.e. clutter returns, interference and noise. The...D. Cochran, S. Suvorova, S. Howard, and W. Moran, “Waveform libraries: Measures of effectiveness for radar scheduling,” IEEE Signal Processing

  5. Incorporating signal-dependent noise for hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Morman, Christopher J.; Meola, Joseph

    2015-05-01

    The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.

  6. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  7. Therapeutics Targeting FGF Signaling Network in Human Diseases.

    PubMed

    Katoh, Masaru

    2016-12-01

    Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  9. Preprotein mature domains contain translocase targeting signals that are essential for secretion.

    PubMed

    Chatzi, Katerina E; Sardis, Marios Frantzeskos; Tsirigotaki, Alexandra; Koukaki, Marina; Šoštarić, Nikolina; Konijnenberg, Albert; Sobott, Frank; Kalodimos, Charalampos G; Karamanou, Spyridoula; Economou, Anastassios

    2017-05-01

    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as pre proteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion. © 2017 Chatzi et al.

  10. Preprotein mature domains contain translocase targeting signals that are essential for secretion

    PubMed Central

    Tsirigotaki, Alexandra; Koukaki, Marina; Šoštarić, Nikolina; Konijnenberg, Albert; Sobott, Frank; Kalodimos, Charalampos G.; Karamanou, Spyridoula

    2017-01-01

    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion. PMID:28404644

  11. Targeting the Notch signaling pathway in autoimmune diseases.

    PubMed

    Ma, Daoxin; Zhu, Yuanchao; Ji, Chunyan; Hou, Ming

    2010-05-01

    The Notch signaling pathway regulates a variety of processes and has been linked to diverse effects. Aberrant Notch function is important in several disorders. Pre-clinical studies have suggested that inhibition of Notch is an attractive approach to treat hematologic and solid malignancies. Many patients with refractory autoimmune diseases respond poorly to therapy and have significant morbidity and the treatment is highly toxic, so more effective therapies for autoimmune diseases are being examined. The role of the Notch pathway and therapeutic strategies targeting it in many illnesses, especially autoimmune diseases. The Notch pathway has unique and attractive advantages for targeting. Targeting it has already been trialed in many experiments, which may show better efficacy and fewer side effects compared with classical drugs for the treatment. Targeting Notch might provide etiological rather than symptomatic treatment. Various methods targeting the Notch pathway have been under investigation. Rational targeting of the Notch signaling pathway in cancer and some autoimmune diseases has proven to be successful. Classical drugs for the treatment of autoimmune diseases are inefficient and toxic to some extent, and targeting the Notch pathway is a promising therapeutic concept. However, there are still many questions about targeting Notch in autoimmune diseases, and further investigation will be needed.

  12. The Impact of an Integrated Program of Return-to-Field and Targeted Trap-Neuter-Return on Feline Intake and Euthanasia at a Municipal Animal Shelter.

    PubMed

    Spehar, Daniel D; Wolf, Peter J

    2018-04-13

    Available evidence indicates that overall levels of feline intake and euthanasia at U.S. shelters have significantly declined in recent decades. Nevertheless, millions of cats, many of them free-roaming, continue to be admitted to shelters each year. In some locations, as many as 70% of cats, perhaps up to one million or more per year nationally, are euthanized. New approaches, including return-to-field (RTF) and targeted trap-neuter-return (TNR) appear to have transformative potential. The purpose of the present study was to examine changes in feline intake and euthanasia, as well as additional associated metrics, at a municipal animal shelter in Albuquerque, New Mexico, after institutionalized RTF and targeted TNR protocols, together referred to as a community cat program (CCP), were added to ongoing community-based TNR efforts and a pilot RTF initiative. Over the course of the CCP, which ran from April 2012 to March 2015, 11,746 cats were trapped, sterilized, vaccinated, and returned or adopted. Feline euthanasia at the Albuquerque Animal Welfare Department (AAWD) declined by 84.1% and feline intake dropped by 37.6% over three years; the live release rate (LRR) increased by 47.7% due primarily to these reductions in both intake and euthanasia. Modest increases in the percentage of cats returned to owner (RTO) and the adoption rate were also observed, although both metrics decreased on an absolute basis, while the number of calls to the city about dead cats declined.

  13. Targeting kinase signaling pathways with constrained peptide scaffolds

    PubMed Central

    Hanold, Laura E.; Fulton, Melody D.; Kennedy, Eileen J.

    2017-01-01

    Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications. PMID:28185915

  14. 26 CFR 1.338-10 - Filing of returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section 338. (ii) New target in purchasing corporation's consolidated return. If new target is includible... election or other action that must be specified in a timely filed return for new target's first taxable..., any deemed sale tax consequences are reported on the final return of old target filed for old target's...

  15. 26 CFR 1.338-10 - Filing of returns.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section 338. (ii) New target in purchasing corporation's consolidated return. If new target is includible... election or other action that must be specified in a timely filed return for new target's first taxable..., any deemed sale tax consequences are reported on the final return of old target filed for old target's...

  16. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Point of No Return

    PubMed Central

    Logan, Gordon D.

    2015-01-01

    Bartlett (1958) described the point of no return as a point of irrevocable commitment to action, which was preceded by a period of gradually increasing commitment. As such, the point of no return reflects a fundamental limit on the ability to control thought and action. I review the literature on the point of no return, taking three perspectives. First, I consider the point of no return from the perspective of the controlled act, as a locus in the architecture and anatomy of the underlying processes. I review experiments from the stop-signal paradigm that suggest that the point of no return is located late in the response system. Then I consider the point of no return from the perspective of the act of control that tries to change the controlled act before it becomes irrevocable. From this perspective, the point of no return is a point in time that provides enough “lead time” for the act of control to take effect. I review experiments that measure the response time to the stop signal as the lead time required for response inhibition in the stop-signal paradigm. Finally, I consider the point of no return in hierarchically controlled tasks, in which there may be many points of no return at different levels of the hierarchy. I review experiments on skilled typing that suggest different points of no return for the commands that determine what is typed and the countermands that inhibit typing, with increasing commitment to action the lower the level in the hierarchy. I end by considering the point of no return in perception and thought as well as action. PMID:25633089

  18. 26 CFR 1.338-10 - Filing of returns.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section 338. (ii) New target in purchasing corporation's consolidated return. If new target is includible... election or other action that must be specified in a timely filed return for new target's first taxable... section, any deemed sale tax consequences are reported on the final return of old target filed for old...

  19. 26 CFR 1.338-10 - Filing of returns.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section 338. (ii) New target in purchasing corporation's consolidated return. If new target is includible... election or other action that must be specified in a timely filed return for new target's first taxable... section, any deemed sale tax consequences are reported on the final return of old target filed for old...

  20. 26 CFR 1.338-10 - Filing of returns.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section 338. (ii) New target in purchasing corporation's consolidated return. If new target is includible... election or other action that must be specified in a timely filed return for new target's first taxable... section, any deemed sale tax consequences are reported on the final return of old target filed for old...

  1. Caveolins: targeting pro-survival signaling in the heart and brain

    PubMed Central

    Stary, Creed M.; Tsutsumi, Yasuo M.; Patel, Piyush M.; Head, Brian P.; Patel, Hemal H.; Roth, David M.

    2012-01-01

    The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies. PMID:23060817

  2. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  3. Controversies in cancer stem cells: targeting embryonic signaling pathways.

    PubMed

    Takebe, Naoko; Ivy, S Percy

    2010-06-15

    Selectively targeting cancer stem cells (CSC) or tumor-initiating cells (TIC; from this point onward referred to as CSCs) with novel agents is a rapidly emerging field of oncology. Our knowledge of CSCs and their niche microenvironments remains a nascent field. CSC's critical dependence upon self-renewal makes these regulatory signaling pathways ripe for the development of experimental therapeutic agents. Investigational agents targeting the Notch, Hedgehog, and Wnt pathways are currently in late preclinical development stages, with some early phase 1-2 testing in human subjects. This series of articles will provide an overview and summary of the current state of knowledge of CSCs, their interactive microenvironment, and how they may serve as important targets for antitumor therapies. We also examine the scope and stage of development of early experimental agents that specifically target these highly conserved embryonic signaling pathways. (c) 2010 AACR.

  4. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  5. Targeting Notch signalling pathway of cancer stem cells.

    PubMed

    Venkatesh, Vandana; Nataraj, Raghu; Thangaraj, Gopenath S; Karthikeyan, Murugesan; Gnanasekaran, Ashok; Kaginelli, Shanmukhappa B; Kuppanna, Gobianand; Kallappa, Chandrashekrappa Gowdru; Basalingappa, Kanthesh M

    2018-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.

  6. Targeting the Hippo signalling pathway for cancer treatment.

    PubMed

    Nakatani, Keisuke; Maehama, Tomohiko; Nishio, Miki; Goto, Hiroki; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-03-01

    The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. Characterization of the targeting signal in mitochondrial β-barrel proteins

    PubMed Central

    Jores, Tobias; Klinger, Anna; Groß, Lucia E.; Kawano, Shin; Flinner, Nadine; Duchardt-Ferner, Elke; Wöhnert, Jens; Kalbacher, Hubert; Endo, Toshiya; Schleiff, Enrico; Rapaport, Doron

    2016-01-01

    Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. PMID:27345737

  8. HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.

    PubMed

    Elster, N; Collins, D M; Toomey, S; Crown, J; Eustace, A J; Hennessy, B T

    2015-01-01

    Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC.

  9. A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    PubMed Central

    Gonzalez, Nicola H.; Felsner, Gregor; Schramm, Frederic D.; Klingl, Andreas; Maier, Uwe-G.; Bolte, Kathrin

    2011-01-01

    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1. PMID:21966495

  10. A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer.

    PubMed

    Arumuggam, Niroshaathevi; Bhowmick, Neil A; Rupasinghe, H P Vasantha

    2015-06-01

    Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Quantum Illumination-Based Target Detection and Discrimination

    DTIC Science & Technology

    2014-06-30

    amplifier (EDFA) was combined with the signal to simulate a high-noise environment, with a noise photon number per mode NB in the range 40–300. The...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement , parametric downconversion, optical parametric amplifiers...laser system of the same average transmitted photon number, when the target return has random-amplitude behavior. Receiver operating characteristic

  12. Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.

    PubMed

    Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin

    2016-01-01

    Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.

  13. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  14. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    PubMed Central

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  15. Cell signaling molecules as drug targets in lung cancer: an overview.

    PubMed

    Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa

    2011-07-01

    Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.

  16. Therapeutic Potential of Targeting PAK Signaling.

    PubMed

    Senapedis, William; Crochiere, Marsha; Baloglu, Erkan; Landesman, Yosef

    2016-01-01

    The therapeutic potential of targeting p21-Activated Kinases (PAK1 - 6) for the treatment of cancer has recently gained traction in the biotech industry. Many pharmaceutically-viable ATP competitive inhibitors have been through different stages of pre-clinical development with only a single compound evaluated in human trails (PF-3758309). The best studied functional roles of PAK proteins are control of cell adhesion and migration. PAK proteins are known downstream effectors of Ras signaling with PAK expression elevated in cancer (pancreatic, colon, breast, lung and other solid tumors). In addition altered PAK expression is a confirmed driver of this disease, especially in tumors harboring oncogenic Ras. However, there are very few examples of gain-of-function PAK mutations, as a majority of the cancer types have elevated PAK expression due to gene amplification or transcriptional modifications. There is a substantial number of known substrates affected by this aberrant PAK activity. One particular substrate, β-catenin, has garnered interest given its importance in both normal and cancer cell development. These data place PAK proteins between two major signaling pathways in cancer (Ras and β -catenin), making therapeutic targeting of PAKs an intriguing approach for the treatment of a broad array of oncological malignancies.

  17. Metformin targets multiple signaling pathways in cancer.

    PubMed

    Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi

    2017-01-26

    Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.

  18. Differential targeting of Gbetagamma-subunit signaling with small molecules.

    PubMed

    Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V

    2006-04-21

    G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  19. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer

    PubMed Central

    Niiro, Emiko; Morioka, Sachiko; Iwai, Kana; Yamada, Yuki; Ogawa, Kenji; Kawahara, Naoki; Kobayashi, Hiroshi

    2018-01-01

    Cases of mucinous ovarian cancer are predominantly resistant to chemotherapies. The present review summarizes current knowledge of the therapeutic potential of targeting the Wingless (WNT) pathway, with particular emphasis on preclinical and clinical studies, for improving the chemoresistance and treatment of mucinous ovarian cancer. A review was conducted of English language literature published between January 2000 and October 2017 that concerned potential signaling pathways associated with the chemoresistance of mucinous ovarian cancer. The literature indicated that aberrant activation of growth factor and WNT signaling pathways is specifically observed in mucinous ovarian cancer. An evolutionarily conserved signaling cascade system including epidermal growth factor/RAS/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase, phosphoinositide 3-kinase/Akt and WNT signaling regulates a variety of cellular functions; their crosstalk mutually enhances signaling activity and induces chemoresistance. Novel antagonists, modulators and inhibitors have been developed for targeting the components of the WNT signaling pathway, namely Frizzled, low-density lipoprotein receptor-related protein 5/6, Dishevelled, casein kinase 1, AXIN, glycogen synthase kinase 3β and β-catenin. Targeted inhibition of WNT signaling represents a rational and promising novel approach to overcome chemoresistance, and several WNT inhibitors are being evaluated in preclinical studies. In conclusion, the WNT receptors and their downstream components may serve as novel therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. PMID:29564122

  20. A comprehensive look at phobic fear in inhibition of return: Phobia-related spiders as cues and targets.

    PubMed

    Berdica, Elisa; Gerdes, Antje B M; Alpers, Georg W

    2017-03-01

    The so called inhibition of return (IOR) effect refers to a bias against returning attention to a location which was previously investigated. Because emotionally salient material has the capacity to capture and hold attention it has been suggested that this material may disrupt this otherwise impressively stable phenomenon. 40 students participated in the experiment. Black and white schematic drawings of a spider, a butterfly or a cross were used as cues. A black dot, a spider, a butterfly or a cross were used as targets. Participants were required to press a key whenever the target picture appeared. Subsequently, they rated the pictures on valence and arousal. Results showed that the IOR effect remained stable and did not diminish with either fear-related cues or fear-related targets. This data adds strong arguments for the stability of IOR. The spider fearful participants were not diagnosed patients. They still meet the criteria for spider fear but follow-up studies should pursue the same question with a specific focus on participants' levels of anxiety. This study is a contribution to the debate on how emotions affect or do not affect attentional processes such as the IOR. IOR appears to be a robust phenomenon and the emotional valence of neither the cue nor the emotional valence of the target can override it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  2. Sequential Axon-derived Signals Couple Target Survival and Layer Specificity in the Drosophila Visual System

    PubMed Central

    Pecot, Matthew Y.; Chen, Yi; Akin, Orkun; Chen, Zhenqing; Tsui, C.Y. Kimberly; Zipursky, S. Lawrence

    2015-01-01

    SUMMARY Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1–R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer-specificity. We show that Jelly belly (Jeb) produced by R1–R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system. PMID:24742459

  3. Signaling pathways relevant to cognition-enhancing drug targets.

    PubMed

    Ménard, Caroline; Gaudreau, Pierrette; Quirion, Rémi

    2015-01-01

    Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.

  4. Aerosol speckle effects on atmospheric pulsed lidar backscattered signals

    NASA Technical Reports Server (NTRS)

    Murty, S. R.

    1989-01-01

    Lidar systems using atmospheric aerosols as targets exhibit return signal amplitude and power fluctuations which indicate speckle effects. The effects of refractive turbulence along the path on the aerosol speckle field propagation and on the decorrelation time are studied for coherent pulsed lidar systems.

  5. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2010-07-14

    CD22 -binding peptides that initiate signal transduction and apoptosis in non-Hodgkin’s lymphoma (NHL), 2) optimize CD22 -mediated signal transduction...and lymphomacidal properties of ligand blocking anti- CD22 monoclonal antibodies (mAbs) and peptides with CD22 -specific phosphatase inhibition and 3...correlate mAb-mediated and anti- CD22 peptide-mediated in vivo physiologic changes, efficacy, and tumor targeting using advanced immuno-positron

  6. Therapeutic Targeting of the IL-6 Trans-Signaling/Mechanistic Target of Rapamycin Complex 1 Axis in Pulmonary Emphysema.

    PubMed

    Ruwanpura, Saleela M; McLeod, Louise; Dousha, Lovisa F; Seow, Huei J; Alhayyani, Sultan; Tate, Michelle D; Deswaerte, Virginie; Brooks, Gavin D; Bozinovski, Steven; MacDonald, Martin; Garbers, Christoph; King, Paul T; Bardin, Philip G; Vlahos, Ross; Rose-John, Stefan; Anderson, Gary P; Jenkins, Brendan J

    2016-12-15

    The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. We used the gp130 F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.

  7. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    PubMed Central

    Kunze, Markus; Berger, Johannes

    2015-01-01

    The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678

  8. Differential Targeting of Gβγ-Subunit Signaling with Small Molecules

    NASA Astrophysics Data System (ADS)

    Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.

    2006-04-01

    G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  9. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  11. Ganoderma lucidum targeting lung cancer signaling: A review.

    PubMed

    Gill, Balraj Singh; Navgeet; Kumar, Sanjeev

    2017-06-01

    Lung cancer causes huge mortality to population, and pharmaceutical companies require new drugs as an alternative either synthetic or natural targeting lung cancer. The conventional therapies cause side effects, and therefore, natural products are used as a therapeutic candidate in lung cancer. Chemical diversity among natural products highlights the impact of evolution and survival of fittest. One such neglected natural product is Ganoderma lucidum used for promoting health and longevity for a longer time. The major bioconstituents of G. lucidum are mainly terpenes, polysaccharides, and proteins, which were explored for various activities ranging from apoptosis to autophagy. The bioconstituents of G. lucidum activate plasma membrane receptors and initiate various downstream signaling leading to nuclear factor-κB, phosphoinositide 3-kinase, Akt, and mammalian target of rapamycin in cancer. The bioconstituents regulate the expression of various genes involved in cell cycle, immune response, apoptosis, and autophagy in lung cancer. This review highlights the inextricable role of G. lucidum and its bioconstituents in lung cancer signaling for the first time.

  12. Fractal properties of background noise and target signal enhancement using CSEM data

    NASA Astrophysics Data System (ADS)

    Benavides, Alfonso; Everett, Mark E.; Pierce, Carl; Nguyen, Cam

    2003-09-01

    Controlled-source electromagnetic (CSEM) spatial profiles and 2-D conductivity maps were obtained on the Brazos Valley, TX floodplain to study the fractal statistics of geological signals and effects of man-made conductive targets using Geonics EM34, EM31 and EM63. Using target-free areas, a consistent power-law power spectrum (|A(k)| ~ k ^-β) for the profiles was found with β values typical of fractional Brownian motion (fBm). This means that the spatial variation of conductivity does not correspond to Gaussian statistics, where there are spatial correlations at different scales. The presence of targets tends to flatten the power-law power spectrum (PS) at small wavenumbers. Detection and localization of targets can be achieved using short-time Fourier transform (STFT). The presence of targets is enhanced because the signal energy is spread to higher wavenumbers (small scale numbers) in the positions occupied by the targets. In the case of poor spatial sampling or small amount of data, the information available from the power spectrum is not enough to separate spatial correlations from target signatures. Advantages are gained by using the spatial correlations of the fBm in order to reject the background response, and to enhance the signals from highly conductive targets. This approach was tested for the EM31 using a pre-processing step that combines apparent conductivity readings from two perpendicular transmitter-receiver orientations at each station. The response obtained using time-domain CSEM is influence to a lesser degree by geological noise and the target response can be processed to recover target features. The homotopy method is proposed to solve the inverse problem using a set of possible target models and a dynamic library of responses used to optimize the starting model.

  13. Signal and noise level estimation for narrow spectral width returns observed by the Indian MST radar

    NASA Astrophysics Data System (ADS)

    Hooper, D. A.

    1999-07-01

    Use is made of five sets of multibeam observations of the lower atmosphere made by the Indian mesosphere-stratosphere-troposphere (MST) radar. Two aspects of signal processing which can lead to serious underestimates of the signal-to-noise ratio are considered. First, a comparison is made of the effects of different data weighting windows applied to the inphase and quadrature components of the radar return samples prior to Fourier transformation. The relatively high degree of spectral leakage associated with the rectangular and Hamming windows can give rise to overestimates of the noise levels by up to 28 dB for the strongest signals. Use of the Hanning window is found to be the most appropriate for these particular data. Second, a technique for removing systematic dc biases from the data in the time domain is compared with the more well-known practice of correction in the frequency domain. The latter technique, which is often used to remove the effects of ground clutter, is shown to be particularly inappropriate for the characteristically narrow spectral width signals observed by the Indian MST radar. For cases of near-zero Doppler shift it can remove up to 30 dB of signal information. The consequences of noise and signal level discrepancies for studies of refractivity structures are discussed. It is shown that neither problem has a significant effect on Doppler shift or spectral width estimates.

  14. Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways.

    PubMed

    Oren, Ohad; Smith, B Douglas

    2017-02-01

    Dramatic advances have been made in the understanding of cancer over the past decade. Prime among those are better appreciation of the biology of cancer and the development of targeted therapies. Despite these improvements, however, most tumors remain refractory to anti-cancer medications and frequently recur. Cancer Stem Cells (CSCs), which in some cases express markers of pluripotency (e.g., Oct-4), share many of the molecular features of normal stem cells. These cells have been hypothesised to play a role in tumor resistance and relapse. They exhibit dependence on many primitive regulatory pathways and may be best viewed in the context of embryonic signaling pathways. In this article, we review important embryonic signaling cascades and their differential expression in CSCs. We also discuss these pathways as actionable targets for novel therapies in hopes that eliminating cancer stem cells will lead to an improvement in overall survival for patients.

  15. naked cuticle targets dishevelled to antagonize Wnt signal transduction

    PubMed Central

    Rousset, Raphaël; Mack, Judith A.; Wharton, Keith A.; Axelrod, Jeffrey D.; Cadigan, Ken M.; Fish, Matthew P.; Nusse, Roel; Scott, Matthew P.

    2001-01-01

    In Drosophila embryos the protein Naked cuticle (Nkd) limits the effects of the Wnt signal Wingless (Wg) during early segmentation. nkd loss of function results in segment polarity defects and embryonic death, but how nkd affects Wnt signaling is unknown. Using ectopic expression, we find that Nkd affects, in a cell-autonomous manner, a transduction step between the Wnt signaling components Dishevelled (Dsh) and Zeste-white 3 kinase (Zw3). Zw3 is essential for repressing Wg target-gene transcription in the absence of a Wg signal, and the role of Wg is to relieve this inhibition. Our double-mutant analysis shows that, in contrast to Zw3, Nkd acts when the Wg pathway is active to restrain signal transduction. Yeast two hybrid and in vitro experiments indicate that Nkd directly binds to the basic-PDZ region of Dsh. Specially timed Nkd overexpression is capable of abolishing Dsh function in a distinct signaling pathway that controls planar-cell polarity. Our results suggest that Nkd acts directly through Dsh to limit Wg activity and thus determines how efficiently Wnt signals stabilize Armadillo (Arm)/β-catenin and activate downstream genes. PMID:11274052

  16. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    PubMed

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  18. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    PubMed Central

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  19. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    PubMed

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  20. One idea of portfolio risk control for absolute return strategy risk adjustments by signals from correlation behavior

    NASA Astrophysics Data System (ADS)

    Nishiyama, N.

    2001-12-01

    Absolute return strategy provided from fund of funds (FOFs) investment schemes is the focus in Japanese Financial Community. FOFs investment mainly consists of hedge fund investment and it has two major characteristics which are low correlation against benchmark index and little impact from various external changes in the environment given maximizing return. According to the historical track record of survival hedge funds in this business world, they maintain a stable high return and low risk. However, one must keep in mind that low risk would not be equal to risk free. The failure of Long-term capital management (LTCM) that took place in the summer of 1998 was a symbolized phenomenon. The summer of 1998 exhibited a certain limitation of traditional value at risk (VaR) and some possibility that traditional VaR could be ineffectual to the nonlinear type of fluctuation in the market. In this paper, I try to bring self-organized criticality (SOC) into portfolio risk control. SOC would be well known as a model of decay in the natural world. I analyzed nonlinear type of fluctuation in the market as SOC and applied SOC to capture complicated market movement using threshold point of SOC and risk adjustments by scenario correlation as implicit signals. Threshold becomes the control parameter of risk exposure to set downside floor and forecast extreme nonlinear type of fluctuation under a certain probability. Simulation results would show synergy effect of portfolio risk control between SOC and absolute return strategy.

  1. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies

    PubMed Central

    Ahmed, Wesam; Van Etten, Richard A.

    2013-01-01

    The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472

  2. Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA) as Critical In Situ Investigation for Targeting Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team

    2018-04-01

    SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.

  3. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)

    PubMed Central

    Lamming, Dudley W.; Demirkan, Gokhan; Boylan, Joan M.; Mihaylova, Maria M.; Peng, Tao; Ferreira, Jonathan; Neretti, Nicola; Salomon, Arthur; Sabatini, David M.; Gruppuso, Philip A.

    2014-01-01

    The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.—Lamming, D. W., Demirkan, G., Boylan, J. M., Mihaylova, M. M., Peng, T., Ferreira, J., Neretti, N., Salomon, A., Sabatini, D. M., Gruppuso, P. A. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). PMID:24072782

  4. Identification of the feedforward component in manual control with predictable target signals.

    PubMed

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  5. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks.

    PubMed

    Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang

    2017-05-30

    In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.

  6. mTOR Signaling Confers Resistance to Targeted Cancer Drugs.

    PubMed

    Guri, Yakir; Hall, Michael N

    2016-11-01

    Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Manual method of visually identifying candidate signals for a targeted peptide.

    PubMed

    Filimonov, Aleksey; Kopylov, Arthur; Lisitsa, Andrey; Archakov, Alexander

    2018-04-15

    The purpose of this study is to improve peptide signal identification in groups of extracted ion chromatograms (XICs) obtained with the liquid chromatography-selected reaction monitoring (LC-SRM) technique and a triple quadrupole mass spectrometer (QqQ) operating in one of the supported multiple reaction monitoring (MRM) modes. The imperfection of quadrupole mass analyzers causes ion interference, which impedes the identification of peptide signals as chromatographic peak groups in relevant retention time intervals. To investigate this problem in depth, the QqQ conversion of the eluate into XIC groups was considered as the consecutive transformations of the particles' abundances as the corresponding functions of retention time. In this study, the hypothesis that, during this conversion, the same chromatographic profile should be preserved as an implicit sign in each chromatographic peak of the signal was confirmed for peptides. To examine chromatographic profiles, continuous transformations of XIC groups were derived and implemented in srm2prot Express software (s2pe, http://msr.ibmc.msk.ru/s2pe). Because of ion interference, several peptide-like signals may appear in one XIC group. Therefore, these signals must be considered candidates for a targeted peptide's signal and should be resolved after identification. The theoretical investigation of intensity functions as XICs that are not distorted by noise produced three rules for Identifying Candidate Signals for a targeted Peptide (ICSP, http://msr.ibmc.msk.ru/ICSP) that constitute the proposed manual visual method. We theoretically and experimentally compared this method with the conventional semiempirical intuitive technique and found that the former significantly streamlines peptide signal identification and avoids typical errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mutual antagonism of target of rapamycin and calcineurin signaling.

    PubMed

    Mulet, Jose M; Martin, Dietmar E; Loewith, Robbie; Hall, Michael N

    2006-11-03

    Growth and stress are generally incompatible states. Stressed cells adapt to an insult by restraining growth, and conversely, growing cells keep stress responses at bay. This is evident in many physiological settings, including for example, the effect of stress on the immune or nervous system, but the underlying signaling mechanisms mediating such mutual antagonism are poorly understood. In eukaryotes, a central activator of cell growth is the protein kinase target of rapamycin (TOR) and its namesake signaling network. Calcineurin is a conserved, Ca(2+)/calmodulin-dependent protein phosphatase and target of the immunosuppressant FK506 (tacrolimus) that is activated in yeast during stress to promote cell survival. Here we show yeast mutants defective for TOR complex 2 (TORC2) or the essential homologous TORC2 effectors, SLM1 and SLM2, exhibited constitutive activation of calcineurin-dependent transcription and actin depolarization. Conversely, cells defective in calcineurin exhibited SLM1 hyperphosphorylation and enhanced interaction between TORC2 and SLM1. Furthermore, a mutant SLM1 protein (SLM1(DeltaC14)) lacking a sequence related to the consensus calcineurin docking site (PxIxIT) was insensitive to calcineurin, and SLM1(Delta)(C14) slm2 mutant cells were hypersensitive to oxidative stress. Thus, TORC2-SLM signaling negatively regulates calcineurin, and calcineurin negatively regulates TORC2-SLM. These findings provide a molecular basis for the mutual antagonism of growth and stress.

  9. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  10. The effects of variations in the number and sequence of targeting signals on nuclear uptake

    PubMed Central

    1988-01-01

    To determine if the number of targeting signals affects the transport of proteins into the nucleus, Xenopus oocytes were injected with colloidal gold particles, ranging in diameter from 20 to 280 A, that were coated with BSA cross-linked with synthetic peptides containing the SV-40 large T-antigen nuclear transport signal. Three BSA conjugate preparations were used; they had an average of 5, 8, and 11 signals per molecule of carrier protein. In addition, large T-antigen, which contains one signal per monomer, was used as a coating agent. The cells were fixed at various times after injection and subsequently analyzed by electron microscopy. Gold particles coated with proteins containing the SV-40 signal entered the nucleus through central channels located within the nuclear pores. Analysis of the intracellular distribution and size of the tracers that entered the nucleus indicated that the number of signals per molecule affect both the relative uptake of particles and the functional size of the channels available for translocation. In control experiments, gold particles coated with BSA or BSA conjugated with inactive peptides similar to the SV-40 transport signal were virtually excluded from the nucleus. Gold particles coated with nucleoplasmin, an endogenous karyophilic protein that contains five targeting signals per molecule, was transported through the nuclear pores more effectively than any of the BSA-peptide conjugates. Based on a correlation between the peri-envelope density of gold particles and their relative uptake, it is suggested that the differences in the activity of the two targeting signals is related to their binding affinity for envelope receptors. It was also determined, by performing coinjection experiments, that individual pores are capable of recognizing and transporting proteins that contain different nuclear targeting signals. PMID:3170630

  11. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.

    PubMed

    Chua, Huey Eng; Bhowmick, Sourav S; Tucker-Kellogg, Lisa

    2017-10-01

    Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. HAUS8 regulates RLR‑VISA antiviral signaling positively by targeting VISA.

    PubMed

    He, Tian-Sheng; Chen, Tian; Wang, Dan-Dan; Xu, Liang-Guo

    2018-06-15

    Mitochondrial anti‑viral signaling protein (VISA), additionally termed MAVS, IPS‑1 and Cardif, is located at the outer membrane of mitochondria and is an essential adaptor in the Rig‑like receptor (RLRs) signaling pathway. Upon viral infection, activated RLRs interact with VISA on mitochondria, forming a RLR‑VISA platform, leading to the recruitment of different TRAF family members, including TRAF3, TRAF2 and TRAF6. This results in the phosphorylation and nuclear translocation of interferon regulatory factors 3 and 7 (IRF3/IRF7) by TANK binding kinase 1 (TBK1) and/or IKKε, as well as activation of NF‑κB, to induce type I interferons (IFNs) and pro‑inflammatory cytokines. It remains to be elucidated how VISA functions as a scaffold for protein complex assembly in mitochondria to regulate RLR‑VISA antiviral signaling. In the present study, it was demonstrated that HAUS augmin like complex subunit 8 (HAUS8) augments the RLR‑VISA‑dependent antiviral signaling pathway by targeting the VISA complex. Co‑immunoprecipitation verified that HAUS8 was associated with VISA and the VISA signaling complex components retinoic acid‑inducible gene I (RIG‑I) and TBK1 when the RLR‑VISA signaling pathway was activated. The data demonstrated that overexpression of HAUS8 significantly promoted the activity of the transcription factors NF‑κB, IRF3 and the IFN‑β promoter induced by Sendai virus‑mediated RLR‑VISA signaling. HAUS8 increased the polyubiquitination of VISA, RIG‑I and TBK1. Knockdown of HAUS8 inhibited the activation of the transcription factors IRF‑3, NF‑κB and the IFN‑β promoter triggered by Sendai virus. Collectively, these results demonstrated that HAUS8 may function as a positive regulator of RLR‑VISA dependent antiviral signaling by targeting the VISA complex, providing a novel regulatory mechanism of antiviral responses.

  13. The contribution of forward masking to saccadic inhibition of return.

    PubMed

    Souto, David; Born, Sabine; Kerzel, Dirk

    2018-03-08

    Inhibition of return is the name typically given to the prolonged latency of motor responses directed to a previously cued target location. There is intense debate about the origins of this effect and its function, but most take for granted (despite lack of evidence) that it depends little on forward masking. Therefore, we re-examined the role of forward masking in inhibition of return. Forward masking was indexed by slower saccadic reaction times (SRTs) when the target orientation repeated the cue orientation at the same location. We confirmed effects of orientation repetition in the absence of an attentional bias when cues were presented on both sides of fixation (bilateral presentation). The effect of orientation repetition was reduced with high target contrast, consistent with a low-level origin such as contrast gain control in early visual areas. When presenting cues on only one side of fixation (unilateral presentation), we obtained inhibition of return with longer cue-target intervals and facilitation with targets presented shortly after the cue. The effect of orientation repetition was reduced when facilitation was observed, but was as strong as with bilateral cues when inhibition of return was observed. Therefore, forward masking may contribute to the inhibition of return effect by delaying reaction times to repeated features at the same location, but is not a principal cause of inhibition of return; in agreement with previous views. The saccadic inhibition of return effect is a reaction-time cost when responding to a pre-cued location. Additional object updating costs are typically invoked to explain reaction-time costs observed when cue and target have the same shape. Yet, lower-level, forward masking of the target by the cue can not be ruled out. Importantly, we show an effect of orientation repetition that is consistent with low-level forward masking rather than object updating costs and that does not interact with inhibition of return.

  14. The optical and radiation field signatures produced by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Guo, C.; Krider, E. P.

    1982-01-01

    Typical examples of the signals that are produced by first and subsequent return strokes in cloud-to-ground lightning on a microsecond time scale are presented. Statistics on the structure of the waveforms and the radiance of the channels are given. The relationship between the light signals and the associated electric field signatures is discussed. It is shown that the initial light signal from a return stroke tends to be linear for about 15 microsec and then rises more slowly to a peak that is delayed by approximately 60 microsec from the electric field peak. It is thought that the transition between the fast linear portion and the slower rise may be due to the return stroke entering the cloud base. A small percentage of the records suggest that two different branches of the same stepped leader can initiate separate return strokes. The light pulses from cloud discharges tend to be smaller and to vary more slowly than those from return strokes.

  15. Method and apparatus for determining return stroke polarity of distant lightning

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)

    1992-01-01

    A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.

  16. Method and apparatus for determining return stroke polarity of distant lightning

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J. (Inventor); Brook, Marx (Inventor)

    1990-01-01

    A method is described for determining the return stroke polarity of distant lightning for distances beyond 600 km by detecting the electric field associated with a return stroke of distant lightning, and processing the electric field signal to determine the polarity of the slow tail of the VLF waveform signal associated with the detected electric field. The polarity of the return stroke of distant lightning is determined based upon the polarity of the slow tail portion of the waveform.

  17. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  18. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.

    PubMed

    Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B

    2017-08-15

    Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  20. Uterine progesterone signaling is a target for metformin therapy in PCOS-like rats.

    PubMed

    Hu, Min; Zhang, Yuehui; Feng, Jiaxing; Xu, Xue; Zhang, Jiao; Zhao, Wei; Guo, Xiaozhu; Li, Juan; Vestin, Edvin; Cui, Peng; Li, Xin; Wu, Xiao-Ke; Brännström, Mats; Shao, Linus R; Billig, Håkan

    2018-05-01

    Impaired progesterone (P4) signaling is linked to endometrial dysfunction and infertility in women with polycystic ovary syndrome (PCOS). Here, we report for the first time that elevated expression of progesterone receptor (PGR) isoforms A and B parallels increased estrogen receptor (ER) expression in PCOS-like rat uteri. The aberrant PGR-targeted gene expression in PCOS-like rats before and after implantation overlaps with dysregulated expression of Fkbp52 and Ncoa2 , two genes that contribute to the development of uterine P4 resistance. In vivo and in vitro studies of the effects of metformin on the regulation of the uterine P4 signaling pathway under PCOS conditions showed that metformin directly inhibits the expression of PGR and ER along with the regulation of several genes that are targeted dependently or independently of PGR-mediated uterine implantation. Functionally, metformin treatment corrected the abnormal expression of cell-specific PGR and ER and some PGR-target genes in PCOS-like rats with implantation. Additionally, we documented how metformin contributes to the regulation of the PGR-associated MAPK/ERK/p38 signaling pathway in the PCOS-like rat uterus. Our data provide novel insights into how metformin therapy regulates uterine P4 signaling molecules under PCOS conditions. © 2018 Society for Endocrinology.

  1. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer

    PubMed Central

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer. PMID:26937130

  2. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer.

    PubMed

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-02-28

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.

  3. Transsynaptic Teneurin Signaling in Neuromuscular Synapse Organization and Target Choice

    PubMed Central

    Mosca, Timothy J.; Hong, Weizhe; Dani, Vardhan S.; Favaloro, Vincenzo; Luo, Liqun

    2012-01-01

    Synapse assembly requires transsynaptic signals between the pre- and postsynapse1, but the understanding of essential organizational molecules remains incomplete2. Teneurins are conserved, EGF-repeat containing transmembrane proteins with large extracellular domains3. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic while Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization transsynaptically and cell-autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-spectrin. Genetic analyses of teneurin and neuroligin reveal their differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates specific motoneuron-muscle target selection. Our study identifies the Teneurins as a key bi-directional transsynaptic signal in general synapse organization, and demonstrates that such a molecule can also regulate target selection. PMID:22426000

  4. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling.

    PubMed

    Lin, Chen-Ju; Robert, Francis; Sukarieh, Rami; Michnick, Stephen; Pelletier, Jerry

    2010-04-15

    Sertraline, a selective serotonin reuptake inhibitor, is a widely used antidepressant agent. Here, we show that sertraline also exhibits antiproliferative activity. Exposure to sertraline leads to a concentration-dependent decrease in protein synthesis. Moreover, polysome profile analysis of sertraline-treated cells shows a reduction in polysome content and a concomitant increase in 80S ribosomes. The inhibition in translation caused by sertraline is associated with decreased levels of the eukaryotic initiation factor (eIF) 4F complex, altered localization of eIF4E, and increased eIF2alpha phosphorylation. The latter event leads to increased REDD1 expression, which in turn impinges on the mammalian target of rapamycin (mTOR) pathway by affecting TSC1/2 signaling. Sertraline also independently targets the mTOR signaling pathway downstream of Rheb. In the Emu-myc murine lymphoma model where carcinogenesis is driven by phosphatase and tensin homologue (PTEN) inactivation, sertraline is able to enhance chemosensitivity to doxorubicin. Our results indicate that sertraline exerts antiproliferative activity by targeting the mTOR signaling pathway in a REDD1-dependent manner. (c) 2010 AACR.

  5. Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control

    PubMed Central

    Loewith, Robbie; Hall, Michael N.

    2011-01-01

    TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae. PMID:22174183

  6. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  7. Estradiol targets T cell signaling pathways in human systemic lupus.

    PubMed

    Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F

    2009-12-01

    The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.

  8. Impact of targeting insulin-like growth factor signaling in head and neck cancers.

    PubMed

    Limesand, Kirsten H; Chibly, Alejandro Martinez; Fribley, Andrew

    2013-10-01

    The IGF system has been shown to have either negative or negligible impact on clinical outcomes of tumor development depending on specific tumor sites or stages. This review focuses on the clinical impact of IGF signaling in head and neck cancer, the effects of IGF targeted therapies, and the multi-dimensional role of IRS 1/2 signaling as a potential mechanism in resistance to targeted therapies. Similar to other tumor sites, both negative and positive correlations between levels of IGF-1/IGF-1-R and clinical outcomes in head and neck cancer have been reported. In addition, utilization of IGF targeted therapies has not demonstrated significant clinical benefit; therefore the prognostic impact of the IGF system on head and neck cancer remains uncertain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.

    1992-01-01

    During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.

  10. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.

    PubMed

    Rudomanova, Valeria; Blaxall, Burns C

    2017-08-01

    The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.

    PubMed

    Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio

    2016-11-01

    Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.

  12. Effect of high-impact targeted trap-neuter-return and adoption of community cats on cat intake to a shelter.

    PubMed

    Levy, J K; Isaza, N M; Scott, K C

    2014-09-01

    Approximately 2-3 million cats enter animal shelters annually in the United States. A large proportion of these are unowned community cats that have no one to reclaim them and may be too unsocialized for adoption. More than half of impounded cats are euthanased due to shelter crowding, shelter-acquired disease or feral behavior. Trap-neuter-return (TNR), an alternative to shelter impoundment, improves cat welfare and reduces the size of cat colonies, but has been regarded as too impractical to reduce cat populations on a larger scale or to limit shelter cat intake. The aim of this study was to assess the effect of TNR concentrated in a region of historically high cat impoundments in a Florida community. A 2-year program was implemented to capture and neuter at least 50% of the estimated community cats in a single 11.9 km(2) zip code area, followed by return to the neighborhood or adoption. Trends in shelter cat intake from the target zip code were compared to the rest of the county. A total of 2366 cats, representing approximately 54% of the projected community cat population in the targeted area, were captured for the TNR program over the 2-year study period. After 2 years, per capita shelter intake was 3.5-fold higher and per capita shelter euthanasia was 17.5-fold higher in the non-target area than in the target area. Shelter cat impoundment from the target area where 60 cats/1000 residents were neutered annually decreased by 66% during the 2-year study period, compared to a decrease of 12% in the non-target area, where only 12 cats/1000 residents were neutered annually. High-impact TNR combined with the adoption of socialized cats and nuisance resolution counseling for residents is an effective tool for reducing shelter cat intake. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    ). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international

  14. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Detection and recognition of targets by using signal polarization properties

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.

    1999-08-01

    The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.

  16. Therapeutic targeting of NOTCH1 signaling in T-ALL

    PubMed Central

    Palomero, Teresa; Ferrando, Adolfo

    2010-01-01

    The recent identification of activating mutations in NOTCH1 in the majority of T-cell acute lymphoblastic leukemias (T-ALL) has brought major interest towards targeting the NOTCH signaling pathway in this disease. Small molecule γ-secretase inhibitors (GSIs) which block a critical proteolytic step required for NOTCH1 activation can effectively block the activity of NOTCH1 mutant alleles. However, the clinical development of GSIs has been hampered by their low cytotoxicity against human T-ALL and the development of significant gastrointestinal toxicity derived from inhibition of NOTCH signaling in the gut. Improved understanding of the oncogenic mechanisms of NOTCH1 and the effects of NOTCH inhibition in leukemic cells and the intestinal epithelium are required for the design of effective anti-NOTCH1 therapies in T-ALL. PMID:19778842

  17. Real Time Location of Targets in Cluttered Environments

    DTIC Science & Technology

    2014-03-13

    7 Return Signal computation from a single wind turbine ...7 Return Signal From Multiple Wind Turbines With and Without Aircraft...signals to the far field. 2. Validated using analytical signals. 3. Inner field scattering from a wind turbine and aircraft is computed 4. An

  18. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  19. HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer

    PubMed Central

    Chang, Hae Ryung; Nam, Seungyoon; Kook, Myeong-Cherl; Kim, Kyung-Tae; Liu, Xiuping; Yao, Hui; Jung, Hae Rim; Lemos, Robert; Seo, Hye Hyun; Park, Hee Seo; Gim, Youme; Hong, Dongwan; Huh, Iksoo; Kim, Young-Woo; Tan, Dongfeng; Liu, Chang-Gong; Powis, Garth; Park, Taesung; Liang, Han; Kim, Yon Hui

    2016-01-01

    Background Worldwide, gastric cancer (GC) is the fourth most common malignancy and the most common cancer in East Asia. Development of targeted therapies for this disease has focused on a few known oncogenes but has had limited effects. Objective To determine oncogenic mechanisms and novel therapeutic targets specific for GC by identifying commonly dysregulated genes from the tumours of both Asian-Pacific and Caucasian patients. Methods We generated transcriptomic profiles of 22 Caucasian GC tumours and their matched non-cancerous samples and performed an integrative analysis across different GC gene expression datasets. We examined the inhibition of commonly overexpressed oncogenes and their constituent signalling pathways by RNAi and/or pharmacological inhibition. Results Hepatocyte nuclear factor-4α (HNF4α) upregulation was a key signalling event in gastric tumours from both Caucasian and Asian patients, and HNF4α antagonism was antineoplastic. Perturbation experiments in GC tumour cell lines and xenograft models further demonstrated that HNF4α is downregulated by AMPKα signalling and the AMPK agonist metformin; blockade of HNF4α activity resulted in cyclin downregulation, cell cycle arrest and tumour growth inhibition. HNF4α also regulated WNT signalling through its target gene WNT5A, a potential prognostic marker of diffuse type gastric tumours. Conclusions Our results indicate that HNF4α is a targetable oncoprotein in GC, is regulated by AMPK signalling through AMPKα and resides upstream of WNT signalling. HNF4α may regulate ‘metabolic switch’ characteristic of a general malignant phenotype and its target WNT5A has potential prognostic values. The AMPKα-HNF4α-WNT5A signalling cascade represents a potentially targetable pathway for drug development. PMID:25410163

  20. OSIRIS-REx, Returning the Asteroid Sample

    NASA Technical Reports Server (NTRS)

    Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua

    2015-01-01

    This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful

  1. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting.

    PubMed

    Roulston, Claire; Luke, Garry A; de Felipe, Pablo; Ruan, Lin; Cope, Jonathan; Nicholson, John; Sukhodub, Andriy; Tilsner, Jens; Ryan, Martin D

    2016-08-01

    We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting. © 2016 The Authors. Traffic published by John Wiley & Sons Ltd.

  2. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  4. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    PubMed Central

    2018-01-01

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642

  5. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  6. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  7. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment.

    PubMed

    Perrot, Carole Y; Javelaud, Delphine; Mauviel, Alain

    2013-02-01

    Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Temporal correlation measurements of pulsed dual CO2 lidar returns. [for atmospheric pollution detection

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.

    1981-01-01

    A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.

  9. Targeting cancer by binding iron: Dissecting cellular signaling pathways

    PubMed Central

    Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.

    2015-01-01

    Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440

  10. Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling

    PubMed Central

    LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.

    2014-01-01

    Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472

  11. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

    PubMed

    Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen

    2008-07-17

    Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.

  12. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets.

    PubMed

    Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V

    2016-01-15

    Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing

    PubMed Central

    Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T.; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling. PMID:23724047

  14. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.

    PubMed

    Jin, Yi; Tymen, Stéphanie D; Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T; Zhou, Xiaofeng

    2013-01-01

    Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3'-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.

  15. A Method for Choosing the Best Samples for Mars Sample Return

    PubMed Central

    Gordon, Peter R.

    2018-01-01

    Abstract Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission

  16. A Method for Choosing the Best Samples for Mars Sample Return.

    PubMed

    Gordon, Peter R; Sephton, Mark A

    2018-05-01

    Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words

  17. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  18. MEK5-ERK5 Signaling in Cancer: Implications for Targeted Therapy

    PubMed Central

    Hoang, Van T.; Yan, Thomas J.; Cavanaugh, Jane E.; Flaherty, Patrick T.; Beckman, Barbara S.; Burow, Matthew E.

    2017-01-01

    Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MAPK kinase 5-extracellular signal-regulated kinase 5 (MEK5-ERK5) pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents. PMID:28153789

  19. Bench-to-bedside review: Angiopoietin signalling in critical illness – a future target?

    PubMed Central

    van Meurs, Matijs; Kümpers, Philipp; Ligtenberg, Jack JM; Meertens, John HJM; Molema, Grietje; Zijlstra, Jan G

    2009-01-01

    Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy. PMID:19435476

  20. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    PubMed

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  1. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target

    PubMed Central

    Cassano, Tommaso; Calcagnini, Silvio; Pace, Lorenzo; De Marco, Federico; Romano, Adele; Gaetani, Silvana

    2017-01-01

    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases. PMID:28210207

  2. Targeted Blockage of Signal Transducer and Activator of Transcription 5 Signaling Pathway with Decoy Oligodeoxynucleotides Suppresses Leukemic K562 Cell Growth

    PubMed Central

    Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan

    2011-01-01

    The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189

  3. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling*

    PubMed Central

    Moreno, Estefanía; Andradas, Clara; Medrano, Mireia; Caffarel, María M.; Pérez-Gómez, Eduardo; Blasco-Benito, Sandra; Gómez-Cañas, María; Pazos, M. Ruth; Irving, Andrew J.; Lluís, Carme; Canela, Enric I.; Fernández-Ruiz, Javier; Guzmán, Manuel; McCormick, Peter J.; Sánchez, Cristina

    2014-01-01

    The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology. PMID:24942731

  4. Characteristics of donors who do or do not return to give blood and barriers to their return

    PubMed Central

    Wevers, Anne; Wigboldus, Daniël H.J.; de Kort, Wim L.A.M.; van Baaren, Rick; Veldhuizen, Ingrid J.T.

    2014-01-01

    Background In the Netherlands about 50% of whole blood donors return to give blood after an invitation to donate. This study aimed to investigate the characteristics of donor return behaviour and to gain insight into the barriers to blood donation reported by the donors themselves. Materials and methods A total of 4,901 whole blood donors were invited to donate in week 39 of 2009. Barriers mentioned by donors who informed the blood bank for not donating were registered for 1 month. Logistic regression analyses assessed relevant characteristics of return behaviour, such as age and blood type, in men and women separately. Results Of the invited donors, 55% returned to give a donation, whereas 45% did not return. Male donors were more likely to return when they were older, had a higher previous return rate and had no past deferrals. The same pattern was found among women, but was less strong. The main barriers were: time constraints (35%), preference to postpone donation due to general physical problems although being eligible to donate (29%), and being ineligible to donate due to medical deferral criteria (9%). Discussion Specific donor characteristics are associated with return behaviour. Not donating due to time constraints could mean that donors do not feel the urgency of donating blood. Interventions targeted to increase commitment among specific donor groups should be tested further. PMID:23522891

  5. Characteristics of donors who do or do not return to give blood and barriers to their return.

    PubMed

    Wevers, Anne; Wigboldus, Daniël H J; de Kort, Wim L A M; van Baaren, Rick; Veldhuizen, Ingrid J T

    2014-01-01

    In the Netherlands about 50% of whole blood donors return to give blood after an invitation to donate. This study aimed to investigate the characteristics of donor return behaviour and to gain insight into the barriers to blood donation reported by the donors themselves. A total of 4,901 whole blood donors were invited to donate in week 39 of 2009. Barriers mentioned by donors who informed the blood bank for not donating were registered for 1 month. Logistic regression analyses assessed relevant characteristics of return behaviour, such as age and blood type, in men and women separately. Of the invited donors, 55% returned to give a donation, whereas 45% did not return. Male donors were more likely to return when they were older, had a higher previous return rate and had no past deferrals. The same pattern was found among women, but was less strong. The main barriers were: time constraints (35%), preference to postpone donation due to general physical problems although being eligible to donate (29%), and being ineligible to donate due to medical deferral criteria (9%). Specific donor characteristics are associated with return behaviour. Not donating due to time constraints could mean that donors do not feel the urgency of donating blood. Interventions targeted to increase commitment among specific donor groups should be tested further.

  6. From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling

    PubMed Central

    Ntziachristos, Panagiotis; Lim, Jing Shan; Sage, Julien; Aifantis, Iannis

    2014-01-01

    Since Notch phenotypes in Drosophila melanogaster were identified 100 years, Notch signaling has been extensively characterized as a regulator of cell fate decisions in a variety of organisms and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the Notch pathway to tumorigenesis. In this Perspective, we discuss the pro-tumorigenic and tumor suppressive functions of Notch signaling and dissect the molecular mechanisms that underlie these functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and observations to possible therapeutic strategies targeting the Notch pathway in human cancers. PMID:24651013

  7. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  8. Cortisol increases the return of fear by strengthening amygdala signaling in men.

    PubMed

    Kinner, Valerie L; Wolf, Oliver T; Merz, Christian J

    2018-05-01

    Relapses represent a major limitation to the long-term remission of pathological fear and anxiety. Stress modulates the acquisition and expression of fear memories and appears to promote fear recovery in patients with anxiety disorders. However, the neural correlates underlying stress hormone effects on the return of fear in humans remain unexplored. Likewise, little is known about the interactions between sex and stress hormones on return of fear phenomena. In this functional magnetic resonance imaging study, 32 men and 32 women were exposed to a fear renewal paradigm with fear acquisition in context A and extinction in context B. On the following day, participants received either cortisol or placebo 40 min before return of fear was tested in both contexts in a renewal and reinstatement test. Cortisol increased differential conditioned skin conductance responses in the extinction context B following reinstatement in men but not in women. On the neural level, this effect was characterized by enhanced fear-related activation in the right amygdala in men, while an activation decrement in this region was observed after cortisol treatment in women. Our results revealed that cortisol promotes the return of fear in men by strengthening a key node of the fear network - the amygdala. We thereby provide novel insights into a sex-specific mechanism mediating stress-induced fear recovery which may translate into different relapse risks and treatment strategies for men and women. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Estimating the frequency interval of a regularly spaced multicomponent harmonic line signal in colored noise

    NASA Astrophysics Data System (ADS)

    Frazer, Gordon J.; Anderson, Stuart J.

    1997-10-01

    The radar returns from some classes of time-varying point targets can be represented by the discrete-time signal plus noise model: xt equals st plus [vt plus (eta) t] equals (summation)i equals o P minus 1 Aiej2(pi f(i)/f(s)t) plus vt plus (eta) t, t (epsilon) 0, . . ., N minus 1, fi equals kfI plus fo where the received signal xt corresponds to the radar return from the target of interest from one azimuth-range cell. The signal has an unknown number of components, P, unknown complex amplitudes Ai and frequencies fi. The frequency parameters fo and fI are unknown, although constrained such that fo less than fI/2 and parameter k (epsilon) {minus u, . . ., minus 2, minus 1, 0, 1, 2, . . ., v} is constrained such that the component frequencies fi are bound by (minus fs/2, fs/2). The noise term vt, is typically colored, and represents clutter, interference and various noise sources. It is unknown, except that (summation)tvt2 less than infinity; in general, vt is not well modelled as an auto-regressive process of known order. The additional noise term (eta) t represents time-invariant point targets in the same azimuth-range cell. An important characteristic of the target is the unknown parameter, fI, representing the frequency interval between harmonic lines. It is desired to determine an estimate of fI from N samples of xt. We propose an algorithm to estimate fI based on Thomson's harmonic line F-Test, which is part of the multi-window spectrum estimation method and demonstrate the proposed estimator applied to target echo time series collected using an experimental HF skywave radar.

  10. MGAT1 is a novel transcriptional target of Wnt/β-catenin signaling pathway.

    PubMed

    Akiva, Izzet; Birgül Iyison, Necla

    2018-01-08

    The Wnt/β-catenin signaling pathway is an evolutionary conserved pathway, which has important functions in vertebrate early development, axis formation, cellular proliferation and morphogenesis. Additionally, Wnt/β-catenin signaling pathway is one of the most important intracellular pathways that controls cancer progression. To date most of the identified targets of this pathway are shown to harbor tumorigenic properties. We previously showed that Mannosyl glycoprotein acetylglucosaminyl-transferase (MGAT1) enzyme is among the Wnt/β-catenin signaling putative target genes in hepatocellular carcinoma cell lines (Huh7). MGAT1 protein levels were determined by Western Blotting from Huh7 cell lines in which Wnt/β-catenin pathway was activated by means of different approaches such as LiCl treatment and mutant β-catenin overexpression. Luciferase reporter assay was used to analyze the promoter activity of MGAT1. The mRNA levels of MGAT1 were determined by quantitative real-time PCR from Huh7 cells that were treated with either Wnt agonist or GSK-3β inhibitor. Wound healing and XTT cell proliferation assays were performed in order to determine the proliferation and migration capacities of MGAT1 overexpressing stable Huh7 cells. Finally, xenograft experiments were carried out to measure the tumor formation capacities in vivo. In this study we showed that the activation of Wnt/β-catenin pathway culminates in the upregulation of MGAT1 enzyme both at transcriptional and post-transcriptional levels. We also showed that overexpression of the β-catenin gene (CTNNB1) increased the promoter activity of MGAT1. We applied a set of complementary approaches to elucidate the functional importance of MGAT1 as a vital target of Wnt/β-catenin signaling in Huh7 cells. Our analyses related to cell proliferation and migration assays showed that in comparison to the control cells, MGAT1 expressing Huh7 cells have greater proliferative and invasive capabilities. Furthermore, the

  11. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness.

    PubMed Central

    Li, Y; Goldbeter, A

    1989-01-01

    Cells often communicate by means of periodic signals, as exemplified by a large number of hormones and by the aggregation of Dictyostelium discoideum amebas in response to periodic pulses of cyclic AMP. Periodic signaling allows bypassing the phenomenon of desensitization brought about by constant stimuli. To gain further insight into the efficiency of pulsatile signaling, we analyze the effect of periodic stimulation on the dynamic behavior of a receptor system capable of desensitization toward its ligand. We first show that the receptor system adapts to square-wave stimuli, i.e., the response eventually reaches a steady, periodic pattern after a transient phase. By analyzing the dependence of the response on the characteristics of the square-wave stimulation, we show that there exist a waveform and a period of that signal that result in maximum responsiveness of the target system. Similar results are obtained when the signal takes the more realistic form of a periodically repeated stimulation followed by exponential decay of the ligand. The results are discussed with respect to the role of pulsatile secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus and of periodic signaling by cyclic AMP pulses in Dictyostelium. The analysis accounts for the existence, in both cases, of an optimal frequency and waveform of the periodic stimulus that correspond to maximum target cell responsiveness. PMID:2930817

  12. Multiple Smaller Missions as a Direct Pathway to Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Draper, D. S.; Evans, C. A.; Gibson, E. K.; Graham, L. D.; Jones, J. H.; Lederer, S. M.; Ming, D.; Seaman, C. H.; Archer, P. D.; hide

    2012-01-01

    Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars

  13. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.

    PubMed

    Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele

    2014-01-01

    The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.

  14. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers

    PubMed Central

    Essenburg, Curt J.; Turner, Lisa; Madaj, Zachary; Winn, Mary E.; Melnik, Marianne K.; Korkaya, Hasan; Maroun, Christiane R.; Christensen, James G.; Steensma, Matthew R.; Boerner, Julie L.; Graveel, Carrie R.

    2016-01-01

    There is a vital need for improved therapeutic strategies that are effective in both primary and metastatic triple-negative breast cancer (TNBC). Current treatment options for TNBC patients are restricted to chemotherapy; however tyrosine kinases are promising druggable targets due to their high expression in multiple TNBC subtypes. Since coexpression of receptor tyrosine kinases (RTKs) can promote signaling crosstalk and cell survival in the presence of kinase inhibitors, it is likely that multiple RTKs will need to be inhibited to enhance therapeutic benefit and prevent resistance. The MET and EGFR receptors are actionable targets due to their high expression in TNBC; however crosstalk between MET and EGFR has been implicated in therapeutic resistance to single agent use of MET or EGFR inhibitors in several cancer types. Therefore it is likely that dual inhibition of MET and EGFR is required to prevent crosstalk signaling and acquired resistance. In this study, we evaluated the heterogeneity of MET and EGFR expression and activation in primary and metastatic TNBC tumorgrafts and determined the efficacy of MET (MGCD265 or crizotinib) and/or EGFR (erlotinib) inhibition against TNBC progression. Here we demonstrate that combined MET and EGFR inhibition with either MGCD265 and erlotinib treatment or crizotinib and erlotinib treatment were highly effective at abrogating tumor growth and significantly decreased the variability in treatment response compared to monotherapy. These results advance our understanding of the RTK signaling architecture in TNBC and demonstrate that combined MET and EGFR inhibition may be a promising therapeutic strategy for TNBC patients. PMID:27655711

  15. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    PubMed

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  16. A waveform detector that targets template–decorrelated signals and achieves its predicted performance, Part I: Demonstration with IMS data

    DOE PAGES

    Carmichael, Joshua Daniel

    2016-01-01

    Here, waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and targets signals that are only partially correlated with the waveform template.

  17. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo

  18. Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs.

    PubMed

    Klampfer, Lidija

    2006-03-01

    A family of latent cytoplasmic transcription factors, signal transducers and activators of transcription (STATs), mediates the responsiveness of cells to several cytokines and growth factors. Although mutations of STATs have not been described in human tumors, the activity of several members of the family, such as STAT1, STAT3 and STAT5, is deregulated in a variety of human tumors. STAT3 and STAT5 acquire oncogenic potential through constitutive phosphorylation on tyrosine, and their activity has been shown to be required to sustain a transformed phenotype. Disruption of STAT3 and STAT5 signaling in transformed cells therefore represents an excellent opportunity for targeted cancer therapy. In contrast to STAT3 and STAT5, STAT1 negatively regulates cell proliferation and angiogenesis and thereby inhibits tumor formation. Consistent with its tumor suppressive properties, STAT1 and its downstream targets have been shown to be reduced in a variety of human tumors and STAT1 deficient mice are highly susceptible to tumor formation. In recent years we have gained mechanistic understanding of the pathways whereby STATs convey signals from the cytoplasm to the nucleus. In addition, several endogenous regulators of the JAK/STAT pathway have been described - and their mechanism of action revealed - that profoundly affect signaling by STATs. Both should greatly facilitate the design of drugs with potential to modulate STAT signaling and to restore the homeostasis in tissues where STATs have gone awry.

  19. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.

    PubMed

    Jiang, Xinya; Wang, Huijun; Wang, Haijun; Yuan, Ruo; Chai, Yaqin

    2016-09-20

    In the present work, we first found that mercury ion (Hg(2+)) has an efficient quenching effect on the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Since we were inspired by this discovery, an aptamer-based ECL sensor was fabricated based on a Hg(2+) triggered signal switch coupled with an exonuclease I (Exo I)-stimulated target recycling amplification strategy for ultrasensitive determination of Hg(2+) and mucin 1 (MUC1). Concretely, the ECL intensity of ABEI-functionalized silver nanoparticles decorated graphene oxide nanocomposite (GO-AgNPs-ABEI) was initially enhanced by ferrocene labeled ssDNA (Fc-S1) (first signal switch "on" state) in the existence of H2O2. With the aid of aptamer, assistant ssDNA (S2) and full thymine (T) bases ssDNA (S3) modified Au nanoparticles (AuNPs-S2-S3) were immobilized on the sensing surface through the hybridization reaction. Then, via the strong and stable T-Hg(2+)-T interaction, an abundance of Hg(2+) was successfully captured on the AuNPs-S2-S3 and effectively inhibited the ECL reaction of ABEI (signal switch "off" state). Finally, the signal switch "on" state was executed by utilizing MUC1 as an aptamer-specific target to bind aptamer, leading to the large decrease of the captured Hg(2+). To further improve the sensitivity of the aptasensor, Exo I was implemented to digest the binded aptamer, which resulted in the release of MUC1 for achieving target recycling with strong detectable ECL signal even in a low level of MUC1. By integrating the quenching effect of Hg(2+) to reduce the background signal and target recycling for signal amplification, this proposed ECL aptasensor was successfully used to detect Hg(2+) and MUC1 sensitively with a wide linear response.

  20. Poor Man's Asteroid Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Landis, R. R.; Graham, L. D.

    2018-02-01

    A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.

  1. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules

    PubMed Central

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-01-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307

  2. Research of laser echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou

    2015-11-01

    Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.

  3. Fibre optic connectors with high-return-loss performance

    NASA Astrophysics Data System (ADS)

    Knott, Michael P.; Johnson, R.; Cooke, K.; Longhurst, P. C.

    1990-09-01

    This paper describes the development of a single mode fibre optic connector with high return loss performance without the use of index matching. Partial reflection of incident light at a fibre optic connector interface is a recognised problem where the result can be increased noise and waveform distortion. This is particularly important for video transmission in subscriber networks which requires a high signal to noise ratio. A number of methods can be used to improve the return loss. The method described here uses a process which angles the connector endfaces. Measurements show typical return losses of -55dB can be achieved for an end angle of 6 degrees. Insertion loss results are also presented.

  4. Near-Earth Asteroid Returned Sample (NEARS)

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Cheng, Andrew F.

    1994-01-01

    The concept of the Near-Earth Asteroid Returned Sample (NEARS) mission is to return to Earth 10-100 g from each of four to six sites on a near-Earth asteroid and to perform global characterization of the asteroid and measure mass, volume, and density to ten percent. The target asteroid for the mission is 4660 Nereus, probably a primitive C-type asteroid, with the alternate target being 1989ML, an extremely accessible asteroid of unknown type. Launch dates will be 1998, 2000, 2002, and 2004 on the Delta II-7925 launch vehicle. The mission objectives are three-fold. (1) Provide first direct and detailed petrological, chemical, age, and isotopic characterization of a near-Earth asteroid and relate it to terrestrial, lunar, and meteoritic materials. (2) Sample the asteroid regolith and characterize any exotic fragments. (3) Identify heterogeneity in the asteroid's isotopic properties, age, and elemental chemistry.

  5. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  6. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  7. Hsp90: a novel target for the disruption of multiple signaling cascades.

    PubMed

    Bishop, Stephanie C; Burlison, Joseph A; Blagg, Brian S J

    2007-06-01

    The 90 kDa heat shock proteins (Hsp90) are proving to be an excellent target for the development of novel anti-cancer agents designed to selectively block the growth and proliferation of tumor cells. Since Hsp90 is a molecular chaperone and is responsible for folding numerous oncogenic proteins, its inhibition represents a novel approach toward the simultaneous disruption of multiple signaling cascades. This review summarizes recent literature implicating Hsp90 as a key facilitator for the maturation of proteins represented in all six hallmarks of cancer: 1) growth signal self-sufficiency, 2) anti-growth signal insensitivity, 3) evasion of apoptosis, 4) unlimited replicative potential, 5) metastasis and tissue invasion, and 6) sustained angiogenesis. Also described are recent advances towards the development of novel Hsp90 inhibitors via structure-based drug design that have contributed to the number of compounds undergoing clinical development.

  8. The point of no return: A fundamental limit on the ability to control thought and action.

    PubMed

    Logan, Gordon D

    2015-01-01

    Bartlett (1958. Thinking. New York: Basic Books) described the point of no return as a point of irrevocable commitment to action, which was preceded by a period of gradually increasing commitment. As such, the point of no return reflects a fundamental limit on the ability to control thought and action. I review the literature on the point of no return, taking three perspectives. First, I consider the point of no return from the perspective of the controlled act, as a locus in the architecture and anatomy of the underlying processes. I review experiments from the stop-signal paradigm that suggest that the point of no return is located late in the response system. Then I consider the point of no return from the perspective of the act of control that tries to change the controlled act before it becomes irrevocable. From this perspective, the point of no return is a point in time that provides enough "lead time" for the act of control to take effect. I review experiments that measure the response time to the stop signal as the lead time required for response inhibition in the stop-signal paradigm. Finally, I consider the point of no return in hierarchically controlled tasks, in which there may be many points of no return at different levels of the hierarchy. I review experiments on skilled typing that suggest different points of no return for the commands that determine what is typed and the countermands that inhibit typing, with increasing commitment to action the lower the level in the hierarchy. I end by considering the point of no return in perception and thought as well as action.

  9. Cutting edge: rescue of pre-TCR but not mature TCR signaling in mice expressing membrane-targeted SLP-76.

    PubMed

    Bezman, Natalie A; Baker, Rebecca G; Lenox, Laurie E; Jordan, Martha S; Koretzky, Gary A

    2009-05-01

    SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa) organizes signaling from immunoreceptors, including the platelet collagen receptor, the pre-TCR, and the TCR, and is required for T cell development. In this study we examine a mouse in which wild-type SLP-76 is replaced with a mutant constitutively targeted to the cell membrane. Membrane-targeted SLP-76 (MTS) supports ITAM signaling in platelets and from the pre-TCR. Signaling from the mature TCR, however, is defective in MTS thymocytes, resulting in failed T cell differentiation. Defective thymic selection by MTS is not rescued by a SLP-76 mutant whose localization is restricted to the cytosol. Thus, fixed localization of SLP-76 reveals differential requirements for the subcellular localization of signaling complexes downstream of the pre-TCR vs mature TCR.

  10. Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Sun, Qian; Katiyar, Santosh K.

    2011-01-01

    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway. PMID:21829575

  11. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling

    PubMed Central

    Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J.; Thu, Kelsie L.; Ramachandran, Parameswaran; Baniasadi, Shakiba P.; Hao, Zhenyue; Jones, Lisa D.; Haight, Jillian; Sheng, Yi; Mak, Tak W.

    2017-01-01

    Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli (APC) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule’s influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis. PMID:28137882

  12. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling.

    PubMed

    Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J; Thu, Kelsie L; Ramachandran, Parameswaran; Baniasadi, Shakiba P; Hao, Zhenyue; Jones, Lisa D; Haight, Jillian; Sheng, Yi; Mak, Tak W

    2017-02-14

    Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli ( APC ) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule's influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis.

  13. Target detection, shape discrimination, and signal characteristics of an echolocating false killer whale (Pseudorca crassidens).

    PubMed

    Brill, R L; Pawloski, J L; Helweg, D A; Au, W W; Moore, P W

    1992-09-01

    This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.

  14. Inhibition of return shortens perceived duration of a brief visual event.

    PubMed

    Osugi, Takayuki; Takeda, Yuji; Murakami, Ikuya

    2016-11-01

    We investigated the influence of attentional inhibition on the perceived duration of a brief visual event. Although attentional capture by an exogenous cue is known to prolong the perceived duration of an attended visual event, it remains unclear whether time perception is also affected by subsequent attentional inhibition at the location previously cued by an exogenous cue, an attentional phenomenon known as inhibition of return. In this study, we combined spatial cuing and duration judgment. After one second from the appearance of an uninformative peripheral cue either to the left or to the right, a target appeared at a cued side in one-third of the trials, which indeed yielded inhibition of return, and at the opposite side in another one-third of the trials. In the remaining trials, a cue appeared at a central box and one second later, a target appeared at either the left or right side. The target at the previously cued location was perceived to last shorter than the target presented at the opposite location, and shorter than the target presented after the central cue presentation. Therefore, attentional inhibition produced by a classical paradigm of inhibition of return decreased the perceived duration of a brief visual event. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. cGMP signaling as a target for the prevention and treatment of breast cancer.

    PubMed

    Windham, Perrin F; Tinsley, Heather N

    2015-04-01

    One in eight women in the United States will be diagnosed with invasive breast cancer in her lifetime. Advances in therapeutic strategies, diagnosis, and improved awareness have resulted in a significant reduction in breast cancer related mortality. However, there is a continued need for more effective and less toxic drugs for both the prevention and the treatment of breast cancer in order to see a continued decline in the morbidity and mortality associated with this disease. Recent studies suggest that the cGMP signaling pathway may be aberrantly regulated in breast cancer. As such, this pathway may serve as a source of novel targets for future breast cancer drug discovery efforts. This review provides an overview of cGMP signaling in normal physiology and in breast cancer as well as current strategies being investigated for targeting this pathway in breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecular pathways: targeting RAC-p21-activated serine-threonine kinase signaling in RAS-driven cancers.

    PubMed

    Baker, Nicole M; Yee Chow, Hoi; Chernoff, Jonathan; Der, Channing J

    2014-09-15

    Cancers driven by oncogenic Ras proteins encompass some of the most deadly human cancer types, and there is a pressing need to develop therapies for these diseases. Although recent studies suggest that mutant Ras proteins may yet be druggable, the most promising and advanced efforts involve inhibitors of Ras effector signaling. Most efforts to target Ras signaling have been aimed at the ERK mitogen-activated protein kinase and the phosphoinositide 3-kinase signaling networks. However, to date, no inhibitors of these Ras effector pathways have been effective against RAS-mutant cancers. This ineffectiveness is due, in part, to the involvement of additional effectors in Ras-dependent cancer growth, such as the Rac small GTPase and the p21-activated serine-threonine kinases (PAK). PAK proteins are involved in many survival, cell motility, and proliferative pathways in the cell and may present a viable new target in Ras-driven cancers. In this review, we address the role and therapeutic potential of Rac and group I PAK proteins in driving mutant Ras cancers. ©2014 American Association for Cancer Research.

  17. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Athletic pubalgia: Return to play after targeted surgery.

    PubMed

    Kajetanek, C; Benoît, O; Granger, B; Menegaux, F; Chereau, N; Pascal-Mousselard, H; Khiami, F

    2018-03-13

    Surgery for athletic pubalgia usually consists in abdominal wall repair combined with routine bilateral adductor tenotomy. We currently confine the surgical procedure to the injured structure(s) (abdominal wall only, adductor tendon only, or both) to limit morbidity and expedite recovery. Outcomes of this à la carte approach are unclear. The objectives of this retrospective study were to determine the return to play (RTP) time, evaluate the potential influence of injury location, and assess the frequency of recurrence or contralateral involvement. À la carte surgery for athletic pubalgia is associated with similar RTP times as the conventional procedure and is not followed by recurrence. Consecutive adults younger than 40 years of age who underwent surgery for athletic pubalgia with injury to the abdominal wall and/or adductor attachment sites between 2009 and 2015 were included. Patients with intra-articular hip disorders, isolated pubic symphysis involvement, or herniation were not eligible. The diagnosis was established clinically then confirmed by at least one imaging technique (ultrasonography plus either a radiograph of the pelvis or magnetic resonance imaging of the pelvis). The criterion for performing surgery was failure of appropriate conservative therapy followed for at least 3 months. Of the 27 included patients, eight had abdominal wall involvement only, seven adductor tendon involvement only, and 12 both. Overall, 25 (92.6%) patients returned to play at their previous level, after a mean of 112±38 days (range, 53-223 days), and experienced no recurrence during the 1-year follow-up. Mean RTP time was significantly shorter in the group with abdominal wall injury only (91.1±21.0 days) compared to the groups with adductor tendon injury only (101.7±42.0 days) or combined injuries (132.5±39.0) (p=0.02). In patients with athletic pubalgia, à la carte surgery confined to the injured structure(s) produces excellent RTP outcomes. RTP time is shortest in

  19. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characteristics of return stroke electric fields produced by lightning flashes at distances of 1 to 15 kilometers

    NASA Technical Reports Server (NTRS)

    Hopf, CH.

    1991-01-01

    Electric field derivative signals from single and multiple lightning strokes are presented. For about 25 pct. of all acquired waveforms, produced by return strokes, stepped leaders or intracloud discharges, type and distance of the signal source are known from the observations by an all sky video camera system. The analysis of the electric field derivative waveforms in the time domain shows a significant difference in the impulse width between return stroke signals and those of stepped leaders and intracloud discharges. In addition, the computed amplitude density spectrum of return stroke waveforms lies by a factor of 10 above that of stepped leaders and intracloud discharges in the frequency range from 50 to 500 kHz.

  2. Targeting protein kinase-b3 (akt3) signaling in melanoma.

    PubMed

    Madhunapantula, SubbaRao V; Robertson, Gavin P

    2017-03-01

    Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35-70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available. Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review. Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and (c) melanoma stem cells growth.

  3. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  4. Voyager 2 Uranus and Neptune targeting

    NASA Technical Reports Server (NTRS)

    Gray, D. L.; Cesarone, R. J.; Van Allen, R. E.

    1982-01-01

    Targeting strategies are developed for the Voyager 2 flybys of Uranus and Neptune/Triton. The need to maximize science return, conserve propellant, and maintain spacecraft safety presents a challenge, given the difficulty in estimating the spacecraft orbit relative to these outer planets. Expected propellant usage, science return, and targeting complexity are presented for each targeting strategy. For the dual encounter of Neptune and its satellite Triton, split targeting conditions are proposed to fix the most important conditions at each body, and thus minimize science losses resulting from Triton ephemeris uncertainties.

  5. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy.

    PubMed

    Li, Ying; Yu, Chuanfeng; Han, Huixia; Zhao, Caisheng; Zhang, Xiaoru

    2016-07-15

    A novel and sensitive surface-enhanced Raman scattering (SERS) method is proposed for the assay of DNA methyltransferase (MTase) activity and evaluation of inhibitors by developing a target triggering primer generation-based multiple signal amplification strategy. By using of a duplex substrate for Dam MTase, two hairpin templates and a Raman probe, multiple signal amplification mode is achieved. Once recognized by Dam MTase, the duplex substrate can be cleaved by Dpn I endonuclease and two primers are released for triggering the multiple signal amplification reaction. Consequently, a wide dynamic range and remarkably high sensitivity are obtained under isothermal conditions. The detection limit is 2.57×10(-4)UmL(-1). This assay exhibits an excellent selectivity and is successfully applied in the screening of inhibitors for Dam MTase. In addition, this novel sensing system is potentially universal as the recognition element can be conveniently designed for other target analytes by changing the substrate of DNA MTase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy.

    PubMed

    Juan, Wen Chun; Hong, Wanjin

    2016-08-30

    The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy.

  7. Beta Adrenergic Signaling: A Targetable Regulator of Angiosarcoma and Hemangiosarcoma

    PubMed Central

    Dickerson, Erin B.; Bryan, Brad A.

    2015-01-01

    Human angiosarcomas and canine hemangiosarcomas are highly aggressive cancers thought to arise from cells of vascular origin. The pathological features, morphological organization, and clinical behavior of canine hemangiosarcomas are virtually indistinct from those of human angiosarcomas. Overall survival with current standard-of-care approaches remains dismal for both humans and dogs, and each is likely to succumb to their disease within a short duration. While angiosarcomas in humans are extremely rare, limiting their study and treatment options, canine hemangiosarcomas occur frequently. Therefore, studies of these sarcomas in dogs can be used to advance treatment approaches for both patient groups. Emerging data suggest that angiosarcomas and hemangiosarcomas utilize beta adrenergic signaling to drive their progression by regulating the tumor cell niche and fine-tuning cellular responses within the tumor microenvironment. These discoveries indicate that inhibition of beta adrenergic signaling could serve as an Achilles heel for these tumors and emphasize the need to design therapeutic strategies that target tumor cell and stromal cell constituents. In this review, we summarize recent discoveries and present new hypotheses regarding the roles of beta adrenergic signaling in angiosarcomas and hemangiosarcomas. Because the use of beta adrenergic receptor antagonists is well established in human and veterinary medicine, beta blockade could provide an immediate adjunct therapy for treatment along with a tangible opportunity to improve upon the outcomes of both humans and dogs with these diseases. PMID:29061946

  8. Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals.

    PubMed

    Okino, Nozomu; Wakisaka, Hiroyoshi; Ishibashi, Yohei; Ito, Makoto

    2018-04-01

    Thraustochytrids are single cell marine eukaryotes that produce large amounts of polyunsaturated fatty acids such as docosahexaenoic acid. In the present study, we report the visualization of endoplasmic reticulum (ER) and mitochondria in a type strain of the thraustochytrid, Aurantiochytrium limacinum ATCC MYA-1381, using the enhanced green fluorescent protein (EGFP) with specific targeting/retaining signals. We expressed the egfp gene with ER targeting/retaining signals from A. limacinum calreticulin or BiP/GRP78 in the thraustochytrid, resulting in the distribution of EGFP signals at the perinuclear region and near lipid droplets. ER-Tracker™ Red, an authentic fluorescent probe for the visualization of ER in mammalian cells, also stained the same region. We observed small lipid droplets generated from the visualized ER in the early growth phase of cell culture. Expression of the egfp gene with the mitochondria targeting signal from A. limacinum cytochrome c oxidase resulted in the localization of EGFP near the plasma membrane. The distribution of EGFP signals coincided with that of MitoTracker® Red CMXRos, which is used to visualize mitochondria in eukaryotes. The ER and mitochondria of A. limacinum were visualized for the first time by EGFP with thraustochytrid cell organelle-specific targeting/retaining signals. These results will contribute to classification of the intracellular localization of proteins expressed in ER and mitochondria as well as analyses of these cell organelles in thraustochytrids.

  9. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    PubMed

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  10. THOR: Cloud Thickness from Off beam Lidar Returns

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  11. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  12. Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: Evaluation of performance with experimental data.

    PubMed

    Yu, Ge; Yang, T C; Piao, Shengchun

    2017-10-01

    A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.

  13. Comparison of two target classification techniques

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Walton, E. K.

    1986-01-01

    Radar target classification techniques based on backscatter measurements in the resonance region (1.0-20.0 MHz) are discussed. Attention is given to two novel methods currently being tested at the radar range of Ohio State University. The methods include: (1) the nearest neighbor (NN) algorithm for determining the radar cross section (RCS) magnitude and range corrected phase at various operating frequencies; and (2) an inverse Fourier transformation of the complex multifrequency radar returns of the time domain, followed by cross correlation analysis. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise ratio for different types of processing. The results of the comparison are discussed in detail.

  14. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update.

    PubMed

    Simioni, Carolina; Martelli, Alberto M; Zauli, Giorgio; Vitale, Marco; McCubrey, James A; Capitani, Silvano; Neri, Luca M

    2018-04-18

    Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents. © 2018 Wiley Periodicals, Inc.

  15. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    PubMed

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  16. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less

  17. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi; Li, Youjun, E-mail: liyoujunn@126.com; Wang, Nan

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and proteinmore » exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.« less

  18. There's Little Return for Attentional Momentum

    ERIC Educational Resources Information Center

    Snyder, Janice J.; Schmidt, William C.; Kingstone, Alan

    2009-01-01

    Inhibition of return (IOR) refers to a delay in response time (RT) to targets appearing at a previously cued location. The prevailing view is that IOR reflects visual-motor inhibition. The "attentional momentum" account rejects this idea, and instead proposes that IOR reflects an automatic shift of attention away from the cued location…

  19. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    PubMed Central

    Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang

    2018-01-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191

  20. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery.

    PubMed

    Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang

    2018-05-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.

  1. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling.

    PubMed

    Mahoney, Sarah J; Narayan, Sridhar; Molz, Lisa; Berstler, Lauren A; Kang, Seong A; Vlasuk, George P; Saiah, Eddine

    2018-02-07

    The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.

  2. Rapamycin and Glucose-Target of Rapamycin (TOR) Protein Signaling in Plants*

    PubMed Central

    Xiong, Yan; Sheen, Jen

    2012-01-01

    Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs. PMID:22134914

  3. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling*

    PubMed Central

    Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.

    2015-01-01

    In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412

  4. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    PubMed

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  5. Feature discrimination/identification based upon SAR return variations

    NASA Technical Reports Server (NTRS)

    Rasco, W. A., Sr.; Pietsch, R.

    1978-01-01

    A study of the statistics of The look-to-look variation statistics in the returns recorded in-flight by a digital, realtime SAR system are analyzed. The determination that the variations in the look-to-look returns from different classes do carry information content unique to the classes was illustrated by a model based on four variants derived from four look in-flight SAR data under study. The model was limited to four classes of returns: mowed grass on a athletic field, rough unmowed grass and weeds on a large vacant field, young fruit trees in a large orchard, and metal mobile homes and storage buildings in a large mobile home park. The data population in excess of 1000 returns represented over 250 individual pixels from the four classes. The multivariant discriminant model operated on the set of returns for each pixel and assigned that pixel to one of the four classes, based on the target variants and the probability distribution function of the four variants for each class.

  6. Inhibition-of-return at multiple locations in visual space.

    PubMed

    Wright, R D; Richard, C M

    1996-09-01

    Inhibition-of-return is thought to be a visual search phenomenon characterized by delayed responses to targets presented at recently cued or recently fixated locations. We studied this inhibition effect following the simultaneous presentation of multiple location cues. The results indicated that response inhibition can be associated with as many as four locations at the same time. This suggests that a purely oculomotor account of inhibition-of-return is oversimplified. In short, although oculomotor processes appear to play a role in inhibition-of-return they may not tell the whole story about how it occurs because we can only program and execute eye movements to one location at a time.

  7. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  8. The Rate of Return to the High/Scope Perry Preschool Program.

    PubMed

    Heckman, James J; Moon, Seong Hyeok; Pinto, Rodrigo; Savelyev, Peter A; Yavitz, Adam

    2010-02-01

    This paper estimates the rate of return to the High/Scope Perry Preschool Program, an early intervention program targeted toward disadvantaged African-American youth. Estimates of the rate of return to the Perry program are widely cited to support the claim of substantial economic benefits from preschool education programs. Previous studies of the rate of return to this program ignore the compromises that occurred in the randomization protocol. They do not report standard errors. The rates of return estimated in this paper account for these factors. We conduct an extensive analysis of sensitivity to alternative plausible assumptions. Estimated annual social rates of return generally fall between 7-10 percent, with most estimates substantially lower than those previously reported in the literature. However, returns are generally statistically significantly different from zero for both males and females and are above the historical return on equity. Estimated benefit-to-cost ratios support this conclusion.

  9. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations.

    PubMed

    Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh

    2012-07-15

    The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.

  10. Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy

    PubMed Central

    Juan, Wen Chun; Hong, Wanjin

    2016-01-01

    The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy. PMID:27589805

  11. Targeting NRF2 signaling for cancer chemoprevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Mi-Kyoung, E-mail: mkwak@ynu.ac.k; Kensler, Thomas W.

    2010-04-01

    Modulation of the metabolism and disposition of carcinogens through induction of cytoprotective enzymes is one of several promising strategies to prevent cancer. Chemopreventive efficacies of inducers such as dithiolethiones and sulforaphane have been extensively studied in animals as well as in humans. The KEAP1-NRF2 system is a key, but not unilateral, molecular target for these chemopreventive agents. The transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of the expression of a subset of genes, which produce proteins responsible for the detoxication of electrophiles and reactive oxygen species as well as the removal or repair of some of theirmore » damage products. It is believed that chemopreventive enzyme inducers affect the interaction between KEAP1 and NRF2 through either mediating conformational changes of the KEAP1 protein or activating phosphorylation cascades targeting the KEAP1-NRF2 complex. These events in turn affect NRF2 stability and trafficking. Recent advances elucidating the underlying structural biology of KEAP1-NRF2 signaling and identification of the gene clusters under the transcriptional control of NRF2 are facilitating understanding of the potential pleiotropic effects of NRF2 activators and discovery of novel classes of potent chemopreventive agents such as the triterpenoids. Although there is appropriately a concern regarding a deleterious role of the KEAP1-NRF2 system in cancer cell biology, especially as the pathway affects cell survival and drug resistance, the development and the use of NRF2 activators as chemopreventive agents still holds a great promise for protection of normal cells from a diversity of environmental stresses that contribute to the burden of cancer and other chronic, degenerative diseases.« less

  12. Molecular and Cell Signaling Targets for PTSD Pathophysiology and Pharmacotherapy

    PubMed Central

    Hauger, Richard L.; Olivares-Reyes, J. Alberto; Dautzenberg, Frank M.; Lohr, James B.; Braun, Sandra; Oakley, Robert H.

    2012-01-01

    The reasons for differences in vulnerability or resilience to the development of posttraumatic stress disorder (PTSD) are unclear. Here we review key genetic diatheses and molecular targets especially signaling pathways that mediate responses to trauma and severe stress and their potential contribution to the etiology of PTSD. Sensitization of glucocorticoid receptor (GR) signaling and dysregulation of GR modulators FKBP5, STAT5B, Bcl-2, and Bax have been implicated in PTSD pathophysiology. Furthermore, Akt, NFκB, MKP-1, and p11, which are G protein-coupled receptor (GPCR) pathway molecules, can promote or prevent sustained high anxiety and depressive-like behavior following severe stress. Agonist-induced activation of the corticotropin-releasing factor CRF1 receptor is crucial for survival in the context of serious danger or trauma, but persistent CRF1 receptor hypersignaling when a threatening or traumatic situation is no longer present is maladaptive. CRF1 receptor single nucleotide polymorphisms (SNPs) can confer susceptibility or resilience to childhood trauma while a SNP for the PAC1 receptor, another class B1 GPCR, has been linked genetically to PTSD. GRK3 phosphorylation of the CRF1 receptor protein and subsequent binding of βarrestin2 rapidly terminate Gs-coupled CRF1 receptor signaling by homologous desensitization. A deficient GRK-βarrestin2 mechanism would result in excessive CRF1 receptor signaling thereby contributing to PTSD and co-morbid posttraumatic depression. Clinical trials are needed to assess if small molecule CRF1 receptor antagonists are effective prophylactic agents when administered immediately after trauma. βarrestin2-biased agonists for CRF receptors and possibly other GPCRs implicated in PTSD, however, may prove to be novel pharmacotherapy with greater selectivity and therapeutic efficacy. PMID:22122881

  13. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Regulator of G protein signaling 4 is a novel target of GATA-6 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yonggang; Li, Fang; Xiao, Xiao

    GATA transcription factors regulate an array of genes important in cell proliferation and differentiation. Here we report the identification of regulator of G protein signaling 4 (RGS4) as a novel target for GATA-6 transcription factor. Although three sites (a, b, c) within the proximal region of rabbit RGS4 promoter for GATA transcription factors were predicted by bioinformatics analysis, only GATA-a site (16 bp from the core TATA box) is essential for RGS4 transcriptional regulation. RT-PCR analysis demonstrated that only GATA-6 was highly expressed in rabbit colonic smooth muscle cells but GATA-4/6 were expressed in cardiac myocytes and GATA-1/2/3 expressed inmore » blood cells. Adenovirus-mediated expression of GATA-6 but not GATA-1 significantly increased the constitutive and IL-1β-induced mRNA expression of the endogenous RGS4 in colonic smooth muscle cells. IL-1β stimulation induced GATA-6 nuclear translocation and increased GATA-6 binding to RGS4 promoter. These data suggest that GATA factor could affect G protein signaling through regulating RGS4 expression, and GATA signaling may develop as a future therapeutic target for RGS4-related diseases. - Highlights: • GATA-6 is highly expressed in colonic smooth muscle cells. • RGS4 is a novel target for GATA-6 transcription factor. • GATA-a response element is essential to regulate the core promoter of RGS4. • GATA-6 regulates IL-1β-induced RGS4 upregulation.« less

  15. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.

    PubMed

    Kimple, Adam J; Bosch, Dustin E; Giguère, Patrick M; Siderovski, David P

    2011-09-01

    Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.

  16. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling

    PubMed Central

    2011-01-01

    Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182

  17. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    PubMed Central

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena

    2015-01-01

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  18. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  19. The Rate of Return to the High/Scope Perry Preschool Program

    PubMed Central

    Heckman, James J.; Moon, Seong Hyeok; Pinto, Rodrigo; Savelyev, Peter A.; Yavitz, Adam

    2010-01-01

    This paper estimates the rate of return to the High/Scope Perry Preschool Program, an early intervention program targeted toward disadvantaged African-American youth. Estimates of the rate of return to the Perry program are widely cited to support the claim of substantial economic benefits from preschool education programs. Previous studies of the rate of return to this program ignore the compromises that occurred in the randomization protocol. They do not report standard errors. The rates of return estimated in this paper account for these factors. We conduct an extensive analysis of sensitivity to alternative plausible assumptions. Estimated annual social rates of return generally fall between 7–10 percent, with most estimates substantially lower than those previously reported in the literature. However, returns are generally statistically significantly different from zero for both males and females and are above the historical return on equity. Estimated benefit-to-cost ratios support this conclusion. PMID:21804653

  20. Chirp-free optical return-to-zero modulation based on a single microring resonator.

    PubMed

    Sun, Lili; Ye, Tong; Wang, Xiaowen; Zhou, Linjie; Chen, Jianping

    2012-03-26

    This paper proposes a chirp-free optical return-to-zero (RZ) modulator using a double coupled microring resonator. Optical RZ modulation is achieved by applying a clock (CLK) driving signal to the input coupling region and a non-return-to-zero (NRZ) driving signal to the output coupling region. Static and time-domain coupled-mode theory (CMT) based dynamic analyse are performed to theoretically investigate its performance in RZ modulation. The criteria to realize RZ modulation are deduced. Various RZ modulation formats, including RZ phase-shift-keying (RZ-PSK), carrier-suppressed RZ (CSRZ), and RZ intensity modulation formats, can be implemented by using CLK and NRZ signals with different combinations of polarities. Numerical simulations are performed and the feasibility of our modulator at 10 Gbit/s for the multiple RZ modulation formats is verified.

  1. Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting β-catenin signaling.

    PubMed

    Singh, Tripti; Katiyar, Santosh K

    2013-12-01

    The green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), has been shown to have anti-carcinogenic effects in several skin tumor models, and efforts are continued to investigate the molecular targets responsible for its cytotoxic effects to cancer cells. Our recent observation that β-catenin is upregulated in skin tumors suggested the possibility that the anti-skin carcinogenic effects of EGCG are mediated, at least in part, through its effects on β-catenin signaling. We have found that treatment of the A431 and SCC13 human skin cancer cell lines with EGCG resulted in reduced cell viability and increased cell death and that these cytotoxic effects were associated with inactivation of β-catenin signaling. Evidence of EGCG-induced inactivation of β-catenin included: (i) reduced accumulation of nuclear β-catenin; (ii) enhanced levels of casein kinase1α, reduced phosphorylation of glycogen synthase kinase-3β, and increased phosphorylation of β-catenin on critical serine(45,33/37) residues; and (iii) reduced levels of matrix metalloproteinase (MMP)-2 and MMP-9, which are down-stream targets of β-catenin. Treatment of cells with prostaglandin E2 (PGE2) enhanced the accumulation of β-catenin and enhanced β-catenin signaling. Treatment with either EGCG or an EP2 antagonist (AH6809) reduced the PGE2-enhanced levels of cAMP, an upstream regulator of β-catenin. Inactivation of β-catenin by EGCG resulted in suppression of cell survival signaling proteins. siRNA knockdown of β-catenin in A431 and SCC13 cells reduced cell viability. Collectively, these data suggest that induction of cytotoxicity in skin cancer cells by EGCG is mediated by targeting of β-catenin signaling and that the β-catenin signaling is upregulated by inflammatory mediators. © 2013.

  2. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  3. Shielding activated return water at the ESS

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; Muhrer, Günter; Carlsson, H.; Eriksson, Björn

    2018-06-01

    ESS utilises water both for moderating neutrons to thermal energies, as well as to cool beryllium- and steel reflectors, the shielding and plugs. This means that the water, in separate loops, will be subject to a significant proton and neutron irradiation causing the water to activate. After irradiation, the water is led to delay tanks situated inside the target building. Before returned to the target monolith ∼ 10% is led to the ion exchanger. This paper aims at determining the shielding required to ensure that the biological dose-rate requirements in the target building and neighbouring instrument halls are met during operation of facility.

  4. Simulation and modeling of return waveforms from a ladar beam footprint in USU LadarSIM

    NASA Astrophysics Data System (ADS)

    Budge, Scott; Leishman, Brad; Pack, Robert

    2006-05-01

    Ladar systems are an emerging technology with applications in many fields. Consequently, simulations for these systems have become a valuable tool in the improvement of existing systems and the development of new ones. This paper discusses the theory and issues involved in reliably modeling the return waveform of a ladar beam footprint in the Utah State University LadarSIM simulation software. Emphasis is placed on modeling system-level effects that allow an investigation of engineering tradeoffs in preliminary designs, and validation of behaviors in fabricated designs. Efforts have been made to decrease the necessary computation time while still maintaining a usable model. A full waveform simulation is implemented that models optical signals received on detector followed by electronic signals and discriminators commonly encountered in contemporary direct-detection ladar systems. Waveforms are modeled using a novel hexagonal sampling process applied across the ladar beam footprint. Each sample is weighted using a Gaussian spatial profile for a well formed laser footprint. Model fidelity is also improved by using a bidirectional reflectance distribution function (BRDF) for target reflectance. Once photons are converted to electrons, waveform processing is used to detect first, last or multiple return pulses. The detection methods discussed in this paper are a threshold detection method, a constant fraction method, and a derivative zero-crossing method. Various detection phenomena, such as range error, walk error, drop outs and false alarms, can be studied using these detection methods.

  5. Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT)

    NASA Astrophysics Data System (ADS)

    Abawi, Ahmad T.; Hursky, Paul; Porter, Michael B.; Tiemann, Chris; Martin, Stephen

    2004-11-01

    In this paper data recorded on the Biosonar Measurement Tool (BMT) during a target echolocation experiment are used to 1) find ways to separate target echoes from clutter echoes, 2) analyze target returns and 3) find features in target returns that distinguish them from clutter returns. The BMT is an instrumentation package used in dolphin echolocation experiments developed at SPAWARSYSCEN. It can be held by the dolphin using a bite-plate during echolocation experiments and records the movement and echolocation strategy of a target-hunting dolphin without interfering with its motion through the search field. The BMT was developed to record a variety of data from a free-swimming dolphin engaged in a bottom target detection task. These data include the three dimensional location of the dolphin, including its heading, pitch roll and velocity as well as passive acoustic data recorded on three channels. The outgoing dolphin click is recorded on one channel and the resulting echoes are recorded on the two remaining channels. For each outgoing click the BMT records a large number of echoes that come from the entire ensonified field. Given the large number of transmitted clicks and the returned echoes, it is almost impossible to find a target return from the recorded data on the BMT. As a means of separating target echoes from those of clutter, an echo-mapping tool was developed. This tool produces an echomap on which echoes from targets (and other regular objects such as surface buoys, the side of a boat and so on) stack together as tracks, while echoes from clutter are scattered. Once these tracks are identified, the retuned echoes can easily be extracted for further analysis.

  6. Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    PubMed Central

    Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.

    2008-01-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158

  7. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  8. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  9. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  10. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  11. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy.

    PubMed

    Kim, Eunjung; Kim, Jae-Young; Smith, Matthew A; Haura, Eric B; Anderson, Alexander R A

    2018-03-01

    During the last decade, our understanding of cancer cell signaling networks has significantly improved, leading to the development of various targeted therapies that have elicited profound but, unfortunately, short-lived responses. This is, in part, due to the fact that these targeted therapies ignore context and average out heterogeneity. Here, we present a mathematical framework that addresses the impact of signaling heterogeneity on targeted therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway in lung cancer as an experimental model system and develop a network model of the pathway. We measure how inhibition of the pathway modulates protein phosphorylation as well as cell viability under different microenvironmental conditions. Training the model on this data using Monte Carlo simulation results in a suite of in silico cells whose relative protein activities and cell viability match experimental observation. The calibrated model predicts distributional responses to kinase inhibitors and suggests drug resistance mechanisms that can be exploited in drug combination strategies. The suggested combination strategies are validated using in vitro experimental data. The validated in silico cells are further interrogated through an unsupervised clustering analysis and then integrated into a mathematical model of tumor growth in a homogeneous and resource-limited microenvironment. We assess posttreatment heterogeneity and predict vast differences across treatments with similar efficacy, further emphasizing that heterogeneity should modulate treatment strategies. The signaling model is also integrated into a hybrid cellular automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As a proof of concept, we simulate tumor responses to targeted therapies in a spatially segregated tissue structure containing tumor

  12. Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements.

    PubMed

    Menyuk, N; Killinger, D K; Menyuk, C R

    1982-09-15

    Laser remote sensing involves the measurement of laser-beam transmission through the atmosphere and is subject to uncertainties caused by strong fluctuations due primarily to speckle, glint, and atmospheric-turbulence effects. These uncertainties are generally reduced by taking average values of increasing numbers of measurements. An experiment was carried out to directly measure the effect of signal averaging on back-scattered laser return signals from a diffusely reflecting target using a direct-detection differential-absorption lidar (DIAL) system. The improvement in accuracy obtained by averaging over increasing numbers of data points was found to be smaller than that predicted for independent measurements. The experimental results are shown to be in excellent agreement with a theoretical analysis which considers the effect of temporal correlation. The analysis indicates that small but long-term temporal correlation severely limits the improvement available through signal averaging.

  13. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways.

    PubMed

    Newton, Herbert B

    2003-10-01

    Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches, including radiotherapy and cytotoxic chemotherapy. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that may be amenable to targeted therapy. Growth factor signaling pathways are often upregulated in brain tumors and may contribute to oncogenesis through autocrine and paracrine mechanisms. Excessive growth factor receptor stimulation can also lead to overactivity of the Ras signaling pathway, which is frequently aberrant in brain tumors. Receptor tyrosine kinase inhibitors, antireceptor monoclonal antibodies and antisense oligonucleotides are targeted approaches under investigation as methods to regulate aberrant growth factor signaling pathways in brain tumors. Several receptor tyrosine kinase inhibitors, including imatinib mesylate (Gleevec), gefitinib (Iressa) and erlotinib (Tarceva), have entered clinical trials for high-grade glioma patients. Farnesyl transferase inhibitors, such as tipifarnib (Zarnestra), which impair processing of proRas and inhibit the Ras signaling pathway, have also entered clinical trials for patients with malignant gliomas. Further development of targeted therapies and evaluation of these new agents in clinical trials will be needed to improve survival and quality of life of patients with brain tumors.

  14. Time and frequency transfer by the Master-Slave Returnable Timing System technique - Application to solar power transmission

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1979-01-01

    The concept of the Master Slave Returnable Timing System (MSRTS) is presented which combines the advantages of the master slave (MS) and the Returnable Timing System (RTS) for time and frequency transfer. The basic idea of MSRTS is to send the time-frequency signal received at a particular node back to the sending node. The delay accumulated by this return signal is used to advance the phase of the master (sending) node thereby canceling the effect of the delay introduced by the path. The method can be used in highly accurate clock distribution systems required in avionics, computer communications, and large retrodirective phased arrays such as the Solar Power Satellite.

  15. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    PubMed

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  16. Horizontal electric fields from lightning return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, E.M.; Uman, M.A.; Johnson, J.

    1985-01-01

    Measurements are presented of simultaneous horizontal and vertical electric fields from both close and distant lightning return strokes. The data were obtained during summer 1984 at the Kennedy Space Center, Florida, using an electrically isolated spherical antenna having a system bandwidth of 3 Hz to 5 MHz. Lightning signals were obtained from flashes at distances from a few to 100 kilometers. Since the horizontal electric field is in part determined by the local ground conductivity, that parameter was measured as a function of depth. The horizontal fields from lightning return strokes had typically 1/50 the peak amplitude of the verticalmore » fields and waveshapes which were consistant with available theory, as expressed by the ''wavetilt'' formula.« less

  17. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.

    PubMed

    Yoon, Mee-Sup

    2017-10-27

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.

  18. Long Non-Coding RNA in Glioma: Target miRNA and Signaling Pathways.

    PubMed

    Dang, Yuan; Wei, Xudong; Xue, Laien; Wen, Fuli; Gu, Jianjun; Zheng, Heping

    2018-06-01

    Glioma is one of the most common and aggressive malignant tumors of the central nervous system. Here, we review and explore the use of long noncoding RNA (lncRNA) as a therapeutic strategy for the targeting of gliomas. LncRNA is a functional RNA molecule with no protein coding function and is involved in the occurrence and progression of glioma. It is reported that the activation of several signaling pathways, including the MAPK, p53, Wnt/β-catenin, PI3K/AKT/mTOR, and epithelial mesenchymal transformation (EMT) pathways, are involved in the regulation of gliomas. In addition, microRNAs in glioma may also interact with lncRNAs and affect tumor growth and progression. Therefore, the exploration of lncRNA participation in signaling pathway regulatory mechanisms and the determination of the interaction between lncRNA and miRNA may help to develop new effective therapies for the treatment of glioma.

  19. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma

    PubMed Central

    2013-01-01

    Background High-grade osteosarcoma is an aggressive tumor most often developing in the long bones of adolescents, with a second peak in the 5th decade of life. Better knowledge on cellular signaling in this tumor may identify new possibilities for targeted treatment. Methods We performed gene set analysis on previously published genome-wide gene expression data of osteosarcoma cell lines (n=19) and pretreatment biopsies (n=84). We characterized overexpression of the insulin-like growth factor receptor (IGF1R) signaling pathways in human osteosarcoma as compared with osteoblasts and with the hypothesized progenitor cells of osteosarcoma – mesenchymal stem cells. This pathway plays a key role in the growth and development of bone. Since most profound differences in mRNA expression were found at and upstream of the receptor of this pathway, we set out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosarcoma cell lines. Inhibitory effects of this drug were measured by Western blotting and cell proliferation assays. Results OSI-906 had a strong inhibitory effect on proliferation of 3 of 4 osteosarcoma cell lines, with IC50s below 100 nM at 72 hrs of treatment. Phosphorylation of IRS-1, a direct downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma cell lines. Conclusions This study provides an in vitro rationale for using IR/IGF1R inhibitors in preclinical studies of osteosarcoma. PMID:23688189

  20. Investigation of Alternative Return Strategies for Orion Trans-earth Injection Design Options

    NASA Technical Reports Server (NTRS)

    Marchand, Belinda G.; Scarritt, Sara K.; Howell, Kathleen C.; Weeks, Michael W.

    2010-01-01

    The purpose of this study is to investigate alternative return strategies for the Orion trans-Earth injection (TEI) phase. A dynamical systems analysis approach considers the structure of the stable and unstable Sun perturbed Earth-Moon manifolds near the Earth-Moon interface region. A hybrid approach, then, combines the results from this analysis with classical two-body methods in a targeting process that seeks to expand the window of return opportunities in a precision entry scenario. The resulting startup arcs can be used, for instance, to enhance the block set of solutions available onboard during an autonomous targeting process.

  1. Atypical regulators of Wnt/β-catenin signaling as potential therapeutic targets in Hepatocellular Carcinoma.

    PubMed

    Chen, Jianxiang; Rajasekaran, Muthukumar; Hui, Kam M

    2017-06-01

    Hepatocellular carcinoma is one of the most common causes of cancer-related death worldwide. Hepatocellular carcinoma development depends on the inhibition and activation of multiple vital pathways, including the Wnt signaling pathway. The Wnt/β-catenin pathway lies at the center of various signaling pathways that regulate embryonic development, tissue homeostasis and cancers. Activation of the Wnt/β-catenin pathway has been observed frequently in hepatocellular carcinoma. However, activating mutations in β-catenin, Axin and Adenomatous Polyposis Coli only contribute to a portion of the Wnt signaling hyper-activation observed in hepatocellular carcinoma. Therefore, besides mutations in the canonical Wnt components, there must be additional atypical regulation or regulators during Wnt signaling activation that promote liver carcinogenesis. In this mini-review, we have tried to summarize some of these well-established factors and to highlight some recently identified novel factors in the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Impact statement Early recurrence of human hepatocellular carcinoma (HCC) is a frequent cause of poor survival after potentially curative liver resection. Among the deregulated signaling cascades in HCC, evidence indicates that alterations in the Wnt/β-catenin signaling pathway play key roles in hepatocarcinogenesis. In this review, we summarize the potential molecular mechanisms how the microtubule-associated Protein regulator of cytokinesis 1 (PRC1), a direct Wnt signaling target previously identified in our laboratory to be up-regulated in HCC, in promoting cancer proliferation, stemness, metastasis and tumorigenesis through a complex regulatory circuitry of Wnt3a activities.

  2. Power spectra at radio frequency of lightning return stroke waveforms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1989-01-01

    The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  3. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target

    PubMed Central

    Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin

    2016-01-01

    The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697

  4. Location cue validity affects inhibition of return of visual processing.

    PubMed

    Wright, R D; Richard, C M

    2000-01-01

    Inhibition-of-return is the process by which visual search for an object positioned among others is biased toward novel rather than previously inspected items. It is thought to occur automatically and to increase search efficiency. We examined this phenomenon by studying the facilitative and inhibitory effects of location cueing on target-detection response times in a search task. The results indicated that facilitation was a reflexive consequence of cueing whereas inhibition appeared to depend on cue informativeness. More specifically, the inhibition-of-return effect occurred only when the cue provided no information about the impending target's location. We suggest that the results are consistent with the notion of two levels of visual processing. The first involves rapid and reflexive operations that underlie the facilitative effects of location cueing on target detection. The second involves a rapid but goal-driven inhibition procedure that the perceiver can invoke if doing so will enhance visual search performance.

  5. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR.

    PubMed

    Bruggisser, Julia; Käser, Sandro; Mani, Jan; Schneider, André

    2017-02-24

    The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei , is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells

    PubMed Central

    Tam, Wai Leong; Lu, Haihui; Buikhuisen, Joyce; Soh, Boon Seng; Lim, Elgene; Reinhardt, Ferenc; Wu, Zhenhua Jeremy; Krall, Jordan A.; Bierie, Brian; Guo, Wenjun; Chen, Xi; Liu, Xiaole Shirley; Brown, Myles; Lim, Bing; Weinberg, Robert A.

    2014-01-01

    SUMMARY The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs, but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling, and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs. PMID:24029232

  7. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  8. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis.

    PubMed

    Iqbal, Waqas; Alkarim, Saleh; AlHejin, Ahmed; Mukhtar, Hasan; Saini, Kulvinder S

    2016-11-15

    Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.

  9. A retrospective detection algorithm for extraction of weak targets in clutter and interference environments

    NASA Astrophysics Data System (ADS)

    Prengaman, R. J.; Thurber, R. E.; Bath, W. G.

    The usefulness of radar systems depends on the ability to distinguish between signals returned from desired targets and noise. A retrospective processor uses all contacts (or 'plots') from several past radar scans, taking into account all possible target trajectories formed from stored contacts for each input detection. The processor eliminates many false alarms, while retaining those contacts describing resonable trajectories. The employment of a retrospective processor makes it, therefore, possible to obtain large improvements in detection sensitivity in certain important clutter environments. Attention is given to the retrospective processing concept, a theoretical analysis of the multiscan detection process, the experimental evaluation of retrospective data filter, and aspects of retrospective data filter hardware implementation.

  10. Role of Akt signaling in resistance to DNA-targeted therapy

    PubMed Central

    Avan, Abolfazl; Narayan, Ravi; Giovannetti, Elisa; Peters, Godefridus J

    2016-01-01

    The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients. PMID:27777878

  11. Dynamic Target Match Signals in Perirhinal Cortex Can Be Explained by Instantaneous Computations That Act on Dynamic Input from Inferotemporal Cortex

    PubMed Central

    Pagan, Marino

    2014-01-01

    Finding sought objects requires the brain to combine visual and target signals to determine when a target is in view. To investigate how the brain implements these computations, we recorded neural responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as macaque monkeys performed a delayed-match-to-sample target search task. Our data suggest that visual and target signals were combined within or before IT in the ventral visual pathway and then passed onto PRH, where they were reformatted into a more explicit target match signal over ∼10–15 ms. Accounting for these dynamics in PRH did not require proposing dynamic computations within PRH itself but, rather, could be attributed to instantaneous PRH computations performed upon an input representation from IT that changed with time. We found that the dynamics of the IT representation arose from two commonly observed features: individual IT neurons whose response preferences were not simply rescaled with time and variable response latencies across the population. Our results demonstrate that these types of time-varying responses have important consequences for downstream computation and suggest that dynamic representations can arise within a feedforward framework as a consequence of instantaneous computations performed upon time-varying inputs. PMID:25122904

  12. Signalling and chemosensitivity assays in melanoma: is mutated status a prerequisite for targeted therapy?

    PubMed

    Passeron, Thierry; Lacour, Jean-Philippe; Allegra, Maryline; Ségalen, Coralie; Deville, Anne; Thyss, Antoine; Giacchero, Damien; Ortonne, Jean-Paul; Bertolotto, Corine; Ballotti, Robert; Bahadoran, Philippe

    2011-12-01

    Selection for targeted therapies in melanoma is currently based on the search for mutations in selected genes. We aimed at evaluating the interest of signalling and chemosensitivity studies in addition to genotyping for assessing the best suitable treatment in an individual patient. We extracted genomic DNA and melanoma cells from tumor tissue of a skin metastasis of a 17-year-old woman with stage IV melanoma progressing despite three successive lines of treatment. Despite the absence of mutation in BRAF, NRAS cKIT, the MAPK pathway was activated and a significant response to sorafenib, a mitogen-activated protein kinase (MAPK)/RAF inhibitor, was found in signalling and chemosensitivity assays. A treatment combining sorafenib and dacarbazine produced a partial response for 9 months, with marked necrosis in some lesions. Chemosensitivity assays and signalling pathway studies could be of great value in addition to genotyping for assessing the most appropriate treatment in melanoma. © 2011 John Wiley & Sons A/S.

  13. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells.

    PubMed

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-08-02

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.

  14. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells

    PubMed Central

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-01-01

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment. PMID:27384680

  15. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.

    PubMed

    Lingner, Thomas; Kataya, Amr R; Antonicelli, Gerardo E; Benichou, Aline; Nilssen, Kjersti; Chen, Xiong-Yan; Siemsen, Tanja; Morgenstern, Burkhard; Meinicke, Peter; Reumann, Sigrun

    2011-04-01

    In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.

  16. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-10-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

  17. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.

    PubMed

    Pasquier, Florence; Cabagnols, Xenia; Secardin, Lise; Plo, Isabelle; Vainchenker, William

    2014-09-01

    The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. Copyright © 2014

  18. Inhibition of Return: Sensitivity and Criterion as a Function of Response Time

    ERIC Educational Resources Information Center

    Ivanoff, Jason; Klein, Raymond M.

    2006-01-01

    Inhibition of return (IOR) refers to a mechanism that results in a performance disadvantage typically observed when targets are presented at a location once occupied by a cue. Although the time course of the phenomenon--from the cue to the target--has been well studied, the time course of the effect--from target to response--is unknown. In 2…

  19. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs.

    PubMed

    Kim, Byung-Hak; Won, Cheolhee; Lee, Yun-Han; Choi, Jung Sook; Noh, Kum Hee; Han, Songhee; Lee, Haeri; Lee, Chang Seok; Lee, Dong-Sup; Ye, Sang-Kyu; Kim, Myoung-Hwan

    2013-10-01

    Aberrantly activated signal transducer and activator of transcription (STAT) proteins are implicated with human cancers and represent essential roles for cancer cell survival and proliferation. Therefore, the development of small-molecule inhibitors of STAT signaling bearing pharmacological activity has therapeutic potential for the treatment of human cancers. In this study, we identified sophoraflavanone G as a novel small-molecule inhibitor of STAT signaling in human cancer cells. Sophoraflavanone G inhibited tyrosine phosphorylation of STAT proteins in Hodgkin's lymphoma and tyrosine phosphorylation of STAT3 in solid cancer cells by inhibiting phosphorylation of the Janus kinase (JAK) proteins, Src family tyrosine kinases, such as Lyn and Src, Akt, and ERK1/2. In addition, sophoraflavanone G inhibited STAT5 phosphorylation in murine-bone-marrow-derived pro-B cells transfected with translocated Ets Leukemia (TEL)-JAKs and cytokine-induced rat pre-T lymphoma cells, as well as STAT5b reporter activity in TEL-JAKs and STAT5b reporter systems. Sophoraflavanone G also inhibited nuclear factor-κB (NF-κB) signaling in multiple myeloma cells. Furthermore, sophoraflavanone G inhibited cancer cell proliferation and induced apoptosis by regulating the expression of apoptotic and anti-apoptotic proteins. Our data suggest that sophoraflavanone G is a novel small-molecule inhibitor of STAT signaling by targeting upstream signals of STATs that may have therapeutic potential for cancers caused by persistently activated STAT proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Identification of striated muscle activator of Rho signaling (STARS) as a novel calmodulin target by a newly developed genome-wide screen.

    PubMed

    Furuya, Yusui; Denda, Miwako; Sakane, Kyohei; Ogusu, Tomoko; Takahashi, Sumio; Magari, Masaki; Kanayama, Naoki; Morishita, Ryo; Tokumitsu, Hiroshi

    2016-07-01

    To search for novel target(s) of the Ca(2+)-signaling transducer, calmodulin (CaM), we performed a newly developed genome-wide CaM interaction screening of 19,676 GST-fused proteins expressed in human. We identified striated muscle activator of Rho signaling (STARS) as a novel CaM target and characterized its CaM binding ability and found that the Ca(2+)/CaM complex interacted stoichiometrically with the N-terminal region (Ala13-Gln35) of STARS in vitro as well as in living cells. Mutagenesis studies identified Ile20 and Trp33 as the essential hydrophobic residues in CaM anchoring. Furthermore, the CaM binding deficient mutant (Ile20Ala, Trp33Ala) of STARS further enhanced its stimulatory effect on SRF-dependent transcriptional activation. These results suggest a connection between Ca(2+)-signaling via excitation-contraction coupling and the regulation of STARS-mediated gene expression in muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy.

    PubMed

    Peng, Kanfu; Xie, Pan; Yang, Zhe-Han; Yuan, Ruo; Zhang, Keqin

    2018-04-15

    In this work, an amplified electrochemical ratiometric aptasensor for nuclear factor kappa B (NF-κB) assay based on target binding-triggered ratiometric signal readout and polymerase-assisted protein recycling amplification strategy is described. To demonstrate the effect of "signal-off" and "signal-on" change for the dual-signal electrochemical ratiometric readout, the thiol-hairpin DNA (SH-HD) hybridizes with methylene blue (MB)-modified protection DNA (MB-PD) to form capture probes, which is rationally introduced for the construction of the assay platform. On the interface, the probes can specifically bind to target NF-κB and expose a toehold region which subsequently hybridizes with the ferrocene (Fc)-modified DNA strand to take the Fc group to the electrode surface, accompanied by displacing MB-PD to release the MB group from the electrode surface, leading to the both "signal-on" of Fc (I Fc ) and "signal-off" of MB (I MB ). In order to improve the sensitivity of the electrochemical aptasensor, phi29-assisted target protein recycling amplification strategy was designed to achieve an amplified ratiometric signal. With the above advantages, the prepared aptasensor exhibits a wide linear range of 0.1pgmL -1 to 15ngmL -1 with a low detection limit of 0.03pgmL -1 . This strategy provides a simple and ingenious approach to construct ratiometric electrochemical aptasensor and shows promising potential applications in multiple disease marker detection by changing the recognition probe. Copyright © 2017. Published by Elsevier B.V.

  2. Earth Return Aerocapture for the TransHab/Ellipsled Vehicle

    NASA Technical Reports Server (NTRS)

    Muth, W. D.; Hoffmann, C.; Lyne, J. E.

    2000-01-01

    The current architecture being considered by NASA for a human Mars mission involves the use of an aerocapture procedure at Mars arrival and possibly upon Earth return. This technique would be used to decelerate the vehicles and insert them into their desired target orbits, thereby eliminating the need for propulsive orbital insertions. The crew may make the interplanetary journey in a large, inflatable habitat known as the TransHab. It has been proposed that upon Earth return, this habitat be captured into orbit for use on subsequent missions. In this case, the TransHab would be complimented with an aeroshell, which would protect it from heating during the atmospheric entry and provide the vehicle with aerodynamic lift. The aeroshell has been dubbed the "Ellipsled" because of its characteristic shape. This paper reports the results of a preliminary study of the aerocapture of the TransHab/Ellipsled vehicle upon Earth return. Undershoot and overshoot boundaries have been determined for a range of entry velocities, and the effects of variations in the atmospheric density profile, the vehicle deceleration limit, the maximum vehicle roll rate, the target orbit, and the vehicle ballistic coefficient have been examined. A simple, 180 degree roll maneuver was implemented in the undershoot trajectories to target the desired 407 km circular Earth orbit. A three-roll sequence was developed to target not only a specific orbital energy, but also a particular inclination, thereby decreasing propulsive inclination changes and post-aerocapture delta-V requirements. Results show that the TransHab/Ellipsled vehicle has a nominal corridor width of at least 0.7 degrees for entry speeds up to 14.0 km/s. Most trajectories were simulated using continuum flow aerodynamics, but the impact of high-altitude viscous effects was evaluated and found to be minimal. In addition, entry corridor comparisons have been made between the TransHab/Ellipsled and a modified Apollo capsule which is also

  3. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells.

    PubMed

    Tam, Wai Leong; Lu, Haihui; Buikhuisen, Joyce; Soh, Boon Seng; Lim, Elgene; Reinhardt, Ferenc; Wu, Zhenhua Jeremy; Krall, Jordan A; Bierie, Brian; Guo, Wenjun; Chen, Xi; Liu, Xiaole Shirley; Brown, Myles; Lim, Bing; Weinberg, Robert A

    2013-09-09

    The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers, and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. β2-Microglobulin-mediated signaling as a target for cancer therapy.

    PubMed

    Nomura, Takeo; Huang, Wen-Chin; Zhau, Haiyen E; Josson, Sajni; Mimata, Hiromitsu; Chung, Leland W K

    2014-03-01

    β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of localized and disseminated cancers.

  5. β2-Microglobulin-mediated Signaling as a Target for Cancer Therapy

    PubMed Central

    Nomura, Takeo; Huang, Wen-Chin; Zhau, Haiyen E.; Josson, Sajni; Mimata, Hiromitsu; Kaur, Mandeep

    2014-01-01

    β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of localized and disseminated cancers. PMID:23848204

  6. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. | Office of Cancer Genomics

    Cancer.gov

    Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.

  7. Ground-echo characteristics for a ground-target pulse-Doppler radar fuze of high duty ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.S.

    1973-11-21

    From Tri-service electronic fuse symposium; Washington, District of Columbia, USA (26 Nov 1973). A pulse-Doppler radar fuze for use against ground targets at high burst heights can operate at low peak power provided a high duty ratio is used. The high duty ratio brings about ambiguous ground return that is prevented from firing the fuze by randomly coding the phase of the transmitted pulses. This causes the ambiguous return to appear as random noise. This paper provides formulas for the calculation of the clutter-noise power density and of the signal power so that the performance of the radar can bemore » determined. The paper also discusses the myth of decorrelation'' that is alleged to destroy the transmittedphase modulation in the echo and so make it useless. (auth)« less

  8. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    PubMed

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  9. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    PubMed

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

  10. Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior

    PubMed Central

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-01-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(−) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(−) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per01 mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per01 flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output. PMID:24643294

  11. Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression.

    PubMed

    Chang, Yu-Wen E; Bean, Ronald R; Jakobi, Rolf

    2009-06-01

    Elevated RhoA/Rho kinase and p21-activated kinase signaling have been shown to promote cancer development and metastasis and have drawn much attention as potential targets of anti-cancer therapy. Elevated RhoA and Rho kinase activity promote cancer cell invasion and eventually lead to metastasis by disrupting E-cadherin-mediated adherens junctions and degradation of the extracellular matrix. Elevated p21-activated kinase activity promotes invasion by stimulating cell motility but also promotes cancer cell survival and growth. In this review we describe normal functions of RhoA/Rho kinase and p21-activated kinase signaling, mechanisms that lead to constitutive activation of RhoA/Rho kinase and p21-activated kinase pathways, and processes by which constitutive RhoA/Rho kinase and p21-activated kinase activity promote cancer development and progression to more aggressive and metastatic phenotypes. In addition, we summarize relevant patents on RhoA/Rho kinase and p21-activated kinase as targets of anti-cancer therapy and discuss the clinical potential of different approaches to modulate RhoA/Rho kinase and p21-activated kinase signaling.

  12. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan-nan, Bai; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province; Zhao-yan, Yu

    2014-01-17

    Highlights: •miRNAs-expression patterns of primary hepatocytes under proliferative status. •miR-21 expression level peaked at 12 h after stimulated by EGF. •miR-21 drive rapid S phase entry of primary hepatocytes. •PI3K/Akt signaling was modulated via targeting PTEN by miR-21. -- Abstract: MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitromore » transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.« less

  13. Rho-associated Kinase Connects a Cell Cycle-controlling Anchorage Signal to the Mammalian Target of Rapamycin Pathway*

    PubMed Central

    Park, Jung-ha; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2011-01-01

    When deprived of anchorage to the extracellular matrix, fibroblasts arrest in G1 phase at least in part due to inactivation of G1 cyclin-dependent kinases. Despite great effort, how anchorage signals control the G1-S transition of fibroblasts remains highly elusive. We recently found that the mammalian target of rapamycin (mTOR) cascade might convey an anchorage signal that regulates S phase entry. Here, we show that Rho-associated kinase connects this signal to the TSC1/TSC2-RHEB-mTOR pathway. Expression of a constitutively active form of ROCK1 suppressed all of the anchorage deprivation effects suppressible by tsc2 mutation in rat embryonic fibroblasts. TSC2 contains one evolutionarily conserved ROCK target-like sequence, and an alanine substitution for Thr1203 in this sequence severely impaired the ability of ROCK1 to counteract the anchorage loss-imposed down-regulation of both G1 cell cycle factors and mTORC1 activity. Moreover, TSC2 Thr1203 underwent ROCK-dependent phosphorylation in vivo and could be phosphorylated by bacterially expressed active ROCK1 in vitro, providing biochemical evidence for a direct physical interaction between ROCK and TSC2. PMID:21561859

  14. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    PubMed Central

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  15. The 2014 Earth return of the ISEE-3/ICE spacecraft

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Farquhar, Robert W.; Loucks, Michel; Roberts, Craig E.; Wingo, Dennis; Cowing, Keith L.; Garcia, Leonard N.; Craychee, Tim; Nickel, Craig; Ford, Anthony; Colleluori, Marco; Folta, David C.; Giorgini, Jon D.; Nace, Edward; Spohr, John E.; Dove, William; Mogk, Nathan; Furfaro, Roberto; Martin, Warren L.

    2015-05-01

    In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit. In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment. After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second ΔV (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was

  16. CONNECTIVE TISSUE GROWTH FACTOR IS A TARGET OF NOTCH SIGNALING IN CELLS OF THE OSTEOBLASTIC LINEAGE

    PubMed Central

    Canalis, Ernesto; Zanotti, Stefano; Smerdel-Ramoya, Anna

    2014-01-01

    Connective tissue growth factor (Ctgf) or CCN2 is a protein synthesized by osteoblasts necessary for skeletal homeostasis, although its overexpression inhibits osteogenic signals and bone formation. Ctgf is induced by bone morphogenetic proteins, transforming growth factor β and Wnt; and in the present studies, we explored whether Notch regulated Ctgf expression in osteoblasts. We employed RosaNotch mice, where the Notch intracellular domain (NICD) is expressed following the excision of a STOP cassette, placed between the Rosa26 promoter and NICD. Notch was activated by transduction of adenoviral vectors expressing Cre recombinase (Ad-CMV-Cre). Notch induced Ctgf mRNA levels in a time dependent manner and increased Ctgf heterogeneous nuclear RNA. Notch also destabilized Ctgf mRNA shortening its half-life from 13 h to 3 h. The effect of Notch on Ctgf expression was lost following Rbpjκ downregulation, demonstrating that it was mediated by Notch canonical signaling. However, downregulation of the classic Notch target genes Hes1, Hey1 and Hey2 did not modify the effect of Notch on Ctgf expression. Wild type osteoblasts exposed to immobilized Delta-like 1 displayed enhanced Notch signaling and increased Ctgf expression. In addition to the effects of Notch in vitro, Notch induced Ctgf in vivo, and calvariae and femurs from RosaNotch mice mated with transgenics expressing the Cre recombinase in cells of the osteoblastic lineage exhibited increased expression of Ctgf. In conclusion, Ctgf is a target of Notch canonical signaling in osteoblasts, and may act in concert with Notch to regulate skeletal homeostasis. PMID:24792956

  17. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  18. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  19. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  20. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.

    PubMed

    Miyamoto, Yuji; Hanna, Diana L; Zhang, Wu; Baba, Hideo; Lenz, Heinz-Josef

    2016-08-15

    Cancer cachexia is a multifactorial syndrome characterized by an ongoing loss of skeletal muscle mass, which negatively affects quality of life and portends a poor prognosis. Numerous molecular substrates and mechanisms underlie the dysregulation of skeletal muscle synthesis and degradation observed in cancer cachexia, including proinflammatory cytokines (TNFα, IL1, and IL6), and the NF-κB, IGF1/AKT/mTOR, and myostatin/activin-SMAD pathways. Recent preclinical and clinical studies have demonstrated that anti-cachexia drugs (such as MABp1 and soluble receptor antagonist of myostatin/activin) not only prevent muscle wasting but also may prolong overall survival. In this review, we focus on the significance of cachexia signaling in patients with cancer and highlight promising drugs targeting tumor cachexia in clinical development. Clin Cancer Res; 22(16); 3999-4004. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy

    PubMed Central

    Dandawate, Prasad R.; Subramaniam, Dharmalingam; Jensen, Roy A.; Anant, Shrikant

    2017-01-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3′-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. PMID:27609747

  2. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy.

    PubMed

    Dandawate, Prasad R; Subramaniam, Dharmalingam; Jensen, Roy A; Anant, Shrikant

    2016-10-01

    Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development. Copyright © 2016. Published by Elsevier Ltd.

  3. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger.

    PubMed

    Park, Se-Jeong; Lee, Mi-Young; Son, Bu-Soon; Youn, Hyung-Sun

    2009-07-01

    Toll-like receptors (TLRs) are primary sensors that detect a wide variety of microbial components involving induction of innate immune responses. After recognition of microbial components, TLRs trigger the activation of myeloid differential factor 88 (MyD88) and Toll-interleukin-1 (IL-1) receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent downstream signaling pathways. 6-Shoagol, an active ingredient of ginger, inhibits the MyD88-dependent signaling pathway by inhibiting inhibitor-kappaB kinase activity. Inhibitor-kappaB kinase is a key kinase in nuclear factor kappaB (NF-kappaB) activation. However, it is not known whether 6-shogaol inhibits the TRIF-dependent signaling pathway. Our goal was to identify the molecular target of 6-shogaol in the TRIF-dependent pathway of TLRs. 6-Shogaol inhibited the activation of interferon-regulatory factor 3 (IRF3) induced by lipopolysaccharide (LPS) and by polyriboinosinic polyribocytidylic acid (poly[I:C]), overexpression of TRIF, TANK-binding kinase1 (TBK1), and IRF3. Furthermore, 6-shogaol inhibited TBK1 activity in vitro. Together, these results suggest that 6-shogaol inhibits the TRIF-dependent signaling pathway of TLRs by targeting TBK1, and, they imply that 6-shogaol can modulate TLR-derived immune/inflammatory target gene expression induced by microbial infection.

  4. COBE navigation with one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Dunham, Joan; Nemesure, M.; Samii, M. V.; Maher, M.; Teles, Jerome; Jackson, J.

    1991-01-01

    The results of a navigation experiment with one way return link Doppler tracking measurements for operational orbit determination of the Cosmic Background Explorer (COBE) spacecraft are presented. The frequency of the tracking signal for the one way measurements was stabilized with an Ultrastable Oscillator (USO), and the signal was relayed by the Tracking and Data Relay Satellite System (TDRSS). The study achieved three objectives: space qualification of TDRSS noncoherent one way return link Doppler tracking; determination of flight performance of the USO coupled to the second generation TDRSS compatible user transponder; and verification of algorithms for navigation using actual one way tracking data. Orbit determination and the inflight USO performance evaluation results are presented.

  5. The Effects of Expectancy on Inhibition of Return

    ERIC Educational Resources Information Center

    Gabay, Shai; Henik, Avishai

    2008-01-01

    This research examined the influence of cue temporal predictability on inhibition of return (IOR). In exogenous attention experiments, the cue that summons attention is non-informative as to where the target will appear. However, it is predictive as to when it will appear. Because in most experiments there are equal numbers of trials for each…

  6. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy.

    PubMed

    Kong, Delin; Zhao, Yicheng; Men, Tong; Teng, Chun-Bo

    2015-02-01

    Cell behaviors, including proliferation, differentiation and apoptosis, are intricately controlled during organ development and tissue regeneration. In the past 9 years, the Hippo signaling pathway has been delineated to play critical roles in organ size control, tissue regeneration and tumorigenesis through regulating cell behaviors. In mammals, the core modules of the Hippo signaling pathway include the MST1/2-LATS1/2 kinase cascade and the transcriptional co-activators YAP/TAZ. The activity of YAP/TAZ is suppressed by cytoplasmic retention due to phosphorylation in the canonical MST1/2-LATS1/2 kinase cascade-dependent manner or the non-canonical MST1/2- and/or LATS1/2-independent manner. Hippo signaling pathway, which can be activated or inactivated by cell polarity, contact inhibition, mechanical stretch and extracellular factors, has been demonstrated to be involved in development and tumorigenesis of liver and pancreas. In addition, we have summarized several small molecules currently available that can target Hippo-YAP pathway for potential treatment of hepatic and pancreatic cancers, providing clues for other YAP initiated cancers therapy as well.

  7. Asteroid Return Mission Feasibility Study

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Gershman, Robert; Landau, Damon; Polk, James; Porter, Chris; Yeomans, Don; Allen, Carlton; Williams, Willie; Asphaug, Erik

    2011-01-01

    This paper describes an investigation into the technological feasibility of finding, characterizing, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the International Space Station (ISS) for scientific investigation, evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities, and to serve as a testbed for human operations in the vicinity of an asteroid. Reasonable projections suggest that several dozen candidates NEAs in the size range of interest (approximately 2-m diameter) will be known before the end of the decade from which a suitable target could be selected. The conceptual mission objective is to return an approximately 10,000-kg asteroid to the ISS in a total flight time of approximately 5 years using a single Evolved Expendable Launch Vehicle. Preliminary calculations indicate that this could be accomplished using a solar electric propulsion (SEP) system with high-power Hall thrusters and a maximum power into the propulsion system of approximately 40 kW. The SEP system would be used to provide all of the post-launch delta V. The asteroid would have an unrestricted Earth return Planetary Protection categorization, and would be curated at the ISS where numerous scientific and resource utilization experiments would be conducted. Asteroid material brought to the ground would be curated at the NASA Johnson Space Center. This preliminary study identified several areas where additional work is required, but no show stoppers were identified for the approach that would return an entire 10,000-kg asteroid to the ISS in a mission that could be launched by the end of this decade.

  8. Priority Science Targets for Future Sample Return Missions within the Solar System Out to the Year 2050

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Barnes, J. J.; Boyce, J. W.; Burton, A. S.; Draper, D. S.; Evans, C. A.; Fries, M. D.; Jones, J. H.; Keller, L. P.; hide

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections: (1) Apollo samples, (2) LUNA samples, (3) Antarctic meteorites, (4) Cosmic dust particles, (5) Microparticle Impact Collection [formerly called Space Exposed Hardware], (6) Genesis solar wind, (7) Star-dust comet Wild-2 particles, (8) Stardust interstellar particles, and (9) Hayabusa asteroid Itokawa particles. In addition, the next missions bringing carbonaceous asteroid samples to JSC are Hayabusa 2/ asteroid Ryugu and OSIRIS-Rex/ asteroid Bennu, in 2021 and 2023, respectively. The Hayabusa 2 samples are provided as part of an international agreement with JAXA. The NASA Curation Office plans for the requirements of future collections in an "Advanced Curation" program. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. Here we review the science value and sample curation needs of some potential targets for sample return missions over the next 35 years.

  9. Targeted Training: An Integrated Initiative.

    ERIC Educational Resources Information Center

    Valvasori, Joe

    The Learning Enrichment Foundation (LEF) in Toronto, Ontario (Canada) offers 12 targeted training programs that have successfully helped "hard-to-serve" clients return to the workforce. Compared with traditional training, targeted training has a much narrower focus and adapts quickly to industry trends to meet employers' changing…

  10. A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades

    DTIC Science & Technology

    2016-09-01

    UNCLASSIFIED A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades Ngoc Hung Nguyen 1, Hai-Tan Tran 2, Kutluyıl...TR–3292 ABSTRACT Radar imaging of rotating blade -like objects, such as helicopter rotors, using narrowband radar has lately been of significant...Methods for Analysing Radar Returns from Helicopter Rotor Blades Executive Summary Signal analysis and radar imaging of fast-rotating objects such as

  11. Fine structure in RF spectra of lightning return stroke wave forms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1988-01-01

    The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  12. Is the canonical RAF-MEK-ERK signaling pathway a therapeutic target in SCLC?

    PubMed Central

    Cristea, Sandra; Sage, Julien

    2017-01-01

    The activity of the RAF-MEK-ERK signaling pathway is critical for the proliferation of normal and cancerous cells. Oncogenic mutations driving the development of lung adenocarcinoma often activate this signaling pathway. In contrast, pathway activity levels and their biological roles are not well established in small cell lung cancer (SCLC), a fast-growing neuroendocrine lung cancer subtype. Here we discuss the function of the RAF-MEK-ERK kinase pathway and the mechanisms leading to its activation in SCLC cells. In particular, we argue that activation of this pathway may be beneficial to the survival, proliferation and spread of SCLC cells in response to multiple stimuli. We also consider evidence that high levels of RAF-MEK-ERK pathway activity may be detrimental to SCLC tumors, including in part by interfering with their neuroendocrine fate. Based on these observations, we examine when small molecules targeting kinases in the RAF-MEK-ERK pathway may be useful therapeutically in SCLC patients, including in combination with other therapeutic agents. PMID:27133774

  13. Signature management of radar returns from wind turbine generators

    NASA Astrophysics Data System (ADS)

    Tennant, A.; Chambers, B.

    2006-04-01

    The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, but the Doppler shifts introduced by the WTG blades are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the radar cross section (RCS) of the blade return. The active blade can operate in one of two modes: first the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected; a second mode of operation is to introduce specific coding onto the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques developed for active radar absorbers. Results of theoretical and experimental work using a 10 GHz Doppler radar and scale-model WTG are presented.

  14. “mTOR Signaling Pathway”: A Potential Target of Curcumin in the Treatment of Spinal Cord Injury

    PubMed Central

    Lin, Jingquan; Huo, Xue

    2017-01-01

    The purpose of this review is to discuss the possibility of the treatment of spinal cord injury (SCI) with curcumin via regulating the mTOR signaling pathway, which may provide another strong support for curcumin to be a promising medicine applied to the treatment of SCI. Curcumin is termed as a multifunctional targeting therapy drug that regulates the mTOR signaling pathway in the treatment of numerous diseases. Previous research has already revealed that mTOR signaling pathway plays a vital role in prognosis, which involves the axon regeneration and autophagy. This review discusses a potential mechanism that curcumin suppresses the activation of this pathway and ameliorates the microenvironment of axons regeneration which would provide a new way that induces autophagy appropriately. PMID:28691015

  15. Time course of upper limb function and return-to-work post-radiotherapy in young adults with breast cancer: a pilot randomized control trial on effects of targeted exercise program.

    PubMed

    Ibrahim, Marize; Muanza, Thierry; Smirnow, Nadia; Sateren, Warren; Fournier, Beatrice; Kavan, Petr; Palumbo, Michael; Dalfen, Richard; Dalzell, Mary-Ann

    2017-12-01

    Breast cancer (BC) diagnosis in young adults (YA) is rising, and both disease and treatments are aggressive in this population. Evidence supports the use of physical activity in reducing shoulder dysfunction, which is common among BC survivors. A pilot randomized clinical trial was performed to determine the effectiveness of a 12-week post-radiation exercise program in minimizing upper extremity dysfunction in YA with BC. Participants were randomized to either an exercise arm or a control arm receiving standard care. Data was collected over six time points using: the Disability of Arm, Shoulder, and Hand (DASH); the Metabolic Equivalent of Task-hours per week (MET-hours/week), and a post hoc questionnaire on return to work. In total, 59 young women participated in the study (n = 29 exercise; n = 30 control). No statistically significant differences were found in overall DASH results between groups; however, those who underwent total mastectomy had residual upper limb dysfunction (p < 0.05). Both groups returned to pre-diagnosis activity levels by 18 months. Final evaluation showed that 86% of the women returned to work, and 89% resumed prior work activities with a decrease of 8.5 h/week. Although the short-term targeted exercise program had no effect on long-term upper limb function post-radiation, timing and program specificity may require consideration of tissue healing post-radiation and surgery type. The majority of participants returned to work, however not returning to pre-diagnosis work hours. Exercise interventions alone may not reverse the long-term sequelae of breast cancer treatment and allow young adult patients to return to work.

  16. Computing return times or return periods with rare event algorithms

    NASA Astrophysics Data System (ADS)

    Lestang, Thibault; Ragone, Francesco; Bréhier, Charles-Edouard; Herbert, Corentin; Bouchet, Freddy

    2018-04-01

    The average time between two occurrences of the same event, referred to as its return time (or return period), is a useful statistical concept for practical applications. For instance insurances or public agencies may be interested by the return time of a 10 m flood of the Seine river in Paris. However, due to their scarcity, reliably estimating return times for rare events is very difficult using either observational data or direct numerical simulations. For rare events, an estimator for return times can be built from the extrema of the observable on trajectory blocks. Here, we show that this estimator can be improved to remain accurate for return times of the order of the block size. More importantly, we show that this approach can be generalised to estimate return times from numerical algorithms specifically designed to sample rare events. So far those algorithms often compute probabilities, rather than return times. The approach we propose provides a computationally extremely efficient way to estimate numerically the return times of rare events for a dynamical system, gaining several orders of magnitude of computational costs. We illustrate the method on two kinds of observables, instantaneous and time-averaged, using two different rare event algorithms, for a simple stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic applications to complex systems, we finally discuss extreme values of the drag on an object in a turbulent flow.

  17. Targeting signal transduction in pancreatic cancer treatment.

    PubMed

    Yeh, Jen Jen; Der, Channing J

    2007-05-01

    Pancreatic cancer is a lethal disease with a 5-year survival rate of 4%. The only opportunity for improved survival continues to be complete surgical resection for those with localized disease. Although chemotherapeutic options are limited for the few patients with resectable disease, this problem is even more magnified in the majority (85%) of patients with unresectable or metastastic disease. Therefore, there is an urgent need for improved therapeutic options. The recent success of inhibitors of signal transduction for the treatment of other cancers supports the need to identify and validate aberrant signaling pathways important for pancreatic tumor growth. This review focuses on the validation of specific signaling networks and the present status of inhibitors of these pathways as therapeutic approaches for pancreatic cancer treatment.

  18. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    PubMed

    Zhang, Yi-Xiang; van Oosterwijk, Jolieke G; Sicinska, Ewa; Moss, Samuel; Remillard, Stephen P; van Wezel, Tom; Bühnemann, Claudia; Hassan, Andrew B; Demetri, George D; Bovée, Judith V M G; Wagner, Andrew J

    2013-07-15

    Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.

  19. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis

    PubMed Central

    Deng, Kexuan; Yu, Lihua; Zheng, Xianzhe; Zhang, Kang; Wang, Wanjing; Dong, Pan; Zhang, Jiankui; Ren, Maozhi

    2016-01-01

    Target of rapamycin (TOR), a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity viaFK506 binding protein 12 kDa (FKBP12) in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR). GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can significantly

  20. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    PubMed

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  1. Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

    PubMed Central

    Saha, Manujendra N.; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D.; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  2. Targeting loss of the Hippo signaling pathway in NF2-deficient papillary kidney cancers

    PubMed Central

    Ricketts, Christopher J.; Wei, Darmood; Yang, Youfeng; Baranes, Sarah M.; Gibbs, Benjamin K.; Ohanjanian, Lernik; Spencer Krane, L.; Scroggins, Bradley T.; Keith Killian, J.; Wei, Ming-Hui; Kijima, Toshiki; Meltzer, Paul S.; Citrin, Deborah E.; Neckers, Len; Vocke, Cathy D.; Marston Linehan, W.

    2018-01-01

    Papillary renal cell carcinomas (PRCC) are a histologically and genetically heterogeneous group of tumors that represent 15–20% of all kidney neoplasms and may require diverse therapeutic approaches. Alteration of the NF2 tumor suppressor gene, encoding a key regulator of the Hippo signaling pathway, is observed in 22.5% of PRCC. The Hippo signaling pathway controls cell proliferation by regulating the transcriptional activity of Yes-Associated Protein, YAP1. Loss of NF2 results in aberrant YAP1 activation. The Src family kinase member Yes also regulates YAP1 transcriptional activity. This study investigated the importance of YAP and Yes activity in three NF2-deficient PRCC cell lines. NF2-deficency correlated with increased expression of YAP1 transcriptional targets and siRNA-based knockdown of YAP1 and Yes1 downregulated this pathway and dramatically reduced cell viability. Dasatinib and saracatinib have potent inhibitory effects on Yes and treatment with either resulted in downregulation of YAP1 transcription targets, reduced cell viability, and G0-G1 cell cycle arrest. Xenograft models for NF2-deficient PRCC also demonstrated reduced tumor growth in response to dasatinib. Thus, inhibiting Yes and the subsequent transcriptional activity of YAP1 had a substantial anti-tumor cell effect both in vitro and in vivo and may provide a viable therapeutic approach for patients with NF2-deficient PRCC. PMID:29535838

  3. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells

    PubMed Central

    Kang, Jeffrey C; Poovassery, Jayakumar S; Bansal, Pankaj; You, Sungyong; Manjarres, Isabel M; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert. PMID:24492289

  4. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma.

    PubMed

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E; Vasudevan, Sanjeev A; Tao, Ling; Pang, Jonathan C; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-03

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.

  5. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review).

    PubMed

    Katoh, Masaru

    2017-11-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers

  6. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review)

    PubMed Central

    Katoh, Masaru

    2017-01-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers

  7. Factors influencing donor return.

    PubMed

    Schlumpf, Karen S; Glynn, Simone A; Schreiber, George B; Wright, David J; Randolph Steele, Whitney; Tu, Yongling; Hermansen, Sigurd; Higgins, Martha J; Garratty, George; Murphy, Edward L

    2008-02-01

    To predict future blood donation behavior and improve donor retention, it is important to understand the determinants of donor return. A self-administered questionnaire was completed in 2003 by 7905 current donors. With data mining methods, all factors measured by the survey were ranked as possible predictors of actual return within 12 months. Significant factors were analyzed with logistic regression to determine predictors of intention and of actual return. Younger and minority donors were less likely to return in 12 months. Predictors of donor return were higher prior donation frequency, higher intention to return, a convenient place to donate, and having a good donation experience. Most factors associated with actual donor return were also associated with a high intention to return. Although not significant for actual return, feeling a responsibility to help others, higher empathetic concern, and a feeling that being a blood donor means more than just donating blood were related to high intention to return. Prior donation frequency, intention to return, donation experience, and having a convenient location appear to significantly predict donor return. Clearly, donor behavior is dependent on more than one factor alone. Altruistic behavior, empathy, and social responsibility items did not enter our model to predict actual return. A donor's stated intention to give again is positively related to actual return and, while not a perfect measure, might be a useful proxy when donor return cannot be determined.

  8. Autonomous Mars ascent and orbit rendezvous for earth return missions

    NASA Technical Reports Server (NTRS)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  9. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  10. Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells.

    PubMed

    Salinas-Vera, Yarely M; Marchat, Laurence A; García-Vázquez, Raúl; González de la Rosa, Claudia Haydée; Castañeda-Saucedo, Eduardo; Tito, Napoleón Navarro; Flores, Carlos Palma; Pérez-Plasencia, Carlos; Cruz-Colin, José L; Carlos-Reyes, Ángeles; López-González, José Sullivan; Álvarez-Sánchez, María Elizbeth; López-Camarillo, César

    2018-06-06

    RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7 cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231 cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    PubMed

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C Cdc20 ) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  12. MIR-27a regulates the TGF-β signaling pathway by targeting SMAD2 and SMAD4 in lung cancer.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Kim, Eunice EunKyeong; Baik, Ja-Hyun; Song, Eun Joo

    2017-08-01

    The transforming growth factor-β (TGF-β) signaling pathway is associated with carcinogenesis and various biological processes. SMAD2 and SMAD4, which are putative tumor suppressors, have an important role in TGF-β signaling. The aberrant expression of these genes is implicated in some cancers. However, the mechanisms of SMAD2 and SMAD4 dysregulation are poorly understood. In this study, we observed that miR-27a was upregulated in lung cancer cell lines and patients. In addition, SMAD2 and SMAD4 genes were identified as targets of miR-27a by several target prediction databases and experimental validation. Functional studies revealed that miR-27a overexpression decreased SMAD2 and SMAD4 mRNA and protein levels. Furthermore, miR-27a contributed to cell proliferation and invasion by inhibiting TGF-β-induced cell cycle arrest. These results suggest that miR-27a may function as an oncogene by regulating SMAD2 and SMAD4 in lung cancer. Thus, miR-27a may be a potential target for cancer therapy. © 2017 Wiley Periodicals, Inc.

  13. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A [Rochester, MN; Parker, Jeffrey J [Rochester, MN

    2011-05-24

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local direct put transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  14. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus.

    PubMed

    Nevarez, P Andrew; Qiu, Yongjian; Inoue, Hitoshi; Yoo, Chan Yul; Benfey, Philip N; Schnell, Danny J; Chen, Meng

    2017-04-01

    HEMERA (HMR) is a nuclear and plastidial dual-targeted protein. While it functions in the nucleus as a transcriptional coactivator in phytochrome signaling to regulate a distinct set of light-responsive, growth-relevant genes, in plastids it is known as pTAC12, which associates with the plastid-encoded RNA polymerase, and is essential for inducing the plastomic photosynthetic genes and initiating chloroplast biogenesis. However, the mechanism of targeting HMR to the nucleus and plastids is still poorly understood. Here, we show that HMR can be directly imported into chloroplasts through a transit peptide residing in the N-terminal 50 amino acids. Upon cleavage of the transit peptide and additional proteolytic processing, mature HMR, which begins from Lys-58, retains its biochemical properties in phytochrome signaling. Unexpectedly, expression of mature HMR failed to rescue not only the plastidial but also the nuclear defects of the hmr mutant. This is because the predicted nuclear localization signals of HMR are nonfunctional, and therefore mature HMR is unable to accumulate in either plastids or the nucleus. Surprisingly, fusing the transit peptide of the small subunit of Rubisco with mature HMR rescues both its plastidial and nuclear localization and functions. These results, combined with the observation that the nuclear form of HMR has the same reduced molecular mass as plastidial HMR, support a retrograde protein translocation mechanism in which HMR is targeted first to plastids, processed to the mature form, and then relocated to the nucleus. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease.

    PubMed

    Curry, Daniel W; Stutz, Bernardo; Andrews, Zane B; Elsworth, John D

    2018-03-26

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.

  16. Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Ranjith

    2011-09-15

    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas formore » the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N{sub s}, the fidelity is minimized by any multimode Fock state with N{sub s} total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from number state transmitters with current technology at moderate to high values of

  17. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism1

    PubMed Central

    Sheen, Jen

    2014-01-01

    The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth. PMID:24385567

  18. NASA needs a long-term sample return strategy

    NASA Astrophysics Data System (ADS)

    Agee, C.

    Sample return missions, as demonstrated by Apollo, can have a huge payoff for plan- etary science. Beyond NASAAfs current Discovery missions, Stardust and Genesis, there are no future U.S. sample return missions on the books. At this juncture, it would be desirable for NASA to develop a coherent, long-term strategy for sample return missions to prime targets such as Mars, Venus, and other solar system bodies. The roster of missions planned for this decade in NASAAfs Mars Program no longer includes a sample return. Arguments against an early Mars sample return (MSR) in- clude the high cost, high risk, and not knowing the Agright placeAh on the Martian surface to sample. On the other hand, answering many of the key scientific questions about Mars, including the search for life, may require sample return. In lieu of MSR, NASA plans, out to 2009, a mix of orbital and landed missions that will perform re- mote and in-situ science at Mars. One approach to MSR that may lead to success in the opportunities beyond 2009 is a series of simple missions where large rovers and complex instruments are replaced by robust Mars ascent vehicles and lander-based sampling techniques. AgMobilityAh and Agsample diversityAh in these early reconnaissance sample return missions are accomplished by sending each mission to a distinctly different location based on our understanding of Martian geology prior to launch. The expected wealth of knowledge from these simple sample return missions will help guide Mars exploration beyond 2020. Venus sample return (VSR) should also be a high priority in NASAAfs exploration of the solar system. Our understanding of the Venusian surface is fragmentary at best and the mineralogy in unknown. We have no verified meteorites from Venus and thus radiometric ages of the crust do not exist. Venusian science best done on Earth from a VSR would include (1) precise isotopic measurements of atmospheric gases, soil, and rock, (2) age dating of rock, (3) trace element

  19. Eliminating Inhibition of Return by Changing Salient Nonspatial Attributes in a Complex Environment

    ERIC Educational Resources Information Center

    Hu, Frank K.; Samuel, Arthur G.; Chan, Agnes S.

    2011-01-01

    Inhibition of return (IOR) occurs when a target is preceded by an irrelevant stimulus (cue) at the same location: Target detection is slowed, relative to uncued locations. In the present study, we used relatively complex displays to examine the effect of repetition of nonspatial attributes. For both color and shape, attribute repetition produced a…

  20. Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model.

    PubMed

    Hasan, Md Nabiul; Queudeville, Manon; Trentin, Luca; Eckhoff, Sarah Mirjam; Bronzini, Ilaria; Palmi, Chiara; Barth, Thomas; Cazzaniga, Giovanni; te Kronnie, Geertruy; Debatin, Klaus-Michael; Meyer, Lüder Hinrich

    2015-01-30

    Despite increasingly successful treatment of pediatric ALL, up to 20% of patients encounter relapse. By current biomarkers, the majority of relapse patients is initially not identified indicating the need for prognostic and therapeutic targets reflecting leukemia biology. We previously described that rapid engraftment of patient ALL cells transplanted onto NOD/SCID mice (short time to leukemia, TTLshort) is indicative of early patient relapse. Gene expression profiling identified genes coding for molecules involved in mTOR signaling to be associated with TTLshort/early relapse leukemia. Here, we now functionally address mTOR signaling activity in primograft ALL samples and evaluate mTOR pathway inhibition as novel treatment strategy for high-risk ALL ex vivo and in vivo. By analysis of S6-phosphorylation downstream of mTOR, increased mTOR activation was found in TTLshort/high-risk ALL, which was effectively abrogated by mTOR inhibitors resulting in decreased leukemia proliferation and growth. In a preclinical setting treating individual patient-derived ALL in vivo, mTOR inhibition alone, and even more pronounced together with conventional remission induction therapy, significantly delayed post-treatment leukemia reoccurrence in TTLshort/high-risk ALL. Thus, the TTLshort phenotype is functionally characterized by hyperactivated mTOR signaling and can effectively be targeted ex vivo and in vivo providing a novel therapeutic strategy for high-risk ALL.

  1. ROS-dependent signal transduction

    PubMed Central

    Reczek, Colleen R; Chandel, Navdeep S

    2014-01-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438

  2. Quantum illumination for enhanced detection of Rayleigh-fading targets

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-08-01

    Quantum illumination (QI) is an entanglement-enhanced sensing system whose performance advantage over a comparable classical system survives its usage in an entanglement-breaking scenario plagued by loss and noise. In particular, QI's error-probability exponent for discriminating between equally likely hypotheses of target absence or presence is 6 dB higher than that of the optimum classical system using the same transmitted power. This performance advantage, however, presumes that the target return, when present, has known amplitude and phase, a situation that seldom occurs in light detection and ranging (lidar) applications. At lidar wavelengths, most target surfaces are sufficiently rough that their returns are speckled, i.e., they have Rayleigh-distributed amplitudes and uniformly distributed phases. QI's optical parametric amplifier receiver—which affords a 3 dB better-than-classical error-probability exponent for a return with known amplitude and phase—fails to offer any performance gain for Rayleigh-fading targets. We show that the sum-frequency generation receiver [Zhuang et al., Phys. Rev. Lett. 118, 040801 (2017), 10.1103/PhysRevLett.118.040801]—whose error-probability exponent for a nonfading target achieves QI's full 6 dB advantage over optimum classical operation—outperforms the classical system for Rayleigh-fading targets. In this case, QI's advantage is subexponential: its error probability is lower than the classical system's by a factor of 1 /ln(M κ ¯NS/NB) , when M κ ¯NS/NB≫1 , with M ≫1 being the QI transmitter's time-bandwidth product, NS≪1 its brightness, κ ¯ the target return's average intensity, and NB the background light's brightness.

  3. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  4. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling.

    PubMed

    Shaw, Stevan; Bourne, Tim; Meier, Chris; Carrington, Bruce; Gelinas, Rich; Henry, Alistair; Popplewell, Andrew; Adams, Ralph; Baker, Terry; Rapecki, Steve; Marshall, Diane; Moore, Adrian; Neale, Helen; Lawson, Alastair

    2014-01-01

    Interleukin-6 (IL-6) is a critical regulator of the immune system and has been widely implicated in autoimmune disease. Here, we describe the discovery and characterization of olokizumab, a humanized antibody to IL-6. Data from structural biology, cell biology and primate pharmacology demonstrate the therapeutic potential of targeting IL-6 at "Site 3", blocking the interaction with the signaling co-receptor gp130.

  5. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways.

    PubMed

    Chen, Hongyu; Liu, Rui Hai

    2018-04-04

    Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.

  6. A screen for transcription factor targets of Glycogen Synthase Kinase-3 highlights an inverse correlation of NFκB and Androgen Receptor Signaling in Prostate Cancer

    PubMed Central

    Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.

    2014-01-01

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559

  7. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer.

    PubMed

    Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M

    2014-09-30

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.

  8. Macroglia-Microglia Interactions via TSPO Signaling Regulates Microglial Activation in the Mouse Retina

    PubMed Central

    Wang, Minhua; Wang, Xu; Zhao, Lian; Ma, Wenxin; Rodriguez, Ignacio R.; Fariss, Robert N.

    2014-01-01

    Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies. PMID:24599476

  9. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  10. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    PubMed

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2018-02-01

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  11. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  12. Signaling completion of a message transfer from an origin compute node to a target compute node

    DOEpatents

    Blocksome, Michael A [Rochester, MN

    2011-02-15

    Signaling completion of a message transfer from an origin node to a target node includes: sending, by an origin DMA engine, an RTS message, the RTS message specifying an application message for transfer to the target node from the origin node; receiving, by the origin DMA engine, a remote get message containing a data descriptor for the message and a completion notification descriptor, the completion notification descriptor specifying a local memory FIFO data transfer operation for transferring data locally on the origin node; inserting, by the origin DMA engine in an injection FIFO buffer, the data descriptor followed by the completion notification descriptor; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that transfer of the message is complete in dependence upon the completion notification descriptor.

  13. Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance.

    PubMed

    Ranji, Peyman; Salmani Kesejini, Tayyebali; Saeedikhoo, Sara; Alizadeh, Ali Mohammad

    2016-10-01

    Cancer stem cells (CSCs) are a small subpopulation of tumor cells with capabilities of self-renewal, dedifferentiation, tumorigenicity, and inherent chemo-and-radio therapy resistance. Tumor resistance is believed to be caused by CSCs that are intrinsically challenging to common treatments. A number of CSC markers including CD44, CD133, receptor tyrosine kinase, aldehyde dehydrogenases, epithelial cell adhesion molecule/epithelial specific antigen, and ATP-binding cassette subfamily G member 2 have been proved as the useful targets for defining CSC population in solid tumors. Furthermore, targeting CSC markers through new therapeutic strategies will ultimately improve treatments and overcome cancer drug resistance. Therefore, the identification of novel strategies to increase sensitivity of CSC markers has major clinical implications. This review will focus on the innovative treatment methods such as nano-, immuno-, gene-, and chemotherapy approaches for targeting CSC-specific markers and/or their associated signaling pathways.

  14. [Piperine regulates glucose metabolism disorder in HepG2 cells of insulin resistance models via targeting upstream target of AMPK signaling pathway].

    PubMed

    Wan, Chun-Ping; Wei, Ya-Gai; Li, Xiao-Xue; Zhang, Li-Jun; Yang, Rui; Bao, Zhao-Ri-Ge-Tu

    2017-02-01

    To investigate the effect of piperine on the disorder of glucose metabolism in the cell model with insulin resistance (IR) and explore the molecules mechanism on intervening the upstream target of AMPK signaling pathway. The insulin resistance models in HepG2 cells were established by fat emulsion stimulation. Then glucose consumption in culture supernatant was detected by GOD-POD method. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of leptin(LEP) and adiponectin(APN) in culture supernatant; Real-time quantitative PCR was used to assess the mRNA expression of APN and LEP; and the protein expression levels of LepR, AdipoR1, AdipoR2 and the activation of AMPK signaling pathway were detected by Western blot analysis. The results showed that piperine, rosiglitazone and AMPK agonist AICAR could significantly elevate the glucose consumption in insulin resistance cell models, enhance the level of APN, promote APN mRNA transcripts and increase the protein expression of Adipo receptor. Meanwhile,AMPKα mRNA and р-AMPKα protein expressions were also increased in piperine treated cells, but both LEP mRNA expression and LepR protein expressions were decreased in piperine treated group. The results indicated that piperine could significantly ameliorate the glucose metabolism disorder in insulin resistance cell models through regulating upstream molecules (APN and LEP) of AMPK signaling pathway, and thus activate the AMPK signaling pathway. Copyright© by the Chinese Pharmaceutical Association.

  15. 75 FR 1704 - Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a Target, Followed by a Recontribution to a New Target, as a Cross-Chain Reorganization AGENCY: Internal Revenue... a target, followed by a recontribution to a new reorganization. DATES: The correction is effective...

  16. ROS-dependent signal transduction.

    PubMed

    Reczek, Colleen R; Chandel, Navdeep S

    2015-04-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Extracellular Vesicles from Neural Stem Cells Transfer IFN-γ via Ifngr1 to Activate Stat1 Signaling in Target Cells

    PubMed Central

    Cossetti, Chiara; Iraci, Nunzio; Mercer, Tim R.; Leonardi, Tommaso; Alpi, Emanuele; Drago, Denise; Alfaro-Cervello, Clara; Saini, Harpreet K.; Davis, Matthew P.; Schaeffer, Julia; Vega, Beatriz; Stefanini, Matilde; Zhao, CongJian; Muller, Werner; Garcia-Verdugo, Jose Manuel; Mathivanan, Suresh; Bachi, Angela; Enright, Anton J.; Mattick, John S.; Pluchino, Stefano

    2015-01-01

    SUMMARY The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system. PMID:25242146

  18. Enabling Global Lunar Sample Return and Life-Detection Studies Using a Deep-Space Gateway

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Eigenbrode, J. A.; Young, K. E.; Bleacher, J. E.; Trainer, M. E.

    2018-02-01

    The Deep Space Gateway could uniquely enable a lunar robotic sampling campaign that would provide incredible science return as well as feed forward to Mars and Europa by testing instrument sterility and ability to distinguish biogenic signals.

  19. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  20. Neuronal Target Identification Requires AHA-1-Mediated Fine-Tuning of Wnt Signaling in C. elegans

    PubMed Central

    Zhang, Jingyan; Li, Xia; Jevince, Angela R.; Guan, Liying; Wang, Jiaming; Hall, David H.; Huang, Xun; Ding, Mei

    2013-01-01

    Electrical synaptic transmission through gap junctions is a vital mode of intercellular communication in the nervous system. The mechanism by which reciprocal target cells find each other during the formation of gap junctions, however, is poorly understood. Here we show that gap junctions are formed between BDU interneurons and PLM mechanoreceptors in C. elegans and the connectivity of BDU with PLM is influenced by Wnt signaling. We further identified two PAS-bHLH family transcription factors, AHA-1 and AHR-1, which function cell-autonomously within BDU and PLM to facilitate the target identification process. aha-1 and ahr-1 act genetically upstream of cam-1. CAM-1, a membrane-bound receptor tyrosine kinase, is present on both BDU and PLM cells and likely serves as a Wnt antagonist. By binding to a cis-regulatory element in the cam-1 promoter, AHA-1 enhances cam-1 transcription. Our study reveals a Wnt-dependent fine-tuning mechanism that is crucial for mutual target cell identification during the formation of gap junction connections. PMID:23825972

  1. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide

  2. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10

  3. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer.

    PubMed

    Poovassery, Jayakumar S; Kang, Jeffrey C; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally

    2015-07-15

    Dysregulated expression and/or mutations of the various components of the phosphoinositide 3-kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER-targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC-0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin-mediated resistance to GDC-0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti-HER2/HER3 bispecific antibody or a mixture of anti-HER2 and anti-HER3 antibodies restores sensitivity to GDC-0941 in heregulin-treated androgen-dependent and -independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer. © 2014 UICC.

  4. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    PubMed

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Low encounter speed comet COMA sample return missions

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Yen, C. W.; Albee, A. L.

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return

  6. Increase in velocimeter depth of focus through astigmatism. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D.J.

    1995-09-26

    Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. The authors find that they can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens.

  7. Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model

    NASA Astrophysics Data System (ADS)

    Alaoui, Meriem; Holman, Gordon D.

    2017-12-01

    Hard X-ray (HXR) spectral breaks are explained in terms of a one-dimensional model with a cospatial return current. We study 19 flares observed by the Ramaty High Energy Solar Spectroscopic Imager with strong spectral breaks at energies around a few deka-keV, which cannot be explained by isotropic albedo or non-uniform ionization alone. We identify these breaks at the HXR peak time, but we obtain 8 s cadence spectra of the entire impulsive phase. Electrons with an initially power-law distribution and a sharp low-energy cutoff lose energy through return-current losses until they reach the thick target, where they lose their remaining energy through collisions. Our main results are as follows. (1) The return-current collisional thick-target model provides acceptable fits for spectra with strong breaks. (2) Limits on the plasma resistivity are derived from the fitted potential drop and deduced electron-beam flux density, assuming the return current is a drift current in the ambient plasma. These resistivities are typically 2–3 orders of magnitude higher than the Spitzer resistivity at the fitted temperature, and provide a test for the adequacy of classical resistivity and the stability of the return current. (3) Using the upper limit of the low-energy cutoff, the return current is always stable to the generation of ion-acoustic and electrostatic ion-cyclotron instabilities when the electron temperature is nine times lower than the ion temperature. (4) In most cases, the return current is most likely primarily carried by runaway electrons from the tail of the thermal distribution rather than by the bulk drifting thermal electrons. For these cases, anomalous resistivity is not required.

  8. How Financial Incentives Induce Disability Insurance Recipients to Return to Work.

    PubMed

    Kostol, Andreas Ravndal; Mogstad, Magne

    2014-02-01

    Using a local randomized experiment that arises from a sharp discontinuity in Disability Insurance (DI) policy in Norway, we provide transparent and credible identification of how financial incentives induce DI recipients to return to work. We find that many DI recipients have considerable capacity to work that can be effectively induced by providing financial work incentives. We further show that providing work incentives to DI recipients may both increase their disposable income and reduce program costs. Our findings also suggest that targeted policies may be the most effective in encouraging DI recipients to return to work.

  9. Return-to-Work Program for Injured Workers: Factors of Successful Return to Employment.

    PubMed

    Awang, Halimah; Shahabudin, Sharifah Muhairah; Mansor, Norma

    2016-11-01

    This study examined the factors of successful return to employment among participants in the return to work program (RTW) following work-related injury. Data were obtained from the Social Security Organization database containing 9850 injured workers who underwent RTW in 2010 to 2013. About 65% had successfully returned to employment. Significant factors of successful return include gender, employer interest, motivation, age, intervention duration, and type of injury. Male and motivated employees were more likely to return to employment compared with female and unmotivated employees, respectively. Participants from interested employers were 23.22 times more likely to return to work than those from uninterested employers, whereas participants whose intervention period exceeded 5 months were 41% less likely to return to work compared with those whose intervention period was within 3 months. Appropriate strategy and enhanced collaboration between the stakeholders would improve the proportion of successful return to employment. © 2016 APJPH.

  10. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5.

    PubMed

    Han, Jingjing; Sun, Yuena; Song, Weihua; Xu, Tianjun

    2017-03-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification.

    PubMed

    Chen, Meng; Gan, Ning; Zhou, You; Li, Tianhua; Xu, Qing; Cao, Yuting; Chen, Yinji

    2016-12-01

    An ultrasensitive electrochemical aptasensor for simultaneous detection of oxytetracycline (OTC) and kanamycin (KAN) has been developed based on metal ions doped metal organic frame materials (MOFs) as signal tracers and RecJ f exonuclease-catalyzed targets recycling amplification. The aptasensor consists of capture beads (the anti-single-stranded DNA Antibody, as anti-ssDNA Ab, labeled on Dynabeads) and nanoscale MOF (NMOF) based signal tracers (simplified as Apts-MNM, the NMOF labeled with metal ions and the aptamers). Particularly, the MOF (UiO-66-NH 2 ), with large internal surface areas, ultrahigh porosity and abundant amine groups in the pores, was employed as substrates to carry plenty of metal ions (Pb 2+ or Cd 2+ ) and label aptamers of OTC or KAN. Thus, the aptasensor is formed by the specific recognition between anti-ssDNA Ab and aptamers. In the presence of targets (OTC and KAN), aptamers prefer to form targets-Apts-MNM complexes in lieu of anti-ssDNA Ab-aptamer complexes, which results in the dissociation of Apts-MNM from capture beads. With the employment of RecJ f exonuclease, targets-Apts-MNM in supernatant was digested into mononucleotides and liberated the target, which can further participate in the next reaction cycling to produce more signal tracers. After magnetic separation, the enhanced square wave voltammetry (SWV) signals were produced from signal tracers. The aptasensor exhibited a linear correlation in the range from 0.5pM to 50nM, with detection limits of 0.18pM and 0.15pM (S/N=3) toward OTC and KAN respectively. This strategy provides specificity and sensitive approach for multiplex antibiotics detection and has promising applications in food analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Student Returns: Challenges of the Returning Student.

    ERIC Educational Resources Information Center

    Marino, Carrie A.

    According to a 1994 analysis of returning students, as many as 43% of all college students are currently over the age of 24. This influx of returning students demands a new look at existing pedagogical practices. The changing demographics of the classroom turn age and life experience into a consideration for pedagogy alongside race, class, and…

  14. Orion Exploration Mission Entry Interface Target Line

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle is required to return to the continental United States at any time during the month. In addition, it is required to provide a survivable entry from a wide range of trans-lunar abort trajectories. The Entry Interface (EI) state must be targeted to ensure that all requirements are met for all possible return scenarios, even in the event of no communication with the Mission Control Center to provide an updated EI target. The challenge then is to functionalize an EI state constraint manifold that can be used in the on-board targeting algorithm, as well as the ground-based trajectory optimization programs. This paper presents the techniques used to define the EI constraint manifold and to functionalize it as a set of polynomials in several dimensions.

  15. Expectancies mediate the relationship between perceived injustice and return to work following whiplash injury: A 1-year prospective study.

    PubMed

    Carriere, J S; Thibault, P; Adams, H; Milioto, M; Ditto, B; Sullivan, M J L

    2017-08-01

    Emerging evidence suggests that perceived injustice is a risk factor for work disability in individuals with whiplash injury. At present, however, little is known about the processes by which perceived injustice impacts on return to work. The purpose of this study was to examine whether expectancies mediated the relationship between perceived injustice and return to work in patients with whiplash injury. One hundred and fifty-two individuals (81 men, 71 women) with a primary diagnosis of whiplash injury completed self-report measures of pain intensity, perceived injustice and return-to-work expectancies following admission to a rehabilitation programme. Work status was assessed 1 year after discharge. Consistent with previous research, high scores on a measure of perceived injustice were associated with prolonged work disability. Results indicated that high perceptions of injustice were associated with low return-to-work expectancies. Causal mediation analyses revealed that expectancies fully mediated the relationship between perceived injustice and return to work. The findings suggest that intervention techniques designed to target expectancies could improve return-to-work outcomes in patients with whiplash injury. Discussion addresses the processes by which expectancies might impact on return-to-work outcomes and the manner in which negative return-to-work expectancies might be modified through intervention. The study confirms that expectancies are the mechanism through which perceived injustice impacts return to work following whiplash injury. The findings suggest that interventions designed to specifically target return-to-work expectancies might improve rehabilitation outcomes in patients with whiplash injury. © 2017 European Pain Federation - EFIC®.

  16. 26 CFR 1.6013-2 - Joint return after filing separate return.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the case of a joint return made under section 6013(b), the period of limitations provided in sections... (c)(1) of this section, relating to the application of sections 6501 and 6651 with respect to a joint... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Joint return after filing separate return. 1...

  17. Targeting the NFκB signaling pathways for breast cancer prevention and therapy.

    PubMed

    Wang, Wei; Nag, Subhasree A; Zhang, Ruiwen

    2015-01-01

    The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.

  18. Bmi-1-targeting suppresses osteosarcoma aggressiveness through the NF-κB signaling pathway

    PubMed Central

    Liu, Jiaguo; Luo, Bin; Zhao, Meng

    2017-01-01

    Bone cancer is one of the most lethal malignancies and the specific causes of tumor initiation are not well understood. B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been reported to be associated with the initiation and progression of osteosarcoma, and as a prognostic indicator in the clinic. In the current study, a full-length antibody targeting Bmi-1 (AbBmi-1) was produced and the preclinical value of Bmi-1-targeted therapy was evaluated in bone carcinoma cells and tumor xenograft mice. The results indicated that the Bmi-1 expression level was markedly upregulated in bone cancer cell lines, and inhibition of Bmi-1 by AbBmi-1 reduced the invasiveness and migration of osteosarcoma cells. Overexpression of Bmi-1 promoted proliferation and angiogenesis, and increased apoptosis resistance induced by cisplatin via the nuclear factor-κB (NF-κB) signal pathway. In addition, AbBmi-1 treatment inhibited the tumorigenicity of osteosarcoma cells in vivo. Furthermore, AbBmi-1 blocked NF-κB signaling and reduced MMP-9 expression. Furthermore, Bmi-1 promoted osteosarcoma tumor growth, whereas AbBmi-1 significantly inhibited osteosarcoma tumor growth in vitro and in vivo. Notably, AbBmi-1 decreased the percentages of Ki67-positive cells and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in tumors compared with Bmi-1-treated and PBS controls. Notably, MMP-9 and NF-κB expression were downregulated by treatment with AbBmi-1 in MG-63 osteosarcoma cells. In conclusion, the data provides evidence that AbBmi-1 inhibited the progression of osteosarcoma, suggesting that AbBmi-1 may be a novel anti-cancer agent through the inhibition of Bmi-1 via activating the NF-κB pathway in osteosarcoma. PMID:28983587

  19. STARDUST and HAYABUSA: Sample Return Missions to Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2005-01-01

    There are currently two active spacecraft missions designed to return samples to Earth from small bodies in our Solar System. STARDUST will return samples from the comet Wild 2, and HAYABUSA will return samples from the asteroid Itokawa. On January 3,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. The HAYABUSA spacecraft arrived at the Near Earth Asteroid Itokawa in September 2005 and is currently involved in taking remote sensing data from the asteroid. Several practice landings have been made and a sample collection landing will be made soon. The collected sample will be returned to Earth in June 2007. During my talk I will discuss the scientific goals of the STARDUST and HAYABUSA missions and provide an overview of their designs and flights to date. I will also show some of the exciting data returned by these spacecraft during their encounters with their target objects.

  20. Compact lidar system using laser diode, binary continuous wave power modulation, and an avalanche photodiode-based receiver controlled by a digital signal processor

    NASA Astrophysics Data System (ADS)

    Ardanuy, Antoni; Comerón, Adolfo

    2018-04-01

    We analyze the practical limits of a lidar system based on the use of a laser diode, random binary continuous wave power modulation, and an avalanche photodiode (APD)-based photereceiver, combined with the control and computing power of the digital signal processors (DSP) currently available. The target is to design a compact portable lidar system made all in semiconductor technology, with a low-power demand and an easy configuration of the system, allowing change in some of its features through software. Unlike many prior works, we emphasize the use of APDs instead of photomultiplier tubes to detect the return signal and the application of the system to measure not only hard targets, but also medium-range aerosols and clouds. We have developed an experimental prototype to evaluate the behavior of the system under different environmental conditions. Experimental results provided by the prototype are presented and discussed.

  1. Education and Signaling: Evidence from a Highly Competitive Labor Market

    ERIC Educational Resources Information Center

    Heywood, John S.; Wei, Xiangdong

    2004-01-01

    This paper directly tests for differences in returns to education between the employed and self-employed in Hong Kong. Using a step-function, we find significantly smaller returns for the self-employed, suggesting that in the highly competitive labor market of Hong Kong education plays a signaling role. This pattern persists for both genders, when…

  2. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal

    PubMed Central

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS. PMID:28824680

  3. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal.

    PubMed

    Chen, Ning; Teng, Xiao-Lu; Xiao, Xing-Guo

    2017-01-01

    AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.

  4. Optoelectronic System Measures Distances to Multiple Targets

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei

    2007-01-01

    An optoelectronic metrology apparatus now at the laboratory-prototype stage of development is intended to repeatedly determine distances of as much as several hundred meters, at submillimeter accuracy, to multiple targets in rapid succession. The underlying concept of optoelectronic apparatuses that can measure distances to targets is not new; such apparatuses are commonly used in general surveying and machining. However, until now such apparatuses have been, variously, constrained to (1) a single target or (2) multiple targets with a low update rate and a requirement for some a priori knowledge of target geometry. When fully developed, the present apparatus would enable measurement of distances to more than 50 targets at an update rate greater than 10 Hz, without a requirement for a priori knowledge of target geometry. The apparatus (see figure) includes a laser ranging unit (LRU) that includes an electronic camera (photo receiver), the field of view of which contains all relevant targets. Each target, mounted at a fiducial position on an object of interest, consists of a small lens at the output end of an optical fiber that extends from the object of interest back to the LRU. For each target and its optical fiber, there is a dedicated laser that is used to illuminate the target via the optical fiber. The targets are illuminated, one at a time, with laser light that is modulated at a frequency of 10.01 MHz. The modulated laser light is emitted by the target, from where it returns to the camera (photodetector), where it is detected. Both the outgoing and incoming 10.01-MHz laser signals are mixed with a 10-MHz local-oscillator to obtain beat notes at 10 kHz, and the difference between the phases of the beat notes is measured by a phase meter. This phase difference serves as a measure of the total length of the path traveled by light going out through the optical fiber and returning to the camera (photodetector) through free space. Because the portion of the path

  5. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.

    PubMed

    Li, Yuliang; Yu, Chao; Yang, Bo; Liu, Zhirui; Xia, Peiyuan; Wang, Qian

    2018-04-15

    Herein, a new type of multifunctional iron based metal-organic frameworks (PdNPs@Fe-MOFs) has been synthesized by assembly palladium nanoparticles on the surface of Fe-MIL-88NH 2 MOFs microcrystals, and first applied in electrochemical biosensor for ultrasensitive detection of microRNA-122 (miR-122, a biomarker of drug-induced liver injury). The nanohybrids have not only been utilized as ideal nanocarriers for immobilization of signal probes, but also used as redox probes and electrocatalysts. In this biosensor, two hairpin probes were designed as capture probes and signal probes, respectively. The nanohybrids conjugated with streptavidin and biotinylated signal probes were used as the tracer labels, target miR-122 was sandwiched between the tracer labels and thiol-terminated capture probes inserted in MCH monolayer on the gold nanoparticles-functionalized nitrogen-doped graphene sheets (AuNPs@N-G) modified electrode. Based on target-catalyzed hairpin assembly, target miR-122 could trigger the hybridization of capture probes and signal probes to further be released to initiate the next reaction process resulted in numerous tracer indicators anchored onto the sensing interfaces. Thus, the detection signal could be dramatically enhanced towards the electrocatalytic oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 owing to the intrinsic and intriguing peroxidase-like activity of the nanohybrids. With the assist of target-catalyzed hairpin assembly and PdNPs@Fe-MOFs mimetic co-reaction for signal amplification, a wide detection range from 0.01fM to 10pM was achieved with a low detection limit of 0.003fM (S/N =3). Furthermore, the proposed biosensor exhibited excellent specificity and recovery in spiked serum samples, and was successfully used for detecting miR-122 in real biological samples, which provided a rapid and efficient method for detecting drug-induced liver injury at an early stage. Copyright © 2017. Published by Elsevier B.V.

  6. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors.

    PubMed

    Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A

    2015-06-01

    Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.

  7. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors

    PubMed Central

    Pan, Yuan; Laird, Joseph G.; Yamaguchi, David M.; Baker, Sheila A.

    2015-01-01

    Purpose. Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. Methods. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. Results. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. Conclusions. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane. PMID:26030105

  8. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

    PubMed

    Barman, Scott A; Zhu, Shu; White, Richard E

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.

  9. Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan.

    PubMed

    Koop, Demian; Holland, Nicholas D; Sémon, Marie; Alvarez, Susana; de Lera, Angel Rodriguez; Laudet, Vincent; Holland, Linda Z; Schubert, Michael

    2010-02-01

    Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.

  10. Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of a Coherent Laser Radar is determined by the statistics of the coherent Doppler signal. The heterodyne efficiency is an excellent indication of performance because it is an absolute measure of beam alignment and is independent of the transmitter power, the target backscatter coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The theoretical calculation of heterodyne efficiency for an optimal monostatic lidar with a circular aperture and Gaussian transmit laser is presented including beam misalignment in the far-field and near-field regimes. The statistical behavior of estimates of the heterodyne efficiency using a calibration hard target are considered. For space based applications, a biased estimate of heterodyne efficiency is proposed that removes the variability due to the random surface return but retains the sensitivity to misalignment. Physical insight is provided by simulation of the fields on the detector surface. The required detector calibration is also discussed.

  11. The Hippo signaling pathway provides novel anti-cancer drug targets

    PubMed Central

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-01-01

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy. PMID:28035075

  12. The Hippo signaling pathway provides novel anti-cancer drug targets.

    PubMed

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-02-28

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.

  13. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling.

    PubMed

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol

    2009-11-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.

  14. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  15. Visualizing Energy on Target: Molecular Dynamics Simulations

    DTIC Science & Technology

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  16. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival.

    PubMed

    Rozengurt, Enrique; Sinnett-Smith, James; Eibl, Guido

    2018-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA , ANLN , AREG , ARHGAP29 , AURKA , BUB1 , CCND1 , CDK6, CXCL5 , EDN2 , DKK1 , FOSL1,FOXM1 , HBEGF , IGFBP2 , JAG1 , NOTCH2 , RHAMM , RRM2 , SERP1 , and ZWILCH , are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP ( FOSL1 ), growth factors (TGFα, EPEG, and HBEGF), a specific integrin ( ITGA2 ), heptahelical receptors ( P2Y 2 R , GPR87 ) and an inhibitor of the Hippo pathway ( MUC1 ), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease.

  17. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  19. Evidence for an attentional component of inhibition of return in visual search.

    PubMed

    Pierce, Allison M; Crouse, Monique D; Green, Jessica J

    2017-11-01

    Inhibition of return (IOR) is typically described as an inhibitory bias against returning attention to a recently attended location as a means of promoting efficient visual search. Most studies examining IOR, however, either do not use visual search paradigms or do not effectively isolate attentional processes, making it difficult to conclusively link IOR to a bias in attention. Here, we recorded ERPs during a simple visual search task designed to isolate the attentional component of IOR to examine whether an inhibitory bias of attention is observed and, if so, how it influences visual search behavior. Across successive visual search displays, we found evidence of both a broad, hemisphere-wide inhibitory bias of attention along with a focal, target location-specific facilitation. When the target appeared in the same visual hemifield in successive searches, responses were slower and the N2pc component was reduced, reflecting a bias of attention away from the previously attended side of space. When the target occurred at the same location in successive searches, responses were facilitated and the P1 component was enhanced, likely reflecting spatial priming of the target. These two effects are combined in the response times, leading to a reduction in the IOR effect for repeated target locations. Using ERPs, however, these two opposing effects can be isolated in time, demonstrating that the inhibitory biasing of attention still occurs even when response-time slowing is ameliorated by spatial priming. © 2017 Society for Psychophysiological Research.

  20. Targeting the Oncogenic Transcriptional Regulator MYB in Adenoid Cystic Carcinoma by Inhibition of IGF1R/AKT Signaling.

    PubMed

    Andersson, Mattias K; Afshari, Maryam K; Andrén, Ywonne; Wick, Michael J; Stenman, Göran

    2017-09-01

    Adenoid cystic carcinoma (ACC) is an aggressive cancer with no curative treatment for patients with recurrent/metastatic disease. The MYB-NFIB gene fusion is the main genomic hallmark and a potential therapeutic target. Oncogenic signaling pathways were studied in cultured cells and/or tumors from 15 ACC patients. Phospho-receptor tyrosine kinase (RTK) arrays were used to study the activity of RTKs. Effects of RTK inhibition on cell proliferation were analyzed with AlamarBlue, sphere assays, and two ACC xenograft models (n = 4-9 mice per group). The molecular effects of MYB-NFIB knockdown and IGF1R inhibition were studied with quantitative polymerase chain reaction, immunoblot, and gene expression microarrays. All statistical tests were two-sided. The MYB-NFIB fusion drives proliferation of ACC cells and is crucial for spherogenesis. Intriguingly, the fusion is regulated through AKT-dependent signaling induced by IGF1R overexpression and is downregulated upon IGF1R-inhibition (% expression of control ± SD = 27.2 ± 1.3, P < .001). MYB-NFIB regulates genes involved in cell cycle control, DNA replication/repair, and RNA processing. The transcriptional program induced by MYB-NFIB affects critical oncogenic mediators normally controlled by MYC and is reversed by pharmacological inhibition of IGF1R. Co-activation of epidermal growth factor receptor (EGFR) and MET promoted proliferation of ACC cells, and combined targeting of IGFR1/EGFR/MET induced differentiation and synergistically inhibited the growth of patient-derived xenografted ACCs (ACCX5M1, % growth of control ± SD = 34.9 ± 20.3, P = .006; ACCX6, % growth of control ± SD = 24.1 ± 17.5, P = .04). MYB-NFIB is an oncogenic driver and a key therapeutic target in ACC that is regulated by AKT-dependent IGF1R signaling. Our studies uncover a new strategy to target an oncogenic transcriptional master regulator and provide new important insights into the biology and treatment of ACC. © The Author

  1. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update.

    PubMed

    Montaño, Adrián; Forero-Castro, Maribel; Marchena-Mendoza, Darnel; Benito, Rocío; Hernández-Rivas, Jesús María

    2018-04-07

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.

  2. Therapeutic Targeting of Tumor-Derived R-Spondin Attenuates β-Catenin Signaling and Tumorigenesis in Multiple Cancer Types.

    PubMed

    Chartier, Cecile; Raval, Janak; Axelrod, Fumiko; Bond, Chris; Cain, Jennifer; Dee-Hoskins, Cristina; Ma, Shirley; Fischer, Marcus M; Shah, Jalpa; Wei, Jie; Ji, May; Lam, Andrew; Stroud, Michelle; Yen, Wan-Ching; Yeung, Pete; Cancilla, Belinda; O'Young, Gilbert; Wang, Min; Kapoun, Ann M; Lewicki, John; Hoey, Timothy; Gurney, Austin

    2016-02-01

    Deregulation of the β-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and β-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate β-catenin signaling. Through this screen and further molecular characterization, we found that R-spondin (RSPO) proteins collaborate with Wnt proteins to activate β-catenin. RSPO family members were expressed in several human tumors representing multiple malignancies, including ovarian, pancreatic, colon, breast, and lung cancer. We generated specific monoclonal antibody antagonists of RSPO family members and found that anti-RSPO treatment markedly inhibited tumor growth in human patient-derived tumor xenograft models, either as single agents or in combination with chemotherapy. Furthermore, blocking RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies. Moreover, gene-expression analyses revealed that anti-RSPO treatment in responsive tumors strongly inhibited β-catenin target genes known to be associated with cancer and normal stem cells. Collectively, our results suggest that the RSPO family is an important stimulator of β-catenin activity in many human tumors and highlight a new effective approach for therapeutically modulating this fundamental signaling axis. ©2015 American Association for Cancer Research.

  3. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase.

    PubMed

    Gold, M R; Ingham, R J; McLeod, S J; Christian, S L; Scheid, M P; Duronio, V; Santos, L; Matsuuchi, L

    2000-08-01

    In this review, we discuss the role of phosphatidylinositol 3-kinase (PI3K) and Rap 1 in B-cell receptor (BCR) signaling. PI3K produces lipids that recruit pleckstrin homology domain-containing proteins to the plasma membrane. Akt is a kinase that the BCR activates in this manner. Akt phosphorylates several transcription factors as well as proteins that regulate apoptosis and protein synthesis. Akt also regulates glycogen synthase kinase-3, a kinase whose substrates include the nuclear factor of activated T cells (NF-AT)cl and beta-catenin transcriptional activators. In addition to Akt, PI3K-derived lipids also regulate the activity and localization of other targets of BCR signaling. Thus, a key event in BCR signaling is the recruitment of PI3K to the plasma membrane where its substrates are located. This is mediated by binding of the Src homology (SH) 2 domains in PI3K to phosphotyrosine-containing sequences on membrane-associated docking proteins. The docking proteins that the BCR uses to recruit PI3K include CD19, Cbl, Gab1, and perhaps Gab2. We have shown that Gab1 colocalizes PI3K with SH2 domain-containing inositol phosphatase (SHIP) and SHP2, two enzymes that regulate PI3K-dependent signaling. In contrast to PI3K, little is known about the Rap1 GTPase. We showed that the BCR activates Rap1 via phospholipase C-dependent production of diacylglycerol. Since Rap1 is thought to regulate cell adhesion and cell polarity, it may be involved in B-cell migration.

  4. The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.

    2014-01-01

    The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model

  5. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex.

    PubMed

    Wild, Klemens; Bange, Gert; Motiejunas, Domantas; Kribelbauer, Judith; Hendricks, Astrid; Segnitz, Bernd; Wade, Rebecca C; Sinning, Irmgard

    2016-07-17

    The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Solar Influences on the Return Direction of High-Frequency Radar Backscatter

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.; Perry, Gareth W.; Yeoman, Timothy K.; Milan, Stephen E.; Stoneback, Russell

    2018-04-01

    Coherent-scatter, high-frequency, phased-array radars create narrow beams through the use of constructive and destructive interference patterns. This formation method leads to the creation of a secondary beam, or lobe, that is sent out behind the radar. This study investigates the relative importance of the beams in front of and behind the high-frequency radar located in Hankasalmi, Finland, using observations taken over a solar cycle, as well as coincident observations from Hankasalmi and the Enhanced Polar Outflow Probe Radio Receiver Instrument. These observations show that the relative strength of the front and rear beams is frequency dependent, with the relative amount of power sent to the front lobe increasing with increasing frequency. At the range of frequencies used by Hankasalmi, both front and rear beams are always present, though the main beam is always stronger than the rear lobe. Because signals are always transmitted to the front and rear of the radar, it is always possible to receive backscatter from both return directions. Examining the return direction as a function of local time, season, and solar cycle shows that the dominant return direction depends primarily on the local ionospheric structure. Diurnal changes in plasma density typically cause an increase in the amount of groundscatter returning from the rear lobe at night, though the strength of this variation has a seasonal dependence. Solar cycle variations are also seen in the groundscatter return direction, modifying the existing local time and seasonal variations.

  7. Automatic target alignment of the Helios laser system

    NASA Astrophysics Data System (ADS)

    Liberman, I.; Viswanathan, V. K.; Klein, M.; Seery, B. D.

    1980-05-01

    An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum target alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible.

  8. A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays.

    PubMed

    Min, Junseon; Song, Eun Kyung; Kim, Hansol; Kim, Kyoung Taek; Park, Tae Joo; Kang, Sebyung

    2016-04-11

    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification.

  9. Uninsured Migrants: Health Insurance Coverage and Access to Care Among Mexican Return Migrants.

    PubMed

    Wassink, Joshua

    2018-01-01

    Despite an expansive body of research on health and access to medical care among Mexican immigrants in the United States, research on return migrants focuses primarily on their labor market mobility and contributions to local development. Motivated by recent scholarship that documents poor mental and physical health among Mexican return migrants, this study investigates return migrants' health insurance coverage and access to medical care. I use descriptive and multivariate techniques to analyze data from the 2009 and 2014 rounds of Mexico's National Survey of Demographic Dynamics (ENADID, combined n=632,678). Analyses reveal a large and persistent gap between recent return migrants and non-migrants, despite rising overall health coverage in Mexico. Multivariate analyses suggest that unemployment among recent arrivals contributes to their lack of insurance. Relative to non-migrants, recently returned migrants rely disproportionately on private clinics, pharmacies, self-medication, or have no regular source of care. Mediation analysis suggests that returnees' high rate of uninsurance contributes to their inadequate access to care. This study reveals limited access to medical care among the growing population of Mexican return migrants, highlighting the need for targeted policies to facilitate successful reintegration and ensure access to vital resources such as health care.

  10. Why we need asteroid sample return mission?

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta

    2016-07-01

    Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material

  11. The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway

    PubMed Central

    Mui, Melissa Z.; Zhou, Yiwang; Blanchette, Paola; Chughtai, Naila; Knight, Jennifer F.; Gruosso, Tina; Papadakis, Andreas I.; Huang, Sidong; Park, Morag; Gingras, Anne-Claude

    2015-01-01

    ABSTRACT When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2AB55 phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2AB55 subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2AB55 and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been

  12. Note on a modified return period scale for upper-truncated unbounded flood distributions

    NASA Astrophysics Data System (ADS)

    Bardsley, Earl

    2017-01-01

    Probability distributions unbounded to the right often give good fits to annual discharge maxima. However, all hydrological processes are in reality constrained by physical upper limits, though not necessarily well defined. A result of this contradiction is that for sufficiently small exceedance probabilities the unbounded distributions anticipate flood magnitudes which are impossibly large. This raises the question of whether displayed return period scales should, as is current practice, have some given number of years, such as 500 years, as the terminating rightmost tick-point. This carries the implication that the scale might be extended indefinitely to the right with a corresponding indefinite increase in flood magnitude. An alternative, suggested here, is to introduce a sufficiently high upper truncation point to the flood distribution and modify the return period scale accordingly. The rightmost tick-mark then becomes infinity, corresponding to the upper truncation point discharge. The truncation point is likely to be set as being above any physical upper bound and the return period scale will change only slightly over all practical return periods of operational interest. The rightmost infinity tick point is therefore proposed, not as an operational measure, but rather to signal in flood plots that the return period scale does not extend indefinitely to the right.

  13. Toxicological disruption of signaling homeostasis: Tyrosine phosphatses as targets

    EPA Science Inventory

    The protein tyrosine phosphatases (PTP) comprised a diverse group of enzymes whose activity opposes that of the tyrosine kinases. As such, the PTP have critical roles in maintaining signaling quiescence in resting cells and in restoring homeostasis by effecting signal termination...

  14. Recovery of strength is dependent on mTORC1 signaling after eccentric muscle injury.

    PubMed

    Baumann, Cory Walter; Rogers, Russell George; Otis, Jeffrey Scott; Ingalls, Christopher Paul

    2016-11-01

    Eccentric contractions may cause immediate and long-term reductions in muscle strength that can be recovered through increased protein synthesis rates. The purpose of this study was to determine whether the mechanistic target-of-rapamycin complex 1 (mTORC1), a vital controller of protein synthesis rates, is required for return of muscle strength after injury. Isometric muscle strength was assessed before, immediately after, and then 3, 7, and 14 days after a single bout of 150 eccentric contractions in mice that received daily injections of saline or rapamycin. The bout of eccentric contractions increased the phosphorylation of mTORC1 (1.8-fold) and p70s6k1 (13.8-fold), mTORC1's downstream effector, 3 days post-injury. Rapamycin blocked mTORC1 and p70s6k1 phosphorylation and attenuated recovery of muscle strength (∼20%) at 7 and 14 days. mTORC1 signaling is instrumental in the return of muscle strength after a single bout of eccentric contractions in mice. Muscle Nerve 54: 914-924, 2016. © 2016 Wiley Periodicals, Inc.

  15. Inhibition of Return across Eye and Object Movements: The Role of Prediction

    ERIC Educational Resources Information Center

    Kruger, Hannah M.; Hunt, Amelia R.

    2013-01-01

    Responses are slower to targets appearing in recently inspected locations, an effect known as Inhibition of Return (IOR). IOR is typically viewed as the consequence of an involuntary mechanism that prevents reinspection of previously visited locations and thereby biases attention toward novel locations during visual search. For an inhibitory…

  16. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle.

    PubMed

    Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo

    2018-06-19

    MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.

  17. PDK1 in NF-κB signaling is a target of Xanthium strumarium methanolic extract-mediated anti-inflammatory activities.

    PubMed

    Hossen, Muhammad Jahangir; Cho, Jae Youl; Kim, Daewon

    2016-08-22

    Xanthium strumarium L. (Asteraceae) has traditionally been used to treat bacterial infections, nasal sinusitis, urticaria, arthritis, chronic bronchitis and rhinitis, allergic rhinitis, edema, lumbago, and other ailments. However, the molecular mechanisms by which this plant exerts its anti-inflammatory effects are poorly characterized. Here we studied the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Xs-ME) and validated its pharmacological targets. To evaluate the anti-inflammatory activity of Xs-ME, we employed lipopolysaccharide (LPS)-treated macrophages and an HCl/EtOH-induced mouse model of gastritis. We also used HPLC to identify the potentially active anti-inflammatory components of this extract. The molecular mechanisms of its anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) were both suppressed by Xs-ME. Moreover, orally administered Xs-ME ameliorated HCl/EtOH-induced gastric lesions. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signaling events upstream of NF-κB translocation, such as phosphorylation of AKT and the formation of PDK1-AKT signaling complexes, were also inhibited by Xs-ME. Moreover, Xs-ME suppressed the enzymatic activity of PDK1. Additionally, PDK1-induced luciferase activity and Akt phosphorylation were both inhibited by Xs-ME. We also identified the polyphenol resveratrol as a likely active anti-inflammatory component in Xs-ME that targets PDK1. Xs-ME exerts anti-inflammatory activity in vitro and in vivo by inhibiting PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-κB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Differential 14-3-3 Affinity Capture Reveals New Downstream Targets of Phosphatidylinositol 3-Kinase Signaling*

    PubMed Central

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol

    2009-01-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646

  19. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway.

    PubMed

    Wang, Jianhua; Lu, Yi; Wang, Jingchen; Koch, Alisa E; Zhang, Jian; Taichman, Russell S

    2008-12-15

    Previous studies show that the chemokine CXCL16 and its receptor CXCR6 are likely to contribute to prostate cancer (PCa). In this investigation, the role of the CXCR6 receptor in PCa was further explored. CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 showed strong epithelial staining that correlated with Gleason score. In vitro and in vivo studies in PCa cell lines suggested that alterations in CXCR6 expression were associated with invasive activities and tumor growth. In addition, CXCR6 expression was able to regulate expression of the proangiogenic factors interleukin (IL)-8 or vascular endothelial growth factor (VEGF), which are likely to participate in the regulation of tumor angiogenesis. Finally, we found that CXCL16 signaling induced the activation of Akt, p70S6K, and eukaryotic initiation factor 4E binding protein 1 included in mammalian target of rapamycin (mTOR) pathways, which are located downstream of Akt. Furthermore, rapamycin not only drastically inhibited CXCL16-induced PCa cell invasion and growth but reduced secretion of IL-8 or VEGF levels and inhibited expression of other CXCR6 targets including CD44 and matrix metalloproteinase 3 in PCa cells. Together, our data shows for the first time that the CXCR6/AKT/mTOR pathway plays a central role in the development of PCa. Blocking the CXCR6/AKT/mTOR signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for PCa.

  20. Targeting CDH17 Suppresses Tumor Progression in Gastric Cancer by Downregulating Wnt/β-Catenin Signaling

    PubMed Central

    Ren, Chao; Zeng, Zhao-lei; Wu, Wen-jing; Luo, Hui-yan; Zhou, Zhi-wei; Xu, Rui-hua

    2013-01-01

    Purpose Gastric cancer remains one of the leading causes of cancer death worldwide. Patients usually present late with local invasion or metastasis, for which there are no effective therapies available. Following previous studies that identified the adhesion molecule Cadherin-17(CDH17) as a potential marker for gastric carcinoma, we performed proof-of-principle studies to develop rational therapeutic approaches targeting CDH17 for treating this disease. Methods Immunohistochemistry was used to study the expression of CDH17 in 156 gastric carcinomas, and the relationship between survival and CDH17 expression was studied by multivariate analyses. The effect of RNA interference–mediated knockdown of CDH17 on proliferation of gastric carcinoma cell lines was examined in vitro and in vivo, as well as the effects on downstream signaling by immunoblotting. Results CDH17 was consistently up-regulated in human gastric cancers, and overall survival in patients with CDH17 upregulation was poorer than in those without expression of this gene (5 yrs overall survival rate 29.0% vs. 45.0%, P<0.01). Functional assays demonstrated that CDH17 knockdown inhibited cell proliferation, adhesion, migration, invasion, clonogenicity and induce G0/G1 arrest. In mice, shRNA-mediated CDH17 knockdown markedly inhibits tumor growth; intratumoral injection of CDH17 shRNAs results in significant antitumor effects on transplanted tumor models. The antitumor mechanisms underlying CDH17 inhibition involve inactivation of Wnt/β-catenin signaling. Conclusion Our results identify CDH17 as a biomarker of gastric carcinoma and attractive therapeutic target for this aggressive malignancy. PMID:23554857

  1. Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling.

    PubMed

    Fetoni, A R; Paciello, F; Mezzogori, D; Rolesi, R; Eramo, S L M; Paludetti, G; Troiani, D

    2015-11-17

    In oncology, an emerging paradigm emphasises molecularly targeted approaches for cancer prevention and therapy and the use of adjuvant chemotherapeutics to overcome cisplatin limitations. Owing to their safe use, some polyphenols, such as curcumin, modulate important pathways or molecular targets in cancers. This paper focuses on curcumin as an adjuvant molecule to cisplatin by analysing its potential implications on the molecular targets, signal transducer and activator of transcription 3 (STAT3) and NF-E2 p45-related factor 2 (Nrf-2), in tumour progression and cisplatin resistance in vitro and the adverse effect ototoxicity in vivo. The effects of curcumin and/or cisplatin treatment have been evaluated in head and neck squamous cell carcinoma as well as in a rat model of cisplatin-induced ototoxicity by using immunofluorescence, western blot, and functional and morphological analysis. This study demonstrates that curcumin attenuates all stages of tumour progression (survival, proliferation) and, by targeting pSTAT3 and Nrf-2 signalling pathways, provides chemosensitisation to cisplatin in vitro and protection from its ototoxic adverse effects in vivo. These results indicate that curcumin can be used as an efficient adjuvant to cisplatin cancer therapy. This treatment strategy in head and neck cancer could mediate cisplatin chemoresistance by modulating therapeutic targets (STAT3 and Nrf2) and, at the same time, reduce cisplatin-related ototoxic adverse effects.

  2. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  3. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  4. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  5. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  6. 27 CFR 479.151 - Failure to make returns: Substitute returns.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Failure to make returns: Substitute returns. 479.151 Section 479.151 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE...

  7. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  8. miR-958 inhibits Toll signaling and Drosomycin expression via direct targeting of Toll and Dif in Drosophila melanogaster.

    PubMed

    Li, Shengjie; Li, Yao; Shen, Li; Jin, Ping; Chen, Liming; Ma, Fei

    2017-02-01

    Drosophila melanogaster is widely used as a model system to study innate immunity and signaling pathways related to innate immunity, including the Toll signaling pathway. Although this pathway is well studied, the precise mechanisms of posttranscriptional regulation of key components of the Toll signaling pathway by microRNAs (miRNAs) remain obscure. In this study, we used an in silico strategy in combination with the Gal80 ts -Gal4 driver system to identify microRNA-958 (miR-958) as a candidate Toll pathway regulating miRNA in Drosophila We report that overexpression of miR-958 significantly reduces the expression of Drosomycin, a key antimicrobial peptide involved in Toll signaling and the innate immune response. We further demonstrate in vitro and in vivo that miR-958 targets the Toll and Dif genes, key components of the Toll signaling pathway, to negatively regulate Drosomycin expression. In addition, a miR-958 sponge rescued the expression of Toll and Dif, resulting in increased expression of Drosomycin. These results, not only revealed a novel function and modulation pattern of miR-958, but also provided a new insight into the underlying molecular mechanisms of Toll signaling in regulation of innate immunity. Copyright © 2017 the American Physiological Society.

  9. Why Do Staff Return?

    ERIC Educational Resources Information Center

    Magnuson, Connie

    1992-01-01

    Surveyed 211 returning staff from 25 camps and interviewed 19 returning staff to study factors that influence a counselor's decision to return to camp. Examined the following dimensions of motivation and hygiene factors: (1) stimulation or inspiration; (2) personal; (3) job-related experience; (4) living conditions and camp life; (5) camp…

  10. An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1.

    PubMed

    Skinner, Camille M; Ivanov, Nikita S; Barr, Sarah A; Chen, Yan; Skalsky, Rebecca L

    2017-11-01

    Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis. IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell. Copyright © 2017 American Society for Microbiology.

  11. 75 FR 75439 - Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... 1545-BJ52 Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic... for ``specified tax return preparers,'' generally tax return preparers who reasonably expect to file more than 10 individual income tax returns in a calendar year, to file individual income tax returns...

  12. Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber

    NASA Technical Reports Server (NTRS)

    DAddario, Larry R.; Trink, Joseph T.

    2010-01-01

    In the process of connecting widely distributed antennas into a coherent array, it is necessary to synchronize the timing of signals at the various locations. This can be accomplished by distributing a common reference signal from a central source, usually over optical fiber. A high-frequency (RF or microwave) tone is a good choice for the reference. One difficulty is that the effective length of the optical fiber changes with temperature and mechanical stress, leading to phase instability in the received tone. This innovation provides a new way to stabilize the phase of the received tone, in spite of variations in the electrical length of the fiber. Stabilization is accomplished by two-way transmission in which part of the received signal is returned to the transmitting end over an identical fiber. The returned signal is detected and used to close an electrical servo loop whose effect is to keep constant the phase of the tone at the receiving end.

  13. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    NASA Astrophysics Data System (ADS)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  14. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    PubMed Central

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  15. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update

    PubMed Central

    Hernández-Rivas, Jesús María

    2018-01-01

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease. PMID:29642462

  16. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target.

    PubMed

    Islam, Md Soriful; Segars, James H; Castellucci, Mario; Ciarmela, Pasquapina

    2017-02-01

    A growing interest has emerged on dietary phytochemicals to control diverse pathological conditions. Unfortunately, dietary phytochemical research in uterine fibroids is still under construction. Uterine fibroids/leiomyomas are benign tumors developing from the myometrium of the uterus in premenopausal women. They may occur in more than 70% of women, and approximately 25% of women show clinically significant symptoms. These include heavy and prolonged menstrual bleeding, pelvic pressure (urinary frequency, incontinence, and difficulty with urination), pelvic pain, pelvic mass, infertility, and reproductive dysfunction. Due to lack of medical treatments surgery has been definitive choice for fibroid management. Moreover, surgery negatively affects women's quality of life, and its associated cost appears to be expensive. The molecular mechanism of fibroids development and growth is not fully elucidated. However, accumulated evidence shows that several signaling pathways, including Smad 2/3, PI3K/AKT/mTOR, ERK 1/2 and β-catenin are involved in the leiomyoma pathogenesis, indicating that they could serve as targets for prevention and/or treatment of this tumor. Therefore, in this review, we discuss the involvement of signaling pathways in leiomyoma development and growth, and introduce some potential dietary phytochemicals that could modulate those signaling pathways. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Increase in velocimeter depth of focus through astigmatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D.J.

    1996-05-01

    Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. We find that we can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens. {copyright} {ital 1996 American Institute ofmore » Physics.}« less

  18. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  19. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment.

    PubMed

    Kim, Ji-Young; Lee, Hwa-Yong; Park, Kwan-Kyu; Choi, Yang-Kyu; Nam, Jeong-Seok; Hong, In-Sun

    2016-04-12

    Liver cancer stem cells (CSCs) are resistant to conventional chemotherapy and radiation, which may destroy tumor masses, but not all liver CSCs contribute to tumor initiation, metastasis, and relapse. In the present study, we showed that liver CSCs with elevated Wnt/β-catenin signaling possess much greater self-renewal and clonogenic potential. We further documented that the increased clonogenic potential of liver CSCs is highly associated with changes in Wnt/β-catenin signaling and that Wnt/β-catenin signaling activity is positively correlated with CD133 expression and aldehyde dehydrogenase (ALDH) enzymatic activity. Notably, the small molecule inhibitor CWP232228, which antagonizes the binding of β-catenin to TCF in the nucleus, inhibits Wnt/β-catenin signaling and depletes CD133+/ALDH+ liver CSCs, thus ultimately diminishing the self-renewal capacity of CSCs and decreasing tumorigenicity in vitro and in vivo. Taken together, our findings suggest that CWP232228 acts as a candidate therapeutic agent for liver cancer by preferentially targeting liver CSCs.

  20. Relativistic effects in earth-orbiting Doppler lidar return signals.

    PubMed

    Ashby, Neil

    2007-11-01

    Frequency shifts of side-ranging lidar signals are calculated to high order in the small quantities (v/c), where v is the velocity of a spacecraft carrying a lidar laser or of an aerosol particle that scatters the radiation back into a detector (c is the speed of light). Frequency shift measurements determine horizontal components of ground velocity of the scattering particle, but measured fractional frequency shifts are large because of the large velocities of the spacecraft and of the rotating earth. Subtractions of large terms cause a loss of significant digits and magnify the effect of relativistic corrections in determination of wind velocity. Spacecraft acceleration is also considered. Calculations are performed in an earth-centered inertial frame, and appropriate transformations are applied giving the velocities of scatterers relative to the ground.

  1. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification.

    PubMed

    Wang, Ye; Gan, Ning; Zhou, You; Li, Tianhua; Hu, Futao; Cao, Yuting; Chen, Yinji

    2017-11-15

    Novel label-free and multiplex aptasensors have been developed for simultaneous detection of several antibiotics based on a microchip electrophoresis (MCE) platform and target catalyzed hairpin assembly (CHA) for signal amplification. Kanamycin (Kana) and oxytetracycline (OTC) were employed as models for testing the system. These aptasensors contained six DNA strands termed as Kana aptamer-catalysis strand (Kana apt-C), Kana inhibit strand (Kana inh), OTC aptamer-catalysis strand (OTC apt-C), OTC inhibit strand (OTC inh), hairpin structures H1 and H2 which were partially complementary. Upon the addition of Kana or OTC, the binding event of aptamer and target triggered the self-assembly between H1 and H2, resulting in the formation of many H1-H2 complexes. They could show strong signals which represented the concentration of Kana or OTC respectively in the MCE system. With the help of the well-designed and high-quality CHA amplification, the assay could yield 300-fold amplified signal comparing that from non-amplified system. Under optimal conditions, this assay exhibited a linear correlation in the ranges from 0.001ngmL -1 to 10ngmL -1 , with the detection limits of 0.7pgmL -1 and 0.9pgmL -1 (S/N=3) toward Kana and OTC, respectively. The platform has the following advantages: firstly, the aptamer probes can be fabricated easily without labeling signal tags for MCE detection; Secondly, the targets can just react with probes and produce the amplified signal in one-pot. Finally, the targets can be simultaneously detected within 10min in different channels, thus high-throughput measurement can be achieved. Based on this work, it is estimated that this detection platform will be universally served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS.

    PubMed

    Cikhardt, J; Krása, J; De Marco, M; Pfeifer, M; Velyhan, A; Krouský, E; Cikhardtová, B; Klír, D; Rezáč, K; Ullschmied, J; Skála, J; Kubeš, P; Kravárik, J

    2014-10-01

    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

  3. Structural Insights Into the Recognition of Peroxisomal Targeting Signal 1 By Trypanosoma Brucei Peroxin 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampathkumar, P.; Roach, C.; Michels, P.A.M.

    2009-05-27

    Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called 'peroxins,' which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to havemore » a residue in the alpha(L) conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.« less

  4. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling.

    PubMed

    Grabner, Gernot F; Zimmermann, Robert; Schicho, Rudolf; Taschler, Ulrike

    2017-07-01

    Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling.

    PubMed

    Su, Rui; Dong, Lei; Li, Chenying; Nachtergaele, Sigrid; Wunderlich, Mark; Qing, Ying; Deng, Xiaolan; Wang, Yungui; Weng, Xiaocheng; Hu, Chao; Yu, Mengxia; Skibbe, Jennifer; Dai, Qing; Zou, Dongling; Wu, Tong; Yu, Kangkang; Weng, Hengyou; Huang, Huilin; Ferchen, Kyle; Qin, Xi; Zhang, Bin; Qi, Jun; Sasaki, Atsuo T; Plas, David R; Bradner, James E; Wei, Minjie; Marcucci, Guido; Jiang, Xi; Mulloy, James C; Jin, Jie; He, Chuan; Chen, Jianjun

    2018-01-11

    R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N 6 -methyladenosine (m 6 A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m 6 A/MYC/CEBPA signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Genesis Solar-Wind Sample Return Mission: The Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.

    2003-01-01

    The Genesis spacecraft has two primary instruments which passively collect solar wind. The first is the collector arrays , a set of panels, each of which can deploy separately to sample the different kinds of solar wind (regimes). The second is the concentrator, an electrostatic mirror which will concentrate ions of mass 4 through mass 25 by about a factor of 20 by focusing them onto a 6 cm diameter target. When not deployed, these instruments fit into a compact canister. After a two year exposure time, the deployed instruments can be folded up, sealed into the canister, and returned to earth for laboratory analysis. Both the collector arrays and the concentrator will contain suites of ultra-high purity target materials, each of which is tailored to enable the analysis of a different family of elements. This abstract is meant to give a brief overview of the Genesis mission, insight into what materials were chosen for flight and why, as well as head s up information as to what will be available to planetary scientist for analysis when the solar-wind samples return to Earth in 2003. Earth. The elemental and isotopic abundances of the solar wind will be analyzed in state-of-the-art laboratories, and a portion of the sample will be archived for the use of future generations of planetary scientists. Technical information about the mission can be found at www.gps.caltech.edu/genesis.

  7. Effect of surface conductivity on the peak magnetic field radiated by first return strokes in cloud-to-ground lightning

    NASA Technical Reports Server (NTRS)

    Tyahla, Lori J.; Lopez, Raul E.

    1994-01-01

    The effect of surface conductivity on the peak magnetic field radiated by the first return stroke in cloud-to-ground lightning was investigated by comparing the peak magnetic fields from return strokes that struck water with those that struck land. The data were obtained from a network of three gated, wideband magnetic direction finders (DFs) at the NASA Kennedy Space Center during the summer of 1985. Two geographical areas that were equidistant from two of the direction finders were compared where the flash distances ranged from approximately 40 to 60 km. An unbiased data set was obtained by correcting site errors, equalizing differences in sensor gain, eliminating directional biases in DF triggering, and keeping differences in signal attenuation over the two surfaces to a minimum. When a statistical analysis was performed on the frequency distributions of the signal amplitudes, there was no statistically significant difference in the peak amplitudes of first return strokes over land (lambda = 8.2 x 10(exp -3) mho/m) and over water (lambda = 4 mho/m). Therefore we infer that the conductivity of the underlying surface does not significantly affect the magnitude of the peak magnetic field, and hence the peak current, in the first return stroke of a cloud-to-ground lightning flash.

  8. Cognitive work hardening: a return-to-work intervention for people with depression.

    PubMed

    Wisenthal, Adeena; Krupa, Terry

    2013-01-01

    Mental health claims in the workplace are rising, particularly those due to depression. Associated with this is an increase in disability costs for the employer and the disability insurer, but even more important is the human suffering that results. While treatments are available for the depression there is a gap in interventions that specifically target return-to-work preparation. This paper presents cognitive work hardening, a treatment intervention that can bridge this gap by addressing the unique functional issues inherent in depression with a view to increasing return-to-work success. Cognitive work hardening applies the proven principles of classical work hardening (which has typically been applied to people with physical injuries) to the mental health domain. This paper explains how the occupational therapy principle of occupation and the core competency, enablement, are utilized and applied in cognitive work hardening. Key skills of the occupational therapist are also discussed. In addition, the paper considers the relationship of cognitive work hardening to recovery and mental illness, and the role it plays among workplace-based return-to-work interventions in the current movement toward non-clinical return-to-work interventions.

  9. Sprouty is a cytoplasmic target of adenoviral E1A oncoproteins to regulate the receptor tyrosine kinase signalling pathway

    PubMed Central

    2011-01-01

    Background Oncoproteins encoded by the early region of adenoviruses have been shown to be powerful tools to study gene regulatory mechanisms, which affect major cellular events such as proliferation, differentiation, apoptosis and oncogenic transformation. They are possesing a key role to favor viral replication via their interaction with multiple cellular proteins. In a yeast two-hybrid screen we have identified Sprouty1 (Spry1) as a target of adenoviral E1A Oncoproteins. Spry proteins are central and complex regulators of the receptor tyrosine kinase (RTK) signalling pathway. The deregulation of Spry family members is often associated with alterations of the RTK signalling and its downstream effectors, leading to the ERK pathway. Results Here, we confirm our yeast two-hybrid data, showing the interaction between Spry1 and E1A in GST pull-down and immunoprecipitation assays. We also demonstrated the interaction of E1A with two further Spry isoforms. Using deletion mutants we identified the N-terminus and the CR conserved region (CR) 3 of E1A- and the C-terminal half of Spry1, which contains the highly conserved Spry domain, as the essential sites for direct interaction between Spry and E1A. Immunofluorescent microscopy data revealed a co-localization of E1A13S with Spry1 in the cytoplasm. SRE and TRE reporter assays demonstrated that co-expression of Spry1 with E1A13S abolishes the inhibitory function of Spry1 in RTK signalling, which is consequently accompanied with a decrease of E1A13S-induced gene expression. Conclusions These results establish Spry1 as a cytoplasmic localized cellular target for E1A oncoproteins to regulate the RTK signalling pathway, and consequently cellular events downstream of RTK that are essential for viral replication and transformation. PMID:21518456

  10. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.

    PubMed

    Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I

    2011-06-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.

  11. 76 FR 17521 - Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... Specified Tax Return Preparers Required To File Individual Income Tax Returns Using Magnetic Media AGENCY... regulations on the requirement for ``specified tax return preparers'' to file individual income tax returns.... These regulations provide guidance to specified tax return preparers who prepare and file individual...

  12. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    PubMed

    Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S

    2017-10-01

    Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  13. Targeting TREM-1 Signaling in the Presence of Antibiotics is Effective Against Streptococcal Toxic-Shock-Like Syndrome (STSLS) Caused by Streptococcus suis.

    PubMed

    Yang, Chao; Zhao, Jianqing; Lin, Lan; Pan, Shan; Fu, Lei; Han, Li; Jin, Meilin; Zhou, Rui; Zhang, Anding

    2015-01-01

    Streptococcus suis (S.suis), a major swine pathogen, is also a severe threat to human health. Infection with highly virulent strains of S. suis can cause human Streptococcal toxic-shock-like syndrome (STSLS), which is associated with high serum pro-inflammatory cytokine levels and a high mortality rate. Our previous study indicated that highly virulent S. suis infection could activate the TREM-1 signaling pathway, which promotes host clearance of S. suis during early infection. However, it remained to be elicited whether TREM-1 signaling could be a target against STSLS in the presence of antibiotic. In the present study, mice were infected with a highly virulent S. suis strain and then treated with rTREM-1 (the recombinant extracellular domain of TREM-1) to block TREM-1 signaling, antibiotics, both rTREM-1 and antibiotics, or PBS. The survival rates, clinical signs, serum IL-1β and TNF-α levels, and serum bacterial loads were evaluated. Treatment with rTREM-1 could aggravate the outcome of infection as described previously. Although the conventional treatment with antibiotics contributed to effective S. suis clearance, it did not improve survival significantly. In comparison, due to the reduction of the exaggerated pro-inflammatory response, treatment combined with rTREM-1 and antibiotics not only led to efficient bacterial clearance but also alleviated inflammation. In conclusion, TREM-1 signaling contributed to severe inflammatory response and benefited S. suis clearance. Therefore, blocking TREM-1 signaling could still be a target for the treatment of STSLS in the presence of antibiotics.

  14. Targeting TREM-1 Signaling in the Presence of Antibiotics is Effective Against Streptococcal Toxic-Shock-Like Syndrome (STSLS) Caused by Streptococcus suis

    PubMed Central

    Yang, Chao; Zhao, Jianqing; Lin, Lan; Pan, Shan; Fu, Lei; Han, Li; Jin, Meilin; Zhou, Rui; Zhang, Anding

    2015-01-01

    Streptococcus suis (S.suis), a major swine pathogen, is also a severe threat to human health. Infection with highly virulent strains of S. suis can cause human Streptococcal toxic-shock-like syndrome (STSLS), which is associated with high serum pro-inflammatory cytokine levels and a high mortality rate. Our previous study indicated that highly virulent S. suis infection could activate the TREM-1 signaling pathway, which promotes host clearance of S. suis during early infection. However, it remained to be elicited whether TREM-1 signaling could be a target against STSLS in the presence of antibiotic. In the present study, mice were infected with a highly virulent S. suis strain and then treated with rTREM-1 (the recombinant extracellular domain of TREM-1) to block TREM-1 signaling, antibiotics, both rTREM-1 and antibiotics, or PBS. The survival rates, clinical signs, serum IL-1β and TNF-α levels, and serum bacterial loads were evaluated. Treatment with rTREM-1 could aggravate the outcome of infection as described previously. Although the conventional treatment with antibiotics contributed to effective S. suis clearance, it did not improve survival significantly. In comparison, due to the reduction of the exaggerated pro-inflammatory response, treatment combined with rTREM-1 and antibiotics not only led to efficient bacterial clearance but also alleviated inflammation. In conclusion, TREM-1 signaling contributed to severe inflammatory response and benefited S. suis clearance. Therefore, blocking TREM-1 signaling could still be a target for the treatment of STSLS in the presence of antibiotics. PMID:26618144

  15. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response.

    PubMed

    Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena

    2018-03-18

    Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.

  16. Shuttle Ku-band signal design study

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Braun, W. R.; Mckenzie, T. M.

    1978-01-01

    Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed.

  17. 11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS WERE NUCLEAR WEAPONS SHIPPED TO THE ROCKY FLATS PLANT FROM THE NUCLEAR WEAPON STOCKPILE FOR RETIREMENT, TESTING, OR UPGRADING. FISSILE MATERIALS (PLUTONIUM, URANIUM, ETC.) AND RARE MATERIALS (BERYLLIUM) WERE RECOVERED FOR REUSE, AND THE REMAINDER WAS DISPOSED. (8/7/62) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  18. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

    PubMed

    Wang, Hongfei; Wang, Yongqiang; Gao, Hongmei; Wang, Bing; Dou, Lin; Li, Yin

    2018-02-01

    Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

  19. Analysis of Maneuvering Targets with Complex Motions by Two-Dimensional Product Modified Lv's Distribution for Quadratic Frequency Modulation Signals.

    PubMed

    Jing, Fulong; Jiao, Shuhong; Hou, Changbo; Si, Weijian; Wang, Yu

    2017-06-21

    For targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, azimuth echo signals can be modeled as multicomponent quadratic frequency modulation (QFM) signals after migration compensation and phase adjustment. For the QFM signal model, the chirp rate (CR) and the quadratic chirp rate (QCR) are two important physical quantities, which need to be estimated. For multicomponent QFM signals, the cross terms create a challenge for detection, which needs to be addressed. In this paper, by employing a novel multi-scale parametric symmetric self-correlation function (PSSF) and modified scaled Fourier transform (mSFT), an effective parameter estimation algorithm is proposed-referred to as the Two-Dimensional product modified Lv's distribution (2D-PMLVD)-for QFM signals. The 2D-PMLVD is simple and can be easily implemented by using fast Fourier transform (FFT) and complex multiplication. These measures are analyzed in the paper, including the principle, the cross term, anti-noise performance, and computational complexity. Compared to the other three representative methods, the 2D-PMLVD can achieve better anti-noise performance. The 2D-PMLVD, which is free of searching and has no identifiability problems, is more suitable for multicomponent situations. Through several simulations and analyses, the effectiveness of the proposed estimation algorithm is verified.

  20. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung.

    PubMed

    Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P

    2003-02-01

    Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching.

  1. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  2. A novel intermembrane space–targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding

    PubMed Central

    Sideris, Dionisia P.; Petrakis, Nikos; Katrakili, Nitsa; Mikropoulou, Despina; Gallo, Angelo; Ciofi-Baffoni, Simone; Banci, Lucia; Bertini, Ivano

    2009-01-01

    Mia40 imports Cys-containing proteins into the mitochondrial intermembrane space (IMS) by ensuring their Cys-dependent oxidative folding. In this study, we show that the specific Cys of the substrate involved in docking with Mia40 is substrate dependent, the process being guided by an IMS-targeting signal (ITS) present in Mia40 substrates. The ITS is a 9-aa internal peptide that (a) is upstream or downstream of the docking Cys, (b) is sufficient for crossing the outer membrane and for targeting nonmitochondrial proteins, (c) forms an amphipathic helix with crucial hydrophobic residues on the side of the docking Cys and dispensable charged residues on the other side, and (d) fits complementary to the substrate cleft of Mia40 via hydrophobic interactions of micromolar affinity. We rationalize the dual function of Mia40 as a receptor and an oxidase in a two step–specific mechanism: an ITS-guided sliding step orients the substrate noncovalently, followed by docking of the substrate Cys now juxtaposed to pair with the Mia40 active Cys. PMID:20026652

  3. MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Angela M.; Department of Pharmacology and Department of Surgery, National University of Singapore, Singapore 117597; Poon, Ronnie T.P.

    2010-04-09

    Hepatocellular carcinoma (HCC) is a malignant form of liver cancer that ranks the second leading cause of cancer-related deaths in China and many Asia regions. The dismal outcome reflects the need for a better understanding of the transcriptional control of oncogenic signaling pathway. Our recent findings have identified yes-associated protein (YAP) is a potent oncogenic driver and independent prognostic risk factor of HCC. The present study aims to elucidate the transcriptional regulation of YAP targeted by microRNA (miRNA). miR-375 is a putative target and was found significantly down-regulated in the tumor versus adjacent non-tumor tissues of HCC patients (n =more » 48). As determined by luciferase reporter assay, we found ectopic expression of miR-375 could diminish the transcriptional activity of YAP. Furthermore, immunoblotting revealed miR-375 suppressed endogenous YAP protein level. Functional assays showed that miR-375 was able to inhibit proliferation and invasion of HCC cells. Conclusion: miR-375 is an important regulator of YAP oncogene, implicating a potential therapeutic role in HCC treatment.« less

  4. Target-protecting dumbbell molecular probe against exonucleases digestion for sensitive detection of ATP and streptavidin.

    PubMed

    Chen, Jinyang; Liu, Yucheng; Ji, Xinghu; He, Zhike

    2016-09-15

    In this work, a versatile dumbbell molecular (DM) probe was designed and employed in the sensitively homogeneous bioassay. In the presence of target molecule, the DM probe was protected from the digestion of exonucleases. Subsequently, the protected DM probe specifically bound to the intercalation dye and resulted in obvious fluorescence signal which was used to determine the target molecule in return. This design allows specific and versatile detection of diverse targets with easy operation and no sophisticated fluorescence labeling. Integrating the idea of target-protecting DM probe with adenosine triphosphate (ATP) involved ligation reaction, the DM probe with 5'-end phosphorylation was successfully constructed for ATP detection, and the limitation of detection was found to be 4.8 pM. Thanks to its excellent selectivity and sensitivity, this sensing strategy was used to detect ATP spiked in human serum as well as cellular ATP. Moreover, the proposed strategy was also applied in the visual detection of ATP in droplet-based microfluidic platform with satisfactory results. Similarly, combining the principle of target-protecting DM probe with streptavidin (SA)-biotin interaction, the DM probe with 3'-end biotinylation was developed for selective and sensitive SA determination, which demonstrated the robustness and versatility of this design. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative Planetary Protection for Sample Return from Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Takano, Yoshinori; Porco, Carolyn; McKay, Christopher P.; Glavin, Daniel; Anbar, Ariel; Sherwood, Brent; Yano, Hajime

    2016-07-01

    Volcanism on ocean worlds [1,2] facilitates ocean sample return missions, enabling uniquely flexible, sensitive, and specific laboratory analyses on Earth to study how far chemistry has evolved in presumably habitable oceans [3,4]. Such mission concepts have yet to quantitatively address planetary protection (PP) for ocean worlds [3,4]. These harbor liquid water [5,6], metabolically useful energy [7], and organic matter to support life [8]. Ocean temperatures may not exceed the limit for life as we know it [9,10], they are shielded from exogenic radiation by kilometers of ice, and their material has likely not been naturally exchanged with Earth [11]. The above factors would place sample return missions in Cat. V - Restricted Earth Return [12,13]. Forward PP requirements for Europa [13] and other ocean worlds [14] require that the probability of "introduction of a single viable terrestrial microorganism into a liquid-water environment" be lower than 10 ^{-4}. This probability should be estimated from (F1) "bioburden at launch," (F2) "cruise survival for contaminating organisms," (F3) "organism survival in the radiation environment adjacent to the target," (F4) "the probability of encountering […] the target," (F5) "the probability of surviving landing/impact on the target," (F6) "mechanisms and timescales of transport to the subsurface," and (F7) "survival […] after subsurface transfer" [13,14]. The compliance of specific designs of known cost could be evaluated from measurements of molecular contaminants as robust and universal proxies for microbial particulates [15] (F1); known microbial radiation tolerance [16] and planetary radiation budgets [17] (F2-F3); trajectory design (F4); projected impact velocities [18] (F5); ice transport timescales [19] (F6), and biomass growth rates in ice [20] (F7). In contrast, current backward PP requirements are only qualitative. Current policy [13,15] prohibits "destructive impact upon return," and requires that (B1) "unless

  6. Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase.

    PubMed

    Mao, Yu-Ting; Zhu, Julia X; Hanamura, Kenji; Iurilli, Giuliano; Datta, Sandeep Robert; Dalva, Matthew B

    2018-05-16

    Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis.

    PubMed

    Zheng, Fang; Sparkes, Amanda; De Baetselier, Patrick; Schoonooghe, Steve; Stijlemans, Benoit; Muyldermans, Serge; Flamand, Véronique; Van Ginderachter, Jo A; Devoogdt, Nick; Raes, Geert; Beschin, Alain

    2017-02-01

    Kupffer cells (KCs), the liver resident macrophages, are important mediators of tissue homeostasis and pathogen clearance. However, depending on the inflammatory stimuli, KCs have been involved in divergent hepato-protective or hepato-destructive immune responses. The versatility of KCs in response to environmental triggers, in combination with the specific biomarkers they express, make these macrophages attractive in vivo targets for non-invasive monitoring of liver inflammation or pathogenicity. This study aims to determine whether V-set and Ig domain-containing 4 (Vsig4) and C-type lectin domain family (Clec) 4, member F (Clec4F) can be used as imaging biomarkers for non-invasive monitoring of KCs during distinct liver inflammation models. Flow cytometry (FACS), immuno-histochemistry (IHC), and single-photon emission computed tomography (SPECT) with Tc-99m labeled anti-Vsig4 or anti-Clec4F nanobodies (Nbs) was performed to evaluate in mice KC dynamics in concanavalin A (ConA)-induced hepatitis and in non-alcoholic steatohepatitis induced via methionine choline deficiency (MCD). In homeostatic mice, Nbs targeting Clec4F were found to accumulate and co-localize with Vsig4-targeting Nbs only in the liver. Upon induction of acute hepatitis using ConA, down-regulation of the in vivo Nb imaging signal was observed, reflecting reduction in KC numbers as confirmed by FACS and IHC. On the other hand, induction of steatohepatitis resulted in higher signals in the liver corresponding to higher density of KCs. The Nb-imaging signals returned to normal levels after resolution of the investigated liver diseases. Anti-Clec4F and anti-Vsig4 Nbs targeting KCs as molecular imaging biomarkers could allow non-invasive monitoring/staging of liver pathogenesis.

  8. Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells

    PubMed Central

    Vallejo, Diana M; Caparros, Esther; Dominguez, Maria

    2011-01-01

    Notch signalling is crucial for the correct development and growth of numerous organs and tissues, and when subverted it can cause cancer. Loss of miR-8/200 microRNAs (miRNAs) is commonly observed in advanced tumours and correlates with their invasion and acquisition of stem-like properties. Here, we show that this miRNA family controls Notch signalling activation in Drosophila and human cells. In an overexpression screen, we identified the Drosophila miR-8 as a potent inhibitor of Notch-induced overgrowth and tumour metastasis. Gain and loss of mir-8 provoked developmental defects reminiscent of impaired Notch signalling and we demonstrated that miR-8 directly inhibits Notch ligand Serrate. Likewise, miR-200c and miR-141 directly inhibited JAGGED1, impeding proliferation of human metastatic prostate cancer cells. It has been suggested that JAGGED1 may also be important for metastases. Although in metastatic cancer cells, JAGGED1 modestly regulated ZEB1, the miR-200c's target in invasion, studies in Drosophila revealed that only concurrent overexpression of Notch and Zfh1/ZEB1 induced tumour metastases. Together, these data define a new way to attenuate or boost Notch signalling that may have clinical interest. PMID:21224847

  9. Label-Free Sensitive Detection of DNA Methyltransferase by Target-Induced Hyperbranched Amplification with Zero Background Signal.

    PubMed

    Zhang, Yan; Wang, Xin-Yan; Zhang, Qianyi; Zhang, Chun-Yang

    2017-11-21

    DNA methyltransferases (MTases) may specifically recognize the short palindromic sequences and transfer a methyl group from S-adenosyl-l-methionine to target cytosine/adenine. The aberrant DNA methylation is linked to the abnormal DNA MTase activity, and some DNA MTases have become promising targets of anticancer/antimicrobial drugs. However, the reported DNA MTase assays often involve laborious operation, expensive instruments, and radio-labeled substrates. Here, we develop a simple and label-free fluorescent method to sensitively detect DNA adenine methyltransferase (Dam) on the basis of terminal deoxynucleotidyl transferase (TdT)-activated Endonuclease IV (Endo IV)-assisted hyperbranched amplification. We design a hairpin probe with a palindromic sequence in the stem as the substrate and a NH 2 -modified 3' end for the prevention of nonspecific amplification. The substrate may be methylated by Dam and subsequently cleaved by DpnI, producing three single-stranded DNAs, two of which with 3'-OH termini may be amplified by hyperbranched amplification to generate a distinct fluorescence signal. Because high exactitude of TdT enables the amplification only in the presence of free 3'-OH termini and Endo IV only hydrolyzes the intact apurinic/apyrimidinic sites in double-stranded DNAs, zero background signal can be achieved. This method exhibits excellent selectivity and high sensitivity with a limit of detection of 0.003 U/mL for pure Dam and 9.61 × 10 -6 mg/mL for Dam in E. coli cells. Moreover, it can be used to screen the Dam inhibitors, holding great potentials in disease diagnosis and drug development.

  10. Subjective Expectancy and Inhibition of Return: A Dissociation in a Non-Spatial Two-Alternative Forced Choice Task

    ERIC Educational Resources Information Center

    Spadaro, Adam; Milliken, Bruce

    2013-01-01

    Inhibition of Return (IOR) is conventionally defined by slow responses to targets that appear at the same location as a prior attentional cue, relative to a condition in which targets appear at a different location from a prior attentional cue (Posner & Cohen, 1984). A number of recent studies have extended the study of IOR to non-spatial…

  11. Mapping Understory Trees Using Airborne Discrete-Return LIDAR Data

    NASA Astrophysics Data System (ADS)

    Korpela, I.; Hovi, A.; Morsdorf, F.

    2011-09-01

    Understory trees in multi-layer stands are often ignored in forest inventories. Information about them would benefit silviculture, wood procurement and biodiversity management. Cost-efficient inventory methods for the assessment of the presence, density, species- and size-distributions are called for. LiDAR remote sensing is a promising addition to field work. Unlike in passive image data, in which the signals from multiple layers mix, the 3D position of each hot-spot reflection is known in LiDAR data. The overstory however prevents from obtaining a wall-to-wall sample of understory, and measurements are subject to transmission losses. Discriminating between the crowns of dominant and suppressed trees can also be challenging. We examined the potential of LiDAR for the mapping of the understory trees in Scots pine stands (62°N, 24°E), using carefully georeferenced reference data and several LiDAR data sets. We present results that highlight differences in echo-triggering between sensors that affect the near-ground height data. A conceptual model for the transmission losses in the overstory was created and formulated into simple compensation models that reduced the intensity variation in second- and third return data. The task is highly ill-posed in discrete-return LiDAR data, and our models employed the geometry of the overstory as well as the intensity of previous returns. We showed that even first-return data in the understory is subject to losses in the overstory that did not trigger an echo. Even with compensation of the losses, the intensity data was deemed of low value in species discrimination. Area-based LiDAR height metrics that were derived from the data belonging to the crown volume of the understory showed reasonable correlation with the density and mean height of the understory trees. Assessment of the species seems out of reach in discrete-return LiDAR data, which is a drastic drawback.

  12. Mars Sample Return Architecture Overview

    NASA Astrophysics Data System (ADS)

    Edwards, C. D.; Vijendran, S.

    2018-04-01

    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  13. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  14. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  15. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  16. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  17. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1. [T.D. 9445, 74 FR 6830, Feb. 11, 2009] ...

  18. Increase in velocimeter depth of focus through astigmatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D.J.

    1995-11-01

    Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector. This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. This note finds that the loss of signal can be prevented and that the useful depth can be greatly increased by attaching a cylindrical lens to the target lens. {copyright} {ital 1995} {italmore » American} {ital Institute} {ital of} {ital Physics}.« less

  19. The Akt signaling pathway

    PubMed Central

    Madhunapantula, SubbaRao V; Mosca, Paul J

    2011-01-01

    Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148

  20. Keap1-Nrf2 Signaling: A Target for Cancer Prevention by Sulforaphane

    PubMed Central

    Kensler, Thomas W; Egner, Patricia A; Agyeman, Abena S.; Visvanathan, Kala; Groopman, John D; Chen, Jian-Guo; Chen, Tao-Yang; Fahey, Jed W; Talalay, Paul

    2013-01-01

    Sulforaphane is a promising agent under preclinical evaluation in many models of disease prevention. This bioactive phytochemical affects many molecular targets in cellular and animal models; however, amongst the most sensitive is Keap1, a key sensor for the adaptive stress response system regulated through the transcription factor Nrf2. Keap1 is a sulfhydryl-rich protein that represses Nrf2 signaling by facilitating the poly ubiquitination of Nrf2 thereby enabling its subsequent proteasomal degradation. Interaction of sulforaphane with Keap1 disrupts this function and allows for nuclear accumulation of Nrf2 and activation of its transcriptional program. Enhanced transcription of Nrf2 target genes provokes a strong cytoprotective response that enhances resistance to carcinogenesis and other diseases mediated by exposures to electrophiles and oxidants. Clinical evaluation of sulforaphane has been largely conducted by utilizing preparations of broccoli or broccoli sprouts rich in either sulforaphane or its precursor form in plants, a stable β-thioglucose conjugate termed glucoraphanin. We have conducted a series of clinical trials in Qidong, China, a region where exposures to food- and air-borne carcinogens has been considerable, to evaluate the suitability of broccoli sprout beverages, rich in either glucoraphanin (GRR) or sulforaphane SFR or both for their bioavailability, tolerability and pharmacodynamic action in population-based interventions. Results from these clinical trials indicate that interventions with well characterized preparations of broccoli sprouts may enhance the detoxication of aflatoxins and air-borne toxins, which may in turn attenuate their associated health risks, including cancer, in exposed individuals. PMID:22752583

  1. Epigenetic targeting of the Nanog pathway and signaling networks during chemical carcinogenesis.

    PubMed

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Besaratinia, Ahmad

    2014-08-01

    Chemical carcinogenesis has long been synonymous with genotoxicity, which entails DNA damage, genetic mutations and chromosomal abnormalities. The present study investigates a paradigm-shifting model in which epigenetic changes are key contributors to chemical carcinogenesis. Using genome-wide microarray-based analysis followed by conventional validation assays, we have progressively chronicled changes in the epigenetic landscape, as reflected in the patterns of DNA methylation, in the target organ of tumorigenesis in mice treated in vivo with a prototype chemical carcinogen (benzo[a]pyrene). Here, we demonstrate characteristic CpG island gain/loss of methylation and demethylation of repetitive DNA elements in carcinogen-treated mice, dependent on tumor progression. Alterations of the DNA methylome are accompanied by silencing of major DNA methyltransferases. Members of the Nanog pathway that establishes and maintains pluripotency in embryonic stem cells and possibly triggers uncontrolled proliferation of neoplastic cells are preferential targets of aberrant DNA methylation and concomitant gene dysregulation during chemical carcinogenesis. Several components of the MEK/ERK, JAK/STAT3, PI3K/AKT, WNT/β- catenin and Shh signaling cascades, which are known to modulate Nanog expression, also show concurrent changes in the patterns of DNA methylation and gene expression. Our data support an epigenetic model of chemical carcinogenesis and suggest that surveillance of the epigenetic landscape, particularly at the loci and in the pathways identified in this study, may have utility for early detection and monitoring of the progression of malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting.

    PubMed

    Hankey, William; Frankel, Wendy L; Groden, Joanna

    2018-03-01

    The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.

  3. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: Implications for therapeutic targeting

    PubMed Central

    Hankey, William; Frankel, Wendy L.

    2018-01-01

    The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression. PMID:29318445

  4. Medical-School Partnership in Guiding Return to School Following Mild Traumatic Brain Injury in Youth

    PubMed Central

    Gioia, Gerard A.

    2015-01-01

    Mild traumatic brain injury (mTBI) is recognized as a prevalent and significant risk concern for youth. Appropriate school return is particularly challenging. The medical and school systems must be prepared partners to support the school return of the student with mTBI. Medical providers must be trained in assessment and management skills with a focused understanding of school demands. Schools must develop policies and procedures to prepare staff to support a gradual return process with the necessary academic accommodations. Ongoing communication between the family, student, school, and medical provider is essential to supporting recovery. A systematic gradual return to school process is proposed including levels of recommended activity and criteria for advancement. Targets for intervention are described with associated strategies for supporting recovery. A ten element PACE model for activity-exertion management is introduced to manage symptom exacerbation. A strong medical-school partnership will maximize outcomes for students with mTBI. PMID:25535055

  5. Building on the Cornerstone: Destinations for Nearside Sample Return

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Jolliff, B. L.; Draper, D.; Stopar, J. D.; Petro, N. E.; Cohen, B. A.; Speyerer, E. J.; Gruener, J. E.

    2016-01-01

    Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition.

  6. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  7. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  8. Inversion of atmospheric optical parameters from elastic-backscatter lidar returns using a Kalman filter

    NASA Astrophysics Data System (ADS)

    Rocadenbosch, Francesc; Comeron, Adolfo; Vazquez, Gregori; Rodriguez-Gomez, Alejandro; Soriano, Cecilia; Baldasano, Jose M.

    1998-12-01

    Up to now, retrieval of the atmospheric extinction and backscatter has mainly relied on standard straightforward non-memory procedures such as slope-method, exponential- curve fitting and Klett's method. Yet, their performance becomes ultimately limited by the inherent lack of adaptability as they only work with present returns and neither past estimations, nor the statistics of the signals or a prior uncertainties are taken into account. In this work, a first inversion of the backscatter and extinction- to-backscatter ratio from pulsed elastic-backscatter lidar returns is tackled by means of an extended Kalman filter (EKF), which overcomes these limitations. Thus, as long as different return signals income,the filter updates itself weighted by the unbalance between the a priori estimates of the optical parameters and the new ones based on a minimum variance criterion. Calibration errors or initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables to retrieve the sought-after optical parameters as time-range-dependent functions and hence, to track the atmospheric evolution, its performance being only limited by the quality and availability of the 'a priori' information and the accuracy of the atmospheric model assumed. The study ends with an encouraging practical inversion of a live-scene measured with the Nd:YAG elastic-backscatter lidar station at our premises in Barcelona.

  9. 26 CFR 20.6018-2 - Returns; person required to file return.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... executor or administrator shall file the return. If there is more than one executor or administrator, the return must be made jointly by all. If there is no executor or administrator appointed, qualified and... decedent situated in the United States is constituted an executor for purposes of the tax (see § 20.2203-1...

  10. 12 CFR 229.31 - Returning bank's responsibility for return of checks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Returning bank's responsibility for return of checks. 229.31 Section 229.31 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF... following the banking day on which the check was presented to the paying bank if the paying bank is located...

  11. Method and apparatus for relative navigation using reflected GPS signals

    NASA Technical Reports Server (NTRS)

    Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)

    2010-01-01

    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.

  12. Return Current Electron Beams and Their Generation of "Raman" Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  13. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Rashotte, Aaron M.; Shipp, Matthew J.; Robertson, Dominique; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.

  14. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung

    PubMed Central

    Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P.

    2003-01-01

    Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching. PMID:12569124

  15. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase

    PubMed Central

    2016-01-01

    The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770

  16. Parkin negatively regulates the antiviral signaling pathway by targeting TRAF3 for degradation.

    PubMed

    Xin, Di; Gu, Haiyan; Liu, Enping; Sun, Qinmiao

    2018-06-14

    Chronic neuroinflammation is a characteristic of Parkinson's disease (PD). Previous investigations have shown that Parkin gene mutations are related to the early-onset recessive form of PD and isolated juvenile-onset PD. Further, Parkin plays important roles in mitochondrial quality control and cytokine-induced cell death. However, whether Parkin regulates other cellular events is still largely unknown. In this study, we performed overexpression and knockout experiments, and found that Parkin negatively regulates antiviral immune responses against RNA and DNA viruses. Mechanistically, we show that Parkin interacts with tumor necrosis factor receptor-associated factor 3 (TRAF3) to regulate stability of TRAF3 protein by promoting K48-linked ubiquitination. Our findings suggest that Parkin plays a novel role in innate immune signaling by targeting TRAF3 for degradation, and maintaining the balance of innate antiviral immunity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Return to Work After Lumbar Microdiscectomy - Personalizing Approach Through Predictive Modeling.

    PubMed

    Papić, Monika; Brdar, Sanja; Papić, Vladimir; Lončar-Turukalo, Tatjana

    2016-01-01

    Lumbar disc herniation (LDH) is the most common disease among working population requiring surgical intervention. This study aims to predict the return to work after operative treatment of LDH based on the observational study including 153 patients. The classification problem was approached using decision trees (DT), support vector machines (SVM) and multilayer perception (MLP) combined with RELIEF algorithm for feature selection. MLP provided best recall of 0.86 for the class of patients not returning to work, which combined with the selected features enables early identification and personalized targeted interventions towards subjects at risk of prolonged disability. The predictive modeling indicated at the most decisive risk factors in prolongation of work absence: psychosocial factors, mobility of the spine and structural changes of facet joints and professional factors including standing, sitting and microclimate.

  18. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?

    PubMed

    Block, Anna; Alfano, James R

    2011-02-01

    The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Biosonar signals impinging on the target during interception by big brown bats, Eptesicus fuscus.

    PubMed

    Saillant, Prestor A; Simmons, James A; Bouffard, Frederick H; Lee, David N; Dear, Steven P

    2007-05-01

    Big brown bats (Eptesicus fuscus) were videotaped in the dark with a night-vision lens and infrared illumination while flying repeatedly along the same straight course to seize a tethered mealworm or a small electret microphone used to record biosonar signals impinging on the target. Bats emitted frequency-modulated sounds with first to third harmonics covering frequencies from 23 to 105 kHz. As the bats neared the target, the first harmonic shifted lower in frequency while the third harmonic strengthened and the fourth harmonic, and sometimes the fifth harmonic, appeared. Incident-sound bandwidth remained broad throughout the maneuver, a feature not seen in field recordings of rapidly moving bats due to propagation losses and uncontrolled directional effects. Sound pressures at the microphone increased by about 20 dB during approach from 2.5 m down to 50 cm and then leveled off, indicating that emitted amplitudes were approximately constant until the terminal stage, when they progressively decreased for the remainder of the maneuver. Interpulse intervals decreased from 80-100 ms down to about 6-7 ms and then stabilized throughout the terminal stage, while durations decreased smoothly from 3-4 ms (limited by adjacent wall) down to 0.5 ms during the terminal stage, which ended with capture.

  20. Returns to Education in Bangladesh

    ERIC Educational Resources Information Center

    Asadullah, Mohammad Niaz

    2006-01-01

    This paper reports labour market returns to education in Bangladesh using data from recent nationwide household survey. Returns are estimated separately for rural and urban samples, males, females and private-sector employees. Substantial heterogeneity in returns is observed; for example, estimates are higher for urban (than rural sample) and…

  1. A novel "signal-on/off" sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy.

    PubMed

    Wang, Lanlan; Ma, Rongna; Jiang, Liushan; Jia, Liping; Jia, Wenli; Wang, Huaisheng

    2017-06-15

    A novel dual-signal ratiometric electrochemical aptasensor for highly sensitive and selective detection of thrombin has been designed on the basis of signal-on and signal-off strategy. Ferrocene labeled hairpin probe (Fc-HP), thrombin aptamer and methyl blue labeled bio-bar-coded AuNPs (MB-P3-AuNPs) were rationally introduced for the construction of the assay platform, which combined the advantages of the recognition of aptamer, the amplification of bio-bar-coded nanoprobe, and the ratiometric signaling readout. In the presence of thrombin, the interaction between thrombin and the aptamer leads to the departure of MB-P3-AuNPs from the sensing interface, and the conformation of the single stranded Fc-HP to a hairpin structure to take the Fc confined near the electrode surface. Such conformational changes resulted in the oxidation current of Fc increased and that of MB decreased. Therefore, the recognition event of the target can be dual-signal ratiometric electrochemical readout in both the "signal-off" of MB and the "signal-on" of Fc. The proposed strategy showed a wide linear detection range from 0.003 to 30nM with a detection limit of 1.1 pM. Moreover, it exhibits good performance of excellent selectivity, good stability, and acceptable fabrication reproducibility. By changing the recognition probe, this protocol could be easily expanded into the detection of other targets, showing promising potential applications in disease diagnostics and bioanalysis. Copyright © 2016. Published by Elsevier B.V.

  2. Dynamics of biosonar signals in free-swimming and stationary dolphins: The role of source levels on the characteristics of the signals.

    PubMed

    Au, Whitlow W L; Martin, Stephen W; Moore, Patrick W; Branstetter, Brian; Copeland, Adrienne M

    2016-03-01

    The biosonar signals of two free-swimming Atlantic bottlenose dolphins performing a complex sonar search for a bottom target in San Diego Bay were compared with the biosonar signals of a dolphin performing a target discrimination task in a net pen in the same bay. A bite-plate device carried by the free-swimming dolphins supported a hydrophone that extended directly in front of the dolphin. A biosonar measuring tool attached to the bite plate measured the outgoing biosonar signals while the dolphins conducted sonar searches. Each of the free-swimming dolphins used different biosonar search strategy in solving the problem and the dolphins' biosonar signals reflect the difference in strategy. The dolphin in the pen stationed in a hoop while echolocating on a target 6 m away and reported if the indentation on a spherical target was directed toward it. The signals were parameterized by determining the peak-to-peak source levels, source energy flux density, peak frequency, center frequency, root-mean-square (rms) bandwidth, rms duration, and the Q of the signals. Some parameters were similar for the free-swimming and stationary dolphins while some were significantly different, suggesting biosonar signals used by free-swimming animals may be different than signals used by dolphins in a pen.

  3. Improving the signal analysis for in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin

    2015-03-01

    At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.

  4. Wnt Signaling in Cardiac Disease.

    PubMed

    Hermans, Kevin C M; Blankesteijn, W Matthijs

    2015-07-01

    Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target. © 2015 American Physiological Society.

  5. miR-5591-5p regulates the effect of ADSCs in repairing diabetic wound via targeting AGEs/AGER/JNK signaling axis.

    PubMed

    Li, Qiang; Xia, Sizhan; Yin, Yating; Guo, Yanping; Chen, Feifei; Jin, Peisheng

    2018-05-11

    Advanced glycation end products/advanced glycation end products receptor (AGEs/AGER) interaction triggers reactive oxygen species (ROS) generation and activates downstream signal pathways and induces apoptosis in endothelial progenitor cells. A number of studies have revealed the involvement of microRNAs (miRNAs) in regulating intracellular ROS production and apoptosis. However, few studies explore the role of miRNAs in regulating the effect of adipose tissue-derived stem cells (ADSCs) in repairing diabetic wound and the associated cellular mechanisms remain unclear. In this study, ADSCs were exposed to AGEs, then siRNA for AGER was transfected into ADSCs. We found that AGEs/AGER axis induced ROS generation and apoptosis in ADSCs. AGEs treatment downregulated miR-5591-5p in ADSCs, which directly targeted AGER. miR-5591-5p suppressed AGEs/AGER axis-mediated ROS generation and apoptosis in ADSCs in vitro. In addition, miR-5591-5p promoted cell survival and enhanced the ability of ADSCs for repairing cutaneous wound in vivo. Furthermore, we confirmed that c-jun kinase (JNK) signal was involved in the inhibitory effect of miR-5591-5p on AGEs/AGER axis-induced ROS generation and apoptosis in ADSCs. Thus, these results indicated that miR-5591-5p targeting AGEs/AGER/JNK signaling axis possibly regulates the effect of ADSCs in repairing diabetic wound.

  6. Landing Site Selection for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Farmer, J. D.

    2002-05-01

    "Follow the water" remains a guiding theme in the Mars exploration program. This is because information about the early volatile and climate history of Mars, habitability for past or present life and the potential for human exploration all require a knowledge of the distribution of water in all its forms and how water reservoirs have changed over time.ÿ Over the next four launch opportunities (through 2009), implementation of this broad goal will achieved using a combination of infrared spectral mapping of mineralogy from orbit and on the ground (to identify ancient surface water systems), and radar sounding from orbit to locate reservoirs of modern subsurface water. High spatial and spectral resolution mineralogical mapping from orbit is considered essential for locating the highest priority sites for in situ surface exploration and sample return. This work is now underway with THEMIS, a mid-IR instrument onboard the Odyssey spacecraft and presently mapping Mars at a spatial resolution of ~100 m/pixel. In 2005 the Mars Reconnaissance Orbiter (MRO) will carry a hyperspectral, near IR instrument capable of mapping targeted areas at a spatial resolution of <50 m/pixel. The 2001 and 2005 orbital missions will be interleaved with surface investigations in 2003 which will place twin "Mars Exploration Rovers" (MER's A and B) at two high priority sites to gather in situ information about surface mineralogy and petrology. The synergistic use of orbital reconnaissance and landed in situ science during the next three launch opportunities will yield important new information about the hydrological history of Mars that will provide a basis for targeting a second rover mission, the Mars Smart Lander (MSL), to a high priority site in 2009. The MSL rover will be a large, mobile platform of prolonged mission capability, that will conduct a variety of surface and shallow subsurface experiments to explore for aqueous minerals and organic materials preserved in aqueous sedimentary

  7. Mars rover sample return mission utilizing in situ production of the return propellants

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Nill, L.; Schubert, H.; Thill, B.; Warwick, R.

    1993-01-01

    This paper presents an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return trip. A key goal of the mission is to demonstrate the considerable benefits that can be realized through the use of indigenous resources and to test the viability of this approach as a precursor to manned missions to Mars. Two in situ propellant combinations, methane/oxygen and carbon monoxide/oxygen, are compared to imported terrestrial hydrogen/oxygen within a single mission architecture, using a single Earth launch vehicle. The mission is assumed to be launched from Earth in 2003. Upon reaching Mars, the landing vehicle aerobrakes, deploys a small satellite, and lands on the Martian surface. Once on the ground, the propellant production unit is activated, and the product gases are liquefied and stored in the empty tanks of the Earth Return Vehicle (ERV). Power for these activities is provided by a dynamic isotope power system. A semiautonomous rover, powered by the indigenous propellants, gathers between 25 and 30 kg of soil and rock samples which are loaded aboard the ERV for return to Earth. After a surface stay time of approximately 1.5 years, the ERV leaves Mars for the return voyage to Earth. When the vehicle reaches the vicinity of Earth, the sample return capsule detaches, and is captured and circularized in LEO via aerobraking maneuvers.

  8. 21 CFR 203.23 - Returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Returns. 203.23 Section 203.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL PRESCRIPTION DRUG MARKETING Sales Restrictions § 203.23 Returns. The return of a prescription drug purchased by...

  9. Causes, costs, and risk factors for unplanned return visits after adenotonsillectomy in children.

    PubMed

    Duval, Melanie; Wilkes, Jacob; Korgenski, Kent; Srivastava, Rajendu; Meier, Jeremy

    2015-10-01

    To review the causes, costs, and risk factors for unplanned return visits and readmissions after pediatric adenotonsillectomy (T&A). Review of administrative database of outpatient adenotonsillectomy performed at any facility within a vertically integrated health care system in the Intermountain West on children age 1-18 years old between 1998 and 2012. Data reviewed included demographic variables, diagnosis associated with return visit and costs associated with return visits. Data from 39,906 children aged 1-18 years old were reviewed. A total of 2499 (6.3%) children had unplanned return visits. The most common reasons for return visits were bleeding (2.3%), dehydration, (2.3%) and throat pain (1.2%). After multivariate analysis, the main risk factors for any type of return visits were Medicaid insurance (OR=1.64 95% CI 1.47-1.84), Hispanic race (OR=1.36 95% CI 1.13-1.64), and increased severity of illness (SOI) (OR=11.29 95% CI 2.69-47.4 for SOI=3). The only factor associated with increased odds of requiring an inpatient admission on return visit was length of time spent in PACU (p<0.001). A linear relationship was also observed between the child's age and the risk of post-tonsillectomy hemorrhage. Children with increased severity of illness, those insured with Medicaid, and children of Hispanic ethnicity should be targeted with increased education and interventions in order to reduce unplanned visits after T&A. Further studies on post-tonsillectomy complications should include evaluating the effect of surgical technique and post-operative pain management on all complications and not solely post-tonsillectomy hemorrhage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Sensing a buried resonant object by single-channel time reversal.

    PubMed

    Waters, Zachary J; Dzikowicz, Benjamin R; Holt, R Glynn; Roy, Ronald A

    2009-07-01

    Scaled laboratory experiments are conducted to assess the efficacy of iterative, single-channel time reversal for enhancement of monostatic returns from resonant spheres in the free field and buried in a sediment phantom. Experiments are performed in a water tank using a broad-band piston transducer operating between 0.4 and 1.5 MHz and calibrated using free surface reflections. Solid and hollow metallic spheres, 6.35 mm in diameter, are buried in a consolidation of 128-microm-mean- diameter spherical glass beads. The procedure consists of exciting the target object with a broadband pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Results indicate that the spectrum of the returns rapidly converges to the dominant mode in the backscattering response of the target. Signal-to-noise enhancement of the target echo is demonstrated for a target at several burial depths. Images generated by scanning the transducer over the location of multiple buried targets demonstrate the ability of the technique to distinguish between targets of differing type and to yield an enhancement of different modes within the response of a single target as a function of transducer position and processing bandwidth.

  11. Sensing resonant objects in the presence of noise and clutter using iterative, single-channel acoustic time reversal

    NASA Astrophysics Data System (ADS)

    Waters, Zachary John

    The presence of noise and coherent returns from clutter often confounds efforts to acoustically detect and identify target objects buried in inhomogeneous media. Using iterative time reversal with a single channel transducer, returns from resonant targets are enhanced, yielding convergence to a narrowband waveform characteristic of the dominant mode in a target's elastic scattering response. The procedure consists of exciting the target with a broadband acoustic pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Scaled laboratory experiments (0.4-2 MHz) are performed employing a piston transducer and spherical targets suspended in the free field and buried in a sediment phantom. In conjunction with numerical simulations, these experiments provide an inexpensive and highly controlled means with which to examine the efficacy of the technique. Signal-to-noise enhancement of target echoes is demonstrated. The methodology reported provides a means to extract both time and frequency information for surface waves that propagate on an elastic target. Methods developed in the laboratory are then applied in medium scale (20-200 kHz) pond experiments for the detection of a steel shell buried in sandy sediment.

  12. Is Inhibition of Return Due to Attentional Disengagement or to a Detection Cost? The Detection Cost Theory of IOR

    ERIC Educational Resources Information Center

    Lupianez, Juan; Martin-Arevalo, Elisa; Chica, Ana B.

    2013-01-01

    When the time interval between two peripheral stimuli is long enough, reaction times (RTs) to targets presented at previously stimulated locations are longer than RTs to targets presented at new locations. This effect is widely known as "Inhibition of Return" (IOR). The effect is usually explained as an inhibitory bias against…

  13. miR-4725-3p targeting Stim1 signaling is involved in xanthohumol inhibition of glioma cell invasion.

    PubMed

    Ho, Kuo-Hao; Chang, Cheng-Kuei; Chen, Peng-Hsu; Wang, Yu-Jia; Chang, Wei-Chiao; Chen, Ku-Chung

    2018-05-10

    Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Due to its highly invasive nature, it is not easy to treat, resulting in high mortality rates. Stromal interacting molecule 1 (Stim1) plays important roles in regulating store-operated Ca 2+ entry (SOCE), and controls invasion by cancer cells. However, the mechanisms and functions of Stim1 in glioma progression are still unclear. In this study, we investigated the effects of targeting Stim1 expression on glioma cell invasion. By analyzing profiles of GBM patients from RNA-sequencing data in The Cancer Genome Atlas (TCGA), higher expression levels of STIM1 were correlated with the poor survival. Furthermore, signaling pathways associated with tumor malignancy, including the epithelial-to-mesenchymal transition (EMT), were activated in patients with high STIM1 expression according to gene set enrichment analyses. Higher Stim1 levels were found in glioma cells compared to human astrocytes, and these higher levels enhanced glioma cell invasion. Xanthohumol (XN), a prenylated flavonoid extracted from the hop plant Humulus lupulus L. (Cannabaceae), significantly reduced cell invasion through inhibiting Stim1 expression. From an micro(mi)RNA array analysis, miR-4725-3p was upregulated by XN treatment. Overexpression of miR-4725-3p inhibited glioma cell invasion via directly targeting the 3'-untranslated region of STIM1. The extracellular signal-regulated kinase/c-Fos pathway was also validated to participate in XN-upregulated miR-4725-3p expression according to promoter and chromatin immunoprecipitation assays. These results emphasize that miR-4725-3p-inhibited STIM1 signaling is involved in XN-attenuated glioma cell invasion. These findings may provide insights into novel therapeutic strategies for future glioblastoma therapy and drug development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism.

    PubMed

    Fiorillo, Marco; Peiris-Pagès, Maria; Sanchez-Alvarez, Rosa; Bartella, Lucia; Di Donna, Leonardo; Dolce, Vincenza; Sindona, Giovanni; Sotgia, Federica; Cappello, Anna Rita; Lisanti, Michael P

    2018-04-04

    Here, we show that a 2:1 mixture of Brutieridin and Melitidin, termed "BMF", has a statin-like properties, which blocks the action of the rate-limiting enzyme for mevalonate biosynthesis, namely HMGR (3-hydroxy-3-methylglutaryl-CoA-reductase). Moreover, our results indicate that BMF functionally inhibits several key characteristics of CSCs. More specifically, BMF effectively i) reduced ALDH activity, ii) blocked mammosphere formation and iii) inhibited the activation of CSC-associated signalling pathways (STAT1/3, Notch and Wnt/beta-catenin) targeting Rho-GDI-signalling. In addition, BMF metabolically inhibited mitochondrial respiration (OXPHOS) and fatty acid oxidation (FAO). Importantly, BMF did not show the same toxic side-effects in normal fibroblasts that were observed with statins. Lastly, we show that high expression of the mRNA species encoding HMGR is associated with poor clinical outcome in breast cancer patients, providing a potential companion diagnostic for BMF-directed personalized therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dysregulation of Mammalian Target of Rapamycin Signaling in Mouse Models of Autism.

    PubMed

    Huber, Kimberly M; Klann, Eric; Costa-Mattioli, Mauro; Zukin, R Suzanne

    2015-10-14

    The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs. Copyright © 2015 the authors 0270-6474/15/3513836-07$15.00/0.

  16. Hypothalamic Leptin and Ghrelin Signaling as Targets for Improvement in Metabolic Control.

    PubMed

    Frago, Laura M; Chowen, Julie A

    2015-01-01

    Metabolic homeostasis requires a tight balance between energy intake and energy expenditure; hence, the physiological circuits implicated in the regulation of energy metabolism must be able to quickly adjust to changes in either side of the equation. Circulating orexigenic and anorexigenic factors, including ghrelin and leptin, are produced in the gastrointestinal tract and adipose tissue, respectively, in relation to an individual's nutritional status. These signals interact with central metabolic circuits to regulate the production and secretion of neuropeptides implicated in the control of appetite and energy expenditure. However, this physiological equilibrium can be perturbed by diverse processes, with weight gain occurring due to a positive energy balance and weight loss taking place if there is a negative energy balance. If a situation of positive energy balance continues for an extended period of time, excess weight is accumulated and this can eventually result in obesity. Obesity has become one of the most important health problems facing the industrialized world, indicating that metabolic equilibrium is frequently disrupted. Understanding how and why this occurs will allow new therapeutical targets to be identified.

  17. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways.

    PubMed

    Rengarajan, Thamaraiselvan; Yaacob, Nik Soriani

    2016-10-15

    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High or Low Target Prevalence Increases the Dual-Target Cost in Visual Search

    ERIC Educational Resources Information Center

    Menneer, Tamaryn; Donnelly, Nick; Godwin, Hayward J.; Cave, Kyle R.

    2010-01-01

    Previous studies have demonstrated a dual-target cost in visual search. In the current study, the relationship between search for one and search for two targets was investigated to examine the effects of target prevalence and practice. Color-shape conjunction stimuli were used with response time, accuracy and signal detection measures. Performance…

  19. GIV/Girdin Links Vascular Endothelial Growth Factor Signaling to Akt Survival Signaling in Podocytes Independent of Nephrin

    PubMed Central

    Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta

    2015-01-01

    Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα–interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases. PMID:25012178

  20. Energy Vs. Productivity: Diminishing Returns

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Energy invested in corn production is compared with food energy returned in calculations by David Pimentel at Cornell University. The rate of return is falling off sharply in this already energy-intensive agriculture. Increased energy input, in the form of fertilizer, would yield far greater returns where agriculture is less sophisticated.…