Sample records for target selection strategies

  1. Improved targeted immunization strategies based on two rounds of selection

    NASA Astrophysics Data System (ADS)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  2. Feature extraction and selection strategies for automated target recognition

    NASA Astrophysics Data System (ADS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-04-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  3. Feature Extraction and Selection Strategies for Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  4. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection.

    PubMed

    Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka

    2015-06-30

    Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.

  5. Voyager 2 Uranus targeting strategy

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.; Gray, D. L.; Potts, C. L.; Francis, K.

    1986-01-01

    One of the major challenges involved in the Voyager 2 Uranus flyby is to deliver the spacecraft to an appropriate aimpoint at the optimum time, so as to maximize the science return of the mission, while yet keeping propellant expenditure low. An unusual targeting strategy has been devised to satisfy these requirements. Its complexity arises from the great distance of the planet Uranus and the limited performance capabilities of Voyager. This selected strategy is developed in relation to a set of candidate strategies, mission requirements and shifting science objectives. The analysis of these candidates is conducted via a Monte Carlo simulation, the results of which yield data for the comparative evaluation and eventual and selection of the actual targeting strategy to be employed.

  6. Burglar Target Selection

    PubMed Central

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  7. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  8. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    PubMed

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  9. SETI target selection.

    PubMed

    Latham, D W; Soderblom, D R

    1995-01-01

    The NASA High Resolution Microwave Survey consists of two complementary elements: a Sky Survey of the entire sky to a moderate level of sensitivity; and a Targeted Search of nearby stars, one at a time, to a much deeper level of sensitivity. In this paper we propose strategies for target selection. We have two goals: to improve the chances of successful detection of signals from technical civilizations that inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. For the main Targeted Search survey of approximately 1000 nearby solar-type stars, we argue that the selection criteria should be heavily biased by what we know about the origin and evolution of life here on Earth. We propose that observations of stars with stellar companions orbiting near the habitable zone should be de-emphasized, because such companions would prevent the formation of habitable planets. We also propose that observations of stars younger than about three billion years should be de-emphasized in favor of older stars, because our own technical civilization took longer than three billion years to evolve here on Earth. To provide the information needed for the preparation of specific target lists, we have undertaken an inventory of a large sample of solar-type stars out to a distance of 60 pc, with the goal of characterizing the relevant astrophysical properties of these stars, especially their ages and companionship. To complement the main survey, we propose that a modest sample of the nearest stars should be observed without any selection biases whatsoever. Finally, we argue that efforts to identify stars with planetary systems should be expanded. If found, such systems should receive intensive scrutiny.

  10. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    PubMed

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  12. Nanomedicine Strategies to Target Tumor-Associated Macrophages

    PubMed Central

    Binnemars-Postma, Karin; Storm, Gert; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail. PMID:28471401

  13. Computational selection of antibody-drug conjugate targets for breast cancer

    PubMed Central

    Fauteux, François; Hill, Jennifer J.; Jaramillo, Maria L.; Pan, Youlian; Phan, Sieu; Famili, Fazel; O'Connor-McCourt, Maureen

    2016-01-01

    The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics. PMID:26700623

  14. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally

  15. Plan selection strategy for rectum cancer patients: An interobserver study to assess clinical feasibility.

    PubMed

    de Jong, Rianne; Lutkenhaus, Lotte; van Wieringen, Niek; Visser, Jorrit; Wiersma, Jan; Crama, Koen; Geijsen, Debby; Bel, Arjan

    2016-08-01

    In radiotherapy for rectum cancer, the target volume is highly deformable. An adaptive plan selection strategy can mitigate the effect of these variations. The purpose of this study was to evaluate the feasibility of an adaptive strategy by assessing the interobserver variation in CBCT-based plan selection. Eleven patients with rectum cancer, treated with a non-adaptive strategy, were selected. Five CBCT scans were available per patient. To simulate the plan selection strategy, per patient three PTVs were created by varying the anterior upper mesorectum margin. For each CBCT scan, twenty observers selected the smallest PTV that encompassed the target volume. After this initial baseline measurement, the gold standard was determined during a consensus meeting, followed by a second measurement one month later. Differences between both measurements were assessed using the Wilcoxon signed-rank test. In the baseline measurement, the concordance with the gold standard was 69% (range: 60-82%), which improved to 75% (range: 60-87%) in the second measurement (p=0.01). For the second measurement, 10% of plan selections were smaller than the gold standard. With a plan selection consistency between observers of 75%, a plan selection strategy for rectum cancer patients is feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis.

    PubMed

    Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic

    2005-03-16

    Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.

  17. A novel 9 × 9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products.

    PubMed

    Liang, Junling; Meng, Jie; Wu, Dingfang; Guo, Mengzhe; Wu, Shihua

    2015-06-26

    Counter-current chromatography (CCC) is an efficient liquid-liquid chromatography technique for separation and purification of complex mixtures like natural products extracts and synthetic chemicals. However, CCC is still a challenging process requiring some special technical knowledge especially in the selection of appropriated solvent systems. In this work, we introduced a new 9 × 9 map-based solvent selection strategy for CCC isolation of targets, which permit more than 60 hexane-ethyl acetate-methanol-water (HEMWat) solvent systems as the start candidates for the selection of solvent systems. Among these solvent systems, there are clear linear correlations between partition coefficient (K) and the system numbers. Thus, an appropriate CCC solvent system (i.e., sweet spot for K = 1) may be hit by measurement of k values of the target only in two random solvent systems. Besides this, surprisingly, we found that through two sweet spots, we could get a line ("Sweet line") where there are infinite sweet solvent systems being suitable for CCC separation. In these sweet solvent systems, the target has the same partition coefficient (K) but different solubilities. Thus, the better sweet solvent system with higher sample solubility can be obtained for high capacity CCC preparation. Furthermore, we found that there is a zone ("Sweet zone") where all solvent systems have their own sweet partition coefficients values for the target in range of 0.4 < K< 2.5 or extended range of 0.25 < K < 16. All results were validated by using 14 pure GUESSmix mimic natural products as standards and further confirmed by isolation of several targets including honokiol and magnolol from the extracts of Magnolia officinalis Rehd. Et Wils and tanshinone IIA from Salvia miltiorrhiza Bunge. In practice, it is much easier to get a suitable solvent system only by making a simple screening two to four HEMWat two-phase solvent systems to obtain the sweet line or sweet zone without special knowledge

  18. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  19. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  20. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    PubMed

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  1. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo.

    PubMed

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-06-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans.

  2. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    PubMed Central

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  3. Voyager 2 Neptune targeting strategy

    NASA Technical Reports Server (NTRS)

    Potts, C. L.; Francis, K.; Matousek, S. E.; Cesarone, R. J.; Gray, D. L.

    1989-01-01

    The success of the Voyager 2 flybys of Neptune and Triton depends upon the ability to correct the spacecraft's trajectory. Accurate spacecraft delivery to the desired encounter conditions will promote the maximum science return. However, Neptune's great distance causes large a priori uncertainties in Neptune and Triton ephemerides and planetary system parameters. Consequently, the 'ideal' trajectory is unknown beforehand. The targeting challenge is to utilize the gradually improving knowledge as the spacecraft approaches Neptune to meet the science objectives, but with an overriding concern for spacecraft safety and a desire to limit propellant expenditure. A unique targeting strategy has been developed in response to this challenge. Through the use of a Monte Carlo simulation, candidate strategies are evaluated by the degree to which they meet these objectives and are compared against each other in determining the targeting strategy to be adopted.

  4. Drug discovery strategies to outer membrane targets in Gram-negative pathogens.

    PubMed

    Brown, Dean G

    2016-12-15

    This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Selective BET bromodomain inhibition as an antifungal therapeutic strategy

    PubMed Central

    Mietton, Flore; Ferri, Elena; Champleboux, Morgane; Zala, Ninon; Maubon, Danièle; Zhou, Yingsheng; Harbut, Mike; Spittler, Didier; Garnaud, Cécile; Courçon, Marie; Chauvel, Murielle; d'Enfert, Christophe; Kashemirov, Boris A.; Hull, Mitchell; Cornet, Muriel; McKenna, Charles E.; Govin, Jérôme; Petosa, Carlo

    2017-01-01

    Invasive fungal infections cause significant morbidity and mortality among immunocompromised individuals, posing an urgent need for new antifungal therapeutic strategies. Here we investigate a chromatin-interacting module, the bromodomain (BD) from the BET family of proteins, as a potential antifungal target in Candida albicans, a major human fungal pathogen. We show that the BET protein Bdf1 is essential in C. albicans and that mutations inactivating its two BDs result in a loss of viability in vitro and decreased virulence in mice. We report small-molecule compounds that inhibit C. albicans Bdf1 with high selectivity over human BDs. Crystal structures of the Bdf1 BDs reveal binding modes for these inhibitors that are sterically incompatible with the human BET-binding pockets. Furthermore, we report a dibenzothiazepinone compound that phenocopies the effects of a Bdf1 BD-inactivating mutation on C. albicans viability. These findings establish BET inhibition as a promising antifungal therapeutic strategy and identify Bdf1 as an antifungal drug target that can be selectively inhibited without antagonizing human BET function. PMID:28516956

  6. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo

    PubMed Central

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-01-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans. PMID:26567514

  7. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    PubMed

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  9. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate

  10. Rethinking volitional control over task choice in multitask environments: use of a stimulus set selection strategy in voluntary task switching.

    PubMed

    Arrington, Catherine M; Weaver, Starla M

    2015-01-01

    Under conditions of volitional control in multitask environments, subjects may engage in a variety of strategies to guide task selection. The current research examines whether subjects may sometimes use a top-down control strategy of selecting a task-irrelevant stimulus dimension, such as location, to guide task selection. We term this approach a stimulus set selection strategy. Using a voluntary task switching procedure, subjects voluntarily switched between categorizing letter and number stimuli that appeared in two, four, or eight possible target locations. Effects of stimulus availability, manipulated by varying the stimulus onset asynchrony between the two target stimuli, and location repetition were analysed to assess the use of a stimulus set selection strategy. Considered across position condition, Experiment 1 showed effects of both stimulus availability and location repetition on task choice suggesting that only in the 2-position condition, where selection based on location always results in a target at the selected location, subjects may have been using a stimulus set selection strategy on some trials. Experiment 2 replicated and extended these findings in a visually more cluttered environment. These results indicate that, contrary to current models of task selection in voluntary task switching, the top-down control of task selection may occur in the absence of the formation of an intention to perform a particular task.

  11. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours.

    PubMed

    Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei

    2016-08-01

    It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.

  12. Target prioritization and strategy selection for active case-finding of pulmonary tuberculosis: a tool to support country-level project planning.

    PubMed

    Nishikiori, Nobuyuki; Van Weezenbeek, Catharina

    2013-02-02

    Despite the progress made in the past decade, tuberculosis (TB) control still faces significant challenges. In many countries with declining TB incidence, the disease tends to concentrate in vulnerable populations that often have limited access to health care. In light of the limitations of the current case-finding approach and the global urgency to improve case detection, active case-finding (ACF) has been suggested as an important complementary strategy to accelerate tuberculosis control especially among high-risk populations. The present exercise aims to develop a model that can be used for county-level project planning. A simple deterministic model was developed to calculate the number of estimated TB cases diagnosed and the associated costs of diagnosis. The model was designed to compare cost-effectiveness parameters, such as the cost per case detected, for different diagnostic algorithms when they are applied to different risk populations. The model was transformed into a web-based tool that can support national TB programmes and civil society partners in designing ACF activities. According to the model output, tuberculosis active case-finding can be a costly endeavor, depending on the target population and the diagnostic strategy. The analysis suggests the following: (1) Active case-finding activities are cost-effective only if the tuberculosis prevalence among the target population is high. (2) Extensive diagnostic methods (e.g. X-ray screening for the entire group, use of sputum culture or molecular diagnostics) can be applied only to very high-risk groups such as TB contacts, prisoners or people living with human immunodeficiency virus (HIV) infection. (3) Basic diagnostic approaches such as TB symptom screening are always applicable although the diagnostic yield is very limited. The cost-effectiveness parameter was sensitive to local diagnostic costs and the tuberculosis prevalence of target populations. The prioritization of appropriate target

  13. Dosimetric advantages of a clinical daily adaptive plan selection strategy compared with a non-adaptive strategy in cervical cancer radiation therapy.

    PubMed

    van de Schoot, Agustinus J A J; de Boer, Peter; Visser, Jorrit; Stalpers, Lukas J A; Rasch, Coen R N; Bel, Arjan

    2017-05-01

    Radiation therapy (RT) using a daily plan selection adaptive strategy can be applied to account for interfraction organ motion while limiting organ at risk dose. The aim of this study was to quantify the dosimetric consequences of daily plan selection compared with non-adaptive RT in cervical cancer. Ten consecutive patients who received pelvic irradiation, planning CTs (full and empty bladder), weekly post-fraction CTs and pre-fraction CBCTs were included. Non-adaptive plans were generated based on the PTV defined using the full bladder planning CT. For the adaptive strategy, multiple PTVs were created based on both planning CTs by ITVs of the primary CTVs (i.e., GTV, cervix, corpus-uterus and upper part of the vagina) and corresponding library plans were generated. Daily CBCTs were rigidly aligned to the full bladder planning CT for plan selection. For daily plan recalculation, selected CTs based on initial similarity were deformably registered to CBCTs. Differences in daily target coverage (D 98%  > 95%) and in V 0.5Gy , V 1.5Gy , V 2Gy , D 50% and D 2% for rectum, bladder and bowel were assessed. Non-adaptive RT showed inadequate primary CTV coverage in 17% of the daily fractions. Plan selection compensated for anatomical changes and improved primary CTV coverage significantly (p < 0.01) to 98%. Compared with non-adaptive RT, plan selection decreased the fraction dose to rectum and bowel indicated by significant (p < 0.01) improvements for daily V 0.5Gy , V 1.5Gy , V 2Gy , D 50% and D 2% . However, daily plan selection significantly increased the bladder V 1.5Gy , V 2Gy , D 50% and D 2% . In cervical cancer RT, a non-adaptive strategy led to inadequate target coverage for individual patients. Daily plan selection corrected for day-to-day anatomical variations and resulted in adequate target coverage in all fractions. The dose to bowel and rectum was decreased significantly when applying adaptive RT.

  14. Systematic Assessment of Strategies for Lung-targeted Delivery of MicroRNA Mimics

    PubMed Central

    Schlosser, Kenny; Taha, Mohamad; Stewart, Duncan J.

    2018-01-01

    There is considerable interest in the use of synthetic miRNA mimics (or inhibitors) as potential therapeutic agents in pulmonary vascular disease; however, the optimal delivery method to achieve high efficiency, selective lung targeting has not been determined. Here, we sought to investigate the relative merits of different lung-targeted strategies for delivering miRNA mimics in rats. Methods: Tissue levels of a synthetic miRNA mimic, cel-miR-39-3p (0.5 nmol in 50 µL invivofectamine/PBS vehicle) were compared in male rats (n=3 rats/method) after delivery by commonly used lung-targeting strategies including intratracheal liquid instillation (IT-L), intratracheal aerosolization with (IT-AV) or without ventilator assistance (IT-A), intranasal liquid instillation (IN-L) and intranasal aerosolization (IN-A). Intravenous (IV; via jugular vein), intraperitoneal (IP) and subcutaneous (SC) delivery served as controls. Relative levels of cel-miR-39 were quantified by RT-qPCR. Results: At 2 h post delivery, IT-L showed the highest lung mimic level, which was significantly higher than levels achieved by all other methods (from ~10- to 10,000-fold, p<0.05). Mimic levels remained detectable in the lung 24 h after delivery, but were 10- to 100-fold lower. The intrapulmonary distribution of cel-miR-39 was comparable when delivered as either a liquid or aerosol, with evidence of mimic distribution to both the left and right lung lobes and penetration to distal regions. All lung-targeted strategies showed lung-selective mimic uptake, with mimic levels 10- to 100-fold lower in heart and 100- to 10,000-fold lower in liver, kidney and spleen. In contrast, IV, SC and IP routes showed comparable or higher mimic levels in non-pulmonary tissues. Conclusions: miRNA uptake in the lungs differed markedly by up to 4 orders of magnitude, demonstrating that the choice of delivery strategy could have a significant impact on potential therapeutic outcomes in preclinical investigations of mi

  15. Microsatellites as targets of natural selection.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2013-02-01

    The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich's ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants.

  16. Microsatellites as Targets of Natural Selection

    PubMed Central

    Haasl, Ryan J.; Payseur, Bret A.

    2013-01-01

    The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich’s ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants. PMID:23104080

  17. Assessment strategies for municipal selective waste collection schemes.

    PubMed

    Ferreira, Fátima; Avelino, Catarina; Bentes, Isabel; Matos, Cristina; Teixeira, Carlos Afonso

    2017-01-01

    An important strategy to promote a strong sustainable growth relies on an efficient municipal waste management, and phasing out waste landfilling through waste prevention and recycling emerges as a major target. For this purpose, effective collection schemes are required, in particular those regarding selective waste collection, pursuing a more efficient and high quality recycling of reusable materials. This paper addresses the assessment and benchmarking of selective collection schemes, relevant to guide future operational improvements. In particular, the assessment is based on the monitoring and statistical analysis of a core-set of performance indicators that highlights collection trends, complemented with a performance index that gathers a weighted linear combination of these indicators. This combined analysis underlines a potential tool to support decision makers involved in the process of selecting the collection scheme with best overall performance. The presented approach was applied to a case study conducted in Oporto Municipality, with data gathered from two distinct selective collection schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yupeng; Niemela, Perttu; Siljamaki, Sami

    2015-08-15

    Purpose: To develop a new robust optimization strategy for intensity-modulated proton therapy as an important step in translating robust proton treatment planning from research to clinical applications. Methods: In selective robust optimization, a worst-case-based robust optimization algorithm is extended, and terms of the objective function are selectively computed from either the worst-case dose or the nominal dose. Two lung cancer cases and one head and neck cancer case were used to demonstrate the practical significance of the proposed robust planning strategy. The lung cancer cases had minimal tumor motion less than 5 mm, and, for the demonstration of the methodology,more » are assumed to be static. Results: Selective robust optimization achieved robust clinical target volume (CTV) coverage and at the same time increased nominal planning target volume coverage to 95.8%, compared to the 84.6% coverage achieved with CTV-based robust optimization in one of the lung cases. In the other lung case, the maximum dose in selective robust optimization was lowered from a dose of 131.3% in the CTV-based robust optimization to 113.6%. Selective robust optimization provided robust CTV coverage in the head and neck case, and at the same time improved controls over isodose distribution so that clinical requirements may be readily met. Conclusions: Selective robust optimization may provide the flexibility and capability necessary for meeting various clinical requirements in addition to achieving the required plan robustness in practical proton treatment planning settings.« less

  19. Space based lidar shot pattern targeting strategies for small targets such as streams

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    2001-01-01

    An analysis of the effectiveness of four different types of lidar shot distribution is conducted to determine which is best for concentrating shots in a given location. A simple preemptive targeting strategy is found to work as adequately as a more involved dynamic strategy for most target sizes considered.

  20. Quasar target selection fiber efficiency

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi; Yanny, Brian

    1996-05-01

    We present estimates of the efficiency for finding QSOs as a function of limiting magnitude and galactic latitude. From these estimates, we have formulated a target selection strategy that should net 80,000 QSOs in the north galactic cap with an average of 70 fibers per plate, not including fibers reserved for high-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided into two zones of high and low stellar density. We use about five times as many fibers for QSO candidates in the half of the survey with the lower stellar density as we use in the half with higher stellar density. The current plan assigns 15% of the fibers to FIRST radio sources; if these are not available, those fibers would be allocated to lower probability QSO sources, dropping the total number of QSOs by a small factor (5%). We will find about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift. Use was made of two data sets: the star and quasar simulated test data generated by Don Schneider, and the data from UJFN plate surveys by Koo (1986) and Kron (1980). This data was compared to results from the Palomar-Green Survey and a recent survey by Pat Osmer and collaborators.

  1. Strategy selection in structured populations.

    PubMed

    Tarnita, Corina E; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A

    2009-08-07

    Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not constant, but depends on the relative frequencies of strategies in the population. This type of evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed populations, where the interaction between any two individuals is equally likely. There have also been several approaches to study evolutionary games in structured populations. In this paper we present a simple result that holds for a large variety of population structures. We consider the game between two strategies, A and B, described by the payoff matrix(abcd). We study a mutation and selection process. For weak selection strategy A is favored over B if and only if sigma a+b>c+sigma d. This means the effect of population structure on strategy selection can be described by a single parameter, sigma. We present the values of sigma for various examples including the well-mixed population, games on graphs, games in phenotype space and games on sets. We give a proof for the existence of such a sigma, which holds for all population structures and update rules that have certain (natural) properties. We assume weak selection, but allow any mutation rate. We discuss the relationship between sigma and the critical benefit to cost ratio for the evolution of cooperation. The single parameter, sigma, allows us to quantify the ability of a population structure to promote the evolution of cooperation or to choose efficient equilibria in coordination games.

  2. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    PubMed

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  4. High-Speed Lateral Flow Strategy for a Fast Biosensing with an Improved Selectivity and Binding Affinity.

    PubMed

    Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun

    2018-05-10

    We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.

  5. Evaluation of delivered dose for a clinical daily adaptive plan selection strategy for bladder cancer radiotherapy.

    PubMed

    Lutkenhaus, Lotte J; Visser, Jorrit; de Jong, Rianne; Hulshof, Maarten C C M; Bel, Arjan

    2015-07-01

    To account for variable bladder size during bladder cancer radiotherapy, a daily plan selection strategy was implemented. The aim of this study was to calculate the actually delivered dose using an adaptive strategy, compared to a non-adaptive approach. Ten patients were treated to the bladder and lymph nodes with an adaptive full bladder strategy. Interpolated delineations of bladder and tumor on a full and empty bladder CT scan resulted in five PTVs for which VMAT plans were created. Daily cone beam CT (CBCT) scans were used for plan selection. Bowel, rectum and target volumes were delineated on these CBCTs, and delivered dose for these was calculated using both the adaptive plan, and a non-adaptive plan. Target coverage for lymph nodes improved using an adaptive strategy. The full bladder strategy spared the healthy part of the bladder from a high dose. Average bowel cavity V30Gy and V40Gy significantly reduced with 60 and 69ml, respectively (p<0.01). Other parameters for bowel and rectum remained unchanged. Daily plan selection compared to a non-adaptive strategy yielded similar bladder coverage and improved coverage for lymph nodes, with a significant reduction in bowel cavity V30Gy and V40Gy only, while other sparing was limited. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  7. Mass Media Strategies Targeting High Sensation Seekers: What Works and Why

    ERIC Educational Resources Information Center

    Stephenson, Michael T.

    2003-01-01

    Objectives: To examine strategies for using the mass media effectively in drug prevention campaigns targeting high sensation seekers. Methods: Both experimental lab and field studies were used to develop a comprehensive audience segmentation strategy targeting high sensation seekers. Results: A 4-pronged targeting strategy employed in an…

  8. Cognitive Niches: An Ecological Model of Strategy Selection

    ERIC Educational Resources Information Center

    Marewski, Julian N.; Schooler, Lael J.

    2011-01-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each…

  9. Target marketing strategies for occupational therapy entrepreneurs.

    PubMed

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  10. Targeting microbial biofilms: current and prospective therapeutic strategies

    PubMed Central

    Koo, Hyun; Allan, Raymond N; Howlin, Robert P; Hall-Stoodley, Luanne; Stoodley, Paul

    2017-01-01

    Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials, and indicates the need for multi-targeted or combinatorial therapies. In this review, we focus on current therapeutic strategies and those that are under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies, and provide a rationale for multi-targeted therapies that are aimed at disrupting the complex biofilm microenvironment. PMID:28944770

  11. Landslide susceptibility mapping in three selected target zones in Afghanistan

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Seegers, Joe; Zeilinger, Gerold

    2015-04-01

    In May 2014, a large and mobile landslide destroyed the village Ab Barek, a village in Badakshan Province, Afghanistan. The landslide caused several hundred fatalities and once again demonstrated the vulnerability of Afghanistan's population to extreme natural events following more than 30 years of civil war and violent conflict. Increasing the capacity of Afghanistan's population by strengthening the disaster preparedness and management of responsible government authorities and institutions is thus a major component of international cooperation and development strategies. Afghanistan is characterized by high relief and widely varying rock types that largely determine the spatial distribution as well as emplacement modes of mass movements. The major aim of our study is to characterize this variability by conducting a landslide susceptibility analysis in three selected target zones: Greater Kabul Area, Badakhshan Province and Takhar Province. We expand on an existing landslide database by mapping landforms diagnostic for landslides (e.g. head scarps, normal faults and tension cracks), and historical landslide scars and landslide deposits by visual interpretation of high-resolution satellite imagery. We conduct magnitude frequency analysis within subregional physiogeographic classes based on geological maps, climatological and topographic data to identify regional parameters influencing landslide magnitude and frequency. In addition, we prepare a landslide susceptibility map for each area using the Weight-of-Evidence model. Preliminary results show that the three selected target zones vastly differ in modes of landsliding. Low magnitude but frequent rockfall events are a major hazard in the Greater Kabul Area threatening buildings and infrastructure encroaching steep terrain in the city's outskirts. Mass movements in loess covered areas of Badakshan are characterized by medium to large magnitudes. This spatial variability of characteristic landslide magnitudes and

  12. Children's Age-Related Speed--Accuracy Strategies in Intercepting Moving Targets in Two Dimensions

    ERIC Educational Resources Information Center

    Rothenberg-Cunningham, Alek; Newell, Karl M.

    2013-01-01

    Purpose: This study investigated the age-related speed--accuracy strategies of children, adolescents, and adults in performing a rapid striking task that allowed the self-selection of the interception position in a virtual, two-dimensional environment. Method: The moving target had curvilinear trajectories that were determined by combinations of…

  13. Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy.

    PubMed

    Pang, Ka Ming; Castanotto, Daniela; Li, Haitang; Scherer, Lisa; Rossi, John J

    2018-01-09

    Gene therapy by engineering patient's own blood cells to confer HIV resistance can potentially lead to a functional cure for AIDS. Toward this goal, we have previously developed an anti-HIV lentivirus vector that deploys a combination of shRNA, ribozyme and RNA decoy. To further improve this therapeutic vector against viral escape, we sought an additional reagent to target HIV integrase. Here, we report the development of a new strategy for selection and expression of aptamer for gene therapy. We developed a SELEX protocol (multi-tag SELEX) for selecting RNA aptamers against proteins with low solubility or stability, such as integrase. More importantly, we expressed these aptamers in vivo by incorporating them in the terminal loop of shRNAs. This novel strategy allowed efficient expression of the shRNA-aptamer fusions that targeted RNAs and proteins simultaneously. Expressed shRNA-aptamer fusions targeting HIV integrase or reverse transcriptase inhibited HIV replication in cell cultures. Viral inhibition was further enhanced by combining an anti-integrase aptamer with an anti-HIV Tat-Rev shRNA. This construct exhibited efficacy comparable to that of integrase inhibitor Raltegravir. Our strategy for the selection and expression of RNA aptamers can potentially extend to other gene therapy applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Cognitive niches: an ecological model of strategy selection.

    PubMed

    Marewski, Julian N; Schooler, Lael J

    2011-07-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider selection in the context of 2 theories: the simple heuristics framework and the ACT-R (adaptive control of thought-rational) architecture of cognition. From the heuristics framework, we adopt the thesis that people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities in the environment and draw on cognitive capacities, such as memory and time perception. ACT-R provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and 10 experiments, we consider the choice between strategies that operate on the accessibility of memories and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model quantitatively predicts people's familiarity with and knowledge of real-world objects, the distributional characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling heuristics. In doing so, the model specifies when people will be able to apply different strategies and how accurate, fast, and effortless people's decisions will be.

  15. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    PubMed Central

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  16. Voyager 1 Saturn targeting strategy

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.

    1980-01-01

    A trajectory targeting strategy for the Voyager 1 Saturn encounter has been designed to accomodate predicted uncertainties in Titan's ephemeris while maximizing spacecraft safety and science return. The encounter is characterized by a close Titan flyby 18 hours prior to Saturn periapse. Retargeting of the nominal trajectory to account for late updates in Titan's estimated position can disperse the ascending node location, which is nominally situated at a radius of low expected particle density in Saturn's ring plane. The strategy utilizes a floating Titan impact vector magnitude to minimize this dispersion. Encounter trajectory characteristics and optimal tradeoffs are presented.

  17. The design strategy of selective PTP1B inhibitors over TCPTP.

    PubMed

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A novel "signal-on/off" sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy.

    PubMed

    Wang, Lanlan; Ma, Rongna; Jiang, Liushan; Jia, Liping; Jia, Wenli; Wang, Huaisheng

    2017-06-15

    A novel dual-signal ratiometric electrochemical aptasensor for highly sensitive and selective detection of thrombin has been designed on the basis of signal-on and signal-off strategy. Ferrocene labeled hairpin probe (Fc-HP), thrombin aptamer and methyl blue labeled bio-bar-coded AuNPs (MB-P3-AuNPs) were rationally introduced for the construction of the assay platform, which combined the advantages of the recognition of aptamer, the amplification of bio-bar-coded nanoprobe, and the ratiometric signaling readout. In the presence of thrombin, the interaction between thrombin and the aptamer leads to the departure of MB-P3-AuNPs from the sensing interface, and the conformation of the single stranded Fc-HP to a hairpin structure to take the Fc confined near the electrode surface. Such conformational changes resulted in the oxidation current of Fc increased and that of MB decreased. Therefore, the recognition event of the target can be dual-signal ratiometric electrochemical readout in both the "signal-off" of MB and the "signal-on" of Fc. The proposed strategy showed a wide linear detection range from 0.003 to 30nM with a detection limit of 1.1 pM. Moreover, it exhibits good performance of excellent selectivity, good stability, and acceptable fabrication reproducibility. By changing the recognition probe, this protocol could be easily expanded into the detection of other targets, showing promising potential applications in disease diagnostics and bioanalysis. Copyright © 2016. Published by Elsevier B.V.

  19. [The development of novel tumor targeting delivery strategy].

    PubMed

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  20. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    PubMed

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  1. Multiple-input multiple-output causal strategies for gene selection.

    PubMed

    Bontempi, Gianluca; Haibe-Kains, Benjamin; Desmedt, Christine; Sotiriou, Christos; Quackenbush, John

    2011-11-25

    Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.

  2. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy.

    PubMed

    Shi, Yunli; Liu, Shengnan; Ahmad, Shabir; Gao, Qingzhi

    2018-05-22

    Increased glycolysis has been one of the metabolic characteristics known as the Warburg effect. The functional and therapeutic importance of the Warburg effect in targeted therapy is scientifically recognized and the glucose metabolic pathway has become a desirable target of anticancer strategies. Glucose transporters (GLUTs) play an important role in cancer glycolysis to sustain cancer cell proliferation, metastasis and survival. Utilizing the knowledge of differential expression and biological functions of GLUTs offers us the possibility of designing and delivering chemotherapeutics toward targeted tumor tissues for improved cancer selectivity. Inhibition of glucose uptake or glycolysis may effectively kill hypoxic cancer cells. Facilitative drug uptake via active transportation provides the potential opportunity to circumvent the drug resistance in chemotherapy. GLUTs as the hallmarks and biotargets of cancer metabolism enable the design and development of novel targeted theranostic agents. In this updated review, we examine the current scenario of the GLUTs as strategic targets in cancer and the unique concepts for discovery and development of GLUTs-targeted anticancer agents. We highlight the recent progresses on structural biology and underlying mechanism studies of GLUTs, with a brief introduction to the computational approaches in GLUT-mediated drug transport and tumor targeting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The TESS Input Catalog and Selection of Targets for the TESS Transit Search

    NASA Astrophysics Data System (ADS)

    Pepper, Joshua; Stassun, Keivan G.; Paegert, Martin; Oelkers, Ryan; De Lee, Nathan Michael; Torres, Guillermo; TESS Target Selection Working Group

    2018-01-01

    The TESS mission will photometrically survey millions of the brightest stars over almost the entire the sky to detect transiting exoplanets. A key step to enable that search is the creation of the TESS Input Catalog (TIC), a compiled catalog of 700 million stars and galaxies with observed and calculated parameters. From the TIC we derive the Candidate Target List (CTL) to identify target stars for the 2-minute TESS postage stamps. The CTL is designed to identify the best stars for the detection of small planets, which includes all bright cool dwarf stars in the sky. I will describe the target selection strategy, the distribution of stars in the current CTL, and how both the TIC and CTL will expand and improve going forward.

  4. In-silico Leishmania target selectivity of antiparasitic terpenoids.

    PubMed

    Ogungbe, Ifedayo Victor; Setzer, William N

    2013-07-03

    Neglected Tropical Diseases (NTDs), like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.

  5. Effects of strategy sequences and response-stimulus intervals on children's strategy selection and strategy execution: a study in computational estimation.

    PubMed

    Lemaire, Patrick; Brun, Fleur

    2014-07-01

    The present study investigates how children's better strategy selection and strategy execution on a given problem are influenced by which strategy was used on the immediately preceding problem and by the duration between their answer to the previous problem and current problem display. These goals are pursued in the context of an arithmetic problem solving task. Third and fifth graders were asked to select the better strategy to find estimates to two-digit addition problems like 36 + 78. On each problem, children could choose rounding-down (i.e., rounding both operands down to the closest smaller decades, like doing 40 + 60 to solve 42 + 67) or rounding-up strategies (i.e., rounding both operands up to the closest larger decades, like doing 50 + 70 to solve 42 + 67). Children were tested under a short RSI condition (i.e., the next problem was displayed 900 ms after participants' answer) or under a long RSI condition (i.e., the next problem was displayed 1,900 ms after participants' answer). Results showed that both strategy selection (e.g., children selected the better strategy more often under long RSI condition and after selecting the poorer strategy on the immediately preceding problem) and strategy execution (e.g., children executed strategy more efficiently under long RSI condition and were slower when switching strategy over two consecutive problems) were influenced by RSI and which strategy was used on the immediately preceding problem. Moreover, data showed age-related changes in effects of RSI and strategy sequence on mean percent better strategy selection and on strategy performance. The present findings have important theoretical and empirical implications for our understanding of general and specific processes involved in strategy selection, strategy execution, and strategic development.

  6. Target discrimination strategies in optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Henriksson, Markus; Jonsson, Per; Pettersson, Magnus

    2013-10-01

    Detection and localisation of optical assemblies used for weapon guidance or sniper rifle scopes has attracted interest for security and military applications. Typically a laser system is used to interrogate a scene of interest and the retro-reflected radiation is detected. Different system approaches for area coverage can be realised ranging from flood illumination to step-and-stare or continuous scanning schemes. Independently of the chosen approach target discrimination is a crucial issue, particularly if a complex scene such as in an urban environment and autonomous operation is considered. In this work target discrimination strategies in optics detection are discussed. Typical parameters affecting the reflected laser radiation from the target are the wavelength, polarisation properties, temporal effects and the range resolution. Knowledge about the target characteristics is important to predict the target discrimination capability. Two different systems were used to investigate polarisation properties and range resolution information from targets including e.g. road signs, optical reflexes, rifle sights and optical references. The experimental results and implications on target discrimination will be discussed. If autonomous operation is required target discrimination becomes critical in order to reduce the number of false alarms.

  7. Processes in arithmetic strategy selection: a fMRI study.

    PubMed

    Taillan, Julien; Ardiale, Eléonore; Anton, Jean-Luc; Nazarian, Bruno; Félician, Olivier; Lemaire, Patrick

    2015-01-01

    This neuroimaging (functional magnetic resonance imaging) study investigated neural correlates of strategy selection. Young adults performed an arithmetic task in two different conditions. In both conditions, participants had to provide estimates of two-digit multiplication problems like 54 × 78. In the choice condition, participants had to select the better of two available rounding strategies, rounding-up (RU) strategy (i.e., doing 60 × 80 = 4,800) or rounding-down (RD) strategy (i.e., doing 50 × 70 = 3,500 to estimate product of 54 × 78). In the no-choice condition, participants did not have to select strategy on each problem but were told which strategy to use; they executed RU and RD strategies each on a series of problems. Participants also had a control task (i.e., providing correct products of multiplication problems like 40 × 50). Brain activations and performance were analyzed as a function of these conditions. Participants were able to frequently choose the better strategy in the choice condition; they were also slower when they executed the difficult RU than the easier RD. Neuroimaging data showed greater brain activations in right anterior cingulate cortex (ACC), dorso-lateral prefrontal cortex (DLPFC), and angular gyrus (ANG), when selecting (relative to executing) the better strategy on each problem. Moreover, RU was associated with more parietal cortex activation than RD. These results suggest an important role of fronto-parietal network in strategy selection and have important implications for our further understanding and modeling cognitive processes underlying strategy selection.

  8. Processes in arithmetic strategy selection: a fMRI study

    PubMed Central

    Taillan, Julien; Ardiale, Eléonore; Anton, Jean-Luc; Nazarian, Bruno; Félician, Olivier; Lemaire, Patrick

    2015-01-01

    This neuroimaging (functional magnetic resonance imaging) study investigated neural correlates of strategy selection. Young adults performed an arithmetic task in two different conditions. In both conditions, participants had to provide estimates of two-digit multiplication problems like 54 × 78. In the choice condition, participants had to select the better of two available rounding strategies, rounding-up (RU) strategy (i.e., doing 60 × 80 = 4,800) or rounding-down (RD) strategy (i.e., doing 50 × 70 = 3,500 to estimate product of 54 × 78). In the no-choice condition, participants did not have to select strategy on each problem but were told which strategy to use; they executed RU and RD strategies each on a series of problems. Participants also had a control task (i.e., providing correct products of multiplication problems like 40 × 50). Brain activations and performance were analyzed as a function of these conditions. Participants were able to frequently choose the better strategy in the choice condition; they were also slower when they executed the difficult RU than the easier RD. Neuroimaging data showed greater brain activations in right anterior cingulate cortex (ACC), dorso-lateral prefrontal cortex (DLPFC), and angular gyrus (ANG), when selecting (relative to executing) the better strategy on each problem. Moreover, RU was associated with more parietal cortex activation than RD. These results suggest an important role of fronto-parietal network in strategy selection and have important implications for our further understanding and modeling cognitive processes underlying strategy selection. PMID:25698995

  9. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer.

    PubMed

    Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R

    2018-04-27

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.

  10. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer

    PubMed Central

    Rogers, Oliver C.; Anthony, Lizamma; Rosen, D. Marc; Brennen, W. Nathaniel; Denmeade, Samuel R.

    2018-01-01

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers. PMID:29854290

  11. Immunization Strategies Targeting Newly Arrived Migrants in Non-EU Countries of the Mediterranean Basin and Black Sea

    PubMed Central

    Giambi, Cristina; Del Manso, Martina; Dente, Maria Grazia; Napoli, Christian; Montaño-Remacha, Carmen; Riccardo, Flavia; Declich, Silvia

    2017-01-01

    Background: The World Health Organization recommends that host countries ensure appropriate vaccinations to refugees, asylum seekers and migrants. However, information on vaccination strategies targeting migrants in host countries is limited. Methods: In 2015–2016 we carried out a survey among national experts from governmental bodies of 15 non-EU countries of the Mediterranean and Black Sea in order to document and share national vaccination strategies targeting newly arrived migrants. Results: Four countries reported having regulations/procedures supporting the immunization of migrants at national level, one at sub-national level and three only targeting specific population groups. Eight countries offer migrant children all the vaccinations included in their national immunization schedule; three provide only selected vaccinations, mainly measles and polio vaccines. Ten and eight countries also offer selected vaccinations to adolescents and adults respectively. Eight countries provide vaccinations at the community level; seven give priority vaccines in holding centres or at entry sites. Data on administered vaccines are recorded in immunization registries in nine countries. Conclusions: Although differing among countries, indications for immunizing migrants are in place in most of them. However, we cannot infer from our findings whether those strategies are currently functioning and whether barriers to their implementation are being faced. Further studies focusing on these aspects are needed to develop concrete and targeted recommendations for action. Since migrants are moving across countries, development of on-line registries and cooperation between countries could allow keeping track of administered vaccines in order to appropriately plan immunization series and avoid unnecessary vaccinations. PMID:28441361

  12. Immunization Strategies Targeting Newly Arrived Migrants in Non-EU Countries of the Mediterranean Basin and Black Sea.

    PubMed

    Giambi, Cristina; Del Manso, Martina; Dente, Maria Grazia; Napoli, Christian; Montaño-Remacha, Carmen; Riccardo, Flavia; Declich, Silvia; Network For The Control Of Cross-Border Health Threats In The Mediterranean Basin And Black Sea For The ProVacMed Project

    2017-04-25

    Background : The World Health Organization recommends that host countries ensure appropriate vaccinations to refugees, asylum seekers and migrants. However, information on vaccination strategies targeting migrants in host countries is limited. Methods : In 2015-2016 we carried out a survey among national experts from governmental bodies of 15 non-EU countries of the Mediterranean and Black Sea in order to document and share national vaccination strategies targeting newly arrived migrants. Results : Four countries reported having regulations/procedures supporting the immunization of migrants at national level, one at sub-national level and three only targeting specific population groups. Eight countries offer migrant children all the vaccinations included in their national immunization schedule; three provide only selected vaccinations, mainly measles and polio vaccines. Ten and eight countries also offer selected vaccinations to adolescents and adults respectively. Eight countries provide vaccinations at the community level; seven give priority vaccines in holding centres or at entry sites. Data on administered vaccines are recorded in immunization registries in nine countries. Conclusions : Although differing among countries, indications for immunizing migrants are in place in most of them. However, we cannot infer from our findings whether those strategies are currently functioning and whether barriers to their implementation are being faced. Further studies focusing on these aspects are needed to develop concrete and targeted recommendations for action. Since migrants are moving across countries, development of on-line registries and cooperation between countries could allow keeping track of administered vaccines in order to appropriately plan immunization series and avoid unnecessary vaccinations.

  13. SSL: A Theory of How People Learn to Select Strategies

    ERIC Educational Resources Information Center

    Rieskamp, Jorg; Otto, Philipp E.

    2006-01-01

    The assumption that people possess a repertoire of strategies to solve the inference problems they face has been raised repeatedly. However, a computational model specifying how people select strategies from their repertoire is still lacking. The proposed strategy selection learning (SSL) theory predicts a strategy selection process on the basis…

  14. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting

  15. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs. PMID:28251165

  16. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells.

    PubMed

    Spiess, Katja; Jeppesen, Mads G; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Kledal, Thomas N; Rosenkilde, Mette M

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX 3 CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX 3 CR1, the endogenous receptor for CX 3 CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.

  17. Target selection biases from recent experience transfer across effectors.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  18. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    PubMed

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  19. Selecting habitat management strategies on refuges

    USGS Publications Warehouse

    Schroeder, Richard L.; King, Wayne J.; Cornely, John E.

    1998-01-01

    This report is a joint effort of the Biological Resources Division, U.S. Geological Survey and the U.S. Fish and Wildlife Service (FWS) to provide National Wildlife Refuge (NWR) managers guidance on the selection and evaluation of habitat management strategies to meet stated objectives. The FWS recently completed a handbook on writing refuge management goals and objectives (U.S. Fish and Wildlife Service 1996a). the National Wildlife Refuge System Improvement Act of 1997 requires that National Wildlife Refuge System (NWRS) lands be managed according to approved Comprehensive Conservation Plans to guide management decisions and devise strategies for achieving refuge unit purposes and meeting the NWRS mission. It is expected that over the next several years most refuges will develop new or revised refuge goals and objectives for directing their habitat management strategies. This paper outlines the steps we recommend in selecting and evaluating habitat management strategies to meet specific refuge habitat objectives. We selected two examples to illustrate the process. Although each refuge is unique and will require specific information and solutions, these two examples can be used as guidance when selecting and evaluating habitat management strategies for other refuge resources: Example 1. Management of floodplain woods habitat for forest interior birds. The biological recourse of concern is the quality and quantity of floodplain woods habitat for eastern forest interior birds in the Cypress Creek NWR (U.S. Fish and Wildlife Service 1996b). Example 2. Management of habitat for biodiversity: Historical landscape proportions. The biological resource of concern is the change in diversity associated with man-induced changes in the distribution and abundance of habitat types at the Minnesota Valley NWR (U.S. Fish and Wildlife Service 1996c).

  20. Mutation-selection equilibrium in games with mixed strategies.

    PubMed

    Tarnita, Corina E; Antal, Tibor; Nowak, Martin A

    2009-11-07

    We develop a new method for studying stochastic evolutionary game dynamics of mixed strategies. We consider the general situation: there are n pure strategies whose interactions are described by an nxn payoff matrix. Players can use mixed strategies, which are given by the vector (p(1),...,p(n)). Each entry specifies the probability to use the corresponding pure strategy. The sum over all entries is one. Therefore, a mixed strategy is a point in the simplex S(n). We study evolutionary dynamics in a well-mixed population of finite size. Individuals reproduce proportional to payoff. We consider the case of weak selection, which means the payoff from the game is only a small contribution to overall fitness. Reproduction can be subject to mutation; a mutant adopts a randomly chosen mixed strategy. We calculate the average abundance of every mixed strategy in the stationary distribution of the mutation-selection process. We find the crucial conditions that specify if a strategy is favored or opposed by selection. One condition holds for low mutation rate, another for high mutation rate. The result for any mutation rate is a linear combination of those two. As a specific example we study the Hawk-Dove game. We prove general statements about the relationship between games with pure and with mixed strategies.

  1. Inference from habitat-selection analysis depends on foraging strategies.

    PubMed

    Bastille-Rousseau, Guillaume; Fortin, Daniel; Dussault, Christian

    2010-11-01

    1. Several methods have been developed to assess habitat selection, most of which are based on a comparison between habitat attributes in used vs. unused or random locations, such as the popular resource selection functions (RSFs). Spatial evaluation of residency time has been recently proposed as a promising avenue for studying habitat selection. Residency-time analyses assume a positive relationship between residency time within habitat patches and selection. We demonstrate that RSF and residency-time analyses provide different information about the process of habitat selection. Further, we show how the consideration of switching rate between habitat patches (interpatch movements) together with residency-time analysis can reveal habitat-selection strategies. 2. Spatially explicit, individual-based modelling was used to simulate foragers displaying one of six foraging strategies in a heterogeneous environment. The strategies combined one of three patch-departure rules (fixed-quitting-harvest-rate, fixed-time and fixed-amount strategy), together with one of two interpatch-movement rules (random or biased). Habitat selection of simulated foragers was then assessed using RSF, residency-time and interpatch-movement analyses. 3. Our simulations showed that RSFs and residency times are not always equivalent. When foragers move in a non-random manner and do not increase residency time in richer patches, residency-time analysis can provide misleading assessments of habitat selection. This is because the overall time spent in the various patch types not only depends on residency times, but also on interpatch-movement decisions. 4. We suggest that RSFs provide the outcome of the entire selection process, whereas residency-time and interpatch-movement analyses can be used in combination to reveal the mechanisms behind the selection process. 5. We showed that there is a risk in using residency-time analysis alone to infer habitat selection. Residency-time analyses, however

  2. CDTI target selection criteria

    NASA Technical Reports Server (NTRS)

    Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.

    1984-01-01

    A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.

  3. A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: a proof of concept on HER2 receptor.

    PubMed

    Monfregola, Luca; Vitale, Rosa Maria; Amodeo, Pietro; De Luca, Stefania

    2009-10-01

    The discovery of pharmaceutical agents is a complex, lengthy and costly process, critically depending on the availability of rapid and efficient screening methods. In particular, when targets are large, multidomain proteins, their complexity may affect unfavorably technical feasibility, costs and unambiguity of binding test interpretation. A possible strategy to overcome these problems relies on molecular design of receptor fragments that are: sensible targets for ligand screenings, conformationally stable also as standalone domains, easily synthesized and immobilized on chip for Biacore experiments. An additional desirable feature for new ligands is the ability of selectively targeting alternative conformational states typical of many proteins. To test the feasibility of such approach on a case with potential applicative interest, we developed a surface plasmon resonance (SPR)-based screening method for drug candidates toward HER2, a Tyr-kinase receptor targeted in anticancer therapies. HER2 was mimicked by HER2-DIVMP, a modified fragment of it immobilized onto the sensor surface specifically modeling HER2 domain IV in its bounded form, designed by structural comparison of HER2 alone and in complex with Herceptin, a monoclonal therapeutic anti-HER2 antibody. This design and its implementation in SPR devices was validated by investigating Herceptin- HER2-DIVMP affinity, measuring its dissociation constant (K(D)=19.2 nM). An efficient synthetic procedure to prepare the HER2-DIVMP peptide was also developed. The HER2-DIVMP conformational stability suggested by experimental and computational results, makes it also a valuable candidate as a mold to design new molecules selectively targeting domain IV of HER2.

  4. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One.

    PubMed

    Evangelista, Baggio A; Kim, Yoon-Seong; Kolpashchikov, Dmitry M

    2018-04-26

    Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Selecting a Targeting Method to Identify BPL Households in India

    ERIC Educational Resources Information Center

    Alkire, Sabina; Seth, Suman

    2013-01-01

    This paper proposes how to select a methodology to target multidimensionally poor households, and how to update that targeting exercise periodically. We present this methodology in the context of discussions regarding the selection of a targeting methodology in India. In 1992, 1997, and 2002 the Indian government identified households that are…

  6. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer

    PubMed Central

    Chavez-Gonzalez, Antonieta; Bakhshinejad, Babak; Pakravan, Katayoon

    2018-01-01

    Background Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. Conclusions A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy. PMID:27678246

  7. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed

  8. High affinity ligands from in vitro selection: Complex targets

    PubMed Central

    Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry

    1998-01-01

    Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188

  9. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.

    PubMed

    Tian, Sheng; Sun, Huiyong; Pan, Peichen; Li, Dan; Zhen, Xuechu; Li, Youyong; Hou, Tingjun

    2014-10-27

    In this study, to accommodate receptor flexibility, based on multiple receptor conformations, a novel ensemble docking protocol was developed by using the naïve Bayesian classification technique, and it was evaluated in terms of the prediction accuracy of docking-based virtual screening (VS) of three important targets in the kinase family: ALK, CDK2, and VEGFR2. First, for each target, the representative crystal structures were selected by structural clustering, and the capability of molecular docking based on each representative structure to discriminate inhibitors from non-inhibitors was examined. Then, for each target, 50 ns molecular dynamics (MD) simulations were carried out to generate an ensemble of the conformations, and multiple representative structures/snapshots were extracted from each MD trajectory by structural clustering. On average, the representative crystal structures outperform the representative structures extracted from MD simulations in terms of the capabilities to separate inhibitors from non-inhibitors. Finally, by using the naïve Bayesian classification technique, an integrated VS strategy was developed to combine the prediction results of molecular docking based on different representative conformations chosen from crystal structures and MD trajectories. It was encouraging to observe that the integrated VS strategy yields better performance than the docking-based VS based on any single rigid conformation. This novel protocol may provide an improvement over existing strategies to search for more diverse and promising active compounds for a target of interest.

  10. Autonomous Selection of a Rover Laser Target on Mars

    NASA Image and Video Library

    2016-07-21

    NASA's Curiosity Mars rover autonomously selects some of the targets for the laser and telescopic camera of the rover's Chemistry and Camera (ChemCam) instrument. For example, on-board software analyzed the image on the left, chose the target highlighted with the yellow dot, and pointed ChemCam to acquire laser analysis and the image on the right. Most ChemCam targets are still selected by scientists discussing rocks or soil seen in images the rover has sent to Earth, but the autonomous targeting provides an added capability. It can offer a head start on acquiring composition information at a location just reached by a drive. The software for target selection and instrument pointing is called AEGIS, for Autonomous Exploration for Gathering Increased Science. The image on the left was taken by the left eye of Curiosity's stereo Navigation Camera (Navcam) a few minutes after the rover completed a drive of about 43 feet (13 meters) on July 14, 2016, during the 1,400th Martian day, or sol, of the rover's work on Mars. Using AEGIS for target selection and pointing based on the Navcam imagery, Curiosity's ChemCam zapped a grid of nine points on a rock chosen for meeting criteria set by the science team. In this run, parameters were set to find bright-toned outcrop rock rather than darker rocks, which in this area tend to be loose on the surface. Within less than 30 minutes after the Navcam image was taken, ChemCam had used its laser on all nine points and had taken before-and-after images of the target area with its remote micro-imager (RMI) camera. The image at right combines those two RMI exposures. The nine laser targets are marked in red at the center. On the Navcam image at left, the yellow dot identifies the selected target area, which is about 2.2 inches (5.6 centimeters) in diameter. An unannotated version of this Sol 1400 Navcam image is available. ChemCam records spectra of glowing plasma generated when the laser hits a target point. These spectra provide

  11. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristin

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine

  12. Motor cortex guides selection of predictable movement targets

    PubMed Central

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  13. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    PubMed Central

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  14. Targeting the dopamine D3 receptor: an overview of drug design strategies.

    PubMed

    Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent

    2016-07-01

    Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.

  15. Mutation-selection equilibrium in games with multiple strategies.

    PubMed

    Antal, Tibor; Traulsen, Arne; Ohtsuki, Hisashi; Tarnita, Corina E; Nowak, Martin A

    2009-06-21

    In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of nxn games in the limit of weak selection.

  16. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy.

    PubMed

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-30

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells.

  17. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy

    PubMed Central

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M.; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-01

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells. PMID:28134280

  18. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    PubMed

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  19. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

    NASA Astrophysics Data System (ADS)

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-01

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  20. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction.

    PubMed

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-23

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  1. Nanomedicine strategies for targeting skin inflammation.

    PubMed

    Abdel-Mottaleb, Mona Ma; Try, Celine; Pellequer, Yann; Lamprecht, Alf

    2014-08-01

    Topical treatment of skin diseases is an attractive strategy as it receives high acceptance from patients, resulting in higher compliance and therapeutic outcomes. Recently, the use of variable nanocarriers for dermal application has been widely explored, as they offer several advantages compared with conventional topical preparations, including higher skin penetration, controlled and targeted drug delivery and the achievement of higher therapeutic effects. This article will focus on skin inflammation or dermatitis as it is one of the most common skin problems, describing the different types and causes of dermatitis, as well as the typical treatment regimens. The potential use of nanocarriers for targeting skin inflammation and the achievement of higher therapeutic effects using nanotechnology will be explored.

  2. Drug-targeting strategies in cancer therapy.

    PubMed

    Huang, P S; Oliff, A

    2001-02-01

    Genetic changes in cell-cycle, apoptotic, and survival pathways cause tumorigenesis, leading to significant phenotypic changes in transformed cells. These changes in the tumor environment - elevated expression of surface proteases, increased angiogenesis and glucuronidase activity - can be taken advantage of to improve the therapeutic index of existing cancer therapies. Targeting cytotoxics to tumor cells by enzymatic activation is a promising strategy for improving chemotherapeutics.

  3. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    PubMed

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  4. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies

    PubMed Central

    Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.

    2016-01-01

    ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478

  5. Considerations for biomarker-targeted intervention strategies for tuberculosis disease prevention.

    PubMed

    Fiore-Gartland, Andrew; Carpp, Lindsay N; Naidoo, Kogieleum; Thompson, Ethan; Zak, Daniel E; Self, Steve; Churchyard, Gavin; Walzl, Gerhard; Penn-Nicholson, Adam; Scriba, Thomas J; Hatherill, Mark

    2018-03-01

    Current diagnostic tests for Mycobacterium tuberculosis (MTB) infection have low prognostic specificity for identifying individuals who will develop tuberculosis (TB) disease, making mass preventive therapy strategies targeting all MTB-infected individuals impractical in high-burden TB countries. Here we discuss general considerations for a risk-targeted test-and-treat strategy based on a highly specific transcriptomic biomarker that can identify individuals who are most likely to progress to active TB disease as well as individuals with TB disease who have not yet presented for medical care. Such risk-targeted strategies may offer a rapid, ethical and cost-effective path towards decreasing the burden of TB disease and interrupting transmission and would also be critical to achieving TB elimination in countries nearing elimination. We also discuss design considerations for a Correlate of Risk Targeted Intervention Study (CORTIS), which could provide proof-of-concept for the strategy. One such study in South Africa is currently enrolling 1500 high-risk and 1700 low-risk individuals, as defined by biomarker status, and is randomizing high-risk participants to TB preventive therapy or standard of care treatment. All participants are monitored for progression to active TB with primary objectives to assess efficacy of the treatment and performance of the biomarker. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Effective motion planning strategy for space robot capturing targets under consideration of the berth position

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Jinguo

    2018-07-01

    Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.

  7. THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSOQUASAR TARGETING CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOVY, J.; Sheldon, E.; Hennawi, J.F.

    2011-03-10

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 {approx}< z {approx}< 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient,more » and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 {le} z {le} 3.5), and high-redshift (z > 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg{sup 2} of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.« less

  8. Anti-tumour strategies aiming to target tumour-associated macrophages

    PubMed Central

    Tang, Xiaoqiang; Mo, Chunfen; Wang, Yongsheng; Wei, Dandan; Xiao, Hengyi

    2013-01-01

    Tumour-associated macrophages (TAMs) represent a predominant population of inflammatory cells that present in solid tumours. TAMs are mostly characterized as alternatively activated M2-like macrophages and are known to orchestrate nearly all stages of tumour progression. Experimental investigations indicate that TAMs contribute to drug-resistance and radio-protective effects, and clinical evidence shows that an elevated number of TAMs and their M2 profile are correlated with therapy failure and poor prognosis in cancer patients. Recently, many studies on TAM-targeted strategies have made significant progress and some pilot works have achieved encouraging results. Among these, connections between some anti-tumour drugs and their influence on TAMs have been suggested. In this review, we will summarize recent advances in TAM-targeted strategies for tumour therapy. Based on the proposed mechanisms, those strategies are grouped into four categories: (i) inhibiting macrophage recruitment; (ii) suppressing TAM survival; (iii) enhancing M1-like tumoricidal activity of TAMs; (iv) blocking M2-like tumour-promoting activity of TAMs. It is desired that further attention be drawn to this research field and more effort be made to promote TAM-targeted tumour therapy. PMID:23113570

  9. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  10. Selecting decision strategies: the differential role of affect.

    PubMed

    Scheibehenne, Benjamin; von Helversen, Bettina

    2015-01-01

    Many theories on cognition assume that people adapt their decision strategies depending on the situation they face. To test if and how affect guides the selection of decision strategies, we conducted an online study (N = 166), where different mood states were induced through video clips. Results indicate that mood influenced the use of decision strategies. Negative mood, in particular anger, facilitated the use of non-compensatory strategies, whereas positive mood promoted compensatory decision rules. These results are in line with the idea that positive mood broadens the focus of attention and thus increases the use of compensatory decision strategies that take many pieces of information into account, whereas negative mood narrows the focus of attention and thus fosters non-compensatory strategies that rely on a selective use of information. The results further indicate that gaining a deeper theoretical understanding of the cognitive mechanisms that govern decision processes requires taking emotions into account.

  11. Comparison between Exclusive and Selective Drug-Eluting Stent Strategies in Treating Patients with Multivessel Coronary Artery Disease.

    PubMed

    Tung, Ying-Chang; Hsiao, Ping-Gune; Hsu, Lung-An; Kuo, Chi-Tai; Chang, Chi-Jen

    2014-05-01

    The expanded usage of drug-eluting stents (DES) in treating patients with multivessel coronary artery disease (CAD) may sometimes be limited in real-world practice due to cost concerns. We compared the clinical outcomes of exclusive and selective DES use in treating patients with multivessel CAD. From November 2004 to December 2011, 110 patients with multivessel CAD who received four or more stents were enrolled into this study, and divided into two groups according to the DES strategy employed: exclusive DES (n = 52), or selective DES (n = 58). In the selective DES group, DES was reserved for complex lesions only, such that the incidence and predictors of clinical events were assessed. At a mean follow-up of 41.4 ± 26.5 months, there were no significant differences between the two strategies in terms of baseline characteristics, all-cause mortality (exclusive vs. selective: 1.9% vs. 6.9%, p = 0.21), cardiac death (1.9% vs. 1.7%, p = 0.94) and nonfatal myocardial infarction (3.8% vs. 5.2%, p = 0.74). Despite the presence of more ostial lesions in the exclusive DES group, there was a trend such that major adverse cardiac events (MACE) and target lesion revascularization (TLR) rates were higher in the selective DES group (MACE: 17.3% vs. 31%, p = 0.16; TLR: 11.5% vs. 24.1%, p = 0.08). The higher MACE rate in the selective DES group was mainly driven by a higher target vessel revascularization (TVR) rate (15.4% vs. 29.3%, p = 0.08). In the exclusive DES group, SYNTAX score was an independent predictor of MACE [Haxard ratio (HR): 1.09, 95% confidence internal (CI): 1.02-1.16, p = 0.01] and TVR (HR 1.08, 95% CI 1.01-1.15, p = 0.04). Compared to the exclusive DES strategy, the selective DES strategy with reservation of DES for complex lesions is associated with numerically higher, but not statistically significant, rates of MACE and all-cause mortality in this small group of patients with multivessel CAD receiving four or more stents. Bare metal stent; Drug

  12. Comparison between Exclusive and Selective Drug-Eluting Stent Strategies in Treating Patients with Multivessel Coronary Artery Disease

    PubMed Central

    Tung, Ying-Chang; Hsiao, Ping-Gune; Hsu, Lung-An; Kuo, Chi-Tai; Chang, Chi-Jen

    2014-01-01

    Background The expanded usage of drug-eluting stents (DES) in treating patients with multivessel coronary artery disease (CAD) may sometimes be limited in real-world practice due to cost concerns. We compared the clinical outcomes of exclusive and selective DES use in treating patients with multivessel CAD. Methods From November 2004 to December 2011, 110 patients with multivessel CAD who received four or more stents were enrolled into this study, and divided into two groups according to the DES strategy employed: exclusive DES (n = 52), or selective DES (n = 58). In the selective DES group, DES was reserved for complex lesions only, such that the incidence and predictors of clinical events were assessed. Results At a mean follow-up of 41.4 ± 26.5 months, there were no significant differences between the two strategies in terms of baseline characteristics, all-cause mortality (exclusive vs. selective: 1.9% vs. 6.9%, p = 0.21), cardiac death (1.9% vs. 1.7%, p = 0.94) and nonfatal myocardial infarction (3.8% vs. 5.2%, p = 0.74). Despite the presence of more ostial lesions in the exclusive DES group, there was a trend such that major adverse cardiac events (MACE) and target lesion revascularization (TLR) rates were higher in the selective DES group (MACE: 17.3% vs. 31%, p = 0.16; TLR: 11.5% vs. 24.1%, p = 0.08). The higher MACE rate in the selective DES group was mainly driven by a higher target vessel revascularization (TVR) rate (15.4% vs. 29.3%, p = 0.08). In the exclusive DES group, SYNTAX score was an independent predictor of MACE [Haxard ratio (HR): 1.09, 95% confidence internal (CI): 1.02-1.16, p = 0.01] and TVR (HR 1.08, 95% CI 1.01-1.15, p = 0.04). Conclusions Compared to the exclusive DES strategy, the selective DES strategy with reservation of DES for complex lesions is associated with numerically higher, but not statistically significant, rates of MACE and all-cause mortality in this small group of patients with multivessel CAD receiving four or more

  13. Target Selection for the SDSS-III MARVELS Survey

    NASA Astrophysics Data System (ADS)

    Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-06-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.

  14. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles

    PubMed Central

    Vannucci, Luca; Falvo, Elisabetta; Fornara, Manuela; Di Micco, Patrizio; Benada, Oldrich; Krizan, Jiri; Svoboda, Jan; Hulikova-Capkova, Katarina; Morea, Veronica; Boffi, Alberto; Ceci, Pierpaolo

    2012-01-01

    Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment

  15. Structural Implications for Selective Targeting of PARPs.

    PubMed

    Steffen, Jamin D; Brody, Jonathan R; Armen, Roger S; Pascal, John M

    2013-12-20

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed "synthetic lethality." In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients.

  16. Structural Implications for Selective Targeting of PARPs

    PubMed Central

    Steffen, Jamin D.; Brody, Jonathan R.; Armen, Roger S.; Pascal, John M.

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD+ as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed “synthetic lethality.” In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients. PMID:24392349

  17. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    NASA Astrophysics Data System (ADS)

    Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

    2013-06-01

    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

  18. Learning to choose: Cognitive aging and strategy selection learning in decision making.

    PubMed

    Mata, Rui; von Helversen, Bettina; Rieskamp, Jörg

    2010-06-01

    Decision makers often have to learn from experience. In these situations, people must use the available feedback to select the appropriate decision strategy. How does the ability to select decision strategies on the basis of experience change with age? We examined younger and older adults' strategy selection learning in a probabilistic inference task using a computational model of strategy selection learning. Older adults showed poorer decision performance compared with younger adults. In particular, older adults performed poorly in an environment favoring the use of a more cognitively demanding strategy. The results suggest that the impact of cognitive aging on strategy selection learning depends on the structure of the decision environment. (c) 2010 APA, all rights reserved

  19. No evidence for positive selection at two potential targets for malaria transmission-blocking vaccines in Anopheles gambiae s.s.

    PubMed

    Crawford, Jacob E; Rottschaefer, Susan M; Coulibaly, Boubacar; Sacko, Madjou; Niaré, Oumou; Riehle, Michelle M; Traore, Sékou F; Vernick, Kenneth D; Lazzaro, Brian P

    2013-06-01

    Human malaria causes nearly a million deaths in sub-Saharan Africa each year. The evolution of drug-resistance in the parasite and insecticide resistance in the mosquito vector has complicated control measures and made the need for new control strategies more urgent. Anopheles gambiae s.s. is one of the primary vectors of human malaria in Africa, and parasite-transmission-blocking vaccines targeting Anopheles proteins have been proposed as a possible strategy to control the spread of the disease. However, the success of these hypothetical technologies would depend on the successful ability to broadly target mosquito populations that may be genetically heterogeneous. Understanding the evolutionary pressures shaping genetic variation among candidate target molecules offers a first step towards evaluating the prospects of successfully deploying such technologies. We studied the population genetics of genes encoding two candidate target proteins, the salivary gland protein saglin and the basal lamina structural protein laminin, in wild populations of the M and S molecular forms of A. gambiae in Mali. Through analysis of intraspecific genetic variation and interspecific comparisons, we found no evidence of positive natural selection at the genes encoding these proteins. On the contrary, we found evidence for particularly strong purifying selection at the laminin gene. These results provide insight into the patterns of genetic diversity of saglin and laminin, and we discuss these findings in relation to the potential development of these molecules as vaccine targets. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.

    PubMed

    Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj

    2017-11-01

    Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.

  1. Evolution of egg target size: an analysis of selection on correlated characters.

    PubMed

    Podolsky, R D

    2001-12-01

    In broadcast-spawning marine organisms, chronic sperm limitation should select for traits that improve chances of sperm-egg contact. One mechanism may involve increasing the size of the physical or chemical target for sperm. However, models of fertilization kinetics predict that increasing egg size can reduce net zygote production due to an associated decline in fecundity. An alternate method for increasing physical target size is through addition of energetically inexpensive external structures, such as the jelly coats typical of eggs in species from several phyla. In selection experiments on eggs of the echinoid Dendraster excentricus, in which sperm was used as the agent of selection, eggs with larger overall targets were favored in fertilization. Actual shifts in target size following selection matched quantitative predictions of a model that assumed fertilization was proportional to target size. Jelly volume and ovum volume, two characters that contribute to target size, were correlated both within and among females. A cross-sectional analysis of selection partitioned the independent effects of these characters on fertilization success and showed that they experience similar direct selection pressures. Coupled with data on relative organic costs of the two materials, these results suggest that, under conditions where fertilization is limited by egg target size, selection should favor investment in low-cost accessory structures and may have a relatively weak effect on the evolution of ovum size.

  2. Effects-based strategy development through center of gravity and target system analysis

    NASA Astrophysics Data System (ADS)

    White, Christopher M.; Prendergast, Michael; Pioch, Nicholas; Jones, Eric K.; Graham, Stephen

    2003-09-01

    This paper describes an approach to effects-based planning in which a strategic-theater-level mission is refined into operational-level and ultimately tactical-level tasks and desired effects, informed by models of the expected enemy response at each level of abstraction. We describe a strategy development system that implements this approach and supports human-in-the-loop development of an effects-based plan. This system consists of plan authoring tools tightly integrated with a suite of center of gravity (COG) and target system analysis tools. A human planner employs the plan authoring tools to develop a hierarchy of tasks and desired effects. Upon invocation, the target system analysis tools use reduced-order models of enemy centers of gravity to select appropriate target set options for the achievement of desired effects, together with associated indicators for each option. The COG analysis tools also provide explicit models of the causal mechanisms linking tasks and desired effects to one another, and suggest appropriate observable indicators to guide ISR planning, execution monitoring, and campaign assessment. We are currently implementing the system described here as part of the AFRL-sponsored Effects Based Operations program.

  3. Prodrug Strategy for PSMA-targeted Delivery of TGX-221 to Prostate Cancer Cells

    PubMed Central

    Zhao, Yunqi; Duan, Shaofeng; Zeng, Xing; Liu, Chunjing; Davies, Neal M.; Li, Benyi; Forrest, M. Laird

    2013-01-01

    TGX-221 is a potent, selective, and cell membrane permeable inhibitor of the PI3K p110β catalytic subunit. Recent studies showed that TGX-221 has anti-proliferative activity against PTEN-deficient tumor cell lines including prostate cancers. The objective of this study was to develop an encapsulation system for parenterally delivering TGX-221 to the target tissue through a prostate-specific membrane aptamer (PSMAa10) with little or no side effects. In this study, PEG-PCL micelles were formulated to encapsulate the drug, and a prodrug strategy was pursued to improve the stability of the carrier system. Fluorescence imaging studies demonstrated that the cellular uptake of both drug and nanoparticles were significantly improved by targeted micelles in a PSMA positive cell line. The area under the plasma concentration time curve of the micelle formulation in nude mice was 2.27-fold greater than the naked drug, and the drug clearance rate was 17.5-fold slower. These findings suggest a novel formulation approach for improving site-specific drug delivery of a molecular-targeted prostate cancer treatment. PMID:22494444

  4. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    PubMed

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  6. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    PubMed

    Gopal, Murali; Gupta, Alka

    2016-01-01

    " No plant is an island too …" Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the 'plant microbiome,' form the holobiome which is now considered as unit of selection: 'the holobiont.' The 'plant microbiome' not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom-up approach to co-propagate the co-evolved, the plant along with the target microbiome, through - (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer

  7. Covalent inhibitors: an opportunity for rational target selectivity.

    PubMed

    Lagoutte, Roman; Patouret, Remi; Winssinger, Nicolas

    2017-08-01

    There is a resurging interest in compounds that engage their target through covalent interactions. Cysteine's thiol is endowed with enhanced reactivity, making it the nucleophile of choice for covalent engagement with a ligand aligning an electrophilic trap with a cysteine residue in a target of interest. The paucity of cysteine in the proteome coupled to the fact that closely related proteins do not necessarily share a given cysteine residue enable a level of unprecedented rational target selectivity. The recent demonstration that a lysine's amine can also be engaged covalently with a mild electrophile extends the potential of covalent inhibitors. The growing database of protein structures facilitates the discovery of covalent inhibitors while the advent of proteomic technologies enables a finer resolution in the selectivity of covalently engaged proteins. Here, we discuss recent examples of discovery and design of covalent inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Neural correlates of target selection for reaching movements in superior colliculus

    PubMed Central

    McPeek, Robert M.

    2014-01-01

    We recently demonstrated that inactivation of the primate superior colliculus (SC) causes a deficit in target selection for arm-reaching movements when the reach target is located in the inactivated field (Song JH, Rafal RD, McPeek RM. Proc Natl Acad Sci USA 108: E1433–E1440, 2011). This is consistent with the notion that the SC is part of a general-purpose target selection network beyond eye movements. To understand better the role of SC activity in reach target selection, we examined how individual SC neurons in the intermediate layers discriminate a reach target from distractors. Monkeys reached to touch a color oddball target among distractors while maintaining fixation. We found that many SC neurons robustly discriminate the goal of the reaching movement before the onset of the reach even though no saccade is made. To identify these cells in the context of conventional SC cell classification schemes, we also recorded visual, delay-period, and saccade-related responses in a delayed saccade task. On average, SC cells that discriminated the reach target from distractors showed significantly higher visual and delay-period activity than nondiscriminating cells, but there was no significant difference in saccade-related activity. Whereas a majority of SC neurons that discriminated the reach target showed significant delay-period activity, all nondiscriminating cells lacked such activity. We also found that some cells without delay-period activity did discriminate the reach target from distractors. We conclude that the majority of intermediate-layer SC cells discriminate a reach target from distractors, consistent with the idea that the SC contains a priority map used for effector-independent target selection. PMID:25505107

  9. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications.

    PubMed

    D'Angelo, Sara; Staquicini, Fernanda I; Ferrara, Fortunato; Staquicini, Daniela I; Sharma, Geetanjali; Tarleton, Christy A; Nguyen, Huynh; Naranjo, Leslie A; Sidman, Richard L; Arap, Wadih; Bradbury, Andrew Rm; Pasqualini, Renata

    2018-05-03

    We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.

  10. The Target Selective Neural Response — Similarity, Ambiguity, and Learning Effects

    PubMed Central

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M.

    2008-01-01

    A network of frontal and parietal brain regions is commonly recruited during tasks that require the deliberate ‘top-down’ control of thought and action. Previously, using simple target detection, we have demonstrated that within this frontoparietal network, the right ventrolateral prefrontal cortex (VLPFC) in particular is sensitive to the presentation of target objects. Here, we use a range of target/non-target morphs to plot the target selective response within distinct frontoparietal sub-regions in greater detail. The increased resolution allows us to examine the extent to which different cognitive factors can predict the blood oxygenation level dependent (BOLD) response to targets. Our results reveal that both probability of positive identification (similarity to target) and proximity to the 50% decision boundary (ambiguity) are significant predictors of BOLD signal change, particularly in the right VLPFC. Furthermore, the profile of target related signal change is not static, with the degree of selectivity increasing as the task becomes familiar. These findings demonstrate that frontoparietal sub-regions are recruited under increased cognitive demand and that when recruited, they adapt, using both fast and slow mechanisms, to selectively respond to those items that are of the most relevance to current intentions. PMID:18575585

  11. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications

    PubMed Central

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications. PMID:23412554

  12. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications.

    PubMed

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.

  13. Monitoring injury reporting in selected Australian media: a potential advocacy strategy?

    PubMed

    Stoneham, Melissa; Boss, Andrea; Daube, Mike

    2013-04-01

    This review of injury articles describes how selected primary print media sources in Australia report injury events and explores how this may impact on public perception of the injury risk and the opportunities it may present to health professionals. Media articles specific to injury, compiled by the Public Health Advocacy Institute of Western Australia (PHAIWA) through their MediaWatch service during 2011, were collated and analysed. Articles were gathered from The West Australian, The Australian and The Sunday Times newspapers and ABC Online. Each article was categorised into injury topics and target groups, and preventive strategies were identified. Of the 546 articles that contained injury as a key word, 424 articles were used for the present study. The majority of articles related to community-based injuries (65%) and the most frequent reported injury was violence and assault. The results also indicate that although there is regular media reporting on injury issues, only one-fifth of reports discuss possible preventive measures. Selected Australian newspapers and the ABC Online are important and low-cost sources of injury-related information for the general public and can impact how the public perceives injury. It is important for public health professionals to embrace media advocacy strategies to assist in influencing and setting local public policy. So what? Public attitudes and understanding of issues are influenced by media coverage. Media monitoring is one tool to track what media sources are reporting about public health issues, the industry and stakeholders. Influencing the quantity and quality of media coverage is critical to advancing healthy public policy, particularly when advocating for prevention strategies to be reported and acted upon. Advocacy is an important health promotion strategy; it is therefore important for health professionals to understand media advocacy and position public health issues as societal issues with policy solutions.

  14. A Potent, Imaging Adenoviral Vector Driven by the Cancer-selective Mucin-1 Promoter That Targets Breast Cancer Metastasis

    PubMed Central

    Huyn, Steven T.; Burton, Jeremy B.; Sato, Makoto; Carey, Michael; Gambhir, Sanjiv S.; Wu, Lily

    2009-01-01

    Purpose With breast cancer, early detection and proper staging are critical, and will often influence both the treatment regimen and the therapeutic outcome for those affected with this disease. Improvements in these areas will play a profound role in reducing mortality from breast cancer. Experimental Design In this work we developed a breast cancer – targeted serotype 5 adenoviral vector, utilizing the tumor-specific mucin-1 promoter in combination with the two-step transcriptional amplification system, a system used to augment the activity of weak tissue – specific promoters. Results We showed the strong specificity of this tumor-selective adenovirus to express the luciferase optical imaging gene, leading to diagnostic signals that enabled detection of sentinel lymph node metastasis of breast cancer. Furthermore, we were able to target hepatic metastases following systemic administration of this mucin-1 selective virus. Conclusions Collectively, we showed that the amplified mucin-1 promoter – driven vector is able to deliver to and selectively express a desirable transgene in metastatic lesions of breast tumors. This work has strong clinical relevance to current diagnostic staging approaches, and could add to targeted therapeutic strategies to advance the fight against breast cancer. PMID:19366829

  15. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    PubMed

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular si

  16. Highly selective luminescent nanostructures for mitochondrial imaging and targeting

    NASA Astrophysics Data System (ADS)

    Fanizza, E.; Iacobazzi, R. M.; Laquintana, V.; Valente, G.; Caliandro, G.; Striccoli, M.; Agostiano, A.; Cutrignelli, A.; Lopedota, A.; Curri, M. L.; Franco, M.; Depalo, N.; Denora, N.

    2016-02-01

    Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino functionalized luminescent silica coated QD nanoparticles (QD@SiO2 NPs) provides a versatile nanoplatform to anchor a potent and selective TSPO ligand, characterized by a 2-phenyl-imidazo[1,2-a]pyridine acetamide structure along with a derivatizable carboxylic end group, useful to conjugate the TSPO ligand and achieve TSPO-QD@SiO2 NPs by means of a covalent amide bond. The colloidal stability and optical properties of the proposed nanomaterials are comprehensively investigated and their potential as mitochondrial imaging agents is fully assessed. Sub-cellular fractionation, together with confocal laser scanning fluorescence microscopy and co-localization analysis of targeted TSPO-QD@SiO2 NPs in C6 glioma cells overexpressing the TSPO, proves the great potential of these multifunctional nanosystems as in vitro selective mitochondrial imaging agents.Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino

  17. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    NASA Astrophysics Data System (ADS)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  18. Stakeholder analysis and mapping as targeted communication strategy.

    PubMed

    Shirey, Maria R

    2012-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author highlights the importance of stakeholder theory and discusses how to apply the theory to conduct a stakeholder analysis. This article also provides an explanation of how to use related stakeholder mapping techniques with targeted communication strategies.

  19. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model

    PubMed Central

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103

  20. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.

    PubMed

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.

  1. Targeting the Binding Interface on a Shared Receptor Subunit of a Cytokine Family Enables the Inhibition of Multiple Member Cytokines with Selectable Target Spectrum*

    PubMed Central

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-01-01

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases. PMID:26183780

  2. Strategy selection as rational metareasoning.

    PubMed

    Lieder, Falk; Griffiths, Thomas L

    2017-11-01

    Many contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question of how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature. According to our model people learn to efficiently choose the strategy with the best cost-benefit tradeoff by learning a predictive model of each strategy's performance. We found that our model can provide a unifying explanation for classic findings from domains ranging from decision-making to arithmetic by capturing the variability of people's strategy choices, their dependence on task and context, and their development over time. Systematic model comparisons supported our theory, and 4 new experiments confirmed its distinctive predictions. Our findings suggest that people gradually learn to make increasingly more rational use of fallible heuristics. This perspective reconciles the 2 poles of the debate about human rationality by integrating heuristics and biases with learning and rationality. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting

    PubMed Central

    Wang, Qi; Heizer, Esley; Rosa, Bruce A.; Wildman, Scott A.; Janetka, James W.; Mitreva, Makedonka

    2016-01-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3,000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite’s protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented that illustrate the close proximity of the indel to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. The study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. PMID:26829384

  4. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting.

    PubMed

    Wang, Qi; Heizer, Esley; Rosa, Bruce A; Wildman, Scott A; Janetka, James W; Mitreva, Makedonka

    2016-04-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Strategies for nest-site selection by king eiders

    USGS Publications Warehouse

    Bentzen, R.L.; Powell, A.N.; Suydam, R.S.

    2009-01-01

    Nest site selection is a critical component of reproduction and has presumably evolved in relation to predation, local resources, and microclimate. We investigated nest-site choice by king eiders (Somateria spectabilis) on the coastal plain of northern Alaska, USA, 2003-2005. We hypothesized that nest-site selection is driven by predator avoidance and that a variety of strategies including concealment, seclusion, and conspecific or inter-specific nest defense might lead to improved nesting success. We systematically searched wetland basins for king eider nests and measured habitat and social variables at nests (n = 212) and random locations (n = 493). King eiders made use of both secluded and concealed breeding strategies; logistic regression models revealed that females selected nests close to water, on islands, and in areas with high willow (Salix spp.) cover but did not select sites near conspecific or glaucous gull (Larus hyperboreus) nests. The most effective nest-placement strategy may vary depending on density and types of nest predators; seclusion is likely a mammalian-predator avoidance tactic whereas concealment may provide protection from avian predators. We recommend that managers in northern Alaska attempt to maintain wetland basins with islands and complex shorelines to provide potential nest sites in the vicinity of water. ?? The Wildlife Society.

  6. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    NASA Astrophysics Data System (ADS)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  7. Strategy Guideline. Proper Water Heater Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, M.; Springer, D.; German, A.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  8. Strategy Guideline: Proper Water Heater Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, M.; Springer, D.; German, A.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  9. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the

  10. Effects of Mode of Target Task Selection on Learning about Plants in a Mobile Learning Environment: Effortful Manual Selection versus Effortless QR-Code Selection

    ERIC Educational Resources Information Center

    Gao, Yuan; Liu, Tzu-Chien; Paas, Fred

    2016-01-01

    This study compared the effects of effortless selection of target plants using quick respond (QR) code technology to effortful manual search and selection of target plants on learning about plants in a mobile device supported learning environment. In addition, it was investigated whether the effectiveness of the 2 selection methods was…

  11. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers. Copyright © 2014. Published by

  12. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2015-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  13. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2016-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a "Color-Enhanced" sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  14. Target-object integration, attention distribution, and object orientation interactively modulate object-based selection.

    PubMed

    Al-Janabi, Shahd; Greenberg, Adam S

    2016-10-01

    The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.

  15. Comparison of provider and plan-based targeting strategies for disease management.

    PubMed

    Annis, Ann M; Holtrop, Jodi Summers; Tao, Min; Chang, Hsiu-Ching; Luo, Zhehui

    2015-05-01

    We aimed to describe and contrast the targeting methods and engagement outcomes for health plan-delivered disease management with those of a provider-delivered care management program. Health plan epidemiologists partnered with university health services researchers to conduct a quasi-experimental, mixed-methods study of a 2-year pilot. We used semi-structured interviews to assess the characteristics of program-targeting strategies, and calculated target and engagement rates from clinical encounter data. Five physician organizations (POs) with 51 participating practices implemented care management. Health plan member lists were sent monthly to the practices to accept patients, and then the practices sent back data reports regarding targeting and engagement in care management. Among patients accepted by the POs, we compared those who were targeted and engaged by POs with those who met health plan targeting criteria. The health plan's targeting process combined claims algorithms and employer group preferences to identify candidates for disease management; on the other hand, several different factors influenced PO practices' targeting approaches, including clinical and personal knowledge of the patients, health assessment information, and availability of disease-relevant programs. Practices targeted a higher percentage of patients for care management than the health plan (38% vs 16%), where only 7% of these patients met the targeting criteria of both. Practices engaged a higher percentage of their targeted patients than the health plan (50% vs 13%). The health plan's claims-driven targeting approach and the clinically based strategies of practices both provide advantages; an optimal model may be to combine the strengths of each approach to maximize benefits in care management.

  16. [Academic burnout and selection-optimization-compensation strategy in medical students].

    PubMed

    Chun, Kyung Hee; Park, Young Soon; Lee, Young Hwan; Kim, Seong Yong

    2014-12-01

    This study was conducted to examine the relationship between academic demand, academic burnout, and the selection-optimization-compensation (SOC) strategy in medical students. A total of 317 students at Yeungnam University, comprising 90 premedical course students, 114 medical course students, and 113 graduate course students, completed a survey that addressed the factors of academic burnout and the selection-optimization-compensation strategy. We analyzed variances of burnout and SOC strategy use by group, and stepwise multiple regression analysis was conducted. There were significant differences in emotional exhaustion and cynicism between groups and year in school. In the SOC strategy, there were no significant differences between groups except for elective selection. The second-year medical and graduate students experienced significantly greater exhaustion (p<0.001), and first-year premedical students experienced significantly higher cynicism (p<0.001). By multiple regression analysis, subfactors of academic burnout and emotional exhaustion were significantly affected by academic demand (p<0.001), and 46% of the variance was explained. Cynicism was significantly affected by elective selection (p<0.05), and inefficacy was significantly influenced by optimization (p<0.001). To improve adaptation, prescriptive strategies and preventive support should be implemented with regard to academic burnout in medical school. Longitudinal and qualitative studies on burnout must be conducted.

  17. Selection and trajectory design to mission secondary targets

    NASA Astrophysics Data System (ADS)

    Victorino Sarli, Bruno; Kawakatsu, Yasuhiro

    2017-02-01

    Recently, with new trajectory design techniques and use of low-thrust propulsion systems, missions have become more efficient and cheaper with respect to propellant. As a way to increase the mission's value and scientific return, secondary targets close to the main trajectory are often added with a small change in the transfer trajectory. As a result of their large number, importance and facility to perform a flyby, asteroids are commonly used as such targets. This work uses the Primer Vector theory to define the direction and magnitude of the thrust for a minimum fuel consumption problem. The design of a low-thrust trajectory with a midcourse asteroid flyby is not only challenging for the low-thrust problem solution, but also with respect to the selection of a target and its flyby point. Currently more than 700,000 minor bodies have been identified, which generates a very large number of possible flyby points. This work uses a combination of reachability, reference orbit, and linear theory to select appropriate candidates, drastically reducing the simulation time, to be later included in the main trajectory and optimized. Two test cases are presented using the aforementioned selection process and optimization to add and design a secondary flyby to a mission with the primary objective of 3200 Phaethon flyby and 25143 Itokawa rendezvous.

  18. Dissecting patterns of preparatory activity in the frontal eye fields during pursuit target selection.

    PubMed

    Raghavan, Ramanujan T; Joshua, Mati

    2017-10-01

    We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions, and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity and was commensurate with a winner-take-all representation, signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role that the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move and suggest that structures outside the FEF augment its contributions to the target selection process. NEW & NOTEWORTHY We used the smooth eye movement pursuit system to link between patterns of preparatory activity in the frontal eye fields and movement during a target selection task. The dominant pattern was a ramping signal that did not discriminate between selection conditions and was linked, on trial-by-trial basis, to movement latency. A weaker pattern was composed of a constant signal that discriminated between selection conditions but was only weakly linked to the movement parameters. Copyright © 2017 the American

  19. An efficient strategy for cell-based antibody library selection using an integrated vector system.

    PubMed

    Yoon, Hyerim; Song, Jin Myung; Ryu, Chun Jeih; Kim, Yeon-Gu; Lee, Eun Kyo; Kang, Sunghyun; Kim, Sang Jick

    2012-09-18

    Cell panning of phage-displayed antibody library is a powerful tool for the development of therapeutic and imaging agents since disease-related cell surface proteins in native complex conformation can be directly targeted. Here, we employed a strategy taking advantage of an integrated vector system which allows rapid conversion of scFv-displaying phage into scFv-Fc format for efficient cell-based scFv library selection on a tetraspanin protein, CD9. A mouse scFv library constructed by using a phagemid vector, pDR-D1 was subjected to cell panning against stable CD9 transfectant, and the scFv repertoire from the enriched phage pool was directly transferred to a mammalian cassette vector, pDR-OriP-Fc1. The resulting constructs enabled transient expression of enough amounts of scFv-Fcs in HEK293E cells, and flow cytometric screening of binders for CD9 transfectant could be performed simply by using the culture supernatants. All three clones selected from the screening showed correct CD9-specificity. They could immunoprecipitate CD9 molecules out of the transfectant cell lysate and correctly stain endogenous CD9 expression on cancer cell membrane. Furthermore, competition assay with a known anti-CD9 monoclonal antibody (mAb) suggested that the binding epitopes of some of them overlap with that of the mAb which resides within the large extracellular loop of CD9. This study demonstrates that scFv-Fc from mammalian transient expression can be chosen as a reliable format for rapid screening and validation in cell-based scFv library selection, and the strategy described here will be applicable to efficient discovery of antibodies to diverse cell-surface targets.

  20. Wellness at work. Boost wellness center participation with target marketing strategies.

    PubMed

    DeMoranville, C W; Schoenbachler, D D; Przytulski, J

    1998-01-01

    By using target marketing strategies, corporate wellness programs can increase employee participation rates and tailor activities to meet employee needs. The authors examined this issue through a research survey that segmented a university's staff and employee population into three wellness program groups: High Participators, Moderate Participators, and Low Participators. Participators' views on the following issues were analyzed: health management programs, exercise programs, wellness center use inhibitors, wellness center use incentives, wellness center communications, and willingness to pay for the wellness center. The results identified unique lifestyle characteristics for each group that can help make target marketing strategies effective.

  1. 78 FR 14121 - Notice of Availability of Funds and Solicitation for Grant Applications for Strategies Targeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Solicitation for Grant Applications for Strategies Targeting Characteristics Common to Female Ex-Offenders... will be targeted to females, but must also be open to eligible male ex-offenders. Strategies Targeting Characteristics Common to Female Ex-Offenders grants [[Page 14122

  2. The n-by-T Target Discharge Strategy for Inpatient Units.

    PubMed

    Parikh, Pratik J; Ballester, Nicholas; Ramsey, Kylie; Kong, Nan; Pook, Nancy

    2017-07-01

    Ineffective inpatient discharge planning often causes discharge delays and upstream boarding. While an optimal discharge strategy that works across all units at a hospital is likely difficult to identify and implement, a strategy that provides a reasonable target to the discharge team appears feasible. We used observational and retrospective data from an inpatient trauma unit at a Level 2 trauma center in the Midwest US. Our proposed novel n-by-T strategy-discharge n patients by the Tth hour-was evaluated using a validated simulation model. Outcome measures included 2 measures: time-based (mean discharge completion and upstream boarding times) and capacity-based (increase in annual inpatient and upstream bed hours). Data from the pilot implementation of a 2-by-12 strategy at the unit was obtained and analyzed. The model suggested that the 1-by-T and 2-by-T strategies could advance the mean completion times by over 1.38 and 2.72 h, respectively (for 10 AM ≤ T ≤ noon, occupancy rate = 85%); the corresponding mean boarding time reductions were nearly 11% and 15%. These strategies could increase the availability of annual inpatient and upstream bed hours by at least 2,469 and 500, respectively. At 100% occupancy rate, the hospital-favored 2-by-12 strategy reduced the mean boarding time by 26.1%. A pilot implementation of the 2-by-12 strategy at the unit corroborated with the model findings: a 1.98-h advancement in completion times (P<0.0001) and a 14.5% reduction in boarding times (P = 0.027). Target discharge strategies, such as the n-by-T, can help substantially reduce discharge lateness and upstream boarding, especially during high unit occupancy. To sustain implementation, necessary commitment from the unit staff and physicians is vital, and may require some training.

  3. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    PubMed

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  4. Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells

    PubMed Central

    Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish

    2014-01-01

    MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095

  5. Selective tuning of the right inferior frontal gyrus during target detection

    PubMed Central

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M.

    2010-01-01

    In the human brain, a network of frontal and parietal regions is commonly recruited during tasks that demand the deliberate, focused control of thought and action. Previously, using a simple target detection task, we reported striking differences in the selectivity of the BOLD response in anatomically distinct subregions of this network. In particular, it was observed that the right inferior frontal gyrus (IFG) followed a tightly tuned function, selectively responding only to the current target object. Here, we examine this functional specialization further, using adapted versions of our original task. Our results demonstrate that the response of the right IFG to targets is a strong and replicable phenomenon. It occurs under increased attentional load, when targets and distractors are equally frequent, and when controlling for inhibitory processes. These findings support the hypothesis that the right IFG responds selectively to those items that are of the most relevance to the currently intended task schema. PMID:19246331

  6. Non-psychotropic analgesic drugs from the endocannabinoid system: "magic bullet" or "multiple-target" strategies?

    PubMed

    Starowicz, Katarzyna; Di Marzo, Vincenzo

    2013-09-15

    The exploitation of preparations of Cannabis sativa to combat pain seems to date back to time immemorial, although their psychotropic effects, which are at the bases of their recreational use and limit their therapeutic use, are at least as ancient. Indeed, it has always been different to tease apart the unwanted central effects from the therapeutic benefits of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic component of cannabis. The discovery of the cannabinoid receptors and of their endogenous ligands, the endocannabinoids, which, unlike THC, play a pro-homeostatic function in a tissue- and time-selective manner, offered the opportunity to develop new analgesics from synthetic inhibitors of endocannabinoid inactivation. The advantages of this approach over direct activation of cannabinoid receptors as a therapeutic strategy against neuropathic and inflammatory pain are discussed here along with its potential complications. These latter have been such that clinical success has been achieved so far more rapidly with naturally occurring THC or endocannabinoid structural analogues acting at a plethora of cannabinoid-related and -unrelated molecular targets, than with selective inhibitors of endocannabinoid enzymatic hydrolysis, thus leading to revisit the potential usefulness of "multi-target" versus "magic bullet" compounds as new analgesics. © 2013 Elsevier B.V. All rights reserved.

  7. The control of attentional target selection in a colour/colour conjunction task.

    PubMed

    Berggren, Nick; Eimer, Martin

    2016-11-01

    To investigate the time course of attentional object selection processes in visual search tasks where targets are defined by a combination of features from the same dimension, we measured the N2pc component as an electrophysiological marker of attentional object selection during colour/colour conjunction search. In Experiment 1, participants searched for targets defined by a combination of two colours, while ignoring distractor objects that matched only one of these colours. Reliable N2pc components were triggered by targets and also by partially matching distractors, even when these distractors were accompanied by a target in the same display. The target N2pc was initially equal in size to the sum of the two N2pc components to the two different types of partially matching distractors and became superadditive from approximately 250 ms after search display onset. Experiment 2 demonstrated that the superadditivity of the target N2pc was not due to a selective disengagement of attention from task-irrelevant partially matching distractors. These results indicate that attention was initially deployed separately and in parallel to all target-matching colours, before attentional allocation processes became sensitive to the presence of both matching colours within the same object. They suggest that attention can be controlled simultaneously and independently by multiple features from the same dimension and that feature-guided attentional selection processes operate in parallel for different target-matching objects in the visual field.

  8. Inverse targeting —An effective immunization strategy

    NASA Astrophysics Data System (ADS)

    Schneider, C. M.; Mihaljev, T.; Herrmann, H. J.

    2012-05-01

    We propose a new method to immunize populations or computer networks against epidemics which is more efficient than any continuous immunization method considered before. The novelty of our method resides in the way of determining the immunization targets. First we identify those individuals or computers that contribute the least to the disease spreading measured through their contribution to the size of the largest connected cluster in the social or a computer network. The immunization process follows the list of identified individuals or computers in inverse order, immunizing first those which are most relevant for the epidemic spreading. We have applied our immunization strategy to several model networks and two real networks, the Internet and the collaboration network of high-energy physicists. We find that our new immunization strategy is in the case of model networks up to 14%, and for real networks up to 33% more efficient than immunizing dynamically the most connected nodes in a network. Our strategy is also numerically efficient and can therefore be applied to large systems.

  9. FOXP2 Targets Show Evidence of Positive Selection in European Populations

    PubMed Central

    Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C.; Fisher, Simon E.; Tyler-Smith, Chris

    2013-01-01

    Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. PMID:23602712

  10. Changing strategies for target therapy in gastric cancer.

    PubMed

    Lee, Suk-Young; Oh, Sang Cheul

    2016-01-21

    In spite of a worldwide decrease in the incidence of gastric cancer, this malignancy still remains one of the leading causes of cancer mortality. Great efforts have been made to improve treatment outcomes in patients with metastatic gastric cancer, and the introduction of trastuzumab has greatly improved the overall survival. The trastuzumab treatment took its first step in opening the era of molecular targeted therapy, however several issues still need to be resolved to increase the efficacy of targeted therapy. Firstly, many patients with metastatic gastric cancer who receive trastuzumab in combination with chemotherapeutic agents develop resistance to the targeted therapy. Secondly, many clinical trials testing novel molecular targeted agents with demonstrated efficacy in other malignancies have failed to show benefit in patients with metastatic gastric cancer, suggesting the importance of the selection of appropriate indications according to molecular characteristics in application of targeted agents. Herein, we review the molecular targeted agents currently approved and in use, and clinical trials in patients with metastatic gastric cancer, and demonstrate the limitations and future direction in treatment of advanced gastric cancer.

  11. Selective in vivo metabolic cell-labeling-mediated cancer targeting

    PubMed Central

    Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun

    2017-01-01

    Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414

  12. Point target detection utilizing super-resolution strategy for infrared scanning oversampling system

    NASA Astrophysics Data System (ADS)

    Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei

    2017-11-01

    To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.

  13. Input Control Processes in Rapid Serial Visual Presentations: Target Selection and Distractor Inhibition

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Watson, Derrick G.

    2006-01-01

    The attentional blink refers to the finding that the 2nd of 2 targets embedded in a stream of rapidly presented distractors is often missed. Whereas most theories of the attentional blink focus on limited-capacity processes that occur after target selection, the present work investigates the selection process itself. Identifying a target letter…

  14. Health information technology vendor selection strategies and total factor productivity.

    PubMed

    Ford, Eric W; Huerta, Timothy R; Menachemi, Nir; Thompson, Mark A; Yu, Feliciano

    2013-01-01

    The aim of this study was to compare health information technology (HIT) adoption strategies' relative performance on hospital-level productivity measures. The American Hospital Association's Annual Survey and Healthcare Information and Management Systems Society Analytics for fiscal years 2002 through 2007 were used for this study. A two-stage approach is employed. First, a Malmquist model is specified to calculate hospital-level productivity measures. A logistic regression model is then estimated to compare the three HIT adoption strategies' relative performance on the newly constructed productivity measures. The HIT vendor selection strategy impacts the amount of technological change required of an organization but does not appear to have either a positive or adverse impact on technical efficiency or total factor productivity. The higher levels in technological change experienced by hospitals using the best of breed and best of suite HIT vendor selection strategies may have a more direct impact on the organization early on in the process. However, these gains did not appear to translate into either increased technical efficiency or total factor productivity during the period studied. Over a longer period, one HIT vendor selection strategy may yet prove to be more effective at improving efficiency and productivity.

  15. Application of selection index calculations to determine selection strategies in genomic breeding programs.

    PubMed

    König, S; Swalve, H H

    2009-10-01

    The availability of genomic estimated breeding values (GEBV) allows for possible modifications to existing dairy cattle breeding programs. Selection index calculations including genomic and phenotypic observations as index sources were used to determine the optimal number of offspring per genotyped sire with a focus on functional traits and the design of cooperator herds, and to evaluate the importance of a central station test for genotyped bull dams. Evaluation criteria to compare different breeding strategies were correlations between index and aggregate genotype (r(TI)), and the relative selection response percentage (RSR) of an index without single nucleotide polymorphism information in relation to a single nucleotide polymorphism-based index. The number of required daughter records per sire to achieve a predefined r(TI) strongly depends on the accuracy of GEBV (r(mg)) and the heritability of the trait. For a desired r(TI) of 0.8, h(2) = 0.10, and r(mg) = 0.5, at least 57 additional daughters have to be included in the genetic evaluation. Daughter records of genotyped sires are not necessary for optimal scenarios where r(mg) is greater than or equal to r(TI). There still is a substantial need for phenotypic daughter records, especially for low-heritability functional traits and r(mg) < 0.7. Phenotypic records from genotyped potential bull dams have no relevance for increasing r(TI), even with a low value for r(mg) of 0.5. Hence, genomic breeding programs should focus on recording functional traits within progeny groups, preferably in cooperator herds. For low-heritability traits and with r(mg) > 0.7, the RSR of conventional breeding programs was only 10% of RSR from genomic breeding strategies. As shown in scenarios including 2 traits in the index as well as in the aggregate genotype, the availability of highly accurate GEBV for production traits and low-accuracy GEBV for functional traits increased the risk of widening the gap between selection responses in

  16. Structure coefficients and strategy selection in multiplayer games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2016-01-01

    Evolutionary processes based on two-player games such as the Prisoner's Dilemma or Snowdrift Game are abundant in evolutionary game theory. These processes, including those based on games with more than two strategies, have been studied extensively under the assumption that selection is weak. However, games involving more than two players have not received the same level of attention. To address this issue, and to relate two-player games to multiplayer games, we introduce a notion of reducibility for multiplayer games that captures what it means to break down a multiplayer game into a sequence of interactions with fewer players. We discuss the role of reducibility in structured populations, and we give examples of games that are irreducible in any population structure. Since the known conditions for strategy selection, otherwise known as [Formula: see text]-rules, have been established only for two-player games with multiple strategies and for multiplayer games with two strategies, we extend these rules to multiplayer games with many strategies to account for irreducible games that cannot be reduced to those simpler types of games. In particular, we show that the number of structure coefficients required for a symmetric game with [Formula: see text]-player interactions and [Formula: see text] strategies grows in [Formula: see text] like [Formula: see text]. Our results also cover a type of ecologically asymmetric game based on payoff values that are derived not only from the strategies of the players, but also from their spatial positions within the population.

  17. Gender, Strategy Selection, and Discussion Satisfaction in Interpersonal Conflict.

    ERIC Educational Resources Information Center

    Papa, Michael J.; Natalle, Elizabeth J.

    1989-01-01

    Examines gender-related similarities and differences regarding conflict strategies and satisfaction with conflict interaction in a corporate setting. Reports that gender significantly affected the selection of influence strategies: male-male dyads used assertiveness and reason consistently, while female-female dyads shifted from high levels of…

  18. Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target

    PubMed Central

    Goschy, Harriet; Müller, Hermann Joseph

    2013-01-01

    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience. PMID:23382820

  19. Contract Source Selection: An Analysis of Lowest Price Technically Acceptable and Tradeoff Strategies

    DTIC Science & Technology

    2016-06-15

    selection strategy is key to minimizing risk and ensuring best value for all stakeholders. On the basis of thorough market research , acquisition...administrative lead-time, Contractor Performance Assessment Reporting System ratings, and earned value management assessments) and source selection strategy ...Postgraduate School A. PURPOSE This research analyzes LPTA and tradeoff source selection strategies and contract outcomes to determine if a relationship

  20. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  1. FOXP2 targets show evidence of positive selection in European populations.

    PubMed

    Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C; Fisher, Simon E; Tyler-Smith, Chris

    2013-05-02

    Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Prevention of surgical resident attrition by a novel selection strategy.

    PubMed

    Kelz, Rachel R; Mullen, James L; Kaiser, Larry R; Pray, Lori A; Shea, Gregory P; Drebin, Jeff A; Wirtalla, Chris J; Morris, Jon B

    2010-09-01

    We modified the resident selection strategy in an attempt to reduce resident attrition (RA). Despite implementation of the Accreditation Council for Graduate Medical Education work rules, lifestyle and generational priorities have fostered a persistent and relatively high attrition rate for surgical trainees. An independent external review of residents who left the training program and a detailed analysis of the resident selection strategy were performed by an organizational management expert. Modifications implemented in 2005 (the intervention) included standardization of the screening and interview format. Applicants were required to submit a 500 words essay related to stress management, organizational skills, future aspirations, and prioritization abilities. Their responses formed the basis of an extended, personalized, and structured interview script. Candidate characteristics and RA were compared for the 5 years before and after the intervention, using Fisher exact test or chi2. Age, sex, birthplace, medical school ranking, step 1 score, and American Board of Surgey In-Training Examination performance were not significantly different between the selection strategy groups. Risk factors for RA included ABSITE performance and gender. Resident performance and subsequent RA were significantly affected by the resident selection strategy. RA was dramatically reduced following the intervention. A custom designed process to identify candidates most likely to succeed substantially improved resident retention in a demanding academic training program.

  3. Strategies that Target Leukocyte Traffic in IBD: Recent Developments

    PubMed Central

    Rivera-Nieves, Jesús

    2015-01-01

    Purpose of review We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of IBD. Recent Findings We discuss the most important findings of one published phase II trial that targeted the β7 integrin (Etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1, PF-00547659), a phase II targeting the chemokine IP-10 (CXCL10) in Crohn’s and a phase II trial that targeted the sphingosine-1-phosphate receptor-1 (S1P1): ozanimod in patients with ulcerative colitis (UC). Summary Targeting molecules involved in leukocyte traffic has recently become an effective and safe strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn’s. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin:immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules. PMID:26398681

  4. Gene-targeted Random Mutagenesis to Select Heterochromatin-destabilizing Proteasome Mutants in Fission Yeast.

    PubMed

    Seo, Hogyu David; Lee, Daeyoup

    2018-05-15

    Random mutagenesis of a target gene is commonly used to identify mutations that yield the desired phenotype. Of the methods that may be used to achieve random mutagenesis, error-prone PCR is a convenient and efficient strategy for generating a diverse pool of mutants (i.e., a mutant library). Error-prone PCR is the method of choice when a researcher seeks to mutate a pre-defined region, such as the coding region of a gene while leaving other genomic regions unaffected. After the mutant library is amplified by error-prone PCR, it must be cloned into a suitable plasmid. The size of the library generated by error-prone PCR is constrained by the efficiency of the cloning step. However, in the fission yeast, Schizosaccharomyces pombe, the cloning step can be replaced by the use of a highly efficient one-step fusion PCR to generate constructs for transformation. Mutants of desired phenotypes may then be selected using appropriate reporters. Here, we describe this strategy in detail, taking as an example, a reporter inserted at centromeric heterochromatin.

  5. A strategy for actualization of active targeting nanomedicine practically functioning in a living body.

    PubMed

    Lee, Kyoung Jin; Shin, Seol Hwa; Lee, Jae Hee; Ju, Eun Jin; Park, Yun-Yong; Hwang, Jung Jin; Suh, Young-Ah; Hong, Seung-Mo; Jang, Se Jin; Lee, Jung Shin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2017-10-01

    Designing nanocarriers with active targeting has been increasingly emphasized as for an ideal delivery mechanism of anti-cancer therapeutic agents, but the actualization has been constrained by lack of reliable strategy ultimately applicable. Here, we designed and verified a strategy to achieve active targeting nanomedicine that works in a living body, utilizing animal models bearing a patient's tumor tissue and subjected to the same treatments that would be used in the clinic. The concept for this strategy was that a novel peptide probe and its counterpart protein, which responded to a therapy, were identified, and then the inherent ability of the peptide to target the designated tumor protein was used for active targeting in vivo. An initial dose of ionizing radiation was locally delivered to the gastric cancer (GC) tumor of a patient-derived xenograft mouse model, and phage-displayed peptide library was intravenously injected. The peptides tightly bound to the tumor were recovered, and the counterpart protein was subsequently identified. Peptide-conjugated liposomal drug showed dramatically improved therapeutic efficacy and possibility of diagnostic imaging with radiation. These results strongly suggested the potential of our strategy to achieve in vivo functional active targeting and to be applied clinically for human cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    PubMed

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  7. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  8. Context-dependent sequential effects of target selection for action.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2013-07-11

    Humans exhibit variation in behavior from moment to moment even when performing a simple, repetitive task. Errors are typically followed by cautious responses, minimizing subsequent distractor interference. However, less is known about how variation in the execution of an ultimately correct response affects subsequent behavior. We asked participants to reach toward a uniquely colored target presented among distractors and created two categories to describe participants' responses in correct trials based on analyses of movement trajectories; partial errors referred to trials in which observers initially selected a nontarget for action before redirecting the movement and accurately pointing to the target, and direct movements referred to trials in which the target was directly selected for action. We found that latency to initiate a hand movement was shorter in trials following partial errors compared to trials following direct movements. Furthermore, when the target and distractor colors were repeated, movement time and reach movement curvature toward distractors were greater following partial errors compared to direct movements. Finally, when the colors were repeated, partial errors were more frequent than direct movements following partial-error trials, and direct movements were more frequent following direct-movement trials. The dependence of these latter effects on repeated-task context indicates the involvement of higher-level cognitive mechanisms in an integrated attention-action system in which execution of a partial-error or direct-movement response affects memory representations that bias performance in subsequent trials. Altogether, these results demonstrate that whether a nontarget is selected for action or not has a measurable impact on subsequent behavior.

  9. Selection strategies for newly registered blood donors in European countries

    PubMed Central

    Lieshout-Krikke, Ryanne W.; Domanovic, Dragoslav; de Kort, Wim; Mayr, Wolfgang; Liumbruno, Giancarlo M.; Pupella, Simonetta; Kurz, Johann; Knutson, Folke; MacLennan, Sheila; Folléa, Gilles

    2017-01-01

    Background Two selection strategies for newly-registered blood donors are available: a single-visit selection called the standard selection procedure (SSP), and a two-stage selection named predonation and donation screening (PDS). This study reviews the selection strategies for newly-registered donors currently applied in European countries. Material and methods We collected data on donor selection procedures, blood donation, laboratory screening and HIV, HCV and HBV positive donors/donations from 2010 to 2013 in 30 European countries by using questionnaires. We grouped the countries according to the applied selection strategy, and for each country, we calculated the 4-year prevalence of confirmed positive results indicating the presence of overall and recent HIV, HCV and HBV infections among first-time and repeat donations and among newly-registered donors. Results Most of the 24 countries (80%) apply the SSP strategy for selection of newly-registered donors. Twenty-two countries (73.3%) employ a nucleic acid amplification testing in addition to the mandatory serological screening. The survey confirms a higher overall prevalence of HIV, HCV and HBV infections among first-time donations and newly-registered donors than among repeat donations. In contrast, the prevalence of recently acquired HIV and HCV infections was lower among first-time donations and newly-registered donors than among repeat donations, but higher for recent HBV infections (6.7/105 vs 2.6/105 in the SSP setting and 4.3/105 vs 0.5/105 in one country using PDS). The relatively low numbers of infected donors selected by PDS impeded accurate assessment of the prevalence of recent infections in first-time donations. Discussion The data from European countries provide inconclusive evidence that applying PDS reduces the risk of donations being made in the diagnostic window of first-time donors. The impact of PDS on the risk of window-period donations and blood donor management needs further

  10. Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver.

    PubMed

    Guo, Lifang; Tian, Minggang; Feng, Ruiqing; Zhang, Ge; Zhang, Ruoyao; Li, Xuechen; Liu, Zhiqiang; He, Xiuquan; Sun, Jing Zhi; Yu, Xiaoqiang

    2018-04-04

    Lipid droplets (LDs) with unique interfacial architecture not only play crucial roles in protecting a cell from lipotoxicity and lipoapoptosis but also closely relate with many diseases such as fatty liver and diabetes. Thus, as one of the important applied biomaterials, fluorescent probes with ultrahigh selectivity for in situ and high-fidelity imaging of LDs in living cells and tissues are critical to elucidate relevant physiological and pathological events as well as detect related diseases. However, available probes only utilizing LDs' waterless neutral cores but ignoring the unique phospholipid monolayer interfaces exhibit low selectivity. They cannot differentiate neutral cores of LDs from intracellular other lipophilic microenvironments, which results in extensively cloud-like background noise and severely limited their bioapplications. Herein, to design LD probes with ultrahigh selectivity, the exceptional interfacial architecture of LDs is considered adequately and thus an interface-targeting strategy is proposed for the first time. According to the novel strategy, we have developed two amphipathic fluorescent probes (N-Cy and N-Py) by introducing different cations into a lipophilic fluorophore (nitrobenzoxadiazole (NBD)). Consequently, their cationic moiety precisely locates the interfaces through electrostatic interaction and simultaneously NBD entirely embeds into the waterless core via hydrophobic interaction. Thus, high-fidelity and background-free fluorescence imaging of LDs are expectably realized in living cells in situ. Moreover, LDs in turbid tissues like skeletal muscle slices have been clearly imaged (up to 82 μm depth) by a two-photon microscope. Importantly, using N-Cy, we not only intuitively monitored the variations of LDs in number, size, and morphology but also clearly revealed their abnormity in hepatic tissues resulting from fatty liver. Therefore, these unique probes provide excellent imaging tools for elucidating LD

  11. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    PubMed

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  12. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model

    PubMed Central

    Lineweaver, Charles H.; Davies, Paul C.W.; Vincent, Mark D.

    2014-01-01

    In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation. PMID:25043755

  13. Selection Strategies for Social Influence in the Threshold Model

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Szymanski, Boleslaw; Korniss, Gyorgy

    The ubiquity of online social networks makes the study of social influence extremely significant for its applications to marketing, politics and security. Maximizing the spread of influence by strategically selecting nodes as initiators of a new opinion or trend is a challenging problem. We study the performance of various strategies for selection of large fractions of initiators on a classical social influence model, the Threshold model (TM). Under the TM, a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. The strategies we study are of two kinds: strategies based solely on the initial network structure (Degree-rank, Dominating Sets, PageRank etc.) and strategies that take into account the change of the states of the nodes during the evolution of the cascade, e.g. the greedy algorithm. We find that the performance of these strategies depends largely on both the network structure properties, e.g. the assortativity, and the distribution of the thresholds assigned to the nodes. We conclude that the optimal strategy needs to combine the network specifics and the model specific parameters to identify the most influential spreaders. Supported in part by ARL NS-CTA, ARO, and ONR.

  14. The Strategy Selection Matrix--A Guide for Individualizing Instruction.

    ERIC Educational Resources Information Center

    Bell, Steven

    The Strategy Selection Matrix (SSM) is offered as a means for matching teaching technique to the individual special needs student. Three steps in the SSM are described: development of an intra-individual learning style profile based on 14 learning components; review of the individualizing teaching strategies (such as tutoring, continuous progress…

  15. Selecting multiple features delays perception, but only when targets are horizontally arranged.

    PubMed

    Lo, Shih-Yu

    2017-01-01

    Based on the finding that perception is lagged by attention split on multiple features (Lo et al., 2012), this study investigated how the feature-based lag effect interacts with the target spatial arrangement. Participants were presented with gratings the spatial frequencies of which constantly changed. The task was to monitor two gratings of the same or different colors and report their spatial frequencies right before the stimulus offset. The results showed a perceptual lag wherein the reported value was closer to the physical value some time prior to the stimulus offset. This lag effect was larger when the two gratings were of different colors than when they were the same color. Furthermore, the feature-based lag effect was statistically significant when the two gratings were horizontally arranged but not when they were vertically or diagonally arranged. A model is proposed to explain the effect of target arrangement: When targets are horizontally arranged, selecting an additional feature delays perception. When targets are vertically or diagonally arranged, target selection for the lower field is prioritized. This prioritization on the lower target might prompt observers to only select the lower target and ignore the upper one, and this causes more perceptual errors without delaying perception. © 2017 Elsevier B.V. All rights reserved.

  16. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy.

    PubMed

    Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui

    2017-04-01

    Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Selective Attention Strategy as a Time-Dependent Phenomenon.

    ERIC Educational Resources Information Center

    Lapan, Richard; Reynolds, Ralph E.

    1994-01-01

    Differences in how more and less successful readers use selective attention, and whether these differences influence what is learned and recalled were studied with 45 college students. Results reveal different reading patterns for the two groups. The discussion focuses on aspects of the selective attention strategy. (SLD)

  18. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    PubMed Central

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  19. Spatiotemporal encoding of search strategies by prefrontal neurons.

    PubMed

    Chiang, Feng-Kuei; Wallis, Joni D

    2018-05-08

    Working memory is capacity-limited. In everyday life we rarely notice this limitation, in part because we develop behavioral strategies that help mitigate the capacity limitation. How behavioral strategies are mediated at the neural level is unclear, but a likely locus is lateral prefrontal cortex (LPFC). Neurons in LPFC play a prominent role in working memory and have been shown to encode behavioral strategies. To examine the role of LPFC in overcoming working-memory limitations, we recorded the activity of LPFC neurons in animals trained to perform a serial self-ordered search task. This task measured the ability to prospectively plan the selection of unchosen spatial search targets while retrospectively tracking which targets were previously visited. We found that individual LPFC neurons encoded the spatial location of the current search target but also encoded the spatial location of targets up to several steps away in the search sequence. Neurons were more likely to encode prospective than retrospective targets. When subjects used a behavioral strategy of stereotyped target selection, mitigating the working-memory requirements of the task, not only did the number of selection errors decrease but there was a significant reduction in the strength of spatial encoding in LFPC. These results show that LPFC neurons have spatiotemporal mnemonic fields, in that their firing rates are modulated both by the spatial location of future selection behaviors and the temporal organization of that behavior. Furthermore, the strength of this tuning can be dynamically modulated by the demands of the task.

  20. Metacognition for strategy selection during arithmetic problem-solving in young and older adults.

    PubMed

    Geurten, Marie; Lemaire, Patrick

    2018-04-19

    We examined participants' strategy choices and metacognitive judgments during arithmetic problem-solving. Metacognitive judgments were collected either prospectively or retrospectively. We tested whether metacognitive judgments are related to strategy choices on the current problems and on the immediately following problems, and age-related differences in relations between metacognition and strategy choices. Data showed that both young and older adults were able to make accurate retrospective, but not prospective, judgments. Moreover, the accuracy of retrospective judgments was comparable in young and older adults when participants had to select and execute the better strategy. Metacognitive accuracy was even higher in older adults when participants had to only select the better strategy. Finally, low-confidence judgments on current items were more frequently followed by better strategy selection on immediately succeeding items than high-confidence judgments in both young and older adults. Implications of these findings to further our understanding of age-related differences and similarities in adults' metacognitive monitoring and metacognitive regulation for strategy selection in the context of arithmetic problem solving are discussed.

  1. Process evaluation and in vitro selectivity analysis of aptamer-drug polymeric formulation for targeted pharmaceutical delivery.

    PubMed

    Tan, Kei X; Lau, Sie Yon; Danquah, Michael K

    2018-05-01

    Targeted drug delivery is a promising strategy to promote effective delivery of conventional and emerging pharmaceuticals. The emergence of aptamers as superior targeting ligands to direct active drug molecules specifically to desired malignant cells has created new opportunities to enhance disease therapies. The application of biodegradable polymers as delivery carriers to develop aptamer-navigated drug delivery system is a promising approach to effectively deliver desired drug dosages to target cells. This study reports the development of a layer-by-layer aptamer-mediated drug delivery system (DPAP) via a w/o/w double emulsion technique homogenized by ultrasonication or magnetic stirring. Experimental results showed no significant differences in the biophysical characteristics of DPAP nanoparticles generated using the two homogenization techniques. The DPAP formulation demonstrated a strong targeting performance and selectivity towards its target receptor molecules in the presence of non-targets. The DPAP formulation demonstrated a controlled and sustained drug release profile under the conditions of pH 7 and temperature 37 °C. Also, the drug release rate of DPAP formulation was successfully accelerated under an endosomal acidic condition of ∼pH 5.5, indicating the potential to enhance drug delivery within the endosomal micro-environment. The findings from this work are useful to understanding polymer-aptamer-drug relationship and their impact on developing effective targeted delivery systems. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Contextual control over selective attention: evidence from a two-target method.

    PubMed

    MacLellan, Ellen; Shore, David I; Milliken, Bruce

    2015-07-01

    Selective attention is generally studied with conflict tasks, using response time as the dependent measure. Here, we study the impact of selective attention to a first target, T1, presented simultaneously with a distractor, on the accuracy of subsequent encoding of a second target item, T2. This procedure produces an "attentional blink" (AB) effect much like that reported in other studies, and allowed us to study the influence of context on cognitive control with a novel method. In particular, we examined whether preparation to attend selectively to T1 had an impact on the selective encoding of T1 that would translate to report of T2. Preparation to attend selectively was manipulated by varying whether difficult selective attention T1 trials were presented in the context of other difficult selective attention T1 trials. The results revealed strong context effects of this nature, with smaller AB effects when difficult selective attention T1 trials were embedded in a context with many, rather than few, other difficult selective attention T1 trials. Further, the results suggest that both the trial-to-trial local context and the block-wide global context modulate performance in this task.

  3. Strategies to target non-T-cell HIV reservoirs.

    PubMed

    Sacha, Jonah B; Ndhlovu, Lishomwa C

    2016-07-01

    A central question for the HIV cure field is to determine new ways to target clinically relevant, latently and actively replicating HIV-infected cells beyond resting memory CD4 T cells, particularly in anatomical areas of low drug penetrability. HIV eradication strategies being positioned for targeting HIV for extinction in the CD4 T-cell compartment may also show promise in non-CD4 T-cells reservoirs. Furthermore, several exciting novel therapeutic approaches specifically focused on HIV clearance from non-CD4 T-cell populations are being developed. Although reservoir validity in these non-CD4 T cells continues to remain debated, this review will highlight recent advances and make an argument as to their clinical relevancy as we progress towards an HIV cure.

  4. Adaptive Strategy Selection in Decision Making.

    DTIC Science & Technology

    1986-07-31

    information processing capabilities of a decision maker, given any " reasonable " time limit for making the decision. If use of a more normative rule...DECISION MAKING JOHN W. PAYNE DTIC DUKE UNIVERSITY L.CT E AUG 13 JAMES R. BETTMAN DUKE. UNIVERSITY ERIC J. JOHNSON CARNEGIE-MELLON UNIVERSITY...REPORT & PERIOD COVERED ADAPTIVE STRATEGY SELECTION IN DECISION MAKING Research 6. PERFORMING ORO. REPORT NUMSER 7. AUTNORfe) e. CONTRACT ON GRANT

  5. Resource efficiency potential of selected technologies, products and strategies.

    PubMed

    Rohn, Holger; Pastewski, Nico; Lettenmeier, Michael; Wiesen, Klaus; Bienge, Katrin

    2014-03-01

    Despite rising prices for natural resources during the past 30 years, global consumption of natural resources is still growing. This leads to ecological, economical and social problems. So far, however, limited effort has been made to decrease the natural resource use of goods and services. While resource efficiency is already on the political agenda (EU and national resource strategies), there are still substantial knowledge gaps on the effectiveness of resource efficiency improvement strategies in different fields. In this context and within the project "Material Efficiency and Resource Conservation", the natural resource use of 22 technologies, products and strategies was calculated and their resource efficiency potential analysed. In a preliminary literature- and expert-based identification process, over 250 technologies, strategies, and products, which are regarded as resource efficient, were identified. Out of these, 22 subjects with high resource efficiency potential were selected. They cover a wide range of relevant technologies, products and strategies, such as energy supply and storage, Green IT, transportation, foodstuffs, agricultural engineering, design strategies, lightweight construction, as well as the concept "Using Instead of Owning". To assess the life-cycle-wide resource use of the selected subjects, the material footprint has been applied as a reliable indicator. In addition, sustainability criteria on a qualitative basis were considered. The results presented in this paper show significant resource efficiency potential for many technologies, products and strategies. Copyright © 2013. Published by Elsevier B.V.

  6. Space Operations Center orbit altitude selection strategy

    NASA Technical Reports Server (NTRS)

    Indrikis, J.; Myers, H. L.

    1982-01-01

    The strategy for the operational altitude selection has to respond to the Space Operation Center's (SOC) maintenance requirements and the logistics demands of the missions to be supported by the SOC. Three orbit strategies are developed: two are constant altitude, and one variable altitude. In order to minimize the effect of atmospheric uncertainty the dynamic altitude method is recommended. In this approach the SOC will operate at the optimum altitude for the prevailing atmospheric conditions and logistics model, provided that mission safety constraints are not violated. Over a typical solar activity cycle this method produces significant savings in the overall logistics cost.

  7. Nonspecific Organelle-Targeting Strategy with Core-Shell Nanoparticles of Varied Lipid Components/Ratios.

    PubMed

    Zhang, Lu; Sun, Jiashu; Wang, Yilian; Wang, Jiancheng; Shi, Xinghua; Hu, Guoqing

    2016-07-19

    We report a nonspecific organelle-targeting strategy through one-step microfluidic fabrication and screening of a library of surface charge- and lipid components/ratios-varied lipid shell-polymer core nanoparticles. Different from the common strategy relying on the use of organelle-targeted moieties conjugated onto the surface of nanoparticles, here, we program the distribution of hybrid nanoparticles in lysosomes or mitochondria by tuning the lipid components/ratios in shell. Hybrid nanoparticles with 60% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 20% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) can intracellularly target mitochondria in both in vitro and in vivo models. While replacing DOPE with the same amount of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the nanoparticles do not show mitochondrial targeting, indicating an incremental effect of cationic and fusogenic lipids on lysosomal escape which is further studied by molecular dynamics simulations. This work unveils the lipid-regulated subcellular distribution of hybrid nanoparticles in which target moieties and complex synthetic steps are avoided.

  8. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    PubMed

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  9. A strategy for selecting data mining techniques in metabolomics.

    PubMed

    Banimustafa, Ahmed Hmaidan; Hardy, Nigel W

    2012-01-01

    There is a general agreement that the development of metabolomics depends not only on advances in chemical analysis techniques but also on advances in computing and data analysis methods. Metabolomics data usually requires intensive pre-processing, analysis, and mining procedures. Selecting and applying such procedures requires attention to issues including justification, traceability, and reproducibility. We describe a strategy for selecting data mining techniques which takes into consideration the goals of data mining techniques on the one hand, and the goals of metabolomics investigations and the nature of the data on the other. The strategy aims to ensure the validity and soundness of results and promote the achievement of the investigation goals.

  10. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    PubMed Central

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  11. Design of ligand-targeted nanoparticles for enhanced cancer targeting

    NASA Astrophysics Data System (ADS)

    Stefanick, Jared F.

    Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted

  12. A Multidimensional Strategy to Detect Polypharmacological Targets in the Absence of Structural and Sequence Homology

    PubMed Central

    Durrant, Jacob D.; Amaro, Rommie E.; Xie, Lei; Urbaniak, Michael D.; Ferguson, Michael A. J.; Haapalainen, Antti; Chen, Zhijun; Di Guilmi, Anne Marie; Wunder, Frank; Bourne, Philip E.; McCammon, J. Andrew

    2010-01-01

    Conventional drug design embraces the “one gene, one drug, one disease” philosophy. Polypharmacology, which focuses on multi-target drugs, has emerged as a new paradigm in drug discovery. The rational design of drugs that act via polypharmacological mechanisms can produce compounds that exhibit increased therapeutic potency and against which resistance is less likely to develop. Additionally, identifying multiple protein targets is also critical for side-effect prediction. One third of potential therapeutic compounds fail in clinical trials or are later removed from the market due to unacceptable side effects often caused by off-target binding. In the current work, we introduce a multidimensional strategy for the identification of secondary targets of known small-molecule inhibitors in the absence of global structural and sequence homology with the primary target protein. To demonstrate the utility of the strategy, we identify several targets of 4,5-dihydroxy-3-(1-naphthyldiazenyl)-2,7-naphthalenedisulfonic acid, a known micromolar inhibitor of Trypanosoma brucei RNA editing ligase 1. As it is capable of identifying potential secondary targets, the strategy described here may play a useful role in future efforts to reduce drug side effects and/or to increase polypharmacology. PMID:20098496

  13. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology.

    PubMed

    Durrant, Jacob D; Amaro, Rommie E; Xie, Lei; Urbaniak, Michael D; Ferguson, Michael A J; Haapalainen, Antti; Chen, Zhijun; Di Guilmi, Anne Marie; Wunder, Frank; Bourne, Philip E; McCammon, J Andrew

    2010-01-22

    Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Polypharmacology, which focuses on multi-target drugs, has emerged as a new paradigm in drug discovery. The rational design of drugs that act via polypharmacological mechanisms can produce compounds that exhibit increased therapeutic potency and against which resistance is less likely to develop. Additionally, identifying multiple protein targets is also critical for side-effect prediction. One third of potential therapeutic compounds fail in clinical trials or are later removed from the market due to unacceptable side effects often caused by off-target binding. In the current work, we introduce a multidimensional strategy for the identification of secondary targets of known small-molecule inhibitors in the absence of global structural and sequence homology with the primary target protein. To demonstrate the utility of the strategy, we identify several targets of 4,5-dihydroxy-3-(1-naphthyldiazenyl)-2,7-naphthalenedisulfonic acid, a known micromolar inhibitor of Trypanosoma brucei RNA editing ligase 1. As it is capable of identifying potential secondary targets, the strategy described here may play a useful role in future efforts to reduce drug side effects and/or to increase polypharmacology.

  14. The Effect of Vocabulary Self-Selection Strategy and Input Enhancement Strategy on the Vocabulary Knowledge of Iranian EFL Learners

    ERIC Educational Resources Information Center

    Masoudi, Golfam

    2017-01-01

    The present study was designed to investigate empirically the effect of Vocabulary Self-Selection strategy and Input Enhancement strategy on the vocabulary knowledge of Iranian EFL Learners. After taking a diagnostic pretest, both experimental groups enrolled in two classes. Learners who practiced Vocabulary Self-Selection were allowed to…

  15. Strategies for target identification of antimicrobial natural products.

    PubMed

    Farha, Maya A; Brown, Eric D

    2016-05-04

    Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.

  16. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    PubMed

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  17. Strategy selection in cue-based decision making.

    PubMed

    Bryant, David J

    2014-06-01

    People can make use of a range of heuristic and rational, compensatory strategies to perform a multiple-cue judgment task. It has been proposed that people are sensitive to the amount of cognitive effort required to employ decision strategies. Experiment 1 employed a dual-task methodology to investigate whether participants' preference for heuristic versus compensatory decision strategies can be altered by increasing the cognitive demands of the task. As indicated by participants' decision times, a secondary task interfered more with the performance of a heuristic than compensatory decision strategy but did not affect the proportions of participants using either type of strategy. A stimulus set effect suggested that the conjunction of cue salience and cue validity might play a determining role in strategy selection. The results of Experiment 2 indicated that when a perceptually salient cue was also the most valid, the majority of participants preferred a single-cue heuristic strategy. Overall, the results contradict the view that heuristics are more likely to be adopted when a task is made more cognitively demanding. It is argued that people employ 2 learning processes during training, one an associative learning process in which cue-outcome associations are developed by sampling multiple cues, and another that involves the sequential examination of single cues to serve as a basis for a single-cue heuristic.

  18. MTTE: an innovative strategy for the evaluation of targeted/exome enrichment efficiency

    PubMed Central

    Klonowska, Katarzyna; Handschuh, Luiza; Swiercz, Aleksandra; Figlerowicz, Marek; Kozlowski, Piotr

    2016-01-01

    Although currently available strategies for the preparation of exome-enriched libraries are well established, a final validation of the libraries in terms of exome enrichment efficiency prior to the sequencing step is of considerable importance. Here, we present a strategy for the evaluation of exome enrichment, i.e., the Multipoint Test for Targeted-enrichment Efficiency (MTTE), PCR-based approach utilizing multiplex ligation-dependent probe amplification with capillary electrophoresis separation. We used MTTE for the analysis of subsequent steps of the Illumina TruSeq Exome Enrichment procedure. The calculated values of enrichment-associated parameters (i.e., relative enrichment, relative clearance, overall clearance, and fold enrichment) and the comparison of MTTE results with the actual enrichment revealed the high reliability of our assay. Additionally, the MTTE assay enabled the determination of the sequence-associated features that may confer bias in the enrichment of different targets. Importantly, the MTTE is low cost method that can be easily adapted to the region of interest important for a particular project. Thus, the MTTE strategy is attractive for post-capture validation in a variety of targeted/exome enrichment NGS projects. PMID:27572310

  19. MTTE: an innovative strategy for the evaluation of targeted/exome enrichment efficiency.

    PubMed

    Klonowska, Katarzyna; Handschuh, Luiza; Swiercz, Aleksandra; Figlerowicz, Marek; Kozlowski, Piotr

    2016-10-11

    Although currently available strategies for the preparation of exome-enriched libraries are well established, a final validation of the libraries in terms of exome enrichment efficiency prior to the sequencing step is of considerable importance. Here, we present a strategy for the evaluation of exome enrichment, i.e., the Multipoint Test for Targeted-enrichment Efficiency (MTTE), PCR-based approach utilizing multiplex ligation-dependent probe amplification with capillary electrophoresis separation. We used MTTE for the analysis of subsequent steps of the Illumina TruSeq Exome Enrichment procedure. The calculated values of enrichment-associated parameters (i.e., relative enrichment, relative clearance, overall clearance, and fold enrichment) and the comparison of MTTE results with the actual enrichment revealed the high reliability of our assay. Additionally, the MTTE assay enabled the determination of the sequence-associated features that may confer bias in the enrichment of different targets. Importantly, the MTTE is low cost method that can be easily adapted to the region of interest important for a particular project. Thus, the MTTE strategy is attractive for post-capture validation in a variety of targeted/exome enrichment NGS projects.

  20. Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights

    PubMed Central

    Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B.

    2009-01-01

    The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO2 group of imidacloprid and 2) neonicotinoid-unique stacking and CH-π bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-α nAChR subunits. PMID:19321668

  1. Strategies for crew selection for long duration missions

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Holland, Albert W.; Santy, Patricia A.; Rose, Robert M.; Mcfadden, Terry J.

    1990-01-01

    Issues surrounding psychological reactions to long duration spaceflight are discussed with respect to the definition of criteria for selecting crewmembers for such expeditions. Two broad dimensions of personality and behavior are defined - Instrumentality including achievement orientation, leadership, and ability to perform under pressure and Expressivity encompassing interpersonal sensitivity and competence. A strategy for validating techniques to select in candidates with the optimum psychological profile to perform successfully on long duration missions is described.

  2. Task-selective memory effects for successfully implemented encoding strategies.

    PubMed

    Leshikar, Eric D; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies--visual imagery and sentence generation--facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study.

  3. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.

    PubMed

    Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun

    2017-11-27

    Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.

  4. Pharmacological and Physical Vessel Modulation Strategies to Improve EPR-mediated Drug Targeting to Tumors

    PubMed Central

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim; Moonen, Chrit; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2018-01-01

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. PMID:28697952

  5. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    PubMed

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization

    NASA Astrophysics Data System (ADS)

    Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry

    2018-01-01

    We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.

  7. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    PubMed

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible

  8. Image Analyzed by Mars Rover for Selection of Target

    NASA Image and Video Library

    2010-03-23

    NASA Opportunity used newly developed and uploaded software called AEGIS, to analyze images to identify features that best matched criteria for selecting an observation target; the criteria in this image -- rocks that are larger and darker than others.

  9. Predicting selective drug targets in cancer through metabolic networks

    PubMed Central

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  10. An assessment of spacecraft target mode selection methods

    NASA Astrophysics Data System (ADS)

    Mercer, J. F.; Aglietti, G. S.; Remedia, M.; Kiley, A.

    2017-11-01

    Coupled Loads Analyses (CLAs), using finite element models (FEMs) of the spacecraft and launch vehicle to simulate critical flight events, are performed in order to determine the dynamic loadings that will be experienced by spacecraft during launch. A validation process is carried out on the spacecraft FEM beforehand to ensure that the dynamics of the analytical model sufficiently represent the behavior of the physical hardware. One aspect of concern is the containment of the FEM correlation and update effort to focus on the vibration modes which are most likely to be excited under test and CLA conditions. This study therefore provides new insight into the prioritization of spacecraft FEM modes for correlation to base-shake vibration test data. The work involved example application to large, unique, scientific spacecraft, with modern FEMs comprising over a million degrees of freedom. This comprehensive investigation explores: the modes inherently important to the spacecraft structures, irrespective of excitation; the particular 'critical modes' which produce peak responses to CLA level excitation; an assessment of several traditional target mode selection methods in terms of ability to predict these 'critical modes'; and an indication of the level of correlation these FEM modes achieve compared to corresponding test data. Findings indicate that, although the traditional methods of target mode selection have merit and are able to identify many of the modes of significance to the spacecraft, there are 'critical modes' which may be missed by conventional application of these methods. The use of different thresholds to select potential target modes from these parameters would enable identification of many of these missed modes. Ultimately, some consideration of the expected excitations is required to predict all modes likely to contribute to the response of the spacecraft in operation.

  11. Non-targeted evaluation of selectivity of water-compatible class selective adsorbents for the analysis of steroids in wastewater.

    PubMed

    Kopperi, Matias; Riekkola, Marja-Liisa

    2016-05-12

    Selective adsorbents for solid-phase extraction are needed to meet the low concentration requirements of new environmental quality standard directives, especially for the analysis of estrogens in wastewater. In this work, bulk polymerization procedures were first optimized for the synthesis of non-imprinted polymers (NIP) with low non-specific adsorption of nonpolar compounds in aqueous environments. Water-compatible molecularly imprinted polymers (MIP) were then synthetized by increasing the selectivity of the polymer towards steroids with a testosterone template (average imprinting factor > 10). In addition, the affinity of synthetized entrapped β-cyclodextrin-epichlorohydrin polymers (ECD) towards steroids was clarified. The polymers were applied to the extraction of spiked wastewater effluent samples and their performance compared to commercially available adsorbents. The selectivity of the studied adsorbents was evaluated utilizing liquid chromatography ‒ mass spectrometry as well as comprehensive two-dimensional gas chromatography ‒ time-of-flight mass spectrometry. Affinity between adsorbents and steroids as well as matrix removal potential were measured with targeted methodologies, and two novel non-targeted methodologies were proposed to quantitatively measure adsorbent selectivity by utilizing chemometrics. Semi-quantitative selectivity was measured from the ratio of peak areas between steroidal and other compounds. Semi-qualitative selectivity was calculated from the ratio between the number of tentatively identified steroidal and other compounds. The synthetized polymers provided good matrix removal potential (ion suppression 15-30%) and semi-qualitative selectivity (∼4 units) compared to the commercial adsorbents (ion suppression 45-80%, selectivity < 3 units). Simple non-targeted approaches provided a novel method of quantifying the selectivity of extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Quantitative proteomics in cardiovascular research: global and targeted strategies

    PubMed Central

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  13. Fortification of foods with vitamin D in India: strategies targeted at children.

    PubMed

    G, Ritu; Gupta, Ajay

    2015-01-01

    Vitamin D deficiency is endemic in India, despite abundant sunshine, due to several socioeconomic and cultural constraints. Fortification of staple foods with vitamin D is a viable population-based strategy for the general population in India. These strategies are discussed in the review article entitled, "Fortification of Foods With Vitamin D in India" [1]. The quantity of foods consumed by children is much smaller compared to adults. Therefore, children need energy-dense and micronutrient-dense foods to meet their daily nutritional requirements. Targeted food fortification programs are needed to meet the special needs of children. This review explores potential strategies that could be used for fortification of foods with vitamin D for children in India. Sattu has the potential to be a valuable vehicle for vitamin D fortification in India. The salient characteristics and merits of sattu as an ideal food to be fortified with micronutrients, especially vitamin D, are reviewed here. Key teaching points: • Fortification of foods with vitamin D, specifically targeted towards the nutritional requirements of infants and children, is a viable strategy in the Indian scenario. •Government programs targeting the nutritional needs of children in India, especially via midday meal programs in schools, should incorporate indigenous ready-to-eat foods fortified with micronutrients including vitamin D. These foods would need to have longer shelf life, require minimal preparation, and have economic and technological feasibility. • Sattu, a protein rich Indian fast food, comprised of roasted flour made from cereals and legumes, has immense potential to serve as an economically and technologically feasible fortification vehicle for vitamin D fortification strategies.

  14. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    PubMed

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  15. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    PubMed

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the

  16. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  17. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less

  18. Natural selection of memory-one strategies for the iterated prisoner's dilemma.

    PubMed

    Kraines, D P; Kraines, V Y

    2000-04-21

    In the iterated Prisoner's Dilemma, mutually cooperative behavior can become established through Darwinian natural selection. In simulated interactions of stochastic memory-one strategies for the Iterated Prisoner's Dilemma, Nowak and Sigmund discovered that cooperative agents using a Pavlov (Win-Stay Lose-Switch) type strategy eventually dominate a random population. This emergence follows more directly from a deterministic dynamical system based on differential reproductive success or natural selection. When restricted to an environment of memory-one agents interacting in iterated Prisoner's Dilemma games with a 1% noise level, the Pavlov agent is the only cooperative strategy and one of very few others that cannot be invaded by a similar strategy. Pavlov agents are trusting but no suckers. They will exploit weakness but repent if punished for cheating. Copyright 2000 Academic Press.

  19. Small-molecule intramimics of formin autoinhibition: a new strategy to target the cytoskeletal remodeling machinery in cancer cells.

    PubMed

    Lash, L Leanne; Wallar, Bradley J; Turner, Julie D; Vroegop, Steven M; Kilkuskie, Robert E; Kitchen-Goosen, Susan M; Xu, H Eric; Alberts, Arthur S

    2013-11-15

    Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells. ©2013 AACR

  20. Antibody Drug Conjugates: Application of Quantitative Pharmacology in Modality Design and Target Selection.

    PubMed

    Sadekar, S; Figueroa, I; Tabrizi, M

    2015-07-01

    Antibody drug conjugates (ADCs) are a multi-component modality comprising of an antibody targeting a cell-specific antigen, a potent drug/payload, and a linker that can be processed within cellular compartments to release payload upon internalization. Numerous ADCs are being evaluated in both research and clinical settings within the academic and pharmaceutical industry due to their ability to selectively deliver potent payloads. Hence, there is a clear need to incorporate quantitative approaches during early stages of drug development for effective modality design and target selection. In this review, we describe a quantitative approach and framework for evaluation of the interplay between drug- and systems-dependent properties (i.e., target expression, density, localization, turnover, and affinity) in order to deliver a sufficient amount of a potent payload into the relevant target cells. As discussed, theoretical approaches with particular considerations given to various key properties for the target and modality suggest that delivery of the payload into particular effect cells to be more sensitive to antigen concentrations for targets with slow turnover rates as compared to those with faster internalization rates. Further assessments also suggest that increasing doses beyond the threshold of the target capacity (a function of target internalization and expression) may not impact the maximum amount of payload delivered to the intended effect cells. This article will explore the important application of quantitative sciences in selection of the target and design of ADC modalities.

  1. TARPARE: a method for selecting target audiences for public health interventions.

    PubMed

    Donovan, R J; Egger, G; Francas, M

    1999-06-01

    This paper presents a model to assist the health promotion practitioner systematically compare and select what might be appropriate target groups when there are a number of segments competing for attention and resources. TARPARE assesses previously identified segments on the following criteria: T: The Total number of persons in the segment; AR: The proportion of At Risk persons in the segment; P: The Persuability of the target audience; A: The Accessibility of the target audience; R: Resources required to meet the needs of the target audience; and E: Equity, social justice considerations. The assessment can be applied qualitatively or can be applied such that scores can be assigned to each segment. Two examples are presented. TARPARE is a useful and flexible model for understanding the various segments in a population of interest and for assessing the potential viability of interventions directed at each segment. The model is particularly useful when there is a need to prioritise segments in terms of available budgets. The model provides a disciplined approach to target selection and forces consideration of what weights should be applied to the different criteria, and how these might vary for different issues or for different objectives. TARPARE also assesses segments in terms of an overall likelihood of optimal impact for each segment. Targeting high scoring segments is likely to lead to greater program success than targeting low scoring segments.

  2. Green supply chain management strategy selection using analytic network process: case study at PT XYZ

    NASA Astrophysics Data System (ADS)

    Adelina, W.; Kusumastuti, R. D.

    2017-01-01

    This study is about business strategy selection for green supply chain management (GSCM) for PT XYZ by using Analytic Network Process (ANP). GSCM is initiated as a response to reduce environmental impacts from industrial activities. The purposes of this study are identifying criteria and sub criteria in selecting GSCM Strategy, and analysing a suitable GSCM strategy for PT XYZ. This study proposes ANP network with 6 criteria and 29 sub criteria, which are obtained from the literature and experts’ judgements. One of the six criteria contains GSCM strategy options, namely risk-based strategy, efficiency-based strategy, innovation-based strategy, and closed loop strategy. ANP solves complex GSCM strategy-selection by using a more structured process and considering green perspectives from experts. The result indicates that innovation-based strategy is the most suitable green supply chain management strategy for PT XYZ.

  3. An Optimization Model For Strategy Decision Support to Select Kind of CPO’s Ship

    NASA Astrophysics Data System (ADS)

    Suaibah Nst, Siti; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    The selection of marine transport for the distribution of crude palm oil (CPO) is one of strategy that can be considered in reducing cost of transport. The cost of CPO’s transport from one area to CPO’s factory located at the port of destination may affect the level of CPO’s prices and the number of demands. In order to maintain the availability of CPO a strategy is required to minimize the cost of transporting. In this study, the strategy used to select kind of charter ships as barge or chemical tanker. This study aims to determine an optimization model for strategy decision support in selecting kind of CPO’s ship by minimizing costs of transport. The select of ship was done randomly, so that two-stage stochastic programming model was used to select the kind of ship. Model can help decision makers to select either barge or chemical tanker to distribute CPO.

  4. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus

    PubMed Central

    Olesen, Emma T. B.; Rützler, Michael R.; Moeller, Hanne B.; Praetorius, Helle A.; Fenton, Robert A.

    2011-01-01

    In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus. PMID:21768374

  5. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus.

    PubMed

    Olesen, Emma T B; Rützler, Michael R; Moeller, Hanne B; Praetorius, Helle A; Fenton, Robert A

    2011-08-02

    In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.

  6. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy.

    PubMed

    Li, Ying; Yu, Chuanfeng; Han, Huixia; Zhao, Caisheng; Zhang, Xiaoru

    2016-07-15

    A novel and sensitive surface-enhanced Raman scattering (SERS) method is proposed for the assay of DNA methyltransferase (MTase) activity and evaluation of inhibitors by developing a target triggering primer generation-based multiple signal amplification strategy. By using of a duplex substrate for Dam MTase, two hairpin templates and a Raman probe, multiple signal amplification mode is achieved. Once recognized by Dam MTase, the duplex substrate can be cleaved by Dpn I endonuclease and two primers are released for triggering the multiple signal amplification reaction. Consequently, a wide dynamic range and remarkably high sensitivity are obtained under isothermal conditions. The detection limit is 2.57×10(-4)UmL(-1). This assay exhibits an excellent selectivity and is successfully applied in the screening of inhibitors for Dam MTase. In addition, this novel sensing system is potentially universal as the recognition element can be conveniently designed for other target analytes by changing the substrate of DNA MTase. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    PubMed

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  8. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.

    2006-01-01

    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  9. Neural and behavioral correlates of selective stopping: Evidence for a different strategy adoption.

    PubMed

    Sánchez-Carmona, Alberto J; Albert, Jacobo; Hinojosa, José A

    2016-10-01

    The present study examined the neural and behavioral correlates of selective stopping, a form of inhibition that has scarcely been investigated. The selectivity of the inhibitory process is needed when individuals have to deal with an environment filled with multiple stimuli, some of which require inhibition and some of which do not. The stimulus-selective stop-signal task has been used to explore this issue assuming that all participants interrupt their ongoing responses selectively to stop but not to ignore signals. However, recent behavioral evidence suggests that some individuals do not carry out the task as experimenters expect, since they seemed to interrupt their response non-selectively to both signals. In the present study, we detected and controlled the cognitive strategy adopted by participants (n=57) when they performed a stimulus-selective stop-signal task before comparing brain activation between conditions. In order to determine both the onset and the end of the response cancellation process underlying each strategy and to fully take advantage of the precise temporal resolution of event-related potentials, we used a mass univariate approach. Source localization techniques were also employed to estimate the neural underpinnings of the effects observed at the scalp level. Our results from scalp and source level analysis support the behavioral-based strategy classification. Specific effects were observed depending on the strategy adopted by participants. Thus, when contrasting successful stop versus ignore conditions, increased activation was only evident for subjects who were classified as using a strategy whereby the response interruption process was selective to stop trials. This increased activity was observed during the P3 time window in several left-lateralized brain regions, including middle and inferior frontal gyri, as well as parietal and insular cortices. By contrast, in those participants who used a strategy characterized by stopping non-selectively

  10. Wavelength band selection method for multispectral target detection.

    PubMed

    Karlholm, Jörgen; Renhorn, Ingmar

    2002-11-10

    A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.

  11. Understanding L2 French Teaching Strategies in a Non-Target Language Classroom Context

    ERIC Educational Resources Information Center

    Sun, Peijian; Yuan, Rui; Teng, Lin

    2015-01-01

    This research explored the congruence and disparity between teachers' and students' attitudes towards French as a second language (L2) teaching strategies in a non-target language classroom context in the USA. The findings suggest students' and teachers' attitudes towards the direct and indirect teaching strategies were generally consistent, but…

  12. Target Selection for the SDSS-IV APOGEE-2 Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasowski, G.; Cohen, R. E.; Carlberg, J. K.

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10{sup 5} stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entiremore » sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.« less

  13. A precisely targeted application strategy of dipping young cucumber fruit in fungicide to control cucumber gray mold.

    PubMed

    He, Leiming; Cui, Kaidi; Song, Yufei; Zhang, Zhengqun; Li, Beixing; Mu, Wei; Liu, Feng

    2018-04-27

    Gray mold is a ubiquitous destructive plant disease worldwide. To avoid the shortcomings of conventional spraying systems for controlling this disease, such as high selection pressure on Botrytis cinerea for resistance and fungicide waste resulting from spray drift, a precisely targeted application strategy of dipping young cucumber fruit in a mixture of fungicide and forchlorfenuron (plant growth regulator, PGR) during the bloom period to control cucumber gray mold was developed in the current study. Without leaving above-limit residues in cucumber fruits, dipping in fludioxonil at 30 mg liter -1 provided a greater efficacy (85.4%) against cucumber gray mold than did spraying at 100 mg liter -1 (76.4%). Importantly, fludioxonil mixed with forchlorfenuron from 25 to 35 mg liter -1 increased the yield of cucumbers by 26.2%-36.7% compared to dipping fruit only in forchlorfenuron. The increased yield may be a benefit of controlling gray mold. Dipping fruit in fungicides and PGRs seems to be a potential precisely targeted application strategy to not only control cucumber gray mold effectively but also, through the action of PGRs, to increase the cucumber yield. This novel application method is believed to have a bright prospect in cucumber production in Chinese solar greenhouses. This article is protected by copyright. All rights reserved.

  14. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage

    PubMed Central

    Peng, Xiaohua; Gandhi, Varsha

    2013-01-01

    Targeting tumor cells is an important strategy to improve the selectivity of cancer therapies. With the advanced studies in cancer biology, we know that cancer cells are usually under increased oxidative stress. The high level of reactive oxygen species in cancer cells has been exploited for developing novel therapeutic strategies to preferentially kill cancer cells. Our group, amongst others, have used boronic acids/esters as triggers for developing ROS-activated anticancer prodrugs that target cancer cells. The selectivity was achieved by combining a specific reaction between boronates and H2O2 with the efficient masking of drug toxicity in the prodrug via boronates. Prodrugs activated via ferrocene-mediated oxidation have also been developed to improve the selectivity of anticancer drugs. We describe how the strategies of ROS-activation can be used for further development of new ROS-targeting prodrugs, eventually leading to novel approaches and/or combined technology for more efficient and selective treatment of cancers. PMID:22900465

  15. Drug target identification in protozoan parasites.

    PubMed

    Müller, Joachim; Hemphill, Andrew

    2016-08-01

    Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.

  16. Drug target identification in protozoan parasites

    PubMed Central

    Müller, Joachim; Hemphill, Andrew

    2016-01-01

    Introduction Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Areas covered Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Expert opinion Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses. PMID:27238605

  17. Advancing cancer drug discovery towards more agile development of targeted combination therapies.

    PubMed

    Carragher, Neil O; Unciti-Broceta, Asier; Cameron, David A

    2012-01-01

    Current drug-discovery strategies are typically 'target-centric' and are based upon high-throughput screening of large chemical libraries against nominated targets and a selection of lead compounds with optimized 'on-target' potency and selectivity profiles. However, high attrition of targeted agents in clinical development suggest that combinations of targeted agents will be most effective in treating solid tumors if the biological networks that permit cancer cells to subvert monotherapies are identified and retargeted. Conventional drug-discovery and development strategies are suboptimal for the rational design and development of novel drug combinations. In this article, we highlight a series of emerging technologies supporting a less reductionist, more agile, drug-discovery and development approach for the rational design, validation, prioritization and clinical development of novel drug combinations.

  18. Personalized Antidepressant Selection and Pathway to Novel Treatments: Clinical Utility of Targeting Inflammation

    PubMed Central

    Jha, Manish K.; Trivedi, Madhukar H.

    2018-01-01

    Major depressive disorder (MDD) is a chronic condition that affects one in six adults in the US during their lifetime. The current practice of antidepressant medication prescription is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond to two or more antidepressant treatments. There are no valid clinical markers to personalize currently available antidepressant medications, all of which have similar mechanisms targeting monoamine neurotransmission. The goal of this review is to summarize the recent findings of immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize treatment selection, and the potential of targeting inflammation to develop novel antidepressant treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests. With this approach, 4.5 patients need to be treated for 1 additional remission as compared to a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin 6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients with chronic inflammatory conditions who report significant depressive symptoms. Additional novel antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer the potential not only to personalize antidepressant prescription but also to guide the development of novel mechanistically-guided antidepressant treatments. PMID:29329256

  19. Heuristic Strategies for Persuader Selection in Contagions on Complex Networks.

    PubMed

    Wang, Peng; Zhang, Li-Jie; Xu, Xin-Jian; Xiao, Gaoxi

    2017-01-01

    Individual decision to accept a new idea or product is often driven by both self-adoption and others' persuasion, which has been simulated using a double threshold model [Huang et al., Scientific Reports 6, 23766 (2016)]. We extend the study to consider the case with limited persuasion. That is, a set of individuals is chosen from the population to be equipped with persuasion capabilities, who may succeed in persuading their friends to take the new entity when certain conditions are satisfied. Network node centrality is adopted to characterize each node's influence, based on which three heuristic strategies are applied to pick out persuaders. We compare these strategies for persuader selection on both homogeneous and heterogeneous networks. Two regimes of the underline networks are identified in which the system exhibits distinct behaviors: when networks are sufficiently sparse, selecting persuader nodes in descending order of node centrality achieves the best performance; when networks are sufficiently dense, however, selecting nodes with medium centralities to serve as the persuaders performs the best. Under respective optimal strategies for different types of networks, we further probe which centrality measure is most suitable for persuader selection. It turns out that for the first regime, degree centrality offers the best measure for picking out persuaders from homogeneous networks; while in heterogeneous networks, betweenness centrality takes its place. In the second regime, there is no significant difference caused by centrality measures in persuader selection for homogeneous network; while for heterogeneous networks, closeness centrality offers the best measure.

  20. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  1. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  2. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology

    PubMed Central

    Galdeano, Carles; Ciulli, Alessio

    2017-01-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity. PMID:27193077

  3. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    PubMed

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  4. Targeting International Terrorism with the Law of Armed Conflict: An Alternative Strategy

    DTIC Science & Technology

    1991-02-11

    AD-A236 582 D TIC III IBII IH IH JUNI 1. 1991. (Unclassified Paper) NAVAL WAR COLLEGE Newport, R.I. TARGETING INTERNATIONAL TERRORISM WITH THE LAW OF...11. TITLE OWN11110 Secrty Ceu4ifction) TARGETING INTERNATIONAL TERRORISM WITH THE LAW OF ARMED CONFLICT: AN ALTERNATIVE STRATEGY (1.) 12, PERSONAL...lawegieforcoperatiosb re forcdaigwt nes.nItiofurther rorimmendgfral rbetos msesnt ofte thkede easuc-tresa en ocnrotadrsodttate-sponsored terrorism . Ti a

  5. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  6. Systematic Sensor Selection Strategy (S4) User Guide

    NASA Technical Reports Server (NTRS)

    Sowers, T. Shane

    2012-01-01

    This paper describes a User Guide for the Systematic Sensor Selection Strategy (S4). S4 was developed to optimally select a sensor suite from a larger pool of candidate sensors based on their performance in a diagnostic system. For aerospace systems, selecting the proper sensors is important for ensuring adequate measurement coverage to satisfy operational, maintenance, performance, and system diagnostic criteria. S4 optimizes the selection of sensors based on the system fault diagnostic approach while taking conflicting objectives such as cost, weight and reliability into consideration. S4 can be described as a general architecture structured to accommodate application-specific components and requirements. It performs combinational optimization with a user defined merit or cost function to identify optimum or near-optimum sensor suite solutions. The S4 User Guide describes the sensor selection procedure and presents an example problem using an open source turbofan engine simulation to demonstrate its application.

  7. The impact of molecular targets in cancer drug development: major hurdles and future strategies.

    PubMed

    Hebar, Alexandra; Valent, Peter; Selzer, Edgar

    2013-01-01

    The last decades were characterized by enormous technological advances resulting in a better understanding of disease pathologies and improvement of treatment strategies. The development of targeted drugs, whose beginning can be traced back to Paul Ehrlich's theory of the 'magic bullet' approximately 100 years ago, is today widely appraised as a promising strategy to combat benign, as well as malignant, diseases. Over 40 years after US President Nixon declared the 'war on cancer', treatment outcome, especially of solid tumors in the advanced stages of disease, still lies far behind expectations. In this perspective article, the authors discuss the recent development of targeted cancer drugs and identify major hurdles. The authors further highlight future strategies that might improve and accelerate the drug-development process.

  8. Distinguishing Different Strategies of Across-Dimension Attentional Selection

    ERIC Educational Resources Information Center

    Huang, Liqiang; Pashler, Harold

    2012-01-01

    Selective attention in multidimensional displays has usually been examined using search tasks requiring the detection of a single target. We examined the ability to perceive a spatial structure in multi-item subsets of a display that were defined either conjunctively or disjunctively. Observers saw two adjacent displays and indicated whether the…

  9. Signatures of DNA target selectivity by ETS transcription factors

    PubMed Central

    Kim, Hye Mi

    2017-01-01

    ABSTRACT The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation. PMID:28301293

  10. Signatures of DNA target selectivity by ETS transcription factors.

    PubMed

    Poon, Gregory M K; Kim, Hye Mi

    2017-05-27

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  11. Social comparisons in adults with type 2 diabetes: Patients' reasons for target selection.

    PubMed

    Arigo, Danielle; Cornell, Max; Smyth, Joshua M

    2018-07-01

    To examine reasons for selecting a social comparison target (i.e. a specific other for relative self-evaluation), and their influence on affect and motivation for self-care, in type 2 diabetes (T2DM). Adults with T2DM (n = 180, M A1c  = 7.6%) chose to read about one of four targets. Participants rated five reasons for their choice (strongly disagree - strongly agree), and rated affect and self-care motivation before and after reading. To boost confidence in my ability to manage diabetes was rated highest overall (ps < 0.01), though choosing worse-off (vs. better-off) targets was associated with to gain useful information about how to improve (p = 0.04, [Formula: see text] = 0.05). Selection in order to feel better worked for those who chose better-off targets; choosing worse-off targets for this purpose worsened mood and stress (ps < 0.04, [Formula: see text]s = 0.02). Choosing worse-off targets to learn about similar others reduced self-care motivation (p < 0.01, [Formula: see text] = 0.05). Selection in order to boost confidence showed increased motivation only among those who chose better-off targets (p = 0.01). Patients' reasons for a particular comparison are associated with short-term changes in affect and self-care motivation, and warrant greater empirical and clinical attention.

  12. Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene

    PubMed Central

    Chendeb, Mariam; Schneider, Robert; Davidson, Irwin; Fadloun, Anas

    2017-01-01

    In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2. PMID:28415677

  13. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    PubMed Central

    Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.

    2017-01-01

    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets. PMID:28133568

  14. Lepidopteran HMG-CoA reductase is a potential selective target for pest control.

    PubMed

    Li, Yuan-Mei; Kai, Zhen-Peng; Huang, Juan; Tobe, Stephen S

    2017-01-01

    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta , whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata . The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets.

  15. Near-Nash targeting strategies for heterogeneous teams of autonomous combat vehicles

    NASA Astrophysics Data System (ADS)

    Galati, David G.; Simaan, Marwan A.

    2008-04-01

    Military strategists are currently seeking methodologies to control large numbers of autonomous assets. Automated planners based upon the Nash equilibrium concept in non-zero sum games are one option. Because such planners inherently consider possible adversarial actions, assets are able to adapt to, and to some extent predict, potential enemy actions. However, these planners must function properly both in cases in which a pure Nash strategy does not exist and in scenarios possessing multiple Nash equilibria. Another issue that needs to be overcome is the scalability of the Nash equilibrium. That is, as the dimensionality of the problem increases, the Nash strategies become unfeasible to compute using traditional methodologies. In this paper we introduce the concept of near-Nash strategies as a mechanism to overcome these difficulties. We then illustrate this concept by deriving the near-Nash strategies and using these strategies as the basis for an intelligent battle plan for heterogeneous teams of autonomous combat air vehicles in the Multi-Team Dynamic Weapon Target Assignment model.

  16. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5’UTRs of Selected Tumor Suppressors

    PubMed Central

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja

    2016-01-01

    Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene

  17. Evaluating Gaze-Based Interface Tools to Facilitate Point-and-Select Tasks with Small Targets

    ERIC Educational Resources Information Center

    Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin

    2011-01-01

    Gaze interaction affords hands-free control of computers. Pointing to and selecting small targets using gaze alone is difficult because of the limited accuracy of gaze pointing. This is the first experimental comparison of gaze-based interface tools for small-target (e.g. less than 12 x 12 pixels) point-and-select tasks. We conducted two…

  18. Task-Selective Memory Effects for Successfully Implemented Encoding Strategies

    PubMed Central

    Leshikar, Eric D.; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies–visual imagery and sentence generation–facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study. PMID:22693593

  19. Dynamic interactions between visual working memory and saccade target selection

    PubMed Central

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  20. The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.

    2018-01-01

    As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.

  1. Fuzzy System-Based Target Selection for a NIR Camera-Based Gaze Tracker

    PubMed Central

    Naqvi, Rizwan Ali; Arsalan, Muhammad; Park, Kang Ryoung

    2017-01-01

    Gaze-based interaction (GBI) techniques have been a popular subject of research in the last few decades. Among other applications, GBI can be used by persons with disabilities to perform everyday tasks, as a game interface, and can play a pivotal role in the human computer interface (HCI) field. While gaze tracking systems have shown high accuracy in GBI, detecting a user’s gaze for target selection is a challenging problem that needs to be considered while using a gaze detection system. Past research has used the blinking of the eyes for this purpose as well as dwell time-based methods, but these techniques are either inconvenient for the user or requires a long time for target selection. Therefore, in this paper, we propose a method for fuzzy system-based target selection for near-infrared (NIR) camera-based gaze trackers. The results of experiments performed in addition to tests of the usability and on-screen keyboard use of the proposed method show that it is better than previous methods. PMID:28420114

  2. Selective testing strategies for diagnosing group A streptococcal infection in children with pharyngitis: a systematic review and prospective multicentre external validation study

    PubMed Central

    Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin

    2015-01-01

    Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666

  3. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    PubMed

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  4. Effects of HBV Genetic Variability on RNAi Strategies

    PubMed Central

    Panjaworayan, Nattanan; Brown, Chris M.

    2011-01-01

    RNAi strategies present promising antiviral strategies against HBV. RNAi strategies require base pairing between short RNAi effectors and targets in the HBV pregenome or other RNAs. Natural variation in HBV genotypes, quasispecies variation, or mutations selected by the RNAi strategy could potentially make these strategies less effective. However, current and proposed antiviral strategies against HBV are being, or could be, designed to avoid this. This would involve simultaneous targeting of multiple regions of the genome, or regions in which variation or mutation is not tolerated. RNAi strategies against single genotypes or against variable regions of the genome would need to have significant other advantages to be part of robust therapies. PMID:21760994

  5. Near Surface Swimming of Salmonella Typhimurium Explains Target-Site Selection and Cooperative Invasion

    PubMed Central

    Kreibich, Saskia; Vonaesch, Pascale; Andritschke, Daniel; Rout, Samuel; Weidner, Kerstin; Sormaz, Milos; Songhet, Pascal; Horvath, Peter; Chabria, Mamta; Vogel, Viola; Spori, Doris M.; Jenny, Patrick; Hardt, Wolf-Dietrich

    2012-01-01

    Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently, physical forces trapped the pathogen for ∼1.5–3 s in “near surface swimming”. This increased the local pathogen density and facilitated “scanning” of the host surface topology. We observed transient TTSS-1 and fim-independent “stopping” and irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are attributable to near surface swimming. This mechanism might be of general importance for understanding infection by flagellated bacteria. PMID:22911370

  6. In silico strategies for the selection of chelating compounds with potential application in metal-promoted neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Cristina; Rimola, Albert; Alí-Torres, Jorge; Sodupe, Mariona; González-Duarte, Pilar

    2011-01-01

    The development of new strategies to find commercial molecules with promising biochemical features is a main target in the field of biomedicine chemistry. In this work we present an in silico-based protocol that allows identifying commercial compounds with suitable metal coordinating and pharmacokinetic properties to act as metal-ion chelators in metal-promoted neurodegenerative diseases (MpND). Selection of the chelating ligands is done by combining quantum chemical calculations with the search of commercial compounds on different databases via virtual screening. Starting from different designed molecular frameworks, which mainly constitute the binding site, the virtual screening on databases facilitates the identification of different commercial molecules that enclose such scaffolds and, by imposing a set of chemical and pharmacokinetic filters, obey some drug-like requirements mandatory to deal with MpND. The quantum mechanical calculations are useful to gauge the chelating properties of the selected candidate molecules by determining the structure of metal complexes and evaluating their stability constants. With the proposed strategy, commercial compounds containing N and S donor atoms in the binding sites and capable to cross the BBB have been identified and their chelating properties analyzed.

  7. Strategy for selecting Mars Pathfinder landing sites

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kuzmin, Ruslin O.

    1994-01-01

    A strategy for Pathfinder site selection must be developed that is fundamentally different from most previous considerations. At least two approaches can be identified. In one approach, the objective is to select a site representing a key geologic unit on Mars, i.e., a unit that is widespread, easily recognized, and used frequently as a datum in various investigations. The second approach is to select a site that potentially affords access to a wide variety of rock types. Because rover range is limited, rocks from a variety of sources must be assembled in a small area for sampling. Regardless of the approach taken in site selection, the Pathfinder site should include eolian deposits and provisions should be made to obtain measurements on soils. A recommended approach for selecting the Mars Pathfinder landing site is to identify a deltaic deposit, composed of sediments derived from sources of various ages and geologic units that shows evidence of eolian activity. The site should be located as close as possible to the part of the outwash where rapid deposition occurred because the likelihood of 'sorting' by size and composition increases with distance, decreasing the probability of heterogeneity. In addition, it is recommended that field operation tests be conducted to gain experience and insight into conducting science with Pathfinder.

  8. Selective Targeting of Antiviral and Immunomodulating Agents in the Treatment of Arenavirus Infections

    DTIC Science & Technology

    1987-10-01

    observed with free MTP-PE. In addition to our observations on peritoneal and alveolar macrophages, we also examined the effect of MTP-PE treatment on liver...Ir OIC FILE COPY C2 ILn 00 NM AD _____ N SELECTIVE TARGETING OF ANTIVIRAL AND IMMUNOMODULATING AGENTS IN THE TREATMENT OF ARENAVIRUS INFECTIONS "Kc...Selective Targeting of Antiviral and Immunomodulating Agents in the Treatment of Arenavirus Injections 12. PERSONAL AUTHOR(S) J. David Gangemi 13a. TYPE OF

  9. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    PubMed

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments.

    PubMed

    Rivera-Nieves, Jesús

    2015-11-01

    We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of inflammatory bowel diseases (IBD). We discuss the most important findings of one published phase II trial that targeted the β7 integrin (etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: mucosal addressin cell adhesion molecule 1 (MAdCAM-1, PF-00547659), a phase II trial targeting the chemokine IP-10 (CXCL10) in Crohn's, and a phase II trial that targeted the sphingosine-1-phosphate receptor-1: ozanimod in patients with ulcerative colitis. Targeting molecules involved in leukocyte traffic has recently become an effective and well tolerated strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn's. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin: immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules.

  11. Targeting kinase signaling pathways with constrained peptide scaffolds

    PubMed Central

    Hanold, Laura E.; Fulton, Melody D.; Kennedy, Eileen J.

    2017-01-01

    Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications. PMID:28185915

  12. Strategies to intervene on causal systems are adaptively selected.

    PubMed

    Coenen, Anna; Rehder, Bob; Gureckis, Todd M

    2015-06-01

    How do people choose interventions to learn about causal systems? Here, we considered two possibilities. First, we test an information sampling model, information gain, which values interventions that can discriminate between a learner's hypotheses (i.e. possible causal structures). We compare this discriminatory model to a positive testing strategy that instead aims to confirm individual hypotheses. Experiment 1 shows that individual behavior is described best by a mixture of these two alternatives. In Experiment 2 we find that people are able to adaptively alter their behavior and adopt the discriminatory model more often after experiencing that the confirmatory strategy leads to a subjective performance decrement. In Experiment 3, time pressure leads to the opposite effect of inducing a change towards the simpler positive testing strategy. These findings suggest that there is no single strategy that describes how intervention decisions are made. Instead, people select strategies in an adaptive fashion that trades off their expected performance and cognitive effort. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    PubMed Central

    Ruscito, Annamaria; DeRosa, Maria C.

    2016-01-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994

  14. The SDSS-IV extended baryon oscillation spectroscopic survey: Luminous red galaxy target selection

    DOE PAGES

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; ...

    2016-06-08

    Here, we describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71).more » We also demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ~89% of the target sample yields secure redshift measurements. Finally, we present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  15. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (medianmore » redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less

  16. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Lijun, E-mail: lijunma@radonc.ucsf.ed; Sahgal, Arjun; Hossain, Sabbir

    2009-11-15

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case,more » time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.« less

  17. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    PubMed

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  18. Rapid and selective updating of the target template in visual search.

    PubMed

    Sha, Li Z; Remington, Roger W; Jiang, Yuhong V

    2017-01-01

    Frequent target stimuli are detected more rapidly than infrequent ones. Here, we examined whether the frequency effect reflected durable attentional biases toward frequent target features, and whether the effect was confined to featural properties that defined the target. Participants searched for two specific target colors among distractors of heterogeneous colors and reported the line orientation of the target. The target was more often in one specific feature (e.g., a specific color or a specific orientation) than another in a training phase. This frequency difference was removed or reversed in a testing phase. Experiments 1 and 2 showed that when frequency differences were introduced to the target's defining feature, participants more rapidly found the high-frequency target than the low-frequency target. However, changes in attention were not durable-the search advantage vanished immediately when the frequency differences were removed. Experiments 3-5 showed that only featural properties that defined the target facilitated search of the more frequent feature. Features that did not define the target, such as the target feature that participants reported, sped up response but did not facilitate search. These data showed that when searching for multiple targets in a feature search task, people selectively and rapidly adapt to the frequency in the target's defining feature.

  19. A Targeted Quantitative Proteomics Strategy for Global Kinome Profiling of Cancer Cells and Tissues*

    PubMed Central

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2014-01-01

    Kinases are among the most intensively pursued enzyme superfamilies as targets for anti-cancer drugs. Large data sets on inhibitor potency and selectivity for more than 400 human kinases became available recently, offering the opportunity to design rationally novel kinase-based anti-cancer therapies. However, the expression levels and activities of kinases are highly heterogeneous among different types of cancer and even among different stages of the same cancer. The lack of effective strategy for profiling the global kinome hampers the development of kinase-targeted cancer chemotherapy. Here, we introduced a novel global kinome profiling method, based on our recently developed isotope-coded ATP-affinity probe and a targeted proteomic method using multiple-reaction monitoring (MRM), for assessing simultaneously the expression of more than 300 kinases in human cells and tissues. This MRM-based assay displayed much better sensitivity, reproducibility, and accuracy than the discovery-based shotgun proteomic method. Approximately 250 kinases could be routinely detected in the lysate of a single cell line. Additionally, the incorporation of iRT into MRM kinome library rendered our MRM kinome assay easily transferrable across different instrument platforms and laboratories. We further employed this approach for profiling kinase expression in two melanoma cell lines, which revealed substantial kinome reprogramming during cancer progression and demonstrated an excellent correlation between the anti-proliferative effects of kinase inhibitors and the expression levels of their target kinases. Therefore, this facile and accurate kinome profiling assay, together with the kinome-inhibitor interaction map, could provide invaluable knowledge to predict the effectiveness of kinase inhibitor drugs and offer the opportunity for individualized cancer chemotherapy. PMID:24520089

  20. Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purcell, M., E-mail: mary.purcell@cit.ie; Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4; Magette, W.L.

    Highlights: > Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. > Survey responses and GIS model predictions from previous research were the basis for goal setting. > Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. > Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes amore » resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these

  1. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.

    2012-03-01

    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithmmore » for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations

  2. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    NASA Astrophysics Data System (ADS)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  3. Bioinspired Gold Nanorod Functionalization Strategies for MUC1-Targeted Imaging and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Zelasko-Leon, Daria Cecylia

    The majority of cancers diagnosed in 2016 are epithelial in origin, constituting 85% of all new cases and predicted to account for 78% of all cancer deaths this year. Given these statistics, improving patient outcomes by providing personalized, multimodal, and minimally invasive medical interventions is critically needed. Mucin 1 (MUC1), a transmembrane glycoprotein, extends over 100 nm from cell membranes and is a key marker promoting epithelial carcinogenesis. Due to its antenna-like manifestation, MUC1 is a unique yet underexplored candidate for targeted cancer therapy, with overexpression in >64% of epithelial cancers. To overcome the limitations of existing treatment strategies for epithelial cancer, this dissertation describes a novel platform for nanomedicine, highlighting bioinspired modifications of gold nanorod (AuNR) surfaces for diagnostic cancer imaging and photothermal therapy. An ongoing challenge in the field of nanomedicine is the need for simple and effective strategies for simple surface modification of nanoparticles to facilitate targeting and enhance efficacy. Here, biofunctionalization of AuNRs was achieved with polydopamine (PD) and tannic acid (TA), polyphenolic compounds found in the marine mussel and throughout the plant kingdom that exhibit promiscuous interfacial binding properties. AuNR stabilization was achieved via PD or TA coatings followed by secondary modification with the serum protein, bovine serum albumin (BSA), or glycoprotein-mimetic polymers. The resultant constructs demonstrated good biocompatibility, enabled diagnostic imaging, and facilitated MUC1-specific photothermal treatment of breast and oral cancer cells. The in vivo performance of BSA and PD modified AuNRs was evaluated in two orthotopic animal models of breast cancer. Clinically relevant hyperthermia and high response rates with MUC1-targeted formulations were found, with significant enhancement of progression-free survival and several complete tumor regressions

  4. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    PubMed

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  5. Selection, Prioritization, and Characteristics of Kepler Target Stars

    DTIC Science & Technology

    2010-04-20

    contributions from zodiacal emission as well as background stars): r = F∗ F∗ + Fbg . (5) The photometric aperture is defined as the set of pixels that... The Astrophysical Journal Letters, 713:L109–L114, 2010 April 20 doi:10.1088/2041-8205/713/2/L109 C© 2010. The American Astronomical Society. All...rights reserved. Printed in the U.S.A. SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS Natalie M. Batalha1, William J. Borucki2

  6. Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets.

    PubMed

    Töllner, Thomas; Conci, Markus; Müller, Hermann J

    2015-03-01

    It is well established that we can focally attend to a specific region in visual space without shifting our eyes, so as to extract action-relevant sensory information from covertly attended locations. The underlying mechanisms that determine how fast we engage our attentional spotlight in visual-search scenarios, however, remain controversial. One dominant view advocated by perceptual decision-making models holds that the times taken for focal-attentional selection are mediated by an internal template that biases perceptual coding and selection decisions exclusively through target-defining feature coding. This notion directly predicts that search times remain unaffected whether or not participants can anticipate the upcoming distractor context. Here we tested this hypothesis by employing an illusory-figure localization task that required participants to search for an invariant target amongst a variable distractor context, which gradually changed--either randomly or predictably--as a function of distractor-target similarity. We observed a graded decrease in internal focal-attentional selection times--correlated with external behavioral latencies--for distractor contexts of higher relative to lower similarity to the target. Critically, for low but not intermediate and high distractor-target similarity, these context-driven effects were cortically and behaviorally amplified when participants could reliably predict the type of distractors. This interactive pattern demonstrates that search guidance signals can integrate information about distractor, in addition to target, identities to optimize distractor-target competition for focal-attentional selection. © 2014 Wiley Periodicals, Inc.

  7. Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites.

    PubMed

    Wang, QingBiao; Xu, Yiqin; Gu, Zhuoya; Liu, Nian; Jin, Ke; Li, Yao; Crabbe, M James C; Zhong, Yang

    2018-04-01

    Bacterial RNA polymerase (RNAP) is an effective target for antibacterial treatment. In order to search new potential targets in RNAP of Mycobacterium, we detected adaptive selections of RNAP related genes in 13 strains of Mycobacterium by phylogenetic analysis. We first collected sequences of 17 genes including rpoA, rpoB, rpoC, rpoZ, and sigma factor A-M. Then maximum likelihood trees were constructed, followed by positive selection detection. We found that sigG shows positive selection along the clade (M. tuberculosis, M. bovis), suggesting its important evolutionary role and its potential to be a new antibacterial target. Moreover, the regions near 933Cys and 935His on the rpoB subunit of M. tuberculosis showed significant positive selection, which could also be a new attractive target for anti-tuberculosis drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Genetic grouping strategies in selection efficiency of composite beef cattle ( × ).

    PubMed

    Petrini, J; Pertile, S F N; Eler, J P; Ferraz, J B S; Mattos, E C; Figueiredo, L G G; Mourão, G B

    2015-02-01

    The inclusion of genetic groups in sire evaluation has been widely used to represent genetic differences among animals not accounted for by the absence of parentage data. However, the definition of these groups is still arbitrary, and studies assessing the effects of genetic grouping strategies on the selection efficiency are rare. Therefore, the aim in this study was to compare genetic grouping strategies for animals with unknown parentage in prediction of breeding values (EBV). The total of 179,302 records of weaning weight (WW), 29,825 records of scrotal circumference (SC), and 70,302 records of muscling score (MUSC) from Montana Tropical animals, a Brazilian composite beef cattle population, were used. Genetic grouping strategies involving year of birth, sex of the unknown parent, birth farm, breed composition, and their combinations were evaluated. Estimated breeding values were predicted for each approach simulating a loss of genealogy data. Thereafter, these EBV were compared to those obtained in an analysis involving a real relationship matrix to estimate selection efficiency and correlations between EBV and animal rankings. The analysis model included the fixed effects of contemporary groups and class of the dam age at calving, the covariates of additive and nonadditive genetic effects, and age, and the additive genetic effect of animal as random effects. A second model also included the fixed effects of genetic group. The use of genetic groups resulted in means of selection efficiency and correlation of 70.4 to 97.1% and 0.51 to 0.94 for WW, 85.8 to 98.8% and 0.82 to 0.98 for SC, and 85.1 to 98.6% and 0.74 to 0.97 for MUSC, respectively. High selection efficiencies were observed for year of birth and breed composition strategies. The maximum absolute difference in annual genetic gain estimated through the use of complete genealogy and genetic groups were 0.38 kg for WW, 0.02 cm for SC, and 0.01 for MUSC, with lower differences obtained when year of birth

  9. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

    PubMed Central

    Thaker, Nikhil G; Pollack, Ian F

    2010-01-01

    Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient’s tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG. PMID:19951140

  10. Phage display selection of peptides that target calcium-binding proteins.

    PubMed

    Vetter, Stefan W

    2013-01-01

    Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

  11. A Cell-targeted Photodynamic Nanomedicine Strategy for Head & Neck Cancers

    PubMed Central

    Master, Alyssa; Malamas, Anthony; Solanki, Rachna; Clausen, Dana M.; Eiseman, Julie L.; Gupta, Anirban Sen

    2013-01-01

    Photodynamic Therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intra-tumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise towards a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas. PMID:23531079

  12. Emerging strategies for EphA2 receptor targeting for cancer therapeutics.

    PubMed

    Tandon, Manish; Vemula, Sai Vikram; Mittal, Suresh K

    2011-01-01

    High mortality rates with cancers warrant further development of earlier diagnostics and better treatment strategies. Membrane-bound erythropoietin-producing hepatocellular receptor tyrosine kinase class A2 (EphA2) is overexpressed in breast, prostate, urinary bladder, skin, lung, ovary and brain cancers. EphA2 overexpression in cancers, its signaling mechanisms and strategies to target its deregulation. High EphA2 expression in cancer cells is correlated with a poor prognosis associated with recurrence due to enhanced metastasis. Interaction of the EphA2 receptor with its ligand (e.g., ephrinA1) triggers events that are deregulated and implicated in carcinogenesis. EphrinA1-independent oncogenic activity and ephrinA1-dependent tumor suppressor roles for EphA2 are described. Molecular interactions of EphA2 with signaling proteins are associated with the modulation of cytoskeleton dynamics, cell adhesion, proliferation, differentiation and metastasis. The deregulated signaling by EphA2 and its involvement in oncogenesis provide multiple avenues for the rational design of intervention approaches. EphA2 has been tested as a drug target using multiple approaches such as agonist antibodies, RNA interference, immunotherapy, virus vector-mediated gene transfer, small-molecule inhibitors and nanoparticles. With over a decade of research, encouraging results with targeting of EphA2 expression in various pre-clinical cancer models necessitate further studies.

  13. Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters

    ERIC Educational Resources Information Center

    Smith, Nicholas A.; Trainor, Laurel J.

    2011-01-01

    This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

  14. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  15. Competition between color and luminance for target selection in smooth pursuit and saccadic eye movements.

    PubMed

    Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R

    2008-11-24

    Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.

  16. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs

    PubMed Central

    Meltzer, Herbert Y.; Roth, Bryan L.

    2013-01-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype–selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson’s disease psychosis, respectively. PMID:24292660

  17. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.

    PubMed

    Meltzer, Herbert Y; Roth, Bryan L

    2013-12-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively.

  18. In vivo evaluation of a cancer therapy strategy combining HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy.

    PubMed

    Sorensen, Annette; Mairs, Robert J; Braidwood, Lynne; Joyce, Craig; Conner, Joe; Pimlott, Sally; Brown, Moira; Boyd, Marie

    2012-04-01

    Oncolytic herpes viruses show promise for cancer treatment. However, it is unlikely that they will fulfill their therapeutic potential when used as monotherapies. An alternative strategy is to use these viruses not only as oncolytic agents but also as a delivery mechanism of therapeutic transgenes to enhance tumor cell killing. The herpes simplex virus 1 deletion mutant HSV1716 is a conditionally replicating oncolytic virus that selectively replicates in and lyses dividing tumor cells. It has a proven safety profile in clinical trials and has demonstrated efficacy as a gene-delivery vehicle. To enhance its therapeutic potential, we have engineered HSV1716 to convey the noradrenaline transporter (NAT) gene (HSV1716/NAT), whose expression endows infected cells with the capacity to accumulate the noradrenaline analog metaiodobenzylguanidine (MIBG). Thus, the NAT gene-infected cells are susceptible to targeted radiotherapy using radiolabeled (131)I-MIBG, a strategy that has already shown promise for combined targeted radiotherapy-gene therapy in cancer cells after plasmid-mediated transfection. We used HSV1716/NAT as a dual cell lysis-gene delivery vehicle for targeting the NAT transgene to human tumor xenografts in vivo. In tumor xenografts that did not express NAT, intratumoral or intravenous injection of HSV1716/NAT induced the capacity for active uptake of (131)I-MIBG. Administration of HSV1716/NAT and (131)I-MIBG resulted in decreased tumor growth and enhanced survival relative to injection of either agent alone. Efficacy was dependent on the scheduling of delivery of the 2 agents. These findings support a role for combination radiotherapy-gene therapy for cancer using HSV1716 expressing the NAT transgene and targeted radionuclide therapy.

  19. Perceptions Regarding Selected Educational Strategies Used by Extension Educators

    ERIC Educational Resources Information Center

    Kwaw-Mensah, David; Martin, Robert A.

    2013-01-01

    Purpose: The purpose of this study was to identify the perceptions that extension educators in the North Central region of the United States hold regarding selected educational strategies pertaining to livestock waste management education. Livestock waste management education has been recognized as one of extension's major initiatives in the…

  20. Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies

    PubMed Central

    Eide, Christopher A.; Kaempf, Andy; Khanna, Vishesh; Savage, Samantha L.; Rofelty, Angela; English, Isabel; Ho, Hibery; Pandya, Ravi; Bolosky, William J.; Poon, Hoifung; Deininger, Michael W.; Collins, Robert; Swords, Ronan T.; Watts, Justin; Pollyea, Daniel A.; Medeiros, Bruno C.; Traer, Elie; Tognon, Cristina E.; Mori, Motomi; Druker, Brian J.; Tyner, Jeffrey W.

    2017-01-01

    Translating the genetic and epigenetic heterogeneity underlying human cancers into therapeutic strategies is an ongoing challenge. Large-scale sequencing efforts have uncovered a spectrum of mutations in many hematologic malignancies, including acute myeloid leukemia (AML), suggesting that combinations of agents will be required to treat these diseases effectively. Combinatorial approaches will also be critical for combating the emergence of genetically heterogeneous subclones, rescue signals in the microenvironment, and tumor-intrinsic feedback pathways that all contribute to disease relapse. To identify novel and effective drug combinations, we performed ex vivo sensitivity profiling of 122 primary patient samples from a variety of hematologic malignancies against a panel of 48 drug combinations. The combinations were designed as drug pairs that target nonoverlapping biological pathways and comprise drugs from different classes, preferably with Food and Drug Administration approval. A combination ratio (CR) was derived for each drug pair, and CRs were evaluated with respect to diagnostic categories as well as against genetic, cytogenetic, and cellular phenotypes of specimens from the two largest disease categories: AML and chronic lymphocytic leukemia (CLL). Nearly all tested combinations involving a BCL2 inhibitor showed additional benefit in patients with myeloid malignancies, whereas select combinations involving PI3K, CSF1R, or bromodomain inhibitors showed preferential benefit in lymphoid malignancies. Expanded analyses of patients with AML and CLL revealed specific patterns of ex vivo drug combination efficacy that were associated with select genetic, cytogenetic, and phenotypic disease subsets, warranting further evaluation. These findings highlight the heuristic value of an integrated functional genomic approach to the identification of novel treatment strategies for hematologic malignancies. PMID:28784769

  1. The Development of Children's Strategies for Selective Attention: Evidence for a Transitional Period.

    ERIC Educational Resources Information Center

    DeMarie-Dreblow, Darlene; Miller, Patricia H.

    1988-01-01

    This study of 114 children between seven and nine years used a procedure for directly observing child-produced and experimenter-produced strategies to examine the transitional period of strategy development. Findings revealed gradual changes in children's ability to produce, and to benefit from, a strategy of selective attention. (RH)

  2. The Effects of Relationship Type, Partner Intent, and Gender on the Selection of Relationship Maintenance Strategies.

    ERIC Educational Resources Information Center

    Shea, B. Christine; Pearson, Judy C.

    1986-01-01

    Indicates that relationship type did not affect the maintenance strategies that partners chose; however, the partners' relationship intent and the sex-composition of the dyad had a significant impact on the selection of directness strategies. Suggests that individuals are not necessarily more likely to select directness strategies than balance or…

  3. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    PubMed Central

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730

  4. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    PubMed

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  5. Strategies for Selecting Routes through Real-World Environments: Relative Topography, Initial Route Straightness, and Cardinal Direction

    PubMed Central

    Brunyé, Tad T.; Collier, Zachary A.; Cantelon, Julie; Holmes, Amanda; Wood, Matthew D.; Linkov, Igor; Taylor, Holly A.

    2015-01-01

    Previous research has demonstrated that route planners use several reliable strategies for selecting between alternate routes. Strategies include selecting straight rather than winding routes leaving an origin, selecting generally south- rather than north-going routes, and selecting routes that avoid traversal of complex topography. The contribution of this paper is characterizing the relative influence and potential interactions of these strategies. We also examine whether individual differences would predict any strategy reliance. Results showed evidence for independent and additive influences of all three strategies, with a strong influence of topography and initial segment straightness, and relatively weak influence of cardinal direction. Additively, routes were also disproportionately selected when they traversed relatively flat regions, had relatively straight initial segments, and went generally south rather than north. Two individual differences, extraversion and sense of direction, predicted the extent of some effects. Under real-world conditions navigators indeed consider a route’s initial straightness, cardinal direction, and topography, but these cues differ in relative influence and vary in their application across individuals. PMID:25992685

  6. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    PubMed

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  8. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  9. Extreme selective sweeps independently targeted the X chromosomes of the great apes

    PubMed Central

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger; Dutheil, Julien Yann; Veeramah, Krishna R.; Woerner, August E.; Hammer, Michael F.; Mailund, Thomas; Schierup, Mikkel Heide

    2015-01-01

    The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis. PMID:25941379

  10. Emerging strategies for EphA2 receptor targeting for cancer therapeutics

    PubMed Central

    Tandon, Manish; Vemula, Sai Vikram; Mittal, Suresh K.

    2010-01-01

    Importance of the field High mortality rates with cancers warrant further development of earlier diagnostics and better treatment strategies. Membrane-bound hepatocellular receptor tyrosine kinase class A2 (EphA2) is overexpressed in breast, prostate, urinary bladder, skin, lung, ovary and brain cancers. Areas covered in this review This review describes EphA2 overexpression in cancers, its signaling mechanisms and strategies to target its deregulation. What will the reader will gain High EphA2 expression in cancer cells is correlated to a poor prognosis associated with recurrence due to enhanced metastasis. Interaction of the EphA2 receptor with its ligand (e.g., EphrinA1) triggers events that are deregulated and implicated in carcinogenesis. Both EphrinA1-independent oncogenic activity and EphrinA1-dependent tumor suppressor roles for EphA2 are described. Molecular interactions of EphA2 with signaling proteins are associated with the modulation of cytoskeleton dynamics, cell adhesion, proliferation, differentiation and metastasis. The deregulated signaling by EphA2 and its involvement in oncogenesis provide multiple avenues for the rational design of intervention approaches. Take home message EphA2 has been tested as a drug target using multiple approaches such as agonist antibodies, RNA interference, immunotherapy, virus vectors-mediated gene transfer, small molecule inhibitors and nanoparticles. With over a decade of research, encouraging results with successful targeting of EphA2 expression in various pre-clinical cancer models necessitate further studies. PMID:21142802

  11. Tobacco industry targeting youth in Argentina.

    PubMed

    Braun, S; Mejia, R; Ling, P M; Pérez-Stable, E J

    2008-04-01

    Argentina has one of the highest cigarette smoking rates among both men and women in the Americas and no legislated restrictions on tobacco industry advertising. The tobacco industry has traditionally expanded markets by targeting adolescents and young adults. The objective of this study was to determine whether and how the tobacco industry promotes cigarettes to adolescents in Argentina. We conducted a systematic search of tobacco industry documents available through the internet dated between 1995 and 2004 using standard search terms to identify marketing strategies in Argentina. A selected review of the four leading newspapers and nine magazines with reported high readership among adolescents was completed. The selected print media were searched for tobacco images and these were classified as advertisements if associated with a commercial product or as a story if not. The tobacco industry used market segmentation as a strategy to target Argentinean consumers. British American Tobacco (BAT) undertook a young adult psychographic study and classified them as "progressives", "Jurassics" or "conservatives" and "crudos" or "spoiled brats". BAT marketed Lucky Strike to the "progressives" using Hollywood movies as a vehicle. The tobacco industry also targeted their national brands to the conservatives and linked these brands with "nationalistic values" in advertising campaigns. Philip Morris promoted Marlboro by sponsoring activities directed at young people and they launched the 10 cigarettes packet as a starter vehicle. The tobacco industry used psychographic segmentation of the population and developed advertising strategies focused on youth. Tobacco control researchers and advocates must be able to address these strategies in counter-marketing interventions.

  12. Four-Week Strategy-Based Training to Enhance Prospective Memory in Older Adults: Targeting Intention Retention Is More Beneficial than Targeting Intention Formation.

    PubMed

    Ihle, Andreas; Albiński, Rafal; Gurynowicz, Kamila; Kliegel, Matthias

    2018-01-01

    So far, training of prospective memory (PM) focused on very short instances (single sessions) and targeted the intention-formation phase only. We aimed to compare the effectiveness of 2 different 4-week strategy-based PM training types, namely imagery training (targeting the encoding of the PM intention in the intention-formation phase) versus rehearsal training (targeting the maintenance of the PM intention in the intention-retention phase) in older adults. We used a 4-week training protocol (8 sessions in total, 2 sessions per week). From the 44 participants, 21 were randomly assigned to the imagery training (vividly imagining a mental picture to memorize the connection between the PM cue words and related actions during intention formation) and 23 to the rehearsal training (rehearsing the PM cue words during intention retention). The criterion PM task was assessed before and after the training. Comparing the effectiveness of both training types, we found a significant time by training type interaction on PM accuracy in terms of PM cue detection, F(1, 42) = 6.07, p = 0.018, η2p = 0.13. Subsequent analyses revealed that the rehearsal training was more effective in enhancing PM accuracy in terms of PM cue detection than the imagery training. Strategy-based PM training in older adults targeting the maintenance of the PM intention in the intention-retention phase may be more effective in enhancing PM accuracy in terms of PM cue detection than the strategy targeting the encoding of the PM intention in the intention-formation phase. This suggests that for successful prospective remembering, older adults may need more support to keep the PM cues active in memory while working on the ongoing task than to initially encode the PM intention. © 2018 S. Karger AG, Basel.

  13. Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells

    PubMed Central

    Fink, Brian D.; O'Malley, Yunxia; Dake, Brian L.; Ross, Nicolette C.; Prisinzano, Thomas E.; Sivitz, William I.

    2009-01-01

    Background Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. Methods and Results To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. Conclusions In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells

  14. Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.

    PubMed

    Fink, Brian D; O'Malley, Yunxia; Dake, Brian L; Ross, Nicolette C; Prisinzano, Thomas E; Sivitz, William I

    2009-01-01

    Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over

  15. Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes

    PubMed Central

    Poreba, Marcin; Solberg, Rigmor; Rut, Wioletta; Lunde, Ngoc Nguyen; Kasperkiewicz, Paulina; Snipas, Scott J.; Mihelic, Marko; Turk, Dusan; Turk, Boris; Salvesen, Guy S.; Drag, Marcin

    2018-01-01

    SUMMARY Legumain (AEP) is a lysosomal cysteine protease that is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP up-regulation is linked to a number of diseases including inflammation, arteriosclerosis and tumorigenesis. Thus legumain is an excellent molecular target for the development of new chemical markers. We deployed a hybrid combinatorial substrate library (HyCoSuL) approach to obtain P1-Asp fluorogenic substrates and biotin-labeled inhibitors that targeted legumain. Since this approach led to probes that were also recognized by caspases, we introduced a Counter Selection Substrate Library (CoSeSuL) approach that biases the peptidic scaffold against caspases, thus delivering highly selective legumain probes. The selectivity of these tools was validated using M38L and HEK293 cells. We also propose that the CoSeSuL methodology can be considered as a general principle in the design of selective probes for other protease families where selectivity is difficult to achieve by conventional sequence-based profiling. PMID:27478158

  16. Using cost-effectiveness analysis to evaluate targeting strategies: the case of vitamin A supplementation.

    PubMed

    Loevinsohn, B P; Sutter, R W; Costales, M O

    1997-03-01

    Given the demonstrated efficacy of vitamin A supplements in reducing childhood mortality, health officials now have to decide whether it would be efficient to target the supplements to high risk children. Decisions about targeting are complex because they depend on a number of factors; the degree of clustering of preventable deaths, the cost of the intervention, the side-effects of the intervention, the cost of identifying the high risk group, and the accuracy of the 'diagnosis' of risk. A cost-effectiveness analysis was used in the Philippines to examine whether vitamin A supplements should be given universally to all children 6-59 months, targeted broadly to children suffering from mild, moderate, or severe malnutrition, or targeted narrowly to pre-schoolers with moderate and severe malnutrition. The first year average cost of the universal approach was US$67.21 per death averted compared to $144.12 and $257.20 for the broad and narrow targeting approaches respectively. When subjected to sensitivity analysis the conclusion about the most cost-effective strategy was robust to changes in underlying assumptions such as the efficacy of supplements, clustering of deaths, and toxicity. Targeting vitamin A supplements to high risk children is not an efficient use of resources. Based on the results of this cost-effectiveness analysis and a consideration of alternate strategies, it is apparent that vitamin A, like immunization, should be provided to all pre-schoolers in the developing world. Issues about targeting public health interventions can usefully be addressed by cost-effectiveness analysis.

  17. Public Speaking Apprehension, Decision-Making Errors in the Selection of Speech Introduction Strategies and Adherence to Strategy.

    ERIC Educational Resources Information Center

    Beatty, Michael J.

    1988-01-01

    Examines the choice-making processes of students engaged in the selection of speech introduction strategies. Finds that the frequency of students making decision-making errors was a positive function of public speaking apprehension. (MS)

  18. Age-Related Changes in Children's Executive Functions and Strategy Selection: A Study in Computational Estimation

    ERIC Educational Resources Information Center

    Lemaire, Patrick; Lecacheur, Mireille

    2011-01-01

    Third, fifth, and seventh graders selected the best strategy (rounding up or rounding down) for estimating answers to two-digit addition problems. Executive function measures were collected for each individual. Data showed that (a) children's skill at both strategy selection and execution improved with age and (b) increased efficiency in executive…

  19. Oligonucleotide-based strategies to combat polyglutamine diseases

    PubMed Central

    Fiszer, Agnieszka; Krzyzosiak, Wlodzimierz J.

    2014-01-01

    Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straightforward approach aimed at halting the early steps in the cascade of pathogenic events has been widely tested for Huntington's disease and spinocerebellar ataxia type 3. In this review, we gather information on the use of antisense oligonucleotides and RNA interference triggers for the experimental treatment of polyQ diseases in cellular and animal models. We present studies testing non-allele-selective and allele-selective gene silencing strategies. The latter include targeting SNP variants associated with mutations or targeting the pathologically expanded CAG repeat directly. We compare gene silencing effectors of various types in a number of aspects, including their design, efficiency in cell culture experiments and pre-clinical testing. We discuss advantages, current limitations and perspectives of various ON-based strategies used to treat polyQ diseases. PMID:24848018

  20. Long-Term Memories Bias Sensitivity and Target Selection in Complex Scenes

    PubMed Central

    Patai, Eva Zita; Doallo, Sonia; Nobre, Anna Christina

    2014-01-01

    In everyday situations we often rely on our memories to find what we are looking for in our cluttered environment. Recently, we developed a new experimental paradigm to investigate how long-term memory (LTM) can guide attention, and showed how the pre-exposure to a complex scene in which a target location had been learned facilitated the detection of the transient appearance of the target at the remembered location (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006; Summerfield, Rao, Garside, & Nobre, 2011). The present study extends these findings by investigating whether and how LTM can enhance perceptual sensitivity to identify targets occurring within their complex scene context. Behavioral measures showed superior perceptual sensitivity (d′) for targets located in remembered spatial contexts. We used the N2pc event-related potential to test whether LTM modulated the process of selecting the target from its scene context. Surprisingly, in contrast to effects of visual spatial cues or implicit contextual cueing, LTM for target locations significantly attenuated the N2pc potential. We propose that the mechanism by which these explicitly available LTMs facilitate perceptual identification of targets may differ from mechanisms triggered by other types of top-down sources of information. PMID:23016670

  1. Stimulus selection and tracking during urination: autoshaping directed behavior with toilet targets.

    PubMed Central

    Siegel, R K

    1977-01-01

    A simple procedure is described for investigating stimuli selected as targets during urination in the commode. Ten normal males preferred a floating target that could be tracked to a series of stationary targets. This technique was used to bring misdirected urinations in a severely retarded male under rapid stimulus control of a floating target in the commode. The float stimulus was also evaluated with nine institionalized, moderately retarded males and results indicated rapid autoshaping of directed urination without the use of verbal instructions or conventional toilet training. The technique can be applied in training children to control misdirected urinations in institution for the retarded, in psychiatric wards with regressed populations, and in certain male school dormitories. PMID:885828

  2. Stimulus selection and tracking during urination: autoshaping directed behavior with toilet targets.

    PubMed

    Siegel, R K

    1977-01-01

    A simple procedure is described for investigating stimuli selected as targets during urination in the commode. Ten normal males preferred a floating target that could be tracked to a series of stationary targets. This technique was used to bring misdirected urinations in a severely retarded male under rapid stimulus control of a floating target in the commode. The float stimulus was also evaluated with nine institionalized, moderately retarded males and results indicated rapid autoshaping of directed urination without the use of verbal instructions or conventional toilet training. The technique can be applied in training children to control misdirected urinations in institution for the retarded, in psychiatric wards with regressed populations, and in certain male school dormitories.

  3. The sequence relay selection strategy based on stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Zhu, Rui; Chen, Xihao; Huang, Yangchao

    2017-07-01

    Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.

  4. Decision method for optimal selection of warehouse material handling strategies by production companies

    NASA Astrophysics Data System (ADS)

    Dobos, P.; Tamás, P.; Illés, B.

    2016-11-01

    Adequate establishment and operation of warehouse logistics determines the companies’ competitiveness significantly because it effects greatly the quality and the selling price of the goods that the production companies produce. In order to implement and manage an adequate warehouse system, adequate warehouse position, stock management model, warehouse technology, motivated work force committed to process improvement and material handling strategy are necessary. In practical life, companies have paid small attantion to select the warehouse strategy properly. Although it has a major influence on the production in the case of material warehouse and on smooth costumer service in the case of finished goods warehouse because this can happen with a huge loss in material handling. Due to the dynamically changing production structure, frequent reorganization of warehouse activities is needed, on what the majority of the companies react basically with no reactions. This work presents a simulation test system frames for eligible warehouse material handling strategy selection and also the decision method for selection.

  5. Targeted Recovery as an Effective Strategy against Epidemic Spreading.

    PubMed

    Böttcher, L; Andrade, J S; Herrmann, H J

    2017-10-30

    We propose a targeted intervention protocol where recovery is restricted to individuals that have the least number of infected neighbours. Our recovery strategy is highly efficient on any kind of network, since epidemic outbreaks are minimal when compared to the baseline scenario of spontaneous recovery. In the case of spatially embedded networks, we find that an epidemic stays strongly spatially confined with a characteristic length scale undergoing a random walk. We demonstrate numerically and analytically that this dynamics leads to an epidemic spot with a flat surface structure and a radius that grows linearly with the spreading rate.

  6. Novel ion channel targets in atrial fibrillation.

    PubMed

    Hancox, Jules C; James, Andrew F; Marrion, Neil V; Zhang, Henggui; Thomas, Dierk

    2016-08-01

    Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel β subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.

  7. Complex background suppression using global-local registration strategy for the detection of small-moving target on moving platform

    NASA Astrophysics Data System (ADS)

    Zou, Tianhao; Zuo, Zhengrong

    2018-02-01

    Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.

  8. Prodrug Strategies for Paclitaxel.

    PubMed

    Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-05-23

    Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.

  9. Domain selection combined with improved cloning strategy for high throughput expression of higher eukaryotic proteins

    PubMed Central

    Chen, Yunjia; Qiu, Shihong; Luan, Chi-Hao; Luo, Ming

    2007-01-01

    Background Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics. Results With bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies. Conclusion The DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics. PMID:17663785

  10. Targeting vacuolar H+-ATPases as a new strategy against cancer.

    PubMed

    Fais, Stefano; De Milito, Angelo; You, Haiyan; Qin, Wenxin

    2007-11-15

    Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.

  11. Membrane-targeted strategies for modulating APP and Aβ-mediated toxicity

    PubMed Central

    Price, Katherine A; Crouch, Peter J; Donnelly, Paul S; Masters, Colin L; White, Anthony R; Curtain, Cyril C

    2009-01-01

    Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD. PMID:19278455

  12. Epidermal growth factor receptor and variant III targeted immunotherapy

    PubMed Central

    Congdon, Kendra L.; Gedeon, Patrick C.; Suryadevara, Carter M.; Caruso, Hillary G.; Cooper, Laurence J.N.; Heimberger, Amy B.; Sampson, John H.

    2014-01-01

    Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. PMID:25342601

  13. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.

    PubMed

    Zhang, Liang; Habib, Amyn A; Zhao, Dawen

    2016-06-21

    Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.

  14. PSMA-targeted bispecific Fab conjugates that engage T cells.

    PubMed

    Patterson, James T; Isaacson, Jason; Kerwin, Lisa; Atassi, Ghazi; Duggal, Rohit; Bresson, Damien; Zhu, Tong; Zhou, Heyue; Fu, Yanwen; Kaufmann, Gunnar F

    2017-12-15

    Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity. Copyright © 2017. Published by Elsevier Ltd.

  15. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.

    PubMed

    Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D

    2013-11-01

    Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.

  16. Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine

    PubMed Central

    Sun, Xu-Yong; Nong, Jiang; Qin, Ke; Warnock, Garth L; Dai, Long-Jun

    2011-01-01

    Cancer remains one of the leading causes of mortality and morbidity throughout the world. To a significant extent, current conventional cancer therapies are symptomatic and passive in nature. The major obstacle to the development of effective cancer therapy is believed to be the absence of sufficient specificity. Since the discovery of the tumor-oriented homing capacity of mesenchymal stem cells (MSCs), the application of specific anticancer gene-engineered MSCs has held great potential for cancer therapies. The dual-targeted strategy is based on MSCs’ capacity of tumor-directed migration and incorporation and in situ expression of tumor-specific anticancer genes. With the aim of translating bench work into meaningful clinical applications, we describe the tumor tropism of MSCs and their use as therapeutic vehicles, the dual-targeted anticancer potential of engineered MSCs and a putative personalized strategy with anticancer gene-engineered MSCs. PMID:22180830

  17. Stress, Time Pressure, Strategy Selection and Math Anxiety in Mathematics: A Review of the Literature.

    PubMed

    Caviola, Sara; Carey, Emma; Mammarella, Irene C; Szucs, Denes

    2017-01-01

    We review how stress induction, time pressure manipulations and math anxiety can interfere with or modulate selection of problem-solving strategies (henceforth "strategy selection") in arithmetical tasks. Nineteen relevant articles were identified, which contain references to strategy selection and time limit (or time manipulations), with some also discussing emotional aspects in mathematical outcomes. Few of these take cognitive processes such as working memory or executive functions into consideration. We conclude that due to the sparsity of available literature our questions can only be partially answered and currently there is not much evidence of clear associations. We identify major gaps in knowledge and raise a series of open questions to guide further research.

  18. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system.

    PubMed

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-10-15

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

  19. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system

    PubMed Central

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-01-01

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system. PMID:27795813

  20. Methods to Improve the Selection and Tailoring of Implementation Strategies

    PubMed Central

    Powell, Byron J.; Beidas, Rinad S.; Lewis, Cara C.; Aarons, Gregory A.; McMillen, J. Curtis; Proctor, Enola K.; Khinduka, Shanti K.; Mandell, David S.

    2015-01-01

    Implementing behavioral health interventions is a complicated process. It has been suggested that implementation strategies should be selected and tailored to address the contextual needs of a given change effort; however, there is limited guidance as to how to do this. This article proposes four methods (concept mapping, group model building, conjoint analysis, and intervention mapping) that could be used to match implementation strategies to identified barriers and facilitators for a particular evidence-based practice or process change being implemented in a given setting. Each method is reviewed, examples of their use are provided, and their strengths and weaknesses are discussed. The discussion includes suggestions for future research pertaining to implementation strategies and highlights these methods' relevance to behavioral health services and research. PMID:26289563

  1. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination.

    PubMed

    Kato, Shigeki; Kuramochi, Masahito; Kobayashi, Kenta; Fukabori, Ryoji; Okada, Kana; Uchigashima, Motokazu; Watanabe, Masahiko; Tsutsui, Yuji; Kobayashi, Kazuto

    2011-11-23

    The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorsolateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrimination task. When the pathway elimination was induced after learning acquisition, it disturbed the response accuracy in the task performance with no apparent change in the response time. The elimination did not influence spontaneous locomotion, methamphetamine-induced hyperactivity, and motor skill learning that demand the function of the dorsal striatum. These results demonstrate that thalamostriatal projection derived from the PF plays essential roles in the acquisition and execution of discrimination learning in response to sensory stimulus. The temporal difference in the pathway requirement for visual discrimination suggests a stage-specific role of thalamostriatal pathway in the modulation of response time of learned motor actions.

  2. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    PubMed Central

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2012-01-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010

  3. Impact of high-risk conjunctions on Active Debris Removal target selection

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-10-01

    Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.

  4. Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases.

    PubMed

    Kelley, William J; Safari, Hanieh; Lopez-Cazares, Genesis; Eniola-Adefeso, Omolola

    2016-11-01

    Vascular-targeted nanocarriers are an attractive option for the treatment of a number of cardiovascular diseases, as they allow for more specific delivery and increased efficacy of many small molecule drugs. However, immune clearance, limited cellular uptake, and particle-cell dynamics in blood flow can hinder nanocarrier efficacy in many applications. This review aims to investigate successful strategies for the use of vascular-targeted nanocarriers in the treatment of cardiovascular diseases such as atherosclerosis. In particular, the review will highlight strategies employed for actively targeting the components of the atherosclerotic plaque, including endothelial cells, macrophages, and platelets and passive targeting via endothelial permeability, as well as design specifications (such as size, shape, and density) aimed at enhancing the ability of nanocarriers to reach the vascular wall. WIREs Nanomed Nanobiotechnol 2016, 8:909-926. doi: 10.1002/wnan.1414 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  5. Therapists' causal attributions of clients' problems and selection of intervention strategies.

    PubMed

    Royce, W S; Muehlke, C V

    1991-04-01

    Therapists' choices of intervention strategies are influenced by many factors, including judgments about the bases of clients' problems. To assess the relationships between such causal attributions and the selection of intervention strategies, 196 counselors, psychologists, and social workers responded to the written transcript of a client's interview by answering two questionnaires, a 1982 scale (Causal Dimension Scale by Russell) which measured causal attribution of the client's problem, and another which measured preference for emotional, rational, and active intervention strategies in dealing with the client, based on the 1979 E-R-A taxonomy of Frey and Raming. A significant relationship was found between the two sets of variables, with internal attributions linked to rational intervention strategies and stable attributions linked to active strategies. The results support Halleck's 1978 hypothesis that theories of psychotherapy tie interventions to etiological considerations.

  6. Out with the old? The role of selective attention in retaining targets in partial report.

    PubMed

    Lindsey, Dakota R B; Bundesen, Claus; Kyllingsbæk, Søren; Petersen, Anders; Logan, Gordon D

    2017-01-01

    In the partial-report task, subjects are asked to report only a portion of the items presented. Selective attention chooses which objects to represent in short-term memory (STM) on the basis of their relevance. Because STM is limited in capacity, one must sometimes choose which objects are removed from memory in light of new relevant information. We tested the hypothesis that the choices among newly presented information and old information in STM involve the same process-that both are acts of selective attention. We tested this hypothesis using a two-display partial-report procedure. In this procedure, subjects had to select and retain relevant letters (targets) from two sequentially presented displays. If selection in perception and retention in STM are the same process, then irrelevant letters (distractors) in the second display, which demanded attention because of their similarity to the targets, should have decreased target report from the first display. This effect was not obtained in any of four experiments. Thus, choosing objects to keep in STM is not the same process as choosing new objects to bring into STM.

  7. Target Search & Selection for the DI/EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

    2012-01-01

    Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

  8. Margin selection to compensate for loss of target dose coverage due to target motion during external‐beam radiation therapy of the lung

    PubMed Central

    Osei, Ernest; Barnett, Rob

    2015-01-01

    The aim of this study is to provide guidelines for the selection of external‐beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm. PACS numbers: 87.53.Bn, 87.53.Kn, 87.55.D‐, 87.55.Gh

  9. Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy

    PubMed Central

    Deep, Gagan; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden. PMID:23617249

  10. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  11. Radiology Reports With Hyperlinks Improve Target Lesion Selection and Measurement Concordance in Cancer Trials.

    PubMed

    Machado, Laura B; Apolo, Andrea B; Steinberg, Seth M; Folio, Les R

    2017-02-01

    Radiology reports often lack the measurements of target lesions that are needed for oncology clinical trials. When available, the measurements in the radiology reports often do not match those in the records used to calculate therapeutic response. This study assessed the clinical value of hyperlinked tumor measurements in multimedia-enhanced radiology reports in the PACS and the inclusion of a radiologist assistant in the process of assessing tumor burden. We assessed 489 target lesions in 232 CT examinations of 71 patients with metastatic genitourinary cancer enrolled in two therapeutic trials. We analyzed target lesion selection and measurement concordance between oncology records (used to calculate therapeutic response) and two types of radiology reports in the PACS: multimedia-enhanced radiology reports and text-only reports. For statistical tests, we used the Wilcoxon signed rank, Wilcoxon rank sum test, and Fisher method to combine p values from the paired and unpaired results. The Fisher exact test was used to compare overall measurement concordance. Concordance on target lesion selection was greater for multimedia-enhanced radiology reports (78%) than the text-only reports (52%) (p = 0.0050). There was also improved overall measurement concordance with the multimedia-enhanced radiology reports (68%) compared with the text-only reports (38%) (p < 0.0001). Compared with text-only reports, hyperlinked multimedia-enhanced radiology reports improved concordance of target lesion selection and measurement with the measurements used to calculate therapeutic response.

  12. Tobacco industry targeting youth in Argentina

    PubMed Central

    Braun, S; Mejia, R; Ling, P M; Pérez-Stable, E J

    2013-01-01

    Background/aim Argentina has one of the highest cigarette smoking rates among both men and women in the Americas and no legislated restrictions on tobacco industry advertising. The tobacco industry has traditionally expanded markets by targeting adolescents and young adults. The objective of this study was to determine whether and how the tobacco industry promotes cigarettes to adolescents in Argentina. Methods We conducted a systematic search of tobacco industry documents available through the internet dated between 1995 and 2004 using standard search terms to identify marketing strategies in Argentina. A selected review of the four leading newspapers and nine magazines with reported high readership among adolescents was completed. The selected print media were searched for tobacco images and these were classified as advertisements if associated with a commercial product or as a story if not. Results The tobacco industry used market segmentation as a strategy to target Argentinean consumers. British American Tobacco (BAT) undertook a young adult psychographic study and classified them as “progressives”, “Jurassics” or “conservatives” and “crudos” or “spoiled brats”. BAT marketed Lucky Strike to the “progressives” using Hollywood movies as a vehicle. The tobacco industry also targeted their national brands to the conservatives and linked these brands with “nationalistic values” in advertising campaigns. Philip Morris promoted Marlboro by sponsoring activities directed at young people and they launched the 10 cigarettes packet as a starter vehicle. Conclusions The tobacco industry used psychographic segmentation of the population and developed advertising strategies focused on youth. Tobacco control researchers and advocates must be able to address these strategies in counter-marketing interventions. PMID:18299308

  13. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    PubMed

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  14. Initial basalt target site selection evaluation for the Mars penetrator drop test

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Quaide, W. L.; Polkowski, G.

    1976-01-01

    Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented.

  15. An interplanetary targeting and orbit insertion maneuver design technique

    NASA Technical Reports Server (NTRS)

    Hintz, G. R.

    1980-01-01

    The paper describes a tradeoff in selecting a planetary encounter aimpoint and a spacecraft propulsive maneuver strategy in the Pioneer Venus Orbiter Mission. The method uses parametric data spanning a region of acceptable targeting aimpoints in the delivery space and the geometric considerations. Real-time maneuver adjustments accounted for known attitude control errors, orbit determination updates, and late changes in a targeting specification.

  16. Improving Learners' Vocabulary through Strategy Training and Recycling the Target Words

    ERIC Educational Resources Information Center

    Akin, Ayse; Seferoglu, Golge

    2004-01-01

    The purpose of this study was to determine whether an approach combining creating strategy awareness and recycling words will result in better vocabulary learning (delayed recall) of selected words than teaching vocabulary following the course book alone, for intermediate level English language learners. Two English language classes, a total of 51…

  17. Burnout and job performance: the moderating role of selection, optimization, and compensation strategies.

    PubMed

    Demerouti, Evangelia; Bakker, Arnold B; Leiter, Michael

    2014-01-01

    The present study aims to explain why research thus far has found only low to moderate associations between burnout and performance. We argue that employees use adaptive strategies that help them to maintain their performance (i.e., task performance, adaptivity to change) at acceptable levels despite experiencing burnout (i.e., exhaustion, disengagement). We focus on the strategies included in the selective optimization with compensation model. Using a sample of 294 employees and their supervisors, we found that compensation is the most successful strategy in buffering the negative associations of disengagement with supervisor-rated task performance and both disengagement and exhaustion with supervisor-rated adaptivity to change. In contrast, selection exacerbates the negative relationship of exhaustion with supervisor-rated adaptivity to change. In total, 42% of the hypothesized interactions proved to be significant. Our study uncovers successful and unsuccessful strategies that people use to deal with their burnout symptoms in order to achieve satisfactory job performance. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Synthesis, biological targeting and photophysics of quantum dots

    NASA Astrophysics Data System (ADS)

    Clarke, Samuel Jon

    Quantum dots (QDs) are inorganic nanoparticles that have exceptional optical properties. Currently, QDs have failed to reach their potential as fluorescent probes in live cells, due to the nontrivial requirements for biological interfacing. The goal of this thesis is to address technical hurdles related to the reproducible synthesis of QDs, strategies for the specific targeting of QDs to biological cells and to understanding and exploitation of the photophysical properties. High quality QDs of varying composition (CdSe, CdTe and core/shell CdSe/ZnS) were synthesized with an organometallic method. To prepare biocompatible QDs, three strategies were used. The simplest strategy used small mercaptocarboxylic acids, while performance improvements were realized with engineered-peptide and lipid-micelle coatings. For specific biological targeting of the QDs, conjugation strategies were devised to attach biomolecules, while spectroscopic characterization methods were developed to assess conjugation efficiencies. To target gram-negative bacterial cells, an electrostatic self-assembly method was used to attach an antibiotic selective for this class of bacteria, polymyxin B. To target dopamine neurotransmitter receptor, a covalent conjugation method was used to attach dopamine, the endogenous ligand for that receptor. It was shown that dopamine molecule enabled electron transfer to QDs and the photophysics was studied in detail. A novel conjugation and targeting strategy was explored to enable the selective binding of QDs to polyhistidine epitopes on membrane proteins. Epifluorescence microscopy was used to evaluate the biological activity of the three QD probes. Combined, they add to the QD 'toolkit' for live-cell imaging. Finally, due to its negative implications in biological imaging, the fluorescent intermittency (blinking) of CdTe QDs was investigated. It was shown that mercaptocarboxylic acids contribute to the blinking suppression of the QDs, results that may aid in

  19. Age-related differences in children's strategy repetition: A study in arithmetic.

    PubMed

    Lemaire, Patrick; Brun, Fleur

    2016-10-01

    Third and fifth graders (Experiment 1) and fifth and seventh graders (Experiment 2) accomplished computational estimation tasks in which they provided estimates to two-digit arithmetic problems (e.g., 34+68). Participants saw trials, each including three consecutive problems. Each trial was separated by a letter judgment task (i.e., participants needed to say whether a series of four letters included only vowels, only consonants, or both types of letters). On each problem, children were asked to select the better of the following strategies: rounding down (i.e., rounding both operands down to the nearest decades; e.g., 30+60=90) or rounding up (rounding both operands up to the nearest decades; e.g., 40+70=110). Half of the trials were repeated strategy trials (i.e., the better strategy was the same for the first two prime problems and the last target problem) and half were unrepeated strategy trials (i.e., the better strategy was different for prime and target problems). We found that (a) children repeated the same strategy over successive problems, even when they should change strategies to obtain better performance, (b) strategy repetitions decreased with age, (c) repeating the same strategy gave children performance benefits, and (d) these strategy repetition benefits were similar across grades. These effects of strategy repetition during strategy selection and strategy execution have important empirical and theoretical implications regarding how children choose among strategies, how children execute selected strategies on each problem, and how strategic variations change with age. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Target objects defined by a conjunction of colour and shape can be selected independently and in parallel.

    PubMed

    Jenkins, Michael; Grubert, Anna; Eimer, Martin

    2017-11-01

    It is generally assumed that during search for targets defined by a feature conjunction, attention is allocated sequentially to individual objects. We tested this hypothesis by tracking the time course of attentional processing biases with the N2pc component in tasks where observers searched for two targets defined by a colour/shape conjunction. In Experiment 1, two displays presented in rapid succession (100 ms or 10 ms SOA) each contained a target and a colour-matching or shape-matching distractor on opposite sides. Target objects in both displays elicited N2pc components of similar size that overlapped in time when the SOA was 10 ms, suggesting that attention was allocated in parallel to both targets. Analogous results were found in Experiment 2, where targets and partially matching distractors were both accompanied by an object without target-matching features. Colour-matching and shape-matching distractors also elicited N2pc components, and the target N2pc was initially identical to the sum of the two distractor N2pcs, suggesting that the initial phase of attentional object selection was guided independently by feature templates for target colour and shape. Beyond 230 ms after display onset, the target N2pc became superadditive, indicating that attentional selection processes now started to be sensitive to the presence of feature conjunctions. Results show that independent attentional selection processes can be activated in parallel by two target objects in situations where these objects are defined by a feature conjunction.

  1. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    PubMed Central

    She, Ji; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819

  2. Assessment, Target Selection, and Intervention: Dynamic Interactions within a Systemic Perspective

    ERIC Educational Resources Information Center

    Williams, A. Lynn

    2005-01-01

    There are a number of clinical options available for speech-language pathologists to choose from to analyze a child's phonological system, select treatment targets, and design intervention. Frequently, each of these areas of clinical options is viewed independently of one another or approached within an eclectic framework. In this article, an…

  3. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance.

    PubMed

    Willemsen-Seegers, Nicole; Uitdehaag, Joost C M; Prinsen, Martine B W; de Vetter, Judith R F; de Man, Jos; Sawa, Masaaki; Kawase, Yusuke; Buijsman, Rogier C; Zaman, Guido J R

    2017-02-17

    Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC 50 ) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (K D ) were calculated to determine kinetic selectivity. Comparison of τ and K D or IC 50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  5. [Selective attention and schizophrenia before the administration of neuroleptics].

    PubMed

    Lussier, I; Stip, E

    1999-01-01

    In recent years, the presence of attention deficits has been recognized as a key feature of schizophrenia. Past studies reveal that selective attention, or the ability to select relevant information while ignoring simultaneously irrelevant information, is disturbed in schizophrenic patients. According to Treisman feature-integration theory of selective attention, visual search for conjunctive targets (e.g., shape and color) requires controlled processes, that necessitate attention and operate in a serial manner. Reaction times (RTs) are therefore function of the number of stimuli in the display. When subjects are asked to detect the presence or absence of a target in an array of a variable number of stimuli, different performance patterns are expected for positive (present target) and negative trials (absent target). For positive trials, a self-terminating search is triggered, that is, the search is ended when the target is encountered. For negative trials, an exhaustive search strategy is displayed, where each stimulus is examined before the search can end; the RT slope pattern is thus double that of the positive trials. To assess the integrity of these processes, thirteen drug naive schizophrenic patients were compared to twenty normal control subjects. Neuroleptic naive patients were chosen as subjects to avoid the potential influence of medication and chronicity-related factors on performance. The subjects had to specify as fast as possible the presence or absence of the target in an array of a variable number of stimuli presented in a circular display, and comprising or not the target. Results showed that the patients can use self-terminating search strategies as well as normal control subjects. However, their ability to trigger exhaustive search strategies is impaired. Not only were patients slower than controls, but their pattern of RT results was different. These results argue in favor of an early impairment in selective attention capacities in

  6. A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action

    NASA Astrophysics Data System (ADS)

    Campaner, Elena; Rustighi, Alessandra; Zannini, Alessandro; Cristiani, Alberto; Piazza, Silvano; Ciani, Yari; Kalid, Ori; Golan, Gali; Baloglu, Erkan; Shacham, Sharon; Valsasina, Barbara; Cucchi, Ulisse; Pippione, Agnese Chiara; Lolli, Marco Lucio; Giabbai, Barbara; Storici, Paola; Carloni, Paolo; Rossetti, Giulia; Benvenuti, Federica; Bello, Ezia; D'Incalci, Maurizio; Cappuzzello, Elisa; Rosato, Antonio; Del Sal, Giannino

    2017-06-01

    The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.

  7. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    NASA Astrophysics Data System (ADS)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  8. Need for Optimisation of Immunisation Strategies Targeting Invasive Meningococcal Disease in the Netherlands.

    PubMed

    Bousema, Josefien Cornelie Minthe; Ruitenberg, Joost

    2015-09-13

    Invasive meningococcal disease (IMD) is a severe bacterial infectious disease with high mortality and morbidity rates worldwide. In recent years, industrialised countries have implemented vaccines targeting IMD in their National Immunisation Programmes (NIPs). In 2002, the Netherlands successfully implemented a single dose of meningococcal serogroup C conjugate vaccine at the age of 14 months and performed a single catch-up for children ≤18 years of age. Since then the disease disappeared in vaccinated individuals. Furthermore, herd protection was induced, leading to a significant IMD reduction in non-vaccinated individuals. However, previous studies revealed that the current programmatic immunisation strategy was insufficient to protect the population in the foreseeable future. In addition, vaccines that provide protection against additional serogroups are now available. This paper describes to what extent the current strategy to prevent IMD in the Netherlands is still sufficient, taking into account the burden of disease and the latest scientific knowledge related to IMD and its prevention. In particular, primary MenC immunisation seems not to provide long-term protection, indicating a risk for possible recurrence of the disease. This can be combatted by implementing a MenC or MenACWY adolescent booster vaccine. Additional health benefits can be achieved by replacing the primary MenC by a MenACWY vaccine. By implementation of a recently licensed MenB vaccine for infants in the NIP, the greatest burden of disease would be targeted. This paper shows that optimisation of the immunisation strategy targeting IMD in the Netherlands should be considered and contributes to create awareness concerning prevention optimisation in other countries. © 2015 by Kerman University of Medical Sciences.

  9. Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner's dilemma games

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Huang, Changwei; Dai, Qionglin

    2018-06-01

    Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors' attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual's attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α > 0 and at the same time M > 1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α > 0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.

  10. A strategy for position-selective epoxidation of polyprenols.

    PubMed

    Gnanadesikan, Vijay; Corey, E J

    2008-06-25

    An effective strategy has been developed for the efficient site-selective epoxidation of poylolefinic isoprenoid alcohols, based on the use of an internal control element for intramolecular reaction. The approach is illustrated by application to a series of polyisoprenoid alcohols (polyprenols) at substrate concentration of 0.5 mM. With polyprenol substrates having the hydroxyl function at one terminus, the internal epoxidation can be directed at the double bond of the polyprenol, which is either four or five away from the terminal hydroxyprenyl subunit.

  11. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems

    PubMed Central

    Kydd, Janel; Jadia, Rahul; Velpurisiva, Praveena; Gad, Aniket; Paliwal, Shailee; Rai, Prakash

    2017-01-01

    Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’), the tumor microenvironment (‘tissue targeting’) or the individual cancer cells (‘cellular targeting’). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines. PMID:29036899

  12. Impact of selection strategies on representation of underserved populations and intention to practise: international findings.

    PubMed

    Larkins, Sarah; Michielsen, Kristien; Iputo, Jehu; Elsanousi, Salwa; Mammen, Marykutty; Graves, Lisa; Willems, Sara; Cristobal, Fortunato L; Samson, Rex; Ellaway, Rachel; Ross, Simone; Johnston, Karen; Derese, Anselme; Neusy, André-Jacques

    2015-01-01

    Socially accountable medical schools aim to reduce health inequalities by training workforces responsive to the priority health needs of underserved communities. One key strategy involves recruiting students from underserved and unequally represented communities on the basis that they may be more likely to return and address local health priorities. This study describes the impacts of different selection strategies of medical schools that aspire to social accountability on the presence of students from underserved communities in their medical education programmes and on student practice intentions. A cross-sectional questionnaire was administered to students starting medical education in five institutions with a social accountability mandate in five different countries. The questionnaire assessed students' background characteristics, rurality of background, and practice intentions (location, discipline of practice and population to be served). The results were compared with the characteristics of students entering medical education in schools with standard selection procedures, and with publicly available socio-economic data. The selection processes of all five schools included strategies that extended beyond the assessment of academic achievement. Four distinct strategies were identified: the quota system; selection based on personal attributes; community involvement, and school marketing strategies. Questionnaire data from 944 students showed that students at the five schools were more likely to be of non-urban origin, of lower socio-economic status and to come from underserved groups. A total of 407 of 810 (50.2%) students indicated an intention to practise in a non-urban area after graduation and the likelihood of this increased with increasing rurality of primary schooling (p = 0.000). Those of rural origin were statistically less likely to express an intention to work abroad (p = 0.003). Selection strategies to ensure that members of underserved communities

  13. Mitochondria-targeting nanomedicine: An effective and potent strategy against aminoglycosides-induced ototoxicity.

    PubMed

    Zhou, Shuang; Sun, Yanhui; Kuang, Xiao; Hou, Shanshan; Yang, YinXian; Wang, Zhenjie; Liu, Hongzhuo

    2018-04-21

    We report a proof-of-concept for the development of mitochondria-targeting nanoparticles (NPs) loaded with geranylgeranylacetone (GGA) to protect against a wide range of gentamicin-induced ototoxicity symptoms in a zebrafish model. The polymeric NPs were functionalized with a mitochondrial-homing peptide (d‑Arg‑Dmt‑Orn‑Phe‑NH 2 ) and exhibited greater mitochondrial uptake and lower gentamicin uptake in hair cells via mechanotransduction (MET) channels and tuned machinery in the hair bundle than the ordinary NPs did. Blockade of MET channels rapidly reversed this effect, indicating the reversible responses of hair cells to the targeting NPs were mediated by MET channels. Pretreatment of hair cells with mitochondria-targeting GGA-loaded NPs exhibited a superior acute or chronic protective efficacy against subsequent exposure to gentamicin compared with unmodified formulations. Mitochondrial delivery regulating the death pathway of hair cells appeared to cause the therapeutic failure of untargeted NPs. Thus, peptide-directed mitochondria-targeting NPs may represent a novel therapeutic strategy for mitochondrial dysfunction-linked diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Limiting the protein corona: A successful strategy for in vivo active targeting of anti-HER2 nanobody-functionalized nanostars.

    PubMed

    D'Hollander, Antoine; Jans, Hilde; Velde, Greetje Vande; Verstraete, Charlotte; Massa, Sam; Devoogdt, Nick; Stakenborg, Tim; Muyldermans, Serge; Lagae, Liesbet; Himmelreich, Uwe

    2017-04-01

    Gold nanoparticles hold great promise as anti-cancer theranostic agents against cancer by actively targeting the tumor cells. As this potential has been supported numerously during in vitro experiments, the effective application is hampered by our limited understanding and control of the interactions within complex in vivo biological systems. When these nanoparticles are exposed to a biological environment, their surfaces become covered with proteins and biomolecules, referred to as the protein corona, reducing the active targeting capabilities. We demonstrate a chemical strategy to overcome this issue by reducing the protein corona's thickness by blocking the active groups of the self-assembled monolayer on gold nanostars. An optimal blocking agent, 2-mercapto ethanol, has been selected based on charge and length of the carbon chain. By using a nanobody as a biological ligand of the human epidermal growth factor 2 receptor (HER2), the active targeting is demonstrated in vitro and in vivo in an experimental tumor model by using darkfield microscopy and photoacoustic imaging. In this study, we have established gold nanostars as a conceivable theranostic agent with a specificity for HER2-positive tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Attention blinks for selection, not perception or memory: reading sentences and reporting targets.

    PubMed

    Potter, Mary C; Wyble, Brad; Olejarczyk, Jennifer

    2011-12-01

    In whole report, a sentence presented sequentially at the rate of about 10 words/s can be recalled accurately, whereas if the task is to report only two target words (e.g., red words), the second target suffers an attentional blink if it appears shortly after the first target. If these two tasks are carried out simultaneously, is there an attentional blink, and does it affect both tasks? Here, sentence report was combined with report of two target words (Experiments 1 and 2) or two inserted target digits, Arabic numerals or word digits (Experiments 3 and 4). When participants reported only the targets an attentional blink was always observed. When they reported both the sentence and targets, sentence report was quite accurate but there was an attentional blink in picking out the targets when they were part of the sentence. When targets were extra digits inserted in the sentence there was no blink when viewers also reported the sentence. These results challenge some theories of the attentional blink: Blinks result from online selection, not perception or memory.

  16. Genotype-by-environment interactions leads to variable selection on life-history strategy in Common Evening Primrose (Oenothera biennis).

    PubMed

    Johnson, M T J

    2007-01-01

    Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.

  17. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    PubMed

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  18. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells.

    PubMed

    Gao, Jie; Li, Wei; Guo, Yajun; Feng, Si-Shen

    2016-12-01

    Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.

  19. A splice junction-targeted CRISPR approach (spJCRISPR) reveals human FOXO3B to be a protein-coding gene.

    PubMed

    Santo, Evan E; Paik, Jihye

    2018-06-17

    The rapid development of CRISPR technology is revolutionizing molecular approaches to the dissection of complex biological phenomena. Here we describe an alternative generally applicable implementation of the CRISPR-Cas9 system that allows for selective knockdown of extremely homologous genes. This strategy employs the lentiviral delivery of paired sgRNAs and nickase Cas9 (Cas9D10A) to achieve targeted deletion of splice junctions. This general strategy offers several advantages over standard single-guide exon-targeting CRISPR-Cas9 such as greatly reduced off-target effects, more restricted genomic editing, routine disruption of target gene mRNA expression and the ability to differentiate between closely related genes. Here we demonstrate the utility of this strategy by achieving selective knockdown of the highly homologous human genes FOXO3A and suspected pseudogene FOXO3B. We find the spJCRISPR strategy to efficiently and selectively disrupt FOXO3A and FOXO3B mRNA and protein expression; thus revealing that the human FOXO3B locus encodes a bona fide human gene. Unlike FOXO3A, we find the FOXO3B protein to be cytosolically localized in both the presence and absence of active Akt. The ability to selectively target and efficiently disrupt the expression of the closely-related FOXO3A and FOXO3B genes demonstrates the efficacy of the spJCRISPR approach. Copyright © 2018. Published by Elsevier B.V.

  20. Long-term selection strategies for complex traits using high-density genetic markers.

    PubMed

    Kemper, K E; Bowman, P J; Pryce, J E; Hayes, B J; Goddard, M E

    2012-08-01

    Selection of animals for breeding ranked on estimated breeding value maximizes genetic gain in the next generation but does not necessarily maximize long-term response. An alternative method, as practiced by plant breeders, is to build a desired genotype by selection on specific loci. Maximal long-term response in animal breeding requires selection on estimated breeding values with constraints on coancestry. In this paper, we compared long-term genetic response using either a genotype building or a genomic estimated breeding value (GEBV) strategy for the Australian Selection Index (ASI), a measure of profit. First, we used real marker effects from the Australian Dairy Herd Improvement Scheme to estimate breeding values for chromosome segments (approximately 25 cM long) for 2,650 Holstein bulls. Second, we selected 16 animals to be founders for a simulated breeding program where, between them, founders contain the best possible combination of 2 segments from 2 animals at each position in the genome. Third, we mated founder animals and their descendants over 30 generations with 2 breeding objectives: (1) to create a population with the "ideal genotype," where the best 2 segments from the founders segregate at each position, or (2) obtain the highest possible response in ASI with coancestry lower than that achieved under breeding objective 1. Results show that genotype building achieved the ideal genotype for breeding objective 1 and obtained a large gain in ASI over the current population (+A$864.99). However, selection on overall GEBV had greater short-term response and almost as much long-term gain (+A$820.42). When coancestry was lowered under breeding objective 2, selection on overall GEBV achieved a higher response in ASI than the genotype building strategy. Selection on overall GEBV seems more flexible in its selection decisions and was therefore better able to precisely control coancestry while maximizing ASI. We conclude that selection on overall GEBV while

  1. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Su, Dian; Liu, Tao

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, whichmore » have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.« less

  2. “Addition” and “Subtraction”: Selectivity Design for Type II Maternal Embryonic Leucine Zipper Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Giraldes, John; Sprague, Elizabeth R.

    2017-02-17

    While adding the structural features that are more favored by on-target activity is the more common strategy in selectivity optimization, the opposite strategy of subtracting the structural features that contribute more to off-target activity can also be very effective. Reported here is our successful effort of improving the kinase selectivity of type II maternal embryonic leucine zipper kinase inhibitors by applying these two complementary approaches together, which clearly demonstrates the powerful synergy between them.

  3. Human long intrinsically disordered protein regions are frequent targets of positive selection.

    PubMed

    Afanasyeva, Arina; Bockwoldt, Mathias; Cooney, Christopher R; Heiland, Ines; Gossmann, Toni I

    2018-06-01

    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts. © 2018 Afanasyeva et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Epidermal growth factor receptor and variant III targeted immunotherapy.

    PubMed

    Congdon, Kendra L; Gedeon, Patrick C; Suryadevara, Carter M; Caruso, Hillary G; Cooper, Laurence J N; Heimberger, Amy B; Sampson, John H

    2014-10-01

    Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  6. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    PubMed

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  7. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  8. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    PubMed

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion. ©2015 American Association for Cancer Research.

  9. A 20-Amino Acid Module of Protein Kinase Cϵ Involved in Translocation and Selective Targeting at Cell-Cell Contacts*

    PubMed Central

    Diouf, Barthélémy; Collazos, Alejandra; Labesse, Gilles; Macari, Françoise; Choquet, Armelle; Clair, Philippe; Gauthier-Rouvière, Cécile; Guérineau, Nathalie C.; Jay, Philippe; Hollande, Frédéric; Joubert, Dominique

    2009-01-01

    In the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (α and ϵ) or at the entire plasma membrane (β1 and δ). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCϵ of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCδ, chimerin-α1, and the PKCϵ C1 domain to the cell-cell contact. We show that this selective targeting of PKCϵ is lost upon overexpression of 3CTS fused to a (R-Ahx-R)4 (where Ahx is 6-aminohexanoic acid) vectorization peptide, reflecting a dominant-negative effect of the overexpressed 3CTS on targeting selectivity. 3CTS contains a putative amphipathic α-helix, a 14-3-3-binding site, and the Glu-374 amino acid, involved in targeting selectivity. We show that the integrity of the α-helix is important for translocation but that 14-3-3 is not involved in targeting selectivity. However, PKCϵ translocation is increased when PKCϵ/14-3-3 interaction is abolished, suggesting that phorbol 12-myristate 13-acetate activation may initiate two sets of PKCϵ functions, those depending on 14-3-3 and those depending on translocation to cell-cell contacts. Thus, 3CTS is involved in the modulation of translocation via its 14-3-3-binding site, in cytoplasmic desequestration via the α-helix, and in selective PKCϵ targeting at the cell-cell contact via Glu-374. PMID:19429675

  10. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells.

    PubMed

    Silva, Luisa H A; Cruz, Fernanda F; Morales, Marcelo M; Weiss, Daniel J; Rocco, Patricia R M

    2017-03-09

    Mesenchymal stromal cells (MSCs) have been extensively investigated in the field of regenerative medicine. It is known that the success of MSC-based therapies depends primarily on effective cell delivery to the target site where they will secrete vesicles and soluble factors with immunomodulatory and potentially reparative properties. However, some lesions are located in sites that are difficult to access, such as the heart, spinal cord, and joints. Additionally, low MSC retention at target sites makes cell therapy short-lasting and, therefore, less effective. In this context, the magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and enhance the effects of MSCs. This approach uses magnetic nanoparticles to magnetize MSCs and static magnetic fields to guide them in vivo, thus promoting more focused, effective, and lasting retention of MSCs at the target site. In the present review, we discuss the magnetic targeting technique, its principles, and the materials most commonly used; we also discuss its potential for MSC enhancement, and safety concerns that should be addressed before it can be applied in clinical practice.

  11. Relativistic effects on galaxy redshift samples due to target selection

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  12. Paramyxovirus evasion of innate immunity: Diverse strategies for common targets

    PubMed Central

    Audsley, Michelle D; Moseley, Gregory W

    2013-01-01

    The paramyxoviruses are a family of > 30 viruses that variously infect humans, other mammals and fish to cause diverse outcomes, ranging from asymptomatic to lethal disease, with the zoonotic paramyxoviruses Nipah and Hendra showing up to 70% case-fatality rate in humans. The capacity to evade host immunity is central to viral infection, and paramyxoviruses have evolved multiple strategies to overcome the host interferon (IFN)-mediated innate immune response through the activity of their IFN-antagonist proteins. Although paramyxovirus IFN antagonists generally target common factors of the IFN system, including melanoma differentiation associated factor 5, retinoic acid-inducible gene-I, signal transducers and activators of transcription (STAT)1 and STAT2, and IFN regulatory factor 3, the mechanisms of antagonism show remarkable diversity between different genera and even individual members of the same genus; the reasons for this diversity, however, are not currently understood. Here, we review the IFN antagonism strategies of paramyxoviruses, highlighting mechanistic differences observed between individual species and genera. We also discuss potential sources of this diversity, including biological differences in the host and/or tissue specificity of different paramyxoviruses, and potential effects of experimental approaches that have largely relied on in vitro systems. Importantly, recent studies using recombinant virus systems and animal infection models are beginning to clarify the importance of certain mechanisms of IFN antagonism to in vivo infections, providing important indications not only of their critical importance to virulence, but also of their potential targeting for new therapeutic/vaccine approaches. PMID:24175230

  13. Role of the neostriatal dopaminergic activity in sequencing and selecting behavioural strategies: facilitation of processes involved in selecting the best strategy in a stressful situation.

    PubMed

    Cools, A R

    1980-10-01

    The purpose of this study was to detect the behavioural effect of drug-induced changes in the neostriatal dopaminergic activity upon the degree of intrinsic (self-generated) and extrinsic (externally produced) constraints on the selection of behavioural patterns in rats. Both systemic and neostriatal injections of extremely low doses of apomorphine and haloperidol were used to change the neostriatal dopaminergic activity. Behavioural changes were observed in (a) an open-field test, (b) a so-called 'swimming without escape' test, (c) a so-called 'swimming with escape' test, and (d) a test to detect deficiencies in sensory, motor and sensorimotor capacities required to perform both swimming tests. Evidence is found that the neostriatum, especially the neostriatal, dopaminergic activity determines the animal's ability to select the best strategy in a stressful situation by modifying the process of switching strategies under pressure of factors intrinsic to the organism: neither sensory neglect nor inability to initiate voluntary movements underlay the observed phenomena. It is suggested that the neostriatum determines the individual flexibility to cope with available sensory information.

  14. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-06-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  15. Drug-Target Kinetics in Drug Discovery.

    PubMed

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  16. Drug–Target Kinetics in Drug Discovery

    PubMed Central

    2017-01-01

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure–kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug–target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug–target kinetics into predictions of drug activity. PMID:28640596

  17. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  18. Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries.

    PubMed

    Shi, Z; Ma, X H; Qin, C; Jia, J; Jiang, Y Y; Tan, C Y; Chen, Y Z

    2012-02-01

    Selective multi-target serotonin reuptake inhibitors enhance antidepressant efficacy. Their discovery can be facilitated by multiple methods, including in silico ones. In this study, we developed and tested an in silico method, combinatorial support vector machines (COMBI-SVMs), for virtual screening (VS) multi-target serotonin reuptake inhibitors of seven target pairs (serotonin transporter paired with noradrenaline transporter, H(3) receptor, 5-HT(1A) receptor, 5-HT(1B) receptor, 5-HT(2C) receptor, melanocortin 4 receptor and neurokinin 1 receptor respectively) from large compound libraries. COMBI-SVMs trained with 917-1951 individual target inhibitors correctly identified 22-83.3% (majority >31.1%) of the 6-216 dual inhibitors collected from literature as independent testing sets. COMBI-SVMs showed moderate to good target selectivity in misclassifying as dual inhibitors 2.2-29.8% (majority <15.4%) of the individual target inhibitors of the same target pair and 0.58-7.1% of the other 6 targets outside the target pair. COMBI-SVMs showed low dual inhibitor false hit rates (0.006-0.056%, 0.042-0.21%, 0.2-4%) in screening 17 million PubChem compounds, 168,000 MDDR compounds, and 7-8181 MDDR compounds similar to the dual inhibitors. Compared with similarity searching, k-NN and PNN methods, COMBI-SVM produced comparable dual inhibitor yields, similar target selectivity, and lower false hit rate in screening 168,000 MDDR compounds. The annotated classes of many COMBI-SVMs identified MDDR virtual hits correlate with the reported effects of their predicted targets. COMBI-SVM is potentially useful for searching selective multi-target agents without explicit knowledge of these agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Guidance for Schools Selecting Antibullying Approaches: Translating Evidence-Based Strategies to Contemporary Implementation Realities

    ERIC Educational Resources Information Center

    Ansary, Nadia S.; Elias, Maurice J.; Greene, Michael B.; Green, Stuart

    2015-01-01

    This article synthesizes the current research on bullying prevention and intervention in order to provide guidance to schools seeking to select and implement antibullying strategies. Evidence-based best practices that are shared across generally effective antibullying approaches are elucidated, and these strategies are grounded in examples…

  20. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION

    DOE PAGES

    Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; ...

    2015-12-01

    As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg 2 . First, a "CORE" quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ~70 deg -2 quasars at redshifts 0.9 < z < 2.2 and ~7 deg -2more » z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 deg -2 z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.« less

  1. Evolving targeted therapies for right ventricular failure.

    PubMed

    Di Salvo, Thomas G

    2015-01-01

    Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.

  2. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solid tumor therapy by selectively targeting stromal endothelial cells

    PubMed Central

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J.; Yu, Zuxi; Bugge, Thomas H.; Finkel, Toren; Leppla, Stephen H.

    2016-01-01

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors. PMID:27357689

  4. Targeting dopa-sensitive and dopa-resistant gait dysfunction in Parkinson's disease: selective responses to internal and external cues.

    PubMed

    Rochester, Lynn; Baker, Katherine; Nieuwboer, Alice; Burn, David

    2011-02-15

    Independence of certain gait characteristics from dopamine replacement therapies highlights its complex pathophysiology in Parkinson's disease (PD). We explored the effect of two different cue strategies on gait characteristics in relation to their response to dopaminergic medications. Fifty people with PD (age 69.22 ± 6.6 years) were studied. Participants walked with and without cues presented in a randomized order. Cue strategies were: (1) internal cue (attention to increase step length) and (2) external cue (auditory cue with instruction to take large step to the beat). Testing was carried out two times at home (on and off medication). Gait was measured using a Stride Analyzer (B&L Engineering). Gait outcomes were walking speed, stride length, step frequency, and coefficient of variation (CV) of stride time and double limb support duration (DLS). Walking speed, stride length, and stride time CV improved on dopaminergic medications, whereas step frequency and DLS CV did not. Internal and external cues increased stride time and walking speed (on and off dopaminergic medications). Only the external cue significantly improved stride time CV and DLS CV, whereas the internal cue had no effect (on and off dopaminergic medications). Internal and external cues selectively modify gait characteristics in relation to the type of gait disturbance and its dopa-responsiveness. Although internal (attention) and external cues target dopaminergic gait dysfunction (stride length), only external cues target stride to stride fluctuations in gait. Despite an overlap with dopaminergic pathways, external cues may effectively address nondopaminergic gait dysfunction and potentially increase mobility and reduce gait instability and falls. Copyright © 2010 Movement Disorder Society.

  5. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    PubMed

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Effects of Selection Strategies for Bivariate Loglinear Smoothing Models on NEAT Equating Functions

    ERIC Educational Resources Information Center

    Moses, Tim; Holland, Paul W.

    2010-01-01

    In this study, eight statistical strategies were evaluated for selecting the parameterizations of loglinear models for smoothing the bivariate test score distributions used in nonequivalent groups with anchor test (NEAT) equating. Four of the strategies were based on significance tests of chi-square statistics (Likelihood Ratio, Pearson,…

  8. Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    PubMed Central

    Dubreuil, Patrice; Letard, Sébastien; Ciufolini, Marco; Gros, Laurent; Humbert, Martine; Castéran, Nathalie; Borge, Laurence; Hajem, Bérengère; Lermet, Anne; Sippl, Wolfgang; Voisset, Edwige; Arock, Michel; Auclair, Christian; Leventhal, Phillip S.; Mansfield, Colin D.; Moussy, Alain; Hermine, Olivier

    2009-01-01

    Background The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity. PMID:19789626

  9. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    PubMed

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  10. Big brown bats (Eptesicus fuscus) reveal diverse strategies for sonar target tracking in clutter.

    PubMed

    Mao, Beatrice; Aytekin, Murat; Wilkinson, Gerald S; Moss, Cynthia F

    2016-09-01

    Bats actively adjust the acoustic features of their sonar calls to control echo information specific to a given task and environment. A previous study investigated how bats adapted their echolocation behavior when tracking a moving target in the presence of a stationary distracter at different distances and angular offsets. The use of only one distracter, however, left open the possibility that a bat could reduce the interference of the distracter by turning its head. Here, bats tracked a moving target in the presence of one or two symmetrically placed distracters to investigate adaptive echolocation behavior in a situation where vocalizing off-axis would result in increased interference from distracter echoes. Both bats reduced bandwidth and duration but increased sweep rate in more challenging distracter conditions, and surprisingly, made more head turns in the two-distracter condition compared to one, but only when distracters were placed at large angular offsets. However, for most variables examined, subjects showed distinct strategies to reduce clutter interference, either by (1) changing spectral or temporal features of their calls, or (2) producing large numbers of sonar sound groups and consistent head-turning behavior. The results suggest that individual bats can use different strategies for target tracking in cluttered environments.

  11. Breaking the color barrier - a multi-selective antibody reporter offers innovative strategies of fluorescence detection.

    PubMed

    Gallo, Eugenio; Jarvik, Jonathan W

    2017-08-01

    A novel bi-partite fluorescence platform exploits the high affinity and selectivity of antibody scaffolds to capture and activate small-molecule fluorogens. In this report, we investigated the property of multi-selectivity activation by a single antibody against diverse cyanine family fluorogens. Our fluorescence screen identified three cell-impermeant fluorogens, each with unique emission spectra (blue, green and red) and nanomolar affinities. Most importantly, as a protein fusion tag to G-protein-coupled receptors, the antibody biosensor retained full activity - displaying bright fluorogen signals with minimal background on live cells. Because fluorogen-activating antibodies interact with their target ligands via non-covalent interactions, we were able to perform advanced multi-color detection strategies on live cells, previously difficult or impossible with conventional reporters. We found that by fine-tuning the concentrations of the different color fluorogen molecules in solution, a user may interchange the fluorescence signal (onset versus offset), execute real-time signal exchange via fluorogen competition, measure multi-channel fluorescence via co-labeling, and assess real-time cell surface receptor traffic via pulse-chase experiments. Thus, here we inform of an innovative reporter technology based on tri-color signal that allows user-defined fluorescence tuning in live-cell applications. © 2017. Published by The Company of Biologists Ltd.

  12. Trial-to-trial dynamics of selective long-term-memory retrieval with continuously changing retrieval targets.

    PubMed

    Kizilirmak, Jasmin M; Rösler, Frank; Khader, Patrick H

    2014-10-01

    How do we control the successive retrieval of behaviorally relevant information from long-term memory (LTM) without being distracted by other potential retrieval targets associated to the same retrieval cues? Here, we approach this question by investigating the nature of trial-by-trial dynamics of selective LTM retrieval, i.e., in how far retrieval in one trial has detrimental or facilitatory effects on selective retrieval in the following trial. Participants first learned associations between retrieval cues and targets, with one cue always being linked to three targets, forming small associative networks. In successive trials, participants had to access either the same or a different target belonging to either the same or a different cue. We found that retrieval times were faster for targets that had already been relevant in the previous trial, with this facilitatory effect being substantially weaker when the associative network changed in which the targets were embedded. Moreover, staying within the same network still had a facilitatory effect even if the target changed, which became evident in a relatively higher memory performance in comparison to a network change. Furthermore, event-related brain potentials (ERPs) showed topographically and temporally dissociable correlates of these effects, suggesting that they result from combined influences of distinct processes that aid memory retrieval when relevant and irrelevant targets change their status from trial to trial. Taken together, the present study provides insight into the different processing stages of memory retrieval when fast switches between retrieval targets are required. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  14. Target Search and Selection for the DI/EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

    2012-01-01

    Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

  15. Simple summation rule for optimal fixation selection in visual search.

    PubMed

    Najemnik, Jiri; Geisler, Wilson S

    2009-06-01

    When searching for a known target in a natural texture, practiced humans achieve near-optimal performance compared to a Bayesian ideal searcher constrained with the human map of target detectability across the visual field [Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387-391]. To do so, humans must be good at choosing where to fixate during the search [Najemnik, J., & Geisler, W.S. (2008). Eye movement statistics in humans are consistent with an optimal strategy. Journal of Vision, 8(3), 1-14. 4]; however, it seems unlikely that a biological nervous system would implement the computations for the Bayesian ideal fixation selection because of their complexity. Here we derive and test a simple heuristic for optimal fixation selection that appears to be a much better candidate for implementation within a biological nervous system. Specifically, we show that the near-optimal fixation location is the maximum of the current posterior probability distribution for target location after the distribution is filtered by (convolved with) the square of the retinotopic target detectability map. We term the model that uses this strategy the entropy limit minimization (ELM) searcher. We show that when constrained with human-like retinotopic map of target detectability and human search error rates, the ELM searcher performs as well as the Bayesian ideal searcher, and produces fixation statistics similar to human.

  16. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle.

    PubMed

    Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan

    2016-01-01

    We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.

  17. Stress, Time Pressure, Strategy Selection and Math Anxiety in Mathematics: A Review of the Literature

    PubMed Central

    Caviola, Sara; Carey, Emma; Mammarella, Irene C.; Szucs, Denes

    2017-01-01

    We review how stress induction, time pressure manipulations and math anxiety can interfere with or modulate selection of problem-solving strategies (henceforth “strategy selection”) in arithmetical tasks. Nineteen relevant articles were identified, which contain references to strategy selection and time limit (or time manipulations), with some also discussing emotional aspects in mathematical outcomes. Few of these take cognitive processes such as working memory or executive functions into consideration. We conclude that due to the sparsity of available literature our questions can only be partially answered and currently there is not much evidence of clear associations. We identify major gaps in knowledge and raise a series of open questions to guide further research. PMID:28919870

  18. Selective pressures for accurate altruism targeting: evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory.

    PubMed

    Clune, Jeff; Goldsby, Heather J; Ofria, Charles; Pennock, Robert T

    2011-03-07

    Inclusive fitness theory predicts that natural selection will favour altruist genes that are more accurate in targeting altruism only to copies of themselves. In this paper, we provide evidence from digital evolution in support of this prediction by competing multiple altruist-targeting mechanisms that vary in their accuracy in determining whether a potential target for altruism carries a copy of the altruist gene. We compete altruism-targeting mechanisms based on (i) kinship (kin targeting), (ii) genetic similarity at a level greater than that expected of kin (similarity targeting), and (iii) perfect knowledge of the presence of an altruist gene (green beard targeting). Natural selection always favoured the most accurate targeting mechanism available. Our investigations also revealed that evolution did not increase the altruism level when all green beard altruists used the same phenotypic marker. The green beard altruism levels stably increased only when mutations that changed the altruism level also changed the marker (e.g. beard colour), such that beard colour reliably indicated the altruism level. For kin- and similarity-targeting mechanisms, we found that evolution was able to stably adjust altruism levels. Our results confirm that natural selection favours altruist genes that are increasingly accurate in targeting altruism to only their copies. Our work also emphasizes that the concept of targeting accuracy must include both the presence of an altruist gene and the level of altruism it produces.

  19. The Relationship between Preschoolers' Selective Attention and Memory for Location Strategies

    ERIC Educational Resources Information Center

    Blumberg, F.C.; Torenberg, M.; Randall, J.D.

    2005-01-01

    Late and early preschoolers' attention and spatial strategies were examined in response to instructions to recall relevant objects [Blumberg, F. C. & Torenberg, M. (2003). The impact of spatial cues on preschoolers' selective attention. Journal of Genetic Psychology, 164, 42-53] and irrelevant objects [Blumberg, F. C. & Torenberg, M. (in press).…

  20. Band selection method based on spectrum difference in targets of interest in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Yang, Guang; Yang, Yongbo; Huang, Junhua

    2016-10-01

    While hyperspectral data shares rich spectrum information, it has numbers of bands with high correlation coefficients, causing great data redundancy. A reasonable band selection is important for subsequent processing. Bands with large amount of information and low correlation should be selected. On this basis, according to the needs of target detection applications, the spectral characteristics of the objects of interest are taken into consideration in this paper, and a new method based on spectrum difference is proposed. Firstly, according to the spectrum differences of targets of interest, a difference matrix which represents the different spectral reflectance of different targets in different bands is structured. By setting a threshold, the bands satisfying the conditions would be left, constituting a subset of bands. Then, the correlation coefficients between bands are calculated and correlation matrix is given. According to the size of the correlation coefficient, the bands can be set into several groups. At last, the conception of normalized variance is used on behalf of the information content of each band. The bands are sorted by the value of its normalized variance. Set needing number of bands, and the optimum band combination solution can be get by these three steps. This method retains the greatest degree of difference between the target of interest and is easy to achieve by computer automatically. Besides, false color image synthesis experiment is carried out using the bands selected by this method as well as other 3 methods to show the performance of method in this paper.

  1. Mixed methods evaluation of targeted selective anthelmintic treatment by resource-poor smallholder goat farmers in Botswana

    PubMed Central

    Walker, Josephine G.; Ofithile, Mphoeng; Tavolaro, F. Marina; van Wyk, Jan A.; Evans, Kate; Morgan, Eric R.

    2015-01-01

    Due to the threat of anthelmintic resistance, livestock farmers worldwide are encouraged to selectively apply treatments against gastrointestinal nematodes (GINs). Targeted selective treatment (TST) of individual animals would be especially useful for smallholder farmers in low-income economies, where cost-effective and sustainable intervention strategies will improve livestock productivity and food security. Supporting research has focused mainly on refining technical indicators for treatment, and much less on factors influencing uptake and effectiveness. We used a mixed method approach, whereby qualitative and quantitative approaches are combined, to develop, implement and validate a TST system for GINs in small ruminants, most commonly goats, among smallholder farmers in the Makgadikgadi Pans region of Botswana, and to seek better understanding of system performance within a cultural context. After the first six months of the study, 42 out of 47 enrolled farmers were followed up; 52% had monitored their animals using the taught inspection criteria and 26% applied TST during this phase. Uptake level showed little correlation with farmer characteristics, such as literacy and size of farm. Herd health significantly improved in those herds where anthelmintic treatment was applied: anaemia, as assessed using the five-point FAMACHA© scale, was 0.44–0.69 points better (95% confidence interval) and body condition score was 0.18–0.36 points better (95% C.I., five-point scale) in treated compared with untreated herds. Only targeting individuals in greatest need led to similar health improvements compared to treating the entire herd, leading to dose savings ranging from 36% to 97%. This study demonstrates that TST against nematodes can be implemented effectively by resource-poor farmers using a community-led approach. The use of mixed methods provides a promising system to integrate technical and social aspects of TST programmes for maximum uptake and effect. PMID

  2. Mixed methods evaluation of targeted selective anthelmintic treatment by resource-poor smallholder goat farmers in Botswana.

    PubMed

    Walker, Josephine G; Ofithile, Mphoeng; Tavolaro, F Marina; van Wyk, Jan A; Evans, Kate; Morgan, Eric R

    2015-11-30

    Due to the threat of anthelmintic resistance, livestock farmers worldwide are encouraged to selectively apply treatments against gastrointestinal nematodes (GINs). Targeted selective treatment (TST) of individual animals would be especially useful for smallholder farmers in low-income economies, where cost-effective and sustainable intervention strategies will improve livestock productivity and food security. Supporting research has focused mainly on refining technical indicators for treatment, and much less on factors influencing uptake and effectiveness. We used a mixed method approach, whereby qualitative and quantitative approaches are combined, to develop, implement and validate a TST system for GINs in small ruminants, most commonly goats, among smallholder farmers in the Makgadikgadi Pans region of Botswana, and to seek better understanding of system performance within a cultural context. After the first six months of the study, 42 out of 47 enrolled farmers were followed up; 52% had monitored their animals using the taught inspection criteria and 26% applied TST during this phase. Uptake level showed little correlation with farmer characteristics, such as literacy and size of farm. Herd health significantly improved in those herds where anthelmintic treatment was applied: anaemia, as assessed using the five-point FAMACHA(©) scale, was 0.44-0.69 points better (95% confidence interval) and body condition score was 0.18-0.36 points better (95% C.I., five-point scale) in treated compared with untreated herds. Only targeting individuals in greatest need led to similar health improvements compared to treating the entire herd, leading to dose savings ranging from 36% to 97%. This study demonstrates that TST against nematodes can be implemented effectively by resource-poor farmers using a community-led approach. The use of mixed methods provides a promising system to integrate technical and social aspects of TST programmes for maximum uptake and effect. Copyright

  3. Situation selection is a particularly effective emotion regulation strategy for people who need help regulating their emotions.

    PubMed

    Webb, Thomas L; Lindquist, Kristen A; Jones, Katelyn; Avishai, Aya; Sheeran, Paschal

    2018-03-01

    Situation selection involves choosing situations based on their likely emotional impact and may be less cognitively taxing or challenging to implement compared to other strategies for regulating emotion, which require people to regulate their emotions "in the moment"; we thus predicted that individuals who chronically experience intense emotions or who are not particularly competent at employing other emotion regulation strategies would be especially likely to benefit from situation selection. Consistent with this idea, we found that the use of situation selection interacted with individual differences in emotional reactivity and competence at emotion regulation to predict emotional outcomes in both a correlational (Study 1; N = 301) and an experimental field study (Study 2; N = 125). Taken together, the findings suggest that situation selection is an effective strategy for regulating emotions, especially for individuals who otherwise struggle to do so.

  4. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    PubMed

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Contract Source Selection: An Analysis of Lowest Price Technically Acceptable and Tradeoff Strategies

    DTIC Science & Technology

    2016-06-01

    thorough market research, acquisition professionals must decide at an early stage which source selection strategy (lowest price technically...minimizing risk and ensuring best value for all stakeholders. On the basis of thorough market research, acquisition professionals must decide at an early...price-based, market -driven environment from requirements development through properly disposal. Source selection must be 8 made on a ‘best value

  6. Targeting circuits of sexual desire as a treatment strategy for hypoactive sexual desire disorder.

    PubMed

    Stahl, Stephen M

    2010-07-01

    Hypoactive sexual desire disorder (HSDD) is hypothesized to be a disorder of the brain's reward circuitry. Neurotransmitters in reward circuits are thus therapeutic targets for improving sexual desire. Novel treatment strategies are to enhance dopamine (DA) actions, reduce serotonin (5-HT) actions, or both. (c) Copyright 2010 Physicians Postgraduate Press, Inc.

  7. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease.

    PubMed

    Menendez-Gonzalez, Manuel; Padilla-Zambrano, Huber S; Alvarez, Gabriel; Capetillo-Zarate, Estibaliz; Tomas-Zapico, Cristina; Costa, Agustin

    2018-01-01

    Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer's disease (AD). This article aims to show the rationale of a new therapeutic strategy: clearing Aβ from the CSF continuously (the "CSF-sink" therapeutic strategy). First, we describe the physiologic mechanisms of Aβ clearance and the resulting AD pathology when these mechanisms are altered. Then, we review the experiences with peripheral Aβ-immunotherapy and discuss the related hypothesis of the mechanism of action of "peripheral sink." We also present Aβ-immunotherapies acting on the CNS directly. Finally, we introduce alternative methods of removing Aβ including the "CSF-sink" therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels of such proteins in the brain parenchyma. We conclude that interventions based in a "CSF-sink" of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore it may represent a new therapeutic strategy in AD.

  8. Selective targeting of G-protein-coupled receptor subtypes with venom peptides.

    PubMed

    Näreoja, K; Näsman, J

    2012-02-01

    The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  9. Tumor-targeted nanomedicines for cancer theranostics

    PubMed Central

    Lammers, Twan; Shi, Yang

    2017-01-01

    Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and the target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple different types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments. PMID:27865762

  10. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    PubMed

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Evaluation of Statistical Strategies for Making Equating Function Selections. Research Report. ETS RR-08-60

    ERIC Educational Resources Information Center

    Moses, Tim

    2008-01-01

    Nine statistical strategies for selecting equating functions in an equivalent groups design were evaluated. The strategies of interest were likelihood ratio chi-square tests, regression tests, Kolmogorov-Smirnov tests, and significance tests for equated score differences. The most accurate strategies in the study were the likelihood ratio tests…

  12. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy.

    PubMed

    Li, Xiaoli; Liu, Jian; Qian, Li; Ke, Honggang; Yao, Chan; Tian, Wei; Liu, Yifei; Zhang, Jianguo

    2018-01-11

    Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P < 0.05). A high expression of PFKFB3 and Ki67 were associated with the degree of differentiation, TNM staging, lymph node metastasis, and survival. A high expression of PFKFB3 protein was an independent prognostic marker in lung adenocarcinoma. Subsequently, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) was used as a selective antagonist of PFKFB3. Glycolytic flux was determined by measuring glucose uptake, F2,6BP, and lactate production. Cell viability, cell cycle, cell apoptosis, cell migration, and invasion were analyzed by MTT, flow cytometry, Western blot analysis, wound healing assay, and transwell chamber assay. By targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.

  13. Design strategies of fluorescent probes for selective detection among biothiols.

    PubMed

    Niu, Li-Ya; Chen, Yu-Zhe; Zheng, Hai-Rong; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2015-10-07

    Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.

  14. Building synthetic gene circuits from combinatorial libraries: screening and selection strategies.

    PubMed

    Schaerli, Yolanda; Isalan, Mark

    2013-07-01

    The promise of wide-ranging biotechnology applications inspires synthetic biologists to design novel genetic circuits. However, building such circuits rationally is still not straightforward and often involves painstaking trial-and-error. Mimicking the process of natural selection can help us to bridge the gap between our incomplete understanding of nature's design rules and our desire to build functional networks. By adopting the powerful method of directed evolution, which is usually applied to protein engineering, functional networks can be obtained through screening or selecting from randomised combinatorial libraries. This review first highlights the practical options to introduce combinatorial diversity into gene circuits and then examines strategies for identifying the potentially rare library members with desired functions, either by screening or selection.

  15. Empirical study of the dependence of the results of multivariable flexible survival analyses on model selection strategy.

    PubMed

    Binquet, C; Abrahamowicz, M; Mahboubi, A; Jooste, V; Faivre, J; Bonithon-Kopp, C; Quantin, C

    2008-12-30

    Flexible survival models, which avoid assumptions about hazards proportionality (PH) or linearity of continuous covariates effects, bring the issues of model selection to a new level of complexity. Each 'candidate covariate' requires inter-dependent decisions regarding (i) its inclusion in the model, and representation of its effects on the log hazard as (ii) either constant over time or time-dependent (TD) and, for continuous covariates, (iii) either loglinear or non-loglinear (NL). Moreover, 'optimal' decisions for one covariate depend on the decisions regarding others. Thus, some efficient model-building strategy is necessary.We carried out an empirical study of the impact of the model selection strategy on the estimates obtained in flexible multivariable survival analyses of prognostic factors for mortality in 273 gastric cancer patients. We used 10 different strategies to select alternative multivariable parametric as well as spline-based models, allowing flexible modeling of non-parametric (TD and/or NL) effects. We employed 5-fold cross-validation to compare the predictive ability of alternative models.All flexible models indicated significant non-linearity and changes over time in the effect of age at diagnosis. Conventional 'parametric' models suggested the lack of period effect, whereas more flexible strategies indicated a significant NL effect. Cross-validation confirmed that flexible models predicted better mortality. The resulting differences in the 'final model' selected by various strategies had also impact on the risk prediction for individual subjects.Overall, our analyses underline (a) the importance of accounting for significant non-parametric effects of covariates and (b) the need for developing accurate model selection strategies for flexible survival analyses. Copyright 2008 John Wiley & Sons, Ltd.

  16. The APOGEE-2 Survey of the Orion Star-forming Complex. I. Target Selection and Validation with Early Observations

    NASA Astrophysics Data System (ADS)

    Cottle, J.’Neil; Covey, Kevin R.; Suárez, Genaro; Román-Zúñiga, Carlos; Schlafly, Edward; Downes, Juan Jose; Ybarra, Jason E.; Hernandez, Jesus; Stassun, Keivan; Stringfellow, Guy S.; Getman, Konstantin; Feigelson, Eric; Borissova, Jura; Kim, J. Serena; Roman-Lopes, A.; Da Rio, Nicola; De Lee, Nathan; Frinchaboy, Peter M.; Kounkel, Marina; Majewski, Steven R.; Mennickent, Ronald E.; Nidever, David L.; Nitschelm, Christian; Pan, Kaike; Shetrone, Matthew; Zasowski, Gail; Chambers, Ken; Magnier, Eugene; Valenti, Jeff

    2018-06-01

    The Orion Star-forming Complex (OSFC) is a central target for the APOGEE-2 Young Cluster Survey. Existing membership catalogs span limited portions of the OSFC, reflecting the difficulty of selecting targets homogeneously across this extended, highly structured region. We have used data from wide-field photometric surveys to produce a less biased parent sample of young stellar objects (YSOs) with infrared (IR) excesses indicative of warm circumstellar material or photometric variability at optical wavelengths across the full 420 square degree extent of the OSFC. When restricted to YSO candidates with H < 12.4, to ensure S/N ∼ 100 for a six-visit source, this uniformly selected sample includes 1307 IR excess sources selected using criteria vetted by Koenig & Liesawitz (2014) and 990 optical variables identified in the Pan-STARRS1 3π survey: 319 sources exhibit both optical variability and evidence of circumstellar disks through IR excess. Objects from this uniformly selected sample received the highest priority for targeting, but required fewer than half of the fibers on each APOGEE-2 plate. We filled the remaining fibers with previously confirmed and new color–magnitude selected candidate OSFC members. Radial velocity measurements from APOGEE-1 and new APOGEE-2 observations taken in the survey’s first year indicate that ∼90% of the uniformly selected targets have radial velocities consistent with Orion membership. The APOGEE-2 Orion survey will include >1100 bona fide YSOs whose uniform selection function will provide a robust sample for comparative analyses of the stellar populations and properties across all sub-regions of Orion.

  17. Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.

    PubMed

    Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A

    1988-02-01

    A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to

  18. The application of the fibroblast activation protein α-targeted immunotherapy strategy

    PubMed Central

    Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-01-01

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target. PMID:26985769

  19. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  20. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  1. Improved design of hammerhead ribozyme for selective digestion of target RNA through recognition of site-specific adenosine-to-inosine RNA editing

    PubMed Central

    Fukuda, Masatora; Kurihara, Kei; Yamaguchi, Shota; Oyama, Yui; Deshimaru, Masanobu

    2014-01-01

    Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites. PMID:24448449

  2. Early Invasive Versus Selective Strategy for Non-ST-Segment Elevation Acute Coronary Syndrome: The ICTUS Trial.

    PubMed

    Hoedemaker, Niels P G; Damman, Peter; Woudstra, Pier; Hirsch, Alexander; Windhausen, Fons; Tijssen, Jan G P; de Winter, Robbert J

    2017-04-18

    The ICTUS (Invasive Versus Conservative Treatment in Unstable Coronary Syndromes) trial compared early invasive strategy with a selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS) and an elevated cardiac troponin T. No long-term benefit of an early invasive strategy was found at 1 and 5 years. The aim of this study was to determine the 10-year clinical outcomes of an early invasive strategy versus a selective invasive strategy in patients with NSTE-ACS and an elevated cardiac troponin T. The ICTUS trial was a multicenter, randomized controlled clinical trial that included 1,200 patients with NSTE-ACS and an elevated cardiac troponin T. Enrollment was from July 2001 to August 2003. We collected 10-year follow-up of death, myocardial infarction (MI), and revascularization through the Dutch population registry, patient phone calls, general practitioners, and hospital records. The primary outcome was the 10-year composite of death or spontaneous MI. Additional outcomes included the composite of death or MI, death, MI (spontaneous and procedure-related), and revascularization. Ten-year death or spontaneous MI was not statistically different between the 2 groups (33.8% vs. 29.0%, hazard ratio [HR]: 1.12; 95% confidence interval [CI]: 0.97 to 1.46; p = 0.11). Revascularization occurred in 82.6% of the early invasive group and 60.5% in the selective invasive group. There were no differences in additional outcomes, except for a higher rate of death or MI in the early invasive group compared with the rates for the selective invasive group (37.6% vs. 30.5%; HR: 1.30; 95% CI: 1.07 to 1.58; p = 0.009), driven by a higher rate of procedure-related MI in the early invasive group (6.5% vs. 2.4%; HR: 2.82; 95% CI: 1.53 to 5.20; p = 0.001). In patients with NSTE-ACS and elevated cardiac troponin T levels, an early invasive strategy has no benefit over a selective invasive strategy in reducing the 10-year composite outcome of

  3. Targeted estrogen delivery reverses the metabolic syndrome

    PubMed Central

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

    2013-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  4. Targeting tumor glycolysis by a mitotropic agent.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-01

    Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.

  5. Can Australia eliminate TB? Modelling immigration strategies for reaching MDG targets in a low-transmission setting.

    PubMed

    Denholm, Justin T; McBryde, Emma S

    2014-02-01

    The 2050 Millennium Development Goals (MDG) for tuberculosis (TB) aim for elimination of TB as a public health issue. We used a mathematical modelling approach to evaluate the feasibility of this target in a low-prevalence setting with immigration-related strategies directed at latent tuberculosis. We used a stochastic individual-based model to simulate tuberculosis disease among immigrants to Victoria, Australia; a representative low-transmission setting. A variety of screening and treatment approaches aimed at preventing reactivation of latent infection were applied to evaluate overall tuberculosis incidence reduction and rates of multidrug resistant disease. Without additional intervention, tuberculosis incidence was predicted to reach 34.5 cases/million by 2050. Strategies involving the introduction of an available screening/treatment combination reduced TB incidence to between 16.9-23.8 cases/million, and required screening of 136-427 new arrivals for each case of TB prevented. Limiting screening to higher incidence regions of origin was less effective but more efficient. Public health strategies targeting latent tuberculosis infection in immigrants may substantially reduce tuberculosis incidence in a low prevalence region. However, immigration-focused strategies cannot achieve the 2050 MDG and alternative or complementary approaches are required. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  6. Multi-Conformer Ensemble Docking to Difficult Protein Targets

    DOE PAGES

    Ellingson, Sally R.; Miao, Yinglong; Baudry, Jerome; ...

    2014-09-08

    We investigate large-scale ensemble docking using five proteins from the Directory of Useful Decoys (DUD, dud.docking.org) for which docking to crystal structures has proven difficult. Molecular dynamics trajectories are produced for each protein and an ensemble of representative conformational structures extracted from the trajectories. Docking calculations are performed on these selected simulation structures and ensemble-based enrichment factors compared with those obtained using docking in crystal structures of the same protein targets or random selection of compounds. We also found simulation-derived snapshots with improved enrichment factors that increased the chemical diversity of docking hits for four of the five selected proteins.more » A combination of all the docking results obtained from molecular dynamics simulation followed by selection of top-ranking compounds appears to be an effective strategy for increasing the number and diversity of hits when using docking to screen large libraries of chemicals against difficult protein targets.« less

  7. Coevolution of strategy-selection time scale and cooperation in spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Rong, Zhihai; Wu, Zhi-Xi; Chen, Guanrong

    2013-06-01

    In this paper, we investigate a networked prisoner's dilemma game where individuals' strategy-selection time scale evolves based on their historical learning information. We show that the more times the current strategy of an individual is learnt by his neighbors, the longer time he will stick on the successful behavior by adaptively adjusting the lifetime of the adopted strategy. Through characterizing the extent of success of the individuals with normalized payoffs, we show that properly using the learned information can form a positive feedback mechanism between cooperative behavior and its lifetime, which can boost cooperation on square lattices and scale-free networks.

  8. Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events.

    PubMed

    Tidball, James G; Wehling-Henricks, Michelle

    2004-12-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal, muscle wasting disease that affects 1 of 3500 boys born worldwide. The disease results from mutation of the dystrophin gene that encodes a cytoskeletal protein associated with the muscle cell membrane. Although gene therapy will likely provide the cure for DMD, it remains on the distant horizon, emphasizing the need for more rapid development of palliative treatments that build on improved understanding of the complex pathology of dystrophin deficiency. In this review, we have focused on therapeutic strategies that target downstream events in the pathologic progression of DMD. Much of this work has been developed initially using the dystrophin-deficient mdx mouse to explore basic features of the pathophysiology of dystrophin deficiency and to test potential therapeutic interventions to slow, reverse, or compensate for functional losses that occur in muscular dystrophy. In some cases, the initial findings in the mdx model have led to clinical treatments for DMD boys that have produced improvements in muscle function and quality of life. Many of these investigations have concerned interventions that can affect protein balance in muscle, by inhibiting specific proteases implicated in the DMD pathology, or by providing anabolic factors or depleting catabolic factors that can contribute to muscle wasting. Other investigations have exploited the use of anti-inflammatory agents that can reduce the contribution of leukocytes to promoting secondary damage to dystrophic muscle. A third general strategy is designed to increase the regenerative capacity of dystrophic muscle and thereby help retain functional muscle mass. Each of these general approaches to slowing the pathology of dystrophin deficiency has yielded encouragement and suggests that targeting downstream events in dystrophinopathy can yield worthwhile, functional improvements in DMD.

  9. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    NASA Astrophysics Data System (ADS)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  10. Selection of head and whisker coordination strategies during goal-oriented active touch.

    PubMed

    Schroeder, Joseph B; Ritt, Jason T

    2016-04-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. Copyright © 2016 the American Physiological Society.

  11. Selection of head and whisker coordination strategies during goal-oriented active touch

    PubMed Central

    2016-01-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly “correct” their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. PMID:26792880

  12. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  13. Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma

    PubMed Central

    Salloum, Darin; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Sadique, Ahmad; Lewis, Jason S.; Weber, Wolfgang A.; Wendel, Hans-Guido; Reiner, Thomas

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL. PMID:28827325

  14. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    PubMed

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  15. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy

    PubMed Central

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-01

    Currently, a new gene editing tool—the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system—is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy. PMID:29337866

  16. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models.

    PubMed

    Ciamporcero, Eric; Miles, Kiersten Marie; Adelaiye, Remi; Ramakrishnan, Swathi; Shen, Li; Ku, ShengYu; Pizzimenti, Stefania; Sennino, Barbara; Barrera, Giuseppina; Pili, Roberto

    2015-01-01

    Alternative pathways to the VEGF, such as hepatocyte growth factor or HGF/c-met, are emerging as key players in tumor angiogenesis and resistance to anti-VEGF therapies. The aim of this study was to assess the effects of a combination strategy targeting the VEGF and c-met pathways in clear cell renal cell carcinoma (ccRCC) models. Male SCID mice (8/group) were implanted with 786-O tumor pieces and treated with either a selective VEGF receptor tyrosine kinase inhibitor, axitinib (36 mg/kg, 2×/day); a c-met inhibitor, crizotinib (25 mg/kg, 1×/day); or combination. We further tested this drug combination in a human ccRCC patient-derived xenograft, RP-R-01, in both VEGF-targeted therapy-sensitive and -resistant models. To evaluate the resistant phenotype, we established an RP-R-01 sunitinib-resistant model by continuous sunitinib treatment (60 mg/kg, 1×/day) of RP-R-01-bearing mice. Treatment with single-agent crizotinib reduced tumor vascularization but failed to inhibit tumor growth in either model, despite also a significant increase of c-met expression and phosphorylation in the sunitinib-resistant tumors. In contrast, axitinib treatment was effective in inhibiting angiogenesis and tumor growth in both models, with its antitumor effect significantly increased by the combined treatment with crizotinib, independently from c-met expression. Combination treatment also induced prolonged survival and significant tumor growth inhibition in the 786-O human RCC model. Overall, our results support the rationale for the clinical testing of combined VEGF and HGF/c-met pathway blockade in the treatment of ccRCC, both in first- and second-line setting. ©2014 American Association for Cancer Research.

  17. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles

    PubMed Central

    Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.

    2006-01-01

    We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330

  18. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.

    PubMed

    Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M

    2018-02-07

    Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.

  19. Targeting the cell cycle and the PI3K pathway: a possible universal strategy to reactivate innate tumor suppressor programmes in cancer cells.

    PubMed

    David-Pfeuty, Thérèse; Legraverend, Michel; Ludwig, Odile; Grierson, David S

    2010-04-01

    Corruption of the Rb and p53 pathways occurs in virtually all human cancers. This could be because it lends oncogene-bearing cells a surfeit of Cdk activity and growth, enabling them to elaborate strategies to evade tumor-suppressive mechanisms and divide inappropriately. Targeting both Cdk activities and the PI3K pathway might be therefore a potentially universal means to palliate their deficiency in cancer cells. We showed that the killing efficacy of roscovitine and 16 other purines and potentiation of roscovitine-induced apoptosis by the PI3K inhibitor, LY294002, decreased with increasing corruption of the Rb and p53 pathways. Further, we showed that purines differing by a single substitution, which exerted little lethal effect on distant cell types in rich medium, could display widely-differing cytotoxicity profiles toward the same cell types in poor medium. Thus, closely-related compounds targeting similar Cdks may interact with different targets that could compete for their interaction with therapeutically-relevant Cdk targets. In the perspective of clinical development in association with the PI3K pathway inhibitors, it might thus be advisable to select tumor cell type-specific Cdk inhibitors on the basis of their toxicity in cell-culture-based assays performed at a limiting serum concentration sufficient to suppress their interaction with undesirable crossreacting targets whose range and concentration would depend on the cell genotype.

  20. Differential targeting of Gbetagamma-subunit signaling with small molecules.

    PubMed

    Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V

    2006-04-21

    G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  1. Genetic gain and economic values of selection strategies including semen traits in three- and four-way crossbreeding systems for swine production.

    PubMed

    González-Peña, D; Knox, R V; MacNeil, M D; Rodriguez-Zas, S L

    2015-03-01

    Four semen traits: volume (VOL), concentration (CON), progressive motility of spermatozoa (MOT), and abnormal spermatozoa (ABN) provide complementary information on boar fertility. Assessment of the impact of selection for semen traits is hindered by limited information on economic parameters. Objectives of this study were to estimate economic values for semen traits and to evaluate the genetic gain when these traits are incorporated into traditional selection strategies in a 3-tier system of swine production. Three-way (maternal nucleus lines A and B and paternal nucleus line C) and 4-way (additional paternal nucleus line D) crossbreeding schemes were compared. A novel population structure that accommodated selection for semen traits was developed. Three selection strategies were simulated. Selection Strategy I (baseline) encompassed selection for maternal traits: number of pigs born alive (NBA), litter birth weight (LBW), adjusted 21-d litter weight (A21), and number of pigs at 21 d (N21); and paternal traits: number of days to 113.5 kg (D113), backfat (BF), ADG, feed efficiency (FE), and carcass lean % (LEAN). Selection Strategy II included Strategy I and the number of usable semen doses per collection (DOSES), a function of the 4 semen traits. Selection Strategy III included Strategy I and the 4 semen traits individually. The estimated economic values of VOL, CON, MOT, ABN, and DOSES for 7 to 1 collections/wk ranged from $0.21 to $1.44/mL, $0.12 to $0.83/10 spermatozoa/mm, $0.61 to $12.66/%, -$0.53 to -$10.88/%, and $2.01 to $41.43/%, respectively. The decrease in the relative economic values of semen traits and DOSES with higher number of collections per wk was sharper between 1 and 2.33 collections/wk than between 2.33 and 7 collections/wk. The higher economic value of MOT and ABN relative to VOL and CON could be linked to the genetic variances and covariances of these traits. Average genetic gains for the maternal traits were comparable across strategies

  2. Selective Targeting of Cancer Stem Cells by 2-Aminodihydroquinoline Analogs.

    PubMed

    Park, Heejoo; Yu, Yeongji; Kim, Hyejin; Lee, Eun; Lee, Hani; Jeon, Raok; Kim, Woo-Young

    2017-04-01

    Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.

  3. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.

    PubMed

    Repanas, Kostas; Zingler, Nora; Layer, Liliana E; Schumann, Gerald G; Perrakis, Anastassis; Weichenrieder, Oliver

    2007-01-01

    The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for approximately 28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.

  4. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    PubMed

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  6. Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies.

    PubMed

    Gastambide, François; Viollet, Cécile; Lepousez, Gabriel; Epelbaum, Jacques; Guillou, Jean-Louis

    2009-01-01

    Somatostatin (SS14) has been implicated in various cognitive disorders, and converging evidence from animal studies suggests that SS14 neurons differentially regulate hippocampal- and striatal-dependent memory formation. Four SS14 receptor subtypes (SSTR1-4) are expressed in the hippocampus, but their respective roles in memory processes remain to be determined. In the present study, effects of selective SSTR1-4 agonists on memory formation were assessed in a water-maze task which can engage either hippocampus-dependent "place" and/or striatum-dependent "cue" memory formation. Mice received an intrahippocampal injection of one of each of the selective agonists and were then trained to locate an escape platform based on either distal cues (place memory) or a visible proximal cue (cue memory). Retention was tested 24 h later on probe trials aimed at identifying which memory strategy was preferentially retained. Both SS14 and the SSTR4 agonist (L-803,087) dramatically impaired place memory formation in a dose-dependent manner, whereas SSTR1 (L-797,591), SSTR2 (L-779,976), or SSTR3 (L-796,778) agonists did not yield any behavioral effects. However, unlike SS14, the SSTR4 agonist also dose-dependently enhanced cue-based memory formation. This effect was confirmed in another striatal-dependent memory task, the bar-pressing task, where L-803,087 improved memory of the instrumental response, whereas SS14 was once again ineffective. These data suggest that hippocampal SSTR4 are selectively involved in the selection of memory strategies by switching from the use of hippocampus-based multiple associations to the use of simple dorsal striatum-based behavioral responses. Possible neural mechanisms and functional implications are discussed.

  7. The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery.

    PubMed

    Lamotte, Suzanne; Späth, Gerald F; Rachidi, Najma; Prina, Eric

    2017-06-01

    The state of antileishmanial chemotherapy is strongly compromised by the emergence of drug-resistant Leishmania. The evolution of drug-resistant phenotypes has been linked to the parasites' intrinsic genome instability, with frequent gene and chromosome amplifications causing fitness gains that are directly selected by environmental factors, including the presence of antileishmanial drugs. Thus, even though the unique eukaryotic biology of Leishmania and its dependence on parasite-specific virulence factors provide valid opportunities for chemotherapeutical intervention, all strategies that target the parasite in a direct fashion are likely prone to select for resistance. Here, we review the current state of antileishmanial chemotherapy and discuss the limitations of ongoing drug discovery efforts. We finally propose new strategies that target Leishmania viability indirectly via mechanisms of host-parasite interaction, including parasite-released ectokinases and host epigenetic regulation, which modulate host cell signaling and transcriptional regulation, respectively, to establish permissive conditions for intracellular Leishmania survival.

  8. Mechanical effort predicts the selection of ankle over hip strategies in nonstepping postural responses

    PubMed Central

    Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl

    2016-01-01

    Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362

  9. Perceptions of similarity and response to selected comparison targets in type 2 diabetes.

    PubMed

    Arigo, Danielle; Smyth, Joshua M; Suls, Jerry M

    2015-01-01

    Social comparisons (i.e. self-evaluations relative to others) may affect motivation for diabetes self-care behaviours. Comparisons can have either positive or negative effects, but it is not clear what differentiates these responses. This study tested the effect of a patient's perceived similarity to a comparison target on motivation for self-care. Individuals with type 2 diabetes (n = 180, MA1c = 7.59%) selected to read one of four brief descriptions of a patient with diabetes. Participants rated their motivation for self-care behaviours prior and subsequent to reading and reported the extent to which they focused on similarities between the self and the selected patient while reading. Perceived similarity moderated the effect of selection on motivation for self-care (p = .01, η2 = .06). Increased motivation was observed if participants focused on similarities with patients 'doing better' (i.e. high coping effectiveness/low symptom severity) and decreased motivation if they focused on similarities with patients 'doing worse' (low coping effectiveness/high symptom severity). Providing social comparison information in diabetes management (and perhaps other chronic diseases) may improve motivation for self-care among some patients. A subset of patients, however, may benefit from guidance to focus on similarities with certain targets.

  10. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    PubMed Central

    Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua

    2015-01-01

    A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810

  11. Post-targeting strategy for ready-to-use targeted nanodelivery post cargo loading.

    PubMed

    Zhu, J Y; Hu, J J; Zhang, M K; Yu, W Y; Zheng, D W; Wang, X Q; Feng, J; Zhang, X Z

    2017-12-14

    Based on boronate formation, this study reports a post-targeting methodology capable of readily installing versatile targeting modules onto a cargo-loaded nanoplatform in aqueous mediums. This permits the targeted nanodelivery of broad-spectrum therapeutics (drug/gene) in a ready-to-use manner while overcoming the PEGylation-dilemma that frequently occurs in conventional targeting approaches.

  12. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus.

    PubMed

    Wencewicz, Timothy A; Long, Timothy E; Möllmann, Ute; Miller, Marvin J

    2013-03-20

    Siderophores are multidentate iron(III) chelators used by bacteria for iron assimilation. Sideromycins, also called siderophore-antibiotic conjugates, are a unique subset of siderophores that enter bacterial cells via siderophore uptake pathways and deliver the toxic antibiotic in a "Trojan horse" fashion. Sideromycins represent a novel antibiotic delivery technology with untapped potential for developing sophisticated microbe-selective antibacterial agents that limit the emergence of bacterial resistance. The chemical synthesis of a series of mono-, bis-, and trihydroxamate sideromycins are described here along with their biological evaluation in antibacterial susceptibility assays. The linear hydroxamate siderophores used for the sideromycins in this study were derived from the ferrioxamine family and inspired by the naturally occurring salmycin sideromycins. The antibacterial agents used were a β-lactam carbacepholosporin, Lorabid, and a fluoroquinolone, ciprofloxacin, chosen for the different locations of their biological targets, the periplasm (extracellular) and the cytoplasm (intracellular). The linear hydroxamate-based sideromycins were selectively toxic toward Gram-positive bacteria, especially Staphylococcus aureus SG511 (MIC = 1.0 μM for the trihydroxamate-fluoroquinolone sideromycin). Siderophore-sideromycin competition assays demonstrated that only the fluoroquinolone sideromycins required membrane transport to reach their cytoplasmic biological target and that a trihydroxamate siderophore backbone was required for protein-mediated active transport of the sideromycins into S. aureus cells via siderophore uptake pathways. This work represents a comprehensive study of linear hydroxamate sideromycins and teaches how to build effective hydroxamate-based sideromycins as Gram-positive selective antibiotic agents.

  13. An efficient sampling strategy for selection of biobank samples using risk scores.

    PubMed

    Björk, Jonas; Malmqvist, Ebba; Rylander, Lars; Rignell-Hydbom, Anna

    2017-07-01

    The aim of this study was to suggest a new sample-selection strategy based on risk scores in case-control studies with biobank data. An ongoing Swedish case-control study on fetal exposure to endocrine disruptors and overweight in early childhood was used as the empirical example. Cases were defined as children with a body mass index (BMI) ⩾18 kg/m 2 ( n=545) at four years of age, and controls as children with a BMI of ⩽17 kg/m 2 ( n=4472 available). The risk of being overweight was modelled using logistic regression based on available covariates from the health examination and prior to selecting samples from the biobank. A risk score was estimated for each child and categorised as low (0-5%), medium (6-13%) or high (⩾14%) risk of being overweight. The final risk-score model, with smoking during pregnancy ( p=0.001), birth weight ( p<0.001), BMI of both parents ( p<0.001 for both), type of residence ( p=0.04) and economic situation ( p=0.12), yielded an area under the receiver operating characteristic curve of 67% ( n=3945 with complete data). The case group ( n=416) had the following risk-score profile: low (12%), medium (46%) and high risk (43%). Twice as many controls were selected from each risk group, with further matching on sex. Computer simulations showed that the proposed selection strategy with stratification on risk scores yielded consistent improvements in statistical precision. Using risk scores based on available survey or register data as a basis for sample selection may improve possibilities to study heterogeneity of exposure effects in biobank-based studies.

  14. Cow genotyping strategies for genomic selection in a small dairy cattle population.

    PubMed

    Jenko, J; Wiggans, G R; Cooper, T A; Eaglen, S A E; Luff, W G de L; Bichard, M; Pong-Wong, R; Woolliams, J A

    2017-01-01

    This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds, few sires have progeny records, and genotyping cows can improve the accuracy of genomic EBV. The Guernsey breed is a small dairy cattle breed with approximately 14,000 recorded individuals worldwide. Predictions of phenotypes of milk yield, fat yield, protein yield, and calving interval were made for Guernsey cows from England and Guernsey Island using genomic EBV, with training sets including 197 de-regressed proofs of genotyped bulls, with cows selected from among 1,440 genotyped cows using different genotyping strategies. Accuracies of predictions were tested using 10-fold cross-validation among the cows. Genomic EBV were predicted using 4 different methods: (1) pedigree BLUP, (2) genomic BLUP using only bulls, (3) univariate genomic BLUP using bulls and cows, and (4) bivariate genomic BLUP. Genotyping cows with phenotypes and using their data for the prediction of single nucleotide polymorphism effects increased the correlation between genomic EBV and phenotypes compared with using only bulls by 0.163±0.022 for milk yield, 0.111±0.021 for fat yield, and 0.113±0.018 for protein yield; a decrease of 0.014±0.010 for calving interval from a low base was the only exception. Genetic correlation between phenotypes from bulls and cows were approximately 0.6 for all yield traits and significantly different from 1. Only a very small change occurred in correlation between genomic EBV and phenotypes when using the bivariate model. It was always better to genotype all the cows, but when only half of the cows were genotyped, a divergent selection strategy was better compared with the random or directional selection approach. Divergent selection of 30% of the cows remained superior for the yield traits in 8 of 10 folds. Copyright © 2017 American Dairy Science Association. Published by

  15. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  16. Benchmark data sets for structure-based computational target prediction.

    PubMed

    Schomburg, Karen T; Rarey, Matthias

    2014-08-25

    Structure-based computational target prediction methods identify potential targets for a bioactive compound. Methods based on protein-ligand docking so far face many challenges, where the greatest probably is the ranking of true targets in a large data set of protein structures. Currently, no standard data sets for evaluation exist, rendering comparison and demonstration of improvements of methods cumbersome. Therefore, we propose two data sets and evaluation strategies for a meaningful evaluation of new target prediction methods, i.e., a small data set consisting of three target classes for detailed proof-of-concept and selectivity studies and a large data set consisting of 7992 protein structures and 72 drug-like ligands allowing statistical evaluation with performance metrics on a drug-like chemical space. Both data sets are built from openly available resources, and any information needed to perform the described experiments is reported. We describe the composition of the data sets, the setup of screening experiments, and the evaluation strategy. Performance metrics capable to measure the early recognition of enrichments like AUC, BEDROC, and NSLR are proposed. We apply a sequence-based target prediction method to the large data set to analyze its content of nontrivial evaluation cases. The proposed data sets are used for method evaluation of our new inverse screening method iRAISE. The small data set reveals the method's capability and limitations to selectively distinguish between rather similar protein structures. The large data set simulates real target identification scenarios. iRAISE achieves in 55% excellent or good enrichment a median AUC of 0.67 and RMSDs below 2.0 Å for 74% and was able to predict the first true target in 59 out of 72 cases in the top 2% of the protein data set of about 8000 structures.

  17. Molecular Imaging: Current Status and Emerging Strategies

    PubMed Central

    Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.

    2011-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650

  18. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    PubMed Central

    Wilson, Alexander D. M.; Brownscombe, Jacob W.; Sullivan, Brittany; Jain-Schlaepfer, Sofia; Cooke, Steven J.

    2015-01-01

    Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management. PMID:26284779

  19. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.

    PubMed

    Sebastian, Alexandra; Rössler, Kora; Wibral, Michael; Mobascher, Arian; Lieb, Klaus; Jung, Patrick; Tüscher, Oliver

    2017-10-04

    In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate strategy). Alternatively, the discrimination process of the critical signal (stop vs attentional capture signal) may interact with the go process (dependent discriminate then stop strategy). Those different strategies might differentially involve attention- and stopping-related processes that might be implemented by divergent neural networks. This should lead to divergent activation patterns and, if disregarded, interfere with analyses in neuroimaging studies. To clarify this crucial issue, we studied 87 human participants of both sexes during a stimulus-selective stop-signal task and performed strategy-dependent functional magnetic resonance imaging analyses. We found that, regardless of the strategy applied, outright stopping displayed indistinguishable brain activation patterns. However, during attentional capture different strategies resulted in divergent neural activation patterns with variable activation of right IFJ and bilateral VLPFC. In conclusion, the neural network involved in outright stopping is ubiquitous and independent of strategy, while different strategies impact on attention-related processes and underlying neural network usage. Strategic differences should therefore be taken into account particularly when studying attention-related processes in stimulus-selective

  20. A Generalization Strategy for Discrete Area Feature by Using Stroke Grouping and Polarization Transportation Selection

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Burghardt, Dirk

    2018-05-01

    This paper presents a new strategy for the generalization of discrete area features by using stroke grouping method and polarization transportation selection. The mentioned stroke is constructed on derive of the refined proximity graph of area features, and the refinement is under the control of four constraints to meet different grouping requirements. The area features which belong to the same stroke are detected into the same group. The stroke-based strategy decomposes the generalization process into two sub-processes by judging whether the area features related to strokes or not. For the area features which belong to the same one stroke, they normally present a linear like pat-tern, and in order to preserve this kind of pattern, typification is chosen as the operator to implement the generalization work. For the remaining area features which are not related by strokes, they are still distributed randomly and discretely, and the selection is chosen to conduct the generalization operation. For the purpose of retaining their original distribution characteristic, a Polarization Transportation (PT) method is introduced to implement the selection operation. Buildings and lakes are selected as the representatives of artificial area feature and natural area feature respectively to take the experiments. The generalized results indicate that by adopting this proposed strategy, the original distribution characteristics of building and lake data can be preserved, and the visual perception is pre-served as before.