Sample records for target star hd

  1. Spectrophotometry of Peculiar B-Stars and A-Stars - Part Nine - HD5797 HD12288 9-TAURI HD81009 HD111133 33-LIBRAE and HD216533

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.

    1981-02-01

    Optical region spectrophotometry of λλ3300-7100 is presented for seven sharp-lined peculiar A stars: HD 5797, HD 12288, 9 Tauri, HD 81009, HD 111133, 33 Librae, and HD 216533. Many of proposed periods in the literature are questioned. Some of the deviations from the predictions of normal stellar atmospheres suggest that such continua are only remotely related to those of peculiar A stars.

  2. Studies of FCAPT uvby Photometry with Period04: The mCP Stars HD 5797, HD 36792, HD 27309, HD 47913, HD 74521, HD 120198, HD 171263, and HD 215441

    NASA Astrophysics Data System (ADS)

    Dukes, Robert J., Jr.; Adelman, Saul J.

    2018-04-01

    We present differential Strömgren uvby Four College Automated Photometric Telescope (FCAPT) observations of eight magnetic chemically peculiar stars: HD 5797, HD 26792, HD 27309, HD 49713, HD 74521, HD 120198, HD 171263, and HD 215441. Our data sets are larger than those of most mCP stars in the literature. These are the first FCAPT observations of HD 5797, HD 26792, HD 49713, and HD 171263. Those for the other four stars substantially extend published FCAPT data sets. The FCAPT has observed some stars for a longer time range and with greater accuracy than other optical region telescopes. We determine very accurate periods and u, v, b, and y amplitudes, as well as if there are any long-term periods. Further, we compare our results with those of magnetic field measurements, when they exist, to help interpret the light curves. For each star, we used the Period04 computer program to analyze the uvby light curves. This program provides errors for the derived quantities. Our derived periods of 68.0457 ± 0.0200 days for HD 5797, 3.80205 ± 0.00015 days for HD 26792, 1.5688908 ± 0.0000046 days for HD 27309, 2.135361 ± 0.000031 days for HD 49713, 7.05053 ± 0.00024 for days HD 74521, 1.3857690 ± 0.0000058 days for HD 120198, 3.99744 ± 0.00015 days for HD 171263, and 9.487792 ± 0.000049 days for HD 215441 are refinements of the last determinations in the literature. We also found a low-frequency term for HD 49713 in all four filters.

  3. Modelling of three long-periodic magnetic CP-stars: HD 2453, HD 12288, and HD 200311

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yurij V.; Gerth, Ewald

    2004-12-01

    Using observational data published as phase curves of the effective magnetic field strength Be(P) and the surface field Bs(P), magnetic models of three stars with long rotational periods are calculated by the Magnetic Charge Distribution method. For two of these stars (HD 2453 and HD 12288), the structure of the magnetic field can be described well by a central dipole model. The third star (HD 200311) is better fitted by a model of a displaced dipole, being decentered by triangle r = 0.08 R along the dipole axis.

  4. Chemical analysis of three barium stars: HD 51959, HD 88035, and HD 121447

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Goswami, Aruna; Sridhar, Navin; Masseron, Thomas; Purandardas, Meenakshi

    2018-05-01

    We present elemental abundance results from high-resolution spectral analysis of three nitrogen-enhanced barium stars. The analysis is based on spectra obtained with the fibre-fed extended range optical spectrograph attached to 1.52 m telescope at European Southern Observatory, Chile. The spectral resolution is R ˜ 48,000 and the spectral coverage spans from 3500 to 9000Å . For the objects HD 51959 and HD 88035, we present the first-time abundance analyses results. Although a few studies are available in literature on the object HD 121447, the results are significantly different from each other. We have therefore carried out a detailed chemical composition study for this object based on a high-resolution spectrum with high S/N ratio, for a better understanding of the origin of the abundance patterns observed in this star. Stellar atmospheric parameters, the effective temperature, surface gravity, microturbulence, and metallicity of the stars are determined from the local thermodynamic equilibrium analysis using model atmospheres. The metallicities of HD 51959 and HD 88035 are found to be near-solar; they exhibit enhanced abundances of neutron-capture elements. HD 121447 is found to be moderately metal-poor with [Fe/H] = -0.65. While carbon is near-solar in the other two objects, HD 121447 shows carbon enhancement at a level, [C/Fe] = 0.82. Neutron-capture elements are highly enhanced with [X/Fe] > 2 (X: Ba, La, Pr, Nd, Sm) in this object. The α- and iron-peak elements show abundances very similar to field giants with the same metallicity. From kinematic analysis all the three objects are found to be members of thin disc population with a high probability of 0.99, 0.99, and 0.92 for HD 51959, HD 88035, and HD 121447, respectively.

  5. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution andmore » J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.« less

  6. The nature of the late B-type stars HD 67044 and HD 42035

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.

    2016-04-01

    While monitoring a sample of apparently slowly rotating superficially normal bright late B and early A stars in the northern hemisphere, we have discovered that HD 67044 and HD 42035, hitherto classified as normal late B-type stars, are actually respectively a new chemically peculiar star and a new spectroscopic binary containing a very slow rotator HD 42035 S with ultra-sharp lines (v_{{e}}sin i= 3.7 km s^{-1}) and a fast rotator HD 42035 B with broad lines. The lines of Ti ii, Cr ii, Mn ii, Sr ii, Y ii, Zr ii and Ba ii are conspicuous features in the high resolution SOPHIE spectrum (R=75000) of HD 67044. The Hg ii line at 3983.93 Å is also present as a weak feature. The composite spectrum of HD 42035 is characterised by very sharp lines formed in HD 42035 S superimposed onto the shallow and broad lines of HD 42035 B. These very sharp lines are mostly due to light elements from C to Ni, the only heavy species definitely present are strontium and barium. Selected lines of 21 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperfine structure of various isotopes when relevant. These synthetic spectra have been adjusted to high resolution high signal-to-noise spectra of HD 67044 and HD 42035 S in order to derive abundances of these key elements. HD 67044 is found to have distinct enhancements of Ti, Cr, Mn, Sr, Y, Zr, Ba and Hg and underabundances in He, C, O, Ca and Sc which shows that this star is not a superficially normal late B-type star, but actually is a new CP star most likely of the HgMn type. HD 42035 S has provisional underabundances of the light elements from C to Ti and overabundances of heavier elements (except for Fe and Sr which are also underabundant) up to barium. These values are lower limits to the actual abundances as we cannot currently place properly the continuum of HD 42035 S. More accurate fundamental parameters and abundances for HD

  7. Search for Exoplanets around Northern Circumpolar Stars. II. The Detection of Radial Velocity Variations in M Giant Stars HD 36384, HD 52030, and HD 208742

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Cheol; Jeong, Gwanghui; Park, Myeong-Gu; Han, Inwoo; Mkrtichian, David E.; Hatzes, Artie P.; Gu, Shenghong; Bai, Jinming; Lee, Sang-Min; Oh, Hyeong-Il; Kim, Kang-Min

    2017-07-01

    We present the detection of long-period RV variations in HD 36384, HD 52030, and HD 208742 by using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) for the precise radial velocity (RV) survey of about 200 northern circumpolar stars. Analyses of RV data, chromospheric activity indicators, and bisector variations spanning about five years suggest that the RV variations are compatible with planet or brown dwarf companions in Keplerian motion. However, HD 36384 shows photometric variations with a period very close to that of RV variations as well as amplitude variations in the weighted wavelet Z-transform (WWZ) analysis, which argues that the RV variations in HD 36384 are from the stellar pulsations. Assuming that the companion hypothesis is correct, HD 52030 hosts a companion with minimum mass 13.3 M Jup orbiting in 484 days at a distance of 1.2 au. HD 208742 hosts a companion of 14.0 M Jup at 1.5 au with a period of 602 days. All stars are located at the asymptotic giant branch (AGB) stage on the H-R diagram after undergoing the helium flash and leaving the giant clump.With stellar radii of 53.0 R ⊙ and 57.2 R ⊙ for HD 52030 and HD 208742, respectively, these stars may be the largest yet, in terms of stellar radius, found to host substellar companions. However, given possible RV amplitude variations and the fact that these are highly evolved stars, the planet hypothesis is not yet certain.

  8. Search for Exoplanets around Northern Circumpolar Stars. II. The Detection of Radial Velocity Variations in M Giant Stars HD 36384, HD 52030, and HD 208742

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Byeong-Cheol; Jeong, Gwanghui; Han, Inwoo

    2017-07-20

    We present the detection of long-period RV variations in HD 36384, HD 52030, and HD 208742 by using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) for the precise radial velocity (RV) survey of about 200 northern circumpolar stars. Analyses of RV data, chromospheric activity indicators, and bisector variations spanning about five years suggest that the RV variations are compatible with planet or brown dwarf companions in Keplerian motion. However, HD 36384 shows photometric variations with a period very close to that of RV variations as well as amplitude variations in the weighted wavelet Z-transform (WWZ) analysis, which argues thatmore » the RV variations in HD 36384 are from the stellar pulsations. Assuming that the companion hypothesis is correct, HD 52030 hosts a companion with minimum mass 13.3 M {sub Jup} orbiting in 484 days at a distance of 1.2 au. HD 208742 hosts a companion of 14.0 M {sub Jup} at 1.5 au with a period of 602 days. All stars are located at the asymptotic giant branch (AGB) stage on the H–R diagram after undergoing the helium flash and leaving the giant clump.With stellar radii of 53.0 R {sub ⊙} and 57.2 R {sub ⊙} for HD 52030 and HD 208742, respectively, these stars may be the largest yet, in terms of stellar radius, found to host substellar companions. However, given possible RV amplitude variations and the fact that these are highly evolved stars, the planet hypothesis is not yet certain.« less

  9. Accurate effective temperatures of the metal-poor benchmark stars HD 140283, HD 122563, and HD 103095 from CHARA interferometry

    NASA Astrophysics Data System (ADS)

    Karovicova, I.; White, T. R.; Nordlander, T.; Lind, K.; Casagrande, L.; Ireland, M. J.; Huber, D.; Creevey, O.; Mourard, D.; Schaefer, G. H.; Gilmore, G.; Chiavassa, A.; Wittkowski, M.; Jofré, P.; Heiter, U.; Thévenin, F.; Asplund, M.

    2018-03-01

    Large stellar surveys of the Milky Way require validation with reference to a set of `benchmark' stars whose fundamental properties are well determined. For metal-poor benchmark stars, disagreement between spectroscopic and interferometric effective temperatures has called the reliability of the temperature scale into question. We present new interferometric measurements of three metal-poor benchmark stars, HD 140283, HD 122563, and HD 103095, from which we determine their effective temperatures. The angular sizes of all the stars were determined from observations with the PAVO beam combiner at visible wavelengths at the CHARA array, with additional observations of HD 103095 made with the VEGA instrument, also at the CHARA array. Together with photometrically derived bolometric fluxes, the angular diameters give a direct measurement of the effective temperature. For HD 140283, we find θLD = 0.324 ± 0.005 mas, Teff = 5787 ± 48 K; for HD 122563, θLD = 0.926 ± 0.011 mas, Teff = 4636 ± 37 K; and for HD 103095, θLD = 0.595 ± 0.007 mas, Teff = 5140 ± 49 K. Our temperatures for HD 140283 and HD 103095 are hotter than the previous interferometric measurements by 253 and 322 K, respectively. We find good agreement between our temperatures and recent spectroscopic and photometric estimates. We conclude some previous interferometric measurements have been affected by systematic uncertainties larger than their quoted errors.

  10. Magnetic field geometries of two slowly rotating Ap/Bp stars: HD 12288 and HD 14437

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Kudryavtsev, D.; Romanyuk, I. I.; Landstreet, J. D.; Mathys, G.

    2000-03-01

    In this paper we report magnetic field models and basic physical parameters for the slowly rotating Ap/Bp stars HD 12288 and HD 14437. Using new and previously published mean longitudinal magnetic field, mean magnetic field modulus, and hipparcos photometric measurements, we have inferred the rotational periods of both stars (HD 12288: P_rot=34.9d +/- 0.2d HD 14437: P_rot=26.87d +/- 0.02d). From the magnetic measurements we have determined the best-fit decentred magnetic dipole configurations. For HD 12288, we find that the field geometry is consistent with a centred dipole, while for HD 14437 a large decentring parameter (a=0.23 R_*) is inferred. Both stars show one angle in the ambiguous (i,beta ) couplet which is smaller than about 20degr . This is consistent with the observation of Landstreet & Mathys (2000), who point out that almost all magnetic Ap stars with periods longer than about 30 days exhibit magnetic fields aligned with their rotational axis.

  11. Young Star HD 141569

    NASA Image and Video Library

    2017-01-30

    This image shows the dusty disk of planetary material surrounding the young star HD 141569, located 380 light-years away from Earth. It was taken using the vortex coronagraph on the W.M. Keck Observatory. The vortex suppressed light from the star in the center, revealing light from the innermost ring of planetary material around the star (blue). The disk around the star, made of olivine particles, extends from 23 to 70 astronomical units from the star. By comparison, Uranus is over 19 astronomical units from our sun, and Neptune about 30 astronomical units. One astronomical unit is the distance between Earth and our sun. http://photojournal.jpl.nasa.gov/catalog/PIA21090

  12. On the physical association of the peculiar emission: Line stars HD 122669 and HD 122691

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Hiltner, W. A.; Sanduleak, N.

    1975-01-01

    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past twenty years. There is some indication that both stars vary with shorter time scales.

  13. Copious amounts of hot and cold dust orbiting the main sequence a-type stars HD 131488 and HD 121191

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melis, Carl; Zuckerman, B.; Rhee, Joseph H.

    2013-11-20

    We report two new dramatically dusty main sequence stars: HD 131488 (A1 V) and HD 121191 (A8 V). HD 131488 is found to have substantial amounts of dust in its terrestrial planet zone (L {sub IR}/L {sub bol} ≈ 4 × 10{sup –3}), cooler dust farther out in its planetary system, and an unusual mid-infrared spectral feature. HD 121191 shows terrestrial planet zone dust (L {sub IR}/L {sub bol} ≈ 2.3 × 10{sup –3}), hints of cooler dust, and shares the unusual mid-infrared spectral shape identified in HD 131488. These two stars belong to sub-groups of the Scorpius-Centaurus OB associationmore » and have ages of ∼10 Myr. HD 131488 and HD 121191 are the dustiest main sequence A-type stars currently known. Early-type stars that host substantial inner planetary system dust are thus far found only within the age range of 5-20 Myr.« less

  14. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    NASA Astrophysics Data System (ADS)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.

  15. Spectrophotometry of peculiar B and A stars. XIV - 56 Arietis, 41 Tauri, 25 Sextantis, HD 170973, HD 205087, and HD 215441

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.

    1983-03-01

    Optical region spectrophotometry of six relatively hot Ap stars is presented. Additional scans of 56 Ari extend the results of an earlier paper in this series. The data for 41 Tau, 25 Sex, HD 170973, and HD 215441 are studied as a function of phase. The observations of HD 205087 are inconclusive about its variability although they show spectrophotometrically that it is a definite Ap star. The observations of HD 215441 show a prominent λ5200 broad, continuum feature with an unusual shape. However, when the data are corrected for interstellar reddening, the energy distribution resembles those of other silicon stars. The λ5200 feature is found to be variable in phase with the U-B and B-V colors and with the magnetic field strength. This feature is strongest when the Balmer jump is smallest, the Paschen continuum the bluest according to B-V, and the surface magnetic field strength the largest.

  16. Far-ultraviolet energy distributions of the metal-poor A stars HD 109995 and HD 161817

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Low-resolution IUE spectra at wavelengths between 1300 and 3400 A of the metal-poor stars HD 109995 (A1p) and HD 161817 (A4p) have been compared with model-atmosphere energy distributions computed by Kurucz (1979). Good overall agreement is found. Effective temperatures, metal abundances, and angular diameters could be determined. Assuming an absolute visual magnitude of 0.7, the previously determined gravity log = 3 yields masses of 0.5 solar masses for both stars. It is found that the theoretical UBV colors calculated earlier agree reaonably well with the ones observed for these stars.

  17. First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Lampens, P.

    2015-11-01

    The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.

  18. Study of Pulsations in the Atmosphere of the roAp star HD 137949

    NASA Astrophysics Data System (ADS)

    Sachkov, M.; Hareter, M.; Ryabchikova, T.; Wade, G.; Kochukhov, O.; Weiss, W. W.

    The roAp star HD 137949 (33 Lib) shows the most complex pulsational behaviour among all roAp stars. Mkrtichian et al. (2003) found nearly anti-phase pulsations of Nd II and Nd III lines, which they attribute to the presence of a pulsation node high in the atmosphere of HD 137949. This was confirmed by Kurtz at al. (2005), who also find that in some REE lines the main frequency, corresponding to 8.27 min, and its harmonic have almost equal RV amplitudes. Based on high accuracy observations Ryabchikova et al. (2007a) studied pulsational characteristics of the HD 137949 atmosphere in detail. In general, spectroscopy provides 3D resolution of modes and allows to search for the photometrically undetectable frequencies. The high-accuracy space photometry provides very high-precision measurements of detected pulsation frequencies and enables an accurate phasing of multi-site spectroscopic data. A combination of simultaneous spectroscopy and photometry represents the most sophisticated asteroseismic dataset for any roAp star. In 2009 the star HD 137949 became a target of an intense observing campaign that combined ground-based spectroscopy with space photometry, obtained with the MOST satellite. We collected 780 spectra using the ESPaDOnS spectrograph mounted on the 3.6 m CFHT telescope; 374 spectra were obtained with the FIES spectrograph mounted on the 2.56-m NOT to perform the time-resolved spectroscopy of HD 137949. In addition, we used 111 UVES spectra (2004) from the ESO archive to check the mode stability. The frequency analysis of the new radial velocity (RV) measurements confirmed the previously reported frequency pattern (two frequencies and the first harmonic of the main frequency), and revealed an additional frequency at 1.991 mHz. The new frequency solution fits perfectly the RV variations from the 2004 and 2009 observational sets providing a strong support for the p-mode stability in the roAp star HD 137949 for at least 5 years.

  19. HD 38452 - J. R. Hind's star that changed colour

    NASA Technical Reports Server (NTRS)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  20. On the origin of the hypervelocity runaway star HD 271791

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  1. Milli-arcsecond images of the Herbig Ae star HD 163296

    NASA Astrophysics Data System (ADS)

    Renard, S.; Malbet, F.; Benisty, M.; Thiébaut, E.; Berger, J.-P.

    2010-09-01

    Context. The very close environments of young stars are the hosts of fundamental physical processes, such as planet formation, star-disk interactions, mass accretion, and ejection. The complex morphological structure of these environments has been confirmed by the now quite rich data sets obtained for a few objects by near-infrared long-baseline interferometry. Aims: We gathered numerous interferometric measurements for the young star HD 163296 with various interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an image independent of any a priori model to be reconstructed. Methods: Using the Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of HD 163296 in the H and K bands. We compare these images with reconstructed images obtained from simulated data using a physical model of the environment of HD 163296. Results: We obtain model-independent H and K-band images of the surroundings of HD 163296. The images detect several significant features that we can relate to an inclined asymmetric flared disk around HD 163296 with the strongest intensity at about 4-5 mas. Because of the incomplete spatial frequency coverage, we cannot state whether each of them individually is peculiar in any way. Conclusions: For the first time, milli-arcsecond images of the environment of a young star are produced. These images confirm that the morphology of the close environment of young stars is more complex than the simple models used in the literature so far.

  2. The Unusual S Star Binary HD 191589

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B.; Johnson, Hollis R.; Wahlgren, Glenn M.; Jorissen, Alain

    1996-01-01

    Recently, we discovered with International Ultraviolet Explorer (IUE) an F0-F2 IV-V companion to the T(sub c)-deficient S star HD 191589. If the magnitude difference is (delta)V=3.7, as indicated by several arguments, and E(B-V) = 0.0, we obtain a value of M(sub v)= - 1.5 +/- 0.4 for the Peculiar Red Giant (PRG), too faint for it to be a thermally-pulsing asymptotic giant branch star. According to the binary mass-transfer hypothesis for T(sub c)-deficient PRG's, a white dwarf must be the source of the s-process enhancement of the current primary star, but it cannot be seen because of the presence of the secondary. If such is the case, the F-star companion may also have been contaminated by s-process material. High-dispersion IUE observations indicate an enhancement of Zr II in the photosphere of the F-star as well. Thus, HD 191589 is likely a triple system, where what was once the most massive component of the system has polluted both of its companions with s-process material. One of these is the current S star, while the other is the companion still near the main sequence.

  3. Cometary Dust in the Debris of HD 31648 and HD163296: Two "Baby" Beta pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  4. NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giguere, Matthew J.; Fischer, Debra A.; Brewer, John M.

    2015-01-20

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M {sub Jup}) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. Themore » remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.« less

  5. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  6. Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two "Baby" (BETA) Pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 microns that resembles that of the star beta Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  7. Variability of Disk Emission in Pre-Main Sequence and Related Stars. I. HD 31648 and HD 163296 - Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; hide

    2007-01-01

    Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 pm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 pm region throughout this span of time. In both stars the changes in the 1-5 pm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.

  8. Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771

    NASA Astrophysics Data System (ADS)

    Campante, Tiago L.; Veras, Dimitri; North, Thomas S. H.; Miglio, Andrea; Morel, Thierry; Johnson, John A.; Chaplin, William J.; Davies, Guy R.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Elsworth, Yvonne P.; Rodrigues, Thaíse S.; Vanderburg, Andrew

    2017-08-01

    Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observations than their main-sequence progenitors. However, it has been hypothesized that the masses of subgiant and low-luminosity red-giant stars targeted by these surveys - typically derived from a combination of spectroscopy and isochrone fitting - may be systematically overestimated. Here, we test this hypothesis for the particular case of the exoplanet-host star HD 212771 using K2 asteroseismology. The benchmark asteroseismic mass (1.45^{+0.10}_{-0.09} M_{⊙) is significantly higher than the value reported in the discovery paper (1.15 ± 0.08 M⊙), which has been used to inform the stellar mass-planet occurrence relation. This result, therefore, does not lend support to the above hypothesis. Implications for the fates of planetary systems are sensitively dependent on stellar mass. Based on the derived asteroseismic mass, we predict the post-main-sequence evolution of the Jovian planet orbiting HD 212771 under the effects of tidal forces and stellar mass-loss.

  9. Accurate radio and optical positions for the radio star HD 36705 (AB Doradus)

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Batty, Michael J.; Peters, W. L.; Gulkis, S.

    1988-01-01

    Arc-second position measurements of the active star HD 36705 (AB Dor) and of the variable radio source found nearby are presented. These measurements show that the radio source is clearly identified with HD 36705 and not with the nearby red-dwarf star Rst 137B.

  10. Asteroseismology of the δ Scuti star HD 50844

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Li, Y.; Lai, X. J.; Wu, T.

    2016-09-01

    Aims: We aim to probe the internal structure and investigate with asteroseismology for more detailed information on the δ Scuti star HD 50844. Methods: We analyse the observed frequencies of the δ Scuti star HD 50844 and search for possible multiplets, which are based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 only by means of rotational splitting. We then compare these with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results: There are three multiplets, including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree l and azimuthal number m are unique. The corresponding rotational period of HD 50844 is found to be 2.44 days. The physical parameters of HD 50844 are well limited in a small region by three modes that have been identified as nonradial ones (f11, f22, and f29) and by the fundamental radial mode (f4). Our results show that the three nonradial modes (f11, f22, and f29) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4) mainly represents the property of the stellar envelope. To fit these four pulsation modes, both the helium core and the stellar envelope need to be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ± 0.004 M⊙ for the first time. The physical parameters of HD 50844 are determined to be M = 1.81 ± 0.01 M⊙, Z = 0.008 ± 0.001. Teff = 7508 ± 125 K, log g = 3.658 ± 0.004, R = 3.300 ± 0.023 R⊙, L = 30.98 ± 2.39 L⊙.

  11. Fundamental parameters of massive stars in multiple systems: The cases of HD 17505A and HD 206267A

    NASA Astrophysics Data System (ADS)

    Raucq, F.; Rauw, G.; Mahy, L.; Simón-Díaz, S.

    2018-06-01

    Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. Aims: Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. Methods: We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. Results: The inner binaries of these systems have eccentric orbits with e 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD 17505Aa and HD 206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD 17505Aa are both well inside their Roche lobe, whilst the primary of HD 206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD 206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. Conclusions: The CNO abundances and properties of HD 17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD 206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore. Based on observations collected with the TIGRE telescope (La Luz, Mexico), the 1.93 m telescope at Observatoire de Haute Provence (France), the Nordic Optical Telescope at the Observatorio del Roque de los

  12. Variability of Disk Emission in Pre-Main-Sequence and Related Stars. I. HD 31648 and HD 163296: Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Wilde, J. Leon; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, R. Brad

    2008-05-01

    Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 μm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 μm region throughout this span of time. In both stars, the changes in the 1-5 μm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.

  13. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    NASA Astrophysics Data System (ADS)

    Rusomarov, N.; Kochukhov, O.; Ryabchikova, T.; Ilyin, I.

    2016-04-01

    Context. Intermediate-mass, chemically peculiar stars with strong magnetic fields provide an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in the atmospheres of these stars. Aims: We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. Methods: We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the help of magnetic Doppler imaging techniques and model atmospheres taking the effects of strong magnetic fields and nonsolar chemical composition into account. Results: We improved the atmospheric parameters of the star, Teff = 9850 ± 250 K and log g = 4.05 ± 0.10. We performed detailed abundance analysis, which confirmed that HD 125248 has abundances typical of other Ap stars, and discovered significant vertical stratification effects for the Fe II and Cr II ions. We computed LSD Stokes profiles using several line masks corresponding to Fe-peak and rare earth elements, and studied their behavior with rotational phase. Combining previous longitudinal field measurements with our own observations, we improved the rotational period of the star Prot = 9.29558 ± 0.00006 d. Magnetic Doppler imaging of HD 125248 showed that its magnetic field is mostly poloidal and quasi-dipolar with two large spots of different polarity and field strength. The chemical maps of Fe, Cr, Ce, Nd, Gd, and Ti show abundance contrasts of 0.9-3.5 dex. Among these elements, the Fe abundance map does not show high-contrast features. Cr is overabundant around the negative magnetic pole and has 3.5 dex abundance range. The rare earth elements and Ti are overabundant near the positive magnetic pole. Conclusions: The magnetic field of HD 125248 has strong deviations from the classical oblique dipole field

  14. On the spectroscopic nature of the cool evolved Am star HD151878

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.

    2008-10-01

    Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com

  15. FUV Spectroscopy Of Outflows And Disks Around The Intermediate Mass Pre-main-sequence Stars HD135344B And HD104237

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, G.; Brown, J. M.; Walter, F. M.; Ayres, T. R.; DAOof TAU Team

    2011-01-01

    The intermediate-mass, pre-main-sequence (Herbig Ae/Fe) stars HD135344B (F4) and HD104237 (A8 IV-V) are both still surrounded by almost face-on circumstellar disks. The disk around HD135344B is a ``transitional'' disk with a 25 AU radius cleared inner hole but still with some gas and dust very close to the star. We have obtained FUV spectra of these stars using the HST COS and STIS spectrographs that show that both stars have dramatic high-velocity (terminal velocity = 300-400 km/s) outflows and rich fluorescently-excited molecular hydrogen emission, originating primarily from warm gas in their disks. We present these FUV spectra and outline the outflow and disk properties implied by the observed emission and absorption line profiles. The profiles and widths of the molecular hydrogen lines provide strong constraints on the location of the emitting regions. This work is supported by HST grants for GO projects 11828 and 11616, and Chandra grant GO9-0015X to the University of Colorado.

  16. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-04-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  17. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-06-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  18. Abundance analysis of roAp stars. IV. HD24712

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T. A.; Landstreet, J. D.; Gelbmann, M. J.; Bolgova, G. T.; Tsymbal, V. V.; Weiss, W. W.

    1997-11-01

    We present the first abundance analysis of the rapidly oscillating chemically peculiar star HD24712, and determine a T_eff,=7250K, log {g},=4.3, and xi_t ,=1kms(-1) . Microturbulence seems to be entirely simulated by a magnetic field with a polar field strength of 4.4kG and of dipolar structure, both of which are supported by our polarimetric observations. Rotation of HD24712 and a spotty surface distribution of the elements result in different mean abundances for different (magnetic) phases. Our results do not support the hypothesis of a monotonic correlation between the amplitude of abundance variations and the atomic number Z, and we present arguments in favour of one of the rotation periods (Prot=12\\fd 4610) discussed in the literature. Rare earth elements are the most overabundant elements relative to the sun, and they have the largest abundance amplitude during a rotation cycle; only Mg has a larger amplitude. For HD24712 we find a clear overabundance of Co while most of the other iron peak elements are underabundant. A comparison of the abundance pattern with the other three roAp stars analyzed so far by us concludes the paper. A systematic difference between surface gravities obtained from spectroscopy and from both asteroseismology and evolutionary tracks is found for the roAp stars HD 24712, alpha Cir, and gamma Equ. Based on observations obtained with the Canada-France-Hawaii telescope, operated by the National Research Council of Canada, the Centre Centre National de la Recherche Scientifique de France, and the University of Hawaii, and on observations obtained at CARSO, Las Campanas, Chile

  19. Spectrophotometry of peculiar B and A stars. XVIII - The helium rich variable stars HR 1890, Sigma Orionis E, and HD 37776

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.

    1985-01-01

    Optical region spectrophotometry at 3300-7850 A has been obtained for three helium rich stars, HR 1890, Sigma Ori E, and HD 37776, of the Orion OB1 Association. New uvby-beta photometry of HR 1890 and HD 37776 as well as published data are also used to investigate the variability of these stars. A new period of 1.53862 days was determined for HD 37776. For all three stars H-beta varies in antiphase with strong He I lines. The spectrophotometric bandpass containing the strong He I line at 4471 A varies in phase with the R index of Pedersen and Thomsen (1977). Evidence is found for weak absorption features which appear to be an extension of the 5200 A feature seen in cooler CP stars.

  20. Abundance study of the two solar-analogue CoRoT targets HD 42618 and HD 43587 from HARPS spectroscopy

    NASA Astrophysics Data System (ADS)

    Morel, T.; Rainer, M.; Poretti, E.; Barban, C.; Boumier, P.

    2013-04-01

    We present a detailed abundance study based on spectroscopic data obtained with HARPS of two solar-analogue main targets for the asteroseismology programme of the CoRoT satellite: HD 42618 and HD 43587. The atmospheric parameters and chemical composition are accurately determined through a fully differential analysis with respect to the Sun observed with the same instrumental set-up. Several sources of systematic errors largely cancel out with this approach, which allows us to narrow down the 1-σ error bars to typically 20 K in effective temperature, 0.04 dex in surface gravity, and less than 0.05 dex in the elemental abundances. Although HD 42618 fulfils many requirements for being classified as a solar twin, its slight deficiency in metals and its possibly younger age indicate that, strictly speaking, it does not belong to this class of objects. On the other hand, HD 43587 is slightly more massive and evolved. In addition, marked differences are found in the amount of lithium present in the photospheres of these two stars, which might reveal different mixing properties in their interiors. These results will put tight constraints on the forthcoming theoretical modelling of their solar-like oscillations and contribute to increase our knowledge of the fundamental parameters and internal structure of stars similar to our Sun. Based on observations collected at the La Silla Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6-m telescope, under programme LP185.D-0056.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  1. Evidence That the Directly Imaged Planet HD 131399 Ab Is a Background Star

    NASA Astrophysics Data System (ADS)

    Nielsen, Eric L.; De Rosa, Robert J.; Rameau, Julien; Wang, Jason J.; Esposito, Thomas M.; Millar-Blanchaer, Maxwell A.; Marois, Christian; Vigan, Arthur; Ammons, S. Mark; Artigau, Etienne; Bailey, Vanessa P.; Blunt, Sarah; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, René; Duchêne, Gaspard; Fabrycky, Daniel; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hinkley, Sasha; Hung, Li-Wei; Ingraham, Patrick; Jensen-Clem, Rebecca; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Macintosh, Bruce; Maire, Jérôme; Marchis, Franck; Metchev, Stanimir; Morzinski, Katie M.; Murray-Clay, Ruth A.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Rafikov, Roman R.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Ruffio, Jean-Baptiste; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-12-01

    We present evidence that the recently discovered, directly imaged planet HD 131399 Ab is a background star with nonzero proper motion. From new JHK1L‧ photometry and spectroscopy obtained with the Gemini Planet Imager, VLT/SPHERE, and Keck/NIRC2, and a reanalysis of the discovery data obtained with VLT/SPHERE, we derive colors, spectra, and astrometry for HD 131399 Ab. The broader wavelength coverage and higher data quality allow us to reinvestigate its status. Its near-infrared spectral energy distribution excludes spectral types later than L0 and is consistent with a K or M dwarf, which are the most likely candidates for a background object in this direction at the apparent magnitude observed. If it were a physically associated object, the projected velocity of HD 131399 Ab would exceed escape velocity given the mass and distance to HD 131399 A. We show that HD 131399 Ab is also not following the expected track for a stationary background star at infinite distance. Solving for the proper motion and parallax required to explain the relative motion of HD 131399 Ab, we find a proper motion of 12.3 mas yr-1. When compared to predicted background objects drawn from a galactic model, we find this proper motion to be high but consistent with the top 4% fastest-moving background stars. From our analysis, we conclude that HD 131399 Ab is a background K or M dwarf.

  2. The violent interstellar environment around the Wolf-Rayet star HD 192163

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, Joy; Fesen, Robert A.

    1993-01-01

    IRAS Skyflux IR images, high-dispersion IUE UV spectra, optical spectra, and optical interference filter images are used to investigate the nature of the interstellar environment around the Wolf-Rayet star HD 192163. IRAS images show an apparent 1.5 x 1.8 deg IR emission shell very nearly centered on HD 192163, which is designated G75.5+2.4. It is suggested that this shell is a possible unrecognized SNR with an estimated age of not less than 100,000 yr if at the assumed 1.8-kpc distance of HD 192163. A well-defined 2 x 4.5 deg region of weak IR emission lying to the southeast of HD 192163 appears to be the IR signature of the Cyg OB1 superbubble. Analysis of IUE spectra shows that high-velocity components of UV interstellar absorption lines are present for both high and low ionization lines in 18 of 22 stars located in the Cyg OB1/OB3 direction with a velocity range of +/- 90 km/s. A possible evolutionary history for this region is outlined.

  3. An Analysis of the Rapidly Rotating Bp star HD 133880

    NASA Technical Reports Server (NTRS)

    Bailey, J. D.; Grunhut, J.; Shultz, M.; Wade, G.; Landstreet, J. D.; Bohlender, D.; Lim, J.; Wong, K.; Drake, S.; Linsky, J.

    2012-01-01

    HD 133880 is a rapidly rotating chemically peculiar B-type (Bp) star (nu sin i approx = 103km/s) and is host to one of the strongest magnetic fields of any Ap/Bp star. A member of the Upper Centaurus Lupus association, it is a star with a well-determined age of 16 Myr. 12 new spectra, four of which are polarimetric, obtained from the FEROS, ESPaDOnS and HARPS instruments, provide sufficient material from which to re-evaluate the magnetic field and obtain a first approximation to the atmospheric abundance distributions of He, O, Mg, Si, Ti. Cr, Fe, Ni, Pr and Nd. An abundance analysis was carried out using ZEEMAN, a program which synthesizes spectral line profiles for stars with permeating magnetic fields. The magnetic field structure was characterized by a colinear multipole expansion from the observed variations of the longitudinal and surface fields with rotational phase. Both magnetic hemispheres are clearly visible during the stellar rotation, and thus a three-ring abundance distribution model encompassing both magnetic poles and magnetic equator with equal spans in colatitude was adopted. Using the new magnetic field measurements and optical photometry together with previously published data, we refine the period of HD 133880 to P = 0.877 476 +/- 0.000009 d. Our simple axisymmetric magnetic field model is based on a predominantly quadrupolar component that roughly describes the field variations. Using spectrum synthesis, we derived mean abundances for O, Mg, Si, Ti, Cr, Fe and Pr. All elements; except Mg, are overabundant compared to the Son. Mg appears to be approximately uniform over the stellar surface, while all other elements are more abundant in the negative magnetic hemisphere than in the positive magnetic hemisphere. In contrast to most Ap/Bp stars which show an underabundance in 0, in HD 133880 this element is clearly overabundant compared to the solar abundance ratio. In studying the Ha and Paschen lines in the optical spectra, we could not

  4. Spectral Classification in the MK System of 167 Northern HD Stars

    NASA Astrophysics Data System (ADS)

    Jensen, K. S.

    1981-09-01

    Spectral classifications in the MK system of 167 northern HD stars are presented. The spectra (102 A/mm at Hγ, width 0.60 mm) are from objective prism plates obtained with the Schmidt telescope of the CUO, Brorfelde. Most of the stars have no previous MK classification.

  5. Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.

    1988-01-01

    It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.

  6. Magnetic stars with wide depressions in the continuum. 2. The silicon star with a complex field structure HD 27404

    NASA Astrophysics Data System (ADS)

    Semenko, E. A.; Romanyuk, I. I.; Semenova, E. S.; Moiseeva, A. V.; Kudryavtsev, D. O.; Yakunin, I. A.

    2017-10-01

    Observations of the chemically peculiar star HD 27404 with the 6-m SAO RAS telescope showed a strong magnetic field with the longitudinal field component varying in a complicated way in the range of -2.5 to 1 kG. Fundamental parameters of the star ( T eff = 11 300 K, log g = 3.9) were estimated analyzing photometric indices in the Geneva and in the Stro¨ mgren-Crawford photometric systems. We detected weak radial velocity variations which can be due to the presence of a close star companion or chemical spots in the photosphere. Rapid estimation of the key chemical element abundance allows us to refer HD 27404 to a SiCr or Si+ chemically peculiar A0-B9 star.

  7. Search for Exoplanets around Northern Circumpolar Stars III. Long-Period Radial Velocity Variations in HD 18438 and HD 158996

    NASA Astrophysics Data System (ADS)

    Bang, Tae-Yang; Lee, Byeong-Cheol; Jeong, Gwang-hui; Han, Inwoo; Park, Myeong-Gu

    2018-02-01

    Detecting exoplanets around giants are useful in understanding the later-stage evolution of planetary systems. We observed the M giant HD 18438 and the K giant HD 158996 as part of a Search for Exoplanets around Northern circumpolar Stars (SENS) and obtained 38 and 24 spectra from 2010 to 2017 using the high-resolution Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We obtained precise RV measurements from the spectra and found long-period radial velocity (RV) variations with period 719.0 days for HD 18438 and 820.2 days for HD 158996. We checked the chromospheric activities using Ca II H and H_{α} lines, HIPPARCOS photometry and line bisectors to identify the origin of the observed RV variations. In the case of HD 18438, we conclude that the observed RV variations with period 719.0 days are likely to be caused by the pulsations because the periods of HIPPARCOS photometric and H_{α} EW variations for HD 18438 are similar to that of RV variations in Lomb-Scargle periodogram, and there are no correlations between bisectors and RV measurements. In the case of HD 158996, on the other hand, we did not find any similarity in the respective periodograms nor any correlation between RV variations and line bisector variations. In addition, the probability that the real rotational period can be as longer than the RV period for HD 158996 is only about 4.3%. Thus we conclude that observed RV variations with a period of 820.2 days of HD 158996 are caused by a planetary companion, which has the minimum mass of 14.0 M_{Jup}, the semi-major axis of 2.1 AU, and eccentricity of 0.13 assuming the stellar mass of 1.8 M_{⊙}. HD 158996 is so far one of the brightest and largest stars to harbor exoplanet candidate.

  8. Contribution to the search of binaries among Am stars. II. HD 81976 and HD 98880, double-lined spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Carquillat, J.-M.; Ginestet, N.; Prieur, J.-L.

    2001-04-01

    We present the results of the observations of two Am stars of eighth magnitude, the double-lined spectroscopic binaries HD 81976 and HD 98880, carried out with the CORAVEL instrument at the Observatoire de Haute-Provence in order to determine their orbital elements. We found 1) for HD 81976: P = 5.655750 days, T = 2449785.941 HJD, omega = 341.4deg, e = 0.061, K1 = 61.68 km s-1, K2 = 63.84 km s-1, V0 = 19.85 km s-1, a1 sin i = 4.788 Gm, a2 sin i = 4.956 Gm, M1 sin 3 i = 0.5875 Msun, M2 sin 3 i = 0.5676 Msun, and 2) for HD 98880: P = 14.20783 days, T0 = 2448682.883 HJD (ascending node), e = 0., K1 = 42.47 km s-1, K2 = 49.16 km s-1, V0 = 2.40 km s-1, a1 sin i = 8.298 Gm, a2 sin i = 9.604 Gm, M1 sin 3 i = 0.6091 Msun, M2 sin 3 i = 0.5262 Msun. The first of these two systems, HD 81976, is formed by two quasi-identical stars, and the Hipparcos data (MV, B-V) are consistent with late A stars in effective temperature; it is likely that the components rotate synchronised with the orbital motion. A third body may be present in this system since (i) the orbit has a significant eccentricity despite its short period and (ii) the systemic velocity V0 shows a possible drift. For the second system, HD 98880, we give Delta mB 1.25 and we propose a simple model based upon Strömgren photometric indices and the HR theoretical diagram of Schaller et al (1992) in addition to orbital parameters and Hipparcos data: Teff = 7000 K, log 10 g = 4.0, M1 = 1.9 Msun, M2 = 1.6 Msun, log 10(age) = 9.12. The components do not rotate synchronously contrary to HD 81976. Both binaries appear to be detached systems without possibility of eclipses. Based on observations made at the Haute-Provence Observatory, France.

  9. MASCARA-2 b. A hot Jupiter transiting the mV = 7.6 A-star HD 185603

    NASA Astrophysics Data System (ADS)

    Talens, G. J. J.; Justesen, A. B.; Albrecht, S.; McCormac, J.; Van Eylen, V.; Otten, G. P. P. L.; Murgas, F.; Palle, E.; Pollacco, D.; Stuik, R.; Spronck, J. F. P.; Lesage, A.-L.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2018-04-01

    In this paper we present MASCARA-2 b, a hot Jupiter transiting the mV = 7.6 A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million flux measurements of the star, corresponding to a total of almost 3000 h of observations, revealing a periodic dimming in the flux with a depth of 1.3%. Photometric follow-up observations were performed with the NITES and IAC80 telescopes and spectroscopic measurements were obtained with the Hertzsprung SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of 3.4741119-0.000006+0.000005 at a distance of 0.057 ± 0.006 au, has a radius of 1.83 ± 0.07 RJ and place a 99% upper limit on the mass of <17 MJ. HD 185603 is a rapidly rotating early-type star with an effective temperature of 8980-130+90 K and a mass and radius of 1.89-0.05+0.06 M⊙, 1.60 ± 0.06 R⊙, respectively. Contrary to most other hot Jupiters transiting early-type stars, the projected planet orbital axis and stellar spin axis are found to be aligned with λ = 0.6 ± 4°. The brightness of the host star and the high equilibrium temperature, 2260 ± 50 K, of MASCARA-2 b make it a suitable target for atmospheric studies from the ground and space. Of particular interest is the detection of TiO, which has recently been detected in the similarly hot planets WASP-33 b and WASP-19 b. Tables of photometry are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A57

  10. STEREO observations of HD90386 (RX Sex): a δ-Scuti or a hybrid star?

    NASA Astrophysics Data System (ADS)

    Ozuyar, D.; Stevens, I. R.; Whittaker, G.; Sangaralingam, V.

    2016-04-01

    HD90386 is a rarely studied bright A2V type δ Scuti star (V = 6.66 mag). It displays short-term light curve variations which are originated due to either a beating phenomenon or a non-periodic variation. In this paper, we presented high-precision photometric data of HD90386 taken by the STEREO satellite between 2007 and 2011 to shed light on its internal structure and evolution stage. From the frequency analysis of the four-year data, we detected that HD90386 had at least six different frequencies between 1 and 15 c d-1. The most dominant frequencies were found at around 10.25258 c d-1 (A ∼ 1.92 mmag) and 12.40076 c d-1 (A ∼ 0.61 mmag). Based on the ratio between these frequencies, the star was considered as an overtone pulsator. The variation in pulsation period over 35 years was calculated to be dP/Pdt = 5.39(2) x 10-3 yr-1. Other variabilities at around 1.0 c d-1 in the amplitude spectrum of HD90386 were also discussed. In order to explain these variabilities, possible rotational effects and γ Dor type variations were focused. Consequently, depending on the rotation velocity of HD90386, we speculated that these changes might be related to γ Dor type high-order g-modes shifted to the higher frequencies and that HD90386 might be a hybrid star.

  11. Precise Ages for the Benchmark Brown Dwarfs HD 19467 B and HD 4747 B

    NASA Astrophysics Data System (ADS)

    Wood, Charlotte; Boyajian, Tabetha; Crepp, Justin; von Braun, Kaspar; Brewer, John; Schaefer, Gail; Adams, Arthur; White, Tim

    2018-01-01

    Large uncertainty in the age of brown dwarfs, stemming from a mass-age degeneracy, makes it difficult to constrain substellar evolutionary models. To break the degeneracy, we need ''benchmark" brown dwarfs (found in binary systems) whose ages can be determined independent of their masses. HD~19467~B and HD~4747~B are two benchmark brown dwarfs detected through the TRENDS (TaRgeting bENchmark objects with Doppler Spectroscopy) high-contrast imaging program for which we have dynamical mass measurements. To constrain their ages independently through isochronal analysis, we measured the radii of the host stars with interferometry using the Center for High Angular Resolution Astronomy (CHARA) Array. Assuming the brown dwarfs have the same ages as their host stars, we use these results to distinguish between several substellar evolutionary models. In this poster, we present new age estimates for HD~19467 and HD~4747 that are more accurate and precise and show our preliminary comparisons to cooling models.

  12. Abundance analysis of the supergiant stars HD 80057 and HD 80404 based on their UVES Spectra

    NASA Astrophysics Data System (ADS)

    Tanrıverdi, T.; Baştürk, Ö.

    2016-08-01

    This study presents elemental abundances of the early A-type supergiant HD 80057 and the late A-type supergiant HD 80404. High resolution and high signal-to-noise ratio spectra published by the UVES Paranal Observatory Project (Bagnulo et al., 2003) were analyzed to compute their elemental abundances using ATLAS9 (Kurucz, 1993; 2005; Sbordone et al., 2004). In our analysis we assumed local thermodynamic equilibrium. The atmospheric parameters of HD 80057 used in this study are from Firnstein and Przybilla (2012), and that of HD 80404 are derived from spectral energy distribution, ionization equilibria of Cr I/II and Fe I/II, the fits to the wings of Balmer and Paschen lines as Teff = 7700 ± 150 K and log g = 1.60 ± 0.15 (in cgs). The microturbulent velocities of HD 80057 and HD 80404 have been determined as 4.3 ± 0.1 and 2.2 ± 0.0 km s^-1, respectively. The rotational velocities are 15 ± 1 and 7 ± 2 km s^-1 and their macroturbulence velocities are 24 ± 2 and 2 ± 1 km s^1. We have given the abundances of 25 ions of 19 elements for HD 80057 and 36 ions of 25 elements for HD 80404. The abundances are close to solar values, except for some elements (Na, Sc, Ti, V, Ba, and Sr). We have found the metallicities [M/H] for HD 80057 and HD 80404 as -0.16 ± 0.24 and -0.04 ± 0.16 dex, respectively. The evolutionary status of these stars are discussed and their nitrogen-to-carbon (N/C) and nitrogen-to-oxygen (N/O) ratios show that they are in their blue supergiant phase before the red supergiant region.

  13. Optical spectroscopy of X-Mega targets - V. The spectroscopic binary HD 93161 A and its visual companion HD 93161 B*

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Antokhin, I. I.; Sana, H.; Gosset, E.; Rauw, G.

    2005-05-01

    We present the analysis of an extensive set of high-resolution spectroscopic observations of HD 93161, a visual binary with a separation of 2 arcsec. HD 93161 A is a spectroscopic binary, with both components clearly detected throughout the orbit. The primary star is most probably of spectral type O8V, while the secondary is likely an O9V. We obtain the first orbital solution for this system, characterized by a period of 8.566 +/- 0.004 d. The minimum masses of the primary and secondary stars are 22.2 +/- 0.6 and 17.0 +/- 0.4 Msolar, respectively. These values are quite large, suggesting a high inclination of the orbit. The second object, HD 93161 B, displays an O6.5V(f) spectral type and is thus slightly hotter than its neighbour. This star is at first sight single but presents radial velocity variations. Finally, we study HD 93161 in the X-ray domain. No significant variability is detected. The X-ray spectrum is well described by a 2T model with kT1~ 0.3 keV and kT2~ 0.7 keV. The X-ray luminosity is rather moderate, without any large emission excess imputable to a wind interaction.

  14. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian

    2012-03-20

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L{sub IR}/L{sub *} {approx} 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M{sub Sun} late-M secondary has a projected separation of {approx}360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.

  15. Time-resolved spectroscopyHiifill of the peculiar Hα variable Be star HD 76534

    NASA Astrophysics Data System (ADS)

    Oudmaijer, René D.; Drew, Janet E.

    1999-10-01

    We present time-resolved spectroscopy of the Be star HD 76534, which was observed to have an Hα outburst in 1995, when the line went from photospheric absorption to emission at a level of more than two times the continuum within 2.5 hours. To investigate the short-term behaviour of the spectrum of HD 76534 we have obtained 30 spectra within two hours real-time and searched for variations in the spectrum. Within the levels of statistical significance, no variability was found. Rather than periodic on short time scales, the Hα behaviour seems to be commonly episodic on longer (> 1 year) time scales, as an assessment of the existing data on the Hα line and the Hipparcos photometry suggests. HD 76534 underwent only 1 photometric outburst in the 3 year span that the star was monitored by the Hipparcos satellite.

  16. A Six-planet System around the Star HD 34445

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Butler, R. Paul; Burt, Jennifer; Tuomi, Mikko; Laughlin, Gregory; Holden, Brad; Teske, Johanna K.; Shectman, Stephen A.; Crane, Jeffrey D.; Díaz, Matías; Thompson, Ian B.; Arriagada, Pamela; Keiser, Sandy

    2017-11-01

    We present a new precision radial velocity (RV) data set that reveals a multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists of 333 precision RV observations, 56 of which were previously published and 277 of which are new data from the Keck Observatory, Magellan at Las Campanas Observatory, and the Automated Planet Finder at Lick Observatory. These data indicate the presence of six planet candidates in Keplerian motion about the host star with periods of 1057, 215, 118, 49, 677, and 5700 days, and minimum masses of 0.63, 0.17, 0.1, 0.05, 0.12, and 0.38 M J, respectively. The HD 34445 planetary system, with its high degree of multiplicity, its long orbital periods, and its induced stellar RV half-amplitudes in the range 2 m s-1 ≲ K ≲ 5 m s-1 is fundamentally unlike either our own solar system (in which only Jupiter and Saturn induce significant reflex velocities for the Sun), or the Kepler multiple-transiting systems (which tend to have much more compact orbital configurations).

  17. Follow-up spectroscopic observations of HD 107148 B: A new white dwarf companion of an exoplanet host star

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Dinçel, B.

    2016-06-01

    We report on our follow-up spectroscopy of HD 1071478 B, a recently detected faint co-moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35 arcsec (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co-moving companion, we obtained follow-up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400 K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56±0.05 M_⊙, a luminosity of (2.0±0.2)×10-4 L_⊙, log g [cm s-2])=7.95±0.09, and a cooling age of 2100±270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  18. Chromospherically active stars. X - Spectroscopy and photometry of HD 212280

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Browning, Jared C.; Henry, Gregory W.; Morton, Mary D.; Hall, Douglas S.

    1993-01-01

    The system HD 212280 is a chromospherically active double lined spectroscopic binary with an orbital period of 45.284 days and an eccentricity of 0.50. The spectrum is composite with spectral types of G8 IV and F5-8 V for the components. An estimated inclination of 78 +/- 8 deg results in masses of 1.7 and 1.4 solar mass for the G subgiant and mid-F star, respectively. The distance to the system is estimated to be 112 pc. Photometric observations obtained between 1987 November and 1992 June reveal that HD 212280 is a newly identified variable star with a V amplitude of about 0.15 mag and a mean period of 29.46 days. Our V data were divided into 11 sets and in all but one case two spots were required to fit the data. Lifetimes of 650 days and a minimum of 1350 days have been determined for two of the four spots. The differential rotation coefficient of 0.05 is relatively small. The age of the system is about 1.9 X 10 exp 9 yrs. The G subgiant is rotating slower than pseudosynchronously while the F-type star is rotating faster.

  19. The new Be-type star HD 147196 in the Rho Ophiuchi dark cloud region

    NASA Technical Reports Server (NTRS)

    The, P. S.; Perez, M. R.; De Winter, D.; Van Den Ancker, M. E.

    1993-01-01

    The newly discovered hot-emission line star, HD 147196 in the Rho Oph dark cloud region was observed spectroscopically and photometrically and high and low resolution IUE spectra were obtained. The finding of Irvine (1990) that this relatively bright star show its H-alpha-line in emission is confirmed. Previous H-alpha-surveys of the Rho Oph star-forming region did not detect HD 147196 as an H-alpha-emission star, meaning that it must recently be very active and has perhaps transformed itself from a B-type star at shell phase to a Be-phase. The Mg II h + k resonance lines are in absorption and they appear to be interstellar in nature, which means that either the abundance of Mg in the extended atmosphere of the star is low or that the shell is not extended enough to produce emission lines of Mg II. Photometric observations of this B8 V type star do not show any variations during at least the years covered by our monitoring or any excess of NIR radiation in its spectral energy distribution up to the M-passband at 4.8 microns.

  20. The unusual carbon star HD 59643 - Alternative models

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Eaton, J. A.; Querci, F. R.; Querci, M.; Baumert, J. H.

    1988-01-01

    A binary model for the carbon star HD 59643 is discussed in which the secondary spectrum is formed in an accretion disk. If this hot, ultraviolet-emitting disk radiates like a 20,000 K black-body, it must be 0.03 solar radii or less across at minimum emission. Large widths of C IV multiplet UV1 on high-resolution spectra indicate its formation in the inner parts of a disk. The semiforbidden C III and Si III lines, however, are much narrower and could be formed in the outer parts of a disk or in the carbon star's chromosphere. The electron density in the region of formation of C III is about 10 to the 10th/cu cm.

  1. Spectral analysis of the He-enriched sdO-star HD 127493

    NASA Astrophysics Data System (ADS)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  2. The long period Wolf-Rayet star HD193077

    NASA Astrophysics Data System (ADS)

    Annuk, Kalju

    Radial velocities of HD193077 have been measured on 76 spectra obtained during 1980-1987. It has been found that the period of this WR binary star is about 1538 days. A new derived orbital solution yields an eccentric orbit, e = 0.3, and the mass function, f(m) = 4.54 solar masses, is typical of WR+O binaries. By analysis of radial velocity residuals, no short periodic variations were found, as it was suggested by Lamontagne et al. (1982).

  3. The MiMeS survey of Magnetism in Massive Stars: magnetic analysis of the O-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, J. H.; Wade, G. A.; Neiner, C.; Oksala, M. E.; Petit, V.; Alecian, E.; Bohlender, D. A.; Bouret, J.-C.; Henrichs, H. F.; Hussain, G. A. J.; Kochukhov, O.; MiMeS Collaboration

    2017-02-01

    We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the Magnetism in Massive Stars (MiMeS) Survey. Mean least-squares deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field Bℓ. The investigation of the Stokes I profiles led to the discovery of two new multiline spectroscopic systems (HD 46106, HD 204827) and confirmed the presence of a suspected companion in HD 37041. We present a modified strategy of the least-squares deconvolution technique aimed at optimizing the detection of magnetic signatures while minimizing the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in six targets previously reported as magnetic by the MiMeS collaboration (HD 108, HD 47129A2, HD 57682, HD 148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in three new magnetic candidates (HD 36486, HD 162978, and HD 199579). Overall, we find a magnetic incidence rate of 7 ± 3 per cent, for 108 individual O stars (including all O-type components part of multiline systems), with a median uncertainty of the Bℓ measurements of about 50 G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars' physical properties (e.g. Teff, mass, and age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.

  4. The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Mustill, Alexander J.; Gänsicke, Boris T.

    2017-02-01

    Validated planet candidates need not lie on long-term stable orbits, and instability triggered by post-main-sequence stellar evolution can generate architectures which transport rocky material to white dwarfs, hence polluting them. The giant planet HD 131399Ab orbits its parent A star at a projected separation of about 50-100 au. The host star, HD 131399A, is part of a hierarchical triple with HD 131399BC being a close binary separated by a few hundred au from the A star. Here, we determine the fate of this system, and find the following: (I) Stability along the main sequence is achieved only for a favourable choice of parameters within the errors. (II) Even for this choice, in almost every instance, the planet is ejected during the transition between the giant branch and white dwarf phases of HD 131399A. This result provides an example of both how the free-floating planet population may be enhanced by similar systems and how instability can manifest in the polluted white dwarf progenitor population.

  5. HD 66051, an eclipsing binary hosting a highly peculiar, HgMn-related star.

    PubMed

    Niemczura, Ewa; Hümmerich, Stefan; Castelli, Fiorella; Paunzen, Ernst; Bernhard, Klaus; Hambsch, Franz-Josef; Hełminiak, Krzysztof

    2017-07-19

    HD 66051 is an eclipsing system with an orbital period of about 4.75 d that exhibits out-of-eclipse variability with the same period. New multicolour photometric observations confirm the longevity of the secondary variations, which we interpret as a signature of surface inhomogeneities on one of the components. Using archival and newly acquired high-resolution spectra, we have performed a detailed abundance analysis. The primary component is a slowly rotating late B-type star (T eff  = 12500 ± 200 K; log g = 4.0, v sin i = 27 ± 2 km s -1 ) with a highly peculiar composition reminiscent of the singular HgMn-related star HD 65949, which seems to be its closest analogue. Some light elements as He, C, Mg, Al are depleted, while Si and P are enhanced. Except for Ni, all the iron-group elements, as well as most of the heavy elements, and in particular the REE elements, are overabundant. The secondary component was estimated to be a slowly rotating A-type star (T eff  ~ 8000 K; log g = 4.0, v sin i ~ 18 km s -1 ). The unique configuration of HD 66051 opens up intriguing possibilities for future research, which might eventually and significantly contribute to the understanding of such diverse phenomena as atmospheric structure, mass transfer, magnetic fields, photometric variability and the origin of chemical anomalies observed in HgMn stars and related objects.

  6. A Search for Planetary Transits of the Star HD 187123 by Spot Filter CCD Differential Photometry

    NASA Technical Reports Server (NTRS)

    Castellano, T.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    A novel method for performing high precision, time series CCD differential photometry of bright stars using a spot filter, is demonstrated. Results for several nights of observing of the 51 Pegasi b-type planet bearing star HD 187123 are presented. Photometric precision of 0.0015 - 0.0023 magnitudes is achieved. No transits are observed at the epochs predicted from the radial velocity observation. If the planet orbiting HD 187123 at 0.0415 AU is an inflated Jupiter similar in radius to HD 209458b it would have been detected at the greater than 6(sigma), level if the orbital inclination is near 90 degrees and at the greater than 3(sigma), level if the orbital inclination is as small as 82.7 degrees.

  7. Chemical composition of the metal-poor carbon star HD 187216.

    NASA Astrophysics Data System (ADS)

    Kipper, T.; Jorgensen, U. G.

    1994-10-01

    We have derived C, N and metal abundances for the metal-deficient late-type (C3,3CH) CH giant HD 187216 (α_2000.0_=19h24m18.6s, δ_2000.0_=+85deg21'56.5"). The oxygen abundance was fixed at logA(O)=7.0, assuming that it follows the trend of oxygen overabundance relative to iron found in halo stars in general. New model atmospheres of metal-poor carbon stars were calculated with continuum opacity sources and molecular lines of CO, CN, C_2_, HCN, C_2_H_2_ and C_3_. Numerical experiments with various assumed input parameters, such as effective temperature, T_eff_, surface gravity, logg, microturbulent velocity, ξ_t_, and dissociation energy of the CN molecule, D_0_(CN), were performed when constructing the model atmospheres and calculating the synthetic spectra. The atmospheric model with T_eff_=3500K, logg=0.4, ξ_t_=3km/s, ^12^C/^13^C=8 and D_0_(CN)=7.9eV was adopted for abundance analysis. The star was found to be extremely metal-deficient, [Fe/H]=-2.48. The carbon abundance is logA(C)=7.33, the nitrogen abundance is logA(N)=5.60 corresponding to [C/Fe]=+1.3, [N/Fe]=+0.2, and [N/C]=-1.1. The carbon isotopic abundance ratio is ^12^C/^13^C=7.0. The abundances of heavy elements produced in the s-process are larger than in early-type CH stars. The ratio of overabundance of heavier s-process elements to that of lighter ones, [hs/ls]=1.0, points to a very high neutron exposure in a single irradiation event. Search for binarity of HD 187216 has failed, and the star can be an intrinsic asymptotic giant branch (AGB) carbon star with some similarities to the C stars in the dwarf galaxies. If the CH characteristics are due to mass transfer it is most likely oxygen-rich material that has been donated. The star possesses both a low nitrogen abundance and a low ^12^C/^13^C ratio, in conflict with the standard stellar evolution theory.

  8. The Herbig B0e star HD 53367: circumstellar activity and evidence of binarity

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Malanushenko, V. P.; Kozlova, O. V.; Tarasova, T. N.; Franco, G. A. P.

    2006-06-01

    Aims.We investigate the spectroscopic behaviour of the young B0e star HD 53367 within a cooperative observing programme conducted from 1994 to 2005. Methods: .The data include more than 100 high-resolution spectra collected at the Crimean Astronomical Observatory (CrAO) near Hα, Hβ, He i λ 5876, 6678 Å, DNa i, and O ii λ 6641 Å lines. Two spectra obtained at the Observatório do Pico dos Dias (LNA), in the spectral bands λλ 4575-4725 Å and λλ 5625-5775 Å, were used for spectral classification of HD 53367. The temporal behaviour of the circumstellar lines Hα and Hβ as well as the photospheric lines O ii λ 6641 Å and He i λ 6678 Å were investigated during different stages of the photometric activity of this object. Results: .We confirm that the long-term photometric variability of HD 53367 is related to the alternation of two states of this object when the gaseous circumstellar envelope disappears and rises again. Both these processes start near the star and spread to the outlying parts of the envelope. We find that the radial velocities of He i and O ii photospheric lines demonstrate a cyclic variability with a period of P=183.7 days and semi-amplitude K=19 km s-1. The radial velocity change is interpreted in the framework of a model in which the star is a component of an eccentric binary system. An orbital solution is derived and the system's parameters estimated. We find that the orbital eccentricity is e=0.28, and the mean companion separation is 1.7 AU. Conclusions: .Based on the estimated parameters, we conclude that the system consists of a massive (~20 M_⊙) main sequence primary B0e star, and a secondary which is most likely a 5 solar mass pre-main sequence object. We found evidence that the main part of the circumstellar gas in this system is concentrated near the secondary companion. Although the young age of HD 53367, its evolved primary B0e star seems to have already became a classical Be star exhibiting a specific alternation of the B

  9. Spotted star mapping by light curve inversion: Tests and application to HD 12545

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Shimansky, V. V.

    2013-06-01

    A code for mapping the surfaces of spotted stars is developed. The concept of the code is to analyze rotational-modulated light curves. We simulate the process of reconstruction for the star surface and the results of simulation are presented. The reconstruction atrifacts caused by the ill-posed nature of the problem are deduced. The surface of the spotted component of system HD 12545 is mapped using the procedure.

  10. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  11. Project VeSElkA: results of abundance analysis for HD 53929 and HD 63975

    NASA Astrophysics Data System (ADS)

    Ndiaye, M. L.; LeBlanc, F.; Khalack, V.

    2018-03-01

    Project VeSElkA (Vertical Stratification of Element Abundances) has been initiated with the aim to detect and study the vertical stratification of element abundances in the atmosphere of chemically peculiar stars. Abundance stratification occurs in hydrodynamically stable stellar atmospheres due to the migration of the elements caused by atomic diffusion. Two HgMn stars, HD 53929 and HD 63975 were selected from the VeSElkA sample and analysed with the aim to detect some abundance peculiarities employing the ZEEMAN2 code. We present the results of abundance analysis of HD 53929 and HD 63975 observed recently with the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope. Evidence of phosphorus vertical stratification was detected in the atmosphere of these two stars. In both cases, phosphorus abundance increases strongly towards the superficial layers. The strong overabundance of Mn found in stellar atmosphere of both stars confirms that they are HgMn type stars.

  12. MOST discovers a multimode δ Scuti star in a triple system: HD 61199

    NASA Astrophysics Data System (ADS)

    Hareter, M.; Kochukhov, O.; Lehmann, H.; Tsymbal, V.; Huber, D.; Lenz, P.; Weiss, W. W.; Matthews, J. M.; Rucinski, S.; Rowe, J. F.; Kuschnig, R.; Guenther, D. B.; Moffat, A. F. J.; Sasselov, D.; Walker, G. A. H.; Scholtz, A.

    2008-12-01

    Context: A field star, HD 61199 (V ≈ 8), simultaneously observed with Procyon by the MOST (Microvariability & Oscillations of STars) satellite in continuous runs of 34, 17, and 34 days in 2004, 2005, and 2007, was found to pulsate in 11 frequencies in the δ Scuti range with amplitudes from 1.7 down to 0.09 mmag. The photometry also showed variations with a period of about four days. To investigate the nature of the longer period, 45 days of time-resolved spectroscopy was obtained at the Thüringer Landessternwarte Tautenburg in 2004. The radial velocity measurements indicate that HD 61199 is a triple system. Aims: A δ Scuti pulsator with a rich eigenspectrum in a multiple system is promising for asteroseismology. Our objectives were to identify which of the stars in the system is the δ Scuti variable and to obtain the orbital elements of the system and the fundamental parameters of the individual components, which are constrained by the pulsation frequencies of the δ Scuti star. Methods: Classical Fourier techniques and least-squares multi-sinusoidal fits were applied to the MOST photometry to identify the pulsation frequencies. The groundbased spectroscopy was analysed with least-squares-deconvolution (LSD) techniques, and the orbital elements derived with the KOREL and ORBITX routines. Asteroseismic models were also generated. Results: The photometric and spectroscopic data are compatible with a triple system consisting of a close binary with an orbital period of 3.57 days and a δ Scuti companion (HD 61199 A) as the most luminous component. The δ Scuti star is a rapid rotator with about v\\cdot sin{i} = 130 {km s-1} and an upper mass limit of about 2.1 M⊙. For the close binary components, we find they are of nearly equal mass, with lower mass limits of about 0.7 M⊙. Comparisons to synthetic spectra indicate these stars have a late-F spectral type. The observed oscillation frequencies are compared to pulsation models to further constrain the

  13. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; hide

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  14. Evolutionary status of isolated B[e] stars

    NASA Astrophysics Data System (ADS)

    Lee, Chien-De; Chen, Wen-Ping; Liu, Sheng-Yuan

    2016-08-01

    Aims: We study a sample of eight B[e] stars with uncertain evolutionary status to shed light on the origin of their circumstellar dust. Methods: We performed a diagnostic analysis on the spectral energy distribution beyond infrared wavelengths, and conducted a census of neighboring region of each target to ascertain its evolutionary status. Results: In comparison to pre-main sequence Herbig stars, these B[e] stars show equally substantial excess emission in the near-infrared, indicative of existence of warm dust, but much reduced excess at longer wavelengths, so the dusty envelopes should be compact in size. Isolation from star-forming regions excludes the possibility of their pre-main sequence status. Six of our targets, including HD 50138, HD 45677, CD-24 5721, CD-49 3441, MWC 623, and HD 85567, have been previously considered as FS CMa stars, whereas HD 181615/6 and HD 98922 are added to the sample by this work. We argue that the circumstellar grains of these isolated B[e] stars, already evolved beyond the pre-main sequence phase, should be formed in situ. This is in contrast to Herbig stars, which inherit large grains from parental molecular clouds. It has been thought that HD 98922, in particular, is a Herbig star because of its large infrared excess, but we propose it being in a more evolved stage. Because dust condenses out of stellar mass loss in an inside-out manner, the dusty envelope is spatially confined, and anisotropic mass flows, or anomalous optical properties of tiny grains, lead to the generally low line-of-sight extinction toward these stars.

  15. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  16. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307

    NASA Astrophysics Data System (ADS)

    Tuomi, M.; Anglada-Escudé, G.; Gerlach, E.; Jones, H. R. A.; Reiners, A.; Rivera, E. J.; Vogt, S. S.; Butler, R. P.

    2013-01-01

    water on its surface according to the current definition of the liquid water habitable zone around a star and is not likely to suffer from tidal locking. Also, at an angular separation of ~46 mas, HD 40307 g would be a primary target for a future space-based direct-imaging mission. Appendix A is available in electronic form at http://www.aanda.org

  17. ARTIST'S CONCEPT -- 'HOT JUPITER' AROUND THE STAR HD 209458

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of the gas-giant planet orbiting the yellow, Sun-like star HD 209458, 150 light-years from Earth. Astronomers used NASA's Hubble Space Telescope to look at this world and make the first direct detection of an atmosphere around an extrasolar planet. The planet was not directly seen by Hubble. Instead, the presence of sodium was detected in light filtered through the planet's atmosphere when it passed in front of its star as seen from Earth (an event called a transit). The planet was discovered in 1999 by its subtle gravitational pull on the star. The planet is 70 percent the mass of Jupiter, the largest planet in our solar system. Its orbit is tilted nearly edge-on to Earth, which allows repeated transit observations. The planet is merely 4 million miles from the star. The distance between the pair is so close that the yellow star looms in the sky, with an angular diameter 23 times larger than the full Moon's diameter as seen from Earth, and glows 500 times brighter than our Sun. At this precarious distance the planet's atmosphere is heated to 2000 degrees Fahrenheit (1100 degrees Celsius). But the planet is big enough to hold onto its seething atmosphere. Illustration Credit: NASA and Greg Bacon (STScI/AVL)

  18. Elemental abundances of the B and A stars. 2: Gamma Geminorum, HD 60825, 7 Sextantis, HR 4817, and HR 5780

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.; Philip, A. G. Davis

    1994-01-01

    We extend fine analyses of the B and A stars, gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 using additional spectroscopic data from the Kitt Peak National Observatory (KPNO) coude feed telescope with a TI CCD, camera 5, and grating A, and ATLAS9 model atmospheres. In addition we study HD 60825, which had colors similar to the FHB A stars, but was found to be a Population I star. HD 60825, as is gamma Gem, is a sharp-lined early-A star with nearly solar derived abundances. HR 5780 and 7 Sex are also examples of stars which for the most part have solar abundances. The newly derived abundances for HR 4817 reveal important differences with respect to 53 Tau, a somewhat similar HgMn star.

  19. X-Raying the Coronae of HD 155555

    NASA Technical Reports Server (NTRS)

    Lalitha, S.; Singh, K.P.; Drake, S. A.; Kashyap, V.

    2015-01-01

    We present an analysis of the high-resolution Chandra observation of the multiple system, HD 155555 (an RS CVn type binary system, HD 155555 AB, and its spatially resolved low-mass companion HD 155555 C). This is an intriguing system which shows properties of both an active pre-main sequence star and a synchronised (main sequence) binary. We obtain the emission measure distribution, temperature structures, plasma densities, and abundances of this system and compare them with the coronal properties of other young/active stars. HD 155555 AB and HD 155555 C produce copious X-ray emission with log L(sub x) of 30.54 and 29.30, respectively, in the 0.3-6.0 kiloelectronvolt energy band. The light curves of individual stars show variability on timescales of few minutes to hours. We analyse the dispersed spectra and reconstruct the emission measure distribution using spectral line analysis. The resulting elemental abundances exhibit inverse first ionisation potential effect in both cases. An analysis of He-like triplets yields a range of coronal electron densities 1010 - 1013 per cubic centimeter. Since HD 155555 AB is classified both as an RS CVn and a PMS star, we compare our results with those of other slightly older active main-sequence stars and T Tauri stars, which indicates that the coronal properties of HD 155555 AB closely resemble that of an older RS CVn binary rather than a younger PMS star. Our results also suggests that the properties of HD 155555 C is very similar to those of other active M dwarfs.

  20. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  1. Magnetic and pulsational variability of Przybylski's star (HD 101065)

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Järvinen, S. P.; Madej, J.; Bychkov, V. D.; Ilyin, I.; Schöller, M.; Bychkova, L. V.

    2018-07-01

    Since its discovery more than half a century ago Przybylski's star (HD 101065) continues to excite the astronomical community by the unusual nature of its spectrum, exhibiting exotic element abundances. This star was also the first magnetic chemically peculiar A-type star for which the presence of rapid oscillations was established. Our analysis of newly acquired and historic longitudinal magnetic field measurements indicates that Przybylski's star is also unusual with respect to its extremely slow rotation. Adopting a dipolar structure for the magnetic field and using a sine wave fit to all reported longitudinal magnetic field values over the last 43 yr, we find a probable rotation period Prot ≈ 188 yr, which however has to be considered tentative as it does not represent a unique solution and has to be verified by future observations. Additionally, based on our own spectropolarimetric material obtained with HARPSpol, we discuss the impact of the anomalous structure of its atmosphere, in particular of the non-uniform horizontal and vertical distributions of chemical elements on the magnetic field measurements and the pulsational variability. Anomalies related to the vertical abundance stratification of Pr and Nd are for the first time used to establish the presence of a radial magnetic field gradient.

  2. Magnetic and pulsational variability of Przybylski's star (HD 101065)

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Järvinen, S. P.; Madej, J.; Bychkov, V. D.; Ilyin, I.; Schöller, M.; Bychkova, L. V.

    2018-04-01

    Since its discovery more than half a century ago Przybylski's star (HD 101065) continues to excite the astronomical community by the unusual nature of its spectrum, exhibiting exotic element abundances. This star was also the first magnetic chemically peculiar A-type star for which the presence of rapid oscillations was established. Our analysis of newly acquired and historic longitudinal magnetic field measurements indicates that Przybylski's star is also unusual with respect to its extremely slow rotation. Adopting a dipolar structure for the magnetic field and using a sine wave fit to all reported longitudinal magnetic field values over the last 43 yr, we find a probable rotation period Prot ≈ 188 yr, which however has to be considered tentative as it does not represent a unique solution and has to be verified by future observations. Additionally, based on our own spectropolarimetric material obtained with HARPSpol, we discuss the impact of the anomalous structure of its atmosphere, in particular of the non-uniform horizontal and vertical distributions of chemical elements on the magnetic field measurements and the pulsational variability. Anomalies related to the vertical abundance stratification of Pr and Nd are for the first time used to establish the presence of a radial magnetic field gradient.

  3. Doppler-Zeeman mapping of the magnetic CP star HD 215441

    NASA Astrophysics Data System (ADS)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.

    1997-07-01

    The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.

  4. The Case of the Tail Wagging the Dog: HD 189733 - Evidence of Hot Jupiter Exoplanets Spinning-up Their Host Stars

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2013-06-01

    (Abstract only) HD 189733A is an eighth mag K1.5V star that has attracted much attention because it hosts a short period, transiting, hot-Jupiter planet. This planet, HD 189733b, has one of the shortest known orbital periods (P = 2.22 days) and is only 0.031 AU from its host star. Because the system undergoes eclipses and is bright, HD 189733 has been extensively studied. The planet's atmosphere has been found to contain water vapor, methane, CO2, and sodium and possible haze. Spitzer IR observations indicate planet temperature, varying ~970 K to ~1,200 K over its surface (Tinetti (2007). Based on measurements of the K-star's P(rot) from starspot modulations of ~11.95 d, strong coronal X-ray emission and chromospheric Ca II-HK emission indicate a young age of ~0.7 Gyr. But this apparent young age is discrepant with a much older age (> 4 Gyr) inferred from the star's very low Lithium abundance. However, the age of the HD 189733 system can be independently determined by the presence of a faint dM4 companion (HD 189733B) some 12" away. Our Age-Activity relations for this star (no detectable coronal X-ray emission and no H-alpha emission) indicate an age > 4 Gyr (and < 8 Gyr from kinematics and metallicity). This age should apply to its K star companion and its planet. The fast rotation and resultant high activity levels of the K star can best be explained from the increase in its (rotation) angular momentum (AM) from the orbital AM of the planet. This AM transfer occurs from tidal and magnetic interactions of the K star with its planet. Determining the possible decrease in the planet's orbital period is possible from studying the planet eclipse times (which can be done by AAVSO members with CCD photometry). We also discuss the properties of other related short-period exoplanet systems found by the Kepler Mission that show similar behavior - in that close-in hot Jupiter size planets appear to be physically interacting with their host stars. This work is supported by

  5. NEW PRECISION ORBITS OF BRIGHT DOUBLE-LINED SPECTROSCOPIC BINARIES. V. THE AM STARS HD 434 AND 41 SEXTANTIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fekel, Francis C.; Williamson, Michael H., E-mail: fekel@evans.tsuniv.ed

    We have detected the secondary component in two previously known spectroscopic binaries, HD 434 and 41 Sex, and for the first time determined double-lined orbits for them. Despite the relatively long period of 34.26 days and a moderate eccentricity of 0.32, combined with the components' rotationally broadened lines, measurement of the primary and secondary radial velocities of HD 434 has enabled us to obtain significantly improved orbital elements. While the 41 Sex system has a much shorter period of 6.167 days and a circular orbit, the estimated V mag difference of 3.2 between its components also makes this a challengingmore » system. The new orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of HD 434 have accuracies of 0.8% or better, while the same quantities for 41 Sex are good to 0.5% or better. Both components of HD 434 are Am stars while the Am star primary of 41 Sex has a late-F or early-G companion. All four stars are on the main sequence. The two components of HD 434 are rotating much faster than their predicted pseudosynchronous velocities, while both components of 41 Sex are synchronously rotating. For the primary of 41 Sex, the spectrum line depth changes noted by Sreedhar Rao et al. were not detected.« less

  6. The peculiar O6f star HD 148937 and the symmetrically surrounding nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1972-01-01

    The ultraviolet continuum of the star is observed and, after standard reddening corrections are applied, it is found to be hotter than a model 05 V star. The Of star and its two companions are photometered around wavelength 4640, 4686, and 4861 A. The results confirm Westerlund's (1960) absolute visual magnitude of about -6 for the Of star and confirm his rejection of NGC 6164-5 as a planetary nebula. Peculiarities of the system of nebular shells around HD 148937, of which NGC 6164-5 are the innermost, are discussed with reference to radiofrequency data. A standard extrapolation from the optical flux density of NGC 6164-5 predicts a detectable radio source but it does not appear in the relevant surveys.

  7. HD 179821 (V1427 Aql, IRAS 19114+0002) - a massive post-red supergiant star?

    NASA Astrophysics Data System (ADS)

    Şahin, T.; Lambert, David L.; Klochkova, Valentina G.; Panchuk, Vladimir E.

    2016-10-01

    We have derived elemental abundances of a remarkable star, HD 179821, with unusual composition (e.g. [Na/Fe] = 1.0 ± 0.2 dex) and extra-ordinary spectral characteristics. Its metallicity at [Fe/H] = 0.4 dex places it among the most metal-rich stars yet analysed. The abundance analysis of this luminous star is based on high-resolution and high-quality (S/N ≈ 120-420) optical echelle spectra from McDonald Observatory and Special Astronomy Observatory. The data includes five years of observations over 21 epochs. Standard 1D local thermodynamic equilibrium analysis provides a fresh determination of the atmospheric parameters over all epochs: Teff = 7350 ± 200 K, log g= +0.6 ± 0.3, and a microturbulent velocity ξ = 6.6 ± 1.6 km s-1 and [Fe/H] = 0.4 ± 0.2, and a carbon abundance [C/Fe] = -0.19 ± 0.30. We find oxygen abundance [O/Fe] = -0.25 ± 0.28 and an enhancement of 0.9 dex in N. A supersonic macroturbulent velocity of 22.0 ± 2.0 km s-1 is determined from both strong and weak Fe I and Fe II lines. Elemental abundances are obtained for 22 elements. HD 179821 is not enriched in s-process products. Eu is overabundant relative to the anticipated [X/Fe] ≈ 0.0. Some peculiarities of its optical spectrum (e.g. variability in the spectral line shapes) is noticed. This includes the line profile variations for H α line. Based on its estimated luminosity, effective temperature and surface gravity, HD 179821 is a massive star evolving to become a red supergiant and finally a Type II supernova.

  8. Spectral Variability of the Herbig Ae/Be Star HD 37806

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Pavlovskiy, S. E.; Kozlova, O. V.; Beskrovnaya, N. G.; Alekseev, I. Yu.; Valyavin, G. G.

    2018-03-01

    Results are reported from a spectroscopic study of the Herbig Ae/Be star HD 37806 from 2009 through 2017 using high resolution spectrographs at the Crimean Astrophysical Observatory and the OAN SPM Observatory in Mexico. 72 spectra of this object near the Hα, Hβ, HeI 5876 and D NaI lines are analyzed. The following results were obtained: 1. The type of spectral profile of the Hα line can change from P Cyg III to double emission and vice versa over a time scale on the order of a month. 2. Narrow absorption components are observed in the profiles of the Hα and D NaI lines with radial velocities that vary over a characteristic time on the order of a day. 3. On some days, the profiles of the Hβ, HeI 5876, and D NaI lines show signs of accretion of matter to the star with a characteristic lifetime of a few days. A possible interpretation of these phenomena was considered. The transformation of the Hα profile may be related to a change in the outer latitudinal width of the boundary of the wind zone. The narrow variable absorption lines may be caused by the rotation of local azimuthal inhomogeneities in the wind zone owing to the interaction of the disk with the star's magnetosphere in a propeller regime. Several current theoretical papers that predict the formation of similar inhomogeneous wind structures were examined. It is suggested that the episodes with signs of accretion in the spectral line profiles cannot be a consequence of the modulation of these profiles by the star's rotation but are more likely caused by sudden, brief changes in the accretion rate. These spectral observations of HD 37806 should be continued in a search for cyclical variability in the spectral parameters in order to identify direct signs of magnetospheric accretion and detect possible binary behavior in this object.

  9. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ ofmore » the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.« less

  10. High Resolution Optical Spectroscopy of an Intriguing High-Latitude B-Type Star HD119608

    NASA Astrophysics Data System (ADS)

    Şahin, T.

    2018-01-01

    We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided T eff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms-1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms-1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.

  11. TWO SMALL PLANETS TRANSITING HD 3167

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderburg, Andrew; Bieryla, Allyson; Latham, David W.

    2016-09-20

    We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R {sub ⊕} and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R {sub ⊕} and orbits its host star every 29.85 days. At a distance of just 45.8 ± 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167more » b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets’ masses. The outer planet is large enough that it likely has a thick gaseous envelope that could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope .« less

  12. The qWR star HD 45166 . I. Observations and system parameters

    NASA Astrophysics Data System (ADS)

    Steiner, J. E.; Oliveira, A. S.

    2005-12-01

    The binary star HD 45166 has been observed since 1922 but its orbital period has not yet been found. It is considered a peculiar Wolf-Rayet star, and its assigned classification has varied. For this reason we included the object as a candidate V Sge star and performed spectroscopy in order to search for its putative orbital period. High-resolution spectroscopic observations show that the spectrum, in emission and in absorption, is quite rich. The emission lines have great diversity of widths and profiles. The full widths at half maximum vary from 70 km s-1 for the weakest lines up to 370 km s-1 for the most intense ones. The hydrogen and helium lines are systematically broader than the CNO lines. Assuming that HD 45166 is a double-line spectroscopic binary, it presents an orbital period of P = 1.596 ± 0.003 day, with an eccentricity of e = 0.18 ± 0.08. In addition, a search for periodicity using standard techniques reveals that the emission lines present at least two other periods, of 5 and 15 h. The secondary star has a spectral type of B7 V and, therefore, should have a mass of about M2 = 4.8 ~M⊙. Given the radial velocity amplitudes, we determined the mass of the hot (primary) star as M1 = 4.2 ± 0.7~M⊙ and the inclination angle of the system, i = 0.77° ± 0.09°. As the eccentricity of the orbit is non zero, the Roche lobes increase and decrease as a function of the orbital phase. At periastron, the secondary star fills its Roche lobe. The distance to the star has been re-determined as d = 1.3 ± 0.2 kpc and a color excess of E(B-V)=0.155~±~0.007 has been derived. This implies an absolute B magnitude of -0.6 for the primary star and -0.7 for the B7 star. We suggest that the discrete absorption components (DACs) observed in the ultraviolet with a periodicity similar to the orbital period may be induced by periastron events. Based on observations made at the 1.5 m ESO telescope at La Silla, Chile, and at Laboratório Nacional de Astrofísica/CNPq, Brazil

  13. Detection of a white dwarf companion to the Hyades stars HD 27483

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1993-01-01

    We observed with IUE a white dwarf (WD) companion to the Hyades F6 V binary stars HD 27483. This system is known to be a close binary of two nearly equal stars with an orbital period of 3.05 days. Our IUE observations revealed the presence of a third star, a white dwarf with an effective temperature of 23,000 +/- 1000 K and a mass of approximately 0.6 solar mass. Its presence in the Hyades cluster with a known age permits me to derive the mass of its progenitor, which must have been about 2.3 solar masses. The presence of the white dwarf in a binary system opens the possibility that some of the envelope material, which was expelled by the WD progenitor, may have been collected by the F6 stars. We may thus be able to study abundance anomalies of the WD progenitor with known mass on the surface of the F6 companions.

  14. Determining the atmospheric structure and dynamics of the FK Comae Star HD32918

    NASA Technical Reports Server (NTRS)

    Robinson, R. D.

    1995-01-01

    The results of UV observations taken with the International Ultraviolet Explorer (IUE) satellite and microwave observations obtained with the Australia Telescope during an observing campaign of the rapidly rotating K0 dwarf star HD 197890, nicknamed 'Speedy Mic' are presented. This star was recently recognized as a powerful, transient EUV source by the ROSAT WFC, and subsequent investigation showed it to be a ZAMS or possibly a PMS dwarf which may be a member of the Local Association. Our observations show it to have strong, variable UV emission lines near the 'saturation' levels. The radio observations show a level of 'quiescent' emission consistent with other rapidly rotating stars, but there is no evidence for the large flux variations that normally characterize the time history of such objects.

  15. The challenge of measuring magnetic fields in strongly pulsating stars: the case of HD 96446

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Hubrig, S.; Ilyin, I.; Schöller, M.; Briquet, M.

    2017-01-01

    Among the early B-type stars, He-rich Bp stars exhibit the strongest large-scale organized magnetic fields with a predominant dipole contribution. The presence of β Cep-like pulsations in the typical magnetic early Bp-type star HD 96446 was announced a few years ago, but the analysis of the magnetic field geometry was hampered by the absence of a reliable rotation period and a sophisticated procedure for accounting for the impact of pulsations on the magnetic field measurements. Using new spectropolarimetric observations and a recently determined rotation period based on an extensive spectroscopic time series, we investigate the magnetic field model parameters of this star under more detailed considerations of the pulsation behaviour of line profiles.

  16. VizieR Online Data Catalog: HST photometry of stars in HD 97950 (Pang+, 2016)

    NASA Astrophysics Data System (ADS)

    Pang, X.; Pasquali, A.; Grebel, E. K.

    2016-07-01

    The HD97950 cluster and its immediate surroundings in the giant HII region NGC3603 were observed with the Hubble Space Telescope (HST). The ultraviolet (UV) data were taken with the High Resolution Channel (HRC) of the Advanced Camera for Surveys (ACS) in 2005 (GO 10602, PI: Jesus Maiz Apellaniz) through the F220W, F250W, F330W, and F435W filters. The HRC is characterized by a spatial resolution of 0.03"/pixel and a field of view of 29''*25''. The optical observations were carried out with the Wide Field and Planetary Camera 2 (WFPC2) in two epochs: 1997 (GO 6763, PI: Laurent Drissen) and 2007 (GO 11193, PI: Wolfgang Brandner) through the F555W, F675W, and F814W filters. The Planetary Camera (PC) chip was centered on the cluster (0.045"/pixel, 40''*40'') for both programs. Pang et al. 2013 (cat. J/ApJ/764/73) reduced the two-epoch WFPC2 data and identified more than 400 member stars on the PC chip via relative proper motions. Of these member stars, 142 are in common between the HRC and PC images and thus have UV and optical photometry available (see Table1). Among the HD97950 cluster member stars determined from relative proper motions (Pang et al. 2013, cat. J/ApJ/764/73, Table2), there are five main-sequence (MS) stars located in the cluster with projected distances of r<0.7pc from the center, for which there are also spectral types available from Table3 of Melena et al. (2008AJ....135..878M). The photometry of these five MS stars is presented in Table2. The individual color excesses and extinctions of the member main sequence stars are listed in Table3. (3 data files).

  17. HD 93521, zeta Ophiuchi, and the effects of rapid rotation on the atmospheres and winds of 09.5 V stars

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1995-01-01

    Both low- and high-resolution IUE spectra of the rapidly rotating 09.5 V stars HD 93521 and zeta Oph are used to develop a coherent picture of the effects of rapid rotation on the atmospheres and winds of late, main-sequence O stars. The observational consequences are by far the strongest on HD 93521, most likely because it is being viewed nearly equator-on. In particular, it is shown that HD 93521 (1) a much smaller UV optical flux ratio than expected, (2) UV photospheric lines indicative of a BO supergiant, (3) an abnormally strong N v wind doublet, and (4) wind profiles suggesting that its wind has latitudinally dependent properties. Because HD 93521 has a larger observed v sin i than zeta Oph and yet its H-alpha emission is no stronger than in zeta Oph, it is speculated that zeta Oph actually rotates as fast or faster than HD 93521, but has a smaller sin i. Because zeta Oph is significantly reddened, nothing can be determined about its intrinsic UV energy distribution. However, it is shown that its UV photospheric lines are a bit peculiar and that its C IV and N V wind doublets are abnormally strong and have unusual profiles. The C IV profile agrees with models of a rotationally distorted wind similar to the one in HD 93521, except viewed at an angle i approximately 60 deg-80 deg. The spectral peculiarities of both stars are attributed to the combined effects of gravity darkening of their atmospheres and rotational distortion of their winds. The differences between their spectra are interpreted as the result of being viewed at different inclination angles. Because of the gravity darkening, atmospheric analyses of either star based on single temperature and surface gravity model atmospheres are probably unreliable. Finally, I describe how different effects conspire to make the spectroscopic signatures of gravity darkening so pronounced at 09.5 V.

  18. Pulsation in the presence of a strong magnetic field: the roAp star HD166473

    NASA Astrophysics Data System (ADS)

    Mathys, G.; Kurtz, D. W.; Elkin, V. G.

    2007-09-01

    Phase-resolved high-resolution, high signal-to-noise ratio (S/N) observations of the strongly magnetic roAp star HD166473 are analysed. HD166473 was selected as the target of this study because it has one of the strongest magnetic fields of all the roAp stars known with resolved magnetically split lines. Indeed, we show that enhanced pulsation diagnosis can be achieved from consideration of the different pulsation behaviour of the π and σ Zeeman components of the resolved spectral lines. This study is based on a time-series of high spectral resolution observations obtained with the Ultraviolet and Visual Echelle Spectrograph of the Very Large Telescope of the European Southern Observatory. Radial velocity variations due to pulsation are observed in rare earth lines, with amplitudes up to 110ms-1. The variations occur with three frequencies, already detected in photometry, but which can in this work be determined with better precision: 1.833, 1.886 and 1.928mHz. The pulsation amplitudes and phases observed in the rare earth element lines vary with atmospheric height, as is the case in other roAp stars studied in detail. Lines of Fe and of other (mostly non-rare earth) elements do not show any variation to very high precision (1.5ms-1 in the case of Fe). The low amplitudes of the observed variations do not allow the original goal of studying differences between the behaviour of the resolved Zeeman line components to be reached; the S/N achieved in the radial velocity determinations is insufficient to establish definitely the possible existence of such differences. Yet the analysis provides a tantalizing hint at the occurrence of variations of the mean magnetic field modulus with the pulsation frequency, with an amplitude of 21 +/- 5G. Based on observations collected at the European Southern Observatory, Paranal, Chile, as part of programme 067.D-0272. E-mail: gmathys@eso.org

  19. Relation between the Li spots, dipolar magnetic field and other variable phenomena in the roAp star HD 83368

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.

    The detection of remarkable variations in the profile of the resonance doublet Li I 6708 Å with rotational phase of the roAp star HD 83368 (North et al. 1998) prompted us to consider the behaviour of other characteristics of this star. The observational data on magnetic field (Heff), brightness and amplitude of rapid light oscillations of HD 83368 are analyzed. A clear synchronism appears between the variations of the Li line intensity, brightness, magnetic field and pulsation amplitude with rotational phase, which can be explained in terms of a spotted rotator model. Reference: North P., Polosukhina N., Malanushenko V., Hack M., 1998, A&A 333, 644

  20. Detection of planet candidates around K giants. HD 40956, HD 111591, and HD 113996

    NASA Astrophysics Data System (ADS)

    Jeong, G.; Lee, B.-C.; Han, I.; Omiya, M.; Izumiura, H.; Sato, B.; Harakawa, H.; Kambe, E.; Mkrtichian, D.

    2018-02-01

    Aims: The purpose of this paper is to detect and investigate the nature of long-term radial velocity (RV) variations of K-type giants and to confirm planetary companions around the stars. Methods: We have conducted two planet search programs by precise RV measurement using the 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) and the 1.88 m telescope at Okayama Astrophysical Observatory (OAO). The BOAO program searches for planets around 55 early K giants. The OAO program is looking for 190 G-K type giants. Results: In this paper, we report the detection of long-period RV variations of three K giant stars, HD 40956, HD 111591, and HD 113996. We investigated the cause of the observed RV variations and conclude the substellar companions are most likely the cause of the RV variations. The orbital analyses yield P = 578.6 ± 3.3 d, m sin i = 2.7 ± 0.6 MJ, a = 1.4 ± 0.1 AU for HD 40956; P = 1056.4 ± 14.3 d, m sin i = 4.4 ± 0.4 MJ, a = 2.5 ± 0.1 AU for HD 111591; P = 610.2 ± 3.8 d, m sin i = 6.3 ± 1.0 MJ, a = 1.6 ± 0.1 AU for HD 113996. Based on observations made with the BOES at BOAO in Korea and HIDES at OAO in Japan.Tables 3-5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A3

  1. The composite nature of the peculiar star HR 6560 (HD 159870)

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Cowley, Charles R.

    1992-01-01

    Ground-based high-dispersion photographic spectra and ultraviolet spectra obtained with the IUE satellite are described and employed to determine the nature of the peculiar star HR 6560 (HD 159870). Previously this object had been described as both a composite system and as a strong Fm star. The UBVRI, Stromgren, and ultraviolet colors of HR 6560 are compared with objects classified composite from the Bright Star Catalogue and normal dwarfs and giants. The colors of HR 6560 are not unusual for a composite and are consistent with a late-A dwarf, combined with a late-G or early-K giant. The ultraviolet satellite clearly shows the presence of an A component, but its precise spectral type is difficult to assign. The IUE and TD-1 data suggest that the ultraviolet is dominated by light from an A5 V secondary and the visual from a GO III primary. This does not agree well with the most plausible model that fits the visual photometry. The peculiar nature of HR 6560's spectrum is most likely due to its composite nature.

  2. The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Przybilla, N.; Hubrig, S.

    2015-06-01

    Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.

  3. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  4. Multiplicity among chemically peculiar stars. II. Cool magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Carrier, F.; North, P.; Udry, S.; Babel, J.

    2002-10-01

    We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are: HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars and for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. Based on observations collected at the Observatoire de Haute-Provence (CNRS), France. Tables 1 to 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/151 Appendix B is only available in electronic form at http://www.edpsciences.org

  5. HD 89345: a bright oscillating star hosting a transiting warm Saturn-sized planet observed by K2

    NASA Astrophysics Data System (ADS)

    Van Eylen, V.; Dai, F.; Mathur, S.; Gandolfi, D.; Albrecht, S.; Fridlund, M.; García, R. A.; Guenther, E.; Hjorth, M.; Justesen, A. B.; Livingston, J.; Lund, M. N.; Pérez Hernández, F.; Prieto-Arranz, J.; Regulo, C.; Bugnet, L.; Everett, M. E.; Hirano, T.; Nespral, D.; Nowak, G.; Palle, E.; Silva Aguirre, V.; Trifonov, T.; Winn, J. N.; Barragán, O.; Beck, P. G.; Chaplin, W. J.; Cochran, W. D.; Csizmadia, S.; Deeg, H.; Endl, M.; Heeren, P.; Grziwa, S.; Hatzes, A. P.; Hidalgo, D.; Korth, J.; Mathis, S.; Montañes Rodriguez, P.; Narita, N.; Patzold, M.; Persson, C. M.; Rodler, F.; Smith, A. M. S.

    2018-05-01

    We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star (V = 9.3 mag) observed by the K2 mission with one-minute time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding the mass and radius to be 1.12^{+0.04}_{-0.01} M_⊙ and 1.657^{+0.020}_{-0.004} R_⊙, respectively. The star appears to have recently left the main sequence, based on the inferred age, 9.4^{+0.4}_{-1.3} Gyr, and the non-detection of mixed modes. The star hosts a "warm Saturn" (P = 11.8 days, Rp = 6.86 ± 0.14 R⊕). Radial-velocity follow-up observations performed with the FIES, HARPS, and HARPS-N spectrographs show that the planet has a mass of 35.7 ± 3.3 M⊕. The data also show that the planet's orbit is eccentric (e ≈ 0.2). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to conform to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.

  6. Spectral Evidence for an Inner Carbon-rich Circumstellar Belt in the Young HD 36546 A-star System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisse, C. M.; Sitko, M. L.; Russell, R. W.

    Using the NASA/IRTF SpeX and BASS spectrometers we have obtained 0.7–13 μ m observations of the newly imaged 3–10 Myr old HD 36546 disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an L {sub *} ∼ 20 L {sub ⊙}, solar abundance A1.5V star with little to no extinction, and excess emission from circumstellar dust detectable beyond 4.5 μ m. Non-detections of CO emission lines and accretion signatures point to the gas-poor circumstellar environment of a very old transition disk. Combining the SpeX + BASS spectra with archival WISE / AKARI / IRAS /more » Herschel photometry, we find an outer cold dust belt at ∼135 K and 20–40 au from the primary, likely coincident with the disk imaged by Subaru, and a new second inner belt with a temperature ∼570 K and an unusual, broad SED maximum in the 6–9 μ m region, tracing dust at 1.1–2.2 au. An SED maximum at 6–9 μ m has been reported in just two other A-star systems, HD 131488 and HD 121191, both of ∼10 Myr age. From Spitzer , we have also identified the ∼12 Myr old A7V HD 148657 system as having similar 5–35 μ m excess spectral features. The Spitzer data allows us to rule out water emission and rule in carbonaceous materials—organics, carbonates, SiC—as the source of the 6–9 μ m excess. Assuming a common origin for the four young A-star systems’ disks, we suggest they are experiencing an early era of carbon-rich planetesimal processing.« less

  7. DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E., E-mail: iur@obs.carnegiescience.edu, E-mail: jelawler@wisc.edu

    2012-05-01

    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundancesmore » or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.« less

  8. Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Hutsemékers, D.; Nazé, Y.; Royer, P.; Lebouteiller, V.; Waelkens, C.

    2017-03-01

    Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  9. The mid-infrared spectrum of the carbon star HD 38218 and its possible relation to polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Buss, Richard H., Jr.; Tielens, A. G. G. M.; Snow, Theodore P.

    1991-01-01

    The mid-infrared spectra of carbon giant stars with hot companions are investigated in order to search for infrared emission bands from polycyclic aromatic hydrocarbons (PAH) in the envelopes of the C giants. A strong 8-micron emission band found in TU Tau = HD 38218 is attributed to the binary A star companion. It is argued that if the 8-micron feature in HD 38218 arises from PAHs, they seem to be important constituents of the C-giant shell, and they might be large compared with some interstellar PAHs. It is suggested that because no other IR spectra of C giants show clear PAH features, the greater flux of hard radiation in the binary HD 38218 seems likely to be responsible for the 8-micron feature and for its absence in many other C giants. Thus, PAHs could be present in the same amounts relative to SiC grains in the shells of similar single C giants, and the formation of carbonaceous grains could proceed through the formation of PAHs in C giant shells.

  10. Photometric and spectroscopic variability of the B5IIIe star HD 171219

    NASA Astrophysics Data System (ADS)

    Andrade, L.; Janot-Pacheco, E.; Emilio, M.; Frémat, Y.; Neiner, C.; Poretti, E.; Mathias, P.; Rainer, M.; Suárez, J. C.; Uytterhoeven, K.; Briquet, M.; Diago, P. D.; Fabregat, J.; Gutiérrez-Soto, J.

    2017-07-01

    We analyzed the star HD 171219, one of the relatively bright Be stars observed in the seismo field of the CoRoT satellite, in order to determine its physical and pulsation characteristics. Classical Be stars are main-sequence objects of mainly B-type, whose spectra show, or have shown at some epoch, Balmer lines in emission and an infrared excess. Both characteristics are attributed to an equatorially concentrated circumstellar disk fed by non-periodic mass-loss episodes (outbursts). Be stars often show nonradial pulsation gravity modes and, as more recently discovered, stochastically excited oscillations. Applying the CLEANEST algorithm to the high-cadence and highly photometrically precise measurements of the HD 171219 light curve led us to perform an unprecedented detailed analysis of its nonradial pulsations. Tens of frequencies have been detected in the object compatible with nonradial g-modes. Additional high-resolution ground-based spectroscopic observations were obtained at La Silla (HARPS) and Haute Provence (SOPHIE) observatories during the month preceding CoRoT observations. Additional information was obtained from low-resolution spectra from the BeSS database. From spectral line fitting we determined physical parameters of the star, which is seen equator-on (I = 90°). We also found in the ground data the same frequencies as in CoRoT data. Additionally, we analyzed the circumstellar activity through the traditional method of violet to red emission Hα line variation. A quintuplet was identified at approximately 1.113 c d-1 (12.88 μHz) with a separation of 0.017 c d-1 that can be attributed to a pulsation degree ℓ 2. The light curve shows six small- to medium-scale outbursts during the CoRoT observations. The intensity of the main frequencies varies after each outburst, suggesting a possible correlation between the nonradial pulsations regime and the feeding of the envelope. The CoRoT space mission was developed and operated by the French space agency

  11. Radial velocity measurements of the chromospherically-active stars (2): HD 28591 = V492 Per

    NASA Technical Reports Server (NTRS)

    Dadonas, V.; Sperauskas, J.; Fekel, F. C.; Morton, M. D.

    1994-01-01

    From two sets of the spectroscopic observations covering a ten year period we have obtained 59 radial velocities of the chromospherically-active star HD 28591 = V492 Per. It is a G9III single-lined spectroscopic binary with a period of 21.2910 days and a circular orbit. The upsilon sin i of 24.6 km/sec, results in a minimum radius 10.3 solar radii. We estimate a distance of 165 +/- 40 pc and an orbital inclination of 65 +/- 25 degrees. The secondary is probably a mid to late-type K dwarf. The star is brighter than the limiting magnitude of the Bright Star Catalogue. The mean photometric and the orbital periods are identical within their uncertainties. Since the star fills a significant fraction of its Roche lobe, about 62%, the photometric light curve may be the result of starspots and a modest ellipticity effect.

  12. The Age-Related Properties of the HD 98800 System

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Henry, Todd J.; Shetrone, Matthew D.; Jones, Burton F.; Saar, Steven H.

    1996-01-01

    We present optical spectroscopy of the field K star system HD 98800, which has been found to have significant infrared emission from circumstellar material. The lithium abundances of the stars in HD 98800 are well above those of Pleiades of similar color, but activity levels and rotation in these stars are at or below Pleiades level. Thus, it is not yet possible to say whether HD 98800 is or is not a pre-main-sequence system, and it is possible that its components are on or near the zero-age main sequence. However, the two visible objects that make up HD 98800 both have high levels of lithium and activity, strongly suggesting that they are physically related to one another. As shown by Torres and coworkers, having these stars physically tied implies that their relative orbit is highly eccentric and highly inclined to our line of sight, and it also means that we are viewing the HD 98800 system at an unusual time in its orbit.

  13. Pulsations in the late-type Be star HD 50 209 detected by CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Auvergne, M.; Fabregat, J.; Hubert, A.-M.; Floquet, M.; Frémat, Y.; Garrido, R.; Andrade, L.; de Batz, B.; Emilio, M.; Espinosa Lara, F.; Huat, A.-L.; Janot-Pacheco, E.; Leroy, B.; Martayan, C.; Neiner, C.; Semaan, T.; Suso, J.; Catala, C.; Poretti, E.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Samadi, R.

    2009-10-01

    Context: The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims: To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods: We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results: We have found four frequencies which correspond to gravity modes with azimuthal order m=0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd-1 (7.754 μHz). Conclusions: HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip. Based on observations made with the CoRoT satellite, with FEROS at the 2.2 m telescope of the La Silla Observatory under the ESO Large Programme LP178.D-0361 and with Narval at the Télescope Bernard Lyot of the Pic du Midi Observatory. Current address: Valencian International University (VIU), José Pradas Gallen s/n, 12006 Castellón, Spain. Current address: Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.

  14. A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biller, Beth; Benisty, Myriam; Chauvin, Gael

    2012-07-10

    With the uniquely high contrast within 0.''1 ({Delta}mag(L') = 5-6.5 mag) available using Sparse Aperture Masking with NACO at Very Large Telescope, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88 {+-} 5 mas (12.8 {+-} 1.5 AU at 145 pc) and flux ratios in H, K, and L' of 0.016 {+-} 0.007, 0.012 {+-} 0.008, and 0.0086 {+-} 0.0011, respectively (3{sigma} errors), relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion withmore » an estimated mass of {approx}0.1-0.4 M{sub Sun }. HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.« less

  15. Optical and X-ray studies of chromospherically active stars: FR Cancri, HD 95559 and LO Pegasi

    NASA Technical Reports Server (NTRS)

    Pandey, J. C.; Singh, K. P.; Drake, S. A.; Sagar, R.

    2005-01-01

    We present a multiwavelength study of three chromospherically active stars, namely FR Cnc (= BD +16 degrees 1753), HD 95559 and LO Peg (=BD +22 degrees 4409), including newly obtained optical photometry, (for FR Cnc) low-resolution optical spectroscopy, as well as archival IR and X-ray observations. The BVR photometry carried out during the years 2001 - 2004 has found significant photometric variability to be present in all three stars. For FR Cnc, a photometric period 0.826685 +/- 0.000034 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. Two independent spots with migration periods of 0.97 and 0.93 years respectively are inferred. The photometry of HD 95559 suggests the formation of a spot (group) during the interval of our observations. We infer the existence of two independent spots or groups in the photosphere of LO Peg, one of which has a migration period of 1.12 years. The optical spectroscopy of FR Cnc carried out during 2002-2003, reveals the presence of strong and variable Ca I1 H and K, H(sub beta) and H(sub alpha) emission features indicative of high level of chromospheric activity. The value of 5.3 for the ratio of the excess emission in H(sub alpha) to H(sub beta), EH(sub alpha)/EH(sub beta), suggests that the chromospheric emission may arise from an extended off-limb region. We have searched for the presence of color excesses in the near-IR JHK bands of these stars using 2MASS data, but none of them appear to have any significant color excess. We have also analyzed archival X-ray observations of HD 95559 and LO Peg carried out by with the ROSAT observatory. The best fit models to their X-ray spectra imply the presence of two coronal plasma components of differing temperatures and with sub-solar metal abundances. The inferred emission measures and temperatures of these systems are similar to

  16. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  17. HD 54272, a classical λ Bootis star and γ Doradus pulsator

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Skarka, M.; Holdsworth, D. L.; Smalley, B.; West, R. G.

    2014-05-01

    We detect the second known λ Bootis star (HD 54272) which exhibits γ Doradus-type pulsations. The star was formerly misidentified as a RR Lyrae variable. The λ Bootis stars are a small group (only 2 per cent) of late B to early F-type, Population I stars which show moderate to extreme (up to a factor 100) surface underabundances of most Fe-peak elements and solar abundances of lighter elements (C, N, O, and S). The photometric data from the Wide Angle Search for Planets (WASP) and All Sky Automated Survey (ASAS) projects were analysed. They have an overlapping time base of 1566 d and 2545 d, respectively. Six statistically significant peaks were identified (f1 = 1.410 116 d-1, f2 = 1.283 986 d-1, f3 = 1.293 210 d-1, f4 = 1.536 662 d-1, f5 = 1.157 22 d-1 and f6 = 0.226 57 d-1). The spacing between f1 and f2, f1 and f4, f5 and f2 is almost identical. Since the daily aliasing is very strong, the interpretation of frequency spectra is somewhat ambiguous. From spectroscopic data, we deduce a high rotational velocity (250 ± 25 km s-1) and a metal deficiency of about -0.8 to -1.1 dex compared to the Sun. A comparison with the similar star, HR 8799, results in analogous pulsational characteristics but widely different astrophysical parameters. Since both are λ Bootis-type stars, the main mechanism of this phenomenon, selective accretion, may severely influence γ Doradus-type pulsations.

  18. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  19. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-08-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by ~64° from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130°. It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast (Δr/r ≈ 0.4). The maximum visible radial extent is ~254 AU. With mean surface brightness of V ≈ 24 mag arcsec-2, this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by ~28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  20. HD gas purification for polarized HDice targets production at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, Charles; D'Angelo, Annalisa; Colaneri, Luca

    2014-06-01

    Solid, frozen-spin targets of molecular HD were rst developed for nuclear physics by a collaboration between Syracuse University and Brookhaven National Lab. They have been successfully used in measurements with photon beams, rst at the Laser-Electron-Gamma-Source [1] and most recently at Je erson Lab during the running of the E06-101 (g14) experiment [2]. Preparations are underway to utilize the targets in future electron experiments after the completion of the 12 GeV JLab upgrade [3]. HD is an attractive target since all of the material is polarizable, of low Z, and requires only modest holding elds. At the same time, themore » small contributions from the target cell can be subtracted from direct measurements. Reaching the frozen-spin state with both high polarization and a signi cant spin relaxation time requires careful control of H2 and D2 impurities. Commercially available HD contains 0.5 - 2% concentrations of H2 and D2. Low-temperature distillation is required to reduce these concentrations to the 104 level to enable useful target production. This distillation is done using a column lled with heli-pack C [4] to give good separation e ciency. Approximately 12 moles of commercial HD is condensed into the mechanically refrigerated system at the base temperature of 11K. The system is then isolated and the temperature stabilized at 18K producing liquid HD, which is boiled by a resistive heater. The circulation established by the boil-o condensing throughout the column then ltering back down produces a steady-state isotopic separation permitting the extraction of HD gas with very low H2 and D2 content. A residual gas analyzer initially monitors distillation. Once the H2 concentration falls below its useful operating range, samples are periodically collected for analysis using gas chromatography [5] and Raman scattering. Where the measurement techniques overlap, good agreement is obtained. The operation of the distillery and results of gas analysis will be

  1. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  2. CO and H(3)(+) in the protoplanetary disk around the star HD141569.

    PubMed

    Brittain, Sean D; Rettig, Terrence W

    2002-07-04

    Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2 3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H(3)(+) emission from the 5-10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H(3)(+) (ref. 2), so their presence in the same source is surprising. Moreover, H(3)(+) line emission has previously been detected only from the atmospheres of the giant planets in the Solar System. The H(3)(+) and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H(3)(+) may be located in the extended envelope of a protoplanet.

  3. Line formation in winds with enhanced equatorial mass-loss rates and its application to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Rumpl, W. M.

    1980-01-01

    A model having a spherically symmetric velocity distribution with a higher density at the equatorial region was developed to simulate the UV spectrum of the Wolf-Rayet star HD 50896. The spectrum showed P Cygni-shaped profiles whose emissions are stronger than expected in a spherically symmetric stellar wind. The model was studied varying the inclination angle of the star-wind system and the polar to equatorial density ratios; it was shown that HD 50896 could possess a nonspherically symmetric wind and that its symmetry axis is inclined between 60 and 90 deg. It is possible that the velocity distribution of the wind could include an inner constant velocity plateau beyond which the wind accelerates to its terminal velocity as indicated by infrared continuum investigations.

  4. ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997

    NASA Technical Reports Server (NTRS)

    Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.; hide

    2013-01-01

    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.

  5. Documentation for the machine-readable version of the University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume 2: Declinations minus 53 deg to minus 40 deg

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1981-01-01

    The magnetic tape version of Volume 2 of the University of Michigan systematic reclassification program for the Henry Draper Catalogue (HD) stars is described. Volume 2 contains all HD stars in the declination range -53 degrees to 40 degrees and also exists in printed form.

  6. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Gajendra; Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T {sub eff} = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξmore » = 13 ± 2 km s{sup −1} are provided for V652 Her, and T {sub eff} = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s{sup −1} are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.« less

  7. Shadows and cavities in protoplanetary disks: HD 163296, HD 141569A, and HD 150193A in polarized light

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Quanz, S. P.; Schmid, H. M.; Avenhaus, H.; Buenzli, E.; Wolf, S.

    2014-08-01

    Context. The morphological evolution of dusty disks around young (a few Myr old) stars is pivotal for a better understanding of planet formation. Since both dust grains and the global disk geometry evolve on short timescales, high-resolution imaging of a sample of objects may provide important indications about this evolution. Aims: We enlarge the sample of protoplanetary disks imaged in polarized light with high-resolution imaging (≲0.2″) by observing the Herbig Ae/Be stars HD 163296, HD 141569A, and HD 150193A. We combine our data with previous datasets to understand the larger context of their morphology. Methods: Polarimetric differential imaging is an attractive technique with which to image at near-IR wavelengths a significant fraction of the light scattered by the circumstellar material. The unpolarized stellar light is canceled out by combining two simultaneous orthogonal polarization states. This allowed us to achieve an inner working angle and an angular resolution as low as ~0.1″. Results: We report a weak detection of the disk around HD 163296 in the H and KS bands. The disk is resolved as a broken ring structure with a significant surface brightness drop inward of 0.6″. No sign of extended polarized emission is detected from the disk around HD 141569A and HD 150193A. Conclusions: We propose that the absence of scattered light in the inner 0.6″ around HD 163296 and the non-detection of the disk around HD 150193A may be due to similar geometric factors. Since these disks are known to be flat or only moderately flared, self-shadowing by the disk inner wall is the favored explanation. We show that the polarized brightness of a number of disks is indeed related to their flaring angle. Other scenarios (such as dust grain growth or interaction with icy molecules) are also discussed. On the other hand, the non-detection of HD 141569A is consistent with previous datasets that revealed a huge cavity in the dusty disk. Based on observations collected at

  8. Know the Star, Know the Planet. V. Characterization of the Stellar Companion to the Exoplanet Host Star HD 177830

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Oppenheimer, Rebecca; Crepp, Justin R.; Baranec, Christoph; Beichman, Charles; Brenner, Douglas; Burruss, Rick; Cady, Eric; Luszcz-Cook, Statia; Dekany, Richard; Hillenbrand, Lynne; Hinkley, Sasha; King, David; Lockhart, Thomas G.; Nilsson, Ricky; Parry, Ian R.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Rémi; Rice, Emily L.; Veicht, Aaron; Vasisht, Gautam; Zhai, Chengxing; Zimmerman, Neil T.

    2015-10-01

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.

  9. KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Lewis C. Jr.; Beichman, Charles; Burruss, Rick

    2015-10-15

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determinedmore » that the binary star has a likely period of approximately 800 years with a semimajor axis of 100–200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5–10 years.« less

  10. Abundances of the light elements from UV (HST) and red (ESO) spectra in the very old star HD 84937

    NASA Astrophysics Data System (ADS)

    Spite, M.; Peterson, R. C.; Gallagher, A. J.; Barbuy, B.; Spite, F.

    2017-04-01

    Aims: In order to provide a better basis for the study of mechanisms of nucleosynthesis of the light elements beyond hydrogen and helium in the oldest stars, the abundances of C, O, Mg, Si, P, S, K, and Ca have been derived from UV-HST and visible-ESO high resolution spectra in the old, very metal-poor star HD 84937, at a metallicity that is 1/200 that of the Sun's. For this halo main-sequence turnoff star, the abundance determination of P and S are the first published determinations. Methods: The LTE profiles of the lines were computed and fitted to the observed spectra. Wherever possible, we compared the abundances derived from the UV spectrum to abundances derived from the visible or near-infrared spectra, and also corrected the derived abundances for non-LTE effects. Three-dimensional (3D) CO5BOLD model atmospheres have been used to determine the abundances of C and O from molecular CH and OH bands. Results: The abundances of these light elements relative to iron in HD 84937 are found to agree well with the abundances of these elements in classical metal-poor stars. Our HD 84937 carbon abundance determination points toward a solar (or mildly enhanced above solar) value of [C/Fe]. The modest overabundance of the α elements of even atomic number Z, typical of halo turnoff stars, is confirmed in this example. The odd-Z element P is found to be somewhat deficient in HD 84937, at [P/Fe] = -0.32, which is again consistent with the handful of existing determinations for turnoff stars of such low metallicity. We show that the abundance of oxygen, deduced from the OH band from 3D computations, is not compatible with the abundance deduced from the red oxygen triplet. This incompatibility is explained by the existence of a chromosphere heating the shallow layers of the atmosphere where the OH band, in 3D computations, is mainly formed. Conclusions: The abundance ratios are compared to the predictions of models of galactic nucleosynthesis and evolution. Based on

  11. Evidences of extragalactic origin and planet engulfment in the metal-poor twin pair HD 134439/HD 134440

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge

    2018-04-01

    Recent studies of chemical abundances in metal-poor halo stars show the existence of different populations, which is important for studies of Galaxy formation and evolution. Here, we revisit the twin pair of chemically anomalous stars HD 134439 and HD 134440, using high resolution (R ˜ 72 000) and high S/N ratio (S/N ˜ 250) HDS/Subaru spectra. We compare them to the well-studied halo star HD 103095, using the line-by-line differential technique to estimate precise stellar parameters and LTE chemical abundances. We present the abundances of C, O, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Ba, La, Ce, Nd, and Sm. We compare our results to the precise abundance patterns of Nissen & Schuster (2010) and data from dwarf Spheroidal galaxies (dSphs). We show that the abundance pattern of these stars appears to be closely linked to that of dSphs with [α/Fe] knee below [Fe/H] < -1.5. We also find a systematic difference of 0.06 ± 0.01 dex between the abundances of these twin binary stars, which could be explained by the engulfment of a planet, thus suggesting that planet formation is possible at low metallicities ([Fe/H] = -1.4).

  12. Hokupa'a-Gemini Discovery of Two Ultracool Companions to the Young Star HD 130948

    NASA Astrophysics Data System (ADS)

    Potter, D.; Martín, E. L.; Cushing, M. C.; Baudoz, P.; Brandner, W.; Guyon, O.; Neuhäuser, R.

    2002-03-01

    We report the discovery of two faint ultracool companions to the nearby (d~17.9 pc) young G2 V star HD 130948 (HR 5534, HIP 72567) using the Hokupa'a adaptive optics (AO) instrument mounted on the Gemini North 8 m telescope. Both objects have the same common proper motion as the primary star as seen over a 7 month baseline and have near-IR photometric colors that are consistent with an early L classification. Near-IR spectra taken with the NIRSPEC AO instrument on the Keck II telescope reveal K I lines, FeH, and H2O band heads. Based on these spectra, we determine that both objects have a spectral type of dL2 with an uncertainty of two spectral subclasses. The position of the new companions on the H-R diagram in comparison with theoretical models is consistent with the young age of the primary star (<0.8 Gyr) estimated on the basis of X-ray activity, lithium abundance, and fast rotation. HD 130948B and C likely constitute a pair of young contracting brown dwarfs with an orbital period of about 10 yr and will yield dynamical masses for L dwarfs in the near future. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  13. Regular frequency patterns in the young δ Scuti star HD 261711 observed by the CoRoT and MOST satellites

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2013-04-01

    Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims: We concentrate on an asteroseismological study of HD 261711, a rather hot δ Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD 261711 was discovered to be a PMS δ Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods: High-precision, time-series photometry of HD 261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results: With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the δ Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new δ Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (Teff) was derived to be 8600 ± 200 K, log g is 4.1 ± 0.2, and the projected rotational velocity (υsini) is 53 ± 1 km s-1. Using our Teff value and the radius of 1.8 ± 0.5 R⊙ derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L⊙ of 1.20 ± 0.14 which agrees well to the seismologically determined values of 1.65 R⊙ and, hence, a log L/L⊙ of 1.13. The radial velocity of 14 ± 2 km s-1 we derived for HD 261711, confirms the star's membership to NGC 2264

  14. The Death Spiral of the Hot Jupiter Exoplanet HD 189733b

    NASA Astrophysics Data System (ADS)

    Dowling Jones, Liam; Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    HD 189733 is a quintessential example of hot Jupiter-type exoplanet systems in which a gas giant planet with a mass similar to Jupiter is orbiting extremely close to its host star. HD 189733 is the nearest and brightest hot Jupiter system discovered so far and undergoes transit eclipses. Because of this, HD 189733 is well studied across the electromagnetic spectrum. It consists of a 7.7 mag K1.5 V host star and a Jupiter-size planet orbiting with a period of P =2.22 days, only located only 0.030 AU from its host star.About ten years ago HD 189733 system was discovered to be accompanied by gravitationally-bound red dwarf M4 V star companion (HD 189733 B). It was found previously by Guinan et al. (2017) that the age measurement (~0.7 Gyr) of the K-type star indicated by its 11.95 day rotation period and corresponding moderately high levels of coronal X-ray and chromospheric emissions do not agree with the much older age of ~6 - 9 Gyr indicated from the low X-ray activity of the dM companion star. This age discrepancy is can be resolved by assuming an increase in angular momentum or “spin-up” of the HD 189733A by its hosted planet. It is probable is that this extra angular momentum was acquired from the orbiting exoplanet from the tidal and magnetic interactions of the planet and host star.Photometric observations of the planetary transit eclipses of HD 189733b have been carried out for over 11 years. Using new transit timings that we have obtained with the 1.3-m Robotically Controlled Telescope (RCT) when combined with numerous timings available in the literature, we have discovered a very small decrease in the orbital period of the HD 189733b. The change in period is dP/dt = 0.87 sec/100 yrs. This finding support the transfer of orbital angular momentum of the planet to the host star - thus spinning-up the host star and shrinking the orbit of the planet. At this rate of period decrease, the planet will be tidally disrupted in less than 40 million years. However

  15. Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666

    NASA Astrophysics Data System (ADS)

    Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke

    2018-01-01

    Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.

  16. Fifteen years in the high-energy life of the solar-type star HD 81809. XMM-Newton observations of a stellar activity cycle

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Favata, F.; Micela, G.; Sciortino, S.; Maggio, A.; Schmitt, J. H. M. M.; Robrade, J.; Mittag, M.

    2017-09-01

    Context. The modulation of the activity level of solar-like stars is commonly revealed by cyclic variations in their chromospheric indicators, such as the Ca II H&K S-index, similarly to what is observed in our Sun. However, while the variation of solar activity is also reflected in the cyclical modulation of its coronal X-ray emission, similar behavior has only been discovered in a few stars other than the Sun. Aims: The data set of the long-term XMM-Newton monitoring program of HD 81809 is analyzed to study its X-ray cycle, investigate if the latter is related to the chromospheric cycle, infer the structure of the corona of HD 81809, and explore if the coronal activity of HD 81809 can be ascribed to phenomena similar to solar activity and, therefore, considered an extension of the solar case. Methods: We analyzed the observations of HD 81809 performed with XMM-Newton with a regular cadence of six months from 2001 to 2016, which represents one of the longest available observational baseline ( 15 yr) for a solar-like star with a well-studied chromospheric cycle (with a period of 8 yr). We investigated the modulation of coronal luminosity and temperature and its relation with the chromospheric cycle. We interpreted the data in terms of a mixture of solar-like coronal regions, adopting a method originally proposed to study the Sun as an X-ray star. Results: The observations show a well-defined regular cyclic modulation of the X-ray luminosity that reflects the activity level of HD 81809. The data covers approximately two cycles of coronal activity; the modulation has an amplitude of a factor of 5 (excluding evident flares, as in the June 2002 observation) and a period of 7.3 ± 1.5 yr, which is consistent with that of the chromospheric cycle. We demonstrate that the corona of HD 81809 can be interpreted as an extension of the solar case and can be modeled with a mixture of solar-like coronal regions along the whole cycle. The activity level is mainly determined by

  17. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V. A Massive Jupiter orbiting the very-low-metallicity giant star BD+03 2562 and a possible planet around HD 103485

    NASA Astrophysics Data System (ADS)

    Villaver, E.; Niedzielski, A.; Wolszczan, A.; Nowak, G.; Kowalik, K.; Adamów, M.; Maciejewski, G.; Deka-Szymankiewicz, B.; Maldonado, J.

    2017-10-01

    Context. Evolved stars with planets are crucial to understanding the dependency of the planet formation mechanism on the mass and metallicity of the parent star and to studying star-planet interactions. Aims: We present two evolved stars (HD 103485 and BD+03 2562) from the Tracking Advanced PlAnetary Systems (TAPAS) with HARPS-N project devoted to RV precision measurements of identified candidates within the PennState - Toruń Centre for Astronomy Planet Search. Methods: The paper is based on precise radial velocity (RV) measurements. For HD 103485 we collected 57 epochs over 3317 days with the Hobby-Eberly Telescope (HET) and its high-resolution spectrograph and 18 ultra-precise HARPS-N data over 919 days. For BD+03 2562 we collected 46 epochs of HET data over 3380 days and 19 epochs of HARPS-N data over 919 days. Results: We present the analysis of the data and the search for correlations between the RV signal and stellar activity, stellar rotation, and photometric variability. Based on the available data, we interpret the RV variations measured in both stars as Keplerian motion. Both stars have masses close to Solar (1.11 M⊙ HD 103485 and 1.14 M⊙ BD+03 2562), very low metallicities ([Fe/H] = - 0.50 and - 0.71 for HD 103485 and BD+03 2562), and both have Jupiter planetary mass companions (m2sini = 7 and 6.4 MJ for HD 103485 and BD+03 2562 resp.) in close to terrestrial orbits (1.4 au HD 103485 and 1.3 au BD+03 2562) with moderate eccentricities (e = 0.34 and 0.2 for HD 103485 and BD+03 2562). However, we cannot totally rule-out the possibility that the signal in the case of HD 103485 is due to rotational modulation of active regions. Conclusions: Based on the current data, we conclude that BD+03 2562 has a bona fide planetary companion while for HD 103485 we cannot totally exclude the possibility that the best explanation for the RV signal modulations is not the existence of a planet but stellar activity. If the interpretation remains that both stars have

  18. Quantitative spectral analysis of the sdB star HD 188112: A helium-core white dwarf progenitor

    NASA Astrophysics Data System (ADS)

    Latour, M.; Heber, U.; Irrgang, A.; Schaffenroth, V.; Geier, S.; Hillebrandt, W.; Röpke, F. K.; Taubenberger, S.; Kromer, M.; Fink, M.

    2016-01-01

    Context. HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M ≲ 0.3 M⊙) are He-core objects produced by the evolution of compact binary systems. Aims: We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near- and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods: We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results: We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M ≥ 0.70 M⊙. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin I = 7.9 ± 0.3 km s-1), we constrain the companion mass to be between 0.9 and 1.3 M⊙. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.

  19. Copernicus observations of distant unreddened stars. II - Line of sight to HD 50896

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1977-01-01

    Copernicus UV data on interstellar lines toward HD 50896, a Wolf-Rayet star, are analyzed to study abundances and physical conditions in the line of sight. About 20% of the low-velocity neutral gas is contained in a dense cloud with 10% to 50% of its hydrogen in molecular form; the atomic abundances show typical interstellar depletions. The low-velocity H II gas may be associated with the high ionizing flux of the Wolf-Rayet star or with H II regions along the line of sight. Si III exhibits strong absorption shortward of the low-velocity H II gas, characteristic of a collisionally ionized component at 30,000 to 80,000 K; the possible connections with an unobserved supernova remnant or stellar mass loss are discussed. High-velocity features at 78 and -96 km/sec, in which Fe and Si are near their cosmic abundances, are also indicative of strong shocks.

  20. Constraining the weak-wind problem: an XMM-HST campaign for the magnetic O9.7 V star HD 54879

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2018-01-01

    Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates Ṁ of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (O9.7 V), one of a few O-type stars with a detected atmospheric magnetic field (Bd ≳ 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 M⊙yr-1. Since the wind is partially trapped within the Alfvén radius rA ≳ 12 R*, the true mass-loss rate of HD 54879 is log Ṁ ≲ -10.2 M⊙yr-1. Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log TX = 6.7 K and an X-ray luminosity of log LX = 32 erg s-1. The latter implies a significant X-ray excess (log LX/LBol ≈ -6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P ≈ 5 yr is derived from variability of the Hα line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars.

  1. An Unusual Massive Be Star HD 53367: Circumstellar Activity and Evidence for Binarity

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Malanushenko, V. P.; Kozlova, O. V.; Tarasova, T. N.; Franco, G. A. P.

    2006-12-01

    We present the results of high-resolution spectroscopy of the young B0e star HD 53367 obtained within the framework of a cooperative observing program in 1994--2005. We confirm that a long-term photometric variability of the object is indeed connected with the alternation of two states of the object when the gaseous circumstellar envelope disappears and arises again. Both these processes start near the star and then spread to remote parts of the envelope. We find that the radial velocities of He I and O II photospheric lines demonstrate a cyclic variability with the period P=183.7 days and the semi-amplitude K=19 km s-1. The radial velocity variation is interpreted in the framework of a model, in which the star is a companion of an eccentric binary system. An orbital solution is derived and the system's parameters are estimated. We find that the orbital eccentricity is e=0.28, the mean companion separation is 1.7 AU, and the secondary companion is most likely to be a 5 solar mass pre-main sequence object. The main part of circumstellar gas in the system is collected near the secondary companion.

  2. Infrared Observations of FS CMa Stars

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Russell, R. W.; Lynch, D. K.; Grady, C. A.; Hammel, H. B.; Beerman, L. C.; Day, A. N.; Huelsman, D.; Rudy, R. J.; Brafford, S. M.; Halbedel, E. M.

    2009-01-01

    A subset of non-supergiant B[e] stars has recently been recognized as forming a fairly unique class of objects with very strong emission lines, infrared excesses, and locations not associated with star formation. The exact evolutionary state of these stars, named for the prototype FS CMa, is uncertain, and they have often been classified as isolated Herbig AeBe stars. We present infrared observations of two of these stars, HD 45677 (FS CMa), HD 50138 (MWC 158), and the candidate FS CMa star HD 190073 (V1295 Aql) that span over a decade in time. All three exhibit an emission band at 10 microns due to amorphous silicates, confirming that much (if not all) of the infrared excess is due to dust. HD 50138 is found to exhibit 20% variability between 3-13 microns that resembles that found in pre-main sequence systems (HD 163296 and HD 31648). HD 45677, despite large changes at visual wavelengths, has remained relatively stable in the infrared. To date, no significant changes have been observed in HD 190073. This work is supported in part by NASA Origins of Solar Systems grant NAG5-9475, NASA Astrophysics Data Program contract NNH05CD30C, and the Independent Research and Development program at The Aerospace Corporation.

  3. The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218

    NASA Astrophysics Data System (ADS)

    Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.

    2018-04-01

    Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its

  4. HD 140283: A STAR IN THE SOLAR NEIGHBORHOOD THAT FORMED SHORTLY AFTER THE BIG BANG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Howard E.; Nelan, Edmund P.; VandenBerg, Don A.

    HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 {+-} 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion,more » revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 {+-} 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about {+-}0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 {+-} 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang.« less

  5. Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?

    NASA Astrophysics Data System (ADS)

    Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.

    2016-02-01

    Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in

  6. HD 47755, a new eclipsing binary

    NASA Technical Reports Server (NTRS)

    Koch, R. H.; Bradstreet, D. H.; Hrivnak, B. J.; Pfeiffer, R. J.; Perry, P. M.

    1986-01-01

    The IUE spectra of the close binary star HD 47755 have been examined in order to determine its geometry, chemical composition, and light curve. UBV fluxes in the spectra, when dereddened for E(B-V) = 0.09 yield an effective temperature of 16,500 K. The ratio of the mean radii of the stars is found to agree well with an old blueband spectrophotometric value. Eclipses in the binary have been observed and a complex green light curve is derived. It is suggested that the wind from at least one of the components of HD 47755 is the source of the complexity in the light curve. The geometry of the HD 47755 is compared to that of V 641 Mon, A definite cluster member of NGC 2264. The interstellar line spectrum is found to be similar to that of V 641 Mon and the column densities for a few interstellar ions are given in a table. Evaluation of the nonastrometric evidence indicates that HD 47755 is also a member of NGC 2264.

  7. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  8. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  9. Copernicus observations of distant unreddened stars. I. Line of sight to MU Colombae and HD 28497

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, J.M.; York, D.G.

    1977-02-01

    Copernicus UV data on interstellar lines toward ..mu.. Col and HD 28497 are analyzed to study the abundances and physical conditions in the many components found in each line of sight. Despite low mean neutral hydrogen densities toward these stars, a substantial portion of the neutral gas is associated with dense condensations containing H/sub 2/. In several high-velocity components, Fe, Ca, and possibly Si appear to be nearer their cosmic abundances than is typical in interstellar gas; this effect may be related to the correlation of N (Ca II)/N (Na I) with cloud velocity, and suggests a grain-disruption model. Low-velocitymore » ionized gas with n/sub e/=0.1 to 0.3 cm/sup -3/ appears to be associated with an extended H II region near ..mu.. Col; ionized gas of similar density is seen at the same velocities as the four neutral components toward HD 28497. Si III absorption, with a wide profile at high negative velocities, unaccompanied by any detectable Si II, N II, or neutral gas, is reported in both stars. The observed Si III column densities and velocity fields may be explained by collisionally ionized gas at 30,000 to 100,000 K behind radiatively cooling strong shocks.« less

  10. MagAO Imaging of Long-period Objects (MILO). II. A Puzzling White Dwarf around the Sun-like Star HD 11112

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy J.; Bergeron, P.; Simon, Amélie; Arriagada, Pamela; Faherty, Jacqueline K.; Anglada-Escudé, Guillem; Mamajek, Eric E.; Weinberger, Alycia; Butler, R. Paul; Males, Jared R.; Morzinski, Katie; Close, Laird M.; Hinz, Philip M.; Bailey, Jeremy; Carter, Brad; Jenkins, James S.; Jones, Hugh; O'Toole, Simon; Tinney, C. G.; Wittenmyer, Rob; Debes, John

    2016-11-01

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6-4 μm and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9-1.1 M ⊙, which corresponds to very high eccentricity, near edge-on orbits from a Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2σ, which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.

  11. Different regions of line formation in the envelope of the early emission line star HD 190073

    NASA Technical Reports Server (NTRS)

    Ringuelet, A. E.; Rovira, M.; Cidale, L.; Sahade, J.

    1987-01-01

    A description is presented of the spectral features that characterize the spectrum of HD 190073 both in the photographic region (360-660 nm), and in the IUE UV (115-320 nm). A number of different types of profiles can be distinguished, and this seems to imply that many different 'broad' regions of line formation coexist in the extended envelope of the star, including regions with densities differing in several orders of magnitude.

  12. Spectroscopic and photometric variability of the O9.5 Vp star HD 93521

    NASA Astrophysics Data System (ADS)

    Rauw, G.; De Becker, M.; van Winckel, H.; Aerts, C.; Eenens, P.; Lefever, K.; Vandenbussche, B.; Linder, N.; Nazé, Y.; Gosset, E.

    2008-08-01

    Aims: The line profile variability and photometric variability of the O9.5 Vp star HD 93521 are examined in order to establish the properties of the non-radial pulsations in this star. Methods: Fourier techniques are used to characterize the modulations of the He i λλ 5876, 6678 and H α lines in several spectroscopic time series and to search for variations in a photometric time series. Results: Our spectroscopic data confirm the existence of two periods of 1.75 and 2.89 h. The line profiles, especially those affected by emission wings, exhibit also modulations on longer time scales, but these are epoch-dependent and change from line to line. Unlike previous claims, we find no unambiguous signature of the rotational period in our data, nor of a third pulsation period (corresponding to a frequency of 2.66 d-1). Conclusions: HD 93521 very likely exhibits non-radial pulsations with periods of 1.75 and 2.89 h with l ≃ 8 ± 1 and l ≃ 4 ± 1 respectively. No significant signal is found in the first harmonics of these two periods. The 2.89 h mode is seen at all epochs and in all lines investigated, while the visibility of the 1.75 h mode is clearly epoch-dependent. Whilst light variations are detected, their connection to these periodicities is not straightforward. Based on observations collected at the Observatoire de Haute Provence (France), the Flemish 1.2 m Mercator telescope at the Roque de los Muchachos observatory (La Palma, Spain) and the Observatorio Astronómico Nacional of San Pedro Mártir (Mexico).

  13. The HARPS search for southern extra-solar planets. III. Three Saturn-mass planets around HD 93083, HD 101930 and HD 102117

    NASA Astrophysics Data System (ADS)

    Lovis, C.; Mayor, M.; Bouchy, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Udry, S.; Benz, W.; Bertaux, J.-L.; Mordasini, C.; Sivan, J.-P.

    2005-07-01

    We report on the detection of three Saturn-mass planets discovered with the HARPS instrument. HD 93083 shows radial-velocity (RV) variations best explained by the presence of a companion of 0.37 MJup orbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 days and a minimum mass of 0.30 MJup. For HD 102117, we present the independent detection of a companion with m2 sin{i} = 0.14 MJup and orbital period P = 20.7 days. This planet was recently detected by Tinney et al. (ApJ, submitted). Activity and bisector indicators exclude any significant RV perturbations of stellar origin, reinforcing the planetary interpretation of the RV variations. The radial-velocity residuals around the Keplerian fits are 2.0, 1.8 and 0.9 m s-1 respectively, showing the unprecedented RV accuracy achieved with HARPS. A sample of stable stars observed with HARPS is also presented to illustrate the long-term precision of the instrument. All three stars are metal-rich, confirming the now well-established relation between planet occurrence and metallicity. The new planets are all in the Saturn-mass range, orbiting at moderate distance from their parent star, thereby occupying an area of the parameter space which seems difficult to populate according to planet formation theories. A systematic exploration of these regions will provide new constraints on formation scenarios in the near future.

  14. Absolute parameters of southern detached eclipsing binary: HD 53570

    NASA Astrophysics Data System (ADS)

    Sürgit, D.

    2018-05-01

    In this study, we conducted the first analysis of spectroscopic and photometric observations of the eclipsing binary star HD 53570. Spectroscopic observations of HD 53570 were made at the Sutherland Station of the South African Astronomical Observatory in 2013 and 2014. The radial velocities of the components were determined using the cross-correlation technique. The spectroscopic mass ratio obtained for the system was 1.13 ( ± 0.07). The All Sky Automated Survey V light curve of HD 53570 was analyzed using the Wilson-Devinney code combined with the Monte Carlo search method. The final model showed that HD 53570 has a detached configuration. The mass and radii of the primary and secondary components of HD 53570 were derived as 1.06 ( ± 0.07) M⊙, 1.20 ( ± 0.16) M⊙, and 1.42 ( ± 0.14) R⊙, 2.07 ( ± 0.16) R⊙, respectively. The distance of HD 53570 was computed as 248 ( ± 38) pc considering interstellar extinction. The evolutionary status of the component stars was also investigated using Geneva evolutionary models.

  15. Spectroscopic Peculiarity of the Herbig Be Star HD 259431

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Pavlovskij, S. E.; Drake, N. A.; Beskrovnaya, N. G.; Kozlova, O. V.; Alekseev, I. Yu.; Borges Fernandes, M.; Pereira, C. B.; Valyavin, G.

    2017-06-01

    High-resolution spectra of the Herbig Be star HD 259431 obtained in 2010-2016 at three observatories (Crimean AO, ESO in Chile, and OAN SPN in Mexico) are analysed. The object demonstrates a very rich emission line profile spectrum. The bulk of the lines exhibit double-peaked emission profiles and originate in the gaseous disk. The atmospheric lines are unusually shallow, and majority of them are distorted by the circumstellar (CS) contribution. Moreover, we have revealed that they are overlapped with an additional continuum emission. Using the observed ratio of the equivalent widths of two He I λ 4009 and 4026 lines, we estimated the spectral type of the object as B5 V. We also constructed the spectral energy distribution of the additional continuum using wide wings of the atmospheric Hβ-Hɛ lines free of the CS contribution. The continuum corresponds to the blue part of the black body spectrum. The Hβ - Hɛ Balmer emission lines show very variable profiles looking as either of P Cyg-type or a double-peaked emission line with a depression of the red wing. We found the period of this variability P = 2.630d and interpreted it as a sign of a rotating magnetosphere of the star with the magnetic axis inclined to the rotation axis. At different phases of rotation, the observer can see either an accretion flow at high magnetic latitudes or a wind zone at lower latitudes. We also estimated the inclination of the rotation axis i = 52°±1°.

  16. HD 129333: The Sun in its infancy

    NASA Technical Reports Server (NTRS)

    Dorren, J. David; Guinan, Edward F.

    1994-01-01

    HD 129333 is a remarkable young, nearby solar-type G star which offers a unique opportunity of studying the properties of the Sun at a time very shortly after in arrived on the main sequence. Its space motion suggest that it is a member of the Pleiades moving group, with an age of approximately 70 Myr; its lithium abundance is consistent with this. HD 129333 has the highest level of Ca II emission of any G star which is not a member of a close binary. Our observations in 1983 showed it to have low-amplitude (5%) light variations implying a rotation period of about 2.7 days, or about 10 times faster than the Sun. Modeling of the photometric variations on the assumption that they are due to starspots yields a spot temperature about 500 K cooler than the photosphere, and a coverage of about 6% of the stellar surface area. ROSAT observations in 1990 revealed the star to be an X-ray source, with an X-ray luminosity in the 0.2 to 2.4 keV range about 300 times that of the Sun. We have used International Ultraviolet Explorer (IUE) observations in conjuction with ground-based photometry to examine the magnetic activity of this star. The IUE emission-line fluxes reveal a level of chromospheric activity 3 to 20 times greater than the Sun's. The transition-region activity is 20 to 100 times that of the Sun. The activity level of HD 129333 is consistent with the Skumanich law relating activity to age, and with the rotation-activity relation, although it may be near saturation level. This star can yield valuable information about the magnetic dynamo of the young Sun, as well as about stellar dynamos in general. The 1988 IUE observations covered four phases of its rotational cycle. A phase dependence of the Mg II h and k emission flux suggests a close association of chromospheric plages with starspot regions at that time. Systematic variations in the mean brightness of HD 129333 between 1983 and 1993, and in the UV emission fluxes, indicate the presence of an activity cycle of an

  17. A Study of Rovibrational H2O, OH, and CO emission from the Herbig Ae/Be star HD 250550

    NASA Astrophysics Data System (ADS)

    Leiendecker, Harrison; Brittain, Sean; Jensen, Stanley; Najita, Joan R.; Carr, John S.

    2018-01-01

    We present high-resolution spectroscopy (R∼75,000) of the Herbig Ae/Be star HD 250550. The L-band spectroscopy was obtained with the infrared echelle spectrograph (iSHELL) from The NASA Infrared Telescope Facility. We will describe the performance of the instrument and compare the CO and OH emission and upper limit on H2O emission to other Herbig Ae/Be stars. Specifically, L-band observationsof the ro-vibrational OH emission from the disk surrounding HD 250550 is compared to emission properties of the sources studied by Brittain et al. (2016). The OH 2Π3/2 P4.5 (1+,1-) doublet and the P5.5 (1+) line are spectrally resolved and have the same spectral profile as the CO ro-vibrational lines indicating that they arise from the same emitting region of the disk. The relative fluxes of the ro-vibrational lines from CO indicate that the rotational temperature of the gas is 1060 ± 115 K. The relative fluxes of the ro-vibrational lines from OH are consistent with this temperature.

  18. Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach.

    PubMed

    Zhang, C H; Zhang, B B; Ma, R J; Yu, M L; Guo, S L; Guo, L

    2015-10-30

    MicroRNA166 (miR166) is known to have highly conserved targets that encode proteins of the class III homeodomain-leucine zipper (HD-ZIP III) family, in a broad range of plant species. To further understand the relationship between HD-ZIP III genes and miR166, four HD-ZIP III family genes (PpHB14, PpHB15, PpHB8, and PpREV) were isolated from peach (Prunus persica) tissue and characterized. Spatio-temporal expression profiles of the genes were analyzed. Genes of the peach HD-ZIP III family were predicted to encode five conserved domains. Deduced amino acid sequences and tertiary structures of the four peach HD-ZIP III genes were highly conserved, with corresponding genes in Arabidopsis thaliana. The expression level of four targets displayed the opposite trend to that of miR166 throughout fruit development, with the exception of PpHB14 from 35 to 55 days after full bloom (DAFB). This finding indicates that miR166 may negatively regulate its four targets throughout fruit development. As for leaf and phloem, the same trend in expression level was observed between four targets and miR166 from 75 to 105 DAFB. However, the opposite trend was observed for the transcript level between four targets and miR166 from 35 to 55 DAFB. miRNA166 may negatively regulate four targets in some but not all developmental stages for a given tissue. The four genes studied were observed to have, exactly or generally, the same change tendency as individual tissue development, a finding that suggests genes of the HD-ZIP III family in peach may have complementary or cooperative functions in various tissues.

  19. MULTIWAVELENGTH OBSERVATIONS OF THE RUNAWAY BINARY HD 15137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McSwain, M. Virginia; Aragona, Christina; Marsh, Amber N.

    2010-03-15

    HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here, we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposedmore » compact companion in the system, and we rule out a quiescent neutron star (NS) in the propeller regime or a weakly accreting NS. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive NS in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.« less

  20. Light variations of the population II F-type supergiant HD 46703

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Carney, B. W.; Grauer, A. D.

    1984-01-01

    Photometric monitoring has revealed brightness variations of 0.1 m on a time scale of weeks for HD 46703, a metal-deficient F-type field analog of the stars lying above the horizontal branch in globular clusters. It is suggested that HD 46703 belongs to the '89 Her' class of luminous F-type variables. Since HD 46703 is unquestionably a halo object, it is almost certainly a low-mass star. It is suggested that it, and probably the other 89 Her variables, are masquerading as supergiants during their final evolution off the asymptotic giant branch.

  1. MagAO IMAGING OF LONG-PERIOD OBJECTS (MILO). II. A PUZZLING WHITE DWARF AROUND THE SUN-LIKE STAR HD 11112

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodigas, Timothy J.; Arriagada, Pamela; Faherty, Jacqueline K.

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6–4 μ m and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9–1.1 M {sub ⊙}, which corresponds to very high eccentricity, near edge-on orbits from amore » Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2 σ , which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.« less

  2. The very high rotators in the late-B and early-A stars: Shell stars with Si IV and C IV features the case of HD 119921

    NASA Technical Reports Server (NTRS)

    Freireferrero, R.; Bruhweiler, Frederick C.; Grady, C. A.

    1990-01-01

    Study of several stars in the late B and early A spectral types shows that very high rotators are associated with shell characteristics (sometimes not detected at all in the visible spectra) and also with C IV and some Si IV spectral absorption features which can be explained by circumstellar phenomena superimposed over stellar metallic blends. These particularities are evidenced by comparison with other spectra of low and high rotators in the same spectral range. HD 119921, a star with similar characteristics to the other ones of the sample, is given special attention. A possible scenario is suggested to explain the observed superionization features.

  3. Quantitative spectroscopy of Wolf-Rayet stars in HD97950 and R136a - the cores of giant HII regions

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Dessart, Luc

    1998-05-01

    We present quantitative analyses of Wolf-Rayet stars in the cores of two giant Hii regions - HD97950 in NGC3603 and R136a in 30 Doradus - based on archive Hubble Space Telescope (HST) spectroscopy. We confirm previous WN6h+abs classifications for components A1, B and C in HD97950, while classifications for R136a1-3 are revised from O3If^*/WN6 to WN5h. From detailed non-local thermodynamic equilibrium analyses, we find that all Wolf-Rayet stars exhibit products of CNO-processed material at their surface since they are rich in both helium (H/He~3-6, by number) and nitrogen (N/He~0.002-0.006). Their luminosities, log(L/Lsolar)=6.0-6.3, are amongst the highest known for Wolf-Rayet stars. Consequently they are very massive stars (M_init>=100Msolar) at a relatively low age (~2Myr), reminiscent of the late WN stars in the Carina Nebula. We obtain a revised distance modulus of 15.03mag (=10.1kpc) to NGC3603 based on available photometry, an updated M_v calibration for early O stars and a reddening of E(B-V)=1.23mag towards its core. From a census of the massive stellar content of the two central clusters we conclude that their global properties are comparable. We evaluate the contribution made by Wolf-Rayet stars to the total Lyman continuum ionizing flux and kinetic energy released into the ISM. We discuss how simple calibrations can be used to estimate stellar luminosities, ionizing fluxes and mass-loss rates of luminous OB stars. Wolf-Rayet stars provide ~20 per cent of the total ionizing flux (~1.3x10^51 Ly photons^-1) within 0.5pc of their cores, and ~60 per cent of the total kinetic energy injected into the ISM (5-6x10^38ergs^-1), despite representing only 10 per cent of the massive stellar population. For the larger R136 cluster in 30 Doradus (r<=10pc), 117 massive stars provide a total ionizing flux of 4x10^51 Ly photons^-1 and release a total kinetic energy of 1.6x10^39 ergs^-1 into the ISM, the latter being dominated by nine WR (43 per cent) and six O3If^*/WN (29

  4. Skylab ultraviolet stellar spectra - A new white dwarf, HD 149499 B

    NASA Technical Reports Server (NTRS)

    Parsons, S. B.; Wray, J. D.; Benedict, G. F.; Henize, K. G.; Laget, M.

    1976-01-01

    The letter reports the discovery of a cool star with excess brightness in the vacuum ultraviolet on an objective-prism photograph obtained during the second Skylab mission. This star, HD 149499, is of type K0 V and has a companion with an apparent magnitude of about 11.8; the relatively flat UV spectrum observed at the position of HD 149499 is characteristic of a 10th or 11th magnitude unreddened O- or early B-type star. It is shown that the excess VUV brightness is due to the companion, HD 149499B, which probably lies in the region of the H-R diagram occupied by the hot white dwarfs. Inspection of white dwarf lists indicates that this star is the sixth or seventh brightest white dwarf known. A maximum orbital motion of 0.025 arcsec/yr is estimated along with a period of just under 500 yr.

  5. Triple system HD 201433 with a SPB star component seen by BRITE - Constellation: Pulsation, differential rotation, and angular momentum transfer

    NASA Astrophysics Data System (ADS)

    Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.

    2017-07-01

    Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the

  6. Discovery of multiple pulsations in the new δ Scuti star HD 92277: Asteroseismology from Dome A, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu

    We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the δ Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f{sub 1} =more » 10.810 days{sup −1} corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B − V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification.« less

  7. New visual companions of solar-type stars within 25 pc

    NASA Astrophysics Data System (ADS)

    Chini, R.; Fuhrmann, K.; Barr, A.; Pozo, F.; Westhues, C.; Hodapp, K.

    2014-01-01

    We report the discovery of faint common-proper-motion companions to the nearby southern solar-type stars HD 43162, HD 67199, HD 114837, HD 114853, HD 129502, HD 165185, HD 197214 and HD 212330 from near-infrared imaging and astrometry. We also confirm the previously identified tertiary components around HD 165401 and HD 188088. Since the majority of these stars were already known as binaries, they ascend now to higher level systems. A particularly interesting case is the G6.5 V BY Dra-type variable HD 43162, which harbours two common-proper-motion companions at distances of 410 and 2740 au. Our limited study shows that the inventory of common-proper-motion companions around nearby bright stars is still not completely known.

  8. The Star-grazing Bodies in the HD 172555 System

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Brown, Alexander; Welsh, Barry; Roberge, Aki; Kamp, Inga; Rivière Marichalar, P.

    2018-06-01

    Kiefer et al. reported the detection of infalling Ca II absorption in HD 172555, a member of the β Pictoris Moving Group (βPMG). We obtained HST Space Telescope Imaging Spectrograph and Cosmic Origins Spectrograph spectroscopy of this star at 2 epochs separated by a week, and we report the discovery of infalling gas in resonant transitions of Si III and IV, C II and IV, and neutral atomic oxygen. Variable absorption is seen in the C II transitions and is optically thick, with covering factors which range between 58% and 68%, similar to features seen in β Pictoris. The O I spectral profile resembles that of C II, showing a strong low-velocity absorption to +50 km s‑1 in the single spectral segment obtained during orbital night, as well as what may be higher-velocity absorption. Studies of the mid-IR spectrum of this system have suggested the presence of silica. The O I absorption differs from that seen in Si III, suggesting that the neutral atomic oxygen does not originate in SiO dissociation products but in a more volatile parent molecule such as CO.

  9. INTEGRAL Observations of the Enigmatic Be Stars (gamma) Cassiopeiae and HD 110432

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.

    2007-01-01

    We present the results of a hard X-ray study of the Be stars gamma Cassiopeiae and HD 110432 based on observations made with the INTEGRAL observatory. These stars are known to be moderately strong, X-ray sources (L(sub x) approx. equal to = 10(sup 32)-10(sup 33) erg per second). These values are at the extreme high end of the known luminosity distribution for active coronal systems, but several orders of magnitude below typical X-ray binaries. The hard X-ray spectra for these systems are quite similar. They can be well fitted by either optically thin thermal plasma models with kT = 12.5 - 14 keV or a cutoff powerlaw + gaussian line model with photon indices in the 1.3 - 1.5 range and a line energy of 6.7 keV. The 20-50 keV light curves show no evidence for flaring and no significant evidence for periodic variability. It has been proposed that the X-ray emission is due to either accretion onto a white dwarf companion or magnetic activity near the surface of the Be star. We discuss in detail the pros and cons of each scenario towards explaining our spectral and temporal results. Given that both thermal and nonthermal models fit the data equally well, we cannot use the spectra to delineate between these two scenarios. Recent observations indicate that gamma Cas has a approx. 1 solar mass companion in a 203.59 day orbit. This is consistent with the white dwarf - Be star binary model but the lack of periodic modulation of the flux on this timescale calls this conclusion into question. On the other hand the lack of flaring activity may rule against the magnetic activity model. We discuss advances in observations and theory that need to be made to resolve the origin of these systems.

  10. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  11. Activity and magnetic field structure of the Sun-like planet-hosting star HD 1237

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Grunhut, J.; Fares, R.; Donati, J.-F.; Alecian, E.; Kochukhov, O.; Oksala, M.; Morin, J.; Redfield, S.; Cohen, O.; Drake, J. J.; Jardine, M.; Matt, S.; Petit, P.; Walter, F. M.

    2015-10-01

    We analyse the magnetic activity characteristics of the planet-hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements that is consistent with our ZDI analysis with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on the shape of the extracted Stokes V profile but does result in a small increase in the S/N (~7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also affects the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI map solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (~45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution affeccts the coronal magnetic field and extended environment around this planet-hosting star.

  12. A HIGH-ECCENTRICITY COMPONENT IN THE DOUBLE-PLANET SYSTEM AROUND HD 163607 AND A PLANET AROUND HD 164509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giguere, Matthew J.; Fischer, Debra A.; Spronck, Julien

    2012-01-01

    We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 {+-} 0.02 days, a semi-amplitude of 51.1 {+-} 1.4 m s{sup -1}, an eccentricity of 0.73 {+-} 0.02, and a derived minimum mass of M{sub P} sin i = 0.77 {+-} 0.02 M{sub Jup}. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 {+-} 2.{sup 0}0; consequently, the planet's closest approach to its parent star is very nearmore » the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 {+-} 0.02 years, an orbital eccentricity of 0.12 {+-} 0.06, and a semi-amplitude of 40.4 {+-} 1.3 m s{sup -1}. The minimum mass is M{sub P} sin i = 2.29 {+-} 0.16 M{sub Jup}. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 {+-} 3.8 days and an eccentricity of 0.26 {+-} 0.14. The semi-amplitude of 14.2 {+-} 2.7 m s{sup -1} implies a minimum mass of 0.48 {+-} 0.09 M{sub Jup}. The radial velocities (RVs) of HD 164509 also exhibit a residual linear trend of -5.1 {+-} 0.7 m s{sup -1} year{sup -1}, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to submillimagnitude levels on their RV periods. This provides strong support for planetary reflex motion as the cause of the RV variations.« less

  13. The tip of the iceberg: the frequency content of the δ Sct star HD 50844 from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Mantegazza, L.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Baglin, A.; Auvergne, M.; Catala, C.; Samadi, R.; Rodríguez, E.; Garrido, R.; Amado, P.; Martín-Ruiz, S.; Moya, A.; Suárez, J. C.; Baudin, F.; Zima, W.; Alvarez, M.; Mathias, P.; Paparó, M.; Pápics, P.; Plachy, E.

    2009-09-01

    It has been suggested that the detection of a wealth of very low amplitude modes in δ Sct stars was only a matter of signal-to-noise ratio. Access to this treasure, impossible from the ground, is one of the scientific aims of the space mission CoRoT, developed and operated by CNES. This work presents the results obtained on HD 50844: the 140,016 datapoints allowed us to reach the level of 10-5 mag in the amplitude spectra. The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to = 14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. The predominant term (f1 = 6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data.

  14. Two Small Transiting Planets and a Possible Third Body Orbiting HD 106315

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian J. M.; Ciardi, David R.; Isaacson, Howard; Howard, Andrew W.; Petigura, Erik A.; Weiss, Lauren M.; Fulton, Benjamin J.; Sinukoff, Evan; Schlieder, Joshua E.; Mawet, Dimitri; Ruane, Garreth; de Pater, Imke; de Kleer, Katherine; Davies, Ashley G.; Christiansen, Jessie L.; Dressing, Courtney D.; Hirsch, Lea; Benneke, Björn; Crepp, Justin R.; Kosiarek, Molly; Livingston, John; Gonzales, Erica; Beichman, Charles A.; Knutson, Heather A.

    2017-06-01

    The masses, atmospheric makeups, spin-orbit alignments, and system architectures of extrasolar planets can be best studied when the planets orbit bright stars. We report the discovery of three bodies orbiting HD 106315, a bright (V = 8.97 mag) F5 dwarf targeted by our K2 survey for transiting exoplanets. Two small transiting planets are found to have radii {2.23}-0.25+0.30 {R}\\oplus and {3.95}-0.39+0.42 {R}\\oplus and orbital periods 9.55 days and 21.06 days, respectively. A radial velocity (RV) trend of 0.3 ± 0.1 m s-1 day-1 indicates the likely presence of a third body orbiting HD 106315 with period ≳160 days and mass ≳45 M ⊕. Transits of this object would have depths ≳0.1% and are definitively ruled out. Although the star has v sin I = 13.2 km s-1, it exhibits a short-timescale RV variability of just 6.4 m s-1. Thus, it is a good target for RV measurements of the mass and density of the inner two planets and the outer object’s orbit and mass. Furthermore, the combination of RV noise and moderate v sin I makes HD 106315 a valuable laboratory for studying the spin-orbit alignment of small planets through the Rossiter-McLaughlin effect. Space-based atmospheric characterization of the two transiting planets via transit and eclipse spectroscopy should also be feasible. This discovery demonstrates again the power of K2 to find compelling exoplanets worthy of future study.

  15. UV and radiofrequency observations of Wolf-Rayet stars.

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1973-01-01

    Available spectrometric and photometric observations of Wolf-Rayet stars by the OAO 2 spacecraft in the UV range are discussed along with radio astronomical observations of W stars with symmetrical nebulae around them. The scanned spectrum of the WN5 star HD 50896 between 1200 and 1900 A is illustrated together with the photometered spectrum of the WN6 star HD 192163 from 1330 to 3320 A. RF observations of NGC 6888 around HD 192163 are examined relative to interpretation of the properties of a WN6 star ejecting mass into a nebular shell.

  16. New ALMA Images of the HD 32297 and HD 61005 Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith Ann; Weinberger, Alycia; Wilner, David; Hughes, A. Meredith; debes, John Henry; Redfield, Seth; Donaldson, Jessica; Nesvold, Erika; Schneider, Glenn; Currie, Thayne; Roberge, Aki; Rodriguez, David

    2018-01-01

    HD 61005 (G-type star, “The Moth") and HD 32297 (A-type star) host two of the most iconic debris disks. Scattered light images show that both disks are nearly edge-on with dramatic swept-back wings of dust. Previous studies have proposed a range of mechanisms to explain this distinctive morphology including interactions with the interstellar medium, secular perturbations of grains by low-density, neutral interstellar gas, and gravitational interactions with an inclined, eccentric companion. We present new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that provide the highest resolution images at millimeter wavelengths to date of both systems. Observations at millimeter wavelengths are especially critical to our understanding of the physical mechanisms shaping the structure of these disks, since the large grains that dominate emission at these wavelengths are less affected by stellar radiation and winds and more reliably trace the underlying planetesimal distribution. We fit models directly to the observed visibilities within a Markov Chain Monte Carlo (MCMC) framework to characterize the continuum emission and place constraints on the structure of these unique debris disks. Our new ALMA images reveal that despite differences in spectral type, both systems are best described by a two-component structure with (1) a parent body belt, and (2) an outer halo aligned with the scattered light disk. Such halos have typically been assumed to be composed of small grains visible in scattered light, so these images are some of the first observational evidence that larger grains may also populate extended halos. In addition, we detect significant 12CO gas emission from HD 32297, and determine a robust upper limit for HD 61005.

  17. The sn stars - Magnetically controlled stellar winds among the helium-weak stars

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.; Sonneborn, George

    1987-01-01

    The paper reports observations of magnetically controlled stellar mass outflows in three helium-weak sn stars: HD 21699 = HR 1063; HD 5737 = Alpha Scl; and HD 79158 = 36 Lyn. IUE observations show that the C IV resonance doublet is variable on the rotational timescale but that there are no other strong-spectrum variations in the UV. Magnetic fields, which reverse sign on the rotational timescale, are present in all three stars. This phenomenology is interpreted in terms of jetlike mass loss above the magnetic poles, and these objects are discussed in the context of a general survey of the C IV and Si IV profiles of other more typical helium-weak stars.

  18. HD 140283: A Star in the Solar Neighborhood that Formed Shortly after the Big Bang

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Nelan, Edmund P.; VandenBerg, Don A.; Schaefer, Gail H.; Harmer, Dianne

    2013-03-01

    HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 ± 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion, revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 ± 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about ±0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 ± 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. VizieR Online Data Catalog: Multiplicity among chemically peculiar stars II (Carrier+, 2002)

    NASA Astrophysics Data System (ADS)

    Carrier, F.; North, P.; Udry, S.; Babel, J.

    2002-08-01

    We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars as for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. (4 data files).

  20. Stellar wind variations in HD 45166: The continuing story. [Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Willis, Allan J.; Stickland, David J.; Heap, Sara R.

    1988-01-01

    High resolution SWP IUE spectra of HD 45166 (qWR+B8V) obtained over a 36 hr continuous run, together with earlier observations, reveal 2 distinct modes of UV variability in this object. Gross, epoch-linked changes are seen in the strengths of the qWR emission lines, accompanied by large changes in its highly ionized photospheric absorption spectrum. Rapid (hours) variability in strong, multiple, high velocity, wind discrete absorption components (DAC), in the CIV lambda 1550 resonance lines, which superpose to give the appearance of a broad P Cygni absorption profile at many epochs is also observed. These multiple DAC's (often at least 3 are seen) propagate in velocity, from 0.6 to 1.0 v inf, on a timescale of 1 day, implying an acceleration of 180 cm/s comparable to that seen in O-type stars.

  1. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; hide

    2011-01-01

    HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the

  2. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; hide

    2012-01-01

    Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak

  3. HD 104860 and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Choquet, É.; Bryden, G.; Perrin, M. D.; Soummer, R.; Augereau, J.-C.; Chen, C. H.; Debes, J. H.; Gofas-Salas, E.; Hagan, J. B.; Hines, D. C.; Mawet, D.; Morales, F.; Pueyo, L.; Rajan, A.; Ren, B.; Schneider, G.; Stark, C. C.; Wolff, S.

    2018-02-01

    We present the first scattered-light images of two debris disks around the F8 star HD 104860 and the F0V star HD 192758, respectively ∼45 and ∼67 pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of ∼114 au inclined by ∼58°. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD 192758 reveal a disk at radius ∼95 au inclined by ∼59°, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD 92945, HD 202628, and HD 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.

  4. Physics of Cool Stars: Densities, Sizes, and Energetics

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.

    2001-01-01

    The ORFEUS 1 (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) telescope obtained far ultraviolet spectra (lambda-lambda 912-1218) of luminous cool stars as a part of our observing program. Two classes of objects were measured: luminous single stars beta Dra (HD 159181) and two hybrid stars alpha Aqr (HD 209750) and alpha TrA (HD 150798) and two active binary systems: 44i Boo and UX Ari.

  5. The massive multiple system HD 64315

    NASA Astrophysics Data System (ADS)

    Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.

    2017-10-01

    Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their

  6. Period04 FCAPT uvby Photometric Studies of Eight Magnetic CP Stars

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Dukes, Robert J.

    2014-06-01

    We present Four College Automated Photometric Telescope (FCAPT) differential Stromgren uvby photometry of 8 magnetic CP (mCP) stars: HD 5797 (V551 Cas), HD 26792 (DH Cam), HD 27309 (56 Tau, V724 Tau), HD 49713 (V740 Mon), HD 74521 (49 Cnc, BI Cnc), HD 120198 (84 UMa, CR UMa), HD 171263 (QU Ser), and HD 215441 (GL Lac, Babcock's star). Our data sets are larger than those of most mCP stars in the literature. These are the first FCAPT observations of HD 5797, HD 26792, HD 49713, and HD 171263. Those for the remaining four stars substantially extend published FCAPT data. The FCAPT observed some stars for a longer time range and with greater accuracy than other optical region automated photometric telescopes.Our goals were to determine very accurate periods, the u, v, b, and y amplitudes, and if there were any long period periods. In addition we wanted to compare our results with those of magnetic field measurements to help interpret the light curves.We used the Period04 computer program to analyze the light curves. This program provides errors for the derived quantities as it fits the light curve. Our derived periods of 68.046 +/- 0.008 days for HD 5797, 3.80205 +/- 0.00006 days for HD 26792, 1.56889 +/- 0.000002 days for HD 27309, 2.13536 +/- 0.00002 days for HD 49713, 7.0505 +/- 0.0001 days for HD 74521, 1.38577 +/- 0.000004 days for HD 120198, 3.9974 +/- 0.0001days for HD 171263, and 9.487792 +/- 0.00005 days for HD 215441 are refinements of the best determinations in the literature.

  7. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less

  8. The abundance of boron in three halo stars

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Lambert, David L.; Lemke, Michael

    1992-01-01

    B abundances for three halo stars: HD 140283, HD 19445, and HD 201891 are presented. Using recent determinations of the Be abundance in HD 140283, B/Be of 10 +5/-4 is found for this star, and similar ratios are inferred for HD 19445 and HD 201891. This ratio is equal to the minimum value of 10 expected from a synthesis of B and Be by high-energy cosmic-ray spallation reactions in the interstellar medium. It is shown that the accompanying synthesis of Li by alpha on alpha fusion reactions is probably a minor contributor to the observed 'primordial' Li of halo stars. The observed constant ratios of B/O and Be/O are expected if the principal channel of synthesis involves cosmic-ray CNO nuclei from the supernovae colliding with interstellar protons.

  9. MAP determinations of the parallaxes of stars in the regions of HD 2665, BD +68.946 deg, and Lambda Ophiuchi. [Multichannel Astrometric Photometer

    NASA Technical Reports Server (NTRS)

    Gatewood, George

    1989-01-01

    The Multichannel Astrometic Photometer and new optical system of the Allegheny Observatory have been used to obtain parallaxes of stars in the regions of HD 2665, BD +68.946 deg, and Lambda Ophiuchi. HD 2665 is found to have an absolute visual magnitude of 1.6 + or - 0.4 and a distance of 149 + or - 28 pc. It is shown that the Lambda Ophiuchi system has a parallax of 23.5 + or - 2.1 mas and that its A0 V and A4 V components have masses of 2.7 + or - 0.7 and 1.5 + or - 0.4 solar masses, respectively.

  10. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  11. A Cavity of Large Grains in the Disk around the Group II Herbig Ae/Be Star HD 142666

    NASA Astrophysics Data System (ADS)

    Rubinstein, A. E.; Macías, E.; Espaillat, C. C.; Zhang, K.; Calvet, N.; Robinson, C.

    2018-06-01

    Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, and were initially thought to be flared and flat disks, respectively. Several Group I sources have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in the disks of Group II sources. We analyzed the disk around the Group II source, HD 142666, using irradiated accretion disk modeling of the broadband spectral energy distribution along with the 1.3 mm spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model reproduces the available data, predicting a high degree of dust settling in the disk, which is consistent with the Group II classification of HD 142666. In addition, the observed visibilities and synthesized image could only be reproduced when including a depletion of large grains out to ∼ 16 au in our disk model, although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk. These results may suggest that some disks around Group II HAeBe stars have cavities of large grains as well. Further ALMA observations of Group II sources are needed to discern how commonly cavities occur in this class of objects, as well as to reveal their possible origins.

  12. Huntington's Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database

    PubMed Central

    2012-01-01

    Background Huntington’s disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http

  13. Optimal Target Stars in the Search for Life

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2018-04-01

    The selection of optimal targets in the search for life represents a highly important strategic issue. In this Letter, we evaluate the benefits of searching for life around a potentially habitable planet orbiting a star of arbitrary mass relative to a similar planet around a Sun-like star. If recent physical arguments implying that the habitability of planets orbiting low-mass stars is selectively suppressed are correct, we find that planets around solar-type stars may represent the optimal targets.

  14. The Blue Needle: A Highly Asymmetric Debris Disk Surrounding HD 15115

    NASA Astrophysics Data System (ADS)

    Kalas, P.; Graham, J. R.; Fitzgerald, M.

    2007-06-01

    Using the ACS coronagraph aboard the Hubble Space Telescope in the optical, and Keck adaptive optics in the near- infrared, we discovered an edge-on dust disk surrounding the F2V star HD 15115. HD 15115 is the most asymmetric debris disk imaged to date, with an eastward pointing midplane detected to ~315 AU radius, and a westward pointing midplane detected to >550 AU radius. The blue optical to near-infrared scattered light color relative to the star may indicate dust scattering properties similar to the AU Mic debris disk. The existence of a large debris disk surrounding HD 15115 is consistent with its proposed membership in the Beta Pic moving group, and the extreme asymmetry presents significant theoretical challenges. We hypothesize that the extreme asymmetries may be caused by dynamical perturbations from HIP 12545, another Beta Pic Moving Group member east of HD 15115, that shares a common proper motion vector, heliocentric distance, Galactic space velocity, and age. HD 15115 is a prime candidate for exoplanet detection via radial velocity and transit techniques.

  15. ASCA X-ray observations of pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, S. L.; Walter, F. M.; Yamauchi, S.

    1996-01-01

    The results of recent Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray observations of two pre-main sequence stars are presented: the weak emission line T Tauri star HD 142361, and the Herbig Ae star HD 104237. The solid state imaging spectrometer spectra for HD 142361 shows a clear emission line from H-like Mg 7, and spectral fits reveal a multiple temperature plasma with a hot component of at least 16 MK. The spectra of HD 104237 show a complex temperature structure with the hottest plasma at temperatures of greater than 30 MK. It is concluded that mechanisms that predict only soft X-ray emission can be dismissed for Herbig Ae stars.

  16. The hot subdwarf in the eclipsing binary HD 185510

    NASA Technical Reports Server (NTRS)

    Jeffery, C. S.; Simon, Theodore; Evans, T. L.

    1992-01-01

    High-resolution spectroscopic measurements of radial velocity are employed to characterize the eclipsing binary HD 185510 in terms of masses and evolutionary status. The IUE is used to obtain the radial velocities which indicate a large mass ratio Mp/Ms of 7.45 +/- 0.15, and Teff is given at 25,000 +/- 1000 K based on Ly alpha and UV spectrophotometry. Photometric observations are used to give an orbital inclination of between 90 and 70 deg inclusive, leading to masses of 0.31-0.37 and 2.3-2.8 solar mass for the hot star and the K star, respectively. The surface gravity of HD 185510B is shown to be higher than those values for sdB stars suggesting that the object is a low-mass white dwarf that has not reached its fully degenerate configuration. The object is theorized to be a low-mass helium main-sequence star or a nascent helium degenerate in a post-Algol system.

  17. Kepler observations of the asteroseismic binary HD 176465

    NASA Astrophysics Data System (ADS)

    White, T. R.; Benomar, O.; Silva Aguirre, V.; Ball, W. H.; Bedding, T. R.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Garcia, R. A.; Gizon, L.; Stello, D.; Aigrain, S.; Antia, H. M.; Appourchaux, T.; Bazot, M.; Campante, T. L.; Creevey, O. L.; Davies, G. R.; Elsworth, Y. P.; Gaulme, P.; Handberg, R.; Hekker, S.; Houdek, G.; Howe, R.; Huber, D.; Karoff, C.; Marques, J. P.; Mathur, S.; McQuillan, A.; Metcalfe, T. S.; Mosser, B.; Nielsen, M. B.; Régulo, C.; Salabert, D.; Stahn, T.

    2017-05-01

    Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler. We carefully analysed the system's power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementaryparameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0 ± 0.5 Gyr old. The two components of HD 176465 are young physically-similar oscillating solar analogues, the first such system to be found, and provide important constraints for stellar evolution and asteroseismology.

  18. A study of the spectrum of HD 108, an unusual Of star

    NASA Astrophysics Data System (ADS)

    Underhill, Anne B.

    1994-01-01

    Spectra of the peculiar O star HD 108 obtained at a scale of 30 A/mm in the years 1986-1991 have been studied for line displacements and line profiles. The wavelength regions covered are 4180-5050 A, 5100-5980 A, and 6180-7070 A. The spectra were recorded with a Reticon, and most have a signal-to-noise ratio per pixel in the continuum greater than 200. It is argued that the spectral type is best described as O7fpe III. The spectrum at the time of observation was similar to te description given by Plaskett (1924), but the radial velocity has changed. In 1922 and 1923 the absorption lines and the emission lines showed a displacement of -62 km/s. In the ensuing years the radial velocity shown by the absorption lines, mostly He II, N III, and O III, has changed to about -84 km/s in 1991. The emission-line velocity remained near -62 km/s until about 1991, when this radial velocity became (apparently) about -66 km/s. There is some reason to suspect that the last few spectra obtained in 1991 suffer from a small random negative shift. The meaning of the radial velocity results is discussed, and it is argued that by 1973 the photosphere may have begun to undergo an outward surge. The change of motion shown by the emission lines is less than that shown by the photospheric absorption lines. It is argued that the emission lines, both the strong sharp emission lines due to H and He I and the weaker lines due to C II, C III, N II, O II, and Si III, are formed in a polar jet which is moving almost perpendicular to the line of sight. The star HD 108 appears to be related to the luminous blues variables (LBVs) and to the B(e) stars. No forbidden emission lines, as from a nebula, were detected in the visible spectral range. Strong distinctive P Cygni type displaced absorption components for the H and He I lines are not seen. Rather, one sees a sharp emission line superposed on a photospehric absorption line. The absence of a strong P Cygni type absorption component indicates that

  19. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.

  20. ALMA detection of the rotating molecular disk wind from the young star HD 163296

    NASA Astrophysics Data System (ADS)

    Klaassen, P. D.; Juhasz, A.; Mathews, G. S.; Mottram, J. C.; De Gregorio-Monsalvo, I.; van Dishoeck, E. F.; Takahashi, S.; Akiyama, E.; Chapillon, E.; Espada, D.; Hales, A.; Hogerheijde, M. R.; Rawlings, M.; Schmalzl, M.; Testi, L.

    2013-07-01

    Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA science verification data of CO J = 2-1 and J = 3-2 emission, which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km s-1. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet that is moving at much higher velocities. We show that the J = 3-2 emission is likely heavily filtered by the interferometer, but the J = 2-1 emission suffers less due to the larger beam and sensitivity to larger scale structures. Excitation analysis suggests temperatures exceeding 900 K in these compact features, with the wind mass, momentum and energy being of order 10-5 M⊙, 10-4 M⊙ km s-1 and 1040 erg, respectively. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star.

  1. VizieR Online Data Catalog: Basic properties of Kepler and CoRoT targets (Yildiz+, 2016)

    NASA Astrophysics Data System (ADS)

    Yildiz, M.; Celik Orhan, Z.; Kayhan, C.

    2018-01-01

    The basic data of certain Kepler (79 stars) and CoRoT (seven stars) target stars, compiled from the literature, are listed in Table A1. Oscillation frequencies of three stars (Procyon A, HD 2151 and HD 146233) were obtained from ground-based observations (Bedding et al., 2010ApJ...713..935B; Bedding et al., 2007ApJ...663.1315B and Bazot et al. 2012, Cat. J/A+A/544/A106, respectively). These stars are also listed in this table, with data for the Sun for comparison. For most stars, we provide B-V and V-K colours (SIMBAD data base) from photometric observations, and surface gravity [log(g)], effective temperature (TeS) and metallicity ([Fe/H]) from spectroscopic observations. (2 data files).

  2. HD 100453: An evolutionary link between protoplanetary disks and debris disks

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2008-12-01

    Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.

  3. The peculiar behaviour of the 5780 and 5797 DIBs in HD25137

    NASA Technical Reports Server (NTRS)

    Porceddu, Ignazio; Benvenuti, P.

    1994-01-01

    The interstellar environment close to the high latitude molecular cloud Lynds 1569 (L1569, Lynds 1962), also known as MBM 18 (Magnani, Blitz and Mundy, 1985), has been analyzed by Penrase et al. (1990) and Penrase (1993). Their observations of the CH, CH(sup+), and CN molecular features, are consistent with a region having a high molecular and reduced dust content. They also observed the background star HD 24263- located 8 degrees far from the center of L1569 - reporting a CH rich line of sight and the presence of two intervening clouds from a sodium lines spectra. The infrared excess which has been revealed by the IRAS survey at 12 microns might suggest the presence of PAH's molecules, the well know candidate for the Unidentified Infrared Bands and Diffuse Interstellar Bands. This interesting scenario led to the investigation of the behavior of the diffuse interstellar bands toward HD 25137, which is supposed to be a background object for L1569 (Penrase et al., 1990); as well as the field star HD 24263. As part of a wider observational program devoted to study the HLC's special environments, the observations of the diffuse interstellar bands (DIB's) at 5780 and 5797 lambda lambda in the direction of the two above mentioned stars, HD 24263 and HD 25137 are presented here.

  4. Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression

    NASA Astrophysics Data System (ADS)

    Karami, K.; Mohebi, R.

    2007-08-01

    We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhé.

  5. VizieR Online Data Catalog: Radial velocities of HD 133131A and HD 133131B (Teske+, 2016)

    NASA Astrophysics Data System (ADS)

    Teske, J. K.; Shectman, S. A.; Vogt, S. S.; Diaz, M.; Butler, R. P.; Crane, J. D.; Thompson, I. B.; Arriagada, P.

    2017-05-01

    The radial velocity observations of HD133131A and B are part of the large Magellan Planet Search Program, which began in 2002 and is surveying a sample of ~500 of the nearest stars (<100pc). The survey was started with observations from the Magellan Inamori Kyocera Echelle (MIKE) echelle spectrograph, mounted for a limited time on the Magellan I (Baade), but mostly on Magellan II (Clay), 6.5m telescopes at Las Campanas Observatory. In 2010, the survey switched to using the Carnegie Planet Finder Spectrograph (PFS), a temperature-controlled high-resolution echelle spectrograph built for precision radial velocity observations, on Magellan II. Only HD133131A observations from MIKE are included here. Using a 0.35*5'' slit, MIKE provides spectra with R~70000 in the blue and ~50000 in the red and covers 3900-6200Å. Only the red MIKE orders are used for radial velocity determination, while the blue orders provide coverage of the CaIIH and K lines for monitoring stellar activity. The MIKE observations of HD133131A span 2003 June to 2009 July, with total exposure times ranging from 150 to 600s, depending on observing conditions. Both HD133131A and B were observed with PFS, the former observations ranging from 2010 February to 2015 September, and the latter from 2010 August to 2015 September. PFS has a more limited wavelength range than MIKE (3880-6680Å), but still covers the entire iodine wavelength region, CaIIH and K, and Hα. We use a 0.5*2.5'' slit for target observations, providing R~80000 in the iodine region. The total exposure times for the A component range from 285 to 720s, and for the B component range from 282 to 800s. (6 data files).

  6. Seismic constraints on rotation of Sun-like star and mass of exoplanet.

    PubMed

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R

    2013-08-13

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85(-0.42)(+0.52)M(Jupiter), which implies that it is a planet, not a brown dwarf.

  7. Seismic constraints on rotation of Sun-like star and mass of exoplanet

    PubMed Central

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R.

    2013-01-01

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of , which implies that it is a planet, not a brown dwarf. PMID:23898183

  8. Project VeSElkA: abundance analysis of chemical species in HD 41076 and HD 148330

    NASA Astrophysics Data System (ADS)

    Khalack, V.; Gallant, G.; Thibeault, C.

    2017-10-01

    A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD 41076 and HD 148330 obtained recently with the spectropolarimetre Echelle SpectroPolarimetric Device for Observations of Stars at the Canada-France-Hawaii Telescope. This approach allows to prepare in a semi-automatic mode the input data for the modified zeeman2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD 41076 and HD 148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code phoenix and used to carry out abundance analysis employing the modified zeeman2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD 41076. In the atmosphere of HD 148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD 41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD 148330.

  9. Chromospherically active stars. III - HD 26337 = EI Eri: An RS CVn candidate for the Doppler-imaging technique

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Quigley, Robert; Gillies, Kim; Africano, John L.

    1987-01-01

    Spectroscopic observations of the chromospherically active G5 IV single-lined binary HD 26337 = EI Eri are presented. An orbital period of 1.94722 days is found for the star. It has moderately strong Ca II H and K emission and strong ultraviolet emission features, while H-alpha is a weak absorption feature that is variable in strength. The inclination of the system is 46 + or - 12 deg, and the unseen secondary is probably a late K or early M dwarf. The v sin i of the primary is 50 + or - 3 km/s, resulting in a minimum radius of 1.9 + or - 0.1 solar radius. The star is within the required limits for Doppler imaging. The primary is close to filling its Roche lobe, resulting in a strong constraint that the mass ratio is 2.6 or greater, with a primary mass of at least 1.4 solar mass. The distance to the system is estimated at 75 pc.

  10. VizieR Online Data Catalog: WDS-DM-HD-ADS Cross Index (Roman 1987)

    NASA Astrophysics Data System (ADS)

    Roman, N. G.

    1996-11-01

    A machine-readable version of the Washington Catalog of Visual Double Stars (WDS) was prepared in 1984 (Worley 1984) on the basis of a data file that has been collected and maintained for more than a century by a succession of double-star observers. Although this catalog is now being continually updated, a new copy for distribution is not expected to be available for a few years. The WDS contains DM numbers (Argelander 1859-1862, Gill and Kapteyn 1895-1900, Thome 1892-1932), but many of these are listed only in the notes, which makes it difficult to search for double-star information, except by position. Hence, a cross index that provides complete DM identifications is desirable, and it appears useful to add HD numbers (Cannon and Pickering 1918-1924, Cannon 1925- 1936) for systems in that catalog. Aitken Double Star (ADS) numbers (Aitken 1932) have been retained from the WDS, but no attempt has been made to correct these except for obvious errors. A major effort in the preparation of this cross index has been devoted to improving the DM designations. A subset of the information in the WDS has been prepared that lists the 1900 position, the double-star observer and number, the component designation, the DM number, and the ADS number. All DM numbers given only in the notes have been entered by duplicating the entry and changing the component designation appropriately. The standard rule for multiple systems in the catalog is that the DM number refers to the first component. This rule is frequently violated, however, so that it often appears that a single component has two different DM numbers. All such cases have been checked and the component designations have been corrected appropriately. It should be noted that the introduction to the 1984 machine-readable version of the WDS is in error: unless modified by the notes, DM numbers for the -52d zone refer to the CPD. In multiple systems with more than one discoverer name, numbers are sometimes given for components

  11. The corona of HD 189733 and its X-ray activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillitteri, I.; Wolk, S. J.; Günther, H. M.

    2014-04-20

    Testing whether close-in massive exoplanets (hot Jupiters) can enhance the stellar activity in their host primary is crucial for the models of stellar and planetary evolution. Among systems with hot Jupiters, HD 189733 is one of the best studied because of its proximity, strong activity, and the presence of a transiting planet, which allows transmission spectroscopy and a measure of the planetary radius and its density. Here we report on the X-ray activity of the primary star, HD 189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals ismore » described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. With the analysis of the summed Reflection Grating Spectrometer spectra, we obtain estimates of the electron density in the range n{sub e} = (1.6-13) × 10{sup 10} cm{sup –3}, and thus the corona of HD 189733 A appears denser than the solar one. For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of φ = 0.55-0.65. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to the locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of the order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only ∼8R {sub *}. The X-ray variability of HD 189733 A is larger than the

  12. Detection of Planetary Transits of the Star HD 209458 in the Hipparcos Data Set.

    PubMed

    Castellano; Jenkins; Trilling; Doyle; Koch

    2000-03-20

    A search of the Hipparcos satellite photometry data for the star HD 209458 reveals evidence for a planetary transit signature consistent with the planetary properties reported by Henry et al. and Charbonneau et al. and allows further refinement of the planet's orbital period. The long time baseline (about 2926 days or 830 periods) from the best Hipparcos transit-like event to the latest transit reported by Henry et al. for the night of 1999 November 15 (UT) allows for an orbital period determination of 3.524736 days with an uncertainty of 0.000045 days (3.9 s). The transit events observed by Charbonneau et al. fall at the interim times expected to within the errors of this newly derived period. A series of statistical tests was performed to assess the likelihood of these events occurring by chance. This was crucial given the ill-conditioned problem presented by the sparse sampling of the light curve and the non-Gaussian distribution of the points. Monte Carlo simulations using bootstrap methods with the actual Hipparcos HD 209458 data set indicate that the transit-like signals of the depth observed would only be produced by chance in 21 out of 1 million trials. The transit durations and depths obtained from the Hipparcos data are also consistent with those determined by Charbonneau et al. and Henry et al. within the limitations of the sampling intervals and photometric precision of the Hipparcos data.

  13. Gas and dust spectra of the D' type symbiotic star HD 330036

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Contini, M.; Ciroi, S.; Rafanelli, P.

    2007-09-01

    Aims:We present a comprehensive and self-consistent modelling of the D' type symbiotic star (SS) HD 330036 from radio to UV. Methods: Within a colliding-wind scenario, we analyse the continuum, line, and dust spectra by means of SUMA, a code that simulates the physical conditions of an emitting gaseous cloud under the coupled effect of ionisation from an external radiation source and shocks. Results: We find that the UV lines are emitted from high-density gas between thestars downstream of the reverse shock, while the optical lines are emitted downstream of the shock propagating outwards from the system. As regards the continuum SED, three shells are identified in the IR, at 850 K, 320 K, and 200 K with radii r = 2.8 × 1013 cm, 4 × 1014 cm, and 1015 cm, respectively, after adopting a distance to Earth of d=2.3 kpc. Interestingly, all these shells appear to be circumbinary. Analysis of the unexploited ISO-SWS spectrum reveals that both PAHs and crystalline silicates coexist in HD 330036, with PAHs associated to the internal shell at 850 K, and crystalline silicates stored in the cool shells at 320 K and 200 K. Strong evidence that crystalline silicates are shaped in a disk-like structure is derived on the basis of the relative band strengths. Finally, we suggest that shocks can be a reliable mechanism for activating the annealing and the consequent crystallisation processes. Conclusions: We show that a consistent interpretation of gas and dust spectra emitted by SS can be obtained by models that account for the coupled effect of the photoionising flux and of shocks. The VLTI/MIDI proposal recently accepted by ESO aims to verify and better constrain some of our results by means of IR interferometric observations.

  14. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  15. HD 50844: a new look at δ Scuti stars from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.

    2009-10-01

    Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria

  16. Spectroastrometric Study of Ro-vibrational CO Emission from the Herbig Ae Star HD 179218 with ISHELL on the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Brittain, Sean D.; Carr, John S.; Najita, Joan R.

    2018-07-01

    We present analysis of commissioning M-band data acquired with the infrared echelle spectrograph (iSHELL) on NASA’s Infrared Telescope Facility. In this paper we describe the delivered performance of the instrument for these M-band observations and the data reduction process. The feasibility of using iSHELL for spectro-astrometry is tested on the Herbig Ae/Be star HD 179218 and we show that sub-milliarcsecond fidelity is achievable..

  17. HD139614: the Interferometric Case for a Group-Ib Pre-Transitional Young Disk

    NASA Technical Reports Server (NTRS)

    Labadie, Lucas; Matter, Alexis; Kreplin, Alexander; Lopez, Bruno; Wolf, Sebastian; Weigelt, Gerd; Ertel, Steve; Berger, Jean-Philippe; Pott, Jorg-Uwe; Danchi, William C.

    2014-01-01

    The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.

  18. Revising the Evolutionary Stage of HD 163899: The Effects of Convective Overshooting and Rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrowski, Jakub; Daszyńska-Daszkiewicz, Jadwiga; Cugier, Henryk, E-mail: ostrowski@astro.uni.wroc.pl

    We revise the evolutionary status of the B-type supergiant HD 163899 based on the new determinations of the mass–luminosity ratio, effective temperature, and rotational velocity, as well as on the interpretation of the oscillation spectrum of the star. The observed value of the nitrogen-to-carbon abundance fixes the value of the rotation rate of the star. Now, more massive models are strongly preferred than those previously considered, and it is very likely that the star is still in the main-sequence stage. The rotationally induced mixing manifests as the nitrogen overabundance in the atmosphere, which agrees with our analysis of the HARPSmore » spectra. Thus, HD 163899 probably belongs to a group of evolved nitrogen-rich main-sequence stars.« less

  19. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    NASA Astrophysics Data System (ADS)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  20. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799

    NASA Astrophysics Data System (ADS)

    Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.

    2016-10-01

    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31

  1. The spectral energy distribution of Zeta Puppis and HD 50896

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Cassinelli, J. P.

    1977-01-01

    The ultraviolet spectral energy distribution of the O5f star Zeta Pup and the WN5 star HD 50896 are derived from OAO-2 observations with the calibration of Bless, Code, and Fairchild (1976). An estimate of the interstellar reddening (0.12 magnitude) of the Wolf-Rayet star is determined from the size of the characteristic interstellar extinction bump at 4.6 inverse microns. After correction for extinction, both stars show a flat energy distribution in the ultraviolet. The distribution of HD 50896 from 1100 A to 2 microns is in good agreement with results of extended model atmospheres, but some uncertainty remains because of the interstellar-extinction correction. The absolute energy distribution of Zeta Pup is fitted by a 42,000-K plane-parallel model if the model's flux is adjusted for the effects of electron scattering in the stellar wind and for UV line blanketing that was determined empirically from high-resolution Copernicus satellite observations. To achieve this fit, it is necessary to push both the spectroscopically determined temperature and the ultraviolet calibration to the limits of their probable errors.

  2. The Discovery of HD 37605c and a Dispositive Null Detection of Transits of HD 37605b

    NASA Astrophysics Data System (ADS)

    Wang, Xuesong, Sharon; Wright, Jason T.; Cochran, William; Kane, Stephen R.; Henry, Gregory W.; Payne, Matthew J.; Endl, Michael; MacQueen, Phillip J.; Valenti, Jeff A.; Antoci, Victoria; Dragomir, Diana; Matthews, Jaymie M.; Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Ford, Eric B.; Mahadevan, Suvrath; von Braun, Kaspar

    2012-12-01

    We report the radial velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P ~ 55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of ~7.5 years with a low eccentricity and an Msin i of ~3.4 M Jup. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost 8 years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8 m Automatic Photoelectric Telescope (APT) and the MOST satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at the Gt10σ level, and exclude any transit with an impact parameter b > 0.951 at greater than 5σ. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We made a comparison and found consistency between our orbital fit parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the

  3. High-speed ultraviolet photometry of HD 60435

    NASA Technical Reports Server (NTRS)

    Taylor, M.; Nelson, M. J.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Percival, J. W.; Robinson, E. L.; Van Citters, G. W.

    1993-01-01

    We present the first high-speed ultraviolet photometry of an oscillating Ap star, HD 60435. After removing known orbital effects related to the Hubble Space Telescope, we confirm the presence of a strong pulsation period at a frequency of 123.70 cycles per day. In addition, we find significant amplitude modulation of this frequency that we suggest could be the result of beating of multiple periodicities. In this context, we suggest evidence for the presence of four additional frequencies at nu = 120.56, 126.55, 149.49, and 221.03 cycles per day. Three of these frequencies correspond well to frequencies detected in optical observations of HD 60435. The fourth, at 149.49 cycles per day, if real, is a potentially new pulsation mode that has not been detected in ground-based observations of this star. The amplitude of the 123 cycles per day pulsation is significantly larger in the ultraviolet than it is in the blue.

  4. IUE observations of magnetically controlled stellar winds in the helium peculiar stars

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.

    1986-01-01

    Dramatic periodic variations in the C IV resonance lines of magnetic helium-weak sn stars HD 5737 = alpha Scl, HD 21699 = HR 1063, and HD 79158 = 36 Lyn are discussed. In all three cases, the 1548,50 doublet is the only non-negligibly variable UV spectral feature. The line profiles are consistent with outflow in a jet-like structure. In HD 21699 this outflow arises from one of the magnetic polar regions. Observations of two additional He-wk sn stars do not reveal strong C IV absorption, implying that the UV characteristics of these stars are less uniform than the optical phenomenology.

  5. Precise masses for the transiting planetary system HD 106315 with HARPS

    NASA Astrophysics Data System (ADS)

    Barros, S. C. C.; Gosselin, H.; Lillo-Box, J.; Bayliss, D.; Delgado Mena, E.; Brugger, B.; Santerne, A.; Armstrong, D. J.; Adibekyan, V.; Armstrong, J. D.; Barrado, D.; Bento, J.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Cochran, W. D.; Collier Cameron, A.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Ehrenreich, D.; Espinoza, N.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Hébrard, G.; Hojjatpanah, S.; Jackman, J.; Lendl, M.; Ligi, R.; Lovis, C.; Melo, C.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pollacco, D.; Santos, N. C.; Sefako, R.; Shporer, A.; Sousa, S. G.; Triaud, A. H. M. J.; Udry, S.; Vigan, A.; Wyttenbach, A.

    2017-12-01

    Context. The multi-planetary system HD 106315 was recently found in K2 data. The planets have periods of Pb 9.55 and Pc 21.06 days, and radii of rb = 2.44 ± 0.17 R⊕ and rc = 4.35 ± 0.23 R⊕ . The brightness of the host star (V = 9.0 mag) makes it an excellent target for transmission spectroscopy. However, to interpret transmission spectra it is crucial to measure the planetary masses. Aims: We obtained high precision radial velocities for HD 106315 to determine the mass of the two transiting planets discovered with Kepler K2. Our successful observation strategy was carefully tailored to mitigate the effect of stellar variability. Methods: We modelled the new radial velocity data together with the K2 transit photometry and a new ground-based partial transit of HD 106315c to derive system parameters. Results: We estimate the mass of HD 106315b to be 12.6 ± 3.2 M⊕ and the density to be 4.7 ± 1.7 g cm-3, while for HD 106315c we estimate a mass of 15.2 ± 3.7 M⊕ and a density of 1.01 ± 0.29 g cm-3. Hence, despite planet c having a radius almost twice as large as planet b, their masses are consistent with one another. Conclusions: We conclude that HD 106315c has a thick hydrogen-helium gaseous envelope. A detailed investigation of HD 106315b using a planetary interior model constrains the core mass fraction to be 5-29%, and the water mass fraction to be 10-50%. An alternative, not considered by our model, is that HD 106315b is composed of a large rocky core with a thick H-He envelope. Transmission spectroscopy of these planets will give insight into their atmospheric compositions and also help constrain their core compositions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168.

  6. A giant planet in the triple system HD 132563

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Carolo, E.; Gratton, R.; Martinez Fiorenzano, A. F.; Endl, M.; Mesa, D.; Barbieri, M.; Bonavita, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Marzari, F.; Scuderi, S.

    2011-09-01

    As part of our radial velocity planet-search survey performed with SARG at TNG, we monitored the components of HD 132563 for ten years. It is a binary system formed by two rather similar solar type stars with a projected separation of 4.1 arcsec, which corresponds to 400 AU at the distance of 96 pc. The two components are moderately metal-poor ([Fe/H] = -0.19), and the age of the system is about 5 Gyr. We detected RV variations of HD 132563B with period of 1544 days and semi-amplitude of 26 m/s. From the star characteristics and line profile measurements, we infer their Keplerian origin. Therefore HD 132563B turns out to host a planet with a projected mass msini = 1.49 MJ at 2.6 AU with a moderately eccentric orbit (e = 0.22). The planet around HD 132563B is one of the few that are known in triple stellar systems, as we found that the primary HD 132563A is itself a spectroscopic binary with a period longer than 15 years and an eccentricity higher than 0.65. The spectroscopic component was not detected in adaptive-optics images taken with the instrument AdOpt mounted at the TNG, since it expected at a projected separation that was smaller than 0.2 arcsec at the time of our observations. A small excess in K band difference between the components with respect to the difference in V band is compatible with a companion of about 0.55 M⊙. A preliminary statistical analysis of when planets occur in triple systems indicate a similar frequency of planets around the isolated component in a triple system, components of wide binaries and single stars. There is no significant iron abundance difference between the components. The lack of stars in binary systems and open clusters showing strong enhancements of iron abundance, which are comparable to the typical metallicity difference between stars with and without giant planets, agrees with the idea that accretion of planetary material producing iron abundance anomalies over 0.1 dex is rare. Based on observations made with the

  7. The Star, the Dwarf and the Planet

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form. "Such a system is an interesting example that might prove that planets and brown dwarfs can form around the same star", said Markus Mugrauer, lead author of the paper presenting the discovery. ESO PR Photo 39a/06 ESO PR Photo 39a/06 The Companion to HD 3651 HD 3651 is a star slightly less massive than the Sun, located 36 light-years away in the constellation Pisces (the "Fish"). For several years, it has been known to harbour a planet less massive than Saturn, sitting closer to its parent star than Mercury is from the Sun: the planet accomplishes a full orbit in 62 days. Mugrauer and his colleagues first spotted the faint companion in 2003 on images from the 3.8-m United Kingdom Infrared Telescope (UKIRT) in Hawaii. Observations in 2004 and 2006 using ESO's 3.6 m New Technology Telescope (NTT) at La Silla provided the crucial confirmation that the speck of light is not a spurious background star, but indeed a true companion. The newly found companion, HD 3651B, is 16 times further away from HD 3651 than Neptune is from the Sun. HD 3651B is the dimmest directly imaged companion of an exoplanet host star. Furthermore, as it is not detected on the photographic plates of the Palomar All Sky Survey, the companion must be even fainter in the visible spectral range than in the infrared, meaning it is a very cool low-mass sub-stellar object. Comparing its characteristics with theoretical models, the astronomers infer that the object has a mass between 20 and 60 Jupiter masses, and a temperature between 500 and 600 degrees Celsius. It is thus ten times colder and 300 000 less luminous than the Sun. These

  8. Advances in large, transportable, highly spin-polarized, solid HD targets operable in the frozen-spin mode in a 1-4K temperature environment

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron Paul

    The development of large, portable highly spin-polarized solid HD targets has been in progress at Syracuse University for the past 5 years. These targets are scheduled for deployment at Brookhaven National Laboratory, bearing the acronym SPHICE (Spin-Polarized Hydrogen Ice), for studies of the electro-magnetic spin structure of the nucleus via scattering of polarized gammas from the HD polarized protons and deuterons. The target work has just reached the milestone demonstration of the complete system, including polarization of triple targets containing 4 moles of solid HD, aging of these targets so that they retain their polarization for months under storage at a temperature of 1.3K and in an 8 Tesla field, and for at least a week at operational conditions of 1.3K and 0.7 Tesla in an in-beam cryostat. Cold-transfers of the polarized targets to a storage cryostat have been successfully carried out, and the storage cryostat has been trucked from Syracuse to BNL with one polarized target, sufficient to test the in-beam operations there. The complete system is presented here, with emphasis on innovations for engagement and disengagement of multiple targets, a solution to the challenge of attaining sufficiently strong RF fields in the large volume probe coils at acceptable power dissipation in the cables, and the polarization production and monitoring in the highly inhomogeneous magnetic fields owing to the multiple targets and the large dimensions of the targets. In this first multiple target production and extraction-to-storage cycle, air-ice accumulation in the dilution refrigerator due to repetitive use of cold sliding o-ring seals resulted in a rupture of one of the inserted targets, and a consequent partial thermal short from a solid HD ice bridge. The o-ring fault was cured with double evacuatable o-ring seals, and the air-ice was successfully cleaned out. However, the refrigerator operating base temperature was substantially higher than that normally obtained

  9. High-Resolution Spectroscopy of some very Active Southern Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; King, Jeremy R.; Henry, Todd J.

    1998-01-01

    We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but five remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and H.alpha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr. Two of them, HD 202917 and HD 222259, also appear to have a kinematic association with the pre-main-sequence multiple system HD 98800.

  10. The RS CVn Binary HD 155555: A Comparative Study of the Atmospheres for the Two Component Stars

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Dempsey, R. C.

    1997-01-01

    We present GHRS/HST observations of the RS CVn binary system HD 155555. Several key UV emission lines (Fe XXI, Si IV, O V, C IV) have been analyzed to provide information about the heating rate throughout the atmosphere from the chromosphere to the corona. We show that both the G and K components reveal features of a chromosphere, transition region and corona. The emission measure distribution as a function of temperature for both components is derived and compared with the RS Cvn system, HR 1099, and the Sun. The transition region and coronal lines of both stars show nonthermal broadenings of approx. 20-30 km/s. Possible physical implications for coronal heating mechanisms are discussed.

  11. Radial velocities of southern visual multiple stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out tomore » have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.« less

  12. Near-infrared imaging polarimetry of dusty young stars

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Gledhill, T. M.; Barlow, M. J.; Lowe, K. T. E.

    2006-02-01

    We have carried out JHK polarimetric observations of 11 dusty young stars, by using the polarimeter module IRPOL2 with the near-infrared camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with Hubble Space Telescope (HST) coronographic data from the literature, we derive the J- and H-band intrinsic polarization radial dependences of the disc of TW Hya. We find the polarizing efficiency of the disc is higher at H than at J, and we confirm that the J- and H-band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3arcsec from the star. We find that the objects for which we have detected extended polarizations are those for which previous modelling has suggested the presence of flared discs, which are predicted to be brighter than flat discs and thus would be easier to detect polarimetrically.

  13. Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)

    NASA Technical Reports Server (NTRS)

    Peery, Benjamin F., Jr.

    1986-01-01

    A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.

  14. Improved Co I log(gf) & hfs data and Abundance Determinations in the Photospheres of the Sun & Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Cowan, John J.

    2016-01-01

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co I) from hollow cathode lamp spectra recorded with a 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer are reported. Radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate log(gf)s for the 898 lines. Selected published hyperfine structure (hfs) constants for levels of neutral Co are used to generate complete hfs component patterns for 195 transitions of Co I. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log eps(Co) = 4.955 ± 0.007 (sigma = 0.059) based on 82 Co I lines and log eps(Co) = 2.785 ± 0.008 (sigma = 0.065) based on 66 Co I lines respectively. A Saha balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co II, and good agreement is found with the Co I result in this metal-poor ([Fe I /H] = -2.32, [Fe II /H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies. These new Co I data are part of a continuing effort to explore the limits of 1D/LTE photospheric models in metal-poor stars and to determine the relative abundance of Fe-group elements at low metallicity. This work is supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grant AST-1211055 (J.E.L.), and by NSF grant AST-1211585 (C.S.).

  15. Direct imaging of an asymmetric debris disk in the HD 106906 planetary system

    DOE PAGES

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...

    2015-11-13

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  16. The Transiting Multi-planet System HD 3167: A 5.7 M ⊕ Super-Earth and an 8.3 M ⊕ Mini-Neptune

    NASA Astrophysics Data System (ADS)

    Gandolfi, Davide; Barragán, Oscar; Hatzes, Artie P.; Fridlund, Malcolm; Fossati, Luca; Donati, Paolo; Johnson, Marshall C.; Nowak, Grzegorz; Prieto-Arranz, Jorge; Albrecht, Simon; Dai, Fei; Deeg, Hans; Endl, Michael; Grziwa, Sascha; Hjorth, Maria; Korth, Judith; Nespral, David; Saario, Joonas; Smith, Alexis M. S.; Antoniciello, Giuliano; Alarcon, Javier; Bedell, Megan; Blay, Pere; Brems, Stefan S.; Cabrera, Juan; Csizmadia, Szilard; Cusano, Felice; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; González Hernández, Jonay I.; Guenther, Eike W.; Hirano, Teruyuki; Suárez Mascareño, Alejandro; Narita, Norio; Palle, Enric; Parviainen, Hannu; Pätzold, Martin; Persson, Carina M.; Rauer, Heike; Saviane, Ivo; Schmidtobreick, Linda; Van Eylen, Vincent; Winn, Joshua N.; Zakhozhay, Olga V.

    2017-09-01

    HD 3167 is a bright (V = 8.9 mag) K0 V star observed by NASA’s K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69 ± 0.44 M ⊕, a radius of 1.574 ± 0.054 R ⊕, and a mean density of {8.00}-0.98+1.10 {{g}} {{cm}}-3, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of {8.33}-1.85+1.79 M ⊕ and a radius of {2.740}-0.100+0.106 R ⊕, yielding a mean density of {2.21}-0.53+0.56 {{g}} {{cm}}-3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (˜350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.

  17. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  18. Three Temperate Neptunes Orbiting Nearby Stars

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.

  19. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  20. The CoRoT target HD 49933: a possible seismic signature of heavy elements ionization in the deep convective zone

    NASA Astrophysics Data System (ADS)

    Brito, Ana; Lopes, Ilídio

    2017-04-01

    We use a seismic diagnostic, based on the derivative of the phase shift of the acoustic waves reflected by the surface, to probe the outer layers of the star HD 49933. This diagnostic is particularly sensitive to partial ionization processes occurring above the base of the convective zone. The regions of partial ionization of light elements, hydrogen and helium, have well-known seismological signatures. In this work, we detect a different seismic signature in the acoustic frequencies, which we showed to correspond to the location where the partial ionization of heavy elements occurs. The location of the corresponding acoustic glitch lies between the region of the second ionization of helium and the base of the convective zone, approximately 5 per cent below the surface of the stars.

  1. Observations of V420 Aur (HD 34921) needed to support spectroscopy

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-10-01

    Marcella Wijngaarden and Kelly Gourdji (graduate students at the University of Amsterdam/Anton Pannekoek Institute for Astronomy) have requested AAVSO observers' assistance in providing optical photometry of V420 Aur in support of their high-resolution spectroscopy with the Mercator telescope + Hermes spectrograph in La Palma 2016 October 7 through 17. They write: "[V420 Aur (HD 34921) is] the optical Be star that is part of a peculiar High Mass X-ray Binary...[that exhibits highly] complex and variable spectra...it is difficult to construct a physical model of this HMXB system, though based on these observations, the system is thought to contain a B[e] star with a dense plasma region, an accretion disk around a neutron star, a shell and circumstellar regions of cold dust. It has been over a decade since the last spectra were taken, and, given the highly variable nature of this star, we expect new observations to yield new information that will contribute to a better understanding of this system." Observations in BVRI (preferred over other bands) are requested beginning immediately and continuing through October 24. In all cases, timeseries in a few bands (i.e. BVRI) are preferred over single/a few observations in the other bands as it is the variability on relatively short timescales that is most important. "The target is bright so exposures should be long enough to reach good signal to noise in order to see the small variability amplitude but without saturating the target/comparison stars. We will study the variability on several timescales, so observations starting from a few per night to high cadence timeseries are useful." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  2. IUE observations of new A star candidate proto-planetary systems

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  3. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter.

    PubMed

    Ye, Tao; Zhou, Fuqiang

    2015-04-10

    When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.

  4. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Louis, N., E-mail: stlouis@astro.umontreal.ca

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenariomore » in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.« less

  5. Project VeSElkA: a search for the vertical stratification of element abundances in HD 157087

    NASA Astrophysics Data System (ADS)

    Khalack, V.

    2018-06-01

    The new spectropolarimetric spectra of HD 157087 obtained recently with ESPaDOnS (Echelle SpectroPolarimetric Device for Observations of Stars) at the Canada-France-Hawaii Telescope are analysed to verify the nature of this object. The fundamental stellar parameters Teff = 8882 K, log g = 3.57 were obtained for HD 157087 from the analysis of nine Balmer line profiles in two available spectra. A comparison of the results of our abundance analysis with previously published data shows a variability of the average abundance with time for some chemical species, while the abundances of other elements remain almost constant. The abundance analysis also reveals evidence of a significant abundance increase towards the deeper atmospheric layers for C, S, Ca, Sc, V, Cr, Mn, Co, Ni and Zr. Together with the discovered enhanced abundance of Ca and Sc, this finding contradicts the classification of HD 157087 as a marginal Am star. An analysis of the available measurements of radial velocity revealed long- and short-period variations. The long-period variation supports the idea that HD 157087 is an astrometric binary system with a period longer than 6 yr. The presence of the short-period variation of Vr, as well as the detection of the temporal variation of the average abundance, suggests that HD 157087 may be a triple system, in which a short-period binary rotates around a third star. In this case, the short-period binary may consist of slowly rotating Am and A (or Ap with a weak magnetic field) stars that have similar effective temperatures and surface gravities, but different abundance peculiarities.

  6. Analysis of spectra of V471 Tau and HD 115404

    NASA Astrophysics Data System (ADS)

    Shimansky, V. V.; Bikmaev, I. F.; Shimanskaya, N. N.

    2011-10-01

    We analyze the chemical composition of the atmospheres of a single K-type star HD 115404 and the secondary component of the V471 Tau variable. We use the technique of modeling of synthetic spectra to analyze the high-resolution spectra of these stars, taken with the RTT 150 Russian-Turkish telescope and find the abundances of 23 and 17 elements in the atmospheres of HD 115404 and V471 Tau, respectively. We demonstrate the lack of composition anomalies in the HD 115404 and show it to be consistent with the published data, inferred from equivalent widths of spectral lines. We find the abundances of 15 elements from Na to Ba to be consistent with the metallicity of the atmosphere of V471 Tau ([Fe/H] = -0.22 ± 0.12dex), which differs significantly from the average metallicity of the Hyades cluster. We show the existence of strong carbon and oxygen overabundances (by more than 1dex) due to the enrichment of the secondary by the nucleosynthesis products during the common-envelope stage of the system. On the whole, we demonstrate that V471 Tau and the other precataclysmic variables share similar composition anomalies.

  7. Rotationally excited HD toward Zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Morton, D. C.

    1979-01-01

    Copernicus satellite measurements of HD in J-double prime = 1 and J-double prime = 0 toward Zeta Oph are reported. The ratio of the number densities of HD in the J = 0 and J = 1 states is determined to be 0.15 + or - 0.02 at the 1-sigma level. A value of approximately 24 x 10 to the -17th erg/cu cm per A at 1000 A is obtained for the UV energy density at the Zeta Oph cloud, and the mechanisms for excitation of HD are examined. A tight upper limit is derived for the abundance of HCl, which has been predicted to be present due to the interaction of ionized chlorine with neutral hydrogen. A calculation is performed which indicates that the cloud is 28 pc from the star. It is shown that the two-component cloud model of Black and Dalgarno (1977) with densities of 500 and 2500 H nuclei per cu cm for the outer regions and core, respectively, is in excellent agreement with the observations.

  8. The Transiting Exocomets in the HD 172555 System

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Brown, A.; Kamp, I.; Roberge, A.; Riviere-Marichalar, P.; Welsh, B.

    2017-01-01

    The Earth is thought to have formed dry, in a part of the Solar Nebula deficient in organic material, and to have acquired its organics and water through bombardment by minor bodies. Observations of this process in well-dated systems can provide insight into the probable origin and composition of the bombarding parent bodies. Transiting cometary activity has previously been reported in Ca II for the late-A member of the 241 Myr old Pictoris Moving Group member, HD 172555(Kiefer et al. 2014). We present HST STIS and COS spectra of HD 172555 demonstrating that the star has chromospheric emission and variable in falling gas features in transitions of silicon and carbon ions at times when no Fe II absorption is seen in the UV data, and no Ca II absorption is seen in contemporary optical spectra. The lack of CO absorption and stable gas absorption at the system velocity is consistent with the absence of a cold Kuiper belt analog (Riviere-Marichalar et al. 2012) in this system. The presence of infall in some species at one epoch and others at different epochs suggests that, like Pictoris, there may be more than one family of exocomets. If perturbed into star-grazing orbits by the same mechanism as for Pic, these data suggest that the wide planet frequency among A-early F stars in the PMG is at least 37.5, well above the frequency estimated for young moving groups independent of host star spectral type.

  9. A modern study of HD 166734: a massive supergiant system

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Damerdji, Y.; Gosset, E.; Nitschelm, C.; Eenens, P.; Sana, H.; Klotz, A.

    2017-11-01

    Aims: HD 166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods: An intensive monitoring was dedicated to HD 166734. We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results: HD 166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0° ± 2.7°. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 M⊙ for the primary and 33.5 M⊙ for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars. Based on observations collected at the European Southern Observatory (La Silla, Chile) with FEROS and TAROT and on data collected at the San Pedro

  10. STAR Au + Au Fixed Target Results

    NASA Astrophysics Data System (ADS)

    Meehan, Kathryn; STAR Collaboration

    2015-10-01

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. The results from the NA49 experiment at CERN have been used to claim that the onset of deconfinement occurs at a collision energy around a center-of-mass energy of 7 GeV, the low end of the BES range. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II with the same detector to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb analysis of Au + Au fixed-target collisions, which are found to be consistent with previous experiments, will be presented. These results demonstrate that STAR has good particle identification capabilities in this novel detector setup. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared with published results from the AGS. This material is based upon work supported by the National Science Foundation under Grant No. 1068833.

  11. IMPROVED V I log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J. E.; Wood, M. P.; Den Hartog, E. A.

    2015-01-01

    New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poormore » star HD 84937, yielding log ε(V) = 3.956 ± 0.004 (σ = 0.037) based on 93 V I lines and log ε(V) = 1.89 ± 0.03 (σ = 0.07) based on nine V I lines, respectively, using the Holweger-Müller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.« less

  12. EVIDENCE FOR GRANULATION IN EARLY A-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinger, Thomas; Matthews, Jaymie M.

    2010-03-01

    Stars with spectral types earlier than about F0 on (or close) to the main sequence have long been believed to lack observable surface convection, although evolutionary models of A-type stars do predict very thin surface convective zones. We present evidence for granulation in two {delta} Scuti stars of spectral type A2: HD 174936 and HD 50844. Recent analyses of space-based CoRoT data revealed up to some 1000 frequencies in the photometry of these stars. The frequencies were interpreted as individual pulsation modes. If true, there must be large numbers of nonradial modes of very high degree l which should suffermore » cancellation effects in disk-integrated photometry (even of high space-based precision). The p-mode interpretation of all the frequencies in HD 174936 and HD 50844 depends on the assumption of white (frequency-independent) noise. Our independent analyses of the data provide an alternative explanation: most of the peaks in the Fourier spectra are the signature of non-white granulation background noise, and less than about 100 of the frequencies are actual stellar p-modes in each star. We find granulation timescales which are consistent with scaling relations that describe cooler stars with known surface convection. If the granulation interpretation is correct, the hundreds of low-amplitude Fourier peaks reported in recent studies are falsely interpreted as independent pulsation modes and a significantly lower number of frequencies are associated with pulsation, consistent with only modes of low degree.« less

  13. The discovery of nonthermal radio emission from magnetic Bp-Ap stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.

    1987-01-01

    In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.

  14. Brown dwarf science at Project 1640: the case of HD 19467 B

    NASA Astrophysics Data System (ADS)

    Aguilar, Jonathan; Crepp, Justin R.; Rice, Emily L.; Pueyo, Laurent; Veicht, Aaron; Nilsson, Ricky; Oppenheimer, Rebecca; Hinkley, Sasha; Brenner, Douglas; Vasisht, Gautam; Cady, Eric; Beichman, Charles A.; Hillenbrand, Lynne; Lockhart, Thomas; Matthews, Christopher T.; Roberts, Lewis C.; Sivaramakrishnan, Anand; Soummer, Remi; Zhai, Chengxing; Giorla, Paige

    2015-01-01

    Project 1640 is an extreme-AO, coronagraphic, hyperspectral direct-imaging instrument designed to characterize substellar companions in the giant planet to brown dwarf mass regime. It also plays an important role in the TRENDS survey, which targets solar-type stars with Doppler accelerations known to be caused by brown dwarf-sized companions. A recent highlight from TRENDS is HD 19467 B -- this is currently the only directly-imaged benchmark T dwarf known to induce a measurable Doppler acceleration around its host. J- and H-band spectra taken by the Project 1640 integral field spectrograph were fitted against SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models. Spectral typing classified HD 19467 B as a T5.5±1 brown dwarf with an effective temperature of Teff = 978+20-43 K. The new spectrum helps resolve a previous disagreement about the system age, helping constrain the range of allowed masses for the companion. We expect that new data from the ongoing TRENDS survey will help improve our understanding of brown dwarf atmospheres in high mass ratio systems.

  15. X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Naze, Y.; Rauw, G.

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P{sub A} = 21 days) and B (O8 III+o9 v, P{sub B} = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT {approx_equal} 0.2, 0.7, and 2 keV, respectively,more » and a circumstellar absorption of {approx_equal}0.2 x 10{sup 22} cm{sup -2}. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of {approx_equal}7 x 10{sup -13} erg s{sup -1} cm{sup -2}, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.« less

  16. Ultraviolet analysis of the peculiar supergiant HD 112374 = HR 4912

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Proffitt, C.

    1984-01-01

    The ultraviolet energy distribution of the metal-poor supergiant HD 112374 is analyzed based on observations from the International Ultraviolet Explorer (IUE) satellite for the region between 1200 and 2000 A. A discontinuity was found in the UV spectra at 2600 A which confirmed the low-abundance of heavy elements found by Luck et al. (1983). Values for effective temperature and log g in HD112374 were consistent with the star being a very luminous Population II semi-regular variable. The full observational results are presented in a table.

  17. The Unseen Companion of HD 114762

    NASA Astrophysics Data System (ADS)

    Latham, David W.

    2014-01-01

    I have told the story of the discovery of the unseen companion of HD114762 (Latham et al. 1989, Nature, 389, 38-40) in a recent publication (Latham 2012, New Astronomy Reviews 56, 16-18). The discovery was enabled by a happy combination of some thinking outside the box by Tsevi Mazeh at Tel Aviv University and the development of new technology for measuring stellar spectra at the Harvard-Smithsonian Center for Astrophysics. Tsevi's unconventional idea was that giant exoplanets might be found much closer to their host stars than Jupiter and Saturn are to the Sun, well inside the snow line. Our instrument was a high-resolution echelle spectrograph optimized for measuring radial velocities of stars similar to the Sun. The key technological developments were an intensified Reticon photon-counting detector under computer control combined with sophisticated analysis of the digital spectra. The detector signal-processing electronics eliminated persistence, which had plagued other intensified systems. This allowed bright Th-Ar calibration exposures before and after every stellar observation, which in turn enabled careful correction for spectrograph drifts. We built three of these systems for telescopes in Massachusetts and Arizona and christened them the "CfA Digital Speedometers". The discovery of HD 114762-b was serendipitous, but not accidental.

  18. HD 172555: Detection of 63 micrometers [OI] Emission in a Debris Disc

    NASA Technical Reports Server (NTRS)

    Riviere-Marichalar, P.; Barrado, D.; Augereau, J. -C.; Thi, W. F.; Roberge, A.; Eiroa, C.; Montesinos, B.; Meeus, G.; Howard, C.; Sandell, G.; hide

    2012-01-01

    Context. HD 172555 is a young A7 star belonging to the Beta Pictoris Moving Group that harbours a debris disc. The Spitzer IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas. Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc. Methods. As part of the GASPS Open Time Key Programme, we obtained Herschel-PACS photometric and spectroscopic observations of the source. We analysed PACS observations of HD 172555 and modelled the Spectral Energy Distribution (SED) with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation. Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 micrometers in the HD 172555 circumstellar disc.We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 m). We derive a large dust particle mass of (4.8 plus-minus 0.6)x10(exp -4) Mass compared to Earth and an atomic oxygen mass of 2.5x10(exp -2)R(exp 2) Mass compared to Earth, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phase.

  19. A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry

    NASA Astrophysics Data System (ADS)

    Pilyavsky, Genady; Mahadevan, Suvrath; Kane, Stephen R.; Howard, Andrew W.; Ciardi, David R.; de Pree, Chris; Dragomir, Diana; Fischer, Debra; Henry, Gregory W.; Jensen, Eric L. N.; Laughlin, Gregory; Marlowe, Hannah; Rabus, Markus; von Braun, Kaspar; Wright, Jason T.; Wang, Xuesong X.

    2011-12-01

    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey. Using additional radial velocities from Keck High Resolution Echelle Spectrometer, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. Cerro Tololo Inter-American Observatory 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m automated photometric telescope at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a timescale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.

  20. Constraints on the structure of the core of subgiants via mixed modes: the case of HD 49385

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Michel, E.

    2011-11-01

    Context. The solar-like pulsator HD 49385 was observed with the CoRoT satellite over a period of 137 days. The analysis of its oscillation spectrum yielded precise estimates of the mode frequencies over nine radial orders and distinguished some unusual characteristics, such as some modes outside the identified ridges in the échelle diagram and that the curvature of the ℓ = 1 ridge differs significantly from that of the ℓ = 0 ridge. Aims: We search for stellar models that can reproduce the peculiar features of the oscillation spectrum of HD 49385. After showing that they can be accounted for only by a low-frequency ℓ = 1 avoided crossing, we investigate the information provided by the mixed modes about the structure of the core of HD 49385. Methods: We propose a toy-model to study the case of avoided crossings with a strong coupling between the p-mode and g-mode cavities in order to establish the presence of mixed modes in the spectrum of HD 49385. We then show that traditional optimization techniques are ill-suited to stars with mixed modes in avoided crossing. We propose a new approach to the computation of grids of models that we apply to HD 49385. Results: The detection of mixed modes leads us to establish the post-main-sequence status of HD 49385. The mixed mode frequencies suggest that there is a strong coupling between the p-mode and g-mode cavities. As a result, we show that the amount of core overshooting in HD 49385 is either very small (0 < αov < 0.05) or moderate (0.18 < αov < 0.20). The mixing length parameter is found to be significantly lower than the solar one (αCGM = 0.55 ± 0.04 compared to the solar value α⊙ = 0.64). Finally, we show that the revised solar abundances of Asplund ensure closer agreement with the observations than the classical ones of Grevesse & Noels. At each step, we investigate the origin and meaning of these seismic diagnostics in terms of the physical structure of the star. Conclusions: The subgiant HD 49385 is the

  1. No hydrogen exosphere detected around the super-Earth HD 97658 b

    NASA Astrophysics Data System (ADS)

    Bourrier, V.; Ehrenreich, D.; King, G.; Lecavelier des Etangs, A.; Wheatley, P. J.; Vidal-Madjar, A.; Pepe, F.; Udry, S.

    2017-01-01

    The exoplanet HD 97658 b provides a rare opportunity to probe the atmospheric composition and evolution of moderately irradiated super-Earths. It transits a bright K star at a moderate orbital distance of 0.08 au. Its low density is compatible with a massive steam envelope that could photodissociate at high altitudes and become observable as escaping neutral hydrogen. Our analysis of three transits with HST/STIS at Lyman-α reveals no such signature, suggesting that the thermosphere of HD 97658 b is not hydrodynamically expanding and is subjected to a low escape of neutral hydrogen (<108 g s-1 at 3σ). Using HST/STIS Lyman-α observations and Chandra/ACIS-S and XMM-Newton/EPIC X-ray observations at different epochs, we find that HD 97658 is in fact a weak and soft X-ray source with signs of chromospheric variability in the Lyman-α line core. We determine an average reference for the intrinsic Lyman-α line and X-EUV (XUV) spectrum of the star, and show that HD 97658 b is in mild conditions of irradiation compared to other known evaporating exoplanets with an XUV irradiation about three times lower than the evaporating warm Neptune GJ436 b. This could be the reason why the thermosphere of HD 97658 b is not expanding: the low XUV irradiation prevents an efficient photodissociation of any putative steam envelope. Alternatively, it could be linked to a low hydrogen content or inefficient conversion of the stellar energy input. The HD 97658 system provides clues for understanding the stability of low-mass planet atmospheres in terms of composition, planetary density, and irradiation. Our study of HD 97658 b can be seen as a control experiment of our methodology, confirming that it does not bias detections of atmospheric escape and underlining its strength and reliability. Our results show that stellar activity can be efficiently discriminated from absorption signatures by a transiting exospheric cloud. They also highlight the potential of observing the upper atmosphere

  2. Periodic spectrum variations in helium-rich stars

    NASA Technical Reports Server (NTRS)

    Walborn, N. R.

    1982-01-01

    Spectroscopic observations of four helium-rich stars are presented. In HD 37776, antiphase variations of Si III and He I have been found, which represent another point of similarity to the Ap phenomenon. The remarkable H-alpha emission variations in Sigma Ori E are illustrated with uniform phase coverage, and strict periodicity over a five-year interval is shown. A radial-velocity study of HD 64740 shows constancy to within the accuracy of the observations. Finally, Delta Ori B is confirmed as a helium-rich star.

  3. Kepler sheds new and unprecedented light on the variability of a blue supergiant: Gravity waves in the O9.5Iab star HD 188209

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Símon-Díaz, S.; Bloemen, S.; Debosscher, J.; Pápics, P. I.; Bryson, S.; Still, M.; Moravveji, E.; Williamson, M. H.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Christensen-Dalsgaard, J.; Rogers, T. M.

    2017-06-01

    Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret the photospheric and wind variability of the O9.5 Iab star HD 188209 from Kepler space photometry and long-term high-resolution spectroscopy. We used Kepler scattered-light photometry obtained by the nominal mission during 1460 d to deduce the photometric variability of this O-type supergiant. In addition, we assembled and analysed high-resolution high signal-to-noise spectroscopy taken with four spectrographs during some 1800 d to interpret the temporal spectroscopic variability of the star. The variability of this blue supergiant derived from the scattered-light space photometry is in full in agreement with the one found in the ground-based spectroscopy. We find significant low-frequency variability that is consistently detected in all spectral lines of HD 188209. The photospheric variability propagates into the wind, where it has similar frequencies but slightly higher amplitudes. The morphology of the frequency spectra derived from the long-term photometry and spectroscopy points towards a spectrum of travelling waves with frequency values in the range expected for an evolved O-type star. Convectively-driven internal gravity waves excited in the stellar interior offer the most plausible explanation of the detected variability. Based on photometric observations made with the NASA Kepler satellite and on spectroscopic observations made with four telescopes: the Nordic Optical Telescope operated by NOTSA and the Mercator Telescope operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias, the T13 2.0 m Automatic Spectroscopic

  4. Clarifying the Status of HD 100546 as Observed by the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Brittain, Sean; Grady, Carol A.; Kenyon, Scott J.; Muto, Takayuki

    2017-12-01

    HD 100546 is a young, early-type star and key laboratory for studying gas giant planet formation. GPI data taken in 2015 and reported by Currie et al. (2015) recover the previously-identified protoplanet candidate HD 100546 b and identify a second emission source at ~13--14 au: either a disk hot spot or a second protoplanetary candidate (HD 100546 "c"). In this short research note, we update the status of HD 100546 as observed by the Gemini Planet Imager by rereducing our original data using a different PSF subtraction method (KLIP instead of A-LOCI), rereducing recently public GPI Campaign Team (GPIES) data, and comparing the quality of the two data sets. Our results support the original findings in Currie et al. (2015).

  5. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    NASA Astrophysics Data System (ADS)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  6. Four new Delta Scuti stars

    NASA Technical Reports Server (NTRS)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  7. The chemically peculiar double-lined spectroscopic binary HD 90264

    NASA Astrophysics Data System (ADS)

    Quiroga, C.; Torres, A. F.; Cidale, L. S.

    2010-10-01

    Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El

  8. The wind geometry of the Wolf-Rayet star HD 191765

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. F.; Nordsieck, K. H.; Taylor, M.; Bjorkman, K. S.; Magalhaes, A. M.; Wolff, M. J.

    1992-01-01

    A time-dependent spectropolarimetric data set of HD 191765 in the wavelength range 3159-7593 A is presented. At all epochs the present observations display a large and strongly wavelength-dependent continuum polarization and reduced levels of polarization across the emission lines. The data imply a significant intrinsic continuum polarization which requires a general deviation of the electron distribution from spherical symmetry. The global shape is quite stable as a function of time; small fluctuations may arise from localized density/temperature changes. The line polarizations are consistent with an axisymmetric wind geometry and ionization stratification. A qualitative model for polarization in a Wolf-Rayet atmosphere is developed. It is argued that the blueward rise of the continuum polarization in HD 191765 can be explained if the density in the wind is high, resulting in a competition of thermal and electron-scattering continuum opacity in the vertical.

  9. Be Star Monitoring Using a Small Aperture Telescope and Fiber-fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Austin, S. J.

    2003-12-01

    Initial results are reported from a Be star monitoring project developed for undergraduate student research involvement at a small undergraduate university using a small aperture telescope and a custom-built fiber-fed spectrograph. Beginning in 2003 June, 0.8 Angstrom/pixel resolution spectra of the H-alpha line for over forty Be stars (Omi Aqr, 4 Aql, V923 Aql, V1294 Aql, Nu 2 Boo, 24 CVn, Gamma Cas, 4 CrB, Beta Cyg, 11 Cyg, 28 Cyg, 55 Cyg, 59 Cyg, 66 Cyg, V2136 Cyg, 1 Del, CX Dra, Omi Her, Sigma Her, 4 Her, 11 Her, 88 Her, 48 Lib, Chi Oph, Zeta Oph, 51 Oph, 66 Oph, Eta PsA, V4024 Sgr, 64 Ser, Delta Sco, QR Vul, 12 Vul, 20 Vul, 25 Vul, HD142184, HD165174, HD169033, HD170235, HD174179, HD181615, HD184279, HD195554, HD201733) have been obtained. H-alpha line profile velocities and evolution are shown. Funding has been provided by the UCA University Research Council and the Arkansas Space Grant Consortium.

  10. IMPROVED Cr II log(gf ) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937.

    PubMed

    Lawler, J E; Sneden, C; Nave, G; Den Hartog, E A; Emrahođlu, N; Cowan, J J

    2017-01-01

    New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr + are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈log ε (Cr II)〉 = 5.624±0.009 compared to 〈log ε (Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε (H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈log ε (Cr II)〉 = 3.417 ± 0.006 and 〈log ε (Cr I, lower level excitation potential E. P. >30 eV)〉 = 3.3743±30.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history-other iron-peak elements appear not to be associated with Cr.

  11. Searching for X-ray variability/periodicity in HD 4004.

    NASA Astrophysics Data System (ADS)

    Wessolowski, U.; Niedzielski, A.

    1996-02-01

    The authors present preliminary results of a combined X-ray and optical search for variability/periodicity in HD 4004 (WR 1, WN5-s), an apparently single Wolf-Rayet star known to show radial velocity variations (Lamontagne 1983) and some variability both in photometry (Moffat and Shara 1986) and in optical line profiles (Niedzielski 1995). The two ROSAT PSPC pointed observations of HD 4004 (total effective exposure time of 35 ks) do not provide significant evidence for variability in X-rays. Line profile variations present in newly obtained optical spectra are similar to those of EZ CMa (WR 6, WN5-s+c?), the banner WR+compact companion candidate.

  12. The (Phased?) Activity of Stars Hosting Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Pillitteri, Ignazio; Wolk, Scott J.; Lopez-Santiago, J.; Sciortino, Salvatore

    2015-01-01

    The activity of stars harboring hot Jupiters could be influenced by their close-in planets. Cases of enhanced chromospheric activity are reported in literature, suggesting magnetic interaction at well determined planetary phases. In X-rays and FUV, we have studied star-planet interaction (SPI) occurring in the system of HD 189733. In X-rays, HD 189733 shows features of high activity that can be ascribed to the influence of the magnetic field of its planetary companion. Through a wavelet analysis of a flare, we inferred a long magnetic loop of 2 R_* to 4 R_*, and a local magnetic field of strength in 40-100 G. The size of the flaring loop suggests a role of the hot Jupiter in triggering this kind of X-ray variability. In FUV, HST-COS spectra of HD 189733 shows temporal variations in intensity and Doppler shifts of Si III and Si IV lines that can be ascribed to plasma flowing from the planetary atmosphere and accreting onto the star under the action of the combined magnetic field of star and planet. The material from the planetary atmosphere can flow onto the parent star as predicted by MHD models. The foot point of the accretion on the stellar surface results in phased variability observed in X-rays and FUV, when the point, comoving with the planet, emerges at the limb of the star.

  13. Imaging an 80 au radius dust ring around the F5V star HD 157587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul

    Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less

  14. Imaging an 80 au radius dust ring around the F5V star HD 157587

    DOE PAGES

    Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul; ...

    2016-10-21

    Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less

  15. The IUE Mega Campaign: Wind Variability and Rotation in Early-Type Stars

    NASA Technical Reports Server (NTRS)

    Massa, D.; Fullerton, A. W.; Nichols, J. S.; Owocki, S. P.; Prinja, R. K.; St-Louis, N.; Willis, A. J.; Altner, B.; Bolton, C. T.; Cassinelli, J. P.; hide

    1995-01-01

    Wind variability in OB stars may be ubiquitous and a connection between projected stellar rotation velocity and wind activity is well established. However, the origin of this connection is unknown. To probe the nature of the rotation connection, several of the attendees at the workshop on Instability and Variability of Hot-Star Winds drafted an IUE observing proposal. The goal of this program was to follow three stars for several rotations to determine whether the rotation connection is correlative or causal. The stars selected for monitoring all have rotation periods less than or equal to 5 days. They were HD 50896 (WN5), HD 64760 (BO.5 Ib), and HD 66811 (zeta Pup; 04 If(n)). During 16 days of nearly continuous observations in 1995 January (dubbed the 'MEGA' campaign), 444 high-dispersion IUE spectra of these stars were obtained. This Letter presents an overview of the results of the MEGA campaign and provides an introduction to the three following Letters, which discuss the results for each star.

  16. Direct imaging of an ultracool substellar companion to the exoplanet host star HD 4113 A

    NASA Astrophysics Data System (ADS)

    Cheetham, A.; Ségransan, D.; Peretti, S.; Delisle, J.-B.; Hagelberg, J.; Beuzit, J.-L.; Forveille, T.; Marmier, M.; Udry, S.; Wildi, F.

    2018-06-01

    Using high-contrast imaging with the SPHERE instrument at the Very Large Telescope (VLT), we report the first images of a cold brown dwarf companion to the exoplanet host star HD 4113A. The brown dwarf HD 4113C is part of a complex dynamical system consisting of a giant planet, a stellar host, and a known wide M-dwarf companion. Its separation of 535 ± 3 mas and H-band contrast of 13.35 ± 0.10 mag correspond to a projected separation of 22 AU and an isochronal mass estimate of 36 ± 5 MJ based on COND models. The companion shows strong methane absorption, and through fitting an atmosphere model, we estimate a surface gravity of logg = 5 and an effective temperature of 500-600 K. A comparison of its spectrum with observed T dwarfs indicates a late-T spectral type, with a T9 object providing the best match. By combining the observed astrometry from the imaging data with 27 years of radial velocities, we use orbital fitting to constrain its orbital and physical parameters, as well as update those of the planet HD 4113A b, discovered by previous radial velocity measurements. The data suggest a dynamical mass of 66-4+5 MJ and moderate eccentricity of 0.44-0.07+0.08 for the brown dwarf. This mass estimate appears to contradict the isochronal estimate and that of objects with similar temperatures, which may be caused by the newly detected object being an unresolved binary brown dwarf system or the presence of an additional object in the system. Through dynamical simulations, we show that the planet may undergo strong Lidov-Kozai cycles, raising the possibility that it formed on a quasi-circular orbit and gained its currently observed high eccentricity (e 0.9) through interactions with the brown dwarf. Follow-up observations combining radial velocities, direct imaging, and Gaia astrometry will be crucial to precisely constrain the dynamical mass of the brown dwarf and allow for an in-depth comparison with evolutionary and atmosphere models. Based on observations

  17. IUE observations of stars in the neighborhood of the Lambda Orionis nebula

    NASA Technical Reports Server (NTRS)

    Bergoffen, Martin J.; Van Buren, Dave

    1988-01-01

    Results are presented from an IUE archive study of five stars along the line of sight towards the Lambda Ori H II region. H I, Fe II, Si II, and Mn II column densities have been found using a profile-fitting technique for H I and the curve-of-growth method for the ions. HD 36861 and HD 36822 lie at or near the center of the H II region, while HD 35468 and HD 37490 are imbedded in the dense neutral shell surrounding the H II region. HD 38899 is a foreground star. The depletion factors in the gas of this nebula are indicative of some shock processing of the material along these lines of sight. This processing probably occurred in the early stages of the nebula's evolution.

  18. An atlas of Copernicus ultraviolet spectra of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1978-01-01

    An atlas of Copernicus UV scans is presented, and line identifications are tabulated, for the Wolf-Rayet stars Gamma-2 Vel (WC 8 + O7), HD 50896 (= EZ CMa; WN 5), and HD 92740 (WN 7). The atlas covers the wavelength ranges from 946.8 to 3182 A for Gamma-2 Vel, from 1012 to 1294 A for HD 50896, and from 1051 to 1243 A for HD 92740. The wavelengths include corrections for components of satellite velocity, earth velocity, and stellar heliocentric velocity; each spectral feature is classified as interstellar, photospheric, emission, UV-displaced P Cygni line absorption, or P Cygni line emission. UV-edge velocities of the P Cygni profiles are estimated, P Cygni profile types are discussed, and the results are compared with Copernicus scans of OB stars exhibiting UV P Cygni profiles. It is noted that: (1) the line-strength ratio of molecular hydrogen to atomic species appears to be substantially greater in the scans of the WN stars than in the Gamma-2 Vel scans; (2) some of the P Cygni profiles in Gamma-2 Vel differ significantly from the corresponding profiles in OB stars; and (3) there may be a slight inverse correlation between ejection velocities and excitation potentials in Gamma-2 Vel.

  19. Synthetic filter photometry and evolutionary status of two Be stars in the association Per OB1

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.

    1987-01-01

    Stromgren and H-beta colors have been determined from spectrophotometric observations for two Be stars without published photometry in the association Per OB1: HD 12856 (B0 pe) and HD 13890 (B1 III:pe). Stellar parameters and improved spectral types are then derived from the color indices using the calibrations of Jakobsen (1986), and independently from the BCD classification method. The intrinsic properties of HD 12856 and HD 13890 are compared with those of normal B stars and are used to estimate their evolutionary status.

  20. The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager

    DOE PAGES

    Draper, Zachary H.; Duchêne, Gaspard; Millar-Blanchaer, Maxwell A.; ...

    2016-07-27

    Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30–100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 themore » most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0".5 to 0".8 from the star. Lastly, the combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.« less

  1. The Pan-Pacific Planet Search. II. Confirmation of a Two-planet System around HD 121056

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Wang, Liang; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C. G.; Carter, B. D.

    2015-02-01

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 MJup. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 MJup and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  2. Chromospherically active stars. VI - HD 136901 = UV CrB: A massive ellipsoidal K giant single-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Kirkpatrick, J. Davy; Yang, Xinxing; Strassmeier, Klaus G.

    1989-01-01

    The variable star HD 136901 = UV CrB is a chromospherically active K2 III single-lined spectroscopic binary with an orbital period of 18.665 days. It has modest-strength Ca H and K emission and UV features, while H-alpha is a strong absorption feature containing little or no emission. The inclination of the system is 53 + or - 12 deg. The v sin i of the primary is 42 + or - 2 km/s, resulting in a minimum radius of 15.5 + or - 0.8 solar. When compared with the Roche lobe radius, this results in a mass ratio of 2.90 or larger. Additional constraints indicate that the secondary has a mass between 0.85 and 1.25 solar. Thus, the mass of the primary is at least 2.5 solar and probably is in the range 2.5-4 solar.

  3. Selection, Prioritization, and Characteristics of Kepler Target Stars

    DTIC Science & Technology

    2010-04-20

    contributions from zodiacal emission as well as background stars): r = F∗ F∗ + Fbg . (5) The photometric aperture is defined as the set of pixels that... The Astrophysical Journal Letters, 713:L109–L114, 2010 April 20 doi:10.1088/2041-8205/713/2/L109 C© 2010. The American Astronomical Society. All...rights reserved. Printed in the U.S.A. SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS Natalie M. Batalha1, William J. Borucki2

  4. Stellar aspects of habitability--characterizing target stars for terrestrial planet-finding missions.

    PubMed

    Kaltenegger, Lisa; Eiroa, Carlos; Ribas, Ignasi; Paresce, Francesco; Leitzinger, Martin; Odert, Petra; Hanslmeier, Arnold; Fridlund, Malcolm; Lammer, Helmut; Beichman, Charles; Danchi, William; Henning, Thomas; Herbst, Tom; Léger, Alain; Liseau, René; Lunine, Jonathan; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability.

  5. VizieR Online Data Catalog: 2007.5 to 2010.4 HST astrometry of HD 202206 (Benedict+, 2017)

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Harrison, T. E.

    2017-08-01

    For this study astrometric measurements came from Fine Guidance Sensor 1r (FGS 1r), an upgraded FGS installed in 1997 during the second Hubble Space Telescope (HST) servicing mission. It provided superior fringes from which to obtain target and reference star positions (McArthur et al. 2003hstc.conf..373M). We utilized only the fringe tracking mode (POS mode) in this investigation. POS mode observations of a star have a typical duration of 60s, during which over 2000 individual position measures are collected. The astrometric centroid is estimated by choosing the median measure, after filtering large outliers (caused by cosmic-ray hits and particles trapped by the Earth's magnetic field). The standard deviation of the measures provides a measurement error. We refer to the aggregate of astrometric centroids of each star secured during one visibility period as an "orbit". Because one of the pillars of the scientific method involves reproducibility, we present a complete ensemble of time-tagged HD202206 and reference star astrometric measurements, Optical Field Angle Distortion (OFAD; McArthur et al. 2006hstc.conf..396M) and intra-orbit-drift-corrected, in Table2, along with calculated parallax factors in R.A. and decl. These data, collected from 2007.5 to 2010.4, in addition to providing material for confirmation of our results, might ultimately be combined with Gaia measures, significantly extending the time baseline of astrometry, thereby improving proper motion and perturbation characterization. Our band passes for reference star photometry include: BVRI photometry of the reference stars from the NMSU 1m telescope located at Apache Point Observatory and JHK (from 2MASS; see Cutri et al. 2003, Cat. II/246). Table4 lists the visible and infrared photometry for the HD202206 reference stars. To establish spectral type and luminosity class, the reference frame stars were observed on 2009 December 9 using the RCSPEC on the Blanco 4m telescope at Cerro Tololo Inter

  6. The Anglo-Australian Planet Search. XXV. A Candidate Massive Saturn Analog Orbiting HD 30177

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Horner, Jonathan; Mengel, M. W.; Butler, R. P.; Wright, D. J.; Tinney, C. G.; Carter, B. D.; Jones, H. R. A.; Anglada-Escudé, G.; Bailey, J.; O'Toole, Simon J.

    2017-04-01

    We report the discovery of a second long-period giant planet orbiting HD 30177, a star previously known to host a massive Jupiter analog (HD 30177b: a = 3.8 ± 0.1 au, m sin I = 9.7 ± 0.5 M Jup). HD 30177c can be regarded as a massive Saturn analog in this system, with a = 9.9 ± 1.0 au and m sin I = 7.6 ± 3.1 M Jup. The formal best-fit solution slightly favors a closer-in planet at a ˜ 7 au, but detailed n-body dynamical simulations show that configuration to be unstable. A shallow local minimum of longer period, lower eccentricity solutions was found to be dynamically stable, and hence we adopt the longer period in this work. The proposed ˜32 year orbit remains incomplete; further monitoring of this and other stars is necessary to reveal the population of distant gas giant planets with orbital separations a ˜ 10 au, analogous to that of Saturn.

  7. IMPROVED Cr II log(gf ) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    PubMed Central

    Lawler, J. E.; Sneden, C.; Nave, G.; Den Hartog, E. A.; Emrahođlu, N.; Cowan, J. J.

    2017-01-01

    New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr+ are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈logε (Cr II)〉 = 5.624±0.009 compared to 〈logε(Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε(H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈logε(Cr II)〉 = 3.417 ± 0.006 and 〈log ε(Cr I, lower level excitation potential E. P. >30 eV)〉 = 3.3743±30.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history—other iron-peak elements appear not to be associated with Cr. PMID:28579650

  8. IMPROVED Ti II log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. P.; Lawler, J. E.; Sneden, C.

    2013-10-01

    Atomic transition probability measurements for 364 lines of Ti II in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer (FTS) and a new echelle spectrometer are combined with published radiative lifetimes to determine these transition probabilities. The new results are in generally good agreement with previously reported FTS measurements. Use of the new echelle spectrometer, independent radiometric calibration methods, and independent data analysis routines enables a reduction of systematic errors and overall improvement in transition probability accuracy over previous measurements. The new Ti II data are applied to high-resolution visible and UVmore » spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ti abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. The Ti abundances derived using Ti II for these two stars match those derived using Ti I and support the relative Ti/Fe abundance ratio versus metallicity seen in previous studies.« less

  9. HD 63021: An Ae Star with X-Ray Flux

    NASA Astrophysics Data System (ADS)

    Whelan, David G.; Labadie-Bartz, Jon; Chojnowski, S. Drew; Daglen, James; Hudson, Ken

    2018-05-01

    Balmer and Fe II (42) multiplet emission were discovered in a spectrum of HD 63021 on 10 April (UTC), 2018. Subsequent observations revealed variability in both photospheric absorption lines and Balmer line emission. In addition, it is an X-ray source, with a luminosity that is consistent with either a very strong stellar wind, or else the presence of a compact binary companion. Spectroscopic and photometric followup are planned to determine the nature of this source.

  10. High-velocity interstellar gas in the line of sight to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, J.; Fesen, R. A.

    1986-01-01

    The large shell of interstellar gas (IG) discovered toward HD 50896 by Heckathorn and Fesen (1984) is characterized on the basis of high-dispersion IUE SWP and LWR spectra of 19 objects located within 4 deg of HD 50896 (but outside the optical ring nebula S308) at distances 0.6-2.9 kpc (compared to 1.5 kpc for HD 50896). The IG is found to have two components (at velocities -80 and -125 km/s), diameter 90 pc or greater, and distance 1.0 + or - 0.2 kpc, demonstrating that it is not related to HD 50896 and suggesting that it is a highly evolved supernova remnant associated with cluster Cr 121.

  11. Detection of Arsenic in the Atmospheres of Dying Stars

    NASA Astrophysics Data System (ADS)

    Chayer, Pierre; Dupuis, Jean; Kruk, Jeffrey W.

    2015-06-01

    We report the detection of As V resonance lines observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of three hot DA white dwarfs: G191-B2B, WD 0621-376, and WD 2211-495. The stars have effective temperatures ranging from 60,000 K to 64,000 K and are among the most metal-rich white dwarfs known. We measured the arsenic abundances not only in these stars, but also in three DO stars in which As has been detected before: HD 149499 B, HZ 21, and RE 0503-289. The arsenic abundances observed in the DA stars are very similar. This suggests that radiative levitation may be the mechanism that supports arsenic. The arsenic abundance in HZ 21 is significantly lower than that observed in HD 149499 B, even though the stars have similar atmospheric parameters. An additional mechanism may be at play in the atmospheres of these two DO stars.

  12. The proteome pattern cGvHD_MS14 allows early and accurate prediction of chronic GvHD after allogeneic stem cell transplantation.

    PubMed

    Weissinger, E M; Human, C; Metzger, J; Hambach, L; Wolf, D; Greinix, H T; Dickinson, A M; Mullen, W; Jonigk, D; Kuzmina, Z; Kreipe, H; Schweier, P; Böhm, O; Türüchanow, I; Ihlenburg-Schwarz, D; Raad, J; Durban, A; Schiemann, M; Könecke, C; Diedrich, H; Holler, E; Beutel, G; Krauter, J; Ganser, A; Stadler, M

    2017-03-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) may be curative, but is associated with significant morbidity and mortality. Chronic graft-versus-host disease (cGvHD), characterized by inflammation and fibrosis of multiple target organs, considerably contributes to the morbidity and mortality even years after allo-HSCT. Diagnosis of cGvHD is based on clinical features and histology of biopsies. Here, we report the generation of a urinary cGvHD-specific proteome-pattern (cGvHD_MS14) established by capillary electrophoresis-mass spectrometry to predict onset and severity of cGvHD as an unbiased laboratory test. cGvHD_MS14 was evaluated on samples from 412 patients collected prospectively in four transplant centers. Sensitivity and specificity was 84 and 76% by cGvHD_MS14 classification. Sensitivity further increased to 93% by combination of cGvHD_MS14 with relevant clinical variables to a logistic regression model. cGvHD was predicted up to 55 days prior to clinical diagnosis. Acute GvHD is not recognized by cGvHD_MS14. cGvHD_MS14 consists of 14 differentially excreted peptides, six of those have been sequenced to date and are fragments from thymosin β-4, eukaryotic translation initiation factor 4γ2, fibrinogen β-chain or collagens. In conclusion, the cGvHD_MS14-pattern allows early, highly sensitive and specific prediction of cGvHD as an independent diagnostic criterion of clinical diagnosis potentially allowing early therapeutic intervention.

  13. Improved log(gf) Values for Lines of Ni I and New Nickel Abundances in the Sun and the Metal-Poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Wood, M. P.; Sneden, C.; Cowan, J. J.

    2014-01-01

    New atomic transition probability measurements for 371 lines of Ni I in the UV through near IR are reported. These results are used to determine the Ni abundance of the Sun and a very metal-poor main-sequence turnoff dwarf star over a range of wavelength and E. P. values to search for non-LTE effects. For reasons only partially understood, strong lines of Ni I are unusually prone to optical depth errors in emission studies on laboratory sources. Branching fractions from data recorded using a Fourier transform spectrometer (FTS) and a 3 m echelle spectrometer are combined with published radiative lifetimes from laser induced fluorescence measurements to determine these new transition probabilities. The large echelle spectrometer provides essential UV sensitivity, spectral resolution, and especially freedom from multiplex noise that is needed to eliminate optical depth errors. There is quite good agreement with earlier, but less extensive, sets of measurements by Blackwell et al. (MNRAS 1989, 236, 235) and Wickliffe & Lawler (ApJS 1997 110, 1163). The new Ni I data are applied to high resolution visible and UV spectra of the Sun and HD 84937 to derive new, more accurate nickel abundances. In the Sun we find log(eps(Ni I)) = 6.28 (sigma = 0.06, 75 lines) and in HD 84937 we find we find log(eps(Ni I)) = 3.89 (sigma = 0.09, 77 lines), yielding [Ni/Fe] = -0.08 from log(eps(Fe)) = 7.52 in the Sun and log(eps(Fe)) = 5.19 in HD 84937. The Saha balance of Ni in HD 84937 is confirmed using 8 lines of Ni II, although these UV ion lines are somewhat saturated. This work is supported by NASA grant NNX10AN93G (JEL) and NSF grants AST-0908978 and AST-1211585 (CS).

  14. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metricmore » introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.« less

  15. The circumstellar envelope of the C-rich post-AGB star HD 56126

    NASA Astrophysics Data System (ADS)

    Hony, S.; Tielens, A. G. G. M.; Waters, L. B. F. M.; de Koter, A.

    2003-04-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 mu m object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6'' radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10-4 Msun/yr. We find that the strength of the ``21'' mu m feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the strength of the feature. Other nano-crystalline metal carbides should be considered as well. We find that hydrogenated amorphous carbon in radiative equilibrium with the local radiation field does not reach a high enough temperature to explain the strength of the 3.3-3.4 and 6-9 mu m hydrocarbon features relative to the 11-17 mu m hydrocarbon features. We propose that the carriers of these hydrocarbon features are not in radiative equilibrium but are transiently heated to high temperature. We find that 2 per cent of the dust mass is required to explain the strength of the ``30'' mu m feature, which fits well within the measured atmospheric abundance of Mg and S. This further strengthens the MgS identification of the ``30'' mu m feature. Based on observations taken at the European Southern Observatory, La Silla, Chile and observation obtained with ISO, an ESA project with instruments funded by ESA Member states (especially the PI countries: France, Germany, The Netherlands and

  16. Guide star targeting success for the HEAO-B observatory

    NASA Technical Reports Server (NTRS)

    Farrenkopf, R. L.; Hoffman, D. P.

    1977-01-01

    The statistics associated with the successful selection and acquisition of guide stars as attitude benchmarks for use in reorientation maneuvers of the HEAO-B observatory are considered as a function of the maneuver angle, initial attitude uncertainties, and the pertinent celestial region. Success likelihoods in excess of 0.99 are predicted assuming anticipated gyro and star tracker error sources. The maneuver technique and guide star selection constraints are described in detail. The results presented are specialized numerically to the HEAO-B observatory. However, the analytical techniques developed are considered applicable to broader classes of spacecraft requiring celestial targeting.

  17. Miniature star tracker for small remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Cassidy, Lawrence W.; Schlom, Leslie

    1995-01-01

    Designers of future remote sensing spacecraft, including platforms for Mission to Planet Earth and small satellites, will be driven to provide spacecraft designs that maximize data return and minimize hardware and operating costs. The attitude determination subsystems of these spacecraft must likewise provide maximum capability and versatility at an affordable price. Hughes Danbury Optical Systems (HDOS) has developed the Model HD-1003 Miniature Star Tracker which combines high accuracy, high reliability and growth margin for `all-stellar' capability in a compact, radiation tolerant design that meets these future spacecraft needs and whose cost is competitive with horizon sensors and digital fine sum sensors. Begun in 1991, our HD-1003 development program has now entered the hardware qualification phase. This paper acquaints spacecraft designers with the design and performance capabilities of the HD- 1003 tracker. We highlight the tracker's unique features which include: (1) Very small size (165 cu. in.). (2) Low weight (7 lbs). (3) Multi-star tracking (6 stars simultaneously). (4) Eighteen arc-sec (3-sigma) accuracy. (5) Growth margin for `all-stellar' attitude reference.

  18. VizieR Online Data Catalog: Chemical abundances of 8 metal-poor stars (Ishigaki+, 2014)

    NASA Astrophysics Data System (ADS)

    Ishigaki, M. N.; Aoki, W.; Arimoto, N.; Okamoto, S.

    2014-01-01

    Equivalent widths and chemical abundances of the six giant stars in Bootes I dwarf spheroidal galaxy (Boo-009, Boo-094, Boo-117, Boo-121, Boo-127, Boo-911) and the two Milky Way halo stars (HD216143, HD85773) are presented. For each spectral line, excitation potential, loggf values, measured equivalent widths and abundances are given. (2 data files).

  19. Chromospherically Active Stars. XXV. HD 144110=EV Draconis, a Double-lined Dwarf Binary

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Henry, Gregory W.; Lewis, Ceteka

    2005-08-01

    New spectroscopic and photometric observations of HD 144110 have been used to obtain an improved orbital element solution and determine some basic properties of the system. This chromospherically active, double-lined spectroscopic binary has an orbital period of 1.6714012 days and a circular orbit. We classify the components as G5 V and K0 V and suggest that they are slightly metal-rich. The photometric observations indicate that the rotation of HD 144110 is synchronous with the orbital period. Despite the short orbital period, no evidence of eclipses is seen in our photometry.

  20. Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A

    NASA Astrophysics Data System (ADS)

    Sreedhar Rao, S.; Abhyankar, K. D.

    1992-10-01

    Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.

  1. Long baseline interferometric observations of HD 195019: no K dwarf companion detected

    NASA Technical Reports Server (NTRS)

    Koresko, C.; Memmesson, B.; Boden, A. F.; Akeson, R. L.; Fisher, D. A.; Butter, R. P.; Marcy, G. W.; Vogt, S. S.

    2003-01-01

    Radial velocity measurements of the G3V/IV star HD 195019 revealed the presence of an orbiting companion with m sin(i) = 3.5 Jupiter masses and a period of 18 days. Here we present new visability measurements obtained at the Palomar Testbed Interferometer which rule out any companion in an orbit consistent with the spectroscopic data and having more than 1% of the flux of the primary star in the near-infrared K band.

  2. The Influence of Mass Loss on the Eccentricity of Double Star Orbits

    NASA Astrophysics Data System (ADS)

    Docobo, J. A.; Prieto, C.; Ling, J. F.

    In this comunication we study the behaviour of the eccentricity of double star orbits (visual and wide spectroscopic binaries) according to simplified laws of mass loss. Applications to the systems WDS 05245S0224 - HD 35411, WDS 05387S0236 - HD 37468 and WDS 06154S0902 - HD 43362 are included.

  3. Detection of accreting gas toward HD 45677: A newly recognized, Herbig Be proto-planetary system

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Bjorkman, K. S.; Shepherd, D.; Schulte-Ladbeck, R. E.; Perez, M. R.; Dewinter, D.; The, P. S.

    1993-01-01

    We report detection of high velocity, accreting gas toward the Be star with IR excess and bipolar nebula, HD 45677. High velocity (+200 to +400 km/s), variable column density gas is visible in all IUE spectra from 1979-1992 in transitions of Si II, C II, Al III, Fe III, Si IV, and C IV. Low-velocity absorption profiles from low oscillator-strength transitions of Si II, Fe II, and Zn II exhibit double-peaked absorption profiles similar to those previously reported in optical spectra of FU Orionis objects. The UV absorption data, together with previously reported analyses of the IR excess and polarization of this object, suggest that HD 45677 is a massive, Herbig Be star with an actively accreting circumstellar, proto-planetary disk.

  4. Frequency Determination for the Slowly Pulsating B Star, HD21071, From Combined Geneva and Stromgren Photometry

    NASA Astrophysics Data System (ADS)

    Sims, Melissa; Dukes, R. J., Jr.

    2006-12-01

    This project is comparison of several studies done on the variable star HD21071, which was previously determined to be Slowly Pulsating B star by Waelkens, et. al. (Astron. Astrophys. 330, 215-221, 1998) with a suggested period of .841 day (1.19 c d-1). Several later studies including Mills, L. R., et. al. (BAAS 31, 1482, 1999) and Andrews, J. E, et. al. (AAS Meeting 203, #83.14, 2003) confirmed the .841 period and tentatively suggested other possible periods based on new data, including 0.704 day (1.42 c d-1), 0.775 day (1.29 c d-1), and 1.14 day (0.878 c d-1) periods. This project merges Geneva V data and data from the y filter from the FCAPT data in the Stromgren uvby system by using a bilinear transformation from Harmanec et. al. (Astron. Astrophys. 369, 1140, 2001). Frequencies were determined using the Period04 program, which utilizes a least square fitting technique, to determine frequencies in the two data sets separately. We then analyzed the merged data set resulting in confirmation of the periods found in the individual data sets. The reality of the these frequencies was tested using multiple methods including least squares analysis and a check of the signal to noise ratio. We would like to thank Connie Aerts and Peter De Cat for providing the Geneva data as well as a copy of their preliminary analysis of this data. This work has been supported by NSF Grant AST-0071260 & AST-050755

  5. Eccentricity in planetary systems and the role of binarity. Sample definition, initial results, and the system of HD 211847

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.

    2017-06-01

    We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).

  6. Documentation for the machine-readable version of the general catalogue of 33342 stars for the epoch 1950 (Boss 1937)

    NASA Technical Reports Server (NTRS)

    Roman, N. G.; Warren, W. H., Jr.

    1983-01-01

    A revised and corrected version of the machine-readable catalog has been prepared. Cross identifications of the GC stars to the HD and DM catalogs have been replaced by data from the new SAO-HD-GC-DM Cross Index (Roman, Warren and Schofield 1983), including component identifications for multiple SAO entries having identical DM numbers in the SAO Catalog, supplemental Bonner Durchmusterung stars (lower case letter designations) and codes for multiple HD stars. Additional individual corrections have been incorporated based upon errors found during analyses of other catalogs.

  7. Interrogation of duplicitous stars with an APT

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.

    1992-01-01

    Preliminary results from intensive spectroscopic and APT monitoring of two interacting binary systems are presented. Both V644 Mon (Be + K:) and HD 37453 (F5 II + B) show complex, composite, and variable spectral. APT observations extending over three years show both stars to vary by 0.1-0.2 mag in V. The photometric variability of V644 Mon appears to be irregular, though there is some evidence for periodic behavior in the 50-60 day range. HD 37453 has an orbital period of 66.75 days; the best-fit photometric period is not quite half this value, indicating the star is an ellipsoidal variable.

  8. Contribution a l'etude des spectres composites. VI. HD 66068-9.

    NASA Astrophysics Data System (ADS)

    Carquillat, J. M.; Ginestet, N.; Duquennoy, A.; Pedoussaut, A.

    1994-09-01

    HD 66068-9 is listed by Hynek (1938) as a star having a composite spectrum. Classifications made by various authors and by us indicate that this star is, in fact, an Am one. Our radial velocity observations, carried out at the Observatoire de Haute-Provence with the spectrovelocimeter CORAVEL, show HD 66068-9 to be a double-lined spectroscopic binary with the following orbital elements: P=7.74799days; T=2447600.690JD; ω=341.1deg; e=0.418; K_1_=56.1km/s; K_2_=75.1km/s; V_0_=-21.1km/s; a_1_sini=5.43x10^6^km; a_2_sini=7.27x10^6^km; M_1_sin^3^i=0.78Msun_; M_2_sin^3^i=0.58Msun_. The system appears to be a detached one (a=~25Rsun_) without possibility of eclipses (i=~47deg); the secondary component should be an early F dwarf star. The ratio of the corelation dip areas indicates a blue magnitude difference {DELTA}m~1.6mag., and the dip area of the primary alone a metallicity [Fe/H]=~0.37dex for the Am star. Rotation-revolution synchronism is discussed: we conclude that this binary does not rotate synchronically but perhaps that pseudo-synchronization occurs near the periastron passage, according to Hut's theory. Perturbations of some radial velocities during 1983 suggest the existence of a long period third body.

  9. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets

    PubMed Central

    Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.

    2015-01-01

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3′-end processing. PMID:26138484

  10. Separated Fringe Packet Observations with the CHARA Array. II. Omega Andromeda, HD 178911, and Xi Cephei

    DTIC Science & Technology

    2014-07-31

    Printed in the U.S.A. SEPARATED FRINGE PACKET OBSERVATIONS WITH THE CHARA ARRAY. II. ω ANDROMEDA , HD 178911, AND ξ CEPHEI C. D. Farrington1, T. A...calibration star is not needed, and the SFPs can provide an accurate vector separation. In this paper, we apply the SFP approach to ω Andromeda , HD 178911...and 0.860 ± 0.051M and 39.54 ± 1.85 mas for ω Andromeda , for HD 178911 of 0.802 ± 0.055M and 0.622 ± 0.053M with 28.26 ± 1.70 mas, and masses of

  11. Direct Spectrum of the Benchmark T Dwarf HD 19467 B

    NASA Astrophysics Data System (ADS)

    Crepp, Justin R.; Rice, Emily L.; Veicht, Aaron; Aguilar, Jonathan; Pueyo, Laurent; Giorla, Paige; Nilsson, Ricky; Luszcz-Cook, Statia H.; Oppenheimer, Rebecca; Hinkley, Sasha; Brenner, Douglas; Vasisht, Gautam; Cady, Eric; Beichman, Charles A.; Hillenbrand, Lynne A.; Lockhart, Thomas; Matthews, Christopher T.; Roberts, Lewis C., Jr.; Sivaramakrishnan, Anand; Soummer, Remi; Zhai, Chengxing

    2015-01-01

    HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature T_eff=978+20-43 K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.

  12. PROJECT VeSElkA: ANALYSIS OF BALMER LINE PROFILES OF SLOWLY ROTATING CHEMICALLY PECULIAR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalack, V.; LeBlanc, F., E-mail: khalack.viktor@umoncton.ca

    2015-07-15

    We present results for the estimation of gravity, effective temperature, and radial velocity of poorly studied chemically peculiar stars recently observed with the spectropolarimeter Echelle SpectroPolarimetric Device for Observations of Stars at the Canada–France–Hawaii Telescope in the frame of the Vertical Stratification of Element Abundances project. The effective temperature and surface gravity values are determined for the very first time for four of the stars from our sample (HD 23878, HD 83373, HD 95608, and HD 164584). Grids of stellar atmosphere models with the corresponding fluxes have been calculated using version 15 of the PHOENIX code for effective temperatures inmore » the range of 5000–15,000 K, for the logarithm of surface gravities in the range of 3.0–4.5 and for the metallicities from −1.0 to +1.5. We used these fluxes to fit the Balmer line profiles employing the code FITSB2 that produces estimates of the effective temperature, gravity, and radial velocity for each star. When possible, our results are compared to those previously published. The physical characteristics of 16 program stars are discussed with the future aim to study the abundance anomalies of chemical species and the possible vertical abundance stratification in their stellar atmosphere.« less

  13. The threshold for stellar winds in hot main-sequence stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.

    1995-01-01

    The profiles of ultraviolet resonance lines of C IV were surveyed in a sample of 29 cluster and association members in the spectral type range O9-B2 III-V, together with a few field stars of interest. The temperatures and gravities of the stars were taken from the model atmosphere analysis by Grigsby, Morrison, & Anderson (1992), and the luminosities were estimated on the basis of cluster and association distances from the recent literature. A parameter P(sub w) was defined in order to describe the degree and assymetry of the C IV profile. This parameter, together with total C IV equivalent width, was found to be well correlated with stellar luminosity and temperature. A few anomalous stars were noted: tau Sco, HD 66665, HD 13621, and the ON stars HD12323 and HD 201345. The results suggest a sudden onset of observable mass loss at T(effective) = 27,500 +/- 500 K, log (L/solar luminosity) = 4.4 +/- 0.12, in agreement with the previous study by Prinja (1989). At T(effective) = 28,000 K and log g = 4, our non-LTE model atmospheres show an enhancement in the ground-state population of C(+3) in their topmost layer, which could be responsible for initiation of the winds via radiation pressure on the C(+3) ions, or for the onset of visibility of C(+3) ions in the wind because of an increase in the optical depth in the C IV lines in the outermost layers.

  14. Spectroscopy of γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.; Kilmartin, P. M.

    2014-02-01

    The musician programme at the University of Canterbury has been successfully identifying pulsation modes in many γ Doradus stars using hundreds of ground-based spectroscopic observations. This paper describes some of the successful mode identifications and emerging patterns of the programme. The hybrid γ Doradus/δ Scuti star HD 49434 remains an enigma, despite the analysis of more than 1700 multi-site high-resolution spectra. A new result for this star is apparently distinct line-profile variations for the γ Doradus and δ Scuti frequencies.

  15. Stellar parameters and H α line profile variability of Be stars in the BeSOS survey

    NASA Astrophysics Data System (ADS)

    Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.

    2018-03-01

    The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.

  16. Coronal Emission from dG Halo Stars

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Harnden, F. R.

    2005-01-01

    The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).

  17. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets.

    PubMed

    Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S

    2015-08-18

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Three-dimensional orbit and physical parameters of HD 6840

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Li; Ren, Shu-Lin; Fu, Yan-Ning

    2016-02-01

    HD 6840 is a double-lined visual binary with an orbital period of ˜7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements.

  19. The magnetically controlled stellar wind of HD 21699

    NASA Technical Reports Server (NTRS)

    Brown, D. N.; Shore, S. N.; Sonneborn, G.

    1985-01-01

    The discovery of a magnetically controlled stellar mass outflow in the helium-weak sn star HD 21699 = HR 1063 is reported. IUE observations show that the C IV resonance doublet is variable on the rotational time scale of about 2.5 days, and that there are no other observable spectrum variations in the UV. The magnetic field reverses sign on the rotational time scale. An interpretation of the observations in terms of magnetically structured jets is presented.

  20. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Singh, Garima; Uyama, Taichi; Kuzuhara, Masayuki; Akiyama, Eiji; Grady, Carol; Hayashi, Saeko; Knapp, Gillian; Kwon, Jung-mi; Oh, Daehyeon; Wisniewski, John; Sitko, Michael; Yang, Yi

    2017-02-01

    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ˜ 0.″3 to r ˜ 1″ (34-114 au). The disk is oriented in a near east-west direction (PA ˜ 75°), is inclined by I ˜ 70°-75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ˜ 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.

  1. Subaru SCExAO First-Light Direct Imaging of a Young Debris Disk around HD 36546

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, TImothy D.; Kuhn, Jonasa; Serabyn, Eugene; hide

    2017-01-01

    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r approximately 0 3 to r approximately 0".3 to r approximately 1" (34-114 au). The disk is oriented in a near east west direction (PA approximately 75deg), is inclined by I approximately 70deg-75deg, and is strongly forward-scattering(g greater than 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disks eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t approximately 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (310 Myr) and a possible connection to Taurus-Aurigas star formation history. SCExAOs planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r greater than 20 au may explain the disks visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet disk interactions.

  2. The Beta Pictoris Phenomenon in A-Shell Stars: Detection of Accreting Gas

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Perez, Mario R.; Talavera, A.; McCollum, B.; Rawley, L. A.; England, M. N.; Schlegel, M.

    1996-01-01

    We present the results of an expanded survey of A-shell stars using IUE high-dispersion spectra and find accreting, circumstellar gas in the line of sight to nine stars, in addition to the previously identified beta Pic, HR 10, and 131 Tau, which can be followed to between +70 and 100 km/s relative to the star. Two of the program stars, HD 88195 and HD 148283, show variable high-velocity gas. Given the small number of IUE spectra for our program stars, detection of high-velocity, accreting gas in 2/3 of the A-shell stars sampled indicates that accretion is an intrinsic part of the A-shell phenomenon and that beta Pic is not unique among main-sequence A stars in exhibiting such activity. Our program stars, as a group, have smaller column densities of high-velocity gas and smaller near-IR excesses compared with beta Pic. These features are consistent with greater central clearing of a remnant debris disk, compared with beta Pic, and suggest that the majority of field A-shell stars are older than beta Pic.

  3. A new phase of activity of the Herbig Be star HD 200775 in 2001: Evidence for binarity

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Miroshnichenko, A. S.; Tarasov, A. E.; Mitskevich, M. P.; Chountonov, G. A.; Klochkova, V. G.; Yushkin, M. V.; Manset, N.; Bjorkman, K. S.; Morrison, N. D.; Wisniewski, J. P.

    2004-04-01

    The results of high-resolution spectroscopy of the Herbig Be star HD 200775 obtained within the framework of a cooperative observing programme in 2000-2002 are presented. A new high-activity phase of the object's Hα line occurred in the middle of 2001 in full agreement with a 3.68-year periodicity predicted by Miroshnichenko et al. (\\cite{mirosh}). A complicated picture of the Hα line profile variability near the activity maximum phase turned out to be very similar to that observed during the previous one in 1997. Variations of the radial velocity with the activity phase are detected in He I, Si II, and S II photospheric lines. The observed phenomena are interpreted in the framework of a model in which the star, together with its gaseous envelope, is a component of an eccentric binary system. A preliminary orbital solution is derived, and the system's parameters are estimated from the radial velocity curves of the Hα emission line. We find that the orbital eccentricity is e ˜0.3, the mean companion separation is ˜1000 R⊙, and the secondary companion is most likely to be a ˜3.5 M⊙ pre-main sequence object. We emphasize the importance of coordinated spectroscopic and interferometric observations at different phases of the object's activity for further understanding the properties of the system. Partially based on observations collected at the Canada-France-Hawaii telescope (CFHT), operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique, and University of Hawaii.

  4. New radio detections of early-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  5. Improved Cr II log(gf)s and Cr Abundances in the Photospheres of the Sun and Metal-Poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Nave, Gillian; Den Hartog, Elizabeth; Emrahoglu, Nuri; Cowan, John J.

    2017-01-01

    New laser induced fluorescence (LIF) data for eight levels of singly ionized chromium (Cr) and emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) are reported. A goal of this study is to reconcile Solar and stellar Cr abundance values based on Cr I and Cr II lines. Analyses of eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high resolution echelle spectrometer yield the BF measurements. Radiative lifetimes from LIF measurements are used to convert the BFs to absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log eps in the Sun and metal-poor star HD 84937. The mean result in the Sun is = 5.624 ± 0.009 compared to = 5.644 ± 0.006 on a scale with the H abundance log eps(H) = 12. Similarily the photosphere of HD 84937 is found to be in Saha balance with = 3.417 ± 0.006 and 0 eV) > = 3.374 ± 0.011 for this dwarf star. The resonance (E.P. = 0 eV) lines of Cr I reveal overionization of the ground level of neutral Cr. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated or related nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V and Sc) appear to have a similar (or correlated) production history - other iron-peak elements appear not to be associated with Cr.This work is supported in part by NASA grant NNX16AE96G (J.E.L.), by NSF grant AST-1516182 (J.E.L. & E.D.H.), by NASA interagency agreement NNH10AN381 (G.N.), and NSF grant AST-1211585 (C.S.). Postdoctoral research support for N. E. is from the Technological and Scientific Research Council of Turkey (TUBITAK).

  6. Two New Long-period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-period Radial Velocity Signals Related to Stellar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.; Wittenmyer, Robert; Horner, Jonathan; Ciardi, David R.; Horch, Elliott; Simon, Attila E.; Howell, Steve B.; Everett, Mark; Caldwell, Caroline; Castanheira, Barbara G.

    2016-02-01

    We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 {M}{{Jup}} and an orbital semimajor axis of 5.2 AU. The giant planet ψ1 Dra Bb has a minimum mass of 1.5 {M}{{Jup}} and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, ψ1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet.

  7. VizieR Online Data Catalog: Solar-type stars from SDSS-III MARVELS. VI. HD 87646 (Ma+, 2016)

    NASA Astrophysics Data System (ADS)

    Ma, B.; Ge, J.; Wolszczan, A.; Muterspaugh, M. W.; Lee, B.; Henry, G. W.; Schneider, D. P.; Martin, E. L.; Niedzielski, A.; Xie, J.; Fleming, S. W.; Thomas, N.; Williamson, M.; Zhu, Z.; Agol, E.; Bizyaev, D.; da Costa, L. N.; Jiang, P.; Fiorenzano, A. F. M.; Hernandez, J. I. G.; Guo, P.; Grieves, N.; Li, R.; Liu, J.; Mahadevan, S.; Mazeh, T.; Nguyen, D. C.; Paegert, M.; Sithajan, S.; Stassun, K.; Thirupathi, S.; van Eyken, J. C.; Wan, X.; Wang, J.; Wisniewski, J. P.; Zhao, B.; Zucker, S.

    2016-11-01

    obtained at KPNO in 2008 January, February, and May. The integration time was 35-40 minutes in 2007 November and 20 minutes in 2008 January, February, and May. A total of 40 data points were obtained from 2007 November to 2008 May and are also listed in Table1. Follow-up observations of HD87646 were conducted with the fiber-fed High Resolution Spectrograph (HRS) of the Hobby Eberley telescope (HET). The observations were executed in queue scheduled mode and used a 2 arcsec fiber, with the HRS slit set, to yield a spectral resolution of R~60000. A total of 29 data points were obtained between 2007 December and 2008 March. The HRS spectra consisted of 46 echelle orders recorded on the blue CCD (407-592nm) and 24 orders on the red one (602-784nm). The spectral data used for RV measurements were extracted from the 17 orders (505-592nm) in which the I2 cell superimposed strong absorption lines. The radial velocities obtained are also provided in Table1. HD87646 was selected as an radial velocity survey target by the Multi-object APO RV Exoplanet Large-area Survey (MARVELS) preselection criterion. The star has been monitored at 23 epochs using the MARVELS instrument mounted on the SDSS 2.5m Telescope at APO between 2009 May and 2011 December. The MARVELS instrument is a fiber-fed dispersed fixed-delay interferometer instrument capable of observing 60 objects simultaneously and covers a wavelength range of 5000-5700Å with a resolution of R~12000. The final differential radial velocity products are included in the SDSS Data Release 12 (Alam et al. 2015ApJS..219...12A) and are presented in Table1. We have obtained additional observations of HD87646 with a fiber-fed echelle spectrograph situated at the 2m Automatic Spectroscopic Telescope (AST) in the Fairborn Observatory. Through 2011 June, the detector was a 2048*4096 SITe ST-002A CCD with 15μm pixels. The AST echelle spectrograph has 21 orders that cover the wavelength range of 4920-7100Å, and has an average resolution of 0

  8. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 au, Metal-poor Binary “Twins” HD 133131A & B

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S.; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.; Arriagada, Pamela

    2016-12-01

    We present a new precision radial velocity (RV) data set that reveals multiple planets orbiting the stars in the ˜360 au, G2+G2 “twin” binary HD 133131AB. Our six years of high-resolution echelle observations from MIKE and five years from the Planet Finder Spectrograph (PFS) on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43 ± 0.03 and 0.63 ± 0.15 {{ M }}{{J}} at 1.44 ± 0.005 and 4.79 ± 0.92 au, respectively. Additional PFS observations of HD 133131B spanning five years indicate the presence of one eccentric planet of minimum mass 2.50 ± 0.05 {{ M }}{{J}} at 6.40 ± 0.59 au, making it one of the longest-period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with the PFS on Magellan, demonstrating the instrument’s precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely ˜9.5 Gyr) and metal-poor ([Fe/H] ˜ -0.30), and we detect a ˜0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors ˜0.017). This detection and analysis adds to a small but growing sample of binary “twin” exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long-period giant planets. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. High-resolution abundance analysis of HD 140283

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Andrievsky, S. M.; Barbuy, B.; Spite, M.; Spite, F.; Korotin, S. A.

    2015-12-01

    Context. HD 140283 is a reference subgiant that is metal poor and confirmed to be a very old star. The element abundances of this type of old star can constrain the nature and nucleosynthesis processes that occurred in its (even older) progenitors. The present study may shed light on nucleosynthesis processes yielding heavy elements early in the Galaxy. Aims: A detailed analysis of a high-quality spectrum is carried out, with the intent of providing a reference on stellar lines and abundances of a very old, metal-poor subgiant. We aim to derive abundances from most available and measurable spectral lines. Methods: The analysis is carried out using high-resolution (R = 81 000) and high signal-to-noise ratio (800 Stars (ESPaDOnS) at the Canada-France-Hawaii Telescope (CFHT). The calculations in local thermodynamic equilibrium (LTE) were performed with a OSMARCS 1D atmospheric model and the spectrum synthesis code Turbospectrum, while the analysis in non-LTE (NLTE) is based on the MULTI code. We present LTE abundances for 26 elements, and NLTE calculations for the species C i, O i, Na i, Mg i, Al i, K i, Ca i, Sr ii, and Ba ii lines. Results: The abundance analysis provided an extensive line list suitable for metal-poor subgiant stars. The results for Li, CNO, α-, and iron peak elements are in good agreement with literature. The newly NLTE Ba abundance, along with a NLTE Eu correction and a 3D Ba correction from literature, leads to [Eu/Ba] = + 0.59 ± 0.18. This result confirms a dominant r-process contribution, possibly together with a very small contribution from the main s-process, to the neutron-capture elements in HD 140283. Overabundances of the lighter heavy elements and the high abundances derived for Ba, La, and Ce favour the operation of the weak r-process in HD 140283

  10. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  11. The Molecular and Dust Envelope of HD 56126

    NASA Astrophysics Data System (ADS)

    Meixner, M.; Zalucha, A.; Ueta, T.; Fong, D.; Justtanont, K.

    2004-10-01

    We present millimeter interferometry images of the CO J=1-0 line emission arising in the circumstellar envelope of HD 56126 (=IRAS 07134+1005), which is one of the best-studied 21 μm proto-planetary nebulae (PPNs). The CO emission extends from 1.2" to 7" in radius from the central star and appears consistent with a simple expanding envelope, as expected for a post-AGB star. The CO envelope is very clumpy with no apparent fast wind to explain these microstructures that must have arisen during the AGB mass loss. We quantitatively model the molecular envelope using a radiative transfer code that we have modified for detached shells. Our best-fit model reveals that two sequential winds created the circumstellar envelope of HD 56126: an AGB wind that lasted 6500 yr with a mass-loss rate of 5.1×10-6 Msolar yr-1 and a more intense superwind that lasted 840 yr with a mass-loss rate of 3×10-5 Msolar yr-1 and that ended the star's life on the AGB 1240 yr ago. The total mass of this envelope is 0.059 Msolar, which indicates a lower limit progenitor mass for the system of 0.66 Msolar, quite reasonable for this low-metallicity star that probably resides in the thick disk of the Galaxy. Comparison with images of the dust emission reveals a structure similar to that of the gas in the inner regions. Using 2-D UST, we model the dust emission of this source so that the model is consistent with the CO emission model and find a total dust mass of 7.8×10-4 Msolar, a superwind-dust mass-loss rate of 1.9×10-7 Msolar yr-1 and an AGB-dust mass-loss rate of 9.6×10-8 Msolar yr-1. We derive an average gas-to-dust mass ratio of 75, which is consistent with ISM values but low for what most consider for carbon stars. Our results indicate that TiC nanocrystals are probably not the carrier of the 21 μm feature.

  12. The DARWIN target list: observational properties of the G-type stars

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Fridlund, M.; Kaltenegger, L.

    2003-10-01

    DARWIN is aimed to search for terrestrial extrasolar planets and to detect biosignatures in the planet atmospheres, which will largely be influenced by the parent stars. This contribution presents a first approach to the knowledge of the observational properties of the DARWIN star candidates of G spectral type: variability, X-ray emission, stellar or planetary companions, photometric properties in the Johnson and Strömgren systems, metallicity, IR emission and rotational velocities. The information has been retrieved from different databases and catalogues. We find that some of the nearby Sun-like targets present activity in the form of variability or X-ray emission. Few of them show far-IR excesses suggesting dusty debris disks around the stars. Further, the metallicity and rotational velocity distributions agree well with the expectations for 'normal' Sun-like stars, with the exception of few stars. This kind of work - which will be refined and extended to other spectral types in the near future - and similar ones, in addition to the expected observational and theoretical progress in the exoplanetary field, will help to ellaborate more sophisticated criteria in order to optimize the final DARWIN target list. In addition, this activity provides useful information for the GENIE scientific goal of detecting and studying exo-zodiacal light.

  13. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. VI. HD 238914 and TYC 3318-01333-1: two more Li-rich giants with planets

    NASA Astrophysics Data System (ADS)

    Adamów, M.; Niedzielski, A.; Kowalik, K.; Villaver, E.; Wolszczan, A.; Maciejewski, G.; Gromadzki, M.

    2018-05-01

    Context. We present the latest results of our search for planets with HARPS-N at the 3.6 m Telescopio Nazionale Galileo under the Tracking Advanced Planetary Systems project: an in-depth study of the 15 most Li abundant giants from the PennState - Toruń Planet Search sample. Aims: Our goals are first, to obtain radial velocities of the most Li-rich giants we identified in our sample to search for possible low-mass substellar companions, and second, to perform an extended spectral analysis to define the evolutionary status of these stars. Methods: This work is based on high-resolution spectra obtained with the Hobby-Eberly Telescope and its High Resolution Spectrograph, and with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. Two stars, HD 181368 and HD 188214, were also observed with UVES at the VLT to determine beryllium abundances. Results: We report i) the discovery of two new planetary systems around the Li-rich giant stars: HD 238914 and TYC 3318-01333-1 (a binary system); ii) reveal a binary Li-rich giant, HD 181368; iii) although our current phase coverage is not complete, we suggest the presence of planetary mass companions around TYC 3663-01966-1 and TYC 3105-00152-1; iv) we confirm the previous result for BD+48 740 and present updated orbital parameters, and v) we find a lack of a relation between the Li enhancement and the Be abundance for the stars HD 181368 and HD 188214, for which we acquired blue spectra. Conclusions: We found seven stars with stellar or potential planetary companions among the 15 Li-rich giant stars. The binary star frequency of the Li-rich giants in our sample appears to be normal, but the planet frequency is twice that of the general sample, which suggests a possible connection between hosting a companion and enhanced Li abundance in giant stars. We also found most of the companions orbits to be highly eccentric. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the

  14. A submillimeter background galaxy projected on the debris disk of HD95086 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Zapata, Luis A.; Ho, Paul T. P.; Rodríguez, Luis F.

    2018-06-01

    We present sensitive observations carried out with the Atacama Large Millimeter/Submillimeter Array (ALMA) of the dusty debris disc HD 95086. These observations were made in bands 6 (223 GHz) and 7 (338 GHz) with an angular resolution of about 1 arcsec, which allowed us to resolve well the debris disc with a deconvolved size of 7.0 × 6.0 arcsec2 and with an inner depression of about 2 arcsec. We do not detect emission from the star itself and the possible inner dusty belt. We also do not detect CO (J = 2-1) and (J = 3-2) emission, excluding the possibility of an evolved gaseous primordial disc as noted in previous studies of HD95086. We estimated a lower limit for the gas mass of ≤0.01 M⊕ for the debris disc of HD95086. From the mm. emission, we computed a dust mass for the debris disc HD95086 of 0.5 ± 0.2 M⊕, resulting in a dust-to-gas ratio of ≥50. Finally, we confirm the detection of a strong submillimeter source to the north-west of the disc (ALMA-SMM1) revealed by recent ALMA observations. This new source might be interpreted as a planet in formation on the periphery of the debris disc HD 95086 or as a strong impact between dwarf planets. However, given the absence of the proper motions of ALMA-SMM1 similar to those reported in the debris disc (estimated from these new ALMA observations) and for the optical star, this is more likely to be a submillimeter background galaxy.

  15. Time scale variations of the physical parameters of the Si IV resonance lines in the case of the Be star HD 50138

    NASA Astrophysics Data System (ADS)

    Stathopoulos, D.

    2012-01-01

    As it is well known many lines in the spectra of hot emission stars (Be and Oe) present peculiar and very complex profiles. As a result, we cannot find a classical theoretical distribution in order to fit these profiles. Because of this, we are not able to calculate the physical parameters of the regions were these lines are created. In this paper, using the Gauss-Rotation model (GR-model Danezis et al), that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs), we study the UV Si IV (λλ 1393.755, 1402.77 A) resonance lines of the Be star HD 50138 in three different periods. From this analysis we can calculate the values of a group of physical parameters. The parameters are the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, as well as the Full Width at Half Maximum (FWHM) an the absorbed energy of the independent regions of matter which produce the main and the satellite components of the studied spectral line. Finally we calculate the time scale variations of the above physical parameters.

  16. The Prototypical Young L/T-Transition Dwarf HD 203030B Likely Has Planetary Mass

    NASA Astrophysics Data System (ADS)

    Miles-Páez, Paulo A.; Metchev, Stanimir; Luhman, Kevin L.; Marengo, Massimo; Hulsebus, Alan

    2017-12-01

    Upon its discovery in 2006, the young L7.5 companion to the solar analog HD 203030 was found to be ≈ 200 K cooler than older late-L dwarfs, which is quite unusual. HD 203030B offered the first clear indication that the effective temperature at the L-to-T spectral type transition depends on surface gravity: now a well-known characteristic of low-gravity ultra-cool dwarfs. An initial age analysis of the G8V primary star indicated that the system was 130-400 Myr old, and so the companion would be between 12 and 31 {M}{Jup}. Using moderate-resolution near-infrared spectra of HD 203030B, we now find features of very low gravity comparable to those of 10-150 Myr old L7-L8 dwarfs. We also obtained more accurate near-infrared and Spitzer/IRAC photometry, and we find a {(J-K)}{MKO} color of 2.56 ± 0.13 mag—comparable to those observed in other young planetary-mass objects—and a luminosity of log({L}{bol}/{L}⊙ ) = -4.75 ± 0.04 dex. We further re-assess the evidence for the young age of the host star, HD 203030, with a more comprehensive analysis of the photometry and updated stellar activity measurements and age calibrations. Summarizing the age diagnostics for both components of the binary, we adopt an age of 100 Myr for HD 203030B and an age range of 30-150 Myr. Using cloudy evolutionary models, the new companion age range and luminosity result in a mass of 11 {M}{Jup} with a range of 8-15 {M}{Jup}, and an effective temperature of 1040 ± 50 K.

  17. Fine detrending of raw Kepler and MOST photometric data of KIC 6950556 and HD 37633

    NASA Astrophysics Data System (ADS)

    Mikulášek, Zdeněk; Paunzen, Ernst; Zejda, Miloslav; Semenko, Evgenij; Bernhard, Klaus; Hümmerich, Stefan; Zhang, Jia; Hubrig, Swetlana; Kuschnig, Rainer; Janík, Jan; Jagelka, Miroslav

    2016-07-01

    We present a simple phenomenological method for detrending of raw Kepler and MOST photometry, which is illustrated by means of photometric data processing of two periodically variable chemically peculiar stars, KIC 6950556 and HD 37633. In principle, this method may be applied to any type of periodically variable objects and satellite or ground based photometries. As a by product, we have identified KIC 6950556 as a magnetic chemically peculiar star with an ACV type variability.

  18. Studies of Second Layer Hydrogens on Graphite: Hydrogen/hd/gr and Hd/hd/gr.

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming

    Quasi-adiabatic heat capacity and volumetric vapor pressure isotherm techniques were used to study the thermodynamic properties of monolayer H_2 adsorbed on HD plated graphite (H_2/HD/Gr) and bilayer HD on bare graphite (HD/HD/Gr). Quasielastic neutron scattering (QENS) measurements were performed at the Laboratoire Leon Brillouin (LLB) in Saclay, France, to study the mobility of the bilayer HD films. The three techniques complemented each other. Three types of graphite were used: graphite foam for the heat capacity measurements, more loose and homogeneous graphite 'worms' for the isotherm measurements, and Papyex (similar to Grafoil) with a high surface-to-volume ratio for the QENS measurements. The heat capacity study on the mixture system H_2/HD/Gr is a continuation of the previous study on H_2/D _2/Gr by F. C. Liu et al. The results show three peculiar features which have not been seen in the pure bilayer hydrogen films: a tilted triple line, a distorted liquid(L)-vapor(V) coexistence region, and weak heat capacity anomalies at 10.1K. The triple line tilts backwards, from 6.58K to 6.25K as the H2 coverage increases. The lowest triple point temperature (6.25K) is still higher than both 5.96K of H_2/H _2/Gr (Wiechert et al.) and 5.74K of H_2/D_2/Gr (F. C. Liu et al.). The behavior of the triple line can be semi-quantitatively explained by a model of interlayer mixing which is based on the consideration that interlayer mixing lowers the system's free energy. The distortion of the L-V region and appearance of weak heat capacity anomalies are also believed to be due to interlayer mixing. The heat capacity measurements on HD/HD/Gr show a phase diagram similar to those of H_2 /H_2/MgO, H_2 /H_2/Gr, and 3D van der Waals systems, with the 2D triple and critical points at T _{t} = 8.44K and T_ {c} = 11.45K. The entropy change and heat of fusion at the triple point melting in HD/HD/Gr are comparable with those of H_2/H _2/Gr and D_2/D _2/Gr, but are considerably less

  19. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. Whilemore » HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.« less

  20. Chromatic line-profile tomography to reveal exoplanetary atmospheres: application to HD 189733b

    NASA Astrophysics Data System (ADS)

    Borsa, F.; Rainer, M.; Poretti, E.

    2016-05-01

    Context. Transmission spectroscopy can be used to constrain the properties of exoplanetary atmospheres. During a transit, the light blocked from the atmosphere of the planet leaves an imprint in the light coming from the star. This has been shown for many exoplanets with both photometry and spectroscopy, using different analysis methods. Aims: We test chromatic line-profile tomography as a new tool to investigate exoplanetary atmospheres. The signal imprinted on the cross-correlation function (CCF) by a planet transiting its star is dependent on the planet-to-star radius ratio. We want to verify whether the precision reachable on the CCF obtained from a subset of the spectral orders of the HARPS spectrograph is high enough to determine the radius of a planet at different wavelengths. Methods: We analyze HARPS archival data of three transits of HD 189733b. We divide the HARPS spectral range into seven broadbands, calculating for each band the ratio between the area of the out-of-transit CCF and the area of the signal imprinted by the planet on it during the full part of the transit. We take into account the effect of the limb darkening using the theoretical coefficients of a linear law. Averaging the results of three different transits allows us to obtain a good-quality broadband transmission spectrum of HD 189733b with a greater precision than that of the chromatic Rossiter McLaughlin effect. Results: We proved that chromatic line-profile tomography is an interesting way to reveal broadband transmission spectra of exoplanets: our analysis of the atmosphere of HD 189733b is in agreement with other ground- and space-based observations. The independent analysis of different transits emphasizes the probability that stellar activity plays a role in the extracted transmission spectrum. Therefore, care should be taken when claiming that Rayleigh scattering is present in the atmosphere of exoplanets orbiting active stars using only one transit.

  1. High signal-to-noise spectral characterization of the planetary-mass object HD 106906 b

    NASA Astrophysics Data System (ADS)

    Daemgen, Sebastian; Todorov, Kamen; Quanz, Sascha P.; Meyer, Michael R.; Mordasini, Christoph; Marleau, Gabriel-Dominique; Fortney, Jonathan J.

    2017-12-01

    Context. Directly imaged planets are ideal candidates for spectroscopic characterization of their atmospheres. The angular separations that are typically close to their host stars, however, reduce the achievable contrast and thus signal-to-noise ratios (S/N). Aims: We spectroscopically characterize the atmosphere of HD 106906 b, which is a young low-mass companion near the deuterium burning limit. The wide separation from its host star of 7.1'' makes it an ideal candidate for high S/N and high-resolution spectroscopy. We aim to derive new constraints on the spectral type, effective temperature, and luminosity of HD 106906 b and also to provide a high S/N template spectrum for future characterization of extrasolar planets. Methods: We obtained 1.1-2.5 μm integral field spectroscopy with the VLT/SINFONI instrument with a spectral resolution of R ≈ 2000-4000. New estimates of the parameters of HD 106906 b are derived by analyzing spectral features, comparing the extracted spectra to spectral catalogs of other low-mass objects, and fitting with theoretical isochrones. Results: We identify several spectral absorption lines that are consistent with a low mass for HD 106906 b. We derive a new spectral type of L1.5 ± 1.0, which is one subclass earlier than previous estimates. Through comparison with other young low-mass objects, this translates to a luminosity of log(L/L⊙) = -3.65 ± 0.08 and an effective temperature of Teff = 1820 ± 240 K. Our new mass estimates range between M = 11.9-0.8+1.7 MJup (hot start) and M = 14.0-0.5+0.2 MJup (cold start). These limits take into account a possibly finite formation time, i.e., HD 106906 b is allowed to be 0-3 Myr younger than its host star. We exclude accretion onto HD 106906 b at rates Ṁ > 4.8 × 10-10 MJup yr-1 based on the fact that we observe no hydrogen (Paschen-β, Brackett-γ) emission. This is indicative of little or no circumplanetary gas. With our new observations, HD 106906 b is the planetary-mass object with

  2. Photometric and Spectroscopic Analysis of CP Stars Under Indo-Russian Collaboration

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Semenko, E.; Moiseeva, A.; Joshi, G. C.; Joshi, Y. C.; Sachkov, M.

    2015-04-01

    The Indo-Russian collaboration is a joint venture between the astronomers of India (ARIES) and Russia (SAO and INASAN) to develop scientific and technical interactions by making use of observational facilities. Here we present the results obtained after the “Magnetic Conference” that was held in the Special Astrophysical Observatory, Russia in 2010. The analysis of time-series photometric CCD observations of HD 98851 shows a pulsation period of 1fh55, which is consistent with the period reported previously. We have also found a signature of short-term periodic variability in HD 207561. The analysis of high-resolution spectroscopic and spectropolarimetric observations of the sample stars revealed characteristics similar to Am stars, hence the excitation of the low-overtone pulsations are expected in these stars.

  3. Far-infrared HD emission as a measure of protoplanetary disk mass

    NASA Astrophysics Data System (ADS)

    Trapman, L.; Miotello, A.; Kama, M.; van Dishoeck, E. F.; Bruderer, S.

    2017-09-01

    Context. Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very difficult. Hydrogen deuteride (HD) is a promising alternative to the commonly used gas mass tracer, carbon monoxide. However, the potential of HD has not yet been investigated with models incorporating both HD and CO isotopologue-specific chemistry, and its sensitivity to uncertainties in disk parameters has not yet been quantified. Aims: We examine the robustness of HD as tracer of the disk gas mass, specifically the effect of gas mass on HD far-infrared emission and its sensitivity to the vertical structure. Also, we seek to provide requirements for future far-infrared missions such as SPICA. Methods: Deuterium chemistry reactions relevant for HD were implemented in the thermochemical code DALI and more than 160 disk models were run for a range of disk masses and vertical structures. Results: The HD J = 1-0 line intensity depends directly on the gas mass through a sublinear power law relation with a slope of 0.8. Assuming no prior knowledge about the vertical structure of a disk and using only the HD 1-0 flux, gas masses can be estimated to within a factor of two for low mass disks (Mdisk ≤ 10-3M⊙). For more massive disks, this uncertainty increases to more than an order of magnitude. Adding the HD 2-1 line or independent information about the vertical structure can reduce this uncertainty to a factor of 3 for all disk masses. For TW Hya, using the radial and vertical structure from the literature, the observations constrain the gas mass to 6 × 10-3M⊙ ≤ Mdisk ≤ 9 × 10-3M⊙. Future observations require a 5σ sensitivity of 1.8 × 10-20 W m-2 (2.5 × 10-20 W m-2) and a spectral resolving power R ≥ 300 (1000) to detect HD 1-0 (HD 2-1) for all disk masses above 10-5M⊙ with a line

  4. The Breakthrough Listen Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies

    NASA Astrophysics Data System (ADS)

    Isaacson, Howard; Siemion, Andrew P. V.; Marcy, Geoffrey W.; Lebofsky, Matt; Price, Danny C.; MacMahon, David; Croft, Steve; DeBoer, David; Hickish, Jack; Werthimer, Dan; Sheikh, Sofia; Hellbourg, Greg; Enriquez, J. Emilio

    2017-05-01

    We present the target selection for the Breakthrough Listen search for extraterrestrial intelligence during the first year of observations at the Green Bank Telescope, Parkes Telescope, and Automated Planet Finder. On the way to observing 1,000,000 nearby stars in search of technological signals, we present three main sets of objects we plan to observe in addition to a smaller sample of exotica. We chose the 60 nearest stars, all within 5.1 pc from the Sun. Such nearby stars offer the potential to observe faint radio signals from transmitters that have a power similar to those on Earth. We add a list of 1649 stars drawn from the Hipparcos catalog that span the Hertzprung-Russell diagram, including all spectral types along the main sequence, subgiants, and giant stars. This sample offers diversity and inclusion of all stellar types, but with thoughtful limits and due attention to main sequence stars. Our targets also include 123 nearby galaxies composed of a “morphological-type-complete” sample of the nearest spirals, ellipticals, dwarf spherioidals, and irregulars. While their great distances hamper the detection of technological electromagnetic radiation, galaxies offer the opportunity to observe billions of stars simultaneously and to sample the bright end of the technological luminosity function. We will also use the Green Bank and Parkes telescopes to survey the plane and central bulge of the Milky Way. Finally, the complete target list includes several classes of exotica, including white dwarfs, brown dwarfs, black holes, neutron stars, and asteroids in our solar system.

  5. Stages of Huntington's Disease (HD)

    MedlinePlus

    ... HD The Scope of HD Who Is At Risk Genetic Testing & Family Planning Juvenile HD An End to HD? ... hd The Scope of hd Who is at-risk? GENETIC TESTING & FAMILY PLANNING PRENATAL TESTING JHD OVERVIEW AN END ...

  6. What is HD - Huntington's Disease?

    MedlinePlus

    ... HD The Scope of HD Who Is At Risk Genetic Testing & Family Planning Juvenile HD An End to HD? ... hd The Scope of hd Who is at-risk? GENETIC TESTING & FAMILY PLANNING PRENATAL TESTING JHD OVERVIEW AN END ...

  7. The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Jones, M. I.; Horner, Jonathan; Kane, Stephen R.; Marshall, J. P.; Mustill, A. J.; Jenkins, J. S.; Pena Rojas, P. A.; Zhao, Jinglin; Villaver, Eva; Butler, R. P.; Clark, Jake

    2017-12-01

    Radial velocity observations from three instruments reveal the presence of a 4 M Jup planet candidate orbiting the K giant HD 76920. HD 76920b has an orbital eccentricity of 0.856 ± 0.009, making it the most eccentric planet known to orbit an evolved star. There is no indication that HD 76920 has an unseen binary companion, suggesting a scattering event rather than Kozai oscillations as a probable culprit for the observed eccentricity. The candidate planet currently approaches to about four stellar radii from its host star, and is predicted to be engulfed on a ∼100 Myr timescale due to the combined effects of stellar evolution and tidal interactions.

  8. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  9. HD 169142 in the eyes of ZIMPOL/SPHERE

    NASA Astrophysics Data System (ADS)

    Bertrang, G. H.-M.; Avenhaus, H.; Casassus, S.; Montesinos, M.; Kirchschlager, F.; Perez, S.; Cieza, L.; Wolf, S.

    2018-03-01

    We present new data of the protoplanetary disc surrounding the Herbig Ae/Be star HD 169142 obtained in the very broad-band (VBB) with the Zurich imaging polarimeter (ZIMPOL), a subsystem of the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) at the Very Large Telescope (VLT). Our Polarimetric Differential Imaging (PDI) observations probe the disc as close as 0.03 arcsec (3.5 au) to the star and are able to trace the disc out to ˜1.08 arcsec (˜126 au). We find an inner hole, a bright ring bearing substructures around 0.18 arcsec (21 au), and an elliptically shaped gap stretching from 0.25 to 0.47 arcsec (29-55 au). Outside of 0.47 arcsec, the surface brightness drops off, discontinued only by a narrow annular brightness minimum at ˜0.63 to 0.74 arcsec (74-87 au). These observations confirm features found in less-well-resolved data as well as reveal yet undetected indications for planet-disc interactions, such as small-scale structures, star-disc offsets, and potentially moving shadows.

  10. Revealing evolved massive stars with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  11. Photometric study of HD 155555C in the β Pictoris Association

    NASA Astrophysics Data System (ADS)

    Messina, Sergio; Millward, Mervyn; Bradstreet, David H.

    2015-05-01

    We are carrying out a series of photometric monitoring to measure the rotation periods of members in the young β Pictoris Association, as part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters). In this paper, we present the results for HD 155555C which is believed to be physically associated to the spectroscopic binary V824 Ara (HD 155555) and thus constituting a triple system. We collected B, V, and R-band photometric data timeseries and discovered from periodogram analysis the rotation period P = 4.43 d. Combined with stellar radius and projected rotational velocity, we find this star almost equator-on with an inclination i ≃ 90 ° . The rotational properties of HD 155555C fit well into the period distribution of other β Pic members, giving further support to the suggested membership to the association and to its physical association to V824 Ara. A comparison with pre-main-sequence isochrones from various models allows us to estimate an age of 20 ± 15 Myr for this triple system.

  12. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fittingmore » line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.« less

  13. Detection of a magnetic field on HD108: clues to extreme magnetic braking and the Of?p phenomenon

    NASA Astrophysics Data System (ADS)

    Martins, F.; Donati, J.-F.; Marcolino, W. L. F.; Bouret, J.-C.; Wade, G. A.; Escolano, C.; Howarth, I. D.; Mimes Collaboration

    2010-09-01

    We report the detection of a magnetic field on the Of?p star HD108. Spectropolarimetric observations conducted in 2007, 2008 and 2009, respectively, with NARVAL@Télescope Bernard Lyot (TBL) and Echelle SpectroPolarimetric Device for the Observation of Stars at Canada-France-Hawaii Telescope (ESPaDOnS@CFHT) reveal a clear Zeeman signature in the average Stokes V profile, stable on time-scales of days to months and slowly increasing in amplitude on time-scales of years. We speculate that this time-scale is the same as that on which Hα emission is varying and is equal to the rotation period of the star. The corresponding longitudinal magnetic field, measured during each of the three seasons, increases slowly from 100 to 150 G, implying that the polar strength of the putatively dipolar large-scale magnetic field of HD108 is at least 0.5 kG and most likely of the order of 1-2 kG. The stellar and wind properties are derived through a quantitative spectroscopic analysis with the code CMFGEN. The effective temperature is difficult to constrain because of the unusually strong HeI λλ4471, 5876 lines. Values in the range of 33000-37000K are preferred. A mass-loss rate of about 10-7Msolaryr-1 (with a clumping factor f = 0.01) and a wind terminal velocity of 2000 km s-1 are derived. The wind confinement parameter η* is larger than 100, implying that the wind of HD108 is magnetically confined. Stochastic short-term variability is observed in the wind-sensitive lines but not in the photospheric lines, excluding the presence of pulsations. Material infall in the confined wind is the most likely origin for lines formed in the inner wind. Wind clumping also probably causes part of the Hα variability. The projected rotational velocity of HD108 is lower than 50 km s-1, consistent with the spectroscopic and photometric variation time-scales of a few decades. Overall, HD108 is very similar to the magnetic O star HD191612 except for an even slower rotation. Based on observations

  14. A study of dust properties in the inner sub-au region of the Herbig Ae star HD 169142 with VLTI/PIONIER

    NASA Astrophysics Data System (ADS)

    Chen, L.; Kóspál, Á.; Ábrahám, P.; Kreplin, A.; Matter, A.; Weigelt, G.

    2018-01-01

    Context. An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pre-transitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Aims: Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. Methods: We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. Results: We find that the observations are consistent with optically thin gray dust lying at Rin 0.07 au, passively heated to T 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin 0.06 au, but this model is plausible only if refractory dust species enduring 2400 K exist in the inner disk. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 190.C-963 and 087.C-0709.

  15. The Nature of the Flaring EUVE Companion to HD 43162

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    2005-01-01

    The purpose of our program was to observe and characterize the companion to HD 43162, EUVE J0614-2354, which (serendipitously) experienced an enormous flare event during our EUVE observation of HD 43162, one of the nearby solar analogs that we observed during our survey of this population. Our observation was carried out and the data have been received and reduced. We are able to identify EUVE J0614-2354 in both the X-ray (EPIC MOS + PN) and the UV (OM) data, which provides a sub-arcsecond position for this source. Our findings are consistent with the analysis of Christian et al. (2003a,b), who identify EUVE J0614-2354 with a coronally-active M-dwarf star at distance d = 15 plus or minus 5pc. The X-ray spectrum from the EPIC data are also consistent with this identification.

  16. Spectroscopic studies of Wolf-Rayet stars with absorption lines. VIII - HD 193793

    NASA Astrophysics Data System (ADS)

    Conti, P. S.; Dupre, D. Roussel; Massey, P.; Rensing, M.

    1984-07-01

    The authors present absorption-line velocities for the O type star spanning over 16 years and emission-line velocities for the WC star covering 10 years. They find no periodicities in either of these sets of data. In particular, they are unable to confirm the claim of Lamontagne, Moffat, and Seggewiss that the two stars are in orbit about one another. Rather, it seems that a generic relationship between the two components has not been established and one is dealing with a situation in which two stars are in the same line of sight.

  17. Spectroscopic Study of HD 179821 (IRAS 19114+0002): Proto-Planetary Nebula or Supergiant?

    NASA Technical Reports Server (NTRS)

    Reddy, B. E.; Hrivnak, Bruce J.

    1999-01-01

    A detailed chemical composition analysis of the bright post-AGB candidate HD 179821 (IRAS 19114 + 0002) is presented. The LTE analysis, based on high-resolution (R approximately equal 50,000) and high-quality (S/N approximately equal 300) spectra, yields atmospheric parameters T(sub eff) = 6750 K, log g = 0.5, and xi(sub t) = 5.25 km/s. The elemental abundance results of HD 179821 are found to be [Fe/H] = -0.1, [C/Fe] = +0.2, [N/Fe] = +1.3, [O/Fe] = +0.2, [alpha-process/Fe] = +0.5, and [s-process/Fe] = +0.4. These values clearly differ from the elemental abundances of Population I F supergiants. The C, N, and O abundances and the total CNO abundance value relative to Fe, [C+N+O/Fe] = +0.5, indicate that the photosphere of HD 179821 is contaminated with both the H- and He-burning products of the AGB phase. The evidence for He burning through the 3.alpha process and deep AGB mixing also comes from the observed overabundances of s-process elements. Remarkably, the abundance of the element Na is found to be very large, [Na/Fe] = +0.9. The ratio O/C = 2.6 indicates that the atmosphere is oxygen rich. The results of this abundance study support the argument that HD 179821 is a proto-planetary nebula,. probably with an intermediate-mass progenitor. However, the strength of the O I triplet lines at 7774 A and the distance derived from the interstellar Na I D1 and D2 components imply that the star is a luminous object (M(sub bol) approximately -8.9 +/- 1) and thus a massive supergiant. Thus, while this study contributes important new observational results for this star, an unambiguous determination of its evolutionary status has yet to be achieved.

  18. Parameterizing the dust around Herbig Ae/Be stars: Multiwavelength imaging radiative transfer modeling, and near-infrared instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan Lee

    Herbig Ae/Be stars are considered the intermediate-mass analogs of the low-mass pre-main sequence T Tauri stars. Observations reveal that they are surrounded by dusty matter that may provide the solid-state material for building planets. Determining the dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/ Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. A mid- infrared image of the low-mass debris system, AU Microscopii, is presented, being relevant to the study of Herbig Ae/Be stars. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two- component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r -0.5 and r -1.8 , giving disk dust masses of 3.0 × 10^-4 and 5.9 × 10 ^5 [Special characters omitted.] for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. In order to advance the imaging capabilities available for observations of Herbig Ae/Be stars, I have participated in

  19. Variable extinction in HD 45677 and the evolution of dust grains in pre-main-sequence disks

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Halbedel, Elaine M.; Lawrence, Geoffrey F.; Smith, J. Allyn; Yanow, Ken

    1994-01-01

    Changes in the UV extinction and IR emission were sought in the Herbig Ae/Be star candidate HD 45677 (= FS CMa) by comparing UV, optical, and IR observations made approximately 10 yr apart. HD 45677 varied significantly, becoming more than 50% brighter in the UV and optical than it was a decade ago. A comparison of the observations between epochs indicates that if the variations are due to changes in dust obscuration, the dust acts as a gray absorber into the near-IR and must be depleted in grains smaller than 1 micron. This is similar to the results obtained on the circumstellar disks of stars like Vega and Beta Pic, and suggests that radiation pressure may be responsible for the small-grain depletion. In addition, the total IR flux seems to have declined, indicating a decrease in the total mass of the dust envelope that contributes to the IR emission in this part of the spectrum. Due to the anomalous nature of the extinction, the use of normal extinction curves to deredden the spectral energy distributions of stars with circumstellar dust may lead to significant errors and should be used with great caution.

  20. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα.

    PubMed

    Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S

    2016-01-29

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Large-scale Periodic Variability of the Wind of the Wolf-Rayet Star WR 1 (HD 4004)

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; St-Louis, N.

    2010-06-01

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9+0.6 -0.3 days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v rot = 6.5, 40, 70, and 275 km s-1 for WR 1, WR 6, WR 134, and WR 137, respectively. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Also based on observations obtained at the Observatoire du Mont Mégantic with is operated by the Centre de Recherche en Astrophysique du Québec and the Observatoire de

  2. Be Star Hα Line Profile Variability

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Dunlap, B.; Franklin, M.; Hoggard, T.; Hoskins, J. S.

    2004-12-01

    The monitoring of the spectroscopic variability of Be stars is crucial for testing Be star models. Motivated by this, a Be star monitoring project was developed for undergraduate student research involvement. We have been obtaining 0.8 Angstrom/pixel resolution Hα line profiles for several bright Be stars since 2003 June. These spectra were acquired using the UCA Fiber Fed Spectrograph used at the UCA Observatory and the Nubbin Ridge Observatory in Royal, AR. H-α line profiles, velocities, and variability are shown for Delta Sco, Chi Oph, Eta PsA, 48 Lib, and Upsilon Sgr (HD181615). Funding has been provided by the UCA University Research Council and the Arkansas Space Grant Consortium.

  3. Direct imaging discovery of a Jovian exoplanet within a triple-star system.

    PubMed

    Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc

    2016-08-12

    Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged. Copyright © 2016, American Association for the Advancement of Science.

  4. Constraints on the core μ-gradient of the solar-like star HD 49385 via low-degree mixed modes

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Michel, E.

    2010-12-01

    The existence of an ℓ=1 avoided crossing in the spectrum of the solar-like pulsator-target \\cible was established by Deheuvels & Michel (2009). It is the first confirmed detection of such a phenomenon. The authors showed in a preliminary modeling of the star that it was in a post main sequence status. Being a 1.3 M⊙-star, \\cible has had a convective core during its main sequence phase. The μ-gradient left by the withdrawal of this core bears information about the processes of transport at the boundary of the core. We here investigate the constraints that the observed avoided crossing brings on the μ-gradient in the core of the star. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES with participation of the Science Programs of ESA; ESA's RSSD, Austria, Belgium, Brazil, Germany, and Spain.

  5. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. II. Super Li-rich giant HD 107028

    NASA Astrophysics Data System (ADS)

    Adamów, M.; Niedzielski, A.; Villaver, E.; Wolszczan, A.; Kowalik, K.; Nowak, G.; Adamczyk, M.; Deka-Szymankiewicz, B.

    2015-09-01

    Context. Lithium-rich giant stars are rare objects. For some of them, Li enrichment exceeds the abundance of this element found in solar system meteorites, suggesting that these stars have gone through a Li enhancement process. Aims: We identified a Li-rich giant HD 107028 with A(Li) > 3.3 in a sample of evolved stars observed within the PennState Toruń Planet Search. In this work we study different enhancement scenarios and we try to identify the one responsible for Li enrichment in HD 107028. Methods: We collected high-resolution spectra with three different instruments, covering different spectral ranges. We determined stellar parameters and abundances of selected elements with both equivalent width measurements and analysis, and spectral synthesis. We also collected multi-epoch high-precision radial velocities in an attempt to detect a companion. Results: Collected data show that HD 107028 is a star at the base of the red giant branch (RGB). Except for high Li abundance, we have not identified any other anomalies in its chemical composition, and there is no indication of a low-mass or stellar companion. We exclude Li production at the luminosity function bump on the RGB as the effective temperature and luminosity suggest that the evolutionary state is much earlier than the RGB bump. We also cannot confirm the Li enhancement by contamination as we do not observe any anomalies that are associated with this scenario. Conclusions: After evaluating various scenarios of Li enhancement we conclude that the Li-overabundance of HD 107028 originates from main-sequence evolution, and may be caused by diffusion processes. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on

  6. WFC3: Precision Infrared Spectrophotometry with Spatial Scans of HD 189733b and Vega

    NASA Astrophysics Data System (ADS)

    McCullough, Peter R.; Crouzet, N.; Deming, D.; Madhusudhan, N.; Deustua, S. E.; WFC3

    2014-01-01

    The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) now routinely provides near-infrared spectroscopy of transiting extrasolar planet atmospheres with better than ~50 ppm precision per 0.05-micron resolution bin per transit, for sufficiently bright host stars. Two improvements of WFC3 (the detector) and HST (the spatial scanning technique) have made transiting planet spectra more sensitive and more repeatable than was feasible with NICMOS. In addition, the data analysis is much simpler with WFC3 than with NICMOS. We present time-series spectra of HD 189733b from 1.1 to 1.7 microns in transit and eclipse with fidelity similar to that of the WFC3 transit spectrum of HD 209458b (Deming et al. 2013). In a separate program, we obtained scanned infrared spectra of the bright star, Vega, thereby extending the dynamic range of WFC3 to ~26 magnitudes! Analysis of these data will affect the absolute spectrophotometric calibration of the WFC3, placing it on an SI traceable scale.

  7. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Speckle interferometric measurements of binary stars. IX

    NASA Technical Reports Server (NTRS)

    Hartkopf, W. I.; Gaston, B. J.; Fekel, F. C.; Hendry, E. M.; Mcalister, H. A.

    1984-01-01

    Four hundred-forty measurements of 232 binary stars observed during 1981 by means of speckle interferometry with the 4-m telescope at KPNO are represented. Newly resolved systems include Xi-1 Cet, Rho Her A, HD 187321, and 59 Cyg A.

  9. Two spotted and magnetic early B-type stars in the young open cluster NGC 2264 discovered by MOST and ESPaDOnS

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Zwintz, K.; Castro, N.; Langer, N.; Lorenz, D.; Schneider, F. R. N.; Kuschnig, R.; Matthews, J. M.; Alecian, E.; Wade, G. A.; Barnes, T. G.; Thoul, A. A.

    2014-02-01

    Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest members of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD 47887 and HD 47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km s-1) radial velocity variations, most likely caused by spots, we can rule out that HD 47887 and HD 47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD 47887 and HD 47777 to be 9.4+0.6-0.7 M⊙ and 7.6+0.5-0.5 M⊙. Interestingly, HD 47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD 47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for

  10. Parameterizing the Dust Around Herbig Ae/Be Stars: Multiwavelength Imaging, Radiative Transfer Modeling, and Near-Infrared Instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan L.

    2009-01-01

    Determining Herbig Ae/Be star dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation talk, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two-component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r-0.5 and r-1.8, giving disk dust masses of 3.0 x 10-4 and 5.9 x 10-5 Msun for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. Furthermore, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared ( 0.8 - 2.5 microns), includes 13 filters, and has a pixel size of 0.1 arcsec, resulting in a field of view of 3 arcmin x 3 arcmin. An angular resolution of 0.25 arcsec is anticipated. I provide an overview of the instrument and report performance results.

  11. Cyclic and secular variation in the temperatures and radii of extreme helium stars

    NASA Astrophysics Data System (ADS)

    Jeffery, C. Simon; Starling, Rhaana L. C.; Hill, Philip W.; Pollacco, Don

    2001-02-01

    The ultraviolet properties of 17 extreme helium stars have been examined using 150 IUE spectra. Combining short-wave and long-wave image pairs and using a grid of hydrogen-deficient model atmospheres and a χ2 minimization procedure, 70 measurements of effective temperature (Teff), angular diameters (θ) and interstellar extinction (EB_V) were obtained. In most cases, these were in good agreement with previous measurements, but there are some ambiguities in the case of the hotter stars, where the solutions for Teff and EB_V become degenerate, and in the case of the cooler stars with large EB_V, where the total flux is no longer dominated by the ultraviolet. The behaviour of 12 helium stars was examined over an interval exceeding 10yr. The surfaces of four stars (HD 168476, HD 160641, BD -9°4395 and BD -1°3438) were found to be heating at rates between 20 and 120Kyr-1, in remarkable agreement with theoretical predictions. This result provides the first direct evidence that extreme helium stars are helium shell-burning stars of up to ~0.9Msolar contracting towards the white dwarf sequence. Low-luminosity helium stars do not show a detectable contraction, also in agreement with theory, although one, BD +10°2179, may be expanding. The short-term behaviour of three variable helium stars (PV Tel variables: HD 168476, BD +1°4381, LSIV -1°2) was examined over a short interval in 1995. All three showed changes in Teff and θ on periods consistent with previous observations. Near-simultaneous radial velocity (v) measurements were used to establish the total change in radius, with some reservations concerning the adopted periods. Subsequently, measurements of the stellar radii and distances could be derived. With Teff and surface gravities established previously, stellar luminosities and masses were thus obtained directly from observation. In the case of HD 168476, the mass is 0.94 ± 0.68 M\\odot. Assuming a similar gravity for LSIV -1°2 based on its neutral helium

  12. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team

    2018-06-01

    TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.

  13. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  14. Kronos and Krios: Evidence for Accretion of a Massive, Rocky Planetary System in a Comoving Pair of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Price-Whelan, Adrian M.; Brewer, John M.; Hogg, David W.; Spergel, David N.; Myles, Justin

    2018-02-01

    We report and discuss the discovery of a significant difference in the chemical abundances of a comoving pair of bright solar-type stars, HD 240430 and HD 240429. The two stars have an estimated 3D separation of ≈0.6 pc (≈0.01 pc projected) at a distance of r ≈ 100 pc with nearly identical 3D velocities, as inferred from Gaia TGAS parallaxes and proper motions, and high-precision radial velocity measurements. Stellar parameters determined from high-resolution spectra obtained with the High Resolution Echelle Spectrometer (HIRES) at the Keck Observatory indicate that the two stars are ∼4 Gyr old. The more metal-rich of the two, HD 240430, shows an enhancement of refractory ({T}C> 1200 K) elements by ≈0.2 dex and a marginal enhancement of (moderately) volatile elements ({T}C< 1200 K; {{C}}, {{N}}, {{O}}, {Na}, and {Mn}). This is the largest metallicity difference found in a wide binary pair to date. Additionally, HD 240430 shows an anomalously high surface lithium abundance (A({Li})=2.75), higher than its cooler companion by 0.5 dex. The proximity in phase-space and ages between the two stars suggests that they formed together with the same composition, which is at odds with the observed differences in metallicity and abundance patterns. We therefore suggest that the star HD 240430, “Kronos,” accreted 15 {M}\\oplus of rocky material after birth, selectively enhancing the refractory elements as well as lithium in its surface and convective envelope.

  15. The TERMS Project: Improved Orbital Parameters and Photometry of HD168443 and the Photometry Pipeline

    NASA Astrophysics Data System (ADS)

    Pilyavsky, Genady; Mahadevan, S.; Kane, S. R.; Howard, A. W.; Ciardi, D. R.; de Pree, C.; Dragomir, D.; Fischer, D.; Henry, G. W.; Jensen, E. L. N.; Laughlin, G.; Marlowe, H.; Rabus, M.; von Braun, K.; Wright, J. T.; Wang, X.

    2012-01-01

    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) project focuses on updating the ephemerides of known exoplanets, put tighter constraints on the orbital parameters and shrink the large errors on the predicted transit windows, enabling photometric monitoring to search for a transit signature. Here, we present the revised orbital parameters and the photometric coverage during a predicted transit window of HD168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a-priori transit probability (3.7%) from what is expected for a circular orbit (2.5%). The transit ephemeris was updated using refined orbital parameters from additional Keck-HIRES radial velocities. The photometry obtained at the 1 m telescope in Cerro Tololo Inter-American Observatory (CTIO) and the T8 0.8 m Automated Photometric Telescope (APT) at Fairborn Observatory achieved the necessary millimag precision. The expected change in flux (0.5%) for HD168443 was not observed during the predicted transit window, thus allowing us to rule out the transit and put tighter constrains on the orbital inclination of HD168443b. Additionally, we present the software used to analyze the CTIO data. Developed by the TERMS team, this IDL based package is a fast, precise, and easy to use program which has eliminated the need for external software and command line prompts by utilizing the functionality of a graphical user interface (GUI).

  16. Comparisons of amino acids, body constituents and antioxidative response between long-time HD and normal HD.

    PubMed

    Torigoe, Akira; Sato, Emiko; Mori, Takefumi; Ieiri, Norio; Takahashi, Chika; Ishida, Yoko; Hotta, Osamu; Ito, Sadayoshi

    2016-10-01

    Introduction Oxidative stress is one of the main mediators of progression of chronic kidney diseases (CKD). Nuclear factor E2-related factor 2 (Nrf2) is the transcription factor of antioxidant and detoxifying enzymes and related proteins which play an important role in cellular defense. Long-time hemodialysis (HD) therapy (8 hours) has been considered to be more beneficial compared to normal HD therapy (4 hours). We investigated oxidative response related to Nrf2 in peripheral blood mononuclear cells (PBMCs) of long-time HD and normal HD patients. Methods Eight adult long-time HD therapy patients (44.5 ± 3.0 years) and 10 normal HD therapy patients (68.1 ± 2.7 years) were enrolled. PBMCs were isolated and processed for expression of Nrf2 and its related genes by qRT-PCR. Plasma indoxyl sulfate, amino acids, and body constituents were measured. Findings Plasma indoxyl sulfate was significantly low after long-time HD therapy compare to that of normal HD therapy. Although, skeletal muscle mass, lean body mass, mineral and protein were significantly decreased 2 months in normal HD patients, those in long-time HD patients were significantly increased after 2 months. Almost of amino acids were significantly decreased after HD therapy in both HD therapies. Plasma amino acids were significantly low in long-time HD patients compared to normal HD patients. In PBMCs, the expression of Nrf2 was significantly decreased and hemooxygenase-1 expression was significantly increased in long-time HD compared to normal HD. Conclusion These observations indicate the beneficial effects of in long-time HD in improving oxidative stress in patients. © 2016 International Society for Hemodialysis.

  17. Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration

    1999-12-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.

  18. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα

    PubMed Central

    Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.

    2016-01-01

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945

  19. The SOPHIE search for northern extrasolar planets. VII. A warm Neptune orbiting HD 164595

    NASA Astrophysics Data System (ADS)

    Courcol, B.; Bouchy, F.; Pepe, F.; Santerne, A.; Delfosse, X.; Arnold, L.; Astudillo-Defru, N.; Boisse, I.; Bonfils, X.; Borgniet, S.; Bourrier, V.; Cabrera, N.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A. M.; Montagnier, G.; Moutou, C.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2015-09-01

    High-precision radial velocity surveys explore the population of low-mass exoplanets orbiting bright stars. This allows accurately deriving their orbital parameters such as their occurrence rate and the statistical distribution of their properties. Based on this, models of planetary formation and evolution can be constrained. The SOPHIE spectrograph has been continuously improved in past years, and thanks to an appropriate correction of systematic instrumental drift, it is now reaching 2 m s-1precision in radial velocity measurements on all timescales. As part of a dedicated radial velocity survey devoted to search for low-mass planets around a sample of 190 bright solar-type stars in the northern hemisphere, we report the detection of a warm Neptune with a minimum mass of 16.1 ± 2.7M⊕ orbiting the solar analog HD 164595 in 40 ± 0.24 days. We also revised the parameters of the multiplanetary system around HD 190360. We discuss this new detection in the context of the upcoming space mission CHEOPS, which is devoted to a transit search of bright stars harboring known exoplanets. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OSU Pythéas), France (program 07A.PNP.CONS).Appendix A is available in electronic form at http://www.aanda.org

  20. An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Follette, Katherine B.; Pueyo, Laurent; Marois, Christian; Macintosh, Bruce; Millar-Blanchaer, Maxwell; Wang, Jason J.; Vega, David; Doyon, René; Lafrenière, David; Nielsen, Eric L.; Bailey, Vanessa; Chilcote, Jeffrey K.; Close, Laird M.; Esposito, Thomas M.; Males, Jared R.; Metchev, Stanimir; Morzinski, Katie M.; Ruffio, Jean-Baptiste; Wolff, Schuyler G.; Ammons, S. M.; Barman, Travis S.; Bulger, Joanna; Cotten, Tara; De Rosa, Robert J.; Duchene, Gaspard; Fitzgerald, Michael P.; Goodsell, Stephen; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall D.; Poyneer, Lisa; Rajan, Abhijith; Rantakyrö, Fredrik T.; Marley, Mark S.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane

    2017-06-01

    We present H band spectroscopic and Hα photometric observations of HD 100546 obtained with the Gemini Planet Imager and the Magellan Visible AO camera. We detect H band emission at the location of the protoplanet HD 100546 b, but show that the choice of data processing parameters strongly affects the morphology of this source. It appears point-like in some aggressive reductions, but rejoins an extended disk structure in the majority of the others. Furthermore, we demonstrate that this emission appears stationary on a timescale of 4.6 years, inconsistent at the 2σ level with a Keplerian clockwise orbit at 59 au in the disk plane. The H band spectrum of the emission is inconsistent with any type of low effective temperature object or accreting protoplanetary disk. It strongly suggests a scattered-light origin, as this is consistent with the spectrum of the star and the spectra extracted at other locations in the disk. A non-detection at the 5σ level of HD 100546 b in differential Hα imaging places an upper limit, assuming the protoplanet lies in a gap free of extinction, on the accretion luminosity of 1.7 × 10-4 L ⊙ and M\\dot{M}< 6.3× {10}-7 {M}{Jup}2 {{yr}}-1 for 1 R Jup. These limits are comparable to the accretion luminosity and accretion rate of T-Tauri stars or LkCa 15 b. Taken together, these lines of evidence suggest that the H band source at the location of HD 100546 b is not emitted by a planetary photosphere or an accreting circumplanetary disk but is a disk feature enhanced by the point-spread function subtraction process. This non-detection is consistent with the non-detection in the K band reported in an earlier study but does not exclude the possibility that HD 100546 b is deeply embedded.

  1. Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776

    NASA Astrophysics Data System (ADS)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.

    2000-03-01

    We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum

  2. The 3 H(d , γ) Reaction at Ec . m . <= 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2015-04-01

    The 3 H(d , γ) 5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ-rays from neutrons in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3 H(d , n) α reaction using both the pulse-shape discrimination and time-of-flight techniques. A newly designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the number of neutrons, along with a new titanium tritide target, was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0 °, 45 °, 90 °, and 135 °. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3 H(d , γ) /3 H(d , n) branching ratio has also been measured. Data analysis is currently underway for the subsequent measurements. This work is supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through Grant No. DE-NA0001837.

  3. Kinematics and age of 15 stars-photometric solar analogs

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Shimansky, V. V.

    2008-03-01

    The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.

  4. Dynamical Analysis of the Circumprimary Planet in the Eccentric Binary System HD 59686

    NASA Astrophysics Data System (ADS)

    Trifonov, Trifon; Lee, Man Hoi; Reffert, Sabine; Quirrenbach, Andreas

    2018-04-01

    We present a detailed orbital and stability analysis of the HD 59686 binary-star planet system. HD 59686 is a single-lined, moderately close (a B = 13.6 au) eccentric (e B = 0.73) binary, where the primary is an evolved K giant with mass M = 1.9 M ⊙ and the secondary is a star with a minimum mass of m B = 0.53 M ⊙. Additionally, on the basis of precise radial velocity (RV) data, a Jovian planet with a minimum mass of m p = 7 M Jup, orbiting the primary on a nearly circular S-type orbit with e p = 0.05 and a p = 1.09 au, has recently been announced. We investigate large sets of orbital fits consistent with HD 59686's RV data by applying bootstrap and systematic grid search techniques coupled with self-consistent dynamical fitting. We perform long-term dynamical integrations of these fits to constrain the permitted orbital configurations. We find that if the binary and the planet in this system have prograde and aligned coplanar orbits, there are narrow regions of stable orbital solutions locked in a secular apsidal alignment with the angle between the periapses, Δω, librating about 0°. We also test a large number of mutually inclined dynamical models in an attempt to constrain the three-dimensional orbital architecture. We find that for nearly coplanar and retrograde orbits with mutual inclination 145° ≲ Δi ≤ 180°, the system is fully stable for a large range of orbital solutions.

  5. VizieR Online Data Catalog: MILO. I. HD 7449 radial velocities (Rodigas+, 2016)

    NASA Astrophysics Data System (ADS)

    Rodigas, T. J.; Arriagada, P.; Faherty, J.; Anglada-Escude, G.; Kaib, N.; Butler, R. P.; Shectman, S.; Weinberger, A.; Males, J. R.; Morzinski, K. M.; Close, L. M.; Hinz, P. M.; Crane, J. D.; Thompson, I.; Teske, J.; Diaz, M.; Minniti, D.; Lopez-Morales, M.; Adams, F. C.; Boss, A. P.

    2016-04-01

    We observed HD 7449 using the Magellan Clay Telescope at the Las Campanas Observatory in Chile on the nights of UT 2014 November 5 and 22. We observed the star with VisAO at Ys (0.99um) and with Clio-2 at H (1.65um) and Ks (2.15um) on the first night and with VisAO at r' (0.63um), i' (0.77um), z' (0.91um), and with Clio-2 at J (1.1um) on the second night. RV data on HD 7449 were first acquired as part of the Magellan Planet Search Program, which originally made use of the MIKE echelle spectrometer (R~70000 in the blue and ~50000 in the red; wavelength coverage ranges from 3900 to 6200Å) on the Magellan Clay telescope until 2009 September. HD 7449 was subsequently observed using the Carnegie Magellan/PFS (3880-6680Å with R~80000 in the iodine region). We also included in our analysis RVs measured with HARPS and CORALIE. These RVs were originally reported in Dumusque et al. (2011, J/A+A/535/A55). HARPS data on HD 7449 has been supplemented by the ESO archive. See section 2.2 for further explanations. (1 data file).

  6. High resolution spectroscopy of six new extreme helium stars

    NASA Technical Reports Server (NTRS)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  7. A Jupiter-mass planet around the K0 giant HD 208897

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Sato, B.; Bikmaev, I.; Selam, S. O.; Izumiura, H.; Keskin, V.; Kambe, E.; Melnikov, S. S.; Galeev, A.; Özavcı, İ.; Irtuganov, E. N.; Zhuchkov, R. Ya.

    2017-11-01

    For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G, K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the giant star HD 208897 using an iodine (I2) absorption cell. The measurements were made at TÜBİTAK National Observatory (TUG; RTT150) and Okayama Astrophysical Observatory (OAO). For the origin of the periodic variation seen in the RV data of the star, we adopted a Keplerian motion caused by an unseen companion. We found that the star hosts a planet with a minimum mass of m2sini = 1.40 MJ, which is relatively low compared to those of known planets orbiting evolved intermediate-mass stars. The planet is in a nearly circular orbit with a period of P = 353 days at about 1 AU distance from the host star. The star is metal rich and located at the early phase of ascent along the red giant branch. The photometric observations of the star at Ankara University Kreiken Observatory (AUKR) and the Hipparcos photometry show no sign of variation with periods associated with the RV variation. Neither bisector velocity analysis nor analysis of the Ca II and Hα lines shows any correlation with the RV measurements. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK), the project number of 114F099.

  8. An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.

    2002-01-01

    We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.

  9. New detections of arsenic, selenium, and other heavy elements in two metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Schatz, Hendrik; Beers, Timothy C.

    2014-08-10

    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 ≤λ ≤ 2360 Å wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I.more » The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range –2.8 < [Fe/H] <–0.6, ([As/Fe]) = +0.28 ± 0.14 (σ = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, ([Se/Fe]) = +0.16 ± 0.09 (σ = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 ≤A ≤ 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium α-rich freezeout of the iron peak. ([Cu II/Cu I]) = +0.56 ± 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.« less

  10. Resolution and Orbit Reconstruction of Spectroscopic Binary Stars with the Palomar Testbed Interferometer

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M. J.; Queloz, D.; Koresko, C. D.

    2000-05-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. For the past several years we have had an ongoing program of resolving and reconstructing the visual and physical orbits of spectroscopic binary stars with PTI, with the goal of obtaining precise dynamical mass estimates and other physical parameters. We will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival and new spectroscopic radial velocity data. The systems for which we will discuss our orbit models are: iota Pegasi (HD 210027), 64 Psc (HD 4676), 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064), and 3 Boo (HD 120064). All of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions.

  11. Overlooked wide companions of nearby F stars

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.

    2016-03-01

    Aims: We checked a sample of 545 F stars within 50 pc for wide companions using existing near-infrared and optical sky surveys. Methods: Applying the common proper motion (CPM) criterion, we detected wide companion candidates with 6-120 arcsec angular separations by visual inspection of multi-epoch finder charts and by searching in proper motion catalogues. Final proper motions were measured by involving positional measurements from up to eleven surveys. Spectral types of red CPM companions were estimated from their absolute J-band magnitudes based on the Hipparcos distances of the primaries. Results: In addition to about 100 known CPM objects, we found 19 new CPM companions and confirmed 31 previously known candidates. A few CPM objects are still considered as candidates according to their level of proper motion agreement. Among the new objects there are nine M0-M4, eight M5-M6, one ≈L3.5 dwarf (HD 3861B), and one white dwarf (WD) (HD 2726B), whereas we confirmed two K, 19 M0-M4, six M5-M6, two early-L dwarfs, and two DA WDs as CPM companions. In a few cases, previous spectral types were available that all agree well with our estimates. Two companions (HD 22879B and HD 49933B) are associated with moderately metal-poor Gaia benchmark stars. One doubtful CPM companion, spectroscopically classified as WD but found to be very bright (J = 11.1) by others, should either be a very nearby foreground WD or a different kind of object associated with HD 165670. Tables A.1, B.1, and C.1 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A51

  12. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  13. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.

    2017-11-01

    We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1star formation in galaxies across the peak of cosmic star formation, in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and span a wide range of specific star formation rate, extinction, and luminosity. They have extensive ancillary datasets. Our science goals are: 1) demonstrate extinction-robust star formation rate diagnostics for distant galaxies; 2) determine the physical scales of star formation in distant galaxies, in an extinction-robust way; 3) measure specific star formation rates and compare the spatial distribution of the young and old stars; 4) and measure the physical conditions of star formation and their spatial variation. This program uses key instrument modes, heavily exercising the NIRSpec and MIRI IFUs. The resulting science-enabling data products will demonstrate JWST's capabilities and provide the extragalactic science community with rich datasets. In four deliveries, we will provide high-quality Level 3 data cubes and mosaics, empirical star formation diagnostics, maps of star formation, extinction, and physical properties, a tool for comparing NIRSpec and MIRI data cubes, and cookbooks on data reduction, analysis, and calibration strategy.

  14. Intelligent modular star and target tracker: a new generation of attitude sensors

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe; Strobel, Rainer; Wunder, Dietmar; Graf, Eberhart

    2018-04-01

    This paper, "Intelligent modular star and target tracker: a new generation of attitude sensors," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  15. Biological damage of UV radiation in environments of F-type stars

    NASA Astrophysics Data System (ADS)

    Sato, Satoko

    I investigate the general astrobiological significance of F-type main-sequence stars with special consideration to stellar evolutionary aspects due to nuclear evolution. DNA is taken as a proxy for carbon-based macromolecules following the assumption that exobiology is most likely based on hydrocarbons. The DNA action spectrum is utilized to represent the relative damage of the stellar UV radiation. Planetary atmospheric attenuation is taken into account in the form of parameterized attenuation functions. My work is motivated by previous studies indicating that the UV environment of solar-like stars is one of the most critical elements in determining the habitability of exoplanets and exomoons. It contributes further to the exploration of the exobiological suitability of stars that are hotter and emit much higher photospheric UV fluxes than the Sun. I found that the damage inflicted on DNA for planets at Earth-equivalent positions is between 2.5 and 7.1 times higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If atmospheric attenuation is included, however, less damage is obtained in alignment to the attenuation parameters. Also, the outer part of late F-type stars have similar UV conditions to Earth. Therefore, F-type circumstellar environments should not be excluded from candidates for habitable places on the grounds of higher stellar UV emission than the Sun. Besides the extensive theoretical component of this study, emphasis is furthermore placed on applications to observed planetary systems including CoRoT-3, WASP-14, HD 197286, HD 179949, upsilon And, and HD 86264.

  16. Search for OB stars running away from young star clusters. I. NGC 6611

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  17. HD-SAO-DM cross index

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Mead, J.

    1978-01-01

    A table of correspondence SAO-HD-DM-GC was prepared by Morin (1973). The machine-readable version of this cross identification was obtained from the Centre de Donnees Stellaires (Strasbourg, France). The table was sorted at the Goddard Space Flight Center by HD number and all blank HD number records were removed to produce the HD-SAO-DM table presented. There were 258997 entries in the original table; there are 180411 entries after removing the blank HD records. The Boss General Catalogue (GC) numbers were retained on the machine-readable version after the sort.

  18. Little Black Spot on the Star Today Artist Concept

    NASA Image and Video Library

    2015-07-30

    This artist's conception shows the silhouette of a rocky planet, dubbed HD 219134b, as it passes in front of its star. At 21 light-years away, the planet is the closest outside of our solar system that can be seen crossing, or transiting, its star -- a bonus for astronomers because transiting planets make ideal specimens for detailed studies of their atmospheres. It was discovered using the HARPS-North instrument on the Italian 3.6-meter National Galileo Telescope in the Canary Islands, and NASA's Spitzer Space Telescope. The planet, which is about 1.6 times the size of Earth, is also the nearest confirmed rocky planet outside our solar system. It orbits a star that is cooler and smaller than our sun, whipping closely around it in a mere three days. The proximity of the planet to the star means that it would be scorching hot and not habitable. Transiting planets are ideal targets for astronomers wanting to know more about planetary compositions and atmospheres. As a planet passes in front of its star, it causes the starlight to dim, and telescopes can measure this effect. If molecules are present in the planet's atmosphere, they can absorb certain wavelengths of light, leaving imprints in the starlight. This type of technique will be used in the future to investigate potentially habitable planets and search for signs of life. http://photojournal.jpl.nasa.gov/catalog/PIA19831

  19. 51 Eridani and GJ 3305: A 10-15 Myr old Binary Star System at 30 Parsecs

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Lawson, W. A.; Stark, M.; Townsley, L.; Garmire, G. P.

    2006-03-01

    Following the suggestion of Zuckerman and coworkers, we consider the evidence that 51 Eri (spectral type F0) and GJ 3305 (M0), historically classified as unrelated main-sequence stars in the solar neighborhood, are instead a wide physical binary system and members of the young β Pic moving group (BPMG). The BPMG is the nearest (d<~50 pc) of several groups of young stars with ages around 10 Myr that are kinematically convergent with the Oph-Sco-Cen association (OSCA), the nearest OB star association. Combining South African Astronomical Observatory optical photometry, Hobby-Eberly Telescope high-resolution spectroscopy, Chandra X-Ray Observatory data, and Second US Naval Observatory CCD Astrograph Catalog kinematics, we confirm with high confidence that the system is indeed extremely young. GJ 3305 itself exhibits very strong magnetic activity but has rapidly depleted most of its lithium. The 51 Eri/GJ 3305 system is the westernmost known member of the OSCA, lying 110 pc from the main subgroups. The system is similar to the BPMG wide binary HD 172555/CD -64 1208 and the HD 104237 quintet, suggesting that dynamically fragile multiple systems can survive the turbulent environments of their natal giant molecular cloud complexes, while still having high dispersion velocities imparted. Nearby young systems such as these are excellent targets for evolved circumstellar disk and planetary studies, having stellar ages comparable to that of the late phases of planet formation.

  20. Observations of warm molecular gas and kinematics in the disc around HD 100546

    NASA Astrophysics Data System (ADS)

    Panić, O.; van Dishoeck, E. F.; Hogerheijde, M. R.; Belloche, A.; Güsten, R.; Boland, W.; Baryshev, A.

    2010-09-01

    Context. The disc around the Herbig Ae/Be star HD 100546 is one of the most extensively studied discs in the southern sky. Although there is a wealth of information about its dust content and composition, not much is known about its gas and large-scale kinematics. Many recent results have stressed the importance of studying both the gas and dust in discs. 12CO is an excellent gas tracer in the submillimetre, and the intensity ratio between lines originating from low and high rotational levels probes the gas temperature. Emerging submillimetre facilities in the Southern hemisphere allow us to characterise the gas and dust content in objects like HD 100546 better. Aims: Our aim is to establish whether the disc is gas-rich and to study the disc temperature and kinematics. Methods: We detected and studied the molecular gas in the disc at spatial resolution from 7.7 arcsec to 18.9 arcsec using the Atacama Pathfinder Experiment telescope (This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.). We observed the lines 12CO J = 7-6, J = 6-5, J = 3-2, 13CO J = 3-2 and [C I] 3P2-3P1, as diagnostics of disc temperature, size, chemistry, and kinematics. We use parametric disc models that reproduce the low-J 12CO emission from Herbig Ae stars and we vary the basic disc parameters - temperature, mass, and size. With the help of a molecular excitation and radiative transfer code we fit the observed spectral line profiles. Results: Our observations are consistent with more than 10-3 M⊙ of molecular gas in a disc of ≈400 AU radius in Keplerian rotation around a 2.5 M⊙ star, seen at an inclination of 50°. The detected 12CO lines are dominated by gas at 30-70 K. Not detecting the [C I] line indicates excess ultraviolet emission above that of a B9 type model stellar atmosphere. Asymmetry in the 12CO

  1. Magnetised winds and their influence in the escaping upper atmosphere of HD 209458b

    NASA Astrophysics Data System (ADS)

    D'Angelo, Carolina Villarreal; Esquivel, Alejandro; Schneiter, Matías; Sgró, Mario Agustín

    2018-06-01

    Lyman α observations during an exoplanet transit have proved to be very useful to study the interaction between the stellar wind and the planetary atmosphere. They have been extensively used to constrain planetary system parameters that are not directly observed, such as the planetary mass loss rate. In this way, Ly α observations can be a powerful tool to infer the existence of a planetary magnetic field, since it is expected that the latter will affect the escaping planetary material. To explore the effect that magnetic fields have on the Ly α absorption of HD 209458b, we run a set of 3D MHD simulations including dipolar magnetic fields for the planet and the star. We assume values for the surface magnetic field at the poles of the planet in the range of [0-5] G, and from 1 to 5 G at the poles of the star. Our models also include collisional and photo-ionisation, radiative recombination, and an approximation for the radiation pressure. Our results show that the magnetic field of the planet and the star change the shape of the Ly α absorption profile, since it controls the extent of the planetary magnetosphere and the amount of neutral material inside it. The model that best reproduces the absorption observed in HD 209458b (with canonical values for the stellar wind parameters) corresponds to a dipole planetary field of ≲ 1 gauss at the poles.

  2. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer

  3. Structure–function studies of STAR family Quaking proteins bound to their in vivo RNA target sites

    PubMed Central

    Teplova, Marianna; Hafner, Markus; Teplov, Dmitri; Essig, Katharina; Tuschl, Thomas; Patel, Dinshaw J.

    2013-01-01

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins. PMID:23630077

  4. Case Study of Data Mining in Observational Astronomy: The Search for New OB Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Larkin, Cormac; Vink, Jorick; Kalari, Venu; Groh, Jose

    2018-01-01

    OB stars are the most luminous and massive stars, living short lives and exerting a disproportionate influence on their environments. They are key to understanding progenitors of gravitational wave sources and reionization of the early Universe. To detect new OB stars, we combine photometric catalog data with TLUSTY and ATLAS9 stellar atmospheres. This method is also believed to be sensitive to elusive “stripped” stars, thought to lose their hydrogen envelope through binary interaction.OB stars are intrinsically luminous, so complete populations are assumed for local group galaxies such as the Small Magellanic Cloud. Our findings challenge this, as we find 26 new OB candidates. Spectroscopy of 7 candidates shows a 100% detection rate. Most interestingly, 5 of our candidates are consistent with “stripped” stars.To date only 5 “stripped” candidates have been found serendipitously (e.g. HD 45166) as current methods are not sensitive to them. Our work doubles the sample of detected candidates, highlighting that our approach is the first to identify them in a targeted, systematic way. The finding of “stripped” stars could rewrite our understanding of the early Universe, offering an alternative hypothesis to Wolf-Rayet driven cosmic reionization.

  5. Prevalence and determinants of fatigue in patients with moderate to severe chronic GvHD.

    PubMed

    Im, A; Mitchell, S A; Steinberg, S M; Curtis, L; Berger, A; Baird, K; Kuzmina, Z; Joe, G; Comis, L E; Juckett, M; Avila, D; Baruffaldi, J; Masuch, L; Pirsl, F; Pavletic, S Z

    2016-05-01

    Although fatigue is common after allogeneic hematopoietic cell transplantation, little is known about fatigue in patients with chronic GvHD (cGvHD). The aim of this study was to explore factors associated with fatigue in cGvHD. Data were drawn from a sequentially recruited, cross-sectional study of adults with moderate or severe cGvHD (n=263). Respondents were classified as fatigued or not fatigued based on their response to a single item regarding loss of energy from the Lee cGvHD Symptom Scale. In univariate analysis, factors significantly associated with fatigue included performance status, number of prior cGvHD therapies, cGvHD symptom bother, self-assessed physical and mental health, nutritional status, walk velocity and self-reported physical activity. There were no significant associations between fatigue and disease-related cGvHD variables. Multivariable logistic regression demonstrated that being less active and having pulmonary and/or muscle/joint symptoms were independently associated with fatigue. In conclusion, clinically significant fatigue was prevalent in more than one-third of subjects with cGvHD, and was disabling. Absence of association with measures of cGvHD severity underscores the need to elucidate the pathogenesis of fatigue and its relationship with inflammatory activity. Pulmonary and muscle/joint symptoms and physical inactivity represent potential targets for intervention in clinical studies.

  6. The magnetic field of the double-lined spectroscopic binary system HD 5550

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the

  7. Characterization of depression in prodromal Huntington disease in the neurobiological predictors of HD (PREDICT-HD) study.

    PubMed

    Epping, Eric A; Mills, James A; Beglinger, Leigh J; Fiedorowicz, Jess G; Craufurd, David; Smith, Megan M; Groves, Mark; Bijanki, Kelly R; Downing, Nancy; Williams, Janet K; Long, Jeffrey D; Paulsen, Jane S

    2013-10-01

    Depression causes significant morbidity and mortality, and this also occurs in Huntington Disease (HD), an inherited neurodegenerative illness with motor, cognitive, and psychiatric symptoms. The presentation of depression in this population remains poorly understood, particularly in the prodromal period before development of significant motor symptoms. In this study, we assessed depressive symptoms in a sample of 803 individuals with the HD mutation in the prodromal stage and 223 mutation-negative participants at the time of entry in the Neurobiological Predictors of HD (PREDICT-HD) study. Clinical and biological HD variables potentially related to severity of depression were analyzed. A factor analysis was conducted to characterize the symptom domains of depression in a subset (n=168) with clinically significant depressive symptoms. Depressive symptoms were found to be more prevalent in HD mutation carriers but did not increase with proximity to HD diagnosis and were not associated with length of the HD mutation. Increased depressive symptoms were significantly associated with female gender, self-report of past history of depression, and a slight decrease in functioning, but not with time since genetic testing. The factor analysis identified symptom domains similar to prior studies in other populations. These results show that individuals with the HD mutation are at increased risk to develop depressive symptoms at any time during the HD prodrome. The clinical presentation appears to be similar to other populations. Severity and progression are not related to the HD mutation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. NuSTAR Discovery of a Possible Black Hole HMXB and Cygnus X-1 Progenitor

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Hailey, Charles James; Zhang, Shuo; Mori, Kaya; Gomez, Sebastian; Hong, Jaesub; Tomsick, John

    2017-01-01

    We report on NuSTAR observations of HD96670, a single line spectroscopic binary in the Carina OB association. We selected this source as a possible BH-HMXB candidate based on its 5.53d orbital period and 0.10 Msun mass function, both similar to Cyg X-1. HD96670 is a O8.5V main sequence star, and if its secondary were a BH, and its O star evolves to a O9Ib star like that in Cyg X-1, it would be high luminosity BH-HXMB. HD96670 is detected as a soft source in RASS and in the XMM slew survey. With a 150 ksec exposure with NuSTAR, we found a best-fit power law spectrum with photon index 2.4 - 2.6 and factor of ~2 variability. The mean Lx ~ 5 x 10^32 (5 - 30 keV) is consistent with that expected for accretion from the weak wind that late-type main sequence O stars usually show for plausible assumptions for the secondary if it is a ~5Msun BH. In the poster by Gomez and Grindlay, we show the detailed photometry and spectroscopy and PHOEBE modelling which point to the secondary indeed being a 5 Msun object, either an accreting BH or possibly a B8V star for which the X-ray spectrum would be expected to not show the hard PL component. Additional X-ray observations at or near the optically determined phase of inferiour vs. superior conjunction will resolve the nature of the secondary. If it is indeed a BH, this points the way to a much larger population of low-luminosity (Weak Wind) BH-LMXBs, with longer lifetimes, than the presently explored systems which all (but one) have super-giant donors.

  9. Hot Jupiters and Hot Spots: The Short- and Long-Term Chromospheric Activity on Stars with Giant Planets

    NASA Astrophysics Data System (ADS)

    Shkolnik, E.; Walker, G. A. H.; Bohlender, D. A.; Gu, P.-G.; Kürster, M.

    2005-04-01

    We monitored the chromospheric activity in the Ca II H and K lines of 13 solar-type stars (including the Sun): 8 of them over 3 years at the Canada-France-Hawaii Telescope (CFHT) and 5 in a single run at the Very Large Telescope (VLT). A total of 10 of the 13 targets have close planetary companions. All of the stars observed at the CFHT show long-term (months to years) changes in H and K intensity levels. Four stars display short-term (days) cyclical activity. For two, HD 73256 and κ1 Cet, the activity is likely associated with an active region rotating with the star; however, the flaring in excess of the rotational modulation may be associated with a hot Jupiter. A planetary companion remains a possibility for κ1 Cet. For the other two, HD 179949 and υ And, the cyclic variation is synchronized to the hot Jupiter's orbit. For both stars this synchronicity with the orbit is clearly seen in two out of three epochs. The effect is only marginal in the third epoch at which the seasonal level of chromospheric activity had changed for both stars. Short-term chromospheric activity appears weakly dependent on the mean K line reversal intensities for the sample of 13 stars. In addition, a suggestive correlation exists between this activity and the Mpsini of the star's hot Jupiter. Because of their small separation (<=0.1 AU), many of the hot Jupiters lie within the Alfvén radius of their host stars, which allows a direct magnetic interaction with the stellar surface. We discuss the conditions under which a planet's magnetic field might induce activity on the stellar surface and why no such effect was seen for the prime candidate, τ Boo. This work opens up the possibility of characterizing planet-star interactions, with implications for extrasolar planet magnetic fields and the energy contribution to stellar atmospheres. Based on observations collected at the Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la

  10. Discovery of a stellar companion to the nearby solar-analogue HD 104304

    NASA Astrophysics Data System (ADS)

    Schnupp, C.; Bergfors, C.; Brandner, W.; Daemgen, S.; Fischer, D.; Marcy, G.; Henning, Th.; Hippler, S.; Janson, M.

    2010-06-01

    Context. Sun-like stars are promising candidates to host exoplanets and are often included in exoplanet surveys by radial velocity (RV) and direct imaging. In this paper we report on the detection of a stellar companion to the nearby solar-analogue star HD 104304, which previously was considered to host a planetary mass or brown dwarf companion. Aims: We searched for close stellar and substellar companions around extrasolar planet host stars with high angular resolution imaging to characterize planet formation environments. Methods: The detection of the stellar companion was achieved by high angular resolution measurements, using the “Lucky Imaging” technique at the ESO NTT 3.5 m with the AstraLux Sur instrument. We combined the results with VLT/NACO archive data, where the companion could also be detected. The results were compared to precise RV measurements of HD 104304, obtained at the Lick and Keck observatories from 2001-2010. Results: We confirmed common proper motion of the binary system. A spectral type of M4V of the companion and a mass of 0.21 M_⊙ was derived. Due to comparison of the data with RV measurements of the unconfirmed planet candidate listed in the Extrasolar Planets Encyclopaedia, we suggest that the discovered companion is the origin of the RV trend and that the inclination of the orbit of i≈35°explains the relatively small RV signal. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatory under programme IDs 083.C-0145 and 084.C-0812, and on data obtained from the ESO Science Archive Facility.

  11. An in-depth study of HD 174966 with CoRoT photometry and HARPS spectroscopy. Large separation as a new observable for δ Scuti stars

    NASA Astrophysics Data System (ADS)

    García Hernández, A.; Moya, A.; Michel, E.; Suárez, J. C.; Poretti, E.; Martín-Ruíz, S.; Amado, P. J.; Garrido, R.; Rodríguez, E.; Rainer, M.; Uytterhoeven, K.; Rodrigo, C.; Solano, E.; Rodón, J. R.; Mathias, P.; Rolland, A.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2013-11-01

    Aims: The aim of this work was to use a multi-approach technique to derive the most accurate values possible of the physical parameters of the δ Sct star HD 174966, which was observed with the CoRoT satellite. In addition, we searched for a periodic pattern in the frequency spectra with the goal of using it to determine the mean density of the star. Methods: First, we extracted the frequency content from the CoRoT light curve. Then, we derived the physical parameters of HD 174966 and carried a mode identification out from the spectroscopic and photometric observations. We used this information to look for the models fulfilling all the conditions and discussed the inaccuracies of the method because of the rotation effects. In a final step, we searched for patterns in the frequency set using a Fourier transform, discussed its origin, and studied the possibility of using the periodicity to obtain information about the physical parameters of the star. Results: A total of 185 peaks were obtained from the Fourier analysis of the CoRoT light curve, all of which were reliable pulsating frequencies. From the spectroscopic observations, 18 oscillation modes were detected and identified, and the inclination angle (62.5°-17.5+7.5) and the rotational velocity of the star (142 km s-1) were estimated. From the multi-colour photometric observations, only three frequencies were detected that correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a quasiperiodic pattern Δν ~ 64 μHz. Using the inclination angle, the rotational velocity, and an Echelle diagram (showing a double comb outside the asymptotic regime), we concluded that the periodicity corresponds to a large separation structure. The quasiperiodic pattern allowed us to discriminate models from a grid. As a result, the value of the mean density is achieved with a 6% uncertainty. So, the Δν pattern could be used as a new observable for A-F type stars. The

  12. Validating An Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Burke, Christopher J.; Li, Jie; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division

    2016-06-01

    The Kepler Mission is developing an Analytic Completeness Model (ACM) to estimate detection completeness contours as a function of exoplanet radius and period for each target star. Accurate completeness contours are necessary for robust estimation of exoplanet occurrence rates.The main components of the ACM for a target star are: detection efficiency as a function of SNR, the window function (WF) and the one-sigma depth function (OSDF). (Ref. Burke et al. 2015). The WF captures the falloff in transit detection probability at long periods that is determined by the observation window (the duration over which the target star has been observed). The OSDF is the transit depth (in parts per million) that yields SNR of unity for the full transit train. It is a function of period, and accounts for the time-varying properties of the noise and for missing or deweighted data.We are performing flux-level transit injection (FLTI) experiments on selected Kepler target stars with the goal of refining and validating the ACM. “Flux-level” injection machinery inserts exoplanet transit signatures directly into the flux time series, as opposed to “pixel-level” injection, which inserts transit signatures into the individual pixels using the pixel response function. See Jie Li's poster: ID #2493668, "Flux-level transit injection experiments with the NASA Pleiades Supercomputer" for details, including performance statistics.Since FLTI is affordable for only a small subset of the Kepler targets, the ACM is designed to apply to most Kepler target stars. We validate this model using “deep” FLTI experiments, with ~500,000 injection realizations on each of a small number of targets and “shallow” FLTI experiments with ~2000 injection realizations on each of many targets. From the results of these experiments, we identify anomalous targets, model their behavior and refine the ACM accordingly.In this presentation, we discuss progress in validating and refining the ACM, and we

  13. A Decade of H α Transits for HD 189733 b: Stellar Activity versus Absorption in the Extended Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G., E-mail: pcauley@wesleyan.edu

    HD 189733 b is one of the most well studied exoplanets due to its large transit depth and host star brightness. The focus on this object has produced a number of high-cadence transit observations using high-resolution optical spectrographs. Here we present an analysis of seven full H α transits of HD 189733 b using HARPS on the 3.6 meter La Silla telescope and HIRES on Keck I, taken over the course of nine years from 2006 to 2015. H α transmission signals are analyzed as a function of the stellar activity level, as measured using the normalized core flux ofmore » the Ca ii H and K lines. We find strong variations in the strength of the H α transmission spectrum from epoch to epoch. However, there is no clear trend between the Ca ii core emission and the strength of the in-transit H α signal, although the transit showing the largest absorption value also occurs when the star is the most active. We present simulations of the in-transit contrast effect and find that the planet must consistently transit active latitudes with very strong facular and plage emission regions in order to reproduce the observed line strengths. We also investigate the measured velocity centroids with models of planetary rotation and show that the small line profile velocities could be due to large velocities in the upper atmosphere of the planet. Overall, we find it more likely that the measured H α signals arise in the extended planetary atmosphere, although a better understanding of active region emission for active stars such as HD 189733 is needed.« less

  14. Initial Results from the Palomar Adaptive Optics Survey of Young Solar-Type Stars: A Brown Dwarf and Three Stellar Companions

    NASA Astrophysics Data System (ADS)

    Metchev, Stanimir A.; Hillenbrand, Lynne A.

    2004-12-01

    We present first results from the Palomar Adaptive Optics Survey of Young Stars conducted at the Hale 5 m telescope. Through direct imaging we have discovered a brown dwarf and two low-mass stellar companions to the young solar-type stars HD 49197, HD 129333 (EK Dra), and V522 Per and confirmed a previously suspected companion to RX J0329.1+0118 (Sterzik et al.), at respective separations of 0.95" (43 AU), 0.74" (25 AU), 2.09" (400 AU), and 3.78" (380 AU). Physical association of each binary system is established through common proper motion and/or low-resolution infrared spectroscopy. Based on the companion spectral types, we estimate their masses at 0.06, 0.20, 0.13, and 0.20 Msolar, respectively. From analysis of our imaging data combined with archival radial velocity data, we find that the spatially resolved companion to HD 129333 is potentially identical to the previously identified spectroscopic companion to this star (Duquennoy & Mayor). However, a discrepancy with the absolute magnitude suggests that the two companions could also be distinct, with the resolved one being the outermost component of a triple system. The brown dwarf HD 49197B is a new member of a growing list of directly imaged substellar companions at 10-1000 AU separations from main-sequence stars, indicating that such brown dwarfs may be more common than initially speculated.

  15. High-resolution optical spectroscopy of Plaskett's star

    NASA Astrophysics Data System (ADS)

    Linder, N.; Rauw, G.; Martins, F.; Sana, H.; De Becker, M.; Gosset, E.

    2008-10-01

    Context: Plaskett's star (HD 47 129) is a very massive O + O binary that belongs to the Mon OB2 association. Previous work suggests that this system displays the Struve-Sahade effect although the measurements of the secondary radial velocities are very difficult and give controversial results. Both components have powerful stellar winds that collide and produce a strong X-ray emission. Aims: Our aim is to study the physical parameters of this system in detail and to investigate the relation between its spectral properties and its evolutionary status. Methods: We present here analysis of an extensive set of high-resolution optical spectra of HD 47 129. We used a disentangling method to separate the individual spectra of each star. We derived a new orbital solution and discuss the spectral classification of both components. A Doppler tomography technique applied to the emission lines Hα and He II λ 4686 yields a Doppler map that illustrates the wind interactions in the system. Finally, an atmosphere code is used to determine the different chemical abundances of the system components and the wind parameters. Results: HD 47 129 appears to be an O8 III/I + O7.5 III binary system in a post RLOF evolutionary stage, where matter has been transferred from the primary to the secondary star. The He overabundance of the secondary supports this scenario. In addition, the N overabundance and C underabundance of the primary component confirm previous results based on X-ray spectroscopy and indicate that the primary is an evolved massive star. We also determined a new orbital solution, with MP sin^3i = 45.4 ± 2.4 M⊙ and MS sin^3i = 47.3 ± 0.3 M⊙. Furthermore, the secondary star has a high rotational velocity (v sin i ˜ 300 km s-1) that deforms its surface, leading to a non-uniform distribution in effective temperature. This could explain the variations in the equivalent widths of the secondary lines with phase. We suggest that the wind of the secondary star is confined

  16. Near-IR Spectroscopy of Herbig Ae/Be Companion Stars

    NASA Astrophysics Data System (ADS)

    Rodgers, B. M.; van der Bliek, N. S.; Brandvig, B.; Thomas, S.; Doppmann, G.; Bouvier, J.

    2005-12-01

    We present first results of a program to obtain near-infrared spectra of candidate companions to intermediate mass pre-main sequence Herbig Ae/Be (HAEBE) stars. Accurate spectral classification is critical to proper identification of the secondary star and interpretation of its spectral energy distribution. Spectra also allow analysis of emission lines and other stellar charcteristics such as veiling and rotation, to determine the companion's evolutionary status and help establish binarity. Of the first six objects observed with GNIRS on Gemini South (AS310 NW, HD76534, HD150193, HR5999, HD141569 and CO Ori), we find two B+B companion pairs, three early A primaries with T Tauri type secondaries (G, K and M type), and a peculiar F+F pair in which the secondary star is the primary emission star (respectively). If true binaries, three systems are similar spectral type pairs but with very different extinction and emission properties. The three late-type secondaries all exhibit significant near-infrared excess, but only weak emission lines. Other components of our project are an AO-fed near-infrared imaging survey of a large sample of HAEBE systems (N. S. van der Bliek et al. poster) and modeling of companion spectral energy distributions (B. Brandvig et al. poster). Together, these three complementary approaches will result in the most thorough accounting of multiple HAEBE systems to date. Our initial spectroscopy sample contains about 40 objects taken from the literature, roughly half from Bouvier and Corporon (2001). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil

  17. The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    NASA Technical Reports Server (NTRS)

    Wisniewski, John P.; Clampin, Mark; Grady, Carol A.; Ardila, David R.; Ford, Holland C.; Golimowski, David A.; Illingworth, Garth D.; Krist, John E.

    2008-01-01

    We present the first multi-color view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (ACS). Radial profile fits of the surface brightness along the disk's semi-major axis indicates that the disk is not continuously flared, and extends to approx.540 AU. The disk's color (V-I)=1.1 at a radial distance of 3.5" is redder than the observed stellar color (V-I)=0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition, both of which would be consistent with the observed non-flared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansa observed in archival HST STIS coronagraphic data. Following transformation to similar band-passes, we find that the scattered light disk of HD 163296 is 1 mag arcsec(sup -2) fainter at 3.5" in the STIS data than in the ACS data. Moreover, variations are seen in (i) the visibility of the ansa(e) structures, in (ii) the relative surface brightness of the ansa(e) structures, and in (iii) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric. Subject headings: circumstellar matter - stars: individual (HD 163296) - planetary systems: formation - planetary systems: protoplanetary disks

  18. HD 156324: A Tidally Locked Magnetic SB3 With an Orbitally Disrupted Centrifugal Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Rivinius, Th.; Wade, G. A.; Alecian, E.; Kochukhov, O.; BinaMIcS Collaboration

    2018-01-01

    Period analysis of radial velocity, equivalent width, and magnetic measurements of the SB3 system HD 156324 yield identical results in all cases, indicating the system is tidally locked with orbital and rotational periods of 1.58 d. Its Hα emission profile exhibits marked morphological departures from the usual pattern observed amongst magnetic B-type stars, which can plausibly be ascribed to tidal disruption of the gravitocentrifugal potential.

  19. Detailed Abundances of Planet-hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the Atmospheres of HD 20782/81?

    NASA Astrophysics Data System (ADS)

    Mack, Claude E., III; Schuler, Simon C.; Stassun, Keivan G.; Norris, John

    2014-06-01

    Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters lsim0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T C ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T C >900 K) exhibit a positive correlation between abundance (relative to solar) and T C, with similar slopes of ≈1×10-4 dex K-1. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10-5 dex K-1 about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T C. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios. The data presented herein were obtained at the Las Campanas

  20. A Herschel resolved far-infrared dust ring around HD 207129

    NASA Astrophysics Data System (ADS)

    Marshall, J. P.; Löhne, T.; Montesinos, B.; Krivov, A. V.; Eiroa, C.; Absil, O.; Bryden, G.; Maldonado, J.; Mora, A.; Sanz-Forcada, J.; Ardila, D.; Augereau, J.-Ch.; Bayo, A.; Del Burgo, C.; Danchi, W.; Ertel, S.; Fedele, D.; Fridlund, M.; Lebreton, J.; González-García, B. M.; Liseau, R.; Meeus, G.; Müller, S.; Pilbratt, G. L.; Roberge, A.; Stapelfeldt, K.; Thébault, P.; White, G. J.; Wolf, S.

    2011-05-01

    Context. Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location. Aims: The Herschel DUNES key program is observing 133 nearby, Sun-like stars (<20 pc, FGK spectral type) in a volume limited survey to constrain the absolute incidence of cold dust around these stars by detection of far infrared excess emission at flux levels comparable to the Edgeworth-Kuiper belt (EKB). Methods: We have observed the Sun-like star HD 207129 with Herschel PACS and SPIRE. In all three PACS bands we resolve a ring-like structure consistent with scattered light observations. Using α Boötis as a reference point spread function (PSF), we deconvolved the images, clearly resolving the inner gap in the disc at both 70 and 100 μm. Results: We have resolved the dust-producing planetesimal belt of a debris disc at 100 μm for the first time. We measure the radial profile and fractional luminosity of the disc, and compare the values to those of discs around stars of similar age and/or spectral type, placing this disc in context of other resolved discs observed by Herschel/DUNES. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.

    2002-12-01

    We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.

  2. Gas and Dust Structures of the Protoplanetary Disk around HD 142527

    NASA Astrophysics Data System (ADS)

    Momose, M.; Muto, T.; Hanawa, T.; Fukagawa, M.; Tsukagoshi, T.; Saigo, K.; Kataoka, A.; Nomura, H.; Takeuchi, T.; Akiyama, E.; Ohashi, N.; Fujiwara, H.; Shibai, H.; Kitamura, Y.; Inutsuka, S.; Kobayashi, H.; Honda, M.; Aso, Y.; Takahashi, S. Z.

    2015-12-01

    HD142527 is a Herbig Fe star accompanied by a disk with ring-like structure. We derive the distributions of dust and gas separately by model fitting and discuss the spatial variation of gas-to-dust mass ratio in the disk. The radial distribution of dust is well approximated by a Gaussian function, while the gas is roughly followed by a power-law distribution between 110 and 400 AU in radius, which is significantly more extended than dust. G/d may reach the order of unity at the northern peak.

  3. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H imore » (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.« less

  4. M Stars as Targets for Terrestrial Exoplanet Searches And Biosignature Detection

    NASA Astrophysics Data System (ADS)

    Scalo, John; Kaltenegger, Lisa; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu. N.; Grenfell, John L.; Rauer, Hieke; Odert, Petra; Leitzinger, Martin; Selsis, F.; Khodachenko, Maxim L.; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M⊕ range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first ~1 Gyr, atmospheric retention is at peril because of intense and

  5. Kuiper belt structure around nearby super-Earth host stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Matrà, Luca; Marmier, Maxime; Greaves, Jane S.; Wyatt, Mark C.; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C.; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stéphane

    2015-05-01

    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10-20 M⊕ versus 3-5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system's scattered disc. We discuss alternative scenarios and possible means to distinguish among them.

  6. DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E.; Cowan, John J.

    2012-03-15

    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A Almost-Equal-To 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium ismore » predominantly produced in the main component of the r-process, along with the rare earth elements.« less

  7. The Algol-like binary TT Hydrae - The stars, circumstellar matter, and superionized plasma

    NASA Technical Reports Server (NTRS)

    Plavec, Mirek J.

    1988-01-01

    This paper reports on superionized UV emission lines discovered in TT Hydrae (HD 97528), a semidetached eclipsing binary system in the Southern-Hemisphere sky. The list of emission lines observed is typical for interacting nondegenerate binaries of the Algol type, but with system-specific relative-intensity characteristics. The primary component of the system is a B9.5 V main-sequence star with effective temperature of 9800 K. Its mass equals 2.25 solar masses; the radius is 1.9 solar radii; and surface gravity log g equals 4.23. The secondary star has a mass of 0.41 solar mass and fills its critical Roche lobe. Evidence obtained on mass interaction supports the conclusion that HD 97528 is a normal semidetached system.

  8. Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73.

    PubMed

    Zhan, Yiling; Guo, Shuyuan

    2015-01-01

    Bacillus thuringiensis (Bt) is capable of producing a chitin-binding protein believed to be functionally important to bacteria during the stationary phase of its growth cycle. In this paper, the chitin-binding domain 3 protein HD73_3189 from B. thuringiensis has been analyzed by computer technology. Primary and secondary structural analyses demonstrated that HD73_3189 is negatively charged and contains several α-helices, aperiodical coils and β-strands. Domain and motif analyses revealed that HD73_3189 contains a signal peptide, an N-terminal chitin binding 3 domains, two copies of a fibronectin-like domain 3 and a C-terminal carbohydrate binding domain classified as CBM_5_12. Moreover, analysis predicted the protein's associated localization site to be the cell wall. Ligand site prediction determined that amino acid residues GLU-312, TRP-334, ILE-341 and VAL-382 exposed on the surface of the target protein exhibit polar interactions with the substrate.

  9. A search for strong, ordered magnetic fields in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.

    2007-04-01

    The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe

  10. M stars as targets for terrestrial exoplanet searches and biosignature detection.

    PubMed

    Scalo, John; Kaltenegger, Lisa; Segura, Antígona; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu N; Grenfell, John L; Rauer, Heike; Odert, Petra; Leitzinger, Martin; Selsis, F; Khodachenko, Maxim L; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of

  11. The WR/LBV system HD 5980 in the Small Magellanic Cloud: What is its evolutionary status?

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Morrell, Nidia; Hillier, D. John; Barba, Rodolfo; Gamen, Roberto

    2013-06-01

    HD 5980 is located in the Small Magellanic Cloud and consists of two binary systems which, if physically associated, are very widely separated. Their orbital periods are 19.3d and 97d and each of these systems contains very luminous massive stars. The P=19.3d binary is peculiar in that it consists of two WR stars, one of which underwent an LBV eruption in 1994. Because this binary is eclipsing and because it has been monitored since the 1950s, we now have a good grasp on the fundamental parameters of the LBV component. Particularly noteworthy is the fact that its bolometric luminosity increased during the 1994 eruption. In this poster we will summarize our current knowledge of HD 5980, including recent results derived from observations at Las Campanas Observatory which yield an improved orbital solution for the two binary systems and strong limits on the mass of the LBV. With these data, it should now be possible to constrain the evolutionary path that has been followed by the LBV and speculate on its properties as it approaches the supernova stage.

  12. Nearby stars of the Galactic disk and halo. III.

    NASA Astrophysics Data System (ADS)

    Fuhrmann, K.

    2004-01-01

    High-resolution spectroscopic observations of about 150 nearby stars or star systems are presented and discussed. The study of these and another 100 objects of the previous papers of this series implies that the Galaxy became reality 13 or 14 Gyr ago with the implementation of a massive, rotationally-supported population of thick-disk stars. The very high star formation rate in that phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-driven Galactic winds, but was followed by a star formation gap for no less than three billion years at the Sun's galactocentric distance. In a second phase, then, the thin disk - our ``familiar Milky Way'' - came on stage. Nowadays it traces the bright side of the Galaxy, but it is also embedded in a huge coffin of dead thick-disk stars that account for a large amount of baryonic dark matter. As opposed to this, cold-dark-matter-dominated cosmologies that suggest a more gradual hierarchical buildup through mergers of minor structures, though popular, are a poor description for the Milky Way Galaxy - and by inference many other spirals as well - if, as the sample implies, the fossil records of its long-lived stars do not stick to this paradigm. Apart from this general picture that emerges with reference to the entire sample stars, a good deal of the present work is however also concerned with detailed discussions of many individual objects. Among the most interesting we mention the blue straggler or merger candidates HD 165401 and HD 137763/HD 137778, the likely accretion of a giant planet or brown dwarf on 59 Vir in its recent history, and HD 63433 that proves to be a young solar analog at \\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspected non-single from the Hipparcos astrometry, is directly detectable in the high-resolution spectroscopic tracings, whereas the visual binary \\chi Cet is instead at least triple, and presumably even quadruple. With respect to the nearby young stars a

  13. The Benchmark Ultracool Subdwarf HD 114762B: A Test of Low-metallicity Atmospheric and Evolutionary Models

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C.

    2009-12-01

    We present a near-infrared spectroscopic study of HD 114762B, the latest-type metal-poor companion discovered to date and the only ultracool subdwarf with a known metallicity, inferred from the primary star to be [Fe/H] = -0.7. We obtained a medium-resolution (R ~ 3800) Keck/OSIRIS 1.18-1.40 μm spectrum and a low-resolution (R ~ 150) Infrared Telescope Facility/SpeX 0.8-2.4 μm spectrum of HD 114762B to test atmospheric and evolutionary models for the first time in this mass-metallicity regime. HD 114762B exhibits spectral features common to both late-type dwarfs and subdwarfs, and we assign it a spectral type of d/sdM9 ± 1. We use a Monte Carlo technique to fit PHOENIX/GAIA synthetic spectra to the observations, accounting for the coarsely gridded nature of the models. Fits to the entire OSIRIS J-band and to the metal-sensitive J-band atomic absorption features (Fe I, K I, and Al I lines) yield model parameters that are most consistent with the metallicity of the primary star and the high surface gravity expected of old late-type objects. The effective temperatures and radii inferred from the model atmosphere fitting broadly agree with those predicted by the evolutionary models of Chabrier & Baraffe, and the model color-absolute magnitude relations accurately predict the metallicity of HD 114762B. We conclude that current low-mass, mildly metal-poor atmospheric and evolutionary models are mutually consistent for spectral fits to medium-resolution J-band spectra of HD 114762B, but are inconsistent for fits to low-resolution near-infrared spectra of mild subdwarfs. Finally, we develop a technique for estimating distances to ultracool subdwarfs based on a single near-infrared spectrum. We show that this "spectroscopic parallax" method enables distance estimates accurate to lsim10% of parallactic distances for ultracool subdwarfs near the hydrogen burning minimum mass. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated

  14. Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.

    1982-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.

  15. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  16. VizieR Online Data Catalog: Extrasolar planet HD 189733b whitelight curve (Crouzet+, 2014)

    NASA Astrophysics Data System (ADS)

    Crouzet, N.; McCullough, P. R.; Deming, D.; Madhusudhan, N.

    2017-05-01

    We used HST WFC3 with the newly implemented spatial scanning mode, developed in part to enable observations such as these (McCullough & MacKenty, 2012wfc..rept....8M). In this mode, a controlled scan is applied to the telescope during the exposure in a direction perpendicular to the wavelength dispersion direction (Figure 1). This technique is particularly efficient for bright stars such as HD 189733 (see McCullough et al. 2014ApJ...791...55M, for more details). One eclipse of HD 189733b was observed on 2013 June 24. The observations are divided into five HST orbits, the planetary eclipse occurring during the fourth orbit. In total, 159 exposures of 5.97 s each were acquired, corresponding to 32 exposures per orbit (except for the first orbit in which the first image is a direct image). (1 data file).

  17. Identification of the emission features near 3.5 microns in the pre main sequence star HD 97048

    NASA Technical Reports Server (NTRS)

    Baas, F.; Allamandola, L. J.; Geballe, T. R.; Persson, S. E.; Lacy, J. H.

    1982-01-01

    The spectrum of HD97048 was measured with a resolving power of 450 between 3.37 and 3.64 microns. The prominent feature near 3.5 microns is well resolved, with a peak at 3.53 microns and a wing extending to a shorter wavelength. The weaker feature near 3.4 microns is found to peak at 3.43 microns, in contrast to the 3.40 micron feature seen in other astronomical objects. The observed spectrum strongly resembles laboratory spectra of mixtures of monomeric and dimeric formaldehyde embedded in low temperature solids. Of various possible excitation mechanisms, ultraviolet pumped infrared fluorescence of formaldehyde in interstellar grains provides the best explanation for the observed spectrum of HD 97048.

  18. The CoRoT B-type binary HD 50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings⋆

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2012-06-01

    Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES

  19. The millimagnitude variability of the HgMn star φ Phe

    NASA Astrophysics Data System (ADS)

    Prvák, M.; Krtička, J.; Korhonen, H.

    2018-01-01

    The horizontally inhomogeneous chemical composition of the atmospheres of the chemically peculiar stars causes wavelength redistribution of the spectral energy in areas with increased abundance of heavier elements. Due to the rotation of the star, this usually leads to strictly periodic photometric variability in some spectral regions. We used abundance maps of the HgMn star φ Phe (HD 11753), obtained by means of the Doppler imaging, to model its photometric variability. Comparing the light curves derived from abundance maps obtained at different times, we also study how the time evolution of the surface spots affects this variability.

  20. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

    PubMed

    Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom

    2016-06-21

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V)  =  0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be

  1. IUE observations of blue halo high luminosity stars

    NASA Technical Reports Server (NTRS)

    Hack, M.; Franco, M. L.; Stalio, R.

    1981-01-01

    Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.

  2. Detection of atmospheric velocity fields in A-type stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.

    1998-10-01

    High signal-to-noise spectra with spectral resolution of more than 10(5) have been obtained of one normal B9.5V, one normal A1V, two Am stars, and two HgMn B stars having v sin i less than 6 km s(-1) . These spectra are modeled with LTE line profile synthesis to test the extent to which the spectrum of each star can be modeled correctly with a single set of parameters T_e, log g, chemical abundances, v sin i, and (depth-independent) microturbulent velocity xi . The answer to this question is important for abundance analysis of A and B stars; if conventional line synthesis does not reproduce the line profiles observed in stars of small v sin i, results obtained from such analysis are not likely to be very precise. The comparison of models with observations is then used to search for direct evidence of atmospheric motions, including line-strength dependent broadening, line core shape, and line asymmetries, in order to study how the microturbulence derived from abundance analysis is related to more direct evidence of atmospheric velocity fields. It is found for the three stars with 12,000 >= T_e >= 10,200 K (the normal star 21 Peg and the two HgMn stars 53 Tau and HD 193452) that xi is less than 1 km s(-1) , and line profiles are reproduced accurately by the synthesis with a single set of parameters. The slightly cooler (T_e ~ 9800 K) star HD 72660 has only a slightly stronger surface convective layer than the hotter stars, but for this star xi ~ 2.2 km s(-1) . Strong spectral lines all show significant asymmetry, with the blue line wing deeper than the red wing, and have line bisectors which have curvature towards the blue with a span of about 0.5 to 1.0 km s(-1) . A single model fits all lines satisfactorily. The two Am stars (HD 108642 and 32 Aqr), with T_e ~ 8000 K, are found to have much larger values of xi (4 to 5 km s(-1) ). The strong spectral lines of these two stars are extremely asymmetric, with depressed blue wings, and the bisectors have spans of order 3

  3. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing

  4. Interplay between Diffusion, Accretion and Nuclear Reactions in the Atmospheres of Sirius and Przybylski's Star

    NASA Astrophysics Data System (ADS)

    Yushchenko, A.; Gopka, V.; Goriely, S.; Lambert, D.; Shavrina, A.; Kang, Y. W.; Rostopchin, S.; Valyavin, G.; Lee, B.-C.; Kim, C.

    2007-06-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that peculiar stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. The first case is one of the hottest Am stars - Sirius. We determined the abundances of more than 50 chemical elements in the atmosphere of Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is the well known Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of our investigation on the stratification of chemical elements in the atmosphere of Przybylski's star and the new identification of lines corresponding to short-lived actinides in its spectrum. Possible explanations of the abundances pattern of Przybylski's star (as well as HR465 and HD965) can be the natural radioactive decays of thorium and uranium, the explosion of a companion as a supernova or the spallation reactions. These three hypotheses and (or) diffusion can possibly explain the abundance pattern of Przybylski's star and several similar objects such as HR465 and HD965.

  5. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    NASA Astrophysics Data System (ADS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-02-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H I (Hα and Hβ), He I, Ca II, and Fe II. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ˜10-10(R */R)3 g cm-3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the Hα-emitting portion of the inner gaseous disk of ˜10-9 M *. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l”Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  6. Sequential planet formation in transition disks: The case of HD 100546

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Birnsitel, Til; Walsh, Catherine; van Dishoeck, Ewine

    2015-08-01

    Transition disks are circumstellar disks with dust inner cavities and may reveal an intermediate step of the ongoing disk dispersal process, where planet formation might happen. The recent gas and dust observations of transition disks have given major support to the presence of massive planets in transition disks. The analysis of such observations help to constrain the properties of the potential unseen planets. An excellent candidate to analyse the dust evolution when planets are embedded in disks is the transition disk around the Herbig Ae star HD 100546. Near-infrared observations of HD 100546 suggested the presence on an inner planet at 10 AU distance from the star (e.g. Mulders et al. 2013), while an outer planet has been directly imaged at 70 AU distance, which may be in the act of formation (Quant et al. 2013, 2015; Currie et al. 2014). The two embedded planets can lead to remarkable dust structures due to the particle trapping at the edges of the gaps caved by such planets (e.g. Pinilla et al. 2012, 2015). Recent ALMA Cycle 0 observations of this disk reveal a two-ring like structure consistent with particle trapping induced by the two companions (Walsh et al. 2014). The comparison of these observations with dust evolution models, that include the coagulation and fragmentation of dust grains, suggest that the outer companion must be at least two million of years younger than the inner companion, revealing sequential planet formation in this disk (Pinilla et al. 2015, under revision).

  7. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to youngmore » cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.« less

  8. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.; Kuchner, Marc J.

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at rproj ˜ 14 AU, located just interior to or at the inner disk wall consistent with being a <10-20 MJ candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  9. Detection of a Third Planet in the HD 74156 System Using the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Armstrong, Amber

    2008-01-01

    We report the discovery of a third planetary-mass companion to the G0 star HD 74156. High-precision radial velocity measurements made with the Hobby-Eberly Telescope aided the detection of this object. The best-fit triple-Keplerian model to all the available velocity data yields an orbital period of 347 days and a minimum mass of 0.4 MJup for the new planet. We determine revised orbital periods of 51.7 and 2477 days and minimum masses of 1.9 and 8.0 MJup, respectively, for the previously known planets. Preliminary calculations indicate that the derived orbits are stable, although all three planets have significant orbital eccentricities (e = 0.64, 0.43, and 0.25). With our detection, HD 74156 becomes the eighth normal star known to host three or more planets. Further study of this system's dynamical characteristics will likely give important insight into planet formation and evolutionary processes. Based on data obtained with the Hobby-Eberly Telescope (HET). The HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität Muenchen, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

  10. GPI Spectroscopy of the Mass, Age, and Metallicity Benchmark Brown Dwarf HD 4747 B

    NASA Astrophysics Data System (ADS)

    Crepp, Justin R.; Principe, David A.; Wolff, Schuyler; Giorla Godfrey, Paige A.; Rice, Emily L.; Cieza, Lucas; Pueyo, Laurent; Bechter, Eric B.; Gonzales, Erica J.

    2018-02-01

    The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d = 18.69 ± 0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K 1-band recover the companion and reveal that it is near the L/T transition (T1 ± 2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a 2σ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study “secondary effects” such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.

  11. Herschel Observations and Updated Spectral Energy Distributions of Five Sunlike Stars with Debris Disks

    NASA Astrophysics Data System (ADS)

    Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff; Harvey, Paul; Green, Joel D.

    2016-12-01

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μm infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a min ˜ 3 μm, although a min is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10-5 ⩽ L/L ⊙ ⩽ 2 × 10-4, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  12. The Discovery of a Low-Mass Binary Companion to HD130948

    NASA Astrophysics Data System (ADS)

    Potter, D. E.; Cushing, M. C.; Neuhauser, R.

    2003-10-01

    We report the discovery of a low mass binary companion to the nearby (17.9 pc) main sequence star HD130948 (HR5534, HIP 72567) using the Hokupa'a adaptive optics instrument mounted on the Gemini North 8 meter telescope. Both companions have the same common proper motion as the primary star as seen over a 4 month baseline. The JHK' photometry of the companions, when placed on a near-IR color-magnitude diagram and compared with theoretical models places them at the bottom of the M-dwarf sequence. Preliminary near IR spectra have been obtained with SpeX mounted on the NASA IRTF 3 meter telescope are consistent with the photometric results and show carbon monoxide bandheads and water absorption features indicative of an early L-late M spectral type. The X-ray activity and Lithium abundance of the primary star indicate that the system is probably less than 1 Gyr old. Assuming a young age, these objects are less than 80 Mjupiter. With further astrometric observations carried out over an estimated orbital period of 10-20 years, a dynamical mass will be obtained.

  13. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  14. VizieR Online Data Catalog: Abundances of metal-poor star HD 94028 (Roederer+, 2016)

    NASA Astrophysics Data System (ADS)

    Roederer, I. U.; Karakas, A. I.; Pignatari, M.; Herwig, F.

    2016-06-01

    We use two NUV spectroscopic data sets of HD 94028 available in the Mikulski Archive for Space Telescopes. These observations were made using STIS on board the HST. One spectrum (data sets O5CN01-03, GO-8197, PI. Duncan) has very high spectral resolution (R~110000). This spectrum covers ~1885-2147Å with signal-to-noise ratios (S/N)35/1 per pixel near 2140Å. The other spectrum (data sets O56D06-07, GO-7402, PI. Peterson) has high spectral resolution (R~30000). This spectrum covers 2280-3117Å with S/N ranging from ~20 near 2300Å to ~40 near 3100Å. Roederer et al. (2014, J/AJ/147/136) derived abundances from an optical spectrum of HD 94028 taken using the Robert G. Tull Coude Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, Texas. We rederive abundances from this spectrum. We also use an optical spectrum taken with the Ultraviolet and Visual Echelle Spectrograph (UVES) on the Very Large Telescope (VLT) Kueyen at Cerro Paranal, Chile. We obtained this spectrum from the ESO Science Archive. This spectrum covers 3050-3860Å at R~37000 with S/N ranging from ~40 near 3200Å to ~130 near 3800Å. (3 data files).

  15. A radial velocity survey of the Carina Nebula's O-type stars

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  16. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M.; De Gregorio-Monsalvo, Itziar; Manara, Carlo F.; Natta, Antonella; Pérez, Laura M.; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-01

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the 12CO, 13CO, and C 18O J =2 -1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  17. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA.

    PubMed

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M; De Gregorio-Monsalvo, Itziar; Manara, Carlo F; Natta, Antonella; Pérez, Laura M; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-16

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the ^{12}CO, ^{13}CO, and C^{18}O J=2-1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  18. Search for spectroscopical signatures of transiting HD 209458b's exosphere

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Coustenis, A.; Schneider, J.; St Gilles, R.; Mayor, M.; Queloz, D.; Kaufer, A.

    2001-05-01

    Following recent attempts to detect the exosphere of the extra-solar planet 51 Pegb in the infrared (Coustenis et al. \\cite{cou97}, \\cite{cou98}; Rauer et al. \\cite{rau00a}), we discuss here a search for optical spectroscopic signatures from a gaseous extended envelope (called exosphere) surrounding the planet HD 209458b. This planet has a demonstrated photometric transit (Charbonneau et al. \\cite{cha00a}; Henry et al. \\cite{hen00}), thus offering an increased probability for the spectroscopic detection of such an envelope. Therefore it is the best known candidate for probing the exospheric composition of a giant planet, orbiting a Sun-like star at a short distance. The observations were performed with UVES at the VLT and cover most of the 328-669 nm range. We did not detect HD 209458b's exosphere at a level of 1%, a value close to the predictions. We discuss here the first results obtained and their limitations, as well as future prospective. Based on public data from the UVES Commissioning at the ESO 8.2~m Kueyen telescope operated on Paranal Observatory, Chile.

  19. Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Berger, J.-P.; Millan-Gabet, R.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Zhao, M.

    2006-08-01

    Using the three-telescope IOTA interferometer on Mount Hopkins, we report results from the first near-infrared (λ=1.65 μm) closure-phase survey of young stellar objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 mas, expected from generic ``flared disk'' models. Six of 14 targets showed small, yet statistically significant nonzero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main-sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk, and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, & Natta (DDN). Our data support disk models with curved inner rims because the expected emission appears symmetrically distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5%-10% of light on scales 0.01"-0.50") around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.

  20. MOST Detects Transits of HD 97658b, a Warm, Likely Volatile-rich Super-Earth

    NASA Astrophysics Data System (ADS)

    Dragomir, Diana; Matthews, Jaymie M.; Eastman, Jason D.; Cameron, Chris; Howard, Andrew W.; Guenther, David B.; Kuschnig, Rainer; Moffat, Anthony F. J.; Rowe, Jason F.; Rucinski, Slavek M.; Sasselov, Dimitar; Weiss, Werner W.

    2013-07-01

    Through photometric monitoring of the extended transit window of HD 97658b with the MOST space telescope, we have found that this exoplanet transits with an ephemeris consistent with that predicted from radial velocity measurements. The mid-transit times are 5.6σ earlier than those of the unverified transit-like signals reported in 2011, and we find no connection between the two sets of events. The transit depth together with our determined stellar radius (R_\\star = 0.703^{+0.039}_{-0.034}\\ R_\\odot) indicates a 2.34^{+0.18}_{-0.15} R ⊕ super-Earth. When combined with the radial velocity determined mass of 7.86 ± 0.73 M ⊕, our radius measure allows us to derive a planet density of 3.44^{+0.91}_{-0.82} g cm-3. Models suggest that a planet with our measured density has a rocky core that is enveloped in an atmosphere composed of lighter elements. The star of the HD 97658 system is the second brightest known to host a transiting super-Earth, facilitating follow-up studies of this not easily daunted, warm and likely volatile-rich exoplanet. Based on data from the MOST satellite, a Canadian Space Agency mission operated by Microsatellite Systems Canada Inc. (MSCI; former Dynacon Inc.) and the Universities of Toronto and British Columbia, with the assistance of the University of Vienna.

  1. A search for spectroscopic binaries among the runaway O type stars

    NASA Technical Reports Server (NTRS)

    Stone, R. C.

    1982-01-01

    Numerous radial velocity measurements of medium dispersion were made for the 10 brighter stars given in Stone's list of very probable O type runaways. All plates were measured with the KPNO PDS microdensitometer, and a new iterative reductional analysis was used to derive plate velocities, which are estimated to be 1.6 times more accurate internally than those found by using the traditional method. Of thse stars, psi Per, alpha Cam, HD 188209, and 26 Cep are identified as probable velocity variables, while 9 Sge, lambda Cep, and HD 218915 are classed as possible variables. If the source of this variability is Keplerian rather than atmospheric, which cannot be established unequivocally from the observations of this paper, psi Per could be a spectroscopic binary with a black hole companion, and at least 1.2 solar mass. The detection of runaway binary systems from radial velocity measurements is discussed.

  2. Transit Spectroscopy of Extrasolar Planet HD209458b: The Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Rojo, P.; Harrington, J.; Dermody, J.; Zeehandelaar, D.; Deming, D.; Wiedemann, G.; Seager, S.; Iro, N.; Fortney, J. J.; Burrows, A.

    2004-11-01

    We have developed a new code that calculates the modulation of a star's spectrum as a planet transits. We are applying this model to data from the VLT, Palomar, Keck, and IRTF to search for water on HD209458b, the transiting planet with the brightest primary. Observations of HD209458b's stellar spectrum modulation have yielded the first detections of exoplanetary sodium (Charbonneau et al. 2001), hydrogen, oxygen and carbon (Vidal-Madjar et al. 2003, 2004). Molecules, however, have still avoided detection. Water is predicted to be abundant at all plausible temperatures, but the modulation for most of the observable features is <0.04%. By simultaneously fitting for many excited water features while avoiding telluric water lines, we can significantly increase our signal. Our model predicts the modulation given line data, system geometry, and thermal and abundance profiles for any transiting planet. We will use this code to compare the observed modulation for HD209458b with that predicted by different planetary theories, do calculations for specific instruments with different resolutions and wavelength ranges, and constrain the abundances of detected species. We find that integrating the extinction over altitude produces significantly better results than assuming that the planet is an opaque disk whose radius is the altitude of optical depth unity. The latter is a widely used simplification. Our work will allow us to establish or place strong limits on the water abundance in HD209458b's atmosphere. Even a non-detection will be important, as it will require significant modifications to existing theory and/or will justify the need for better space-based instruments. This work was supported by NASA grant NAG5-13154.

  3. Young, active radio stars in the AB Doradus moving group

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.; Tognelli, E.; Hormuth, F.; Ortiz, J. L.

    2017-06-01

    Context. Precise determination of stellar masses is necessary to test the validity of pre-main-sequence (PMS) stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M⊙. To improve such a test, and based on our previous studies, we selected the AB Doradus moving group (AB Dor-MG) as the best-suited association on which to apply radio-based high-precision astrometric techniques to study binary systems. Aims: We seek to determine precise estimates of the masses of a set of stars belonging to the AB Dor-MG using radio and infrared observations. Methods: We observed in phase-reference mode with the Very Large Array (VLA) at 5 GHz and with the European VLBI Network (EVN) at 8.4 GHz the stars HD 160934, EK Dra, PW And, and LO Peg. We also observed some of these stars with the near-infrared CCD AstraLux camera at the Calar Alto observatory to complement the radio observations. Results: We determine model-independent dynamical masses of both components of the star HD 160934, A and c, which are 0.70 ± 0.07 M⊙ and 0.45 ± 0.04 M⊙, respectively. We revised the orbital parameters of EK Dra and we determine a sum of the masses of the system of 1.38 ± 0.08 M⊙. We also explored the binarity of the stars LO Peg and PW And. Conclusions: We found observational evidence that PMS evolutionary models underpredict the mass of PMS stars by 10%-40%, as previously reported by other authors. We also inferred that the origin of the radio emission must be similar in all observed stars, that is, extreme magnetic activity of the stellar corona that triggers gyrosynchrotron emission from non-thermal, accelerated electrons.

  4. ALMA detection of a disk wind from HD 163296

    NASA Astrophysics Data System (ADS)

    Klaassen, Pamela; Juhasz, Attila; Mathews, Geoffrey; Mottram, Joseph; De Gregorio-Monsalvo, Itziar; van Dishoeck, Ewine; Takahashi, Satoko; Akiyama, Eiji; Chapillon, Edwige; Espada, Daniel; Hales, Antonio; Hogerheijde, Michiel; Rawlings, Mark; Schmalzl, Markus; Testi, Leonardo

    2013-07-01

    Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA Science Verification data of CO J=2-1 and J=3-2 emission which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km/s. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet which is moving at much higher velocities. We show that the J=3-2 emission is likely heavily filtered by the interferometer, but the J=2-1 emission suffers less due to the larger beam and measurable angular scales. Excitation analysis suggests temperatures exceeding 900 K in these compact features. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star, signaling the end of the main accretion phase.

  5. The star forming universe after z=1

    NASA Astrophysics Data System (ADS)

    Harker, Justin J.

    This dissertation explores three projects in the field of galaxy formation and evolution: the formation of the red sequence via quenching, the detection, characterization, and frequency of starbursts in the DEEP2 sample, and the behavior of a main sequence of star forming galaxies whose behavior is determined by baryonic mass, referred to as staged star formation. The first section, in Chapter 2, presents a breakdown of several population synthesis models designed to probe the history of the red sequence. Known from measurements at low redshift to be composed of objects with a large range of ages, the red sequence is not well-modeled as being the result of a single monolithic event in the distant past. By combining information on restframe color, Balmer absorption line strengths, and the number density of L* galaxies as a function of redshift, we find evidence that the red sequence is built up over time. The second section, in Chapter 3 and 4, presents a novel method for determining simultaneously the absorption line and emission line contributions to the total measured equivalent width of Balmer lines. Relying on the predictable behavior of both absorption lines, which are to first order equivalent to one another, and emission lines, which follow a predictable decrement toward shorter wavelengths, a single measurement of total line strength for Hb and Hd yield uncoupled emission and absorption line components. Using the measurement of Hd in absorption against D n 4000 and Hb in emission, we isolate a population of potential starbursts in the DEEP2 sample. The final section, in Chapter 5, explores the regularity of star formation as a function of redshift, using the staged star formation prescription of Noeske et al. (2007a). We compute a set of t-models using the prescription, and compare them to the data in a number of parameters in addition to mass and star formation. While the staged star formation model is a good match in a number of parameters, we find

  6. Line Identifications and Preliminary Synthesis of High-resolution Infrared Spectra of CP and Herbig Ae Stars

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Castelli, F.; Hubrig, S.; Wolff, B.; Elkin, V.

    2012-01-01

    We report on surveys of infrared spectra of chemically peculiar and Herbig Ae stars based on CRIRES (Kaufl, et al. SPIE, 5492, 1218 2004). We discuss the magnetic CP stars Gamma Equ and HD 154708, and multiple-phase observations of the Herbig Ae star HD 101412. The Be star HR 4537 and HgMn HR 6620 were also examined. The primary emphasis of the present work is on line identifications primarily in four regions, 1065-1091, 1084-1109,1550-1587, and 2276-2313nm (with order gaps). Observations were reduced with recipes available from the ESO CRIRES data reduction pipeline. Wavelength calibration is determined from daytime ThAr arc lamp exposures. Generally speaking, this is not rich in atomic lines. The strongest features are the Paschen line P6 (1093.81nm), and He I (108.30nm). The latter shows phase variations indicative of a more complex magnetic field than that of a pure dipole. No individual molecular lines were found in these early stars, though CO emission from circumstellar material is likely present in HR 4537 and HD 101412. We used atomic line lists from Kurucz's site (kurucz.harvard.edu) and VALD (http://vald.astro.univie.ac.at/ cf. Kupka et al. 1999, A&AS, 138, 119), supplemented by Outred (J. Phys. Chem. Ref. Data 7, 1, 1978). The following spectra were identified in Gamma Equ: C I, Si I, Ca I, Mg I, II, Cr I, Fe I, Sr II, and Ce III (1584.75nm). The Ap star spectra show broad Zeeman patterns compatible with published models and field strengths. Synthetic calculations used SYNTHE and SYNTHMAG (Piskunov N. E., 1999, in Astrophys. Space Sci. Library Vol. 243, Solar polarization. Kluwer, p 515). The γ Equ model is from Heiter et al. (2002, A&A, 392, 619). and the line list from VALD.

  7. A magnetic survey of AP stars in young clusters - Preliminary results

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Landstreet, J. D.; Thompson, I.

    Photoelectric polarimetry of Ap stars was undertaken in order to investigate the role of magnetic fields in the evolution of atmospheric chemical peculiarities and the braking of stellar rotation. The stars are grouped by cluster or association and listed by HD number, and each star's spectral type, reference for classification, number of magnetic observations, and root mean square of the equivalent magnetic field measurements obtained from an expression are shown. The data obtained to date include several new magnetic identifications and display the character of the survey, but are not yet sufficient to support any firm evolutionary conclusions.

  8. Long-Term Follow-Up of Contemporary Treatment in Early-Stage Hodgkin Lymphoma: Updated Analyses of the German Hodgkin Study Group HD7, HD8, HD10, and HD11 Trials.

    PubMed

    Sasse, Stephanie; Bröckelmann, Paul J; Goergen, Helen; Plütschow, Annette; Müller, Horst; Kreissl, Stefanie; Buerkle, Carolin; Borchmann, Sven; Fuchs, Michael; Borchmann, Peter; Diehl, Volker; Engert, Andreas

    2017-06-20

    Purpose Combined-modality treatment is widely considered the standard of care in early-stage Hodgkin lymphoma (HL), and treatment intensity has been reduced over the last years. Long-term follow-up is important to judge both efficacy and safety of the different therapies used. Patients and Methods We analyzed updated follow-up data on 4,276 patients treated within the German Hodgkin Study Group trials HD7 and HD10 for early-stage favorable HL and HD8 and HD11 for early-stage unfavorable HL between 1993 and 2003. Results In HD7 (N = 627; median follow-up, 120 months), combined-modality treatment was superior to extended-field radiotherapy (RT), with 15-year progression-free survival (PFS) of 73% versus 52% (hazard ratio [HR], 0.5; 95% CI, 0.3 to 0.6; P < .001), without differences in overall survival (OS). In HD10 (N = 1,190; median follow-up, 98 months), noninferiority of two cycles of doxorubicin, bleomycin, vinblastine, dacarbazine (ABVD) plus 20 Gy involved-field (IF)-RT to more intensive four cycles of ABVD plus 30 Gy IF-RT was confirmed with 10-year PFS of 87% each (HR, 1.0; 95%, 0.6 to 1.5) and OS of 94% each (HR, 0.9; 95% CI, 0.5 to 1.6), respectively. In both trials, no differences in second neoplasias were observed. In HD8 (N = 1,064; median follow-up, 153 months), noninferiority of involved-field RT to extended-field RT regarding PFS was confirmed (HR, 1.0; 95% CI, 0.8 to 1.2). In HD11 (N = 1,395; median follow-up, 106 months), superiority of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone at baseline over ABVD was not observed. After BEACOPP baseline , 20 Gy IF-RT was noninferior to 30 Gy (10-year PFS, 84% v 84%; HR, 1.0; 95% CI, 0.7 to 1.5). In contrast, PFS was inferior in ABVD-treated patients receiving 20 Gy instead of 30 Gy IF-RT (10-year PFS, 76% v 84%; HR, 1.5; 95% CI, 1.0 to 2.1). No differences in OS or second neoplasias were observed in in both trials. Conclusion Long-term follow-up data of the

  9. Development of the HD-Teen Inventory

    PubMed Central

    Driessnack, Martha; Williams, Janet K.; Barnette, J. Jackson; Sparbel, Kathleen J.; Paulsen, Jane S.

    2013-01-01

    Adolescents, who have a parent with Huntington Disease (HD), not only are at genetic risk for HD but also are witness to its onset and devastating clinical progression as their parent declines. To date, no mechanism has been developed to direct health care providers to the atypical adolescent experiences of these teens. The purpose of this report is to describe the process of developing the HD-Teen Inventory clinical assessment tool. Forty-eight teens and young adults from 19 U.S. states participated in the evaluation of the HD-Teen Inventory tool. Following item analysis, the number of items was reduced and item frequency and reaction scales were combined, based on the strong correlation (r = .94). The resultant tool contains 15 inventory and 2 open-ended response items. The HD-Teen Inventory emerged as a more compact and efficient tool for identifying the most salient concerns of at-risk teens in HD families in research and/or clinical practice. PMID:21632913

  10. Development of the HD-Teen Inventory.

    PubMed

    Driessnack, Martha; Williams, Janet K; Barnette, J Jackson; Sparbel, Kathleen J; Paulsen, Jane S

    2012-05-01

    Adolescents, who have a parent with Huntington Disease (HD), not only are at genetic risk for HD but also are witness to its onset and devastating clinical progression as their parent declines. To date, no mechanism has been developed to direct health care providers to the atypical adolescent experiences of these teens. The purpose of this report is to describe the process of developing the HD-Teen Inventory clinical assessment tool. Forty-eight teens and young adults from 19 U.S. states participated in the evaluation of the HD-Teen Inventory tool. Following item analysis, the number of items was reduced and item frequency and reaction scales were combined, based on the strong correlation (r = .94). The resultant tool contains 15 inventory and 2 open-ended response items. The HD-Teen Inventory emerged as a more compact and efficient tool for identifying the most salient concerns of at-risk teens in HD families in research and/or clinical practice.

  11. Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Meilland, A.; Kanaan, S.; Borges Fernandes, M.; Chesneau, O.; Millour, F.; Stee, Ph.; Lopez, B.

    2010-03-01

    Context. B[e] stars are hot stars surrounded by circumstellar gas and dust which is responsible for the presence of emission lines and IR-excess in their spectra. How dust can be formed in this highly illuminated and diluted environment remains an open issue. Aims: HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circumstellar envelope in the mid-infrared using long-baseline interferometry, which is the only observing technique able to spatially resolve objects smaller than a few tens of milliarcseconds. Methods: We obtained nine calibrated visibility measurements between October 2006 and January 2008 using the VLTI/MIDI instrument in SCI-PHOT mode and PRISM spectral dispersion mode with projected baselines ranging from 13 to 71 m and with various position angles (PA). We used geometrical models and physical modeling with a radiative transfer code to analyze these data. Results: The dusty circumstellar environment of HD 62623 is partially resolved by the VLTI/MIDI, even with the shortest baselines. The environment is flattened (a/b~1.3±0.1) and can be separated into two components: a compact one whose extension grows from 17 mas at 8 μm to 30 mas at 9.6 μm and stays almost constant up to 13 μm, and a more extended one that is over-resolved even with the shortest baselines. Using the radiative transfer code MC3D, we managed to model HD 62623's circumstellar environment as a dusty disk with an inner radius of 3.85±0.6 AU, an inclination angle of 60±10°, and a mass of 2 × 10-7 M_⊙. Conclusions: It is the first time that the dusty disk inner rim of a supergiant star exhibiting the B[e] phenomenon is significantly constrained. The inner gaseous envelope likely contributes up to 20% to the total N band flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar wind deceleration by the companion's gravitational effects remains the most probable case since the bi-stability mechanism

  12. Characterization of the HD 17156 planetary system

    NASA Astrophysics Data System (ADS)

    Barbieri, M.; Alonso, R.; Desidera, S.; Sozzetti, A.; Martinez Fiorenzano, A. F.; Almenara, J. M.; Cecconi, M.; Claudi, R. U.; Charbonneau, D.; Endl, M.; Granata, V.; Gratton, R.; Laughlin, G.; Loeillet, B.; EXOPLANET Amateur Consortium

    2009-08-01

    Aims: We present data to improve the known parameters of the HD 17156 system (peculiar due to the eccentricity and long orbital period of its transiting planet) and constrain the presence of stellar companions. Methods: Photometric data were acquired for 4 transits, and high precision radial velocity measurements were simultaneously acquired with the SARG spectrograph at TNG for one transit. The template spectra of HD 17156 was used to derive effective temperature, gravity, and metallicity. A fit of the photometric and spectroscopic data was performed to measure the stellar and planetary radii, and the spin-orbit alignment. Planet orbital elements and ephemeris were derived from the fit. Near infrared adaptive optic images were acquired with the AdOpt module of TNG. Results: We found that the star has a radius of RS = 1.44±0.03 R_⊙ and the planet RP = 1.02±0.08 RJ. The transit ephemeris is Tc = 2 454 756.73134 ± 0.00020 + N \\cdot 21.21663 ± 0.00045 BJD. Analysis of the Rossiter-Mclaughlin effect shows that the system is spin orbit aligned with an angle β = 4.8°±5.3°. The analysis of high resolution images did not reveal any stellar companion with a projected separation between of 150 and 1 000 AU from HD 17156. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations collected at Asiago observatory, at Observatoire de Haute Provence and with Telast at IAC. Photometry and radial velocity data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/503/601

  13. Beryllium Abundances of Six Halo Stars

    NASA Astrophysics Data System (ADS)

    Thorburn, J. A.; Hobbs, L. M.

    1996-05-01

    High signal-to-noise (S/N≍80), high-resolution (R≍25 000) spectra of six warm halo stars have been obtained in the Be II λ3130 region. Beryllium abundances derived through spectrum synthesis are generally consistent with [Be/Fe]≍0 and probably do not support the simplest models of cosmic-ray nucleosynthesis. Alternative scenarios whereby energetic C, N, and O nuclei collide with ambient He nuclei-rather than the converse-are more compatible with the data. However, these observations constrain net Be production only. If Galactic astration of Be is important, then Be production mechanisms must be proportionally more efficient. In the case of the near twin stars HD 94028 and HD 194598, log(Be/H) differs by 0.3 dex despite effectively identical Li abundances. A difference in initial Be abundance rather than stellar depletion is proposed to account for the discrepancy. Our Be abundances are typically ˜0.3 dex lower than those reported by Boesgaard & King [Al, 106, 2309 (1993)] for five stars in common. The disparity in Be abundance scales is due to the combined influences of differences in assigned stellar parameters and overestimated Be ii λ3131.066 line strengths in the Boesgaard & King study. Systematic errors in published Be abundances may be greater than has previously been suggested. A consistency check of the line list used for the synthesis reveals an unidentified blending feature of moderate strength slightly blueward of λ3131.066 in the Sun. Results of the present investigation are not significantly influenced by the ambiguous identity of the contaminating feature. However, studies which include cooler, more metal-rich stars may, as a consequence of neglecting or improperly identifying this line, report incorrect slopes of log(Be/H) vs [Fe/H] or erroneously large scatter in log(Be/H).

  14. The Test Case of HD 26965: Difficulties Disentangling Weak Doppler Signals from Stellar Activity

    NASA Astrophysics Data System (ADS)

    Díaz, Matías R.; Jenkins, James S.; Tuomi, Mikko; Butler, R. Paul; Soto, Maritza G.; Teske, Johanna K.; Feng, Fabo; Shectman, Stephen A.; Arriagada, Pamela; Crane, Jeffrey D.; Thompson, Ian B.; Vogt, Steven S.

    2018-03-01

    We report the discovery of a radial velocity signal that can be interpreted as a planetary-mass candidate orbiting the K dwarf HD 26965, with an orbital period of 42.364 ± 0.015 days, or alternatively, as the presence of residual, uncorrected rotational activity in the data. Observations include data from HIRES, PFS, CHIRON, and HARPS, where 1111 measurements were made over 16 years. Our best solution for HD 26965 b is consistent with a super-Earth that has a minimum mass of 6.92 ± 0.79 {M}\\oplus orbiting at a distance of 0.215 ± 0.008 au from its host star. We have analyzed the correlation between spectral activity indicators and the radial velocities from each instrument, showing moderate correlations that we include in our model. From this analysis, we recover a ∼38-day signal, which matches some literature values of the stellar rotation period. However, from independent Mt. Wilson HK data for this star, we find evidence for a significant 42-day signal after subtraction of longer period magnetic cycles, casting doubt on the planetary hypothesis for this period. Although our statistical model strongly suggests that the 42-day signal is Doppler in origin, we conclude that the residual effects of stellar rotation are difficult to fully model and remove from this data set, highlighting the difficulties to disentangle small planetary signals and photospheric noise, particularly when the orbital periods are close to the rotation period of the star. This study serves as an excellent test case for future works that aim to detect small planets orbiting “Sun-like” stars using radial velocity measurements. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  15. Highly ionized atoms toward HD 93521

    NASA Technical Reports Server (NTRS)

    Spitzer, Lyman, Jr.; Fitzpatrick, Edward L.

    1992-01-01

    Results are reported from the HST High Resolution Spectrograph observations of absorption features of C IV and Si IV in the spectrum of the high-latitude O star HD 93521 (l = 183 deg; b = 62 deg). A comparison of Si IV and C IV profiles showed that the FWHM of both features is about 50 km/sec, in contrast to the 7 km/sec found for one of the several S II features. The line centers for C IV and Si IV are at v = -67 km/sec and -60 km/sec, respectively. As the interval velocity decreases from 90 to 50 km/sec, the Si IV/C IV ratio of the column density per unit velocity interval increases from about 0.2 to 0.4. The result is qualitatively consistent with a fountain model of Shapiro and Benjamin (1991) if the slower gas has cooled and recombined more than the faster gas.

  16. Gaps in the HD 169142 Protoplanetary Disk Revealed by Polarimetric Imaging: Signs of Ongoing Planet Formation?

    NASA Astrophysics Data System (ADS)

    Quanz, Sascha P.; Avenhaus, Henning; Buenzli, Esther; Garufi, Antonio; Schmid, Hans Martin; Wolf, Sebastian

    2013-03-01

    We present H-band Very Large Telescope/NACO polarized light images of the Herbig Ae/Be star HD 169142 probing its protoplanetary disk as close as ~0.''1 to the star. Our images trace the face-on disk out to ~1.''7 (~250 AU) and reveal distinct substructures for the first time: (1) the inner disk (lsim20 AU) appears to be depleted in scattering dust grains; (2) an unresolved disk rim is imaged at ~25 AU; (3) an annular gap extends from ~40 to 70 AU; (4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting, but yet to be proven, one. Outside of ~85 AU the surface brightness drops off roughly vpropr -3.3, but describing the disk regions between 85-120 AU and 120-250 AU separately with power laws vpropr -2.6 and vpropr -3.9 provides a better fit hinting toward another discontinuity in the disk surface. The flux ratio between the disk-integrated polarized light and the central star is ~4.1 × 10-3. Finally, combining our results with those from the literature, ~40% of the scattered light in the H band appears to be polarized. Our results emphasize that HD 169142 is an interesting system for future planet formation or disk evolution studies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 089.C-0611(A).

  17. Getting NuSTAR on target: predicting mast motion

    NASA Astrophysics Data System (ADS)

    Forster, Karl; Madsen, Kristin K.; Miyasaka, Hiromasa; Craig, William W.; Harrison, Fiona A.; Rana, Vikram R.; Markwardt, Craig B.; Grefenstette, Brian W.

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning.

  18. Getting NuSTAR on Target: Predicting Mast Motion

    NASA Technical Reports Server (NTRS)

    Forster, Karl; Madsen, Kristin K.; Miyasaka, Hiroshima; Craig, William W.; Harrison, Fiona A.; Rana, Vikram R.; Markwardt, Craig B.; Grenfenstette, Brian W.

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning.

  19. H-α profile of M-type red giant stars by using astronomical spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Saadon, Mohd Hafiz Mohd; Zainuddin, Mohd Zambri

    2013-05-01

    The technique of spectroscopy in astronomy is a research or a method which uses spectrum lines emitted by a body that emit electromagnetic ray. These lines will be used to determine the characteristics of any celestial body and one of the most dominant lines is H-α line. The research has been using 20RC Carbon Truss Ritchey-Chrétien telescope, SBIG Self Guided Spectrograph (SGS) with high resolution camera Couple-Charged Device CCD ST-7E. Since H-α line is to be found at 6562.817 Å, neon lamp is being used as calibration because of the obvious lines of this element is in the higher range of visible wavelength, from 5800 to 7500 Å. The software: TheSky and CCDSoft are being used for collecting and analyzing observed data while IRAF which being installed on LINUX interface are used to process the collected data. The data were processed to measure the full width half maximum (FHWM) and equivalent width (EW) for H-α line for each star. Seven M-type red giants that have been chosen are HD 80493, HD 148478, HD 39801, HD 112300, HD 101153, HD 156014 and HD 148783.

  20. The nature of dust around the post-asymptotic giant branch objects HD 161796 and HD 179821

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Barlow, M. J.; Skinner, C. J.; Tielens, A. G. G. M.

    1992-01-01

    Ground-based 7.4-24-micron spectra of two post-AGB objects, HD 161796 and HD 179821, are reported, and they are compared to those of other preplanetary nebulae. HD 161796 and HD 17982 show emission features at 10-12 microns and at 10 microns, and they exhibit a very rapid increase in flux between 13 and 15.5 microns. In view of the O-rich photosphere of HD 161796 and the presence of OH maser emission around all three objects, these features are ascribed to various oxides. The observed spectral features are quite different from the canonical silicate features observed in most O-rich giants. It is argued that HD 161796 and the bipolar nebulae Roberts 22 and NGC 6302 have all undergone the third dredge-up, with most of the dredged-up carbon having been converted to nitrogen by envelope-burning. It is concluded that carbon-rich grain material, produced during the interval between the end of the third dredge-up and the moment when envelope burning finally reduced the C/O ratio below unity again, could be responsible for the UIR bands now being excited in Roberts 22 and NGC 6302.

  1. ROSAT X-ray observations of late-type evolved stars: On the relationship between coronal temperatures and luminosities

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We present ROSAT Position Sensitive Proportional Counters (PSPC) X-ray observations of three near-solar-mass stars, in different evolutionary phases beyond the main sequence: eta Sco (F3 III-IV), iota Vir (F6 III), and HD 74772 (G5 III). All three of these nearby, presumably single stars have been detected, and we have collected enough counts to perform a detailed analysis of their soft X-ray spectra. While the X-ray spectra of eta Sco and HD 74772 can be fitted with Raymond-Smith thermal models with temperatures around 2 x 10(exp 6) K, the high signal-to-noise spectrum of iota Vir provides unambiguous evidence of a multitemperature plasma, with a two-temperature best-fit model with components at approximately 2 x 10(exp 6) K and 8 x 10(exp 6) K. Evidence of some hot plasma (T approximately 10(exp 7) K) has been also found for HD 74772. The present data, compared with spectral fitting results for other late-type stars observed with the Einstein Observatory, indicate that the low X-ray luminosity giants (L(sub x) is less than 5 x 10(exp 28) ergs/s) do not share with the higher X-ray luminosity stars of the same class the property of having substantial amount of 10(exp 7) K plasma. Moreover, our results confirm the trend of increasing X-ray luminosities with increasing coronal temperatures.

  2. The circumstellar environments of dusty main sequence stars

    NASA Astrophysics Data System (ADS)

    Gebrim, Antonio S. Hales

    -light images of dust-disks around dust excess stars. This technique allows one to automatically suppress the unpolarised light from the central star, increasing the dynamic range for detecting polarised light scattered by the dust present in circumstellar discs. The detections of extended disks around the classical T Tauri star TW Hya and the Herbig Ac star HD 169142 are reported, as well as the strong but spatially unresolved polarization signals measured toward two other Herbig Ae stars. Monte Carlo scattering simulations are used to fit the J-, H- and K-band polarization images of the disk around TW Hya, providing new constraints on the geometry of TW Hya's disk. The third part of this thesis is dedicated to studying the gas content and dynamics around dust-excess stars. The evolution of circumstellar gas is thought to be strongly linked to the formation of gaseous giant planets similar to Jupiter, Saturn and most currently known extra-solar planets. However, the timescales over which circumstellar gas discs dissipate remains poorly constrained, mainly due to the observational difficulties associated with detecting small amounts of circumstellar gas. An analysis of high-resolution (R 50 000) optical spectroscopic data of a sample of 'Vega-like' candidates from the catalogue of Mannings & Barlow (1998) is presented. Analysis of the stellar spectra allows one to search for narrow absorption features due to circumstellar gas and possible Falling Evaporating Bodies, similar to the ones seen in the (3 Pictoris system. None of the stars from this sample show emission line activity in either Ha, Ca II or Na I, indicating that accretion of material onto the stars has ceased and suggesting they are true main sequence Vega-like stars. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines, with HD 110058 being the strongest candidate to host a (3 Pictoris-like gas disk. If confirmed, HD 110058 would represent the Vega

  3. Hyperfine Structure and Abundances of Heavy Elements in 68 Tauri (HD 27962)

    NASA Astrophysics Data System (ADS)

    Martinet, S.; Monier, R.

    2017-12-01

    HD 27962, also known as 68 Tauri, is a Chemically Peculiar Am star member of the Hyades Open Cluster in the local arm of the Galaxy. We have modeled the high resolution SOPHIE (R=75000) spectrum of 68 Tauri using updated model atmosphere and spectrum synthesis to derive chemical abundances in its atmosphere. In particular, we have studied the effect of the inclusion of Hyperfine Structure of various Baryum isotopes on the determination of the Baryum abundance in 68 Tauri. We have also derived new abundances using updated accurate atomic parameters retrieved from the NIST database.

  4. Abundances in 54 Chemical Elements in Przybylski's Star: HD 101065

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; et al.

    We report abundances from carbon through uranium, based on ESO observations: SN >= 200, resolution 80,000. Light elements, through the iron group scatter with respect to the standard abundance distribution (SAD). Carbon and oxygen are mildly depleted, as are iron and nickel, while titanium and cobalt are enhanced. Calcium is depleted, but silicon, sulfur, and scandium are solar. The heavier elements including some 4d and REE's are generally enhanced by 3 to 4 dex. This is not extreme for an Ap star. The truly bizarre appearance of the spectrum is an an ionization phenomena. Some hotter Ap stars have comparable lanthanide abundances, but their second spectra are weaker due to double ionization. Our adopted model has a Te of 6600K, and log(g) = 4.2. Because of the high line opacity, the photospheric pressure is low, and convection is ineffective. Chemical separation has distorted the third r-process peak only slightly. The overall coherence of the heavier elements is remarkable. Additional information is available from http://www.astro.lsa.umich.edu/users/cowley/przyb.html. This abstract is based on a paper submitted to MNRAS, by CRC, and coauthors: T. A. Ryabchikova (Moscow & Vienna), F. Kupka (Vienna), D. Bord (Michigan), G. Mathys (ESO), and W. P. Bidelman (Case-Western Reserve).

  5. THE BERLIN EXOPLANET SEARCH TELESCOPE II CATALOG OF VARIABLE STARS. I. CHARACTERIZATION OF THREE SOUTHERN TARGET FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruth, T.; Cabrera, J.; Csizmadia, Sz.

    2013-11-01

    A photometric survey of three southern target fields with BEST II yielded the detection of 2406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitoredmore » with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2%-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R in [11, 17], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.« less

  6. Myricetin Reduces Toxic Level of CAG Repeats RNA in Huntington's Disease (HD) and Spino Cerebellar Ataxia (SCAs).

    PubMed

    Khan, Eshan; Tawani, Arpita; Mishra, Subodh Kumar; Verma, Arun Kumar; Upadhyay, Arun; Kumar, Mohit; Sandhir, Rajat; Mishra, Amit; Kumar, Amit

    2018-01-19

    Huntington's disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of CAG repeats in the HTT gene. The transcribed mutant RNA contains expanded CAG repeats that translate into a mutant huntingtin protein. This expanded CAG repeat also causes mis-splicing of pre-mRNA due to sequestration of muscle blind like-1 splicing factor (MBNL1), and thus both of these elicit the pathogenesis of HD. Targeting the onset as well as progression of HD by small molecules could be a potent therapeutic approach. We have screened a set of small molecules to target this transcript and found Myricetin, a flavonoid, as a lead molecule that interacts with the CAG motif and thus prevents the translation of mutant huntingtin protein as well as sequestration of MBNL1. Here, we report the first solution structure of the complex formed between Myricetin and RNA containing the 5'CAG/3'GAC motif. Myricetin interacts with this RNA via base stacking at the AA mismatch. Moreover, Myricetin was also found reducing the proteo-toxicity generated due to the aggregation of polyglutamine, and further, its supplementation also improves neurobehavioral deficits in the HD mouse model. Our study provides the structural and mechanistic basis of Myricetin as an effective therapeutic candidate for HD and other polyQ related disorders.

  7. Dynamical Simulations of HD 69830

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Ford, Eric B.; Wyatt, Mark C.; Booth, Mark

    2009-02-01

    Previous studies have developed models for the growth and migration of three planets orbiting HD 69830. We perform n-body simulations using MERCURY (Chambers 1999) to explore the implications of these models for: 1) the excitation of planetary orbits via planet-planet interactions, 2) the accretion and clearing of a putative planetesimal disk, 3) the distribution of planetesimal orbits following migration, and 4) the implications for the origin of the observed infrared emission from the HD 69830 system. We report preliminary results that suggest new constraints on the formation of HD 69830.

  8. Washington Double Star Catalog Cross Index (1950 position sort)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A machine-readable version of the Washington Catalog of Visual Double Stars (WDS) was prepared in 1984 on the basis of a data file that was collected and maintained for more than a century by a succession of double-star observers. Although this catalog is being continually updated, a new copy for distribution is not expected to be available for a few years. The WDS contains DM numbers, but many of these are listed only in the notes, which makes it difficult to search for double-star information, except by position. Hence, a cross index that provides complete DM identifications is desirable, and it appears useful to add HD numbers for systems in that catalog. Aitken Double Star (ADS) numbers were retained from the WDS, but no attempt was made to correct these except for obvious errors.

  9. Geometric phase effects in ultracold collisions of H/D with rotationally excited HD

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.; Croft, James F. E.; Hazra, Jisha; Balakrishnan, N.

    2017-04-01

    Quantum reactive scattering calculations for the H/D + HD(v = 4 , j = 1 , 2) -> H/D + HD(v', j') and H + H2(v = 4 , j = 1 , 2) -> H + H2(v', j') exchange reactions are presented for the ground electronic state of H3. A numerically exact three-dimensional time-independent scattering method based on hyperspherical coordinates is used to compute rotationally resolved reaction cross sections and non-thermal rate coefficients for collision energies between 1 μK and 100 K . The geometric (Berry) phase associated with the D3h conical intersection in H3 is included using a U(1) vector (gauge) potential approach. It is shown that the geometric phase leads to a significant (up to three orders of magnitude) enhancement or suppression of the ultracold reaction rate coefficients depending upon whether the interference between the reaction pathways encircling the conical intersection is constructive or destructive. The nature of the interference is governed by a newly discovered mechanism which leads to an effective quantization of the ultracold scattering phase shifts. Interesting behavior due to rotational excitation of the HD and H2 is observed which might be exploited by experimentalists to control the reaction outcome. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  10. Stochastic targeted (STAR) glycemic control: design, safety, and performance.

    PubMed

    Evans, Alicia; Le Compte, Aaron; Tan, Chia-Siong; Ward, Logan; Steel, James; Pretty, Christopher G; Penning, Sophie; Suhaimi, Fatanah; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in virtual and clinical pilot trials. Clinically validated virtual trials using data from 370 patients in the SPRINT (Specialized Relative Insulin and Nutrition Titration) study were used to design the STAR protocol and test its safety, performance, and required clinical effort prior to clinical pilot trials. Insulin and nutrition interventions were given every 1-3 h as chosen by the nurse to allow them to manage workload. Interventions were designed to maximize the overlap of the model-predicted (5-95(th) percentile) range of BG outcomes with the 72-117 mg/dl band and thus provide a maximum 5% risk of BG <72 mg/dl. Interventions were calculated using clinically validated computer models of human metabolism and its variability in critical illness. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) goal (25 kg/kcal/h). Insulin doses were limited (8 U/h maximum), with limited increases based on current rate (0.5-2.0 U/h). Initial clinical pilot trials involved 3 patients covering ~450 h. Approval was granted by the Upper South A Regional Ethics Committee. Virtual trials indicate that STAR provides similar glycemic control performance to SPRINT with 2-3 h (maximum) measurement intervals. Time in the 72-126 mg/dl and 72-145 mg/dl bands was equivalent for all controllers, indicating that glycemic outcome differences between protocols were only shifted in this range. Safety from hypoglycemia was improved. Importantly

  11. The RoPES project with HARPS and HARPS-N. I. A system of super-Earths orbiting the moderately active K-dwarf HD 176986

    NASA Astrophysics Data System (ADS)

    Suárez Mascareño, A.; González Hernández, J. I.; Rebolo, R.; Velasco, S.; Toledo-Padrón, B.; Udry, S.; Motalebi, F.; Ségrasan, D.; Wyttenbach, A.; Mayor, M.; Pepe, F.; Lovis, C.; Santos, N. C.; Figueira, P.; Esposito, M.

    2018-04-01

    We report the discovery of a system of two super-Earths orbiting the moderately active K-dwarf HD 176986. This work is part of the RoPES RV program of G- and K-type stars, which combines radial velocities (RVs) from the HARPS and HARPS-N spectrographs to search for short-period terrestrial planets. HD 176986 b and c are super-Earth planets with masses of 5.74 and 9.18 M⊕, orbital periods of 6.49 and 16.82 days, and distances of 0.063 and 0.119 AU in orbits that are consistent with circular. The host star is a K2.5 dwarf, and despite its modest level of chromospheric activity (log10 (RHK' = -4.90 ± 0.04), it shows a complex activity pattern. Along with the discovery of the planets, we study the magnetic cycle and rotation of the star. HD 176986 proves to be suitable for testing the available RV analysis technique and further our understanding of stellar activity. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A41Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de Los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC); observations made with the HARPS instrument on the ESO 3.6-m telescope at La Silla Observatory (Chile).

  12. Circus Family of Stars (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Quick Time Movie for PIA03521 Circus Family of Stars

    This artist's animation shows the clockwork-like orbits of a triple-star system called HD 188753, which was discovered to harbor a gas giant, or 'hot Jupiter,' planet. The planet zips around the system's main star (yellow, center) every 3.3 days, while the main star is circled every 25.7 years by a dancing duo of stars (yellow and orange, outer orbit). The star pair is locked in a 156-day orbit.

    This eccentric star family is a cramped bunch; the distance between the main star and the outer pair of stars is about the same as that between the Sun and Saturn. Though multiple-star systems like this one are common in the universe, astronomers were surprised to find a planet living in such tight quarters.

    One reason for the surprise has to do with theories of hot Jupiter formation. Astronomers believe that these planets begin life at the outer fringes of their stars, in thick dusty disks called protoplanetary disks, before migrating inward. The discovery of a world under three suns throws this theory into question. As seen in this animation, there is not much room at this system's outer edges for a hot Jupiter to grow.

    The discovery was made using the Keck I telescope atop Mauna Kea mountain in Hawaii. The triple-star system is located 149 light-years away in the constellation Cygnus.

    The sizes and orbital periods in the animation are not shown to scale. The relative motions are shown with respect to the main star.

  13. StarScan: a web server for scanning small RNA targets from degradome sequencing data.

    PubMed

    Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2015-07-01

    Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. The CHARA Array Resolves the 1.1 Day Period Spectroscopic Binary HD 146361, the Shortest Period System Resolved To-Date

    NASA Astrophysics Data System (ADS)

    Raghavan, Deepak; McAlister, H. A.

    2007-12-01

    We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.

  15. New Precision Orbits of Bright Double-Lined Spectroscopic Binaries. III. HD 82191, ω Draconis, and 108 Herculis

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Tomkin, Jocelyn; Williamson, Michael H.

    2009-04-01

    We have determined improved spectroscopic orbits for three double-lined binaries, HD 82191 (Am), ω Dra (F5 V), and 108 Her (Am), using radial velocities from the 2.1 m telescope at McDonald Observatory, the coudé feed telescope at Kitt Peak National Observatory, and 2 m telescope at Fairborn Observatory. The orbital periods range from 5.28 to 9.01 days, and all three systems have circular orbits. The new orbital dimensions (a 1 sin i and a 2 sin i) and minimum masses (m 1 sin3 i and m 2 sin3 i) have accuracies of 0.2% or better. Our improved results confirm the large minimum masses of HD 82191 and also agree with the values previously found for ω Dra. However, for the components of 108 Her our minimum masses are about 20% larger than the previous best values. We conclude that both components of HD 82191 as well as the primary of 108 Her are Am stars. However, the A9 secondary of 108 Her has normal abundances. We estimate spectral types of F4 dwarf and G0 dwarf for the components of ω Dra. The primaries of the three binaries are synchronously rotating as is the secondary of 108 Her. The secondaries of HD 82191 and ω Dra are possibly synchronously rotating.

  16. Remarkable long-term changes in the small Magellanic Cloud Wolf-Rayet system HD 5980

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.; Moffat, A. F. J.; St-Louis, N.; Auer, L. H.; Drissen, L.; Seggewiss, W.

    1994-01-01

    In this paper we report the remarkable changes which occured in the Small Magellanic Cloud W-R system HD5980 = AB5 between 1978 and 1991. Within this timescale, there has been a systematic enhancement (by factors of 2-10 depending on the line) in the equivalent widths of all emission lines, and a change in the relative strengths of N III, N IV, and N V lines. Currently, the W-R spectrum is more typical of a WN6 star than a WN3 or WN4, as it was originally classified. The terminal speed of the wind has diminished by approximately 600 km/s, while the system has brightened in the visual by 0.45 mag. The UV (1850 A) continuum changed by less than 0.13 mag. The change from WN3 or WN4 to WN6 is unprecedented. The system appears to be composed at least three stars: two WNs in mutual 19.266 day orbit and an O-type supergiant. We propose that the changes observed in HD 5980 are related to an increase in wind density of one (or both?) of the W-R components, where the brighter WN6 component will dominate the W-R spectrum after the change, and we speculate that this modification of the wind structure is driven by tidal interaction induced by a possible current periastron passage of the third component in the system.

  17. Observational aspects of Herbig Ae/Be stars and of candidate young A/B stars

    NASA Astrophysics Data System (ADS)

    de Winter, Dolf

    1996-06-01

    The thesis consists of several studies on candidate young stars of which most material is published or in press and which can be divided into three parts roughly. Part A is about Herbig Ae/Be stars. A complete review of the observational properties of HAeBes is given in Chapter A1 together with a renewed up-to-date catalogue of HAeBes and HAeBe candidates. As an example of the selection of HAeBes from candidate stars, the observational properties of three candidates is discussed in Chapter A2. They are in particular interesting as they are relatively bright with respect to other HAeBes candidates. An advantage of bright HAeBes is that high resolution spectroscopy can be obtained. For two well know HAeBe objects with a favourable oriented disk, UX and BF Ori, a high resolution spectroscopy monitoring programme is presented in Chapters A3 and A4. First results presented indicate that the disk material of UX Ori is accreting in the form of comet-like bodies. Such pioneering results are also found for BF Ori but more details of the cometaries are given. As discussed in Chapter A1, the IR-excess is one of the fundamental discriminators for the selection of HAeBe candidates. A good understanding of the origin of the IR-excess of HAeBe candidates is necessary to study the disk material that ultimately could produce (proto-)planetary systems. Chapter A5 discusses the amount of IR-excess of HAeBe candidates and ideas about the probable origin. In Part B objects are discussed which were originally selected as HAeBe candidates, but for which a more detailed analysis of the observational characteristics show that they are probably more evolved. This group contains very interesting objects as is shown in Chapters B1, B2 and B3, in which the discovery of a new galactic Luminous Blue Variable (LBV) is reported, WRA 751. A well known B[e] star is HD 45677. The B[e]-group was collected to consist of evolved objects with masses less than those of LBVs and comparable with B[e] stars

  18. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    NASA Astrophysics Data System (ADS)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  19. AB Dor Moving Group Stars Resolved with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Schaefer, G. H.; White, R. J.; Baines, E. K.; Boyajian, T. S.; ten Brummelaar, T. A.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Turner, N. H.

    2018-05-01

    We present interferometric measurements obtained with the CHARA Array of 13 adolescent-age stars in nearby moving groups. The motivation was to spatially resolve the largest stars and to search for binary companions. Nine stars have diameters smaller than the resolution limit and no evidence for companions within 0.5–50 mas and ΔH < 2.0 mag. The diameters of three stars were spatially resolved: GJ 159 (0.582 ± 0.016 mas) and GJ 393 (0.564 ± 0.021 mas) in the AB Dor moving group, and former member HD 89744 (0.556 ± 0.032 mas). Combining the angular diameters with their distances and bolometric fluxes, we measured radii and effective temperatures. The temperatures of GJ 159 (6286 ± 123 K) and GJ 393 (3515 ± 68 K) are consistent with spectroscopic measurements. Comparisons with evolutionary models show that HD 89744 has evolved off the main sequence. GJ 159 and GJ 393 lie within 1.5σ of the zero-age main sequence, complicating their age estimates because it is unclear whether the stars are contracting or expanding. GJ 159 has a mass of 1.2 ± 0.1 {M}ȯ with an age spanning 0.021–3.0 Gyr. Its debris disk and lithium abundance favor a young age. GJ 393 has a mass of 0.42 ± 0.03 {M}ȯ and a lower limit on its age 0.06 Gyr. This overlaps with the age of the moving group; however, an older age would be more consistent with its slow rotation, low activity, and luminosity, suggesting that GJ 393 is a kinematic interloper.

  20. A seven-year northern sky survey of Ap stars for rapid variability

    NASA Technical Reports Server (NTRS)

    Nelson, Matthew J.; Kreidl, Tobias J.

    1993-01-01

    A high-speed photometric survey of 120 Ap stars in the northern sky, has been conducted, between 1985 and 1991, in order to search for rapid variability. Stars of spectral types, namely from B8 to F4, have been selected for the survey. The selected pulsational variable stars occupy the hotter regions of the instability strip of the Hertzsprung-Russel diagram. Noted is the absence of pulsations in the hotter B8-A3 Ap stars; this does not, however, preclude the existence of pulsations, since HD 218495 was recently discovered to be a rapidly oscillating Ap (roAp) star. The primary result of this study is that various combinations of photometric indices, while pointing towards roAp stars having the characteristic signatures of cool, SrCrEu stars, still fail to isolate the roAp phenomenon from similar nonpulsating Ap stars. Color-magnitude and color-color diagrams are presented in order to complete this survey.