Sample records for target volume gtv

  1. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  2. Retroperitoneal sarcoma (RPS) high risk gross tumor volume boost (HR GTV boost) contour delineation agreement among NRG sarcoma radiation and surgical oncologists.

    PubMed

    Baldini, Elizabeth H; Bosch, Walter; Kane, John M; Abrams, Ross A; Salerno, Kilian E; Deville, Curtiland; Raut, Chandrajit P; Petersen, Ivy A; Chen, Yen-Lin; Mullen, John T; Millikan, Keith W; Karakousis, Giorgos; Kendrick, Michael L; DeLaney, Thomas F; Wang, Dian

    2015-09-01

    Curative intent management of retroperitoneal sarcoma (RPS) requires gross total resection. Preoperative radiotherapy (RT) often is used as an adjuvant to surgery, but recurrence rates remain high. To enhance RT efficacy with acceptable tolerance, there is interest in delivering "boost doses" of RT to high-risk areas of gross tumor volume (HR GTV) judged to be at risk for positive resection margins. We sought to evaluate variability in HR GTV boost target volume delineation among collaborating sarcoma radiation and surgical oncologist teams. Radiation planning CT scans for three cases of RPS were distributed to seven paired radiation and surgical oncologist teams at six institutions. Teams contoured HR GTV boost volumes for each case. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. HRGTV boost volume contour agreement between the seven teams was "substantial" or "moderate" for all cases. Agreement was best on the torso wall posteriorly (abutting posterior chest abdominal wall) and medially (abutting ipsilateral para-vertebral space and great vessels). Contours varied more significantly abutting visceral organs due to differing surgical opinions regarding planned partial organ resection. Agreement of RPS HRGTV boost volumes between sarcoma radiation and surgical oncologist teams was substantial to moderate. Differences were most striking in regions abutting visceral organs, highlighting the importance of collaboration between the radiation and surgical oncologist for "individualized" target delineation on the basis of areas deemed at risk and planned resection.

  3. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, Joep, E-mail: joep.stroom@fundacaochampalimaud.pt; Gilhuijs, Kenneth; Vieira, Sandra

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i}more » the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs

  4. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications.

    PubMed

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2018-02-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV, allowing the combination of 3D and 4D planned patient cohorts for modelling. Expert delineations in 40 non-small cell lung cancer patients were used to develop linear fit and erosion methods to synthesise the GTV volume and shape. Quality was assessed using Dice Similarity Coefficients (DSC) and closest point measurements; by calculating dosimetric features; and by assessing the quality of random forest models built on patient populations with and without synthetic GTVs. Volume estimates were within the magnitudes of inter-observer delineation variability. Shape comparisons produced mean DSCs of 0.8817 and 0.8584 for upper and lower lobe cases, respectively. A model trained on combined true and synthetic data performed significantly better than models trained on GTV alone, or combined GTV and iGTV data. Accurate synthesis of GTV size from the iGTV permits the combination of lung cancer patient cohorts, facilitating machine learning applications in thoracic radiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume.

    PubMed

    Brianzoni, Ernesto; Rossi, Gloria; Ancidei, Sergio; Berbellini, Alfonso; Capoccetti, Francesca; Cidda, Carla; D'Avenia, Paola; Fattori, Sara; Montini, Gian Carlo; Valentini, Gianluca; Proietti, Alfredo; Algranati, Carlo

    2005-12-01

    Positron emission tomography is the most advanced scintigraphic imaging technology and can be employed in the planning of radiation therapy (RT). The aim of this study was to evaluate the possible role of fused images (anatomical CT and functional FDG-PET), acquired with a dedicated PET/CT scanner, in delineating gross tumour volume (GTV) and clinical target volume (CTV) in selected patients and thus in facilitating RT planning. Twenty-eight patients were examined, 24 with lung cancer (17 non-small cell and seven small cell) and four with non-Hodgkin's lymphoma in the head and neck region. All patients underwent a whole-body PET scan after a CT scan. The CT images provided morphological volumetric information, and in a second step, the corresponding PET images were overlaid to define the effective target volume. The images were exported off-line via an internal network to an RT simulator. Three patient were excluded from the study owing to change in the disease stage subsequent to the PET/CT study. Among the remaining 25 patients, PET significantly altered the GTV or CTV in 11 (44%) . In five of these 11 cases there was a reduction in GTV or CTV, while in six there was an increase in GTV or CTV. FDG-PET is a highly sensitive imaging modality that offers better visualisation of local and locoregional tumour extension. This study confirmed that co-registration of CT data and FDG-PET images may lead to significant modifications of RT planning and patient management.

  6. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registeredmore » with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.« less

  7. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    PubMed

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  8. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    PubMed

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  9. International Spine Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in Spinal Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Brett W., E-mail: coxb@mskcc.org; Spratt, Daniel E.; Lovelock, Michael

    2012-08-01

    Purpose: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. Methods and Materials: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE)more » with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. Results: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive

  10. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.

    PubMed

    Han, Chunhui; Sampath, Sagus; Schultheisss, Timothy E; Wong, Jeffrey Y C

    2017-01-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non-small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.

    PubMed

    Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin

    2007-04-01

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.

  12. Calculation of Lung Cancer Volume of Target Based on Thorax Computed Tomography Images using Active Contour Segmentation Method for Treatment Planning System

    NASA Astrophysics Data System (ADS)

    Patra Yosandha, Fiet; Adi, Kusworo; Edi Widodo, Catur

    2017-06-01

    In this research, calculation process of the lung cancer volume of target based on computed tomography (CT) thorax images was done. Volume of the target calculation was done in purpose to treatment planning system in radiotherapy. The calculation of the target volume consists of gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV) and organs at risk (OAR). The calculation of the target volume was done by adding the target area on each slices and then multiply the result with the slice thickness. Calculations of area using of digital image processing techniques with active contour segmentation method. This segmentation for contouring to obtain the target volume. The calculation of volume produced on each of the targets is 577.2 cm3 for GTV, 769.9 cm3 for CTV, 877.8 cm3 for PTV, 618.7 cm3 for OAR 1, 1,162 cm3 for OAR 2 right, and 1,597 cm3 for OAR 2 left. These values indicate that the image processing techniques developed can be implemented to calculate the lung cancer target volume based on CT thorax images. This research expected to help doctors and medical physicists in determining and contouring the target volume quickly and precisely.

  13. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    PubMed

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Radiation-induced CT number changes in GTV and parotid glands during the course of radiation therapy for nasopharyngeal cancer

    PubMed Central

    Xu, Shouping; Wu, Zhaoxia; Yang, Cungeng; Ma, Lin; Qu, Baolin; Chen, Guangpei; Yao, Weirong; Wang, Shi; Liu, Yaqiang

    2016-01-01

    Objective: To investigate the changes in CT number (CTN) in gross tumour volume (GTV) and organs at risk (OARs) during the course of radiation therapy (RT) for nasopharyngeal cancer (NPC). Methods: Daily megavoltage CT (MVCT) data collected from 30 patients with NPC treated with a prescription dose of 70 Gy in 30–33 fractions using helical tomotherapy were retrospectively analyzed. The contours of GTV and OARs on daily MVCTs were obtained by populating the planning contours from planning CT to daily MVCTs with manual editing, if necessary. The changes of GTV and OAR volumes and the histograms of CTN in the GTV and OARs during the course of RT delivery were analyzed. Results: Volumes of GTV and parotid glands were reduced during the course of radiation treatment, with an average shrinkage rate of 0.23% per day (range, 0.02–0.8%) and 1.2% per day (range, 0.2–2.3%), respectively. The mean CTN changes in GTV and ipsilateral and contralateral parotid glands were reduced by 52 ± 35 HU, 18 ± 20 HU and 17 ± 22 HU, respectively. For GTV, the CTN and GTV volume decreases were found to be correlated with each other (p < 0.0001). No noticeable CTN change was found in the spinal cord and non-specified tissue irradiated with low doses. Conclusion: The CTN changes in GTV and parotids are measurable during the delivery of fractionated radiotherapy for NPC, were associated with the doses received (the number of fractions delivered) and were patient specific. Advances in knowledge: The CTN change during radiotherapy is dose dependent and is measurable for NPC. PMID:27033059

  15. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Wong, A

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results inmore » non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to

  16. SU-E-T-287: Dose Verification On the Variation of Target Volume and Organ at Risk in Preradiation Chemotherapy IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Kong, L; Wang, J

    2015-06-15

    Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less

  17. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    PubMed

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dian, E-mail: dwang@mcw.edu; Bosch, Walter; Kirsch, David G.

    Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) weremore » 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.« less

  19. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org; Abrams, Ross A.; Bosch, Walter

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneousmore » truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.« less

  20. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    PubMed Central

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed. PMID:26194680

  1. A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma.

    PubMed

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR). Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET(CONV)WB and PET(NEW)BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET(CONV)WB (GTV(CONV)) images or PET(NEW)BR (GTV(NEW)) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. The average absolute volume (±standard deviation [SD]) of GTV(NEW) was 15.7 ml (±9.9) ml, and that of GTV(CONV) was 34.0 (±20.5) ml. The average GTV(NEW) was significantly smaller than that of GTV(CONV) (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN(NEW)) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.

    PubMed

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-10-16

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  3. Pre- and postoperative radiotherapy for extremity soft tissue sarcoma: Evaluation of inter-observer target volume contouring variability among French sarcoma group radiation oncologists.

    PubMed

    Sargos, P; Charleux, T; Haas, R L; Michot, A; Llacer, C; Moureau-Zabotto, L; Vogin, G; Le Péchoux, C; Verry, C; Ducassou, A; Delannes, M; Mervoyer, A; Wiazzane, N; Thariat, J; Sunyach, M P; Benchalal, M; Laredo, J D; Kind, M; Gillon, P; Kantor, G

    2018-04-01

    The purpose of this study was to evaluate, during a national workshop, the inter-observer variability in target volume delineation for primary extremity soft tissue sarcoma radiation therapy. Six expert sarcoma radiation oncologists (members of French Sarcoma Group) received two extremity soft tissue sarcoma radiation therapy cases 1: one preoperative and one postoperative. They were distributed with instructions for contouring gross tumour volume or reconstructed gross tumour volume, clinical target volume and to propose a planning target volume. The preoperative radiation therapy case was a patient with a grade 1 extraskeletal myxoid chondrosarcoma of the thigh. The postoperative case was a patient with a grade 3 pleomorphic undifferentiated sarcoma of the thigh. Contour agreement analysis was performed using kappa statistics. For the preoperative case, contouring agreement regarding GTV, gross tumour volume GTV, clinical target volume and planning target volume were substantial (kappa between 0.68 and 0.77). In the postoperative case, the agreement was only fair for reconstructed gross tumour volume (kappa: 0.38) but moderate for clinical target volume and planning target volume (kappa: 0.42). During the workshop discussion, consensus was reached on most of the contour divergences especially clinical target volume longitudinal extension. The determination of a limited cutaneous cover was also discussed. Accurate delineation of target volume appears to be a crucial element to ensure multicenter clinical trial quality assessment, reproducibility and homogeneity in delivering RT. radiation therapy RT. Quality assessment process should be proposed in this setting. We have shown in our study that preoperative radiation therapy of extremity soft tissue sarcoma has less inter-observer contouring variability. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. A novel concept for tumour targeting with radiation: Inverse dose-painting or targeting the "Low Drug Uptake Volume".

    PubMed

    Yaromina, Ala; Granzier, Marlies; Biemans, Rianne; Lieuwes, Natasja; van Elmpt, Wouter; Shakirin, Georgy; Dubois, Ludwig; Lambin, Philippe

    2017-09-01

    We tested a novel treatment approach combining (1) targeting radioresistant hypoxic tumour cells with the hypoxia-activated prodrug TH-302 and (2) inverse radiation dose-painting to boost selectively non-hypoxic tumour sub-volumes having no/low drug uptake. 18 F-HX4 hypoxia tracer uptake measured with a clinical PET/CT scanner was used as a surrogate of TH-302 activity in rhabdomyosarcomas growing in immunocompetent rats. Low or high drug uptake volume (LDUV/HDUV) was defined as 40% of the GTV with the lowest or highest 18 F-HX4 uptake, respectively. Two hours post TH-302/saline administration, animals received either single dose radiotherapy (RT) uniformly (15 or 18.5Gy) or a dose-painted non-uniform radiation (15Gy) with 50% higher dose to LDUV or HDUV (18.5Gy). Treatment plans were created using Eclipse treatment planning system and radiation was delivered using VMAT. Tumour response was quantified as time to reach 3 times starting tumour volume. Non-uniform RT boosting tumour sub-volume with low TH-302 uptake (LDUV) was superior to the same dose escalation to HDUV (p<0.0001) and uniform RT with the same mean dose 15Gy (p=0.0077). Noteworthy, dose escalation to LDUV required on average 3.5Gy lower dose to the GTV to achieve similar tumour response as uniform dose escalation. The results support targeted dose escalation to non-hypoxic tumour sub-volume with no/low activity of hypoxia-activated prodrugs. This strategy applies on average a lower radiation dose and is as effective as uniform dose escalation to the entire tumour. It could be applied to other type of drugs provided that their distribution can be imaged. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. [Effect of image fusion technology of radioactive particles implantation before and after the planning target and dosimetry].

    PubMed

    Jiang, Y L; Yu, J P; Sun, H T; Guo, F X; Ji, Z; Fan, J H; Zhang, L J; Li, X; Wang, J J

    2017-08-01

    Objective: To compare the post-implant target volumes and dosimetric evaluation with pre-plan, the gross tumor volume(GTV) by CT image fusion-based and the manual delineation of target volume in CT guided radioactive seeds implantation. Methods: A total of 10 patients treated under CT-guidance (125)I seed implantation during March 2016 to April 2016 were analyzed in Peking University Third Hospital.All patients underwent pre-operative CT simulation, pre-operative planning, implantation seeds, CT scanning after seed implantation and dosimetric evaluation of GTV.In every patient, post-implant target volumes were delineated by both two methods, and were divided into two groups. Group 1: image fusion pre-implantation simulation and post-operative CT image, then the contours of GTV were automatically performed by brachytherapy treatment planning system; Group 2: the contouring of the GTV on post-operative CT image were performed manually by three senior radiation oncologists independently. The average of three data was sets. Statistical analyses were performed using SPSS software, version 3.2.0. The paired t -test was used to compare the target volumes and D(90) parameters in two modality. Results: In Group 1, average volume of GTV in post-operation group was 12-167(73±56) cm(3). D(90) was 101-153 (142±19)Gy. In Group 2, they were 14-186(80±58)cm(3) and 96-146(122±16) Gy respectively. In both target volumes and D(90), there was no statistical difference between pre-operation and post-operation in Group 1.The D(90) was slightly lower than that of pre-plan group, but there was no statistical difference ( P =0.142); in Group 2, between pre-operation and post-operation group, there was a significant statistical difference in the GTV ( P =0.002). The difference of D(90) was similarly ( P <0.01). Conclusion: The method of delineation of post-implant GTV through fusion pre-implantation simulation and post-operative CT scan images, the contours of GTV are automatically

  6. Water-filled balloon in the postoperative resection cavity improves dose distribution to target volumes in radiotherapy of maxillary sinus carcinoma.

    PubMed

    Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei

    2011-11-01

    Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.

  7. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    PubMed

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  8. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC).

    PubMed

    Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C

    2003-12-01

    The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.

  9. Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, John P., E-mail: john.kirkpatrick@dm.duke.edu; Department of Surgery, Duke University, Durham, North Carolina; Wang, Zhiheng

    2015-01-01

    Purpose: To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Methods and Materials: Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board–approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diametersmore » less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator–based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Results: Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non–small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change

  10. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial.

    PubMed

    Kirkpatrick, John P; Wang, Zhiheng; Sampson, John H; McSherry, Frances; Herndon, James E; Allen, Karen J; Duffy, Eileen; Hoang, Jenny K; Chang, Zheng; Yoo, David S; Kelsey, Chris R; Yin, Fang-Fang

    2015-01-01

    To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board-approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diameters less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator-based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non-small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change in neurocognition or quality of life was observed. SRS was well

  11. P04.02 Analysis of 18F-DOPA PET imaging for target volume definition in patients with recurrent glioblastoma treated with proton therapy

    PubMed Central

    Amelio, D.; Scartoni, D.; Palucci, A.; Vennarini, S.; Giacomelli, I.; Lemoine, S.; Donner, D.; Farace, P.; Chierichetti, F.; Amichetti, M.

    2017-01-01

    Abstract Introduction: Target volume definition is of critical relevance when re-irradiation is delivered and steep dose gradient irradiation techniques, such as proton therapy (PT), are employed. Aim of the study is to investigate the impact of 18F-DOPA on target volume contouring in recurrent glioblastoma (rGBM) patients (pts) undergoing re-irradiation with PT. MATERIAL AND METHODS: We investigated the differences in volume and relationship of magnetic resonance imaging (MRI)- vs. DOPA PET-derived gross tumor volumes (GTVs) of 14 rGBM pts re-irradiated with PT between January and November 2016. All pts had been previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant temozolomide. All the pts received morphological MRI with contrast enhancement medium administration and 18F-DOPA PET-CT study. We used the pathological distribution of 18F-DOPA in brain tissue to identify the so-called Biological Tumor Volume (BTV). Such areas were assessed using a tumor to normal brain ratio > 2. Moreover, any area of contrast enhancement on MRI was used to identify the MRI-based GTV (MRGTV). Definitive GTV included MRGTV plus BTV. Clinical target volume was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create planning target volume. All pts received 36 GyRBE in 18 fractions. Mean values of differently delineated GTVs were compared each other by paired Student’s t-test; p < 0.05 was considered significant. To further compare MRGTV and BTV, the overlapping (MRGTV ^ BTV) and the composite (MRGTV U BTV) volumes were calculated, and a concordance index (CI) was defined as the ratio between the overlap and composite volumes. Results: MRGTV (mean 14.9 ± 14.5 cc) was larger than BTV (mean 10.9 ± 9.8 cc) although this difference was not statistically significant. The composite volume (mean 20.9 ± 14.7 cc) was significantly larger than each single volume (p < 0

  12. Feasibility and Initial Dosimetric Findings for a Randomized Trial Using Dose-Painted Multiparametric Magnetic Resonance Imaging–Defined Targets in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, Elizabeth L., E-mail: EBossart@med.miami.edu; Stoyanova, Radka; Sandler, Kiri

    2016-06-01

    Purpose: To compare dosimetric characteristics with multiparametric magnetic resonance imaging–identified imaging tumor volume (gross tumor volume, GTV), prostate clinical target volume and planning target volume, and organs at risk (OARs) for 2 treatment techniques representing 2 arms of an institutional phase 3 randomized trial of hypofractionated external beam image guided highly targeted radiation therapy. Methods and Materials: Group 1 (n=20) patients were treated before the trial inception with the standard dose prescription. Each patient had an additional treatment plan generated per the experimental arm. A total of 40 treatment plans were compared (20 plans for each technique). Group 2 (n=15)more » consists of patients currently accrued to the hypofractionated external beam image guided highly targeted radiation therapy trial. Plans were created as per the treatment arm, with additional plans for 5 of the group 2 experimental arm with a 3-mm expansion in the imaging GTV. Results: For all plans in both patient groups, planning target volume coverage ranged from 95% to 100%; GTV coverage of 89.3 Gy for the experimental treatment plans ranged from 95.2% to 99.8%. For both groups 1 and 2, the percent volumes of rectum/anus and bladder receiving 40 Gy, 65 Gy, and 80 Gy were smaller in the experimental plans than in the standard plans. The percent volume at 1 Gy per fraction and 1.625 Gy per fraction were compared between the standard and the experimental arms, and these were found to be equivalent. Conclusions: The dose per fraction to the OARs can be made equal even when giving a large simultaneous integrated boost to the GTV. The data suggest that a GTV margin may be added without significant dose effects on the OARs.« less

  13. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer.

    PubMed

    Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-11-01

    We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  14. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2

  15. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Peter, E-mail: p.h.fritz@t-online.d; Kraus, Hans-Joerg; Muehlnickel, Werner

    2010-09-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTVmore » enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of {>=}20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.« less

  16. Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis.

    PubMed

    Yin, Li-Jie; Yu, Xiao-Bin; Ren, Yan-Gang; Gu, Guang-Hai; Ding, Tian-Gui; Lu, Zhi

    2013-03-18

    To investigate the utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer (NSCLC) and atelectasis. Thirty NSCLC patients who underwent radical radiotherapy from August 2010 to March 2012 were included in this study. All patients were pathologically confirmed to have atelectasis by imaging examination. PET-CT scanning was performed in these patients. According to the PET-CT scan results, the gross tumor volume (GTV) and organs at risk (OARs, including the lungs, heart, esophagus and spinal cord) were delineated separately both on CT and PET-CT images. The clinical target volume (CTV) was defined as the GTV plus a margin of 6-8 mm, and the planning target volume (PTV) as the GTV plus a margin of 10-15mm. An experienced physician was responsible for designing treatment plans PlanCT and PlanPET-CT on CT image sets. 95% of the PTV was encompassed by the 90% isodose curve, and the two treatment plans kept the same beam direction, beam number, gantry angle, and position of the multi-leaf collimator as much as possible. The GTV was compared using a target delineation system, and doses distributions to OARs were compared on the basis of dose-volume histogram (DVH) parameters. The GTVCT and GTVPET-CT had varying degrees of change in all 30 patients, and the changes in the GTVCT and GTVPET-CT exceeded 25% in 12 (40%) patients. The GTVPET-CT decreased in varying degrees compared to the GTVCT in 22 patients. Their median GTVPET-CT and median GTVPET-CT were 111.4 cm3 (range, 37.8 cm3-188.7 cm3) and 155.1 cm3 (range, 76.2 cm3-301.0 cm3), respectively, and the former was 43.7 cm3 (28.2%) less than the latter. The GTVPET-CT increased in varying degrees compared to the GTVCT in 8 patients. Their median GTVPET-CT and median GTVPET-CT were 144.7 cm3 (range, 125.4 cm3-178.7 cm3) and 125.8 cm3 (range, 105.6 cm3-153.5 cm3), respectively, and the former was 18.9 cm3 (15.0%) greater than the latter

  17. Feasibility of Pathology-Correlated Lung Imaging for Accurate Target Definition of Lung Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, Joep; Blaauwgeers, Hans; Baardwijk, Angela van

    2007-09-01

    Purpose: To accurately define the gross tumor volume (GTV) and clinical target volume (GTV plus microscopic disease spread) for radiotherapy, the pretreatment imaging findings should be correlated with the histopathologic findings. In this pilot study, we investigated the feasibility of pathology-correlated imaging for lung tumors, taking into account lung deformations after surgery. Methods and Materials: High-resolution multislice computed tomography (CT) and positron emission tomography (PET) scans were obtained for 5 patients who had non-small-cell lung cancer (NSCLC) before lobectomy. At the pathologic examination, the involved lung lobes were inflated with formalin, sectioned in parallel slices, and photographed, and microscopic sectionsmore » were obtained. The GTVs were delineated for CT and autocontoured at the 42% PET level, and both were compared with the histopathologic volumes. The CT data were subsequently reformatted in the direction of the macroscopic sections, and the corresponding fiducial points in both images were compared. Hence, the lung deformations were determined to correct the distances of microscopic spread. Results: In 4 of 5 patients, the GTV{sub CT} was, on average, 4 cm{sup 3} ({approx}53%) too large. In contrast, for 1 patient (with lymphangitis carcinomatosa), the GTV{sub CT} was 16 cm{sup 3} ({approx}40%) too small. The GTV{sub PET} was too small for the same patient. Regarding deformations, the volume of the well-inflated lung lobes on pathologic examination was still, on average, only 50% of the lobe volume on CT. Consequently, the observed average maximal distance of microscopic spread (5 mm) might, in vivo, be as large as 9 mm. Conclusions: Our results have shown that pathology-correlated lung imaging is feasible and can be used to improve target definition. Ignoring deformations of the lung might result in underestimation of the microscopic spread.« less

  18. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.

    PubMed

    Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E

    2004-04-01

    The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in

  19. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiagarajan, Anuradha, E-mail: anu_thiagarajan@hotmail.com; Caria, Nicola; Schoeder, Heiko

    2012-05-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings.more » Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p < 0.001). Although no significant difference in size was noted between GTVctpet and GTVctmr (p = 0.39), there was poor concordance between them (CI = 0.62). In addition, although CI (ctpetmr vs. ref) was low, it was significantly higher than CI (ctpet vs. ref) and CI (ctmr vs. ref) (p < 0.001), suggesting that neither modality should be used alone. Qualitative analyses to explain the low CI (ctpetmr vs. ref) revealed underestimation of mucosal disease when GTV was contoured without knowledge of PE findings. Similar trends were observed for nodal GTVs. However, CI (ctpet vs. ref), CI (ctmr vs. ref), and CI (ctpetmr vs. ref) were high (>0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV

  20. Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study.

    PubMed

    Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk

    2016-12-01

    The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.

  1. Motion and volumetric change as demonstrated by 4DCT: The effects of abdominal compression on the GTV, lungs, and heart in lung cancer patients.

    PubMed

    Rasheed, Abdullah; Jabbour, Salma K; Rosenberg, Stephen; Patel, Ajay; Goyal, Sharad; Haffty, Bruce G; Yue, Ning J; Khan, Alvin

    2016-01-01

    Lung tumors move during respiration, complicating radiation therapy. The abdominal compression plate (ACP) is thought to reduce respiratory motion. This study quantifies ACP efficacy on respiratory-induced motion by using 4-dimensional computed tomography to evaluate volume and displacement changes of the heart, lungs, and tumor with and without ACP. Lung cancer patients (n = 17) received 4-dimensional computed tomography simulations (10 computed tomography scans from 0% to 90% breathing phases) with and without ACP under maximally tolerated diaphragmatic pressure. Gross tumor volume (GTV), heart, and lungs were contoured in treatment planning software for each phase. Structures were exported for analysis. For each phase, with and without ACP, tumor and organ absolute centroid range of motion and volume were calculated. ACP did not significantly affect GTV, heart, or lung motion on the sample as a whole, but instead demonstrated patient-specific results. ACP reduced GTV motion in 3 (17.6%; 3 upper lobe tumors) by 2.9 mm (P < .01), increased motion in 5 (29.4%; 3 upper lobe tumors, 1 middle lobe, 1 lower lobe) by 1.9 mm (P < .03), and did not significantly change 9. Of the 3 patients exhibiting significantly decreased GTV motion, GTV, heart, and lung range of motion was 7.4 mm, 11.8 mm, and 11.9 mm, respectively, without compression and 4.5 mm, 8.4 mm, and 10.9 mm, respectively, with compression. Averaged across the sample, ACP did not exhibit any axis-specific effect. ACP efficacy was patient-specific, possibly because of pre-existing factors including chronic obstructive pulmonary disease severity, chest wall elasticity, tumor location, and patient comfort. Tumor lobe location does not predetermine compression efficacy; therefore, patients should be simulated with and without ACP, regardless of tumor location. GTV motion seems most important in determining suitability for compression. Alternative motion control should be considered in patients not benefited by

  2. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  3. Computer-assisted framework for machine-learning-based delineation of GTV regions on datasets of planning CT and PET/CT images.

    PubMed

    Ikushima, Koujiro; Arimura, Hidetaka; Jin, Ze; Yabu-Uchi, Hidetake; Kuwazuru, Jumpei; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-01-01

    We have proposed a computer-assisted framework for machine-learning-based delineation of gross tumor volumes (GTVs) following an optimum contour selection (OCS) method. The key idea of the proposed framework was to feed image features around GTV contours (determined based on the knowledge of radiation oncologists) into a machine-learning classifier during the training step, after which the classifier produces the 'degree of GTV' for each voxel in the testing step. Initial GTV regions were extracted using a support vector machine (SVM) that learned the image features inside and outside each tumor region (determined by radiation oncologists). The leave-one-out-by-patient test was employed for training and testing the steps of the proposed framework. The final GTV regions were determined using the OCS method that can be used to select a global optimum object contour based on multiple active delineations with a LSM around the GTV. The efficacy of the proposed framework was evaluated in 14 lung cancer cases [solid: 6, ground-glass opacity (GGO): 4, mixed GGO: 4] using the 3D Dice similarity coefficient (DSC), which denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those determined using the proposed framework. The proposed framework achieved an average DSC of 0.777 for 14 cases, whereas the OCS-based framework produced an average DSC of 0.507. The average DSCs for GGO and mixed GGO were 0.763 and 0.701, respectively, obtained by the proposed framework. The proposed framework can be employed as a tool to assist radiation oncologists in delineating various GTV regions. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-15

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTV{sub P}) and involved lymph nodes (GTV{sub LN}) to simulate the localization process in image-guidedmore » radiation therapy. Techniques included ''standard'' (direct registration of weekly images to a planning CT), ''seeded'' (manual prealignment of targets to guide standard registration), ''transitive-based'' (alignment of pretreatment and planning CTs through one or more intermediate images), and ''rereferenced'' (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 {+-} 5.4 mm and 5.4 {+-} 3.4 mm for the GTV{sub P} and GTV{sub LN}, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTV{sub P} centroid LE to 4.7 {+-} 3.7 mm (p = 0.011) and 4.3 {+-} 2.5 mm (p < 1 x 10{sup -3}), respectively, but the smallest GTV{sub P} LE of 2.4 {+-} 2.1 mm was provided by rereferenced registration (p < 1 x 10{sup -6}). Standard registration significantly reduced GTV{sub LN} centroid LE to 3.2 {+-} 2.5 mm (p < 1 x 10{sup -3}) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE

  5. Variability of Target and Normal Structure Delineation Using Multimodality Imaging for Radiation Therapy of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalah, Entesar; Moraru, Ion; Paulson, Eric

    compared with those from CT, except for the kidneys. Conclusions: Differences exists between DCE-, ADC-, and FDG-PET–defined target volumes for RT of pancreatic cancer. Organ at risk volumes based on MRI are generally smaller than those based on CT. Further studies combined with pathologic specimens are required to identify the optimal imaging modality or sequence to define GTV.« less

  6. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer.

    PubMed

    Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping

    2014-04-01

    18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a

  7. 18-Fluorodeoxy-Glucose Positron Emission Tomography- Computed Tomography (18-FDG-PET/CT) for Gross Tumor Volume (GTV) Delineation in Gastric Cancer Radiotherapy

    PubMed

    Dębiec, Kinga; Wydmański, Jerzy; Gorczewska, Izabela; Leszczyńska, Paulina; Gorczewski, Kamil; Leszczyński, Wojciech; d’Amico, Andrea; Kalemba, Michał

    2017-11-26

    Purpose: Evaluation of the 18-fluorodeoxy-glucose positron emission tomography-computed tomography (18-FDGPET/ CT) for gross tumor volume (GTV) delineation in gastric cancer patients undergoing radiotherapy. Methods: In this study, 29 gastric cancer patients (17 unresectable and 7 inoperable) were initially enrolled for radical chemoradiotherapy (45Gy/25 fractions + chemotherapy based on 5 fluorouracil) or radiotherapy alone (45Gy/25 fractions) with planning based on the 18-FDG-PET/CT images. Five patients were excluded due to excess blood glucose levels (1), false-negative positron emission tomography (1) and distant metastases revealed by 18-FDG-PET/CT (3). The analysis involved measurement of metabolic tumor volumes (MTVs) performed on PET/CT workstations. Different threshold levels of the standardized uptake value (SUV) and liver uptake were set to obtain MTVs. Secondly, GTVPET values were derived manually using the positron emission tomography (PET) dataset blinded to the computed tomography (CT) data. Subsequently, GTVCT values were delineated using a radiotherapy planning system based on the CT scans blinded to the PET data. The referenced GTVCT values were correlated with the GTVPET and were compared with a conformality index (CI). Results: The mean CI was 0.52 (range, 0.12-0.85). In 13/24 patients (54%), the GTVPET was larger than GTVCT, and in the remainder, GTVPET was smaller. Moreover, the cranio-caudal diameter of GTVPET in 16 cases (64%) was larger than that of GTVCT, smaller in 7 cases (29%), and unchanged in one case. Manual PET delineation (GTVPET) achieved the best correlation with GTVCT (Pearson correlation = 0.76, p <0.0001). Among the analyzed MTVs, a statistically significant correlation with GTVCT was revealed for MTV10%SUVmax (r = 0.63; p = 0.0014), MTVliv (r = 0.60; p = 0.0021), MTVSUV2.5 (r = 0.54; p = 0.0063); MTV20%SUVmax (r = 0.44; p = 0.0344); MTV30%SUVmax (r = 0.44; p = 0.0373). Conclusion: 18-FDG-PET/CT in gastric cancer radiotherapy

  8. The impact of 18 F-FET PET-CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions.

    PubMed

    Badakhshi, Harun; Graf, Reinhold; Prasad, Vikas; Budach, Volker

    2014-06-25

    18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV's were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTV boost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTV composite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions

  9. SU-E-J-136: Multimodality-Image-Based Target Delineation for Dose Painting of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalah, E; Paulson, E; Erickson, B

    Purpose: Dose escalated RT may provide improved disease local-control for selected unresectable pancreatic cancer. Accurate delineation of the gross tumor volume (GTV) inside pancreatic head or body would allow safe dose escalation considering the tolerances of adjacent organs at risk (OAR). Here we explore the potential of multi-modality imaging (DCE-MRI, ADC-MRI, and FDG-PET) to define the GTV for dose painting of pancreatic cancer. Volumetric variations of DCE-MRI, ADC-MRI and FDG-PET defined GTVs were assessed in comparison to the findings on CT, and to pathology specimens for resectable and borderline reseactable cases of pancreatic cancer. Methods: A total of 19 representativemore » patients with DCE-MRI, ADC-MRI and FDG-PET data were analyzed. Of these, 8 patients had pathological specimens. GTV, inside pancreatic head/neck, or body, were delineated on MRI (denoted GTVDCE, and GTVADC), on FDG-PET using SUV of 2.5, 40% SUVmax, and 50% SUVmax (denoted GTV2.5, GTV40%, and GTV50%). A Kruskal-Wallis test was used to determine whether significant differences existed between GTV volumes. Results: Significant statistical differences were found between the GTVs defined by DCE-MRI, ADC-MRI, and FDG-PET, with a mean and range of 4.73 (1.00–9.79), 14.52 (3.21–25.49), 22.04 (1.00–45.69), 19.10 (4.84–45.59), and 9.80 (0.32–35.21) cm3 (p<0.0001) for GTVDCE, GTVADC, GTV2.5, GTV40%, and GTV50%, respectively. The mean difference and range in the measurements of maximum dimension of GTVs based on DCE-MRI, ADC-MRI, SUV2.5, 40% SUVmax, and 50% SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. Conclusion: Differences exists between DCE, ADC, and PET defined target volumes for RT of pancreatic cancer. Further studies combined with pathological specimens are required to identify the optimal imaging modality and/or acquisition method

  10. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishibuchi, Ikuno; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generatedmore » from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.« less

  11. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer.

    PubMed

    Nestle, Ursula; De Ruysscher, Dirk; Ricardi, Umberto; Geets, Xavier; Belderbos, Jose; Pöttgen, Christoph; Dziadiuszko, Rafal; Peeters, Stephanie; Lievens, Yolande; Hurkmans, Coen; Slotman, Ben; Ramella, Sara; Faivre-Finn, Corinne; McDonald, Fiona; Manapov, Farkhad; Putora, Paul Martin; LePéchoux, Cécile; Van Houtte, Paul

    2018-04-01

    Radiotherapy (RT) plays a major role in the curative treatment of locally advanced non-small cell lung cancer (NSCLC). Therefore, the ACROP committee was asked by the ESTRO to provide recommendations on target volume delineation for standard clinical scenarios in definitive (chemo)radiotherapy (RT) and adjuvant RT for locally advanced NSCLC. The guidelines given here are a result of the evaluation of a structured questionnaire followed by a consensus discussion, voting and writing procedure within the committee. Hence, we provide advice for methods and time-points of diagnostics and imaging before the start of treatment planning and for the mandatory and optional imaging to be used for planning itself. Concerning target volumes, recommendations are given for GTV delineation of primary tumour and lymph nodes followed by issues related to the delineation of CTVs for definitive and adjuvant radiotherapy. In the context of PTV delineation, recommendations about the management of geometric uncertainties and target motion are given. We further provide our opinions on normal tissue delineation and organisational and responsibility questions in the process of target volume delineation. This guideline intends to contribute to the standardisation and optimisation of the process of RT treatment planning for clinical practice and prospective studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  13. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel

  14. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    PubMed

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the

  15. Residual tumor after neoadjuvant chemoradiation outside the radiation therapy target volume: a new prognostic factor for survival in esophageal cancer.

    PubMed

    Muijs, Christina; Smit, Justin; Karrenbeld, Arend; Beukema, Jannet; Mul, Veronique; van Dam, Go; Hospers, Geke; Kluin, Phillip; Langendijk, Johannes; Plukker, John

    2014-03-15

    The aim of this study was to analyze the accuracy of gross tumor volume (GTV) delineation and clinical target volume (CTV) margins for neoadjuvant chemoradiation therapy (neo-CRT) in esophageal carcinoma at pathologic examination and to determine the impact on survival. The study population consisted of 63 esophageal cancer patients treated with neo-CRT. GTV and CTV borders were demarcated in situ during surgery on the esophagus, using anatomical reference points to provide accurate information regarding tumor location at pathologic evaluation. To identify prognostic factors for disease-free survival (DFS) and overall survival (OS), a Cox regression analysis was performed. After resection, macroscopic residual tumor was found outside the GTV in 7 patients (11%). Microscopic residual tumor was located outside the CTV in 9 patients (14%). The median follow-up was 15.6 months. With multivariate analysis, only microscopic tumor outside the CTV (hazard ratio [HR], 4.96; 95% confidence interval [CI], 1.03-15.36), and perineural growth (HR, 5.77; 95% CI, 1.27-26.13) were identified as independent prognostic factors for OS. The 1-year OS was 20% for patients with tumor outside the CTV and 86% for those without (P<.01). For DFS, microscopic tumor outside the CTV (HR, 5.92; 95% CI, 1.89-18.54) and ypN+ (HR, 3.36; 95% CI, 1.33-8.48) were identified as independent adverse prognostic factors. The 1-year DFS was 23% versus 77% for patients with or without tumor outside the CTV (P<.01). Microscopic tumor outside the CTV is associated with markedly worse OS after neo-CRT. This may either stress the importance of accurate tumor delineation or reflect aggressive tumor behavior requiring new adjuvant treatment modalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors: a feasibility study

    PubMed Central

    2013-01-01

    Introduction Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of 64Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV). Materials and methods Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUVmax. The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (D B ) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and 64Cu-ATSM sub-volumes. Results The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited D B whereas the intersection allowed a substantial dose escalation. Conclusions FDG and 64Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer

  17. Determination of internal target volume for radiation treatment planning of esophageal cancer by using 4-dimensional computed tomography (4DCT).

    PubMed

    Chen, Xiaojian; Lu, Haijun; Tai, An; Johnstone, Candice; Gore, Elizabeth; Li, X Allen

    2014-09-01

    To determine an efficient strategy for the generation of the internal target volume (ITV) for radiation treatment planning for esophageal cancer using 4-dimensional computed tomography (4DCT). 4DCT sets acquired for 20 patients with esophageal carcinoma were analyzed. Each of the 4DCT sets was binned into 10 respiratory phases. For each patient, the gross tumor volume (GTV) was delineated on the 4DCT set at each phase. Various strategies to derive ITV were explored, including the volume from the maximum intensity projection (MIP; ITV_MIP), unions of the GTVs from selected multiple phases ITV2 (0% and 50% phases), ITV3 (ITV2 plus 80%), and ITV4 (ITV3 plus 60%), as well as the volumes expanded from ITV2 and ITV3 with a uniform margin. These ITVs were compared to ITV10 (the union of the GTVs for all 10 phases) and the differences were measured with the overlap ratio (OR) and relative volume ratio (RVR) relative to ITV10 (ITVx/ITV10). For all patients studied, the average GTV from a single phase was 84.9% of ITV10. The average ORs were 91.2%, 91.3%, 94.5%, and 96.4% for ITV_MIP, ITV2, ITV3, and ITV4, respectively. Low ORs were associated with irregular breathing patterns. ITV3s plus 1 mm uniform margins (ITV3+1) led to an average OR of 98.1% and an average RVR of 106.4%. The ITV generated directly from MIP underestimates the range of the respiration motion for esophageal cancer. The ITV generated from 3 phases (ITV3) may be used for regular breathers, whereas the ITV generated from 4 phases (ITV4) or ITV3 plus a 1-mm uniform margin may be applied for irregular breathers. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. [4D-CT-based plan target volume (PTV) definition compared with conventional PTV definition using general margin in radiotherapy for lung cancer].

    PubMed

    Ju, Xiao; Li, Minghui; Zhou, Zongmei; Zhang, Ke; Han, Wei; Fu, Guishan; Cao, Ying; Wang, Lyuhua

    2014-01-01

    To investigate the dosimetric benefit of 4D-CT in the planning target volume (PTV) definition process compared with conventional PTV definition using general margin in radiotherapy of lung cancer. A set of 4D-CT images and multiphase helical CT scans were obtained in 10 patients with lung cancer. The radiotherapeutic plans based on PTV determined by 4D-CT and in addition of general margin were performed, respectively. The 3D motion of the centroid of GTV and the 3D spatial motion vectors were calculated. The differences of the two kinds of PTVs, mean lung dose (MLD), V5,V10,V15,V20 of total lung, mean heart dose (MHD), V30 and V40 of heart, D99 and D95 were compared, and the correlation between them and the 3D spatial motion vector was analyzed. The PTV4D in eight patients were smaller than PTVconv, with a mean reduction of (13.0 ± 8.0)% (P = 0.018). In other two patients, whose respiration motion was great, PTV4D was larger than PTVconv. The mean 3D spatial motion vector of GTV centroid was (0.78 ± 0.72)cm. By using 4D-CT, the mean reduction of MLD was (8.6 ± 9.9)% (P = 0.037). V5, V10, V15, V20 of total lung were decreased averagely by (7.2 ± 10.5)%, (5.5 ± 8.9)%, (6.5 ± 8.4)% and (5.7 ± 7.4)%, respectively (P < 0.05 for all). There was a significant positive correlation between PTV4D/PTVconv and the 3D spatial motion vector of the GTV centroid (P = 0.008). A significant inverse correlation was found between D994D/D99conv and the 3D spatial motion vector of the GTV centroid (P = 0.002). D994D/D99conv, (MLDconv-MLD4D) /MLDconv, total lung (V5conv-V54D)/V5conv, total lung (V10conv-V104D)/V10conv, (MHDconv-MHD4D)/MHDconv, heart (V30conv-V304D)/V30conv were inversely correlated with PTV4D/PTVconv (P < 0.05 for all). 4D-CT can be used to evaluate the respiration motion of lung tumor accurately. The 4D-CT-based PTV definition and radiotherapeutic planing can reduce the volume of PTV in patients with small respiration motion, increase the intra-target dose, and

  19. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.

    PubMed

    Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E

    2013-12-01

    Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All

  20. Comparison of different width detector on the gross tumor volume delineation of the solitary pulmonary lesion.

    PubMed

    Shang, Dongping; Yue, Jinbo; Li, Jianbin; Duan, Jinghao; Yin, Yong; Yu, Jinming

    2017-01-01

    To explore the impact of different width detector on the volume and geometric position of gross tumor volume (GTV) of the solitary pulmonary lesion (SPL), as well as the impact on scanning time and radiation dose during the simulation. Twenty-three patients with SPL underwent three-dimensional computed tomography (3DCT) simulation using different width detector, followed by four-dimensional computed tomography (4DCT) scans. GTV16 and GTV4 derived from different width detectors were compared with internal gross tumor volume (IGTV) generated from 4DCT on the volume and geometric position. Fourteen patients with lesions located in the upper lobe were defined as Group A and nine patients in the middle or lower lobe were defined as Group B. The scanning time and radiation dose during the simulation with the different width detector were compared as well. The volumes of IGTV, GTV16, and GTV4 in Group A were 13.86 ± 14.42 cm3, 11.88 ± 11.93 cm3, and 11.64 ± 12.88 cm3, respectively, and the corresponding volumes in Group B were 12.84 ± 11.48 cm3, 6.90 ± 6.63 cm3, and 7.22 ± 7.15 cm3, respectively. No difference was found between GTV16 and GTV4 in Groups A and B (PA = 0.11, PB = 0.86). Either GTV16 or GTV4 was smaller than IGTV (P16 = 0.001, P4 = 0.000). The comparison of the centroidal positions in x, y, and z directions for GTV16, GTV4, and IGTV showed no significant difference both in Groups A and B (Group A: Px = 0.19, Py = 0.14, Pz = 0.47. Group B: Px = 0.09, Py = 0.90, Pz = 0.90). The scanning time was shorter and radiation dose patient received was lower using 16 × 1.5 mm detector combination than 4 × 1.5 mm detector (P = 0.000). Different width detector had no impact on the volume and geometric position of GTV of SPL during 3DCT simulation. Using wide detector would save time and decrease radiation dose compared with the narrow one. 3DCT simulation using either 16 × 1.5 mm detector or 4 × 1.5 mm detector could not cover all tumor motion information that 4

  1. Interfraction Liver Shape Variability and Impact on GTV Position During Liver Stereotactic Radiotherapy Using Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccles, Cynthia L., E-mail: cynthia.eccles@rob.ox.ac.uk; Dawson, Laura A.; Moseley, Joanne L.

    2011-07-01

    Purpose: For patients receiving liver stereotactic body radiotherapy (SBRT), abdominal compression can reduce organ motion, and daily image guidance can reduce setup error. The reproducibility of liver shape under compression may impact treatment delivery accuracy. The purpose of this study was to measure the interfractional variability in liver shape under compression, after best-fit rigid liver-to-liver registration from kilovoltage (kV) cone beam computed tomography (CBCT) scans to planning computed tomography (CT) scans and its impact on gross tumor volume (GTV) position. Methods and Materials: Evaluable patients were treated in a Research Ethics Board-approved SBRT six-fraction study with abdominal compression. Kilovoltage CBCTmore » scans were acquired before treatment and reconstructed as respiratory sorted CBCT scans offline. Manual rigid liver-to-liver registrations were performed from exhale-phase CBCT scans to exhale planning CT scans. Each CBCT liver was contoured, exported, and compared with the planning CT scan for spatial differences, by use of in house-developed finite-element model-based deformable registration (MORFEUS). Results: We evaluated 83 CBCT scans from 16 patients with 30 GTVs. The mean volume of liver that deformed by greater than 3 mm was 21.7%. Excluding 1 outlier, the maximum volume that deformed by greater than 3 mm was 36.3% in a single patient. Over all patients, the absolute maximum deformations in the left-right (LR), anterior-posterior (AP), and superior-inferior directions were 10.5 mm (SD, 2.2), 12.9 mm (SD, 3.6), and 5.6 mm (SD, 2.7), respectively. The absolute mean predicted impact of liver volume displacements on GTV by use of center of mass displacements was 0.09 mm (SD, 0.13), 0.13 mm (SD, 0.18), and 0.08 mm (SD, 0.07) in the left-right, anterior-posterior, and superior-inferior directions, respectively. Conclusions: Interfraction liver deformations in patients undergoing SBRT under abdominal compression after rigid

  2. SU-C-BRA-02: Gradient Based Method of Target Delineation On PET/MR Image of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Chera, B; Falchook, A

    2015-06-15

    Purpose: Validate the consistency of a gradient-based segmentation tool to facilitate accurate delineation of PET/CT-based GTVs in head and neck cancers by comparing against hybrid PET/MR-derived GTV contours. Materials and Methods: A total of 18 head and neck target volumes (10 primary and 8 nodal) were retrospectively contoured using a gradient-based segmentation tool by two observers. Each observer independently contoured each target five times. Inter-observer variability was evaluated via absolute percent differences. Intra-observer variability was examined by percentage uncertainty. All target volumes were also contoured using the SUV percent threshold method. The thresholds were explored case by case so itsmore » derived volume matched with the gradient-based volume. Dice similarity coefficients (DSC) were calculated to determine overlap of PET/CT GTVs and PET/MR GTVs. Results: The Levene’s test showed there was no statistically significant difference of the variances between the observer’s gradient-derived contours. However, the absolute difference between the observer’s volumes was 10.83%, with a range from 0.39% up to 42.89%. PET-avid regions with qualitatively non-uniform shapes and intensity levels had a higher absolute percent difference near 25%, while regions with uniform shapes and intensity levels had an absolute percent difference of 2% between observers. The average percentage uncertainty between observers was 4.83% and 7%. As the volume of the gradient-derived contours increased, the SUV threshold percent needed to match the volume decreased. Dice coefficients showed good agreement of the PET/CT and PET/MR GTVs with an average DSC value across all volumes at 0.69. Conclusion: Gradient-based segmentation of PET volume showed good consistency in general but can vary considerably for non-uniform target shapes and intensity levels. PET/CT-derived GTV contours stemming from the gradient-based tool show good agreement with the anatomically and

  3. TU-H-CAMPUS-JeP2-03: Machine-Learning-Based Delineation Framework of GTV Regions of Solid and Ground Glass Opacity Lung Tumors at Datasets of Planning CT and PET/CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikushima, K; Arimura, H; Jin, Z

    Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree ofmore » GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.« less

  4. SINGLE INSTITUTION VARIABILITY IN INTENSITY MODULATED RADIATION TARGET DELINEATION FOR CANINE NASAL NEOPLASIA.

    PubMed

    Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M

    2016-11-01

    Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.

  5. Determination of Internal Target Volume for Radiation Treatment Planning of Esophageal Cancer by Using 4-Dimensional Computed Tomography (4DCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaojian; Lu, Haijun; Radiation Oncology Center, Affiliated Hospital of Medical College, Qingdao University, Qingdao

    2014-09-01

    Purpose: To determine an efficient strategy for the generation of the internal target volume (ITV) for radiation treatment planning for esophageal cancer using 4-dimensional computed tomography (4DCT). Methods and Materials: 4DCT sets acquired for 20 patients with esophageal carcinoma were analyzed. Each of the 4DCT sets was binned into 10 respiratory phases. For each patient, the gross tumor volume (GTV) was delineated on the 4DCT set at each phase. Various strategies to derive ITV were explored, including the volume from the maximum intensity projection (MIP; ITV{sub M}IP), unions of the GTVs from selected multiple phases ITV2 (0% and 50% phases), ITV3 (ITV2more » plus 80%), and ITV4 (ITV3 plus 60%), as well as the volumes expanded from ITV2 and ITV3 with a uniform margin. These ITVs were compared to ITV10 (the union of the GTVs for all 10 phases) and the differences were measured with the overlap ratio (OR) and relative volume ratio (RVR) relative to ITV10 (ITVx/ITV10). Results: For all patients studied, the average GTV from a single phase was 84.9% of ITV10. The average ORs were 91.2%, 91.3%, 94.5%, and 96.4% for ITV{sub M}IP, ITV2, ITV3, and ITV4, respectively. Low ORs were associated with irregular breathing patterns. ITV3s plus 1 mm uniform margins (ITV3+1) led to an average OR of 98.1% and an average RVR of 106.4%. Conclusions: The ITV generated directly from MIP underestimates the range of the respiration motion for esophageal cancer. The ITV generated from 3 phases (ITV3) may be used for regular breathers, whereas the ITV generated from 4 phases (ITV4) or ITV3 plus a 1-mm uniform margin may be applied for irregular breathers.« less

  6. SU-E-J-35: Using CBCT as the Alternative Method of Assessing ITV Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Y; Turian, J; Templeton, A

    2015-06-15

    Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT.more » PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.« less

  7. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy.

    PubMed

    Vali, Faisal S; Nagda, Suneel; Hall, William; Sinacore, James; Gao, Mingcheng; Lee, Steven H; Hong, Robert; Shoup, Margaret; Emami, Bahman

    2010-11-15

    To study various standardized uptake value (SUV)-based approaches to ascertain the best strategy for delineating metabolic tumor volumes (MTV). Twenty-two consecutive previously treated esophageal cancer patients with positron emission tomography (PET) imaging and computed tomography (CT)-based radiotherapy plans were studied. At the level of the tumor epicenter, MTVs were delineated at 11 different thresholds: SUV ≥2, ≥2.5, ≥3, ≥3.5 (SUV(n)); ≥40%, ≥45%, and ≥50% of the maximum (SUV(n%)); and mean liver SUV + 1, 2, 3, and 4 standard deviations (SUV(Lnσ)). The volume ratio and conformality index were determined between MTVs, and the corresponding CT/endoscopic ultrasound-based gross tumor volume (GTV) at the epicenter. Means were analyzed by one-way analysis of variance for repeated measures and further compared using a paired t test for repeated measures. The mean conformality indices ranged from 0.33 to 0.48, being significantly (p < 0.05) closest to 1 at SUV(2.5) (0.47 ± 0.03) and SUV(L4σ) (0.48 ± 0.03). The mean volume ratios ranged from 0.39 to 2.82, being significantly closest to 1 at SUV(2.5) (1.18 ± 0.36) and SUV(L4σ) (1.09 ± 0.15). The mean value of the SUVs calculated using the SUV(L4σ) approach was 2.4. Regardless of the SUV thresholding method used (i.e., absolute or relative to liver mean), a threshold of approximately 2.5 yields the highest conformality index and best approximates the CT-based GTV at the epicenter. These findings may ultimately aid radiation oncologists in the delineation of the entire GTV in esophageal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. A low-field MRI study.

    PubMed

    Schmid, M P; Mansmann, B; Federico, M; Dimopoulous, J C A; Georg, P; Fidarova, E; Dörr, W; Pötter, R

    2013-03-01

    Grey zones, which are defined as tissue with intermediate signal intensity in the area of primary hyperintense tumour extension, can be seen during radiation with or without chemotherapy on the T2-weighted MRI in patients with cervical cancer. The purpose of this study was to systematically measure the tumour volume at the time of diagnosis and the residual tumour volume at the time of brachytherapy without and with consideration of the grey zones and to estimate tumour regression during external beam radiotherapy (EBRT). T2-weighted MRI datasets of 175 patients with locally advanced cervical cancer (FIGO stage IB-IVA), who underwent combined external beam radiotherapy and brachytherapy with or without concomitant chemotherapy were available for this study. The gross tumour volume at the time of diagnosis (GTV(init)) and at the time of first brachytherapy without (GTV(res)) and with (GTV(res)+ GZ) consideration of grey zones were measured for each patient. A descriptive statistical analysis was performed and tumour regression rates without (R) and with consideration of grey zones (R(GZ)) were calculated. Further, the role of prognostic factors on GTV(init), GTV(res), GTV(res)+ GZ and tumour regression rates was investigated. The median GTV(init), GTV(res), GTV(res)+ GZ in all patients were 44.4 cm(3), 8.2 cm(3), 20.3 cm(3), respectively. The median R was 78.5% and the median R(GZ) was 50.1%. The histology and FIGO staging showed a significant impact on GTV(init), GTV(res) and GTV(res)+ GZ. Grey zones represent a substantial proportion of the residual tumour volume at the time of brachytherapy. Differentiation of high signal intensity mass and surrounding intermediate signal intensity grey zones may be reasonable.

  9. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

    PubMed

    Bradley, Jeffrey; Thorstad, Wade L; Mutic, Sasa; Miller, Tom R; Dehdashti, Farrokh; Siegel, Barry A; Bosch, Walter; Bertrand, Rudi J

    2004-05-01

    Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation

  10. Intensity-Modulated Radiation Therapy in Oropharyngeal Carcinoma: Effect of Tumor Volume on Clinical Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lok, Benjamin H.; New York University School of Medicine, New York, NY; Setton, Jeremy

    2012-04-01

    Purpose: To analyze the effect of primary gross tumor volume (pGTV) and nodal gross tumor volume (nGTV) on treatment outcomes in patients treated with definitive intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer (OPC). Methods and Materials: Between September 1998 and April 2009, a total of 442 patients with squamous cell carcinoma of the oropharynx were treated with IMRT with curative intent at our center. Thirty patients treated postoperatively and 2 additional patients who started treatment more than 6 months after diagnosis were excluded. A total of 340 patients with restorable treatment plans were included in this present study. The majoritymore » of the patients underwent concurrent platinum-based chemotherapy. The pGTV and nGTV were calculated using the original clinical treatment plans. Cox proportional hazards models and log-rank tests were used to evaluate the correlation between tumor volumes and overall survival (OS), and competing risks analysis tools were used to evaluate the correlation between local failure (LF), regional failure (RF), distant metastatic failure (DMF) vs. tumor volumes with death as a competing risk. Results: Median follow-up among surviving patients was 34 months (range, 5-67). The 2-year cumulative incidence of LF, RF and DF in this cohort of patients was 6.1%, 5.2%, and 12.2%, respectively. The 2-year OS rate was 88.6%. Univariate analysis determined pGTV and T-stage correlated with LF (p < 0.0001 and p = 0.004, respectively), whereas nGTV was not associated with RF. On multivariate analysis, pGTV and N-stage were independent risk factors for overall survival (p = 0.0003 and p = 0.0073, respectively) and distant control (p = 0.0008 and p = 0.002, respectively). Conclusions: In this cohort of patients with OPC treated with IMRT, pGTV was found to be associated with overall survival, local failure, and distant metastatic failure.« less

  11. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  12. The impact of PET/CT scanning on the size of target volumes, radiation exposure of organs at risk, TCP and NTCP, in the radiotherapy planning of non-small cell lung cancer.

    PubMed

    Vojtíšek, Radovan; Mužík, Jan; Slampa, Pavel; Budíková, Marie; Hejsek, Jaroslav; Smolák, Petr; Ferda, Jiří; Fínek, Jindřich

    2014-05-01

    To compare radiotherapy plans made according to CT and PET/CT and to investigate the impact of changes in target volumes on tumour control probability (TCP), normal tissue complication probability (NTCP) and the impact of PET/CT on the staging and treatment strategy. Contemporary studies have proven that PET/CT attains higher sensitivity and specificity in the diagnosis of lung cancer and also leads to higher accuracy than CT alone in the process of target volume delineation in NSCLC. Between October 2009 and March 2012, 31 patients with locally advanced NSCLC, who had been referred to radical radiotherapy were involved in our study. They all underwent planning PET/CT examination. Then we carried out two separate delineations of target volumes and two radiotherapy plans and we compared the following parameters of those plans: staging, treatment purpose, the size of GTV and PTV and the exposure of organs at risk (OAR). TCP and NTCP were also compared. PET/CT information led to a significant decrease in the sizes of target volumes, which had the impact on the radiation exposure of OARs. The reduction of target volume sizes was not reflected in the significant increase of the TCP value. We found that there is a very strong direct linear relationship between all evaluated dosimetric parameters and NTCP values of all evaluated OARs. Our study found that the use of planning PET/CT in the radiotherapy planning of NSCLC has a crucial impact on the precise determination of target volumes, more precise staging of the disease and thus also on possible changes of treatment strategy.

  13. A Prospective Study of {sup 18}FDG-PET With CT Coregistration for Radiation Treatment Planning of Lymphomas and Other Hematologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terezakis, Stephanie A.; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; Schöder, Heiko

    2014-06-01

    Purpose: This prospective single-institution study examined the impact of positron emission tomography (PET) with the use of 2-[{sup 18}F] fluoro-2-deoxyglucose and computed tomography (CT) scan radiation treatment planning (TP) on target volume definition in lymphoma. Methods and Materials: 118 patients underwent PET/CT TP during June 2007 to May 2009. Gross tumor volume (GTV) was contoured on CT-only and PET/CT studies by radiation oncologists (ROs) and nuclear medicine physicians (NMPs) for 95 patients with positive PET scans. Treatment plans and dose-volume histograms were generated for CT-only and PET/CT for 95 evaluable sites. Paired t test statistics and Pearson correlation coefficients weremore » used for analysis. Results: 70 (74%) patients had non-Hodgkin lymphoma, 10 (11%) had Hodgkin lymphoma, 12 (10%) had plasma-cell neoplasm, and 3 (3%) had other hematologic malignancies. Forty-three (45%) presented with relapsed/refractory disease. Forty-five (47%) received no prior chemotherapy. The addition of PET increased GTV as defined by ROs in 38 patients (median, 27%; range, 5%-70%) and decreased GTV in 41 (median, 39.5%; range, 5%-80%). The addition of PET increased GTV as defined by NMPs in 27 patients (median, 26.5%; range, 5%-95%) and decreased GTV in 52 (median, 70%; range, 5%-99%). The intraobserver correlation between CT-GTV and PET-GTV was higher for ROs than for NMPs (0.94, P<.01 vs 0.89, P<.01). On the basis of Bland-Altman plots, the PET-GTVs defined by ROs were larger than those defined by NMPs. On evaluation of clinical TPs, only 4 (4%) patients had inadequate target coverage (D95 <95%) of the PET-GTV defined by NMPs. Conclusions: Significant differences between the RO and NMP volumes were identified when PET was coregistered to CT for radiation planning. Despite this, the PET-GTV defined by ROs and NMPs received acceptable prescription dose in nearly all patients. However, given the potential for a marginal miss, consultation with an

  14. SU-F-P-27: The Study of Actual DVH for Target and OARs During the Radiotherapy of Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    2016-06-15

    Purpose: To analyze the changes of the volume and dosimetry of target and organs at risk (OARs) by comparing the daily CBCT images and planning CT images of the patients with Non-Small Cell Lung Cancer (NSCLC) and analyze the difference between planned dose and accumulated dose. Methods: This study retrospectively analyzed eight cases of non-small cell lung cancer patients who accepted CRT or IMRT treatment and KV-CBCT. For each patient, the prescription dose was 60Gy and the fraction dose was 2Gy. Deform the daily CBCT images to planning CT images by the mapping of registration to compare the planning dosemore » with cumulative dose of targets and organs at risk in RayStation. Results: The average volume of GTV of 8 patients with CBCT was 88.26% of the original volume. The average plan dose of GTV was 64.49±2.40Gy. The accumulated dose of GTV was 60.13±2.70Gy (P≤0.05). The average volume of PTV to reach the prescription dose was 95.59% for original plan and 81.47% for accumulated plan (P≤0.05). The volume changes of the left and right lung of the original volume was 88.95% and 80.32%, respectively. The average dose of the left and right lung of original plan was 9.31±1.75Gy and 4.33±1.10Gy, respectively(P≥0.05). The average accumulated dose was 9.63±1.96Gy and 4.63±1.36Gy, respectively(P≥0.05). The average plan dose and accumulated dose of heart was 6.88±1.70Gy and 6.38±0.91Gy, respectively (P≥0.05). The average plan maximum dose and accumulated dose for spinal cord was 24.62±5.91Gy and 26.00±5.14Gy, respectively (P≥0.05). Conclusion: The changes of target anatomical structure with NSCLC make difference between the planned dose and cumulative dose. With the dose deformation method, the dose gap can be found between planning dose and delivery dose.« less

  15. SU-F-R-47: Quantitative Shape Relationship Analysis of PTV Modification for Critical Anatomy Sparing and Its Impact On Pathologic Response for Neoadjuvant Stereotactic Radiotherapy for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z; Rosati, L; Chen, L

    Purpose: Stereotactic body radiation therapy (SBRT) may be used to increase surgery candidacy in borderline resectable (BRPC) and locally advanced (LAPC) pancreatic cancer. However, the planning target volume (PTV) may need to be limited to avoid toxicity when the gross tumor volume (GTV) is anatomically involved with surrounding critical structures. Our study aims to characterize the coverage of GTV and investigate the association between modified PTV and pathologic (pCR) or near pathologic (npCR) complete response rates determined from the surgical specimen. Methods: Patients treated with neoadjuvant pancreas SBRT followed by surgery from 2010–2015 were selected from Oncospace. Overlap volume histogrammore » (OVH) analysis was performed to determine the extent of compromise of the PTV from both the GTV and a standard target (GTV+3mm). Subsequently, normalized overlap volume (%) was calculated for: (1) GTV-PTV, and (2) GTV+3mm expansion-PTV. A logistic regression model was used to identify the association between the overlap ratios and ≥ npCR(pCR/npCR) stratified by active breathing control (ABC) versus free-breathing status. Results: Eighty-one (BRPC: n=42, LAPC: n=39) patients were available for analysis. Nearly 40% (31/81) had ≥npCR and 75% (61/81) were able to complete ABC. Mean coverage of the GTV-PTV was 92.6% (range, 59.9%–100%, SD = 8.68) and coverage of the GTV+3mm expansion-PTV was 85. 2% (range, 59.9% −100.0%, SD= 8.67). Among the patients with ABC, every 10% increase in GTV coverage doubled the odds to have ≥npCR (OR = 1.82, p=0.06). Coverage of GTV+3mm expansion was not associated with ≥npCR regardless of ABC status. Conclusion: Preferential sparing of critical anatomy over GTV-PTV coverage with ABC management suggests worse ≥npCR rates for neoadjuvant SBRT in BRPC and LAPC. Limiting the GTV and GTV+3mm expansion in free-breathing patients was not associated with pathologic response perhaps due to larger GTV definitions as a result

  16. Quantification of gross tumour volume changes between simulation and first day of radiotherapy for patients with locally advanced malignancies of the lung and head/neck.

    PubMed

    Kishan, Amar U; Cui, Jing; Wang, Pin-Chieh; Daly, Megan E; Purdy, James A; Chen, Allen M

    2014-10-01

    To quantify changes in gross tumour volume (GTV) between simulation and initiation of radiotherapy in patients with locally advanced malignancies of the lung and head/neck. Initial cone beam computed tomography (CT) scans from 12 patients with lung cancer and 12 with head/neck cancer (head and neck squamous cell carcinoma (HNSCC)) treated with intensity-modulated radiotherapy with image guidance were rigidly registered to the simulation CT scans. The GTV was demarcated on both scans. The relationship between percent GTV change and variables including time interval between simulation and start, tumour (T) stage, and absolute weight change was assessed. For lung cancer patients, the GTV increased a median of 35.06% (range, -16.63% to 229.97%) over a median interval of 13 days (range, 7-43), while for HNSCC patients, the median GTV increase was 16.04% (range, -8.03% to 47.41%) over 13 days (range, 7-40). These observed changes are statistically significant. The magnitude of this change was inversely associated with the size of the tumour on the simulation scan for lung cancer patients (P < 0.05). However, the observed changes in GTV did not correlate with the duration of the interval for either disease site. Similarly, T stage, absolute weight change and histologic type (the latter for lung cancer cases) did not correlate with degree of GTV change (P > 0.1). While the observed changes in GTV were moderate from the time of simulation to start of radiotherapy, these findings underscore the importance of image guidance for target localisation and verification, particularly for smaller tumours. Minimising the delay between simulation and treatment initiation may also be beneficial. © 2014 The Royal Australian and New Zealand College of Radiologists.

  17. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    PubMed

    Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming

    2014-01-01

    To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  18. Multiple two-dimensional versus three-dimensional PTV definition in treatment planning for conformal radiotherapy.

    PubMed

    Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J

    1998-06-01

    To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.

  19. Adaptive Radiotherapy Planning on Decreasing Gross Tumor Volumes as Seen on Megavoltage Computed Tomography Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodford, Curtis; Yartsev, Slav; Dar, A. Rashid

    2007-11-15

    Purpose: To evaluate gross tumor volume (GTV) changes for patients with non-small-cell lung cancer by using daily megavoltage (MV) computed tomography (CT) studies acquired before each treatment fraction on helical tomotherapy and to relate the potential benefit of adaptive image-guided radiotherapy to changes in GTV. Methods and Materials: Seventeen patients were prescribed 30 fractions of radiotherapy on helical tomotherapy for non-small-cell lung cancer at London Regional Cancer Program from Dec 2005 to March 2007. The GTV was contoured on the daily MVCT studies of each patient. Adapted plans were created using merged MVCT-kilovoltage CT image sets to investigate the advantagesmore » of replanning for patients with differing GTV regression characteristics. Results: Average GTV change observed over 30 fractions was -38%, ranging from -12 to -87%. No significant correlation was observed between GTV change and patient's physical or tumor features. Patterns of GTV changes in the 17 patients could be divided broadly into three groups with distinctive potential for benefit from adaptive planning. Conclusions: Changes in GTV are difficult to predict quantitatively based on patient or tumor characteristics. If changes occur, there are points in time during the treatment course when it may be appropriate to adapt the plan to improve sparing of normal tissues. If GTV decreases by greater than 30% at any point in the first 20 fractions of treatment, adaptive planning is appropriate to further improve the therapeutic ratio.« less

  20. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines.

    PubMed

    Grégoire, Vincent; Evans, Mererid; Le, Quynh-Thu; Bourhis, Jean; Budach, Volker; Chen, Amy; Eisbruch, Abraham; Feng, Mei; Giralt, Jordi; Gupta, Tejpal; Hamoir, Marc; Helito, Juliana K; Hu, Chaosu; Hunter, Keith; Johansen, Jorgen; Kaanders, Johannes; Laskar, Sarbani Ghosh; Lee, Anne; Maingon, Philippe; Mäkitie, Antti; Micciche', Francesco; Nicolai, Piero; O'Sullivan, Brian; Poitevin, Adela; Porceddu, Sandro; Składowski, Krzysztof; Tribius, Silke; Waldron, John; Wee, Joseph; Yao, Min; Yom, Sue S; Zimmermann, Frank; Grau, Cai

    2018-01-01

    Few studies have reported large inter-observer variations in target volume selection and delineation in patients treated with radiotherapy for head and neck squamous cell carcinoma. Consensus guidelines have been published for the neck nodes (see Grégoire et al., 2003, 2014), but such recommendations are lacking for primary tumour delineation. For the latter, two main schools of thoughts are prevailing, one based on geometric expansion of the Gross Tumour Volume (GTV) as promoted by DAHANCA, and the other one based on anatomical expansion of the GTV using compartmentalization of head and neck anatomy. For each anatomic location within the larynx, hypopharynx, oropharynx and oral cavity, and for each T-stage, the DAHANCA proposal has been comprehensively reviewed and edited to include anatomic knowledge into the geometric Clinical Target Volume (CTV) delineation concept. A first proposal was put forward by the leading authors of this publication (VG and CG) and discussed with opinion leaders in head and neck radiation oncology from Europe, Asia, Australia/New Zealand, North America and South America to reach a worldwide consensus. This consensus proposes two CTVs for the primary tumour, the so called CTV-P1 and CVT-P2, corresponding to a high and lower tumour burden, and which should be associated with a high and a lower dose prescription, respectively. Implementation of these guidelines in the daily practice of radiation oncology should contribute to reduce treatment variations from clinicians to clinicians, facilitate the conduct of multi-institutional clinical trials, and contribute to improved care of patients with head and neck carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  2. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.

    PubMed

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart

    2015-02-21

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  3. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodesmore » by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.« less

  4. Intensity-modulated radiotherapy (IMRT) in pediatric low-grade glioma.

    PubMed

    Paulino, Arnold C; Mazloom, Ali; Terashima, Keita; Su, Jack; Adesina, Adekunle M; Okcu, M Faith; Teh, Bin S; Chintagumpala, Murali

    2013-07-15

    The objective of this study was to evaluate local control and patterns of failure in pediatric patients with low-grade glioma (LGG) who received treatment with intensity-modulated radiation therapy (IMRT). In total, 39 children received IMRT after incomplete resection or disease progression. Three methods of target delineation were used. The first was to delineate the gross tumor volume (GTV) and add a 1-cm margin to create the clinical target volume (CTV) (Method 1; n = 19). The second was to add a 0.5-cm margin around the GTV to create the CTV (Method 2; n = 6). The prescribed dose to the GTV was the same as dose to the CTV for both Methods 1 and 2 (median, 50.4 grays [Gy]). The final method was dose painting, in which a GTV was delineated with a second target volume (2TV) created by adding 1 cm to the GTV (Method 3; n = 14). Different doses were prescribed to the GTV (median, 50.4 Gy) and the 2TV (median, 41.4 Gy). The 8-year progression-free and overall survival rates were 78.2% and 93.7%, respectively. Seven failures occurred, all of which were local in the high-dose (≥95%) region of the IMRT field. On multivariate analysis, age ≤5 years at time of IMRT had a detrimental impact on progression-free survival. IMRT provided local control rates comparable to those provided by 2-dimensional and 3-dimensional radiotherapy. Margins ≥1 cm added to the GTV may not be necessary, because excellent local control was achieved by adding a 0.5-cm margin (Method 2) and by dose painting (Method 3). © 2013 American Cancer Society.

  5. Impact of 4D image quality on the accuracy of target definition.

    PubMed

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  6. Practical approaches to four-dimensional heavy-charged-particle lung therapy.

    PubMed

    Mori, Shinichiro; Wu, Ziji; Folkert, Michael R; Kumagai, Motoki; Dobashi, Suguru; Sugane, Toshio; Baba, Masayuki

    2010-01-01

    We have developed new design algorithms for compensating boli to facilitate the implementation of four-dimensional charged-particle lung therapy in clinical applications. Four-dimensional CT (4DCT) data for eight lung cancer patients were acquired with a 16-slice CT under free breathing. Six compensating boli were developed that may be categorized into three classes: (1) boli-based on contoured gross tumor volumes (GTV) from a 4DCT data set during each respiratory phase, subsequently combined into one (GTV-4DCT bolus); (2) boli-based on contoured internal target volume (ITV) from image-processed 3DCT data only [temporal-maximum-intensity-projection (TMIP)/temporal-average-intensity-projection (TAIP)] with calculated boli (ITV-TMIP and ITV-TAIP boli); and (3) boli-based on contoured ITV utilizing image-processed 3DCT data, applied to 4DCT for design of boli for each phase, which were then combined. The carbon beam dose distribution within each bolus was calculated as a function of time and compared to plans in which respiratory-ungated/gated strategies were used. The GTV-4DCT treatment plan required a prohibitively long time for contouring the GTV manually for each respiratory phase, but it delivered more than 95% of the prescribed dose to the target volume. The TMIP and TAIP treatments, although more time-efficient, resulted in an unacceptable excess dose to normal tissues and underdosing of the target volume. The dose distribution for the ITV-4DCT bolus was similar to that for the GTV-4DCT bolus and required significantly less practitioner time. The ITV-4DCT bolus treatment plan is time-efficient and provides a high-quality dose distribution, making it a practical alternative to the GTV-4DCT bolus treatment plan.

  7. Evaluation of tomotherapy MVCT image enhancement program for tumor volume delineation

    PubMed Central

    Martin, Spencer; Rodrigues, George; Chen, Quan; Pavamani, Simon; Read, Nancy; Ahmad, Belal; Hammond, J. Alex; Venkatesan, Varagur; Renaud, James

    2011-01-01

    The aims of this study were to investigate the variability between physicians in delineation of head and neck tumors on original tomotherapy megavoltage CT (MVCT) studies and corresponding software enhanced MVCT images, and to establish an optimal approach for evaluation of image improvement. Five physicians contoured the gross tumor volume (GTV) for three head and neck cancer patients on 34 original and enhanced MVCT studies. Variation between original and enhanced MVCT studies was quantified by DICE coefficient and the coefficient of variance. Based on volume of agreement between physicians, higher correlation in terms of average DICE coefficients was observed in GTV delineation for enhanced MVCT for patients 1, 2, and 3 by 15%, 3%, and 7%, respectively, while delineation variance among physicians was reduced using enhanced MVCT for 12 of 17 weekly image studies. Enhanced MVCT provides advantages in reduction of variance among physicians in delineation of the GTV. Agreement on contouring by the same physician on both original and enhanced MVCT was equally high. PACS numbers: 87.57.N‐, 87.57.np, 87.57.nt

  8. SU-E-J-226: Propagation of Pancreas Target Contours On Respiratory Correlated CT Images Using Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F; Yorke, E; Mageras, G

    2014-06-01

    Purpose: Respiratory Correlated CT (RCCT) scans to assess intra-fraction motion among pancreatic cancer patients undergoing radiotherapy allow for dose sparing of normal tissues, in particular for the duodenum. Contour propagation of the gross tumor volume (GTV) from one reference respiratory phase to 9 other phases is time consuming. Deformable image registration (DIR) has been successfully used for high contrast disease sites but lower contrast for pancreatic tumors may compromise accuracy. This study evaluates the accuracy of Fast Free Form (FFF) registration-based contour propagation of the GTV on RCCT scans of pancreas cancer patients. Methods: Twenty-four pancreatic cancer patients were retrospectivelymore » studied; 20 had tumors in the pancreatic head/neck, 4 in the body/tail. Patients were simulated with RCCT and images were sorted into 10 respiratory phases. A radiation oncologist manually delineated the GTV for 5 phases (0%, 30%, 50%, 70% and 90%). The FFF algorithm was used to map deformations between the EE (50%) phase and each of the other 4 phases. The resultant deformation fields served to propagate GTV contours from EE to the other phases. The Dice Similarity Coefficient (DSC), which measures agreement between the DIR-propagated and manually-delineated GTVs, was used to quantitatively examine DIR accuracy. Results: Average DSC over all scans and patients is 0.82 and standard deviation is 0.09 (DSC range 0.97–0.57). For GTV volumes above and below the median volume of 20.2 cc, a Wilcoxon rank-sum test shows significantly different DSC (p=0.0000002). For the GTVs above the median volume, average +/− SD is 0.85 +/− 0.07; and for the GTVs below, the average +/− SD is 0.75 +/−0.08. Conclusion: For pancreatic tumors, the FFF DIR algorithm accurately propagated the GTV between the images in different phases of RCCT, with improved performance for larger tumors.« less

  9. Clinical Implications of the Tumor Volume Reduction Rate in Head-and-Neck Cancer During Definitive Intensity-Modulated Radiotherapy for Organ Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shih-Neng; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Liao, Chih-Ying

    2011-03-15

    Purpose: To investigate the prognostic value of the volume reduction rate (VRR) in patients with head-and-neck cancer treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Seventy-six patients with oropharyngeal cancer (OPC) and another 76 with hypopharyngeal cancer (HPC) were enrolled in volumetric analysis. All patients received allocated radiotherapy courses. Adaptive computed tomography was done 4 to 5 weeks after the start of IMRT. Primary tumor volume measurement was derived using separate images for the pretreatment gross tumor volume (pGTV) and the interval gross tumor volume. Results: In the OPC group, the pGTV ranged from 6.6 to 242.6 mL (mean, 49.9more » mL), whereas the value of the VRR ranged from 0.014 to 0.74 (mean, 0.43). In HPC patients, the pGTV ranged from 4.1 to 152.4 mL (mean, 35.6 mL), whereas the VRR ranged from -1.15 to 0.79 (mean, 0.33). Multivariate analysis of the primary tumor relapse-free survival for OPC revealed three prognostic factors: T4 tumor (p = 0.0001, hazard ratio 7.38), pGTV {>=}20 mL (p = 0.01, hazard ratio 10.61), and VRR <0.5 (p = 0.001, hazard ratio 6.49). Multivariate analysis of the primary tumor relapse-free survival for HPC showed two prognostic factors: pGTV {>=}30 mL (p = 0.001, hazard ratio 2.87) and VRR <0.5 (p = 0.03, hazard ratio 2.25). Conclusion: The VRR is an outcome predictor for local control in OPC and HPC patients treated with IMRT. Those with large tumor volumes or a VRR <0.5 should be considered for a salvage operation or a dose-escalation scheme.« less

  10. Impact of gastric filling on radiation dose delivered to gastroesophageal junction tumors.

    PubMed

    Bouchard, Myriam; McAleer, Mary Frances; Starkschall, George

    2010-05-01

    This study examined the impact of gastric filling variation on target coverage of gastroesophageal junction (GEJ) tumors in three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), or IMRT with simultaneous integrated boost (IMRT-SIB) plans. Eight patients previously receiving radiation therapy for esophageal cancer had computed tomography (CT) datasets acquired with full stomach (FS) and empty stomach (ES). We generated treatment plans for 3DCRT, IMRT, or IMRT-SIB for each patient on the ES-CT and on the FS-CT datasets. The 3DCRT and IMRT plans were planned to 50.4 Gy to the clinical target volume (CTV), and the same for IMRT-SIB plus 63.0 Gy to the gross tumor volume (GTV). Target coverage was evaluated using dose-volume histogram data for patient treatments simulated with ES-CT sets, assuming treatment on an FS for the entire course, and vice versa. FS volumes were a mean of 3.3 (range, 1.7-7.5) times greater than ES volumes. The volume of the GTV receiving >or=50.4 Gy (V(50.4Gy)) was 100% in all situations. The planning GTV V(63Gy) became suboptimal when gastric filling varied, regardless of whether simulation was done on the ES-CT or the FS-CT set. Stomach filling has a negligible impact on prescribed dose delivered to the GEJ GTV, using either 3DCRT or IMRT planning. Thus, local relapses are not likely to be related to variations in gastric filling. Dose escalation for GEJ tumors with IMRT-SIB may require gastric filling monitoring.

  11. Failure Patterns in Patients with Esophageal Cancer Treated with Definitive Chemoradiation

    PubMed Central

    Welsh, James; Settle, Stephen H.; Amini, Arya; Xiao, Lianchun; Suzuki, Akihiro; Hayashi, Yuki; Hofstetter, Wayne; Komaki, Ritsuko; Liao, Zhongxing; Ajani, Jaffer A.

    2012-01-01

    Purpose Local failure after definitive chemoradiation therapy for unresectable esophageal cancer remains problematic. Little is known about the failure pattern based on modern day radiation treatment volumes. We hypothesized that most local failures would be within the gross tumor volume (GTV), where the bulk of the tumor burden resides. Methods and Materials We reviewed treatment volumes for 239 patients who underwent definitive chemoradiation therapy and compared this information with failure patterns on follow-up positron emission (PET). Failures were categorized as within the GTV, the larger clinical target volume (CTV, which encompasses microscopic disease), or the still larger planning target volume (PTV, which encompasses setup variability) or outside the radiation field. Results At a median follow-up time of 52.6 months (95% CI: 46.1 – 56.7 months), 119 patients (50%) had experienced local failure, 114 (48%) had distant failure, and 74 (31%) had no evidence of failure. Of all local failures, 107 (90%) were in the GTV, 27 (23%) in the CTV; and 14 (12%) in the PTV. In multivariate analysis, GTV failure was associated with tumor status (T3/T4 vs. T1/T2: OR=6.35, p value =0.002), change in standardized uptake value on PET before and after treatment (decrease >52%: OR=0.368, p value = 0.003) and tumor length (>8 cm: 4.08, p value = 0.009). Conclusions Most local failures after definitive chemoradiation for unresectable esophageal cancer occur in the GTV. Future therapeutic strategies should focus on enhancing local control. PMID:22565611

  12. SU-E-J-12: A New Stereological Method for Tumor Volume Evaluation for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Tianjin Medical University Cancer Institute and Hospital; East Carolina University

    2014-06-01

    Purpose: Stereological method used to obtain three dimensional quantitative information from two dimensional images is a widely used tool in the study of cells and pathology. But the feasibility of the method for quantitative evaluation of volumes with 3D image data sets for radiotherapy clinical application has not been explored. On the other hand, a quick, easy-to-use and reliable method is highly desired in image-guided-radiotherapy(IGRT) for tumor volume measurement for the assessment of response to treatment. To meet this need, a stereological method for evaluating tumor volumes for esophageal cancer is presented in this abstract. Methods: The stereology method wasmore » optimized by selecting the appropriate grid point distances and sample types. 7 patients with esophageal cancer were selected retrospectively for this study, each having pre and post treatment computed tomography (CT) scans. Stereological measurements were performed for evaluating the gross tumor volume (GTV) changes after radiotherapy and the results was compared with the ones by planimetric measurements. Two independent observers evaluated the reproducibility for volume measurement using the new stereological technique. Results: The intraobserver variation in the GTV volume estimation was 3.42±1.68cm3 (the Wilcoxon matched-pairs test Resultwas Z=−1.726,P=0.084>0.05); the interobserver variation in the GTV volume estimation was 22.40±7.23 cm3 (Z=−3.296,P=0.083>0.05), which showed the consistency in GTV volume calculation with the new method for the same and different users. The agreement level between the results from the two techniques was also evaluated. Difference between the measured GTVs was 20.10±5.35 cm3 (Z=−3.101,P=0.089>0.05). Variation of the measurement results using the two techniques was low and clinically acceptable. Conclusion: The good agreement between stereological and planimetric techniques proves the reliability of the stereological tumor volume estimations. The

  13. Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raktoe, Sawan A.S.; Dehnad, Homan, E-mail: h.dehnad@umcutrecht.nl; Raaijmakers, Cornelis P.J.

    Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal',more » or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The COM model is practical and specific for recurrence assessment

  14. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515.

    PubMed

    Bradley, Jeffrey; Bae, Kyounghwa; Choi, Noah; Forster, Ken; Siegel, Barry A; Brunetti, Jacqueline; Purdy, James; Faria, Sergio; Vu, Toni; Thorstad, Wade; Choy, Hak

    2012-01-01

    Radiation Therapy Oncology Group (RTOG) 0515 is a Phase II prospective trial designed to quantify the impact of positron emission tomography (PET)/computed tomography (CT) compared with CT alone on radiation treatment plans (RTPs) and to determine the rate of elective nodal failure for PET/CT-derived volumes. Each enrolled patient underwent definitive radiation therapy for non-small-cell lung cancer (≥ 60 Gy) and had two RTP datasets generated: gross tumor volume (GTV) derived with CT alone and with PET/CT. Patients received treatment using the PET/CT-derived plan. The primary end point, the impact of PET/CT fusion on treatment plans was measured by differences of the following variables for each patient: GTV, number of involved nodes, nodal station, mean lung dose (MLD), volume of lung exceeding 20 Gy (V20), and mean esophageal dose (MED). Regional failure rate was a secondary end point. The nonparametric Wilcoxon matched-pairs signed-ranks test was used with Bonferroni adjustment for an overall significance level of 0.05. RTOG 0515 accrued 52 patients, 47 of whom are evaluable. The follow-up time for all patients is 12.9 months (2.7-22.2). Tumor staging was as follows: II = 6%; IIIA = 40%; and IIIB = 54%. The GTV was statistically significantly smaller for PET/CT-derived volumes (98.7 vs. 86.2 mL; p < 0.0001). MLDs for PET/CT plans were slightly lower (19 vs. 17.8 Gy; p = 0.06). There was no significant difference in the number of involved nodes (2.1 vs. 2.4), V20 (32% vs. 30.8%), or MED (28.7 vs. 27.1 Gy). Nodal contours were altered by PET/CT for 51% of patients. One patient (2%) has developed an elective nodal failure. PET/CT-derived tumor volumes were smaller than those derived by CT alone. PET/CT changed nodal GTV contours in 51% of patients. The elective nodal failure rate for GTVs derived by PET/CT is quite low, supporting the RTOG standard of limiting the target volume to the primary tumor and involved nodes. Copyright © 2012 Elsevier Inc. All rights

  15. Consequences of anorectal cancer atlas implementation in the cooperative group setting: radiobiologic analysis of a prospective randomized in silico target delineation study.

    PubMed

    Mavroidis, Panayiotis; Giantsoudis, Drosoula; Awan, Musaddiq J; Nijkamp, Jasper; Rasch, Coen R N; Duppen, Joop C; Thomas, Charles R; Okunieff, Paul; Jones, William E; Kachnic, Lisa A; Papanikolaou, Niko; Fuller, Clifton D

    2014-09-01

    The aim of this study is to ascertain the subsequent radiobiological impact of using a consensus guideline target volume delineation atlas. Using a representative case and target volume delineation instructions derived from a proposed IMRT rectal cancer clinical trial, gross tumor volume (GTV) and clinical/planning target volumes (CTV/PTV) were contoured by 13 physician observers (Phase 1). The observers were then randomly assigned to follow (atlas) or not-follow (control) a consensus guideline/atlas for anorectal cancers, and instructed to re-contour the same case (Phase 2). The atlas group was found to have increased tumor control probability (TCP) after the atlas intervention for both the CTV (p<0.0001) and PTV1 (p=0.0011) with decreasing normal tissue complication probability (NTCP) for small intestine, while the control group did not. Additionally, the atlas group had reduced variance in TCP for all target volumes and reduced variance in NTCP for the bowel. In Phase 2, the atlas group had increased TCP relative to the control for CTV (p=0.03). Visual atlas and consensus treatment guideline usage in the development of rectal cancer IMRT treatment plans reduced the inter-observer radiobiological variation, with clinically relevant TCP alteration for CTV and PTV volumes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-04-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less

  17. The Comparison Study of Quadratic Infinite Beam Program on Optimization Instensity Modulated Radiation Therapy Treatment Planning (IMRTP) between Threshold and Exponential Scatter Method with CERR® In The Case of Lung Cancer

    NASA Astrophysics Data System (ADS)

    Hardiyanti, Y.; Haekal, M.; Waris, A.; Haryanto, F.

    2016-08-01

    This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin.

  18. SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, H; Tachibana, R

    2015-06-15

    Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification softwaremore » program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction.« less

  19. Patterns-of-failure guided biological target volume definition for head and neck cancer patients: FDG-PET and dosimetric analysis of dose escalation candidate subregions.

    PubMed

    Mohamed, Abdallah S R; Cardenas, Carlos E; Garden, Adam S; Awan, Musaddiq J; Rock, Crosby D; Westergaard, Sarah A; Brandon Gunn, G; Belal, Abdelaziz M; El-Gowily, Ahmed G; Lai, Stephen Y; Rosenthal, David I; Fuller, Clifton D; Aristophanous, Michalis

    2017-08-01

    To identify the radio-resistant subvolumes in pretreatment FDG-PET by mapping the spatial location of the origin of tumor recurrence after IMRT for head-and-neck squamous cell cancer to the pretreatment FDG-PET/CT. Patients with local/regional recurrence after IMRT with available FDG-PET/CT and post-failure CT were included. For each patient, both pre-therapy PET/CT and recurrence CT were co-registered with the planning CT (pCT). A 4-mm radius was added to the centroid of mapped recurrence growth target volumes (rGTV's) to create recurrence nidus-volumes (NVs). The overlap between boost-tumor-volumes (BTV) representing different SUV thresholds/margins combinations and NVs was measured. Forty-seven patients were eligible. Forty-two (89.4%) had type A central high dose failure. Twenty-six (48%) of type A rGTVs were at the primary site and 28 (52%) were at the nodal site. The mean dose of type A rGTVs was 71Gy. BTV consisting of 50% of the maximum SUV plus 10mm margin was the best subvolume for dose boosting due to high coverage of primary site NVs (92.3%), low average relative volume to CTV1 (41%), and least average percent voxels outside CTV1 (19%). The majority of loco-regional recurrences originate in the regions of central-high-dose. When correlated with pretreatment FDG-PET, the majority of recurrences originated in an area that would be covered by additional 10mm margin on the volume of 50% of the maximum FDG uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Toward semi-automated assessment of target volume delineation in radiotherapy trials: the SCOPE 1 pretrial test case.

    PubMed

    Gwynne, Sarah; Spezi, Emiliano; Wills, Lucy; Nixon, Lisette; Hurt, Chris; Joseph, George; Evans, Mererid; Griffiths, Gareth; Crosby, Tom; Staffurth, John

    2012-11-15

    To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynne, Sarah, E-mail: Sarah.Gwynne2@wales.nhs.uk; Spezi, Emiliano; Wills, Lucy

    2012-11-15

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that weremore » sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.« less

  2. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    PubMed

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  3. Long-term outcomes and prognostic factors for patients with esophageal cancer following radiotherapy.

    PubMed

    Chen, Chuang-Zhen; Chen, Jian-Zhou; Li, De-Rui; Lin, Zhi-Xiong; Zhou, Ming-Zhen; Li, Dong-Sheng; Chen, Zhi-Jian

    2013-03-14

    To evaluate long-term outcomes and prognostic factors for esophageal squamous cell carcinoma (SCC) treated with three dimensional conformal radiotherapy (3D-CRT). Between January 2005 and December 2006, 153 patients (120 males, 33 females) with pathologically confirmed esophageal SCC and treated with 3D-CRT in Cancer Hospital of Shantou University were included in this retrospective analysis. Median age was 60 years (range: 37-84 years). The proportion of tumor location was as follows: upper thorax (including the cervical region), 73 (48%); middle thorax, 73 (48%); lower thorax, 7 (5%), respectively. The median radiation dose was 64 Gy (range: 50-74 Gy). Fifty four cases (35%) received cisplatin-based concurrent chemotherapy. Univariate and multivariate analysis were performed to determine the association between the correlative factors and prognosis. The five-year overall survival rate was 26.3%, with a median follow-up of 49 mo (range: 3-66 mo) for patients who were still alive. On univariate analysis, lesion location, lesion length by barium esophagogram, computed tomography imaging characteristics including Y diameter (anterior-posterior, AP, extent of tumor), gross tumor volume of primary lesion (GTV-E), volume of positive lymph nodes (GTV-LN), and the total target volume (GTV-T = GTV-E + GTV-LN) were prognostic for overall survival. By multivariate analysis, only the Y diameter [hazard ratio (HR) 2.219, 95%CI 1.141-4.316, P = 0.019] and the GTV-T (HR 1.372, 95%CI 1.044-1.803, P = 0.023) were independent prognostic factors for survival. The overall survival of esophageal carcinoma patients undergoing 3D-CRT was promising. The best predictors for survival were GTV-T and Y diameter.

  4. Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation.

    PubMed

    Godfrey, Devon J; Patel, Bhavik N; Adamson, Justus D; Subashi, Ergys; Salama, Joseph K; Palta, Manisha

    Bolus-tracked multiphasic contrast computed tomography (CT) is often used in diagnostic radiology to enhance the visibility of pancreas tumors, but is uncommon in radiation therapy pancreas CT simulation, and its impact on gross tumor volume (GTV) delineation is unknown. This study evaluates the lesion conspicuity and consistency of pancreas stereotactic body radiation therapy (SBRT) GTVs contoured in the different contrast phases of triphasic CT simulation scans. Triphasic, bolus-tracked planning CT simulation scans of 10 consecutive pancreas SBRT patients were acquired, yielding images of the pancreas during the late arterial (LA), portal venous (PV), and either the early arterial or delayed phase. GTVs were contoured on each phase by a gastrointestinal-specialized radiation oncologist and reviewed by a fellowship-trained abdominal radiologist who specializes in pancreatic imaging. The volumes of the registered GTVs, their overlap ratio, and the 3-dimensional margin expansions necessary for each GTV to fully encompass GTVs from the other phases were calculated. The contrast difference between tumor and normal pancreas was measured, and 2 radiation oncologists rank-ordered the phases according to their value for the lesion-contouring task. Tumor-to-pancreas enhancement was on average much larger for the LA and PV than the delayed phase or early arterial phases; the LA and PV phases were also consistently preferred by the radiation oncologists. Enhancement differences among the phases resulted in highly variable GTV volumes with no observed trends. Overlap ratios ranged from 18% to 75% across all 3 phases, improving to 43% to 91% when considering only the preferred LA and PV phases. GTV expansions necessary to encompass all GTVs ranged from 0.3 to 1.8 cm for all 3 phases, improving slightly to 0.1 to 1.4 cm when considering just the LA and PV phases. For pancreas SBRT, we recommend combining the GTVs from a multiphasic CT simulation with bolus-tracking, including

  5. Comparison of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology

    PubMed Central

    Zamboglou, Constantinos; Drendel, Vanessa; Jilg, Cordula A.; Rischke, Hans C.; Beck, Teresa I.; Schultze-Seemann, Wolfgang; Krauss, Tobias; Mix, Michael; Schiller, Florian; Wetterauer, Ulrich; Werner, Martin; Langer, Mathias; Bock, Michael; Meyer, Philipp T.; Grosu, Anca L.

    2017-01-01

    Purpose: The exact detection and delineation of the intraprostatic tumour burden is crucial for treatment planning in primary prostate cancer (PCa). We compared 68Ga-HBED-CC-PSMA PET/CT with multiparametric MRI (mpMRI) for diagnosis and tumour delineation in patients with primary PCa based on slice by slice correlation with histopathological reference material. Methodology: Seven patients with histopathologically proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT and MRI followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and prepared for histopathology. Invasive PCa was delineated on a HE stained histologic tissue slide and matched to ex-vivo CT to obtain gross tumor volume (GTV-)histo. Ex-vivo CT including GTV-histo and MRI data were matched to in-vivo CT(PET). Consensus contours based on MRI (GTV-MRI), PSMA PET (GTV-PET) or the combination of both (GTV-union/-intersection) were created. In each in-vivo CT slice the prostate was separated into 4 equal segments and sensitivity and specificity for PSMA PET and mpMRI were assessed by comparison with histological reference material. Furthermore, the spatial overlap between GTV-histo and GTV-PET/-MRI and the Sørensen-Dice coefficient (DSC) were calculated. In the case of multifocal PCa (4/7 patients), SUV values (PSMA PET) and ADC-values (diffusion weighted MRI) were obtained for each lesion. Results: PSMA PET and mpMRI detected PCa in all patients. GTV-histo was detected in 225 of 340 segments (66.2%). Sensitivity and specificity for GTV-PET, GTV-MRI, GTV-union and GTV-intersection were 75% and 87%, 70% and 82%, 82% and 67%, 55% and 99%, respectively. GTV-histo had on average the highest overlap with GTV-union (57±22%), which was significantly higher than overlap with GTV-MRI (p=0.016) and GTV-PET (p=0.016), respectively. The mean DSC for GTV-union, GTV-PET and GTV-MRI was 0.51 (±0.18), 0.45 (±0.17) and 0.48 (±0.19), respectively. In every patient with

  6. Improving the consistency in cervical esophageal target volume definition by special training.

    PubMed

    Tai, Patricia; Van Dyk, Jake; Battista, Jerry; Yu, Edward; Stitt, Larry; Tonita, Jon; Agboola, Olusegun; Brierley, James; Dar, Rashid; Leighton, Christopher; Malone, Shawn; Strang, Barbara; Truong, Pauline; Videtic, Gregory; Wong, C Shun; Wong, Rebecca; Youssef, Youssef

    2002-07-01

    Three-dimensional conformal radiation therapy requires the precise definition of the target volume. Its potential benefits could be offset by the inconsistency in target definition by radiation oncologists. In a previous survey of radiation oncologists, a large degree of variation in target volume definition of cervical esophageal cancer was noted for the boost phase of radiotherapy. The present study evaluated whether special training could improve the consistency in target volume definitions. A pre-training survey was performed to establish baseline values. This was followed by a special one-on-one training session on treatment planning based on the RTOG 94-05 protocol to 12 radiation oncologists. Target volumes were redrawn immediately and at 1-2 months later. Post-training vs. pre-training target volumes were compared. There was less variability in the longitudinal positions of the target volumes post-training compared to pre-training (p < 0.05 in 5 of 6 comparisons). One case had more variability due to the lack of a visible gross tumor on CT scans. Transverse contours of target volumes did not show any significant difference pre- or post-training. For cervical esophageal cancer, this study suggests that special training on protocol guidelines may improve consistency in target volume definition. Explicit protocol directions are required for situations where the gross tumor is not easily visible on CT scans. This may be particularly important for multicenter clinical trials, to reduce the occurrences of protocol violations.

  7. Impact of computed tomography and {sup 18}F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine

    2005-12-01

    Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in

  8. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulos, Johannes C.A.; Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at; Fidarova, Elena

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planningmore » and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for

  9. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    PubMed

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment

  10. Long-term outcomes and prognostic factors for patients with esophageal cancer following radiotherapy

    PubMed Central

    Chen, Chuang-Zhen; Chen, Jian-Zhou; Li, De-Rui; Lin, Zhi-Xiong; Zhou, Ming-Zhen; Li, Dong-Sheng; Chen, Zhi-Jian

    2013-01-01

    AIM: To evaluate long-term outcomes and prognostic factors for esophageal squamous cell carcinoma (SCC) treated with three dimensional conformal radiotherapy (3D-CRT). METHODS: Between January 2005 and December 2006, 153 patients (120 males, 33 females) with pathologically confirmed esophageal SCC and treated with 3D-CRT in Cancer Hospital of Shantou University were included in this retrospective analysis. Median age was 60 years (range: 37-84 years). The proportion of tumor location was as follows: upper thorax (including the cervical region), 73 (48%); middle thorax, 73 (48%); lower thorax, 7 (5%), respectively. The median radiation dose was 64 Gy (range: 50-74 Gy). Fifty four cases (35%) received cisplatin-based concurrent chemotherapy. Univariate and multivariate analysis were performed to determine the association between the correlative factors and prognosis. RESULTS: The five-year overall survival rate was 26.3%, with a median follow-up of 49 mo (range: 3-66 mo) for patients who were still alive. On univariate analysis, lesion location, lesion length by barium esophagogram, computed tomography imaging characteristics including Y diameter (anterior-posterior, AP, extent of tumor), gross tumor volume of primary lesion (GTV-E), volume of positive lymph nodes (GTV-LN), and the total target volume (GTV-T = GTV-E + GTV-LN) were prognostic for overall survival. By multivariate analysis, only the Y diameter [hazard ratio (HR) 2.219, 95%CI 1.141-4.316, P = 0.019] and the GTV-T (HR 1.372, 95%CI 1.044-1.803, P = 0.023) were independent prognostic factors for survival. CONCLUSION: The overall survival of esophageal carcinoma patients undergoing 3D-CRT was promising. The best predictors for survival were GTV-T and Y diameter. PMID:23539205

  11. Interhemispheric Difference Images from Postoperative Diffusion Tensor Imaging of Gliomas

    PubMed Central

    Kosztyla, Robert; Reinsberg, Stefan A; Moiseenko, Vitali; Toyota, Brian

    2016-01-01

    Introduction Determining the full extent of gliomas during radiotherapy planning can be challenging with conventional T1 and T2 magnetic resonance imaging (MRI). The purpose of this study was to develop a method to automatically calculate differences in the fractional anisotropy (FA) and mean diffusivity (MD) values in target volumes obtained with diffusion tensor imaging (DTI) by comparing with values from anatomically homologous voxels on the contralateral side of the brain. Methods Seven patients with a histologically confirmed glioma underwent postoperative radiotherapy planning with 1.5 T MRI and computed tomography. DTI was acquired using echo planar imaging for 20 noncolinear directions with b = 1000 s/mm2 and one additional image with b = 0, repeated four times for signal averaging. The distribution of FA and MD was calculated in the gross tumor volume (GTV), shells 0-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, and 20-25 mm outside the GTV, and the GTV mirrored in the left-right direction (mirGTV). All images were aligned to a template image, and FA and MD interhemispheric difference images were calculated. The difference in mean FA and MD between the regions of interest was statistically tested using two-sided paired t-tests with α = 0.05. Results The mean FA in mirGTV was 0.20 ± 0.04, which was larger than the FA in the GTV (0.12 ± 0.03) and shells 0-5 mm (0.15 ± 0.03) and 5-10 mm (0.17 ± 0.03) outside the GTV. The mean MD (×10-3 mm2/s) in mirGTV was 0.93 ± 0.09, which was smaller than the MD in the GTV (1.48 ± 0.19) and the peritumoral shells. The distribution of FA and MD interhemispheric differences followed the same trends as FA and MD values. Conclusions This study successfully implemented a method for calculation of FA and MD differences by comparison of voxel values with anatomically homologous voxels on the contralateral side of the brain. Further research is warranted to determine if radiotherapy planning using these images can be used to improve

  12. SU-E-J-179: Assessment of Tumor Volume Change and Movement During Stereotactic Body Radiotherapy (SBRT) for Lung Cancer: Is Adaptive Radiation Therapy (ART) Necessary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C; Lee, C

    2015-06-15

    Purpose: Delineation of gross tumor volumes (GTVs) is important for stereotactic body radiotherapy (SBRT). However, tumor volume changes during treatment response. Here, we have investigated tumor volume changes and movement during SBRT for lung cancer, as a means of examining the need for adaptive radiation therapy (ART). Methods: Fifteen tumors in 15 patients with lung cancer were treated with SBRT (total dose: 60 Gy in 4 fractions). GTVs were obtained from cone-beam computed tomography scans (CBCT1–4) taken before each of the 4 fractions was administered. GTVs were delineated and measured by radiation oncologists using a treatment planning system. Variance inmore » the tumor position was assessed between the planning CT and the CBCT images. To investigate the dosimetric effects of tumor volume changes, planning CT and CBCT4 treatment plans were compared using the conformity index (CI), homogeneity index (HI), and Paddick’s index (PCI). Results: The GTV on CBCT1 was employed as a baseline for comparisons. GTV had decreased by a mean of 20.4% (range: 0.7% to 47.2%) on CBCT4. Most patients had smaller GTVs on CBCT4 than on CBCT1. The interfractional shifts of the tumor position between the planning CT and CBCT1–4 were as follows: right-left, −0.4 to 1.3 mm; anterior-posterior, −0.8 to 0.5 mm; and superiorinferior, −0.9 to 1.1 mm. Indices for plans from the planning CT and CBCT4 were as follows: CI = 0.94±0.02 and 1.11±0.03; HI= 1.1±0.02 and 1.10±0.03; and PCI = 1.35±0.16 and 1.11±0.02, respectively. Conclusion: CI, HI, and PCI did not differ between the planning CT and CBCTs. However, daily CBCT revealed a significant decrease in the GTV during lung SBRT. Furthermore, there was an obvious interfractional shift in tumor position. Using ART could potentially lead to a reduced GTV margin and improved regional tumor control for lung cancer patients with significantly decreased GTV.« less

  13. Effect of Normal Lung Definition on Lung Dosimetry and Lung Toxicity Prediction in Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weili; Department of Radiation Oncology, the Fourth Affiliated Hospital, China Medical University, Shenyang; Xu, Yaping

    2013-08-01

    Purpose: This study aimed to compare lung dose–volume histogram (DVH) parameters such as mean lung dose (MLD) and the lung volume receiving ≥20 Gy (V20) of commonly used definitions of normal lung in terms of tumor/target subtraction and to determine to what extent they differ in predicting radiation pneumonitis (RP). Methods and Materials: One hundred lung cancer patients treated with definitive radiation therapy were assessed. The gross tumor volume (GTV) and clinical planning target volume (PTV{sub c}) were defined by the treating physician and dosimetrist. For this study, the clinical target volume (CTV) was defined as GTV with 8-mm uniformmore » expansion, and the PTV was defined as CTV with an 8-mm uniform expansion. Lung DVHs were generated with exclusion of targets: (1) GTV (DVH{sub G}); (2) CTV (DVH{sub C}); (3) PTV (DVH{sub P}); and (4) PTV{sub c} (DVH{sub Pc}). The lung DVHs, V20s, and MLDs from each of the 4 methods were compared, as was their significance in predicting radiation pneumonitis of grade 2 or greater (RP2). Results: There are significant differences in dosimetric parameters among the various definition methods (all Ps<.05). The mean and maximum differences in V20 are 4.4% and 12.6% (95% confidence interval 3.6%-5.1%), respectively. The mean and maximum differences in MLD are 3.3 Gy and 7.5 Gy (95% confidence interval, 1.7-4.8 Gy), respectively. MLDs of all methods are highly correlated with each other and significantly correlated with clinical RP2, although V20s are not. For RP2 prediction, on the receiver operating characteristic curve, MLD from DVH{sub G} (MLD{sub G}) has a greater area under curve of than MLD from DVH{sub C} (MLD{sub C}) or DVH{sub P} (MLD{sub P}). Limiting RP2 to 30%, the threshold is 22.4, 20.6, and 18.8 Gy, for MLD{sub G}, MLD{sub C}, and MLD{sub P}, respectively. Conclusions: The differences in MLD and V20 from various lung definitions are significant. MLD from the GTV exclusion method may be more accurate in

  14. Investigating different computed tomography techniques for internal target volume definition.

    PubMed

    Yoganathan, S A; Maria Das, K J; Subramanian, V Siva; Raj, D Gowtham; Agarwal, Arpita; Kumar, Shaleen

    2017-01-01

    The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.

  15. Accumulated Delivered Dose Response of Stereotactic Body Radiation Therapy for Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminath, Anand; Massey, Christine; Brierley, James D.

    2015-11-01

    Purpose: To determine whether the accumulated dose using image guided radiation therapy is a stronger predictor of clinical outcomes than the planned dose in stereotactic body radiation therapy (SBRT) for liver metastases. Methods and Materials: From 2003 to 2009, 81 patients with 142 metastases were treated in institutional review board–approved SBRT studies (5-10 fractions). Patients were treated during free breathing (with or without abdominal compression) or with controlled exhale breath-holding. SBRT was planned on a static exhale computed tomography (CT) scan, and the minimum planning target volume dose to 0.5 cm{sup 3} (minPTV) was recorded. The accumulated minimum dose to themore » 0.5 cm{sup 3} gross tumor volume (accGTV) was calculated after performing dose accumulation from exported image guided radiation therapy data sets registered to the planning CT using rigid (2-dimensional MV/kV orthogonal) or deformable (3-dimensional/4-dimensional cone beam CT) image registration. Univariate and multivariate Cox regression models assessed the factors influencing the time to local progression (TTLP). Hazard ratios for accGTV and minPTV were compared using model goodness-of-fit and bootstrapping. Results: Overall, the accGTV dose exceeded the minPTV dose in 98% of the lesions. For 5 to 6 fractions, accGTV doses of >45 Gy were associated with 1-year local control of 86%. On univariate analysis, the cancer subtype (breast), smaller tumor volume, and increased dose were significant predictors for improved TTLP. The dose and volume were uncorrelated; the accGTV dose and minPTV dose were correlated and were tested separately on multivariate models. Breast cancer subtype, accGTV dose (P<.001), and minPTV dose (P=.02) retained significance in the multivariate models. The univariate hazard ratio for TTLP for 5-Gy increases in accGTV versus minPTV was 0.67 versus 0.74 (all patients; 95% confidence interval of difference 0.03-0.14). Goodness-of-fit testing confirmed

  16. The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery.

    PubMed

    Yamada, Yoshiya; Katsoulakis, Evangelia; Laufer, Ilya; Lovelock, Michael; Barzilai, Ori; McLaughlin, Lily A; Zhang, Zhigang; Schmitt, Adam M; Higginson, Daniel S; Lis, Eric; Zelefsky, Michael J; Mechalakos, James; Bilsky, Mark H

    2017-01-01

    OBJECTIVE An analysis of factors contributing to durable radiographic control of spinal metastases was undertaken, drawing from a large single-institution database in an attempt to elucidate indications and dose requirements for successful treatment. METHODS All patients treated at a single institution with stereotactic radiosurgery (SRS) of the spine as first-line therapy were assessed for local progression of the treated site, defined as radiographic enlargement of the treated tumor and/or biopsy-proven evidence of active tumor cells. All patients were followed with CT, PET, or MR imaging every 3-6 months until death. Treatment decisions were made by a multidisciplinary team of radiation oncologists, neurosurgeons, and neuroradiologists. Target volumes were defined according to the international consensus guidelines and were reviewed in a multidisciplinary conference. Image-guided techniques and intensity modulation were used for every case. The tumor's histological type, gross tumor volume (GTV), dose that covers 95% of the GTV (GTV D95), percentage of GTV covered by 95% of the prescribed dose (GTV V95), planning target volume (PTV), dose that covers 95% of the PTV (PTV D95), and percentage of PTV covered by 95% of the prescribed dose (PTV V95) were analyzed for significance in relation to local control, based on time to local progression. RESULTS A total of 811 lesions were treated in 657 patients between 2003 and 2015 at a single institution. The mean follow-up and overall survival for the entire cohort was 26.9 months (range 2-141 months). A total of 28 lesions progressed and the mean time to failure was 26 months (range 9.7-57 months). The median prescribed dose was 2400 cGy (range 1600-2600 cGy). Both GTV D95 and PTV D95 were highly significantly associated with local failure in univariate analysis, but GTV and PTV and histological type did not reach statistical significance. The median GTV D95 for the cohort equal to or above the GTV D95 1830 cGy cut point

  17. The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery

    PubMed Central

    Yamada, Yoshiya; Katsoulakis, Evangelia; Laufer, Ilya; Lovelock, Michael; Barzilai, Ori; McLaughlin, Lily A.; Zhang, Zhigang; Schmitt, Adam M.; Higginson, Daniel S.; Lis, Eric; Zelefsky, Michael J.; Mechalakos, James; Bilsky, Mark H.

    2017-01-01

    Objective An analysis of factors contributing to durable radiographic control of spinal metastases was undertaken, drawing from a large single-institution database in an attempt to elucidate indications and dose requirements for successful treatment. Methods All patients treated at a single institution with stereotactic radiosurgery (SRS) of the spine as first-line therapy were assessed for local progression of the treated site, defined as radiographic enlargement of the treated tumor and/or biopsy-proven evidence of active tumor cells. All patients were followed with CT, PET, or MR imaging every 3–6 months until death. Treatment decisions were made by a multidisciplinary team of radiation oncologists, neurosurgeons, and neuroradiologists. Target volumes were defined according to the international consensus guidelines and were reviewed in a multidisciplinary conference. Image-guided techniques and intensity modulation were used for every case. The tumor’s histological type, gross tumor volume (GTV), dose that covers 95% of the GTV (GTV D95), percentage of GTV covered by 95% of the prescribed dose (GTV V95), planning target volume (PTV), dose that covers 95% of the PTV (PTV D95), and percentage of PTV covered by 95% of the prescribed dose (PTV V95) were analyzed for significance in relation to local control, based on time to local progression. Results A total of 811 lesions were treated in 657 patients between 2003 and 2015 at a single institution. The mean follow-up and overall survival for the entire cohort was 26.9 months (range 2–141 months). A total of 28 lesions progressed and the mean time to failure was 26 months (range 9.7–57 months). The median prescribed dose was 2400 cGy (range 1600–2600 cGy). Both GTV D95 and PTV D95 were highly significantly associated with local failure in univariate analysis, but GTV and PTV and histological type did not reach statistical significance. The median GTV D95 for the cohort equal to or above the GTV D95 1830 c

  18. OPS MCC level B/C formulation requirements: Area targets and space volumes processor

    NASA Technical Reports Server (NTRS)

    Bishop, M. J., Jr.

    1979-01-01

    The level B/C mathematical specifications for the area targets and space volumes processor (ATSVP) are described. The processor is designed to compute the acquisition-of-signal (AOS) and loss-of-signal (LOS) times for area targets and space volumes. The characteristics of the area targets and space volumes are given. The mathematical equations necessary to determine whether the spacecraft lies within the area target or space volume are given. These equations provide a detailed model of the target geometry. A semianalytical technique for predicting the AOS and LOS time periods is disucssed. This technique was designed to bound the actual visibility period using a simplified target geometry model and unperturbed orbital motion. Functional overview of the ATSVP is presented and it's detailed logic flow is described.

  19. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less

  20. Associated factors of radiation pneumonitis induced by precise radiotherapy in 186 elderly patients with esophageal cancer.

    PubMed

    Cui, Zhen; Tian, Ye; He, Bin; Li, Hongwei; Li, Duojie; Liu, Jingjing; Cai, Hanfei; Lou, Jianjun; Jiang, Hao; Shen, Xueming; Peng, Kaigui

    2015-01-01

    Radiation pneumonitis is one of the most severe complications of esophageal cancer. To explore the factors correlated to radiation pneumonitis induced by precise radiotherapy for elderly patients with esophageal cancer. The retrospective analysis was used to collect clinical data from 186 elderly patients with esophageal cancer. The incidence of radiation pneumonitis was observed, followed by statistical analysis through ANVON or multiple regression analysis. 27 in 186 cases of esophageal cancer suffered from radiation pneumonitis, with incidence of 14.52%. The single factor analysis showed that, Karnofsky performance status (KPS) score, chronic obstructive pulmonary disease, concurrent chemoradiotherapy, gross tumor volume (GTV) dose, lung V20, mean lung dose (MLD) and planning target volume (PTV) were associated with radiation pneumonitis. The logistic regression analysis indicated that, concurrent chemoradiotherapy, GTV dose, lung V20 and PTV were the independent factors of radiation pneumonitis. The concurrent chemoradiotherapy, GTV dose, lung V20, MLD and PTV are the major risk factors of radiation pneumonitis for elderly patients with esophageal cancer.

  1. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  2. Influence of Residual Tumor Volume and Radiation Dose Coverage in Outcomes for Clival Chordoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, Indiana; Linton, Okechukwu R.

    2016-05-01

    Purpose: The purpose of this study was to evaluate factors associated with tumor control in clival chordomas. Methods and Materials: A retrospective review of 39 patients treated with surgery and proton therapy for clival chordomas between 2004 and 2014 was performed. The median prescribed dose was 77.4 Gy (relative biological effectiveness [RBE]); range was 70.2-79.2 Gy (RBE). Minimum and median doses to gross tumor volume (GTV), radiation dose received by 1 cm{sup 3} of GTV (D1cm{sup 3}), and the equivalent uniform dose were calculated. Receiver operating characteristics curves evaluated the predictive sensitivity and specificity for local failure of potential cutpoint values for GTVmore » and D1cm{sup 3}. Results: After a median follow-up of 51 months, the 5-year estimate of local control (LC) was 69.6% (95% confidence interval [CI] 50.0%-89.2%), and overall survival (OS) was 81.4% (95% CI: 65.3%-97.5%). Tumor histology, GTV at the time of radiation, and prescribed radiation dose were significantly associated with local control on multivariate analysis, whereas D1cm{sup 3} was associated with overall survival. Compared to those patients whose conditions remained controlled, patients experiencing tumor failure had statistically significant larger GTVs and lower D1cm{sup 3}, and prescribed and median doses to GTV. A subset of 21 patients with GTV of ≤20 cm{sup 3} and D1cm{sup 3} of >67 Gy (RBE) had a median follow-up of 47 months. The 5-year estimate of local control in this subset was 81.1% (95% CI: 61.7%-100%; P=.004, overall comparison by GTV ≤20 cm{sup 3} stratified by D1cm{sup 3}). A D1cm{sup 3} of 74.5 Gy (RBE) had 80% sensitivity for local control and 60% specificity, whereas a GTV of 9.3 cm{sup 3} had 80% sensitivity for local control and 66.7% specificity. Conclusions: Local control of clival chordomas was associated with both smaller size of residual tumor and more complete high-dose coverage of residual tumor. Multidisciplinary care

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huguet, Florence; Department of Radiation Oncology, Hôpitaux Universitaires Paris Est, Hôpital Tenon, University Paris VI, Paris; Yorke, Ellen D.

    Purpose: To assess intrafractional positional variations of pancreatic tumors using 4-dimensional computed tomography (4D-CT), their impact on gross tumor volume (GTV) coverage, the reliability of biliary stent, fiducial seeds, and the real-time position management (RPM) external marker as tumor surrogates for setup of respiratory gated treatment, and to build a correlative model of tumor motion. Methods and Materials: We analyzed the respiration-correlated 4D-CT images acquired during simulation of 36 patients with either a biliary stent (n=16) or implanted fiducials (n=20) who were treated with RPM respiratory gated intensity modulated radiation therapy for locally advanced pancreatic cancer. Respiratory displacement relative to end-exhalationmore » was measured for the GTV, the biliary stent, or fiducial seeds, and the RPM marker. The results were compared between the full respiratory cycle and the gating interval. Linear mixed model was used to assess the correlation of GTV motion with the potential surrogate markers. Results: The average ± SD GTV excursions were 0.3 ± 0.2 cm in the left-right direction, 0.6 ± 0.3 cm in the anterior-posterior direction, and 1.3 ± 0.7 cm in the superior-inferior direction. Gating around end-exhalation reduced GTV motion by 46% to 60%. D95% was at least the prescribed 56 Gy in 76% of patients. GTV displacement was associated with the RPM marker, the biliary stent, and the fiducial seeds. The correlation was better with fiducial seeds and with biliary stent. Conclusions: Respiratory gating reduced the margin necessary for radiation therapy for pancreatic tumors. GTV motion was well correlated with biliary stent or fiducial seed displacements, validating their use as surrogates for daily assessment of GTV position during treatment. A patient-specific internal target volume based on 4D-CT is recommended both for gated and not-gated treatment; otherwise, our model can be used to predict the degree of GTV motion.« less

  4. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: Reducing the interobserver variability in multicentre clinical studies.

    PubMed

    Schimek-Jasch, Tanja; Troost, Esther G C; Rücker, Gerta; Prokic, Vesna; Avlar, Melanie; Duncker-Rohr, Viola; Mix, Michael; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula

    2015-06-01

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  5. Interobserver variability in target definition for hepatocellular carcinoma with and without portal vein thrombus: radiation therapy oncology group consensus guidelines.

    PubMed

    Hong, Theodore S; Bosch, Walter R; Krishnan, Sunil; Kim, Tae K; Mamon, Harvey J; Shyn, Paul; Ben-Josef, Edgar; Seong, Jinsil; Haddock, Michael G; Cheng, Jason C; Feng, Mary U; Stephans, Kevin L; Roberge, David; Crane, Christopher; Dawson, Laura A

    2014-07-15

    Defining hepatocellular carcinoma (HCC) gross tumor volume (GTV) requires multimodal imaging, acquired in different perfusion phases. The purposes of this study were to evaluate the variability in contouring and to establish guidelines and educational recommendations for reproducible HCC contouring for treatment planning. Anonymous, multiphasic planning computed tomography scans obtained from 3 patients with HCC were identified and distributed to a panel of 11 gastrointestinal radiation oncologists. Panelists were asked the number of HCC cases they treated in the past year. Case 1 had no vascular involvement, case 2 had extensive portal vein involvement, and case 3 had minor branched portal vein involvement. The agreement between the contoured total GTVs (primary + vascular GTV) was assessed using the generalized kappa statistic. Agreement interpretation was evaluated using Landis and Koch's interpretation of strength of agreement. The S95 contour, defined using the simultaneous truth and performance level estimation (STAPLE) algorithm consensus at the 95% confidence level, was created for each case. Of the 11 panelists, 3 had treated >25 cases in the past year, 2 had treated 10 to 25 cases, 2 had treated 5 to 10 cases, 2 had treated 1 to 5 cases, 1 had treated 0 cases, and 1 did not respond. Near perfect agreement was seen for case 1, and substantial agreement was seen for cases 2 and 3. For case 2, there was significant heterogeneity in the volume identified as tumor thrombus (range 0.58-40.45 cc). For case 3, 2 panelists did not include the branched portal vein thrombus, and 7 panelists contoured thrombus separately from the primary tumor, also showing significant heterogeneity in volume of tumor thrombus (range 4.52-34.27 cc). In a group of experts, excellent agreement was seen in contouring total GTV. Heterogeneity exists in the definition of portal vein thrombus that may impact treatment planning, especially if differential dosing is contemplated. Guidelines

  6. Interobserver Variability in Target Definition for Hepatocellular Carcinoma With and Without Portal Vein Thrombus: Radiation Therapy Oncology Group Consensus Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Theodore S., E-mail: tshong1@mgh.harvard.edu; Bosch, Walter R.; Krishnan, Sunil

    2014-07-15

    Purpose: Defining hepatocellular carcinoma (HCC) gross tumor volume (GTV) requires multimodal imaging, acquired in different perfusion phases. The purposes of this study were to evaluate the variability in contouring and to establish guidelines and educational recommendations for reproducible HCC contouring for treatment planning. Methods and Materials: Anonymous, multiphasic planning computed tomography scans obtained from 3 patients with HCC were identified and distributed to a panel of 11 gastrointestinal radiation oncologists. Panelists were asked the number of HCC cases they treated in the past year. Case 1 had no vascular involvement, case 2 had extensive portal vein involvement, and case 3more » had minor branched portal vein involvement. The agreement between the contoured total GTVs (primary + vascular GTV) was assessed using the generalized kappa statistic. Agreement interpretation was evaluated using Landis and Koch's interpretation of strength of agreement. The S95 contour, defined using the simultaneous truth and performance level estimation (STAPLE) algorithm consensus at the 95% confidence level, was created for each case. Results: Of the 11 panelists, 3 had treated >25 cases in the past year, 2 had treated 10 to 25 cases, 2 had treated 5 to 10 cases, 2 had treated 1 to 5 cases, 1 had treated 0 cases, and 1 did not respond. Near perfect agreement was seen for case 1, and substantial agreement was seen for cases 2 and 3. For case 2, there was significant heterogeneity in the volume identified as tumor thrombus (range 0.58-40.45 cc). For case 3, 2 panelists did not include the branched portal vein thrombus, and 7 panelists contoured thrombus separately from the primary tumor, also showing significant heterogeneity in volume of tumor thrombus (range 4.52-34.27 cc). Conclusions: In a group of experts, excellent agreement was seen in contouring total GTV. Heterogeneity exists in the definition of portal vein thrombus that may impact treatment

  7. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    PubMed Central

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  8. Implementation of image-guided brachytherapy (IGBT) for patients with uterine cervix cancer: a tumor volume kinetics approach.

    PubMed

    Carvalho, Heloisa de Andrade; Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb

    2016-08-01

    To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation.

  9. Implementation of image-guided brachytherapy (IGBT) for patients with uterine cervix cancer: a tumor volume kinetics approach

    PubMed Central

    Mendez, Lucas Castro; Stuart, Silvia Radwanski; Guimarães, Roger Guilherme Rodrigues; Ramos, Clarissa Cerchi Angotti; de Paula, Lucas Assad; de Sales, Camila Pessoa; Chen, André Tsin Chih; Blasbalg, Roberto; Baroni, Ronaldo Hueb

    2016-01-01

    Purpose To evaluate tumor shrinking kinetics in order to implement image-guided brachytherapy (IGBT) for the treatment of patients with cervix cancer. Material and methods This study has prospectively evaluated tumor shrinking kinetics of thirteen patients with uterine cervix cancer treated with combined chemoradiation. Four high dose rate brachytherapy fractions were delivered during the course of pelvic external beam radiation therapy (EBRT). Magnetic resonance imaging (MRI) exams were acquired at diagnosis (D), first (B1), and third (B3) brachytherapy fractions. Target volumes (GTV and HR-CTV) were calculated by both the ellipsoid formula (VE) and MRI contouring (VC), which were defined by a consensus between at least two radiation oncologists and a pelvic expert radiologist. Results Most enrolled patients had squamous cell carcinoma and FIGO stage IIB disease, and initiated brachytherapy after the third week of pelvic external beam radiation. Gross tumor volume volume reduction from diagnostic MRI to B1 represented 61.9% and 75.2% of the initial volume, when measured by VE and VC, respectively. Only a modest volume reduction (15-20%) was observed from B1 to B3. Conclusions The most expressive tumor shrinking occurred in the first three weeks of oncological treatment and was in accordance with gynecological examination. These findings may help in IGBT implementation. PMID:27648083

  10. SU-F-J-223: Patterns of Failure for Laryngeal Cancer Patients Treated with Definitive IMRT: Comparing Two Different Methods for Determining the Origin of Recurrence From Follow-Up PET/CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodin, P; Guha, C; Tome, W

    Purpose: To determine patterns of failure in laryngeal cancer treated with definitive IMRT by comparing two different methods for identifying the recurrence epicenter on follow-up PET/CT. Methods: We identified 20 patients treated for laryngeal squamous cell carcinoma with definitive IMRT who had loco-regional recurrence diagnosed on PET/CT. Recurrence PET/CT scans were co-registered with the original treatment planning CT using deformable image registration with the VoxAlign deformation engine in MIM Software. Recurrence volumes were delineated on co-registered follow-up scans using a semi-automatic PETedge tool and two separate methods were used to identify the recurrence point of origin: a) Finding the pointmore » within the recurrence volume for which the maximum distance to the surface of the surrounding recurrence volume is smaller than for any other point. b) Finding the point within the recurrence volume with the maximum standardized uptake value (SUVmax), without geometric restrictions.For each method the failure pattern was determined as whether the recurrence origin fell within the original high-dose target volumes GTV70, CTV70, PTV70 (receiving 70Gy), intermediate-risk PTV59 (receiving 59.4Gy) or low-risk PTV54 (receiving 54.1Gy), in the original treatment planning CT. Results: 23 primary/nodal recurrences from the 20 patients were analyzed. The three-dimensional distance between the two different origins was on average 10.5mm (std.dev. 10mm). Most recurrences originated in the high-dose target volumes for both methods with 13 (57%) and 11 (48%) in the GTV70 and 20 (87%) and 20 (87%) in the PTV70 for method a) and b), respectively. There was good agreement between the two methods in classifying the origin target volumes with 69% concordance for GTV70, 89% for CTV70 and 100% for PTV70. Conclusion: With strong agreement in patterns of failure between two separate methods for determining recurrence origin, we conclude that most recurrences occurred

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kwan Ho; Ahn, Sung Ja; Pyo, Hong Ryull

    Purpose: We evaluated the efficacy of synchronous three-dimensional (3D) conformal boost to the gross tumor volume (GTV) in concurrent chemoradiotherapy for patients with locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: Eligibility included unresectable Stage III NSCLC with no pleural effusion, no supraclavicular nodal metastases, and Eastern Cooperative Oncology Group performance score of 0-1. Forty-nine patients with pathologically proven NSCLC were enrolled. Eighteen patients had Stage IIIA and 31 had Stage IIIB. By using 3D conformal radiotherapy (RT) techniques, a dose of 1.8 Gy was delivered to the planning target volume with a synchronous boost of 0.6 Gy tomore » the GTV, with a total dose of 60 Gy to the GTV and 45 Gy to the planning target volume in 25 fractions during 5 weeks. All patients received weekly chemotherapy consisting of paclitaxel and carboplatin during RT. Results: With a median follow-up of 36.8 months (range, 29.0-45.5 months) for surviving patients, median survival was 28.1 months. One-, 2- and 3-year overall survival rates were 77%, 56.4%, and 43.8%, respectively. Corresponding local progression-free survival rates were 71.2%, 53.7%, and 53.7%. Compliance was 90% for RT and 88% for chemotherapy. Acute esophagitis of Grade 2 or higher occurred in 29 patients. Two patients with T4 lesions died of massive bleeding and hemoptysis during treatment (Grade 5). Overall late toxicity was acceptable. Conclusions: Based on the favorable outcome with acceptable toxicity, the acceleration scheme using 3D conformal GTV boost in this trial is warranted to compare with conventional fractionation in a Phase III trial.« less

  12. Adaptive Dose Painting by Numbers for Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duprez, Frederic, E-mail: frederic.duprez@ugent.be; De Neve, Wilfried; De Gersem, Werner

    Purpose: To investigate the feasibility of adaptive intensity-modulated radiation therapy (IMRT) using dose painting by numbers (DPBN) for head-and-neck cancer. Methods and Materials: Each patient's treatment used three separate treatment plans: fractions 1-10 used a DPBN ([{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography [{sup 18}F-FDG-PET]) voxel intensity-based IMRT plan based on a pretreatment {sup 18}F-FDG-PET/computed tomography (CT) scan; fractions 11-20 used a DPBN plan based on a {sup 18}F-FDG-PET/CT scan acquired after the eighth fraction; and fractions 21-32 used a conventional (uniform dose) IMRT plan. In a Phase I trial, two dose prescription levels were tested: a median dose of 80.9 Gymore » to the high-dose clinical target volume (CTV{sub highdose}) (dose level I) and a median dose of 85.9 Gy to the gross tumor volume (GTV) (dose level II). Between February 2007 and August 2009, 7 patients at dose level I and 14 patients at dose level II were enrolled. Results: All patients finished treatment without a break, and no Grade 4 acute toxicity was observed. Treatment adaptation (i.e., plans based on the second {sup 18}F-FDG-PET/CT scan) reduced the volumes for the GTV (41%, p = 0.01), CTV{sub highdose} (18%, p = 0.01), high-dose planning target volume (14%, p = 0.02), and parotids (9-12%, p < 0.05). Because the GTV was much smaller than the CTV{sub highdose} and target adaptation, further dose escalation at dose level II resulted in less severe toxicity than that observed at dose level I. Conclusion: To our knowledge, this represents the first clinical study that combines adaptive treatments with dose painting by numbers. Treatment as described above is feasible.« less

  13. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography.

    PubMed

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Guo, Bing; Shang, Dongping

    2016-01-01

    To investigate the correlation of gross tumor volume (GTV) motion with the structure of interest (SOI) motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT). Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson's correlation test. The mean peak-to-peak displacement of all primary tumors in the lateral (LR), anteroposterior (AP), and superoinferior (SI) directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (r left=0.918 and r right=0.928). A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (r LR=-0.530, r AP=-0.531, and r SI=-0.588) during respiratory cycle. For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung.

  14. [Clinical target volume delineation for radiotherapy of the esophagus].

    PubMed

    Lazarescu, I; Thureau, S; Nkhali, L; Pradier, O; Dubray, B

    2013-10-01

    The dense lymphatic network of the esophagus facilitates tumour spreading along the cephalo-caudal axis and to locoregional lymph nodes. A better understanding of microscopic invasion by tumour cells, based on histological analysis of surgical specimens and analysis of recurrence sites, has justified a reduction in radiotherapy target volumes. The delineation of the clinical target volume (CTV) depends on tumour characteristics (site, histology) and on its spread as assessed on endoscopic ultrasonography and ((18)F)-fluorodeoxyglucose positron-emission tomography (FDG-PET). We propose that positive and negative predictive values for FDG-PET should be used to adapt the CTV according to the risk of nodal involvement. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random

  16. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    PubMed Central

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for

  17. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning.

    PubMed

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A

    2016-05-01

    Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate

  18. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Nan-Jie; Wong, Chun-Sing, E-mail: drcswong@gmail.com; Chu, Yiu-Ching

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using themore » proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.« less

  19. 4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma : Determination of intra- and interfractional gastric motion.

    PubMed

    Reinartz, Gabriele; Haverkamp, Uwe; Wullenkord, Ramona; Lehrich, Philipp; Kriz, Jan; Büther, Florian; Schäfers, Klaus; Schäfers, Michael; Eich, Hans Theodor

    2016-05-01

    New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins)  plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.

  20. SU-F-BRD-16: Under Dose Regions Recalculated by Monte Carlo Cannot Predict the Local Failure for NSCLC Patients Treated with SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Cherian, S; Stephans, K

    2014-06-15

    Purpose: To investigate whether Monte Carlo (MC) recalculated dose distributions can predict the geometric location of the recurrence for nonsmall cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT). Methods: Thirty NSCLC patients with local recurrence were retrospectively selected for this study. The recurred gross target volumes (rGTV) were delineated on the follow-up CT/PET images and then rigidly transferred via imaging fusion to the original planning CTs. Failure pattern was defined according to the overlap between the rGTV and planning GTV (pGTV) as: (a) in-field failure (≥80%), (b) marginal failure (20%–80%), and (c) out-of-field failure (≤20%). All clinicalmore » plans were calculated initially with pencil beam (PB) with or without heterogeneity correction dependent of protocols. These plans were recalculated with MC with heterogeneity correction. Because of non-uniform dose distributions in the rGTVs, the rGTVs were further divided into four regions: inside the pGTV (GTVin), inside the PTV (PTVin), outside the pGTV (GTVout), and outside the PTV (PTVout). The mean doses to these regions were reported and analyzed separately. Results: Among 30 patients, 10 patients had infield recurrences, 15 marginal and 5 out-of-field failures. With MC calculations, D95 and D99 of the PTV were reduced by (10.6 ± 7.4)% and (11.7 ± 7.9)%. The average MC calculated mean doses of GTVin, GTVout, PTVin and PTVout were 48.2 ± 5.3 Gy, 48.2 ± 5.5 Gy, 46.3 ± 6.2 Gy and 46.6 ± 5.6 Gy, respectively. No significant dose differences between GTVin and GTVout (p=0.65), PTVin and PTVout (p=0.19) were observed, using the paired students t-test. Conclusion: Although the PB calculations underestimated the tumor target doses, the geometric location of the recurrence did not correlate with the mean doses of subsections of the recurrent GTV. Under dose regions recalculated by MC cannot predict the local failure for NSCLC patients treated with SBRT.« less

  1. WE-AB-202-10: Modelling Individual Tumor-Specific Control Probability for Hypoxia in Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, S; Warren, DR; Wilson, JM

    Purpose: To investigate hypoxia-guided dose-boosting for increased tumour control and improved normal tissue sparing using FMISO-PET images Methods: Individual tumor-specific control probability (iTSCP) was calculated using a modified linear-quadratic model with rectal-specific radiosensitivity parameters for three limiting-case assumptions of the hypoxia / FMISO uptake relationship. {sup 18}FMISO-PET images from 2 patients (T3N0M0) from the RHYTHM trial (Investigating Hypoxia in Rectal Tumours NCT02157246) were chosen to delineate a hypoxic region (GTV-MISO defined as tumor-to-muscle ratio > 1.3) within the anatomical GTV. Three VMAT treatment plans were created in Eclipse (Varian): STANDARD (45Gy / 25 fractions to PTV4500); BOOST-GTV (simultaneous integrated boostmore » of 60Gy / 25fr to GTV +0.5cm) and BOOST-MISO (60Gy / 25fr to GTV-MISO+0.5cm). GTV mean dose (in EQD2), iTSCP and normal tissue dose-volume metrics (small bowel, bladder, anus, and femoral heads) were recorded. Results: Patient A showed small hypoxic volume (15.8% of GTV) and Patient B moderate hypoxic volume (40.2% of GTV). Dose escalation to 60Gy was achievable, and doses to femoral heads and small bowel in BOOST plans were comparable to STANDARD plans. For patient A, a reduced maximum bladder dose was observed in BOOST-MISO compared to BOOST-GTV (D0.1cc 49.2Gy vs 54.0Gy). For patient B, a smaller high dose volume was observed for the anus region in BOOST-MISO compared to BOOST-GTV (V55Gy 19.9% vs 100%), which could potentially reduce symptoms of fecal incontinence. For BOOST-MISO, the largest iTSCPs (A: 95.5% / B: 90.0%) assumed local correlation between FMISO uptake and hypoxia, and approached iTSCP values seen for BOOST-GTV (A: 96.1% / B: 90.5%). Conclusion: Hypoxia-guided dose-boosting is predicted to improve local control in rectal tumors when FMISO is spatially correlated to hypoxia, and to reduce dose to organs-at-risk compared to boosting the whole GTV. This could lead to organ

  2. SU-E-T-580: Comparison of Cervical Carcinoma IMRT Plans From Four Commercial Treatment Planning Systems (TPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose receivedmore » by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.« less

  3. Postoperative radiation in esophageal squamous cell carcinoma and target volume delineation

    PubMed Central

    Zhu, Yingming; Li, Minghuan; Kong, Li; Yu, Jinming

    2016-01-01

    Esophageal cancer is the sixth leading cause of cancer death worldwide, and patients who are treated with surgery alone, without neoadjuvant therapies, experience frequent relapses. Whether postoperative therapies could reduce the recurrence or improve overall survival is still controversial for these patients. The purpose of our review is to figure out the value of postoperative adjuvant therapy and address the disputes about target volume delineation according to published data. Based on the evidence of increased morbidity and disadvantages on patient survival caused by postoperative chemotherapy or radiotherapy (RT) alone provided by studies in the early 1990s, the use of postoperative adjuvant therapies in cases of esophageal squamous cell carcinoma has diminished substantially and has been replaced gradually by neoadjuvant chemoradiation. With advances in surgery and RT, accumulating evidence has recently rekindled interest in the delivery of postoperative RT or chemoradiotherapy in patients with stage T3/T4 or N1 (lymph node positive) carcinomas after radical surgery. However, due to complications with the standard radiation field, a nonconforming modified field has been adopted in most studies. Therefore, we analyze different field applications and provide suggestions on the optimization of the radiation field based on the major sites of relapse and the surgical non-clearance area. For upper and middle thoracic esophageal carcinomas, the bilateral supraclavicular and superior mediastinal areas remain common sites of recurrence and should be encompassed within the clinical target volume. In contrast, a consensus has yet to be reached regarding lower thoracic esophageal carcinomas; the “standard” clinical target volume is still recommended. Further studies of larger sample sizes should focus on different recurrence patterns, categorized by tumor locations, refined classifications, and differing molecular biology, to provide more information on the

  4. SU-E-J-228: MRI-Based Planning: Dosimetric Feasibility of Dose Painting for ADCDefined Intra-Prostatic Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Dalah, E; Prior, P

    Purpose: Apparent diffusion coefficient (ADC) map may help to delineate the gross tumor volume (GTV) in prostate gland. Dose painting with external beam radiotherapy for GTV might increase the local tumor control. The purpose of this study is to explore the maximum boosting dose on GTV using VMAT without sacrificing sparing of organs at risk (OARs) in MRI based planning. Methods: VMAT plans for 5 prostate patients were generated following the commonly used dose volume (DV) criteria based on structures contoured on T2 weighted MRI with bulk electron density assignment using electron densities derived from ICRU46. GTV for each patientmore » was manually delineated based on ADC maps and fused to T2-weighted image set for planning study. A research planning system with Monte Carlo dose engine (Monaco, Elekta) was used to generate the VMAT plans with boosting dose on GTV gradually increased from 85Gy to 100Gy. DV parameters, including V(boosting-dose) (volume covered by boosting dose) for GTV, V75.6Gy for PTV, V45Gy, V70Gy, V72Gy and D1cc (Maximum dose to 1cc volume) for rectum and bladder, were used to measure plan quality. Results: All cases achieve at least 99.0% coverage of V(boosting-dose) on GTV and 95% coverage of V75.6Gy to the PTV. All the DV criteria, V45Gy≤50% and V70Gy≤15% for bladder and rectum, D1cc ≤77Gy (Rectum) and ≤80Gy (Bladder), V72Gy≤5% (rectum and bladder) were maintained when boosting GTV to 95Gy for all cases studied. Except for two patients, all the criteria were also met when the boosting dose goes to 100Gy. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. This research is partially supported by Elekta Inc.« less

  5. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoro, J. P.; McNamara, J.; Yorke, E.

    2012-10-15

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged imagesmore » for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no

  6. SU-E-J-187: Management of Optic Organ Motion in Fractionated Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, M; Maurer, J

    2015-06-15

    Purpose: Fractionated stereotactic radiotherapy (FSRT) for optic nerve tumors can potentially use planning target volume (PTV) expansions as small as 1–5 mm. However, the motion of the intraorbital segment of the optic nerve has not been studied. Methods: A subject with a right optic nerve sheath meningioma underwent CT simulation in three fixed gaze positions: right, left, and fixed forward at a marker. The gross tumor volume (GTV) and the organs-at-risk (OAR) were contoured on all three scans. An IMRT plan using 10 static non-coplanar fields to 50.4 Gy in 28 fractions was designed to treat the fixed-forward gazing GTVmore » with a 1 mm PTV, then resulting coverage was evaluated for the GTV in the three positions. As an alternative, the composite structures were computed to generate the internal target volume (ITV), 1 mm expansion free-gazing PTV, and planning organat-risk volumes (PRVs) for free-gazing treatment. A comparable IMRT plan was created for the free-gazing PTV. Results: If the patient were treated using the fixed forward gaze plan looking straight, right, and left, the V100% for the GTV was 100.0%, 33.1%, and 0.1%, respectively. The volumes of the PTVs for fixed gaze and free-gazing plans were 0.79 and 2.21 cc, respectively, increasing the PTV by a factor of 2.6. The V100% for the fixed gaze and free-gazing plans were 0.85 cc and 2.8 cc, respectively increasing the treated volume by a factor of 3.3. Conclusion: Fixed gaze treatment appears to provide greater organ sparing than free-gazing. However unanticipated intrafraction right or left gaze can produce a geometric miss. Further study of optic nerve motion appears to be warranted in areas such as intrafraction optical confirmation of fixed gaze and optimized gaze directions to minimize lens and other normal organ dose in cranial radiotherapy.« less

  7. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, Carri K.; Gopan, Ellen; Department of Radiation Oncology Wayne State University, Detroit, MI

    2010-07-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroidmore » position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.« less

  8. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A; Mohan, R; Liao, Z

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on eachmore » patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.« less

  9. The Pattern of Failure After Reirradiation of Recurrent Squamous Cell Head and Neck Cancer: Implications for Defining the Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovtzer, Aron; Gluck, Iris; Chepeha, Douglas B.

    2009-08-01

    Purpose: Reirradiation (re-RT) of recurrent head and neck cancer (HNC) may achieve long-term disease control in some patients, at the expense of high rates of late sequelae. Limiting the re-RT targets to the recurrent gross tumor volume (rGTV) would reduce the volumes of reirradiated tissues; however, its effect on tumor recurrence pattern is unknown. Methods and Materials: This is a retrospective review of 66 patients who underwent curative-intent re-RT for nonresectable recurrent or second primary mucosal squamous cell HNC. Treatment was delivered with three-dimensional conformal (3D) RT or intensity-modulated RT (IMRT). The targets in all patients consisted of the rGTVsmore » with tight (0.5-cm) margins, with no intent to treat prophylactically lymph nodes or subclinical disease in the vicinity of the rGTVs. The sites of locoregional failures (LRFs) were determined using imaging at the time of failure and were compared with the rGTVs. Results: Median re-RT dose was 68 Gy. Forty-seven patients (71%) received concomitant chemotherapy, and 31 (47%) received hyperfractionated, accelerated RT. At a median follow-up of 42 months, 16 (23%) were alive and disease-free. Fifty patients (77%) had a third recurrence or persistent disease, including 47 LRFs. All LRFs occurred within the rGTVs except for two (4%) (95% confidence interval, 0-11%). Nineteen patients (29%) had Grade {>=} 3 late complications, mostly dysphagia (12 patients). Conclusions: Almost all LRFs occurred within the reirradiated rGTVs despite avoiding prophylactic RT of tissue at risk of subclinical disease. These results support confining the re-RT targets to the rGTVs to reduce reirradiated tissue volumes.« less

  10. Dosimetric Comparison between Three-Dimensional Magnetic Resonance Imaging-Guided and Conventional Two-Dimensional Point A-Based Intracavitary Brachytherapy Planning for Cervical Cancer

    PubMed Central

    Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi

    2016-01-01

    Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, M; Abramowitz, M; Dogan, N

    Purpose: Quantify the dosimetric cost for a margin around the MRI-defined high risk GTV for simultaneous integrated intra-prostatic boosts (SIIB) treated with RapidArc. Methods: For external beam radiotherapy of the prostate, a 3-7 mm PTV margin is typically used to account for setup and intra-fraction uncertainties after adjusting for inter-fraction motion. On the other hand, our current paradigm is to treat the MRI-defined high risk GTV with no margin. In this work, 11 patients treated SIIB (7 post-prostatectomy, 4 intact prostate) with RapidArc were re-planned with 1-5 mm margins around the GTV to quantify dosimetric effects. Two 358 degree, 10more » MV RapidArcs were used to deliver 68 Gy (76.5 Gy boost) to the post-prostatectomy patients and 80 Gy (86 Gy boost) to the intact prostates. Paired, two tail t-tests were used to determine if there were any significant differences (p<0.05) in the total MUs and dosimetric parameters used to evaluate rectum, bladder, and PTV dose with and without margin. Results: The average GTV volume without margin was 8.1cc (2.8% of the PTV volume) while the average GTV volume with a 5 mm margin was 20.1cc (9.0% of the PTV volume). GTV volumes ranged from 0.2% of the PTV volume up to 33.0%. Despite these changes in volume, the only statistical difference was found for the rectal V65 Gy with a 5 mm margin (18.6% vs. 19.4%; p-value = 0.026) when all patients were considered as a single group. No difference was found when analyzed as two groups. The rectum V40Gy, bladder V40Gy and V65Gy, PTV Dmax and D95% or the total MUs did not show any significant difference for any margin. Conclusion: A 4 mm margin on the high risk GTV is possible with no statistically significant change in dosimetry or total MUs. Further work will assess the appropriate margin required for intra-prostatic boosts.« less

  12. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    NASA Astrophysics Data System (ADS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment

  13. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, K; Wu, Q; Perez, B

    2014-06-15

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% ofmore » the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity.« less

  14. Registration of clinical volumes to beams-eye-view images for real-time tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield unitsmore » into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.« less

  15. TU-AB-BRA-11: Indications for Online Adaptive Radiotherapy Based On Dosimetric Consequences of Interfractional Pancreas-To-Duodenum Motion in MRI-Guided Pancreatic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittauer, K; Rosenberg, S; Geurts, M

    Purpose: Dose limiting structures, such as the duodenum, render the treatment of pancreatic cancer challenging. In this multi-institutional study, we assess dosimetric differences caused by interfraction pancreas-to-duodenum motion using MR-IGRT to determine the potential impact of adaptive replanning. Methods: Ten patients from two institutions undergoing MRI-guided radiotherapy with conventional fractionation (n=5) or SBRT (n=5) for pancreatic cancer were included. Initial plans were limited by duodenal dose constraints of 50 Gy (0.5 cc)/31 Gy (0.1 cc) for conventional/SBRT with prescriptions of 30 Gy/5 fractions (SBRT) and 40–50 Gy/25 fractions (conventional). Daily volumetric MR images were acquired under treatment conditions on amore » clinical MR-IGRT system. The correlation was assessed between interfractional GTV-to-duodenum positional variation and daily recalculations of duodenal dose metrics. Positional variation was quantified as the interfraction difference in Hausdorff distance from simulation baseline (ΔHD) between the GTV and proximal duodenal surface, or volume overlap between GTV and duodenum for cases with HD{sub 0}=0 (GTV abutting duodenum). Adaptation was considered indicated when daily positional variations enabled dose escalation to the target while maintaining duodenal constraints. Results: For fractions with ΔHD>0 (n=14, SBRT only), the mean interfraction duodenum dose decrease from simulation to treatment was 44±53 cGy (maximum 136 cGy). A correlation was found between ΔHD and dosimetric difference (R{sup 2}=0.82). No correlation was found between volume of overlap and dosimetric difference (R{sup 2}=0.31). For 89% of fractions, the duodenum remained overlapped with the target and the duodenal dose difference was negligible. The maximum observed indication for adaptation was for interfraction ΔHD=11.6 mm with potential for adaptive dose escalation of 136 cGy. Conclusion: This assessment showed that Hausdorff distance was a

  16. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda

    2010-10-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less

  17. SU-F-T-563: Delivered Dose Reconstruction of Moving Targets for Gated Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H; Cho, S; Jeong, C

    2016-06-15

    Purpose: Actual delivered dose of moving tumors treated with gated volumetric arc therapy (VMAT) may significantly differ from the planned dose assuming static target. In this study, we developed a method which reconstructs actual delivered dose distribution of moving target by taking into account both tumor motion and dynamic beam delivery of gated VMAT, and applied to abdominal tumors. Methods: Fifteen dual-arc VMAT plans (Eclipse, Varian Medical Systems) for 5 lung, 5 pancreatic, and 5 liver cancer patients treated with gated VMAT stereotactic body radiotherapy (SBRT) were studied. For reconstruction of the delivered dose distribution, we divided each original arcmore » beam into control-point-wise sub-beams, and applied beam isocenter shifting to each sub-beam to reflect the tumor motion. The tumor positions as a function of beam delivery were estimated by synchronizing the beam delivery with the respiratory signal which acquired during treatment. For this purpose, an in-house program (MATLAB, Mathworks) was developed to convert the original DICOM plan data into motion-involved treatment plan. The motion-involved DICOM plan was imported into Eclipse for dose calculation. The reconstructed delivered dose was compared to the plan dose using the dose coverage of gross tumor volume (GTV) and dose distribution of organs at risk (OAR). Results: The mean GTV dose coverage difference between the reconstructed delivered dose and the plan dose was 0.2 % in lung and pancreas cases, and no difference in liver cases. Mean D1000cc of ipsilateral lungs was reduced (0.8 ± 1.4cGy). Conclusion: We successfully developed a method of delivered dose reconstruction taking into account both respiratory tumor motion and dynamic beam delivery, and applied it to abdominal tumors treated with gated VAMT. No significant deterioration of delivered dose distribution indicates that interplay effect would be minimal even in the case of gated SBRT. This work was supported by the National

  18. Dosimetric evaluation of simultaneous integrated boost during stereotactic body radiation therapy for pancreatic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wensha, E-mail: wensha.yang@cshs.org; Reznik, Robert; Fraass, Benedick A.

    Stereotactic body radiation therapy (SBRT) provides a promising way to treat locally advanced pancreatic cancer and borderline resectable pancreatic cancer. A simultaneous integrated boost (SIB) to the region of vessel abutment or encasement during SBRT has the potential to downstage otherwise likely positive surgical margins. Despite the potential benefit of using SIB-SBRT, the ability to boost is limited by the local geometry of the organs at risk (OARs), such as stomach, duodenum, and bowel (SDB), relative to tumor. In this study, we have retrospectively replanned 20 patients with 25 Gy prescribed to the planning target volume (PTV) and 33~80 Gymore » to the boost target volume (BTV) using an SIB technique for all patients. The number of plans and patients able to satisfy a set of clinically established constraints is analyzed. The ability to boost vessels (within the gross target volume [GTV]) is shown to correlate with the overlap volume (OLV), defined to be the overlap between the GTV + a 1(OLV1)- or 2(OLV2)-cm margin with the union of SDB. Integral dose, boost dose contrast (BDC), biologically effective BDC, tumor control probability for BTV, and normal tissue complication probabilities are used to analyze the dosimetric results. More than 65% of the cases can deliver a boost to 40 Gy while satisfying all OAR constraints. An OLV2 of 100 cm{sup 3} is identified as the cutoff volume: for cases with OLV2 larger than 100 cm{sup 3}, it is very unlikely the case could achieve 25 Gy to the PTV while successfully meeting all the OAR constraints.« less

  19. Dosimetric evaluation of simultaneous integrated boost during stereotactic body radiation therapy for pancreatic cancer.

    PubMed

    Yang, Wensha; Reznik, Robert; Fraass, Benedick A; Nissen, Nicholas; Hendifar, Andrew; Wachsman, Ashley; Sandler, Howard; Tuli, Richard

    2015-01-01

    Stereotactic body radiation therapy (SBRT) provides a promising way to treat locally advanced pancreatic cancer and borderline resectable pancreatic cancer. A simultaneous integrated boost (SIB) to the region of vessel abutment or encasement during SBRT has the potential to downstage otherwise likely positive surgical margins. Despite the potential benefit of using SIB-SBRT, the ability to boost is limited by the local geometry of the organs at risk (OARs), such as stomach, duodenum, and bowel (SDB), relative to tumor. In this study, we have retrospectively replanned 20 patients with 25Gy prescribed to the planning target volume (PTV) and 33~80Gy to the boost target volume (BTV) using an SIB technique for all patients. The number of plans and patients able to satisfy a set of clinically established constraints is analyzed. The ability to boost vessels (within the gross target volume [GTV]) is shown to correlate with the overlap volume (OLV), defined to be the overlap between the GTV + a 1(OLV1)- or 2(OLV2)-cm margin with the union of SDB. Integral dose, boost dose contrast (BDC), biologically effective BDC, tumor control probability for BTV, and normal tissue complication probabilities are used to analyze the dosimetric results. More than 65% of the cases can deliver a boost to 40Gy while satisfying all OAR constraints. An OLV2 of 100cm(3) is identified as the cutoff volume: for cases with OLV2 larger than 100cm(3), it is very unlikely the case could achieve 25Gy to the PTV while successfully meeting all the OAR constraints. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. WE-FG-202-08: Assessment of Treatment Response Via Longitudinal Diffusion MRI On A MRI-Guided System: Initial Experience of Quantitative Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X; Yang, Y; Yang, L

    Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomymore » changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be

  1. Esophageal cancer dose escalation using a simultaneous integrated boost technique.

    PubMed

    Welsh, James; Palmer, Matthew B; Ajani, Jaffer A; Liao, Zhongxing; Swisher, Steven G; Hofstetter, Wayne L; Allen, Pamela K; Settle, Steven H; Gomez, Daniel; Likhacheva, Anna; Cox, James D; Komaki, Ritsuko

    2012-01-01

    We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Esophageal Cancer Dose Escalation using a Simultaneous Integrated Boost Technique

    PubMed Central

    Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao, Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko

    2014-01-01

    Purpose We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials Treatment plans were generated using four different approaches (two-dimensional conformal RT [2D-CRT] to 50.4 Gy or 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results The 50.4-Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4-Gy 2D-CRT plan. The 64.8-Gy SIB-IMRT plan produced a 28% increase in GTV dose and the same normal tissue doses as the 50.4-Gy IMRT plan; compared with the 50.4-Gy 2D-CRT plan, the 64.8-Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation. PMID:21123005

  3. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menten, MJ; Fast, MF; Nill, S

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin:more » 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting

  4. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    PubMed

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  5. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be

  6. Computed tomography-magnetic resonance image fusion: a clinical evaluation of an innovative approach for improved tumor localization in primary central nervous system lesions.

    PubMed

    Lattanzi, J P; Fein, D A; McNeeley, S W; Shaer, A H; Movsas, B; Hanks, G E

    1997-01-01

    We describe our initial experience with the AcQSim (Picker International, St. David, PA) computed tomography-magnetic resonance imaging (CT-MRI) fusion software in eight patients with intracranial lesions. MRI data are electronically integrated into the CT-based treatment planning system. Since MRI is superior to CT in identifying intracranial abnormalities, we evaluated the precision and feasibility of this new localization method. Patients initially underwent CT simulation from C2 to the most superior portion of the scalp. T2 and post-contrast T1-weighted MRI of this area was then performed. Patient positioning was duplicated utilizing a head cup and bridge of nose to forehead angle measurements. First, a gross tumor volume (GTV) was identified utilizing the CT (CT/GTV). The CT and MRI scans were subsequently fused utilizing a point pair matching method and a second GTV (CT-MRI/GTV) was contoured with the aid of both studies. The fusion process was uncomplicated and completed in a timely manner. Volumetric analysis revealed the CT-MRI/GTV to be larger than the CT/GTV in all eight cases. The mean CT-MRI/GTV was 28.7 cm3 compared to 16.7 cm3 by CT alone. This translated into a 72% increase in the radiographic tumor volume by CT-MRI. A simulated dose-volume histogram in two patients revealed that marginal portions of the lesion, as identified by CT and MRI, were not included in the high dose treatment volume as contoured with the use of CT alone. Our initial experience with the fusion software demonstrated an improvement in tumor localization with this technique. Based on these patients the use of CT alone for treatment planning purposes in central nervous system (CNS) lesions is inadequate and would result in an unacceptable rate of marginal misses. The importation of MRI data into three-dimensional treatment planning is therefore crucial to accurate tumor localization. The fusion process simplifies and improves precision of this task.

  7. Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT).

    PubMed

    Kageji, T; Mizobuchi, Y; Nagahiro, S; Nakagawa, Y; Kumada, H

    2014-06-01

    The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68Gy(w) and 44Gy(w), respectively. Copyright © 2014. Published by Elsevier Ltd.

  8. IMRT head and neck treatment planning with a commercially available Monte Carlo based planning system

    NASA Astrophysics Data System (ADS)

    Boudreau, C.; Heath, E.; Seuntjens, J.; Ballivy, O.; Parker, W.

    2005-03-01

    The PEREGRINE Monte Carlo dose-calculation system (North American Scientific, Cranberry Township, PA) is the first commercially available Monte Carlo dose-calculation code intended specifically for intensity modulated radiotherapy (IMRT) treatment planning and quality assurance. In order to assess the impact of Monte Carlo based dose calculations for IMRT clinical cases, dose distributions for 11 head and neck patients were evaluated using both PEREGRINE and the CORVUS (North American Scientific, Cranberry Township, PA) finite size pencil beam (FSPB) algorithm with equivalent path-length (EPL) inhomogeneity correction. For the target volumes, PEREGRINE calculations predict, on average, a less than 2% difference in the calculated mean and maximum doses to the gross tumour volume (GTV) and clinical target volume (CTV). An average 16% ± 4% and 12% ± 2% reduction in the volume covered by the prescription isodose line was observed for the GTV and CTV, respectively. Overall, no significant differences were noted in the doses to the mandible and spinal cord. For the parotid glands, PEREGRINE predicted a 6% ± 1% increase in the volume of tissue receiving a dose greater than 25 Gy and an increase of 4% ± 1% in the mean dose. Similar results were noted for the brainstem where PEREGRINE predicted a 6% ± 2% increase in the mean dose. The observed differences between the PEREGRINE and CORVUS calculated dose distributions are attributed to secondary electron fluence perturbations, which are not modelled by the EPL correction, issues of organ outlining, particularly in the vicinity of air cavities, and differences in dose reporting (dose to water versus dose to tissue type).

  9. Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steenbakkers, Roel; Duppen, Joop C.; Fitton, Isabelle

    2006-02-01

    Purpose: Target delineation using only CT information introduces large geometric uncertainties in radiotherapy for lung cancer. Therefore, a reduction of the delineation variability is needed. The impact of including a matched CT scan with 2-[{sup 18}F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and adaptation of the delineation protocol and software on target delineation in lung cancer was evaluated in an extensive multi-institutional setting and compared with the delineations using CT only. Methods and Materials: The study was separated into two phases. For the first phase, 11 radiation oncologists (observers) delineated the gross tumor volume (GTV), including the pathologic lymph nodes of 22more » lung cancer patients (Stages I-IIIB) on CT only. For the second phase (1 year later), the same radiation oncologists delineated the GTV of the same 22 patients on a matched CT-FDG-PET scan using an adapted delineation protocol and software (according to the results of the first phase). All delineated volumes were analyzed in detail. The observer variation was computed in three dimensions by measuring the distance between the median GTV surface and each individual GTV. The variation in distance of all radiation oncologists was expressed as a standard deviation. The observer variation was evaluated for anatomic regions (lung, mediastinum, chest wall, atelectasis, and lymph nodes) and interpretation regions (agreement and disagreement; i.e., >80% vs. <80% of the radiation oncologists delineated the same structure, respectively). All radiation oncologist-computer interactions were recorded and analyzed with a tool called 'Big Brother.' Results: The overall three-dimensional observer variation was reduced from 1.0 cm (SD) for the first phase (CT only) to 0.4 cm (SD) for the second phase (matched CT-FDG-PET). The largest reduction in the observer variation was seen in the atelectasis region (SD 1.9 cm reduced to 0.5 cm). The mean ratio between the

  10. Accurate tracking of tumor volume change during radiotherapy by CT-CBCT registration with intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon

    2016-03-01

    In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.

  11. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkul, R; Doke, K; Pokhrel, D

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal atmore » the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.« less

  12. Target volume motion during anal cancer image guided radiotherapy using cone-beam computed tomography.

    PubMed

    Brooks, Corrinne J; Bernier, Laurence; Hansen, Vibeke N; Tait, Diana M

    2018-05-01

    Literature regarding image-guidance and interfractional motion of the anal canal (AC) during anal cancer radiotherapy is sparse. This study investigates interfractional AC motion during anal cancer radiotherapy. Bone matched cone beam CT (CBCT) images were acquired for 20 patients receiving anal cancer radiotherapy allowing population systematic and random error calculations. 12 were selected to investigate interfractional AC motion. Primary anal gross tumour volume and clinical target volume (CTVa) were contoured on each CBCT. CBCT CTVa volumes were compared to planning CTVa. CBCT CTVa volumes were combined into a CBCT-CTVa envelope for each patient. Maximum distortion between each orthogonal border of the planning CTVa and CBCT-CTVa envelope was measured. Frequency, volume and location of CBCT-CTVa envelope beyond the planning target volume (PTVa) was analysed. Population systematic and random errors were 1 and 3 mm respectively. 112 CBCTs were analysed in the interfractional motion study. CTVa varied between each imaging session particularly T location patients of anorectal origin. CTVa border expansions ≥ 1 cm were seen inferiorly, anteriorly, posteriorly and left direction. The CBCT-CTVa envelope fell beyond the PTVa ≥ 50% imaging sessions (n = 5). Of these CBCT CTVa distortions beyond PTVa, 44% and 32% were in the upper and lower thirds of PTVa respectively. The AC is susceptible to volume changes and shape deformations. Care must be taken when calculating or considering reducing the PTV margin to the anus. Advances in knowledge: Within a limited field of research, this study provides further knowledge of how the AC deforms during anal cancer radiotherapy.

  13. SU-F-I-51: CT/MR Image Deformation: The Clinical Assessment QA in Target Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C; Chen, Y

    Purpose: To study the deformation effects in CT/MR image registration of head and neck (HN) cancers. We present a clinical indication in guiding and simplifying registration procedures of this process while CT images possessed artifacts. Methods: CT/MR image fusion provides better soft tissue contrast in intracranial GTV definition with artifacts. However, whether the fusion process should include the deformation process is questionable and not recommended. We performed CT/MR image registration of a HN patient with tonsil GTV and nodes delineation on Varian Velocity™ system. Both rigid transformation and deformable registration of the same CT/MR imaging data were processed separately. Physician’smore » selection of target delineation was implemented to identify the variations. Transformation matrix was shown with visual identification, as well as the deformation QA numbers and figures were assessed. Results: The deformable CT/MR images were traced with the calculated matrix, both translation and rotational parameters were summarized. In deformable quality QA, the calculated Jacobian matrix was analyzed, which the min/mean/max of 0.73/0/99/1.37, respectively. Jacobian matrix of right neck node was 0.84/1.13/1.41, which present dis-similarity of the nodal area. If Jacobian = 1, the deformation is at the optimum situation. In this case, the deformation results have shown better target delineation for CT/MR deformation than rigid transformation. Though the root-mean-square vector difference is 1.48 mm, with similar rotational components, the cord and vertebrae position were aligned much better in the deformable MR images than the rigid transformation. Conclusion: CT/MR with/without image deformation presents similar image registration matrix; there were significant differentiate the anatomical structures in the region of interest by deformable process. Though vendor suggested only rigid transformation between CT/MR assuming the geometry remain similar, our

  14. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  15. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.

    PubMed

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-01

    approach was quantified. Analysis of the 4D dose distributions from all five patients showed that while achieving tumor coverage comparable to the ITV approach, the new planning target definition resulted in reductions of lung V(10), V(20), and V(30) of 6.3% ± 1.7%, 10.6% ± 3.9%, and 12.9% ± 5.5%, respectively, as well as reductions in mean lung dose, mean dose to the GTV-ring and mean heart dose of 8.8% ± 2.5%, 7.2% ± 2.5%, and 10.6% ± 3.6%, respectively. The authors have developed a simple and systematic approach to generate a 4D-interpolated balanced planning target volume that implicitly incorporates the dynamics of respiratory-organ motion without requiring 4D-dose computation or optimization. Preliminary results based on 4D-CT data of five previously treated lung patients showed that this new planning target approach may improve normal tissue sparing without sacrificing tumor coverage.

  16. Regional deep hyperthermia: impact of observer variability in CT-based manual tissue segmentation on simulated temperature distribution

    NASA Astrophysics Data System (ADS)

    Aklan, Bassim; Hartmann, Josefin; Zink, Diana; Siavooshhaghighi, Hadi; Merten, Ricarda; Putz, Florian; Ott, Oliver; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    The aim of this study was to systematically investigate the influence of the inter- and intra-observer segmentation variation of tumors and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and the bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as the hyperthermia target volumes. For intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively, were assessed for each observer combination. The results of the segmentation similarity evaluation showed that the DSC of the inter-observer variation of fat, muscle, the bladder, bone and the target was 0.68  ±  0.12, 0.88  ±  0.05, 0.73  ±  0.14, 0.91  ±  0.04 and 0.64  ±  0.11, respectively. Similar results were found for the intra-observer variation. The MSD results were similar to the DSCs for both observer variations. A statistically significant difference (p  <  0.05) was found for T90 and T10 in the predicted target temperature due to the observer variability. The conclusion is that intra- and inter-observer variations have a significant impact on the temperature coverage of the

  17. Lymphopenia Association With Gross Tumor Volume and Lung V5 and Its Effects on Non-Small Cell Lung Cancer Patient Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chad; Liao, Zhongxing, E-mail: zliao@mdanderson.org; Gomez, Daniel

    2014-08-01

    Purpose: Radiation therapy (RT) can both suppress and stimulate the immune system. We sought to investigate the mechanisms underlying radiation-induced lymphopenia and its associations with patient outcomes in non-small cell lung cancer (NSCLC). Methods and Materials: Subjects consisted of 711 patients who had received definitive RT for NSCLC. A lymphocyte nadir was calculated as the minimum lymphocyte value measured during definitive RT. Associations between gross tumor volumes (GTVs) and lung dose-volume histogram (DVH) parameters with lymphocyte nadirs were assessed with Spearman correlation coefficients. Relationships between lymphocyte nadirs with overall survival (OS) and event free survival (EFS) were evaluated with Kaplan-Meiermore » analysis and compared with log-rank test results. Multivariate regressions were conducted with linear and Cox regression analyses. All variables were analyzed as continuous if possible. Results: Larger GTVs were correlated with lower lymphocyte nadirs regardless of concurrent chemotherapy receipt (with concurrent: r = −0.26, P<.0001; without: r = −0.48, P<.0001). Analyses of lung DVH parameters revealed significant correlations at lower doses (lung V5-V10: P<.0001) that incrementally decreased and became nonsignificant at higher doses (lung V60-V70: P>.05). Of note, no significant associations were detected between GTV and lung DVH parameters with total leukocyte, neutrophil, or monocyte nadirs during RT or with lymphocyte count prior to RT. Multivariate analysis revealed larger GTV (P<.0001), receipt of concurrent chemotherapy (P<.0001), twice-daily radiation fractionation (P=.02), and stage III disease (P=.05) to be associated with lower lymphocyte nadirs. On univariate analysis, patients with higher lymphocyte nadirs exhibited significantly improved OS (hazard ratio [HR] = 0.51 per 10{sup 3} lymphocytes/μL, P=.01) and EFS (HR = 0.46 per 10{sup 3} lymphocytes/μL, P<.0001). These differences held on multivariate

  18. Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath-hold lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Badawi, Ahmed M.; Weiss, Elisabeth; Sleeman, William C., IV; Hugo, Geoffrey D.

    2012-01-01

    The purpose of this study is to develop and evaluate a lung tumour interfraction geometric variability classification scheme as a means to guide adaptive radiotherapy and improve measurement of treatment response. Principal component analysis (PCA) was used to generate statistical shape models of the gross tumour volume (GTV) for 12 patients with weekly breath hold CT scans. Each eigenmode of the PCA model was classified as ‘trending’ or ‘non-trending’ depending on whether its contribution to the overall GTV variability included a time trend over the treatment course. Trending eigenmodes were used to reconstruct the original semi-automatically delineated GTVs into a reduced model containing only time trends. Reduced models were compared to the original GTVs by analyzing the reconstruction error in the GTV and position. Both retrospective (all weekly images) and prospective (only the first four weekly images) were evaluated. The average volume difference from the original GTV was 4.3% ± 2.4% for the trending model. The positional variability of the GTV over the treatment course, as measured by the standard deviation of the GTV centroid, was 1.9 ± 1.4 mm for the original GTVs, which was reduced to 1.2 ± 0.6 mm for the trending-only model. In 3/13 cases, the dominant eigenmode changed class between the prospective and retrospective models. The trending-only model preserved GTV and shape relative to the original GTVs, while reducing spurious positional variability. The classification scheme appears feasible for separating types of geometric variability by time trend.

  19. Role of FDG-PET in the Implementation of Involved-Node Radiation Therapy for Hodgkin Lymphoma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girinsky, Théodore; Aupérin, Anne; Ribrag, Vincent

    2014-08-01

    Purpose: This study examines the role of {sup 18}F-labeled fluorodeoxyglucose positron emission tomography (FDG-PET) in the implementation of involved-node radiation therapy (INRT) in patients treated for clinical stages (CS) I/II supradiaphragmatic Hodgkin lymphoma (HL). Methods and Material: Patients with untreated CS I/II HL enrolled in the randomized EORTC/LYSA/FIL Intergroup H10 trial and participating in a real-time prospective quality assurance program were prospectively included in this study. Data were electronically obtained from 18 French cancer centers. All patients underwent APET-computed tomography (PET-CT) and a post-chemotherapy planning CT scanning. The pre-chemotherapy gross tumor volume (GTV) and the postchemotherapy clinical target volume (CTV) weremore » first delineated on CT only by the radiation oncologist. The planning PET was then co-registered, and the delineated volumes were jointly analyzed by the radiation oncologist and the nuclear medicine physician. Lymph nodes undetected on CT but FDG-avid were recorded, and the previously determined GTV and CTV were modified according to FDG-PET results. Results: From March 2007 to February 2010, 135 patients were included in the study. PET-CT identified at least 1 additional FDG-avid lymph node in 95 of 135 patients (70.4%; 95% confidence interval [CI]: 61.9%-77.9%) and 1 additional lymph node area in 55 of 135 patients (40.7%; 95% CI: 32.4%-49.5%). The mean increases in the GTV and CTV were 8.8% and 7.1%, respectively. The systematic addition of PET to CT led to a CTV increase in 60% of the patients. Conclusions: Pre-chemotherapy FDG-PET leads to significantly better INRT delineation without necessarily increasing radiation volumes.« less

  20. Agreement Among RTOG Sarcoma Radiation Oncologists in Contouring Suspicious Peritumoral Edema for Preoperative Radiation Therapy of Soft Tissue Sarcoma of the Extremity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahig, Houda; Roberge, David, E-mail: david.roberge.chum@ssss.gouv.qc.ca; Bosch, Walter

    Purpose: Peritumoral edema may harbor sarcoma cells. The extent of suspicious edema (SE) included in the treatment volume is subject to clinical judgment, balancing the risk of missing tumor cells with excess toxicity. Our goal was to determine variability in SE delineation by sarcoma radiation oncologists (RO). Methods and Materials: Twelve expert ROs were provided with T1 gadolinium and T2-weighted MR images of 10 patients with high-grade extremity soft-tissue sarcoma. Gross tumor volume, clinical target volume (CTV)3cm (3 cm longitudinal and 1.5 cm radial margin), and CTV2cm (2 cm longitudinal and 1 cm radial margin) were contoured by a singlemore » observer. Suspicious peritumoral edema, defined as abnormal signal on T2 images, was independently delineated by all 12 ROs. Contouring agreement was analyzed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: The mean volumes of GTV, CTV2cm, and CTV3cm were, respectively, 130 cm{sup 3} (7-413 cm{sup 3}), 280 cm{sup 3} and 360 cm{sup 3}. The mean consensus volume computed using the STAPLE algorithm at 95% confidence interval was 188 cm{sup 3} (24-565 cm{sup 3}) with a substantial overall agreement corrected for chance (mean kappa = 0.71; range: 0.32-0.87). The minimum, maximum, and mean volume of SE (excluding the GTV) were 4, 182, and 58 cm{sup 3} (representing a median of 29% of the GTV volume). The median volume of SE not included in the CTV2cm and in the CTV3cm was 5 and 0.3 cm{sup 3}, respectively. There were 3 large tumors with >30 cm{sup 3} of SE not included in the CTV3cm volume. Conclusion: Despite the fact that SE would empirically seem to be a more subjective volume, a substantial or near-perfect interobserver agreement was observed in SE delineation in most cases with high-grade soft-tissue sarcomas of the extremity. A median of 97% of the consensus SE is within the CTV2cm (99.8% within the CTV3cm). In a minority of cases, however, significant

  1. Agreement among RTOG sarcoma radiation oncologists in contouring suspicious peritumoral edema for preoperative radiation therapy of soft tissue sarcoma of the extremity.

    PubMed

    Bahig, Houda; Roberge, David; Bosch, Walter; Levin, William; Petersen, Ivy; Haddock, Michael; Freeman, Carolyn; Delaney, Thomas F; Abrams, Ross A; Indelicato, Danny J; Baldini, Elizabeth H; Hitchcock, Ying; Kirsch, David G; Kozak, Kevin R; Wolfson, Aaron; Wang, Dian

    2013-06-01

    Peritumoral edema may harbor sarcoma cells. The extent of suspicious edema (SE) included in the treatment volume is subject to clinical judgment, balancing the risk of missing tumor cells with excess toxicity. Our goal was to determine variability in SE delineation by sarcoma radiation oncologists (RO). Twelve expert ROs were provided with T1 gadolinium and T2-weighted MR images of 10 patients with high-grade extremity soft-tissue sarcoma. Gross tumor volume, clinical target volume (CTV)3cm (3 cm longitudinal and 1.5 cm radial margin), and CTV2cm (2 cm longitudinal and 1 cm radial margin) were contoured by a single observer. Suspicious peritumoral edema, defined as abnormal signal on T2 images, was independently delineated by all 12 ROs. Contouring agreement was analyzed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. The mean volumes of GTV, CTV2cm, and CTV3cm were, respectively, 130 cm(3) (7-413 cm(3)), 280 cm(3) and 360 cm(3). The mean consensus volume computed using the STAPLE algorithm at 95% confidence interval was 188 cm(3) (24-565 cm(3)) with a substantial overall agreement corrected for chance (mean kappa = 0.71; range: 0.32-0.87). The minimum, maximum, and mean volume of SE (excluding the GTV) were 4, 182, and 58 cm(3) (representing a median of 29% of the GTV volume). The median volume of SE not included in the CTV2cm and in the CTV3cm was 5 and 0.3 cm(3), respectively. There were 3 large tumors with >30 cm(3) of SE not included in the CTV3cm volume. Despite the fact that SE would empirically seem to be a more subjective volume, a substantial or near-perfect interobserver agreement was observed in SE delineation in most cases with high-grade soft-tissue sarcomas of the extremity. A median of 97% of the consensus SE is within the CTV2cm (99.8% within the CTV3cm). In a minority of cases, however, significant expansion of the CTVs is required to cover SE. Copyright © 2013 Elsevier Inc. All rights

  2. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    PubMed

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Validation of Imaging With Pathology in Laryngeal Cancer: Accuracy of the Registration Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldas-Magalhaes, Joana, E-mail: J.CaldasMagalhaes@umcutrecht.nl; Kasperts, Nicolien; Kooij, Nina

    2012-02-01

    Purpose: To investigate the feasibility and accuracy of an automated method to validate gross tumor volume (GTV) delineations with pathology in laryngeal and hypopharyngeal cancer. Methods and Materials: High-resolution computed tomography (CT{sub HR}), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans were obtained from 10 patients before total laryngectomy. The GTV was delineated separately in each imaging modality. The laryngectomy specimen was sliced transversely in 3-mm-thick slices, and whole-mount hematoxylin-eosin stained (H and E) sections were obtained. A pathologist delineated tumor tissue in the H and E sections (GTV{sub PATH}). An automatic three-dimensional (3D) reconstruction of the specimenmore » was performed, and the CT{sub HR}, MRI, and PET were semiautomatically and rigidly registered to the 3D specimen. The accuracy of the pathology-imaging registration and the specimen deformation and shrinkage were assessed. The tumor delineation inaccuracies were compared with the registration errors. Results: Good agreement was observed between anatomical landmarks in the 3D specimen and in the in vivo images. Limited deformations and shrinkage (3% {+-} 1%) were found inside the cartilage skeleton. The root mean squared error of the registration between the 3D specimen and the CT, MRI, and PET was on average 1.5, 3.0, and 3.3 mm, respectively, in the cartilage skeleton. The GTV{sub PATH} volume was 7.2 mL, on average. The GTVs based on CT, MRI, and PET generated a mean volume of 14.9, 18.3, and 9.8 mL and covered the GTV{sub PATH} by 85%, 88%, and 77%, respectively. The tumor delineation inaccuracies exceeded the registration error in all the imaging modalities. Conclusions: Validation of GTV delineations with pathology is feasible with an average overall accuracy below 3.5 mm inside the laryngeal skeleton. The tumor delineation inaccuracies were larger than the registration error. Therefore, an accurate histological

  4. TU-F-12A-03: Using 18F-FDG-PET-CT and Deformable Registration During Head-And-Neck Cancer (HNC) Intensity Modulated Radiotherapy (IMRT) to Predict Treatment Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergalasova, I; Mowery, Y; Yoo, D

    2014-06-15

    Purpose: To evaluate the effect of deformable vs. rigid registration of pre-treatment 18F-FDG-PET-CT to intra-treatment 18F-FDG-PET-CT on different standardized uptake value (SUV) parameters and investigate which parameters correlate best with post-treatment response in patients undergoing IMRT for HNC. Methods: Pre-treatment and intra-treatment PET-CT (after 20Gy) scans were acquired, in addition to a 12 week post-treatment PET-CT to assess treatment response. Primary and lymph node gross tumor volumes (GTV-PRI and GTV-LN) were contoured on the pre-treatment CT. These contours were then mapped to intra-treatment PET images via rigid and deformable registration. Absolute changes from pre- to intra-treatment scans for rigid andmore » deformable registration were extracted for the following parameters: SUV-MAX, SUV-MEAN, SUV-20%, SUV-40%, and SUV-60% (SUV-X% is the minimum SUV to the highest-intensity X% volume). Results: Thirty-eight patients were evaluated, with 27 available for classification as complete or incomplete response (CR/ICR). The pre-treatment average tumor volumes for the patients were 24.05cm{sup 3} for GTV-PRI and 23.4cm{sup 3} for GTV-LN. For GTV-PRI, there was no statistically significant difference between rigid vs. deformable registration across all ΔSUV parameters. For GTV-LN contours, all parameters were significantly different except for ΔSUV-MAX. For deformably-registered GTV-PRI, changes in the following metrics were significantly different for CR vs. ICR: SUV-MEAN(p=0.003), SUV-20%(p=0.02), SUV-40%(p=0.02), and SUV-60%(p=0.008). The following cutoff values separated CR from ICR with high sensitivity and specificity: ΔSUV-MEAN=1.49, ΔSUV-20%=2.39, ΔSUV-40%=1.80 and ΔSUV-60%=1.31. Corresponding areas under the Receiver Operating Characteristics curve were 0.90, 0.81, 0.81, and 0.85, respectively. Conclusion: Rigidly and deformably registered contours yielded statistically similar SUV parameters for GTV-PRI, but not GTV-LN. This

  5. Computed Tomography Number Changes Observed During Computed Tomography–Guided Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mei; Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu; Yang, Cungeng

    2015-04-01

    Purpose: To investigate CT number (CTN) changes in gross tumor volume (GTV) and organ at risk (OAR) according to daily diagnostic-quality CT acquired during CT-guided intensity modulated radiation therapy for head and neck cancer (HNC) patients. Methods and Materials: Computed tomography scans acquired using a CT-on-rails during daily CT-guided intensity modulated radiation therapy for 15 patients with stage II to IVa squamous cell carcinoma of the head and neck were analyzed. The GTV, parotid glands, spinal cord, and nonspecified tissue were generated on each selected daily CT. The changes in CTN distributions and the mean and mode values were collected.more » Pearson analysis was used to assess the correlation between the CTN change, organ volume reduction, and delivered radiation dose. Results: Volume and CTN changes for GTV and parotid glands can be observed during radiation therapy delivery for HNC. The mean (±SD) CTNs in GTV and ipsi- and contralateral parotid glands were reduced by 6 ± 10, 8 ± 7, and 11 ± 10 Hounsfield units, respectively, for all patients studied. The mean CTN changes in both spinal cord and nonspecified tissue were almost invisible (<2 Hounsfield units). For 2 patients studied, the absolute mean CTN changes in GTV and parotid glands were strongly correlated with the dose delivered (P<.001 and P<.05, respectively). For the correlation between CTN reductions and delivered isodose bins for parotid glands, the Pearson coefficient varied from −0.98 (P<.001) in regions with low-dose bins to 0.96 (P<.001) in high-dose bins and were patient specific. Conclusions: The CTN can be reduced in tumor and parotid glands during the course of radiation therapy for HNC. There was a fair correlation between CTN reduction and radiation doses for a subset of patients, whereas the correlation between CTN reductions and volume reductions in GTV and parotid glands were weak. More studies are needed to understand the mechanism for the radiation-induced CTN

  6. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.

    PubMed

    Doshi, T; Wilson, C; Paterson, C; Lamb, C; James, A; MacKenzie, K; Soraghan, J; Petropoulakis, L; Di Caterina, G; Grose, D

    2017-01-01

    To carry out statistical validation of a newly developed magnetic resonance imaging (MRI) auto-contouring software tool for gross tumour volume (GTV) delineation in head and neck tumours to assist in radiotherapy planning. Axial MRI baseline scans were obtained for 10 oropharyngeal and laryngeal cancer patients. GTV was present on 102 axial slices and auto-contoured using the modified fuzzy c-means clustering integrated with the level set method (FCLSM). Peer-reviewed (C-gold) manual contours were used as the reference standard to validate auto-contoured GTVs (C-auto) and mean manual contours (C-manual) from two expert clinicians (C1 and C2). Multiple geometric metrics, including the Dice similarity coefficient (DSC), were used for quantitative validation. A DSC≥0.7 was deemed acceptable. Inter- and intra-variabilities among the manual contours were also validated. The two-dimensional contours were then reconstructed in three dimensions for GTV volume calculation, comparison and three-dimensional visualisation. The mean DSC between C-gold and C-auto was 0.79. The mean DSC between C-gold and C-manual was 0.79 and that between C1 and C2 was 0.80. The average time for GTV auto-contouring per patient was 8 min (range 6-13 min; mean 45 s per axial slice) compared with 15 min (range 6-23 min; mean 88 s per axial slice) for C1. The average volume concordance between C-gold and C-auto volumes was 86.51% compared with 74.16% between C-gold and C-manual. The average volume concordance between C1 and C2 volumes was 86.82%. This newly designed MRI-based auto-contouring software tool shows initial acceptable results in GTV delineation of oropharyngeal and laryngeal tumours using FCLSM. This auto-contouring software tool may help reduce inter- and intra-variability and can assist clinical oncologists with time-consuming, complex radiotherapy planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. P08.52 Proton therapy re-Irradiation in large-volume recurrent glioblastoma.

    PubMed Central

    Amelio, D.; Widesott, L.; Vennarini, S.; Fellin, F.; Maines, F.; Righetto, R.; Lorentini, S.; Farace, P.; Schwarz, M.; Amichetti, M.

    2016-01-01

    Abstract Purpose: To report preliminary results of re-irradiation with proton therapy (PT) in large-volume recurrent glioblastoma (rGBM). Matherial/Methods: Between January and December 2015 ten patients (pts) with rGBM were re-irradiated with PT. All pts were previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant TMZ for 1–20 cycles (median, 7). Seven pts were re-irradiated at first relapse/progression. Four patients were re-irradiated after partial tumor resection. Median age and Karnofsky performance status at re-irradiation were 57 years (range, 41–68) and 80%, (range, 70–100), respectively. Median time between prior radiotherapy and PT was 9 months (range, 5–24). Target definition was based on CT, MR, and 18F-DOPA PET imaging. GTV included any area of contrast enhancement after contrast medium administration plus any pathological PET uptake regions. CTV was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create PTV. Median PTV volume was 90 cc (range, 46–231). All pts received 36 GyRBE in 18 fractions. Four pts also received concomitant temozolomide (75 mg/m2/die, 7 days/week). All pts were treated with active beam scanning PT using 2–3 fields with single field optimization technique. Results: All pts completed the treatment without breaks. Registered acute side effects (according to Common Terminology Criteria for Adverse Events version 4.0 - CTCAE) include grade 1–2 skin erythema, alopecia, fatigue, conjunctivitis, concentration impairment, dysphasia, and headache. There were no grade 3 or higher toxicities. One patient developed grade 1 neutropenia. Five pts started PT under steroids (2–7 mg/daily); two of them reduced the dose during PT, while three kept the same steroids dose. None of remaining pts needed steroids therapy. Registered late side effects (according to CTCAE version 4.0) include grade 1–2 alopecia, fatigue

  8. Fluorine-18-Labeled Fluoromisonidazole Positron Emission and Computed Tomography-Guided Intensity-Modulated Radiotherapy for Head and Neck Cancer: A Feasibility Study

    PubMed Central

    Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko

    2010-01-01

    Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC

  9. Use of volume-targeted non-invasive bilevel positive airway pressure ventilation in a patient with amyotrophic lateral sclerosis*,**

    PubMed Central

    Diaz-Abad, Montserrat; Brown, John Edward

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which most patients die of respiratory failure. Although volume-targeted non-invasive bilevel positive airway pressure (BPAP) ventilation has been studied in patients with chronic respiratory failure of various etiologies, its use in ALS has not been reported. We present the case of a 66-year-old woman with ALS and respiratory failure treated with volume-targeted BPAP ventilation for 15 weeks. Weekly data downloads showed that disease progression was associated with increased respiratory muscle weakness, decreased spontaneous breathing, and increased use of non-invasive positive pressure ventilation, whereas tidal volume and minute ventilation remained relatively constant. PMID:25210968

  10. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    PubMed

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  11. Analysis of radiation exposure for naval units of Operation Crossroads. Volume 2. (Appendix A) target ships. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitz, R.; Thomas, C.; Klemm, J.

    1982-03-03

    External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details themore » results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those, approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.« less

  12. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method

    PubMed Central

    Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi

    2015-01-01

    Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359

  13. SU-F-R-25: Automatic Identification of Suspicious Recurrent/residual Disease Regions After Prostatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, N A; Abramowitz, M; Pollack, A

    2016-06-15

    Purpose: To automatically identify and outline suspicious regions of recurrent or residual disease in the prostate bed using Dynamic Contrast Enhanced-MRI (DCE-MRI) in patients after prostatectomy. Methods: Twenty-two patients presenting for salvage radiotherapy and with identified Gross Tumor Volume (GTV) in the prostate bed were retrospectively analyzed. The MRI data consisted of Axial T2weighted-MRI (T2w) of the pelvis: resolution 1.25×1.25×2.5 mm; Field of View (FOV): 320×320 mm; slice thickness=2.5mm; 72 slices; and Dynamic Contrast Enhanced MRI (DCE-MRI)–12 series of T1w with identical spatial resolution to T2w and at 30–34s temporal resolution. Unsupervised pattern recognition was used to decompose the 4Dmore » DCE data as the product W.H of weights W of k patterns H. A well-perfused pattern Hwp was identified and the weight map Wwp associated to Hwp was used to delineate suspicious volumes. Threshold of Wwp set at mean(Wwp)+S*std(Wwp), S=1,1.5,2 and 2.5 defined four volumes labeled as DCE1.0 to DCE2.5. These volumes were displayed on T2w and, along with GTV, were correlated with the highest pre-treatment PSA values, and with pharmacokinetic analysis constants. Results: GTV was significantly correlated with DCE2.0(ρ= 0.60, p<0.003), and DCE 2.5 (ρ=0.58, p=0.004)). Significant correlation was found between highest pre-treatment PSA and GTV(ρ=0.42, p<0.049), DCE2.0(ρ= 0.52, p<0.012), and DCE 2.5 (ρ=0.67, p<<0.01)). Kruskal-Wallis analysis showed that Ktrans median value was statistically different between non-specific prostate bed tissue NSPBT and both GTV (p<<0.001) and DCE2.5 (p<<0.001), but while median Ve was statistically different between DCE2.5 and NSPBT (p=0.002), it was not statistically different between GTV and NSPBT (p=0.054), suggesting that automatic volumes capture more accurately the area of malignancy. Conclusion: Software developed for identification and visualization of suspicions regions in DCE-MRI from post

  14. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    PubMed

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  15. Stereotactic radiotherapy of intrapulmonary lesions: comparison of different dose calculation algorithms for Oncentra MasterPlan®.

    PubMed

    Troeller, Almut; Garny, Sylvia; Pachmann, Sophia; Kantz, Steffi; Gerum, Sabine; Manapov, Farkhad; Ganswindt, Ute; Belka, Claus; Söhn, Matthias

    2015-02-22

    The use of high accuracy dose calculation algorithms, such as Monte Carlo (MC) and Collapsed Cone (CC) determine dose in inhomogeneous tissue more accurately than pencil beam (PB) algorithms. However, prescription protocols based on clinical experience with PB are often used for treatment plans calculated with CC. This may lead to treatment plans with changes in field size (FS) and changes in dose to organs at risk (OAR), especially for small tumor volumes in lung tissue treated with SABR. We re-evaluated 17 3D-conformal treatment plans for small intrapulmonary lesions with a prescription of 60 Gy in fractions of 7.5 Gy to the 80% isodose. All treatment plans were initially calculated in Oncentra MasterPlan® using a PB algorithm and recalculated with CC (CCre-calc). Furthermore, a CC-based plan with coverage similar to the PB plan (CCcov) and a CC plan with relaxed coverage criteria (CCclin), were created. The plans were analyzed in terms of Dmean, Dmin, Dmax and coverage for GTV, PTV and ITV. Changes in mean lung dose (MLD), V10Gy and V20Gy were evaluated for the lungs. The re-planned CC plans were compared to the original PB plans regarding changes in total monitor units (MU) and average FS. When PB plans were recalculated with CC, the average V60Gy of GTV, ITV and PTV decreased by 13.2%, 19.9% and 41.4%, respectively. Average Dmean decreased by 9% (GTV), 11.6% (ITV) and 14.2% (PTV). Dmin decreased by 18.5% (GTV), 21.3% (ITV) and 17.5% (PTV). Dmax declined by 7.5%. PTV coverage correlated with PTV volume (p < 0.001). MLD, V10Gy, and V20Gy were significantly reduced in the CC plans. Both, CCcov and CCclin had significantly increased MUs and FS compared to PB. Recalculation of PB plans for small lung lesions with CC showed a strong decline in dose and coverage in GTV, ITV and PTV, and declined dose in the lung. Thus, switching from a PB algorithm to CC, while aiming to obtain similar target coverage, can be associated with application of more MU and extension of

  16. Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin

    2018-01-01

    A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D  +  t B

  17. Impact of Node Negative Target Volume Delineation on Contralateral Parotid Gland Dose Sparing Using IMRT in Head and Neck Cancer.

    PubMed

    Magnuson, William J; Urban, Erich; Bayliss, R Adam; Harari, Paul M

    2015-06-01

    There is considerable practice variation in treatment of the node negative (N0) contralateral neck in patients with head and neck cancer. In this study, we examined the impact of N0 neck target delineation volume on radiation dose to the contralateral parotid gland. Following institutional review board approval, 12 patients with head and neck cancer were studied. All had indications for treatment of the N0 neck, such as midline base of tongue or soft palate extension or advanced ipsilateral nodal disease. The N0 neck volumes were created using the Radiation Therapy Oncology Group head and neck contouring atlas. The physician-drawn N0 neck clinical target volume (CTV) was expanded by 25% to 200% to generate volume variation, followed by a 3-mm planning target volume (PTV) expansion. Surrounding organs at risk were contoured and complete intensity-modulated radiation therapy plans were generated for each N0 volume expansion. The median N0 target volume drawn by the radiation oncologist measured 93 cm(3) (range 71-145). Volumetric expansion of the N0 CTV by 25% to 200% increased the resultant mean dose to the contralateral parotid gland by 1.4 to 8.5 Gray (Gy). For example, a 4.1-mm increase in the N0 neck CTV translated to a 2.0-Gy dose increase to the parotid, 7.4 mm to a 4.5 Gy dose increase, and 12.5 mm to an 8.5 Gy dose increase, respectively. The treatment volume designated for the N0 neck has profound impact on resultant dose to the contralateral parotid gland. Variations of up to 15 mm are routine across physicians in target contouring, reflecting individual preference and training expertise. Depending on the availability of immobilization and image guidance techniques, experts commonly recommend 3 to 10 mm margin expansions to generate the PTV. Careful attention to the original volume of the N0 neck CTV, as well as expansion margins, is important in achieving effective contralateral gland sparing to reduce the resultant xerostomia and dysguesia that may ensue

  18. A New Suggestion for the Radiation Target Volume After a Subtotal Gastrectomy in Patients With Stomach Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Heerim; Lim, Do Hoon; Kim, Sung

    2008-06-01

    Purpose: To compare treatment results between the use of two different radiation fields including and excluding remnant stomach and suggest new target volumes excluding remnant stomach after subtotal gastrectomy (STG) in patients with stomach cancer. Methods and Materials: We retrospectively analyzed 291 patients treated with adjuvant chemoradiotherapy after STG and D2 dissection at the Samsung Medical Center, Seoul, South Korea. Eighty-three patients registered from 1995 to 1997 underwent irradiation according to the INT 0116 protocol that recommended the inclusion of remnant stomach within the target volume (Group A). After this period, we excluded remnant stomach from the target volume formore » 208 patients (Group B). Median follow-up was 67 months. Results: Treatment failure developed in 93 patients (32.0%). Local and regional recurrence rates for Group A vs. Group B were 10.8% vs. 5.3% (p = not significant) and 9.6% vs. 6.3% (p = not significant), and recurrence rates for remnant stomach were 7.2% vs. 1.4% (p = 0.018), respectively. Overall and disease-free survival rates were not different between the two groups. Grade 3 or 4 vomiting and diarrhea developed more frequently in Group A than Group B (4.8% vs. 1.4% and 6.0% vs. 1.9%, respectively; p = 0.012; p < 0.001). Conclusion: Exclusion of remnant stomach from the radiation field had no effect on failure rates or survival, and a low complication rate occurred in patients treated excluding remnant stomach. We suggest that remnant stomach be excluded from the radiation target volume for patients with stomach cancer who undergo STG and D2 dissection.« less

  19. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    PubMed

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  20. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas.

    PubMed

    Hulshof, Maarten C C M; van Andel, George; Bel, Arjen; Gangel, Pieter; van de Kamer, Jeroen B

    2007-07-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  1. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y; Yu, J; Xiao, Y

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematicalmore » model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.« less

  2. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    PubMed Central

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  3. Breathing-motion-compensated robotic guided stereotactic body radiation therapy : Patterns of failure analysis.

    PubMed

    Stera, Susanne; Balermpas, Panagiotis; Chan, Mark K H; Huttenlocher, Stefan; Wurster, Stefan; Keller, Christian; Imhoff, Detlef; Rades, Dirk; Dunst, Jürgen; Rödel, Claus; Hildebrandt, Guido; Blanck, Oliver

    2018-02-01

    We retrospectively evaluated the patterns of failure for robotic guided real-time breathing-motion-compensated (BMC) stereotactic body radiation therapy (SBRT) in the treatment of tumors in moving organs. Between 2011 and 2016, a total of 198 patients with 280 lung, liver, and abdominal tumors were treated with BMC-SBRT. The median gross tumor volume (GTV) was 12.3 cc (0.1-372.0 cc). Medians of mean GTV BED α/β = 10   Gy (BED = biological effective dose) was 148.5 Gy 10 (31.5-233.3 Gy 10 ) and prescribed planning target volume (PTV) BED α/β = 10   Gy was 89.7 Gy 10 (28.8-151.2 Gy 10 ), respectively. We analyzed overall survival (OS) and local control (LC) based on various factors, including BEDs with α/β ratios of 15 Gy (lung metastases), 21 Gy (primary lung tumors), and 27 Gy (liver metastases). Median follow-up was 10.4 months (2.0-59.0 months). The 2‑year actuarial LC was 100 and 86.4% for primary early and advanced stage lung tumors, respectively, 100% for lung metastases, 82.2% for liver metastases, and 90% for extrapulmonary extrahepatic metastases. The 2‑year OS rate was 47.9% for all patients. In uni- and multivariate analysis, comparatively lower PTV prescription dose (equivalence of 3 × 12-13 Gy) and higher average GTV dose (equivalence of 3 × 18 Gy) to current practice were significantly associated with LC. For OS, Karnofsky performance score (100%), gender (female), and SBRT without simultaneous chemotherapy were significant prognostic factors. Grade 3 side effects were rare (0.5%). Robotic guided BMC-SBRT can be considered a safe and effective treatment for solid tumors in moving organs. To reach sufficient local control rates, high average GTV doses are necessary. Further prospective studies are warranted to evaluate these points.

  4. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Jason, E-mail: jason.callahan@petermac.org; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom whilemore » moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently

  5. Contribution of FDOPA PET to radiotherapy planning for advanced glioma

    NASA Astrophysics Data System (ADS)

    Dowson, Nicholas; Fay, Michael; Thomas, Paul; Jeffree, Rosalind; McDowall, Robert; Winter, Craig; Coulthard, Alan; Smith, Jye; Gal, Yaniv; Bourgeat, Pierrick; Salvado, Olivier; Crozier, Stuart; Rose, Stephen

    2014-03-01

    Despite radical treatment with surgery, radiotherapy and chemotherapy, advanced gliomas recur within months. Geographic misses in radiotherapy planning may play a role in this seemingly ineluctable recurrence. Planning is typically performed on post-contrast MRIs, which are known to underreport tumour volume relative to FDOPA PET scans. FDOPA PET fused with contrast enhanced MRI has demonstrated greater sensitivity and specificity than MRI alone. One sign of potential misses would be differences between gross target volumes (GTVs) defined using MRI alone and when fused with PET. This work examined whether such a discrepancy may occur. Materials and Methods: For six patients, a 75 minute PET scan using 3,4-dihydroxy-6-18F-fluoro-L-phynel-alanine (18F-FDOPA) was taken within 2 days of gadolinium enhanced MRI scans. In addition to standard radiotherapy planning by an experienced radiotherapy oncologist, a second gross target volume (GTV) was defined by an experienced nuclear medicine specialist for fused PET and MRI, while blinded to the radiotherapy plans. The volumes from standard radiotherapy planning were compared to the PET defined GTV. Results: The comparison indicated radiotherapy planning would change in several cases if FDOPA PET data was available. PET-defined contours were external to 95% prescribed dose for several patients. However, due to the radiotherapy margins, the discrepancies were relatively small in size and all received a dose of 50 Gray or more. Conclusions: Given the limited size of the discrepancies it is uncertain that geographic misses played a major role in patient outcome. Even so, the existence of discrepancies indicates that FDOPA PET could assist in better defining margins when planning radiotherapy for advanced glioma, which could be important for highly conformal radiotherapy plans.

  6. Facial Contouring by Targeted Restoration of Facial Fat Compartment Volume: The Midface.

    PubMed

    Wang, Wenjin; Xie, Yun; Huang, Ru-Lin; Zhou, Jia; Tanja, Herrler; Zhao, Peijuan; Cheng, Chen; Zhou, Sizheng; Pu, Lee L Q; Li, Qingfeng

    2017-03-01

    Recent anatomical findings have suggested that facial fat distribution is complex and changes with age. Here, the authors developed a grafting technique based on the physiologic distribution and volume changes of facial fat compartments to achieve a youthful and natural-appearing face. Forty cadaveric hemifaces were used for the dissection of fat compartments and neurovascular structures in the midface area. Seventy-eight patients were treated for cheek atrophy using the authors' targeted restoration of midface fat compartment volume. The outcome was evaluated by a two-dimensional assessment, malar lipoatrophy assessment, and a satisfaction survey. The medial and lateral parts of the deep medial cheek fat compartment were separated by a septum arising from the lateral border of the levator anguli oris muscle. The angular vein traveled between the deep medial cheek fat compartment and the buccal fat pad, 12 mm from the maxilla. A total volume of 29.3 ml of fat was grafted per cheek for each patient. A 12-month follow-up revealed an average volume augmentation rate of 27.1 percent. Pleasing and elevated anterior projection of the cheek and ameliorated nasolabial groove were still obvious by 12 months after the procedure. In total, 95.2 percent of the patients were satisfied with their results. The present study provides the anatomical and clinical basis for the concept of compartmentally based fat grafting. It allows for the restoration of facial fat volume close to the physiologic state. With this procedure, a natural and youthful facial contour could be rebuilt with a high satisfaction rate. Therapeutic, IV.

  7. TU-AB-BRB-00: New Methods to Ensure Target Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To

  8. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Chris; Wierzbicki, Marcin

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITVmore » dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.« less

  9. New Language and Old Problems in Breast Cancer Radiotherapy.

    PubMed

    Chiricuţă, Ion Christian

    2017-01-01

    New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.

  10. Dynamic contrast-enhanced MRI for automatic detection of foci of residual or recurrent disease after prostatectomy.

    PubMed

    Parra, N Andres; Orman, Amber; Padgett, Kyle; Casillas, Victor; Punnen, Sanoj; Abramowitz, Matthew; Pollack, Alan; Stoyanova, Radka

    2017-01-01

    This study aimed to develop an automated procedure for identifying suspicious foci of residual/recurrent disease in the prostate bed using dynamic contrast-enhanced-MRI (DCE-MRI) in prostate cancer patients after prostatectomy. Data of 22 patients presenting for salvage radiotherapy (RT) with an identified gross tumor volume (GTV) in the prostate bed were analyzed retrospectively. An unsupervised pattern recognition method was used to analyze DCE-MRI curves from the prostate bed. Data were represented as a product of a number of signal-vs.-time patterns and their weights. The temporal pattern, characterized by fast wash-in and gradual wash-out, was considered the "tumor" pattern. The corresponding weights were thresholded based on the number (1, 1.5, 2, 2.5) of standard deviations away from the mean, denoted as DCE1.0, …, DCE2.5, and displayed on the T2-weighted MRI. The resultant four volumes were compared with the GTV and maximum pre-RT prostate-specific antigen (PSA) level. Pharmacokinetic modeling was also carried out. Principal component analysis determined 2-4 significant patterns in patients' DCE-MRI. Analysis and display of the identified suspicious foci was performed in commercial software (MIM Corporation, Cleveland, OH, USA). In general, DCE1.0/DCE1.5 highlighted larger areas than GTV. DCE2.0 and GTV were significantly correlated (r = 0.60, p < 0.05). DCE2.0/DCA2.5 were also significantly correlated with PSA (r = 0.52, 0.67, p < 0.05). K trans for DCE2.5 was statistically higher than the GTV's K trans (p < 0.05), indicating that the automatic volume better captures areas of malignancy. A software tool was developed for identification and visualization of the suspicious foci in DCE-MRI from post-prostatectomy patients and was integrated into the treatment planning system.

  11. Using injectable hydrogel markers to assess resimulation for boost target volume definition in a patient undergoing whole-breast radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Henal; Goyal, Sharad; Kim, Leonard, E-mail: kimlh@rutgers.edu

    Several publications have recommended that patients undergoing whole-breast radiotherapy be resimulated for boost planning. The rationale for this is that the seroma may be smaller when compared with the initial simulation. However, the decision remains whether to use the earlier or later images to define an appropriate boost target volume. A patient undergoing whole-breast radiotherapy had new, injectable, temporary hydrogel fiducial markers placed 1 to 3 cm from the seroma at the time of initial simulation. The patient was resimulated 4.5 weeks later for conformal photon boost planning. Computed tomography (CT) scans acquired at the beginning and the end ofmore » whole-breast radiotherapy showed that shrinkage of the lumpectomy cavity was not matched by a corresponding reduction in the surrounding tissue volume, as demarcated by hydrogel markers. This observation called into question the usual interpretation of cavity shrinkage for boost target definition. For this patient, it was decided to define the boost target volume on the initial planning CT instead of the new CT.« less

  12. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  13. Evaluation of potential internal target volume of liver tumors using cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp; Oh, Ryoong-Jin; Masai, Norihisa

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquiredmore » for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC

  14. Stereotactic ultrasound for target volume definition in a patient with prostate cancer and bilateral total hip replacement.

    PubMed

    Boda-Heggemann, Judit; Haneder, Stefan; Ehmann, Michael; Sihono, Dwi Seno Kuncoro; Wertz, Hansjörg; Mai, Sabine; Kegel, Stefan; Heitmann, Sigrun; von Swietochowski, Sandra; Lohr, Frank; Wenz, Frederik

    2015-01-01

    Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to

  15. SU-F-R-54: CT-Texture Based Early Tumor Treatment Response Assessment During Radiation Therapy Delivery: Small Cell Versus Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J; Gore, E; Li, X

    Purpose: Tumor treatment response may potentially be assessed during radiation therapy (RT) by analyzing changes in CT-textures. We investigated the different early RT-responses between small cell (SCLC) and non-small cell lung cancer (NSCLC) as assessed by CT-texture. Methods: Daily diagnostic-quality CT acquired during routine CT-guided RT using a CT-on-Rails for 13-NSCLC and 5-SCLC patients were analyzed. These patient had ages ranging from 45–78 and 38–63 years, respectively, for NSCLC and SCLC groups, and tumor-stages ranging from T2-T4, and were treated with either RT or chemotherapy and RT with 45–66Gy/ 20–34 fractions. Gross-tumor volume (GTV) contour was generated on each dailymore » CT by populating GTV contour from simulation to daily CTs with manual editing if necessary. CT-texture parameters, such as Hounsfield Unit (HU) histogram, mean HU, skewness, kurtosis, entropy, and short-run high-gray level emphasis (SRHGLE), were calculated in GTV from each daily CT-set using an in house software tool. Difference in changes of these texture parameters during RT between NSCLC and SCLC was analyzed and compared with GTV volume changes. Results: Radiation-induced changes in CT-texture were different between SCLC and NSCLC. Average changes from first to the last fractions for NSCLC and SCLC in GTV were 28±10(12–44) and 30±15(11–47) HU (mean HU reduction), 12.7% and 18.3% (entropy), 50% and 55% (SRHGLE), 19% and 22% (kurtosis), and 5.2% and 22% (skewness), respectively. Good correlation in kurtosis changes and GTV was seen (R{sup 2}=0.8923) for SCLC, but not for NSCLC (R{sup 2}=0.4748). SCLC had better correlations between GTV volume reduction and entropy (SCLC R{sup 2}=0.847; NSCLC R{sup 2}=0.6485), skewness (SCLC R{sup 2}=0.935; NSCLC R{sup 2}=0.7666), or SRHGLE (SCLC R{sup 2}=0.9619; NSCLC R{sup 2}=0.787). Conclusion: NSCLC and SCLC exhibited different early RT-responses as assessed by CT-texture changes during RT-delivery. The observed larger

  16. [Microscopic extensions of head and neck squamous cell carcinomas: impact for clinical target volume definition].

    PubMed

    Fleury, B; Thariat, J; Barnoud, R; Buiret, G; Lebreton, F; Bancel, B; Poupart, M; Devouassoux-Shisheboran, M

    2014-11-01

    To assess microscopic extensions of head and neck squamous cell carcinomas aiming at a proposal for target volumes of radiation therapy. Surgical specimens were prospectively analysed macroscopically and microscopically. Tumour borders were identified per macroscopic visual examination and inked on stained slides. Then microscopic implants (perineural or lymphatic involvement, or in situ carcinomas) were looked for with an optic microscope in the macroscopic healthy tissue surrounding the tumour. The maximal length from tumour border was correlated with the maximal length of macroscopically healthy tissues assessable. Twenty-one specimens were analysed and 12 were locally advanced tumours. Mean and median maximal microscopic extensions were 2.9 and 1.0mm (0-15mm), respectively. The 90th and 95th percentiles were 5 and 11mm, respectively. The ratio between healthy tissue length and maximal microscopic tumour extension was 10%. No correlation was found with tumour grade or volume. The presence of microscopic tumour was unlikely after 5mm from macroscopic tumour (≤5% of patients in this series) but should be assessed along with other histoclinical factors and particularities of tumour behaviour by anatomic site. A rigorous terminology should authorize a relevant appreciation of local risk of recurrence, particularly in adjuvant setting or for clinical target volume definition. Larger and more homogenous confirmatory series are needed. Copyright © 2014. Published by Elsevier SAS.

  17. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Robinson, A; Kiess, A

    2015-06-15

    Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCTmore » intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity

  18. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.

    PubMed

    Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre

    2016-11-01

    To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target

  19. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Yang, J; Beadle, B

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the

  20. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jethwa, Krishan R.; Kahila, Mohamed M.; Hunt, Katie N.

    Purpose: The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Methods and Materials: Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. Results: Themore » IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. Conclusions: In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met.« less

  1. Target location after deep cerebral biopsies using low-volume air injection in 75 patients. Results and technical note.

    PubMed

    Poca, Maria A; Martínez-Ricarte, Francisco-Ramon; Gándara, Dario F; Coscojuela, Pilar; Martínez-Sáez, Elena; Sahuquillo, Juan

    2017-10-01

    Stereotactic biopsy is a minimally invasive technique that allows brain tissue samples to be obtained with low risk. Classically, different techniques have been used to identify the biopsy site after surgery. To describe a technique to identify the precise location of the target in the postoperative CT scan using the injection of a low volume of air into the biopsy cannula. Seventy-five biopsies were performed in 65 adults and 10 children (40 males and 35 females, median age 51 years). Frame-based biopsy was performed in 46 patients, while frameless biopsy was performed in the remaining 29 patients. In both systems, after brain specimens had been collected and with the biopsy needle tip in the center of the target, a small volume of air (median 0.7 cm 3 ) was injected into the site. A follow-up CT scan was performed in all patients. Intracranial air in the selected target was present in 69 patients (92%). No air was observed in two patients (air volume administered in these 2 cases was below 0.7 cm 3 ), while in the remaining four patients blood content was observed in the target. The diagnostic yield in this series was 97.3%. No complications were found to be associated with intracranial air injection in any of the 75 patients who underwent this procedure. The air-injection maneuver proposed for use in stereotactic biopsies of intracranial mass lesions is a safe and reliable technique that allows the exact biopsy site to be located without any related complications.

  2. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Jijo; Yang, Cungeng; Wu, Hui

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from themore » daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.« less

  3. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography.

    PubMed

    Paul, Jijo; Yang, Cungeng; Wu, Hui; Tai, An; Dalah, Entesar; Zheng, Cheng; Johnstone, Candice; Kong, Feng-Ming; Gore, Elizabeth; Li, X Allen

    2017-06-01

    To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R 2  > 0.99) and correlates weakly with the change in GTV (R 2  = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of online cone-beam computed tomography with active breath control in determining planning target volume during accelerated partial breast irradiation.

    PubMed

    Li, Y; Zhong, R; Wang, X; Ai, P; Henderson, F; Chen, N; Luo, F

    2017-04-01

    To test if active breath control during cone-beam computed tomography (CBCT) could improve planning target volume during accelerated partial breast radiotherapy for breast cancer. Patients who were more than 40 years old, underwent breast-conserving dissection and planned for accelerated partial breast irradiation, and with postoperative staging limited to T1-2 N0 M0, or postoperative staging T2 lesion no larger than 3cm with a negative surgical margin greater than 2mm were enrolled. Patients with lobular carcinoma or extensive ductal carcinoma in situ were excluded. CBCT images were obtained pre-correction, post-correction and post-treatment. Set-up errors were recorded at left-right, anterior-posterior and superior-inferior directions. The differences between these CBCT images, as well as calculated radiation doses, were compared between patients with active breath control or free breathing. Forty patients were enrolled, among them 25 had active breath control. A total of 836 CBCT images were obtained for analysis. CBCT significantly reduced planning target volume. However, active breath control did not show significant benefit in decreasing planning target volume margin and the doses of organ-at-risk when compared to free breathing. CBCT, but not active breath control, could reduce planning target volume during accelerated partial breast irradiation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. Hypofractionated Image-Guided IMRT in Advanced Pancreatic Cancer With Simultaneous Integrated Boost to Infiltrated Vessels Concomitant With Capecitabine: A Phase I Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passoni, Paolo, E-mail: passoni.paolo@hsr.it; Reni, Michele; Cattaneo, Giovanni M.

    2013-12-01

    Purpose: To determine the maximum tolerated radiation dose (MTD) of an integrated boost to the tumor subvolume infiltrating vessels, delivered simultaneously with radical dose to the whole tumor and concomitant capecitabine in patients with pretreated advanced pancreatic adenocarcinoma. Methods and Materials: Patients with stage III or IV pancreatic adenocarcinoma without progressive disease after induction chemotherapy were eligible. Patients underwent simulated contrast-enhanced four-dimensional computed tomography and fluorodeoxyglucose-labeled positron emission tomography. Gross tumor volume 1 (GTV1), the tumor, and GTV2, the tumor subvolume 1 cm around the infiltrated vessels, were contoured. GTVs were fused to generate Internal Target Volume (ITV)1 and ITV2.more » Biological tumor volume (BTV) was fused with ITV1 to create the BTV+Internal Target Volume (ITV) 1. A margin of 5/5/7 mm (7 mm in cranium-caudal) was added to BTV+ITV1 and to ITV2 to create Planning Target Volume (PTV) 1 and PTV2, respectively. Radiation therapy was delivered with tomotherapy. PTV1 received a fixed dose of 44.25 Gy in 15 fractions, and PTV2 received a dose escalation from 48 to 58 Gy as simultaneous integrated boost (SIB) in consecutive groups of at least 3 patients. Concomitant chemotherapy was capecitabine, 1250 mg/m{sup 2} daily. Dose-limiting toxicity (DLT) was defined as any treatment-related G3 nonhematological or G4 hematological toxicity occurring during the treatment or within 90 days from its completion. Results: From June 2005 to February 2010, 25 patients were enrolled. The dose escalation on the SIB was stopped at 58 Gy without reaching the MTD. One patient in the 2{sup nd} dose level (50 Gy) had a DLT: G3 acute gastric ulcer. Three patients had G3 late adverse effects associated with gastric and/or duodenal mucosal damage. All patients received the planned dose of radiation. Conclusions: A dose of 44.25 Gy in 15 fractions to the whole tumor with an SIB of 58 Gy to

  6. Synovial tissue volume: a treatment target in knee osteoarthritis (OA).

    PubMed

    O'Neill, Terence W; Parkes, Matthew J; Maricar, Nasimah; Marjanovic, Elizabeth J; Hodgson, Richard; Gait, Andrew D; Cootes, Timothy F; Hutchinson, Charles E; Felson, David T

    2016-01-01

    Synovitis occurring frequently in osteoarthritis (OA) may be a targeted outcome. There are no data examining whether synovitis changes following intra-articular intervention. Persons aged 40 years and older with painful knee OA participated in an open label trial of intra-articular steroid therapy. At all time points they completed the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. They had a contrast-enhanced (CE) MRI immediately prior to an intra-articular steroid injection with a repeat scan within 20 days. Response status was assessed using the Osteoarthritis Research Society International (OARSI) response criteria. OARSI responders were followed until their pain relapsed either within 20% of baseline or 6 months, shortly after which a third MRI was performed. Synovial tissue volume (STV) was measured on postcontrast knee images. We looked at changes in the STV and in pain, and their association. 120 subjects with preinjection and postinjection CE MRI were followed. Their mean age was 62.3 years (SD=10.3) and 62 (52%) were women. The median time between injection and follow-up scan was 8 days (IQR 7-14 days). 85/120 (71%) were OARSI responders. Pain decreased (mean change in KOOS=+23.9; 95% CI 20.1 to 27.8, p<0.001) following steroid injection, as did mean STV (mean change=-1071 mm(3); 95% CI -1839 mm(3) to -303 mm(3), p=0.01). Of the 80 who returned for a third MRI, pain relapsed in 57, and in the 48 of those with MRI data, STV increased between follow-up and final visit (+1220 mm(3); 95% CI 25 mm(3) to 2414 mm(3), p=0.05). 23 were persistent responders at 6 months and, in these, STV did not increase (mean change=-202 mm(3); 95% CI -2008 mm(3) to 1604 mm(3), p=0.83). Controlling for variation over time, there was a significant association between synovitis volume and KOOS pain (b coefficient-change in KOOS pain score per 1000 mm(3) change in STV=-1.13; 95% CI -1.87 to -0.39, p=0.003), although STV accounted for only a small proportion of

  7. CORRELATION OF LOCAL FAILURE WITH MEASURES OF DOSE INSUFFICIENCY IN THE HIGH-DOSE SINGLE-FRACTION TREATMENT OF BONY METASTASES

    PubMed Central

    Lovelock, D. Michael; Zhang, Zhigang; Jackson, Andrew; Keam, Jennifer; Bekelman, Justin; Bilsky, Mark; Lis, Eric; Yamada, Yoshiya

    2011-01-01

    Purpose In the setting of high-dose single-fraction image-guided radiotherapy of spine metastases, the delivered dose is hypothesized to be a significant factor in local control. We investigated the dependence of local control on measures of dose insufficiency. Methods and Materials The minimum doses received by the hottest 100%, 98%, and 95% (Dmin, D98, and D95) of the gross target volume (GTV) were computed for 91 consecutively treated lesions observed in 79 patients. Prescribed doses of 18–24 Gy were delivered in a single fraction. The spinal cord and cauda equina were constrained to a maximum dose of 12–14 Gy and 16 Gy, respectively. A rank-sum test was used to assess the differences between radiographic local failure and local control. Results With a median follow-up of 18 months, seven local failures have occurred. The distributions of GTV Dmin, D98, and D95 for treatments resulting in local failure were found to be statistically different from the corresponding distributions of the patient group as a whole. Taking no account of histology, p values calculated for Dmin, D98, and D95 were 0.004, 0.012, and 0.031, respectively. No correlations between local failure and target volume or between local failure and anatomic location were found. Conclusions The results indicate that Dmin, D98, and D95 may be important risk factors for local failure. No local failures in any histology were observed when Dmin was >15 Gy, suggesting that this metric may be an important predictor of local control. PMID:20350795

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muijs, Christina, E-mail: c.t.muijs@umcg.nl; Smit, Justin; Karrenbeld, Arend

    Purpose/Objective(s): The aim of this study was to analyze the accuracy of gross tumor volume (GTV) delineation and clinical target volume (CTV) margins for neoadjuvant chemoradiation therapy (neo-CRT) in esophageal carcinoma at pathologic examination and to determine the impact on survival. Methods and Materials: The study population consisted of 63 esophageal cancer patients treated with neo-CRT. GTV and CTV borders were demarcated in situ during surgery on the esophagus, using anatomical reference points to provide accurate information regarding tumor location at pathologic evaluation. To identify prognostic factors for disease-free survival (DFS) and overall survival (OS), a Cox regression analysis wasmore » performed. Results: After resection, macroscopic residual tumor was found outside the GTV in 7 patients (11%). Microscopic residual tumor was located outside the CTV in 9 patients (14%). The median follow-up was 15.6 months. With multivariate analysis, only microscopic tumor outside the CTV (hazard ratio [HR], 4.96; 95% confidence interval [CI], 1.03-15.36), and perineural growth (HR, 5.77; 95% CI, 1.27-26.13) were identified as independent prognostic factors for OS. The 1-year OS was 20% for patients with tumor outside the CTV and 86% for those without (P<.01). For DFS, microscopic tumor outside the CTV (HR, 5.92; 95% CI, 1.89-18.54) and ypN+ (HR, 3.36; 95% CI, 1.33-8.48) were identified as independent adverse prognostic factors. The 1-year DFS was 23% versus 77% for patients with or without tumor outside the CTV (P<.01). Conclusions: Microscopic tumor outside the CTV is associated with markedly worse OS after neo-CRT. This may either stress the importance of accurate tumor delineation or reflect aggressive tumor behavior requiring new adjuvant treatment modalities.« less

  9. Dosimetric feasibility of MRI-guided external beam radiotherapy of the kidney

    NASA Astrophysics Data System (ADS)

    Stam, Mette K.; van Vulpen, Marco; Barendrecht, Maurits M.; Zonnenberg, Bernard A.; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2013-07-01

    At our institution a treatment for kidney tumours with an MRI-Linac is under development. In order to set inclusion criteria for this treatment the anatomical eligibility criteria and the influence of the motion compensation strategy on the delivered dose should be known. Twenty patients with a renal lesion underwent an MR-scan to image the kidney. Static treatment plans were made and the doses to the organs at risk were evaluated. Furthermore, to calculate the influence of remnant motion in a gated treatment, a convolution of the static dose plan with the residual motion in a gating window was done. For ten patients (50%) a static plan within the dose constraints could be obtained. For all patients where the kidney constraint was obeyed in the static plan, the dose to the gross tumour volume (GTV) and the ipsilateral kidney remained within limits for residual motion in a gating window up to and including 12 mm. For four patients (20%) no static plan without violation of the constraint to the ipsilateral kidney could be made. One of these patients had a tumour of 73 mm in the upper pole and the other patients had a tumour of at least 30 mm in the mid pole. In 6 patients (30%), where the bowels were within the planning target volume, the maximum dose to the bowels was above the limit used. Patient specific assessment might degrade this violation. For tumours smaller than 30 mm a clinically acceptable plan could be created. For other patients the feasibility depends on the geometry of the GTV and kidney. Neither the GTV coverage nor the ipsilateral kidney dose is compromised by breathing motion for gating with a gating window up to and including 12 mm.

  10. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, P; Park, P; Li, H

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated withmore » PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.« less

  11. Toward a planning scheme for emission guided radiation therapy (EGRT): FDG based tumor tracking in a metastatic breast cancer patient

    PubMed Central

    Fan, Qiyong; Nanduri, Akshay; Yang, Jaewon; Yamamoto, Tokihiro; Loo, Billy; Graves, Edward; Zhu, Lei; Mazin, Samuel

    2013-01-01

    in dose to 95% of the gross tumor volume (GTV) and a 31.8% increase to 50% of the GTV. In the patient case, EGRT yields a 15.2% relative increase in dose to 95% of the GTV and a 20.7% increase to 50% of the GTV. The organs at risk (OARs) doses are kept similar or lower for EGRT in both cases. Tumor tracking is observed in the presence of planning modulation in all EGRT treatments. Conclusions: As compared to conventional IMRT treatments, the proposed EGRT planning scheme allows an escalated target dose while keeping dose to the OARs within the same planning limits. With the capabilities of incorporating planning modulation and accurate tumor tracking, EGRT has the potential to greatly improve targeting in radiation therapy and enable a practical and effective implementation of 4D radiation therapy for planning and delivery. PMID:23927305

  12. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    PubMed

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  13. Effect of induction chemotherapy on estimated risk of radiation pneumonitis in bulky non–small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Neha P., E-mail: npamin@gmail.com; Miften, Moyed; Thornton, Dale

    2013-10-01

    Patients with bulky non–small cell lung cancer (NSCLC) may be at a high risk for radiation pneumonitis (RP) if treated with up-front concurrent chemoradiation. There is limited information about the effect of induction chemotherapy on the volume of normal lung subsequently irradiated. This study aims to estimate the reduction in risk of RP in patients with NSCLC after receiving induction chemotherapy. Between 2004 and 2009, 25 patients with Stage IV NSCLC were treated with chemotherapy alone (no surgery or radiation therapy [RT]) and had computed tomography (CT) scans before and after 2 cycles of chemotherapy. Simulated RT plans were createdmore » for the prechemotherapy and postchemotherapy scans so as to deliver 60 Gy to the thoracic disease in patients who had either a >20% volumetric increase or decrease in gross tumor volume (GTV) from chemotherapy. The prechemotherapy and postchemotherapy scans were analyzed to compare the percentage of lung volume receiving≥20 Gy (V20), mean lung dose (MLD), and normal tissue complication probability (NTCP). Eight patients (32%) had a GTV reduction >20%, 2 (8%) had GTV increase >20%, and 15 (60%) had stable GTV. In the 8 responders, there was an absolute median GTV decrease of 88.1 cc (7.3 to 351.6 cc) or a 48% (20% to 62%) relative reduction in tumor burden. One had >20% tumor progression during chemotherapy, yet had an improvement in dosimetric parameters postchemotherapy. Among these 9 patients, the median decrease in V20, MLD, and NTCP was 2.6% (p<0.01), 2.1 Gy (p<0.01), and 5.6% (p<0.01), respectively. Less than one-third of patients with NSCLC obtain >20% volumetric tumor reduction from chemotherapy alone. Even with that amount of volumetric reduction, the 5% reduced risk of RP was only modest and did not convert previously ineligible patients to safely receive definitive thoracic RT.« less

  14. Volume comparison of radiofrequency ablation at 3- and 5-cm target volumes for four different radiofrequency generators: MR volumetry in an open 1-T MRI system versus macroscopic measurement.

    PubMed

    Rathke, Hendrik; Hamm, Bernd; Guettler, Felix; Lohneis, Philipp; Stroux, Andrea; Suttmeyer, Britta; Jonczyk, Martin; Teichgräber, Ulf; de Bucourt, Maximilian

    2015-12-01

    In a patient, it is usually not macroscopically possible to estimate the non-viable volume induced by radiofrequency ablation (RFA) after the procedure. The purpose of this study was to use an ex vivo bovine liver model to perform magnetic resonance (MR) volumetry of the visible tissue signal change induced by RFA and to correlate the MR measurement with the actual macroscopic volume measured in the dissected specimens. Sixty-four liver specimens cut from 16 bovine livers were ablated under constant simulated, close physiological conditions with target volumes set to 14.14 ml (3-cm lesion) and 65.45 ml (5-cm lesion). Four commercially available radiofrequency (RF) systems were tested (n=16 for each system; n=8 for 3 cm and n=8 for 5 cm). A T1-weighted turbo spin echo (TSE) sequence with inversion recovery and a proton-density (PD)-weighted TSE sequence were acquired in a 1.0-T open magnetic resonance imaging (MRI) system. After manual dissection, actual macroscopic ablation diameters were measured and volumes calculated. MR volumetry was performed using a semiautomatic software tool. To validate the correctness and feasibility of the volume formula in macroscopic measurements, MR multiplanar reformation diameter measurements with subsequent volume calculation and semiautomatic MR volumes were correlated. Semiautomatic MR volumetry yielded smaller volumes than manual measurement after dissection, irrespective of RF system used, target lesion size, and MR sequence. For the 3-cm lesion, only 43.3% (T1) and 41.5% (PD) of the entire necrosis are detectable. For the 5-cm lesion, only 40.8% (T1) and 37.2% (PD) are visualized in MRI directly after intervention. The correlation between semiautomatic MR volumes and calculated MR volumes was 0.888 for the T1-weighted sequence and 0.875 for the PD sequence. After correlation of semiautomatic MR volumes and calculated MR volumes, it seems reasonable to use the respective volume formula for macroscopic volume calculation

  15. Simultaneous modulated accelerated radiation therapy for esophageal cancer: a feasibility study.

    PubMed

    Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen

    2014-10-14

    To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN ±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf-IMRT plans, the SMART plans

  16. Simultaneous modulated accelerated radiation therapy for esophageal cancer: A feasibility study

    PubMed Central

    Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen

    2014-01-01

    AIM: To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). METHODS: Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. RESULTS: Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf

  17. Recommendations for the use of radiotherapy in nodal lymphoma.

    PubMed

    Hoskin, P J; Díez, P; Williams, M; Lucraft, H; Bayne, M

    2013-01-01

    These guidelines have been developed to define the use of radiotherapy for lymphoma in the current era of combined modality treatment taking into account increasing concern over the late side-effects associated with previous radiotherapy. The role of reduced volume and reduced doses is addressed, integrating modern imaging with three-dimensional planning and advanced techniques of treatment delivery. Both wide-field and involved-field techniques have now been supplanted by the use of defined volumes based on node involvement shown on computed tomography (CT) and positron emission tomography (PET) imaging and applying the International Commission on Radiation Units and Measurements concepts of gross tumour volume (GTV), clinical target volume (CTV) and planning target volume (PTV). The planning of lymphoma patients for radical radiotherapy should now be based upon contrast enhanced 3 mm contiguous CT with three-dimensional definition of volumes using the convention of GTV, CTV and PTV. The involved-site radiotherapy concept defines the CTV based on the PET-defined pre-chemotherapy sites of involvement with an expansion in the cranio-caudal direction of lymphatic spread by 1.5 cm, constrained to tissue planes such as bone, muscle and air cavities. The margin allows for uncertainties in PET resolution, image registration and changes in patient positioning and shape. There is increasing evidence in both Hodgkin and non-Hodgkin lymphoma that traditional doses are higher than necessary for disease control and related to the incidence of late effects. No more than 30 Gy for Hodgkin and aggressive non-Hodgkin lymphoma and 24 Gy for indolent lymphomas is recommended; lower doses of 20 Gy in combination therapy for early-stage low-risk Hodgkin lymphoma may be sufficient. As yet there are no large datasets validating the use of involved-site radiotherapy; these will emerge from the current generation of clinical trials. Radiotherapy remains the most effective single

  18. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma.

    PubMed

    Lee, Anne W; Ng, Wai Tong; Pan, Jian Ji; Poh, Sharon S; Ahn, Yong Chan; AlHussain, Hussain; Corry, June; Grau, Cai; Grégoire, Vincent; Harrington, Kevin J; Hu, Chao Su; Kwong, Dora L; Langendijk, Johannes A; Le, Quynh Thu; Lee, Nancy Y; Lin, Jin Ching; Lu, Tai Xiang; Mendenhall, William M; O'Sullivan, Brian; Ozyar, Enis; Peters, Lester J; Rosenthal, David I; Soong, Yoke Lim; Tao, Yungan; Yom, Sue S; Wee, Joseph T

    2018-01-01

    Target delineation in nasopharyngeal carcinoma (NPC) often proves challenging because of the notoriously narrow therapeutic margin. High doses are needed to achieve optimal levels of tumour control, and dosimetric inadequacy remains one of the most important independent factors affecting treatment outcome. A review of the available literature addressing the natural behaviour of NPC and correlation between clinical and pathological aspects of the disease was conducted. Existing international guidelines as well as published protocols specified by clinical trials on contouring of clinical target volumes (CTV) were compared. This information was then summarized into a preliminary draft guideline which was then circulated to international experts in the field for exchange of opinions and subsequent voting on areas with the greatest controversies. Common areas of uncertainty and variation in practices among experts experienced in radiation therapy for NPC were elucidated. Iterative revisions were made based on extensive discussion and final voting on controversial areas by the expert panel, to formulate the recommendations on contouring of CTV based on optimal geometric expansion and anatomical editing for those structures with substantial risk of microscopic infiltration. Through this comprehensive review of available evidence and best practices at major institutions, as well as interactive exchange of vast experience by international experts, this set of consensus guidelines has been developed to provide a practical reference for appropriate contouring to ensure optimal target coverage. However, the final decision on the treatment volumes should be based on full consideration of individual patients' factors and facilities of an individual centre (including the quality of imaging methods and the precision of treatment delivery). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaudry, J; Bergman, A; British Columbia Cancer Agency, Vancouver, BC

    Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based onmore » total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately.« less

  20. FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes.

    PubMed

    Devic, Slobodan; Mohammed, Huriyyah; Tomic, Nada; Aldelaijan, Saad; De Blois, François; Seuntjens, Jan; Lehnert, Shirley; Faria, Sergio

    2016-06-01

    Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs). For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour. Signal-to-background (S/B) uptake values within volumes of interest encompassing the tumour were used to reconstruct the dUVHs. These were subsequently decomposed into the minimum number of analytical functions (in the form of differential uptake values as a function of S/B) that yielded acceptable net fits, as assessed by χ(2) values. Six subvolumes consistently emerged from the fitted dUVHs over the sampled volume of interest on PET images. Based on the assumption that each function used to decompose the dUVH may correspond to a single subvolume, the intersection between the two adjacent functions could be interpreted as a threshold value that differentiates them. Assuming that the first two subvolumes spread over the tumour boundary, we concentrated on four subvolumes with the highest uptake values, and their S/B thresholds [mean ± standard deviation (SD)] were 2.88 ± 0.98, 4.05 ± 1.55, 5.48 ± 2.06 and 7.34 ± 2.89 for adenocarcinoma, 3.01 ± 0.71, 4.40 ± 0.91, 5.99 ± 1.31 and 8.17 ± 2.42 for large-cell carcinoma and 4.54 ± 2.11, 6.46 ± 2.43, 8.87 ± 5.37 and 12.11 ± 7.28 for squamous cell carcinoma, respectively. (18)F-FDG-based PET data may potentially be used to identify BTV within the tumour in

  1. Stereotactic Robotic Body Radiotherapy for Patients With Unresectable Hepatic Oligorecurrence.

    PubMed

    Berkovic, Patrick; Gulyban, Akos; Nguyen, Paul Viet; Dechambre, David; Martinive, Philippe; Jansen, Nicolas; Lakosi, Ferenc; Janvary, Levente; Coucke, Philippe A

    2017-12-01

    The purpose of this study was to analyze local control (LC), liver progression-free survival (PFS), and distant PFS (DFS), overall survival (OS), and toxicity in a cohort of patients treated with stereotactic body radiotherapy (SBRT) with fiducial tracking for oligorecurrent liver lesions; and to evaluate the potential influence of lesion size, systemic treatment, physical and biologically effective dose (BED), treatment calculation algorithms and other parameters on the obtained results. Unoperable patients with sufficient liver function had [18F]-fluorodeoxyglucose-positron emission tomography-computed tomography and liver magnetic resonance imaging to confirm the oligorecurrent nature of the disease and to further delineate the gross tumor volume (GTV). An intended dose of 45 Gy in 3 fractions was prescribed on the 80% isodose and adapted if risk-related. Treatment was executed with the CyberKnife system (Accuray Inc) platform using fiducials tracking. Initial plans were recalculated using the Monte Carlo algorithm. Patient and treatment data were processed using the Kaplan-Meier method and log rank test for survival analysis. Between 2010 and 2015, 42 patients (55 lesions) were irradiated. The mean GTV and planning target volume (PTV) were 30.5 cc and 96.8 cc, respectively. Treatments were delivered 3 times per week in a median of 3 fractions to a PTV median dose of 54.6 Gy. The mean GTV and PTV D98% were 51.6 Gy and 51.2 Gy, respectively. Heterogeneity corrections did not influence dose parameters. After a median follow-up of 18.9 months, the 1- and 2-year LC/liver PFS/DFS/OS were 81.3%/55%/62.4%/86.9%, and 76.3%/42.3%/52%/78.3%, respectively. Performance status and histology had a significant effect on LC, whereas age (older than 65 years) marginally influenced liver PFS. Clinical target volume physical dose V45 Gy > 95%, generalized equivalent uniform dose (a = -30) > 45 Gy and a BED (α/β = 10) V105 Gy > 96% showed statistically significant effect on

  2. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    PubMed

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  3. Long-term Outcomes of Temporal Hollowing Augmentation by Targeted Volume Restoration of Fat Compartments in Chinese Adults.

    PubMed

    Huang, Ru-Lin; Xie, Yun; Wang, Wenjin; Tan, Pohching; Li, Qingfeng

    2018-04-19

    Previous anatomical and clinical studies have suggested that targeted restoration of the volume and distribution of fat compartments using appropriate cannula entry sites and injection planes is an excellent fat-grafting technique for facial contouring and hand rejuvenation. To perform subjective and objective evaluations of the safe and effective profile of the targeted fat-grafting technique for temporal hollowing augmentation. In a retrospective cohort study, a total of 96 consecutive patients with temporal hollowing were treated at the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai, China, with the targeted fat-grafting technique from January 1, 2009, to January 1, 2017. The safety and efficacy profile of this technique was evaluated by the following methods: (1) a quantitative measurement of fat-graft survival and temporal augmentation rates by using 3-dimensional laser scanning, (2) a subjective assessment using a satisfaction survey and the Hollowness Severity Rating Scale (grades range from 0-3, with higher grades representing more hollowness), and (3) the complication rate. Of the 96 study patients, 94 (97.9%) were women and the mean (SD) age was 34.4 (7.4) years. Of the 142 autologous fat-grafting procedures performed, the mean (SD) total follow-up time was 16.3 (3.2) months, with a mean (SD) of 1.5 (0.7) procedures performed. The mean (SD) baseline volume requirement per temple for each patient was 12.8 (4.8) mL, and the total volume of the fat graft per temple was 17.8 (7.5) mL. Quantitative analysis revealed that the mean (SD) total augmentation volume per temple was 11.7 (3.0) mL, the total survival rate of the fat grafts was 65.7% (12.6%), and total augmentation rate of hollowness was 91.4% (23.4%). Subjective analysis revealed that all patients showed an improved appearance after fat grafting, and 142 temples (74.0%) exhibited clinical improvement by more than 2 grades. In all, 88 patients (91.7%) were

  4. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.

    PubMed

    Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio

    2007-01-01

    Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation

  5. Automated treatment planning for a dedicated multi-source intra-cranial radiosurgery treatment unit accounting for overlapping structures and dose homogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghobadi, Kimia; Ghaffari, Hamid R.; Aleman, Dionne M.

    2013-09-15

    Purpose: The purpose of this work is to advance the two-step approach for Gamma Knife{sup ®} Perfexion™ (PFX) optimization to account for dose homogeneity and overlap between the planning target volume (PTV) and organs-at-risk (OARs).Methods: In the first step, a geometry-based algorithm is used to quickly select isocentre locations while explicitly accounting for PTV-OARs overlaps. In this approach, the PTV is divided into subvolumes based on the PTV-OARs overlaps and the distance of voxels to the overlaps. Only a few isocentres are selected in the overlap volume, and a higher number of isocentres are carefully selected among voxels that aremore » immediately close to the overlap volume. In the second step, a convex optimization is solved to find the optimal combination of collimator sizes and their radiation duration for each isocentre location.Results: This two-step approach is tested on seven clinical cases (comprising 11 targets) for which the authors assess coverage, OARs dose, and homogeneity index and relate these parameters to the overlap fraction for each case. In terms of coverage, the mean V{sub 99} for the gross target volume (GTV) was 99.8% while the V{sub 95} for the PTV averaged at 94.6%, thus satisfying the clinical objectives of 99% for GTV and 95% for PTV, respectively. The mean relative dose to the brainstem was 87.7% of the prescription dose (with maximum 108%), while on average, 11.3% of the PTV overlapped with the brainstem. The mean beam-on time per fraction per dose was 8.6 min with calibration dose rate of 3.5 Gy/min, and the computational time averaged at 205 min. Compared with previous work involving single-fraction radiosurgery, the resulting plans were more homogeneous with average homogeneity index of 1.18 compared to 1.47.Conclusions: PFX treatment plans with homogeneous dose distribution can be achieved by inverse planning using geometric isocentre selection and mathematical modeling and optimization techniques. The quality of

  6. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer☆

    PubMed Central

    Warren, Samantha; Partridge, Mike; Carrington, Rhys; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2014-01-01

    Purpose This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm3. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA62.5) was compared to a standard dose plan of 50 Gy/25 fractions (RA50). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA50) to 56.3% (RA62.5), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA50) versus 5.6% (RA62.5) P<.001 and median lung NTCP 6.5% (RA50) versus 7.5% (RA62.5) P<.001. Conclusions Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials. PMID:25304796

  7. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Carrington, Rhys

    2014-10-01

    Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5more » Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.« less

  8. A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view

    NASA Astrophysics Data System (ADS)

    Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas

    2012-11-01

    To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (<5 cm3) and large motion range (1.2-3.5 cm) were retrospectively studied for stereotactic body radiotherapy (SBRT) using 3D conformal radiotherapy planning tools. The 3.5DCT-based 4D plan (3.5DCT plan) with 9-10 conformal beams was compared with the 4DCT-based 4D plan (4DCT plan). The 4DCT plan was derived from multiple 3D plans based on all phase CT images, each of which used the same conformal beam configuration but with an isocenter shift to aim at the moving tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH4D), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH4D) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using the

  9. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.

    PubMed

    Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis

    2004-01-01

    Despite major advances in treatment modalities, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. Exploring hypofractionated regimens to replace the standard 6-week radiotherapy schedule is an attractive strategy as an attempt to prevent accelerated tumor cell repopulation. There is equally interest in dose escalation to the gross tumor volume where the majority of failures occur. We report our preliminary results using hypofractionated intensity-modulated accelerated radiotherapy regimen in the treatment of patients with GBM. Between July 1998 and December 2001, 25 patients with histologically proven diagnosis of GBM, Karnofsky performance status > or =60, and a postoperative tumor volume < or =110 cm3 were treated with a hypofractionated accelerated course of radiotherapy. The gross tumor volume (GTV) was defined as the contrast-enhancing lesion on the postoperative MRI T1-weighted images with the latter fused with computed tomography images for treatment planning. The planning target volume was defined as GTV + 1.5-cm margin. Using forward-planning intensity modulation (step-and-shoot technique), 60 Gy in 20 daily fractions of 3 Gy each were given to the GTV, whereas the planning target volume received a minimum of 40 Gy in 20 fractions of 2 Gy each at its periphery. Treatments were delivered over a 4-week period using 5 daily fractions per week. Dose was prescribed at the isocenter (ICRU point). Three beam angles were used in all of the cases. Treatments were well tolerated. Acute toxicity was limited to increased brain edema during radiotherapy in 2 patients who were on tapering doses of corticosteroids. This was corrected by increasing the steroid dose. At a median follow-up of 8.8 months, no late toxicity was observed. One patient experienced visual loss at 9 months after completion of treatment. MRI suggested nonspecific changes to the optic chiasm. On review of the treatment plan, the total dose to the optic chiasm was confirmed to

  10. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    PubMed

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  11. A new functional method to choose the target lobe for lung volume reduction in emphysema - comparison with the conventional densitometric method.

    PubMed

    Hetzel, Juergen; Boeckeler, Michael; Horger, Marius; Ehab, Ahmed; Kloth, Christopher; Wagner, Robert; Freitag, Lutz; Slebos, Dirk-Jan; Lewis, Richard Alexander; Haentschel, Maik

    2017-01-01

    Lung volume reduction (LVR) improves breathing mechanics by reducing hyperinflation. Lobar selection usually focuses on choosing the most destroyed emphysematous lobes as seen on an inspiratory CT scan. However, it has never been shown to what extent these densitometric CT parameters predict the least deflation of an individual lobe during expiration. The addition of expiratory CT analysis allows measurement of the extent of lobar air trapping and could therefore provide additional functional information for choice of potential treatment targets. To determine lobar vital capacity/lobar total capacity (LVC/LTC) as a functional parameter for lobar air trapping using on an inspiratory and expiratory CT scan. To compare lobar selection by LVC/LTC with the established morphological CT density parameters. 36 patients referred for endoscopic LVR were studied. LVC/LTC, defined as delta volume over maximum volume of a lobe, was calculated using inspiratory and expiratory CT scans. The CT morphological parameters of mean lung density (MLD), low attenuation volume (LAV), and 15th percentile of Hounsfield units (15%P) were determined on an inspiratory CT scan for each lobe. We compared and correlated LVC/LTC with MLD, LAV, and 15%P. There was a weak correlation between the functional parameter LVC/LTC and all inspiratory densitometric parameters. Target lobe selection using lowest lobar deflation (lowest LVC/LTC) correlated with target lobe selection based on lowest MLD in 18 patients (50.0%), with the highest LAV in 13 patients (36.1%), and with the lowest 15%P in 12 patients (33.3%). CT-based measurement of deflation (LVC/LTC) as a functional parameter correlates weakly with all densitometric CT parameters on a lobar level. Therefore, morphological criteria based on inspiratory CT densitometry partially reflect the deflation of particular lung lobes, and may be of limited value as a sole predictor for target lobe selection in LVR.

  12. Correlation of local failure with measures of dose insufficiency in the high-dose single-fraction treatment of bony metastases.

    PubMed

    Lovelock, D Michael; Zhang, Zhigang; Jackson, Andrew; Keam, Jennifer; Bekelman, Justin; Bilsky, Mark; Lis, Eric; Yamada, Yoshiya

    2010-07-15

    In the setting of high-dose single-fraction image-guided radiotherapy of spine metastases, the delivered dose is hypothesized to be a significant factor in local control. We investigated the dependence of local control on measures of dose insufficiency. The minimum doses received by the hottest 100%, 98%, and 95% (D(min), D(98), and D(95)) of the gross target volume (GTV) were computed for 91 consecutively treated lesions observed in 79 patients. Prescribed doses of 18-24 Gy were delivered in a single fraction. The spinal cord and cauda equina were constrained to a maximum dose of 12-14 Gy and 16 Gy, respectively. A rank-sum test was used to assess the differences between radiographic local failure and local control. With a median follow-up of 18 months, seven local failures have occurred. The distributions of GTV D(min), D(98), and D(95) for treatments resulting in local failure were found to be statistically different from the corresponding distributions of the patient group as a whole. Taking no account of histology, p values calculated for D(min), D(98), and D(95) were 0.004, 0.012, and 0.031, respectively. No correlations between local failure and target volume or between local failure and anatomic location were found. The results indicate that D(min), D(98), and D(95) may be important risk factors for local failure. No local failures in any histology were observed when D(min) was >15 Gy, suggesting that this metric may be an important predictor of local control. Copyright 2010 Elsevier Inc. All rights reserved.

  13. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    PubMed

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barragán, A. M., E-mail: ana.barragan@uclouvain.be; Differding, S.; Lee, J. A.

    Purpose: To prove the ability of protons to reproduce a dose gradient that matches a dose painting by numbers (DPBN) prescription in the presence of setup and range errors, by using contours and structure-based optimization in a commercial treatment planning system. Methods: For two patients with head and neck cancer, voxel-by-voxel prescription to the target volume (GTV{sub PET}) was calculated from {sup 18}FDG-PET images and approximated with several discrete prescription subcontours. Treatments were planned with proton pencil beam scanning. In order to determine the optimal plan parameters to approach the DPBN prescription, the effects of the scanning pattern, number ofmore » fields, number of subcontours, and use of range shifter were separately tested on each patient. Different constant scanning grids (i.e., spot spacing = Δx = Δy = 3.5, 4, and 5 mm) and uniform energy layer separation [4 and 5 mm WED (water equivalent distance)] were analyzed versus a dynamic and automatic selection of the spots grid. The number of subcontours was increased from 3 to 11 while the number of beams was set to 3, 5, or 7. Conventional PTV-based and robust clinical target volumes (CTV)-based optimization strategies were considered and their robustness against range and setup errors assessed. Because of the nonuniform prescription, ensuring robustness for coverage of GTV{sub PET} inevitably leads to overdosing, which was compared for both optimization schemes. Results: The optimal number of subcontours ranged from 5 to 7 for both patients. All considered scanning grids achieved accurate dose painting (1% average difference between the prescribed and planned doses). PTV-based plans led to nonrobust target coverage while robust-optimized plans improved it considerably (differences between worst-case CTV dose and the clinical constraint was up to 3 Gy for PTV-based plans and did not exceed 1 Gy for robust CTV-based plans). Also, only 15% of the points in the GTV{sub PET} (worst

  15. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lens, Eelco, E-mail: e.lens@amc.uva.nl; Horst, Astrid van der; Versteijne, Eva

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dosemore » distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.« less

  16. Poster — Thur Eve — 32: Stereotactic Body Radiation Therapy for Peripheral Lung Lesion: Treatment Planning and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Shuying; Oliver, Michael; Wang, Xiaofang

    2014-08-15

    Stereotactic body radiation therapy (SBRT), due to its high precision for target localizing, has become widely used to treat tumours at various locations, including the lungs. Lung SBRT program was started at our institution a year ago. Eighteen patients with peripheral lesions up to 3 cm diameter have been treated with 48 Gy in 4 fractions. Based on four-dimensional computed tomography (4DCT) simulation, internal target volume (ITV) was delineated to encompass the respiratory motion of the lesion. A margin of 5 mm was then added to create the planning target volume (PTV) for setup uncertainties. There was no expansion frommore » gross tumour volume (GTV) to clinical target volume (CTV). Pinnacle 9.6 was used as the primary treatment planning system. Volumetric modulated arc therapy (VMAT) technique, with one or two coplanar arcs, generally worked well. For quality assurance (QA), each plan was exported to Eclipse 10 and dose calculation was repeated. Dose volume histograms (DVHs) of the targets and organs at risk (OARs) were then compared between the two treatment planning systems. Winston-Lutz tests were carried out as routine machine QA. Patient-specific QA included ArcCheck measurement with an insert, where an ionization chamber was placed at the centre to measure dose at the isocenter. For the first several patients, and subsequently for the plans with extremely strong modulation, Gafchromic film dosimetry was also employed. For each patient, a mock setup was scheduled prior to treatments. Daily pre- and post-CBCT were acquired for setup and assessment of intra-fractional motion, respectively.« less

  17. Cone-beam computed tomography for lung cancer - validation with CT and monitoring tumour response during chemo-radiation therapy.

    PubMed

    Michienzi, Alissa; Kron, Tomas; Callahan, Jason; Plumridge, Nikki; Ball, David; Everitt, Sarah

    2017-04-01

    Cone-beam computed tomography (CBCT) is a valuable image-guidance tool in radiation therapy (RT). This study was initiated to assess the accuracy of CBCT for quantifying non-small cell lung cancer (NSCLC) tumour volumes compared to the anatomical 'gold standard', CT. Tumour regression or progression on CBCT was also analysed. Patients with Stage I-III NSCLC, prescribed 60 Gy in 30 fractions RT with concurrent platinum-based chemotherapy, routine CBCT and enrolled in a prospective study of serial PET/CT (baseline, weeks two and four) were eligible. Time-matched CBCT and CT gross tumour volumes (GTVs) were manually delineated by a single observer on MIM software, and were analysed descriptively and using Pearson's correlation coefficient (r) and linear regression (R 2 ). Of 94 CT/CBCT pairs, 30 patients were eligible for inclusion. The mean (± SD) CT GTV vs CBCT GTV on the four time-matched pairs were 95 (±182) vs 98.8 (±160.3), 73.6 (±132.4) vs 70.7 (±96.6), 54.7 (±92.9) vs 61.0 (±98.8) and 61.3 (±53.3) vs 62.1 (±47.9) respectively. Pearson's correlation coefficient (r) was 0.98 (95% CI 0.97-0.99, ρ < 0.001). The mean (±SD) CT/CBCT Dice's similarity coefficient was 0.66 (±0.16). Of 289 CBCT scans, tumours in 27 (90%) patients regressed by a mean (±SD) rate of 1.5% (±0.75) per fraction. The mean (±SD) GTV regression was 43.1% (±23.1) from the first to final CBCT. Primary lung tumour volumes observed on CBCT and time-matched CT are highly correlated (although not identical), thereby validating observations of GTV regression on CBCT in NSCLC. © 2016 The Royal Australian and New Zealand College of Radiologists.

  18. SU-F-R-56: Early Assessment of Treatment Response During Radiation Therapy Delivery for Esophageal Cancer Using Quantitative CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D; Chen, X; Li, X

    2016-06-15

    Purpose: To investigate the feasibility of assessing treatment response using CTs during delivery of radiation therapy (RT) for esophageal cancer. Methods: Daily CTs acquired using a CT-on-Rails during the routine CT-guided RT for 20 patients with stage II to IV esophageal cancers were analyzed. All patients were treated with combined chemotherapy and IMRT of 45–50 Gy in 25 fractions, and were followed up for two years. Contours of GTV, spinal cord, and non-specified tissue (NST) irradiated with low dose were generated on each daily CT. A series of CT-texture metrics including Hounsfield Unit (HU) histogram, mean HU, standard derivation (STD),more » entropy, and energy were obtained in these contours on each daily CT. The changes of these metrics and GTV volume during RT delivery were calculated and correlated with treatment outcome. Results: Changes in CT texture (e.g., HU histogram) in GTV and spinal cord (but not in NST) were observed during RT delivery and were consistently increased with radiation dose. For the 20 cases studied, the mean HU in GTV was reduced on average by 4.0HU from the first to the last fractions, while 8 patients (responders) had larger reductions in GTV mean HU (average 7.8 HU) with an average GTV reduction of 51% and had increased consistently in GTV STD and entropy with radiation dose. The rest of 12 patients (non-responders) had lower reductions in GTV mean HU (average 1.5HU) and almost no change in STD and entropy. For the 8 responders, 2 experienced complete response, 7 (88%) survived and 1 died. In contrast, for the 12 non-responders, 4 (33%) survived and 8 died. Conclusion: Radiation can induce changes in CT texture in tumor (e.g., mean HU) during the delivery of RT for esophageal cancer. If validated with more data, such changes may be used for early prediction of RT response for esophageal cancer.« less

  19. A new approach to delineating lymph node target volumes for post-operative radiotherapy in gastric cancer: A phase II trial.

    PubMed

    Haijun, Yu; Qiuji, Wu; Zhenming, Fu; Yong, Huang; Zhengkai, Liao; Conghua, Xie; Yunfeng, Zhou; Yahua, Zhong

    2015-08-01

    In the context of gastric cancer, lymph node target volume delineation for post-operative radiotherapy is currently built on the traditional system of dividing the stomach and 2-D treatment methods. Here, we have proposed a new delineation approach with irradiation indications for lymph node stations. Its safety and efficacy were evaluated in a phase II clinical trial. Fifty-four gastric cancer patients with D2 lymph node dissection received 2 cycles of FOLFOX4. They subsequently received concurrent chemoradiotherapy (45 Gy at 1.8 Gy per fraction, 5 fractions per week for 5 weeks) with a 5-fluorouracil/leucovorin regimen, followed by 4 additional FOLFOX4 cycles. The target volume included the remnant stomach, anastomosis site, tumor bed, and regional lymph nodes selected through our new approach by taking gastric arteries as references. The most common grade 3-4 adverse event was neutropenia (14.8%). Neutropenia, anemia, and nausea were common grade 1-2 toxicities. No treatment-related deaths occurred during treatment. The 3-year overall, disease-free, and locoregional recurrence-free survival rates were 81.6%, 70.2%, and 91.1%, respectively. Eight patients developed peritoneal or distant metastases. Using our new approach and irradiation indications, delineation of the target volume of post-operative lymph node stations was feasible and well tolerated after D2 resection in patients with gastric cancer. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-07

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  1. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  2. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    PubMed

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  3. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Hrycushko, B; Jiang, S

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less

  4. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    PubMed

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  5. Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histology reference.

    PubMed

    Zamboglou, Constantinos; Thomann, Benedikt; Koubar, Khodor; Bronsert, Peter; Krauss, Tobias; Rischke, Hans C; Sachpazidis, Ilias; Drendel, Vanessa; Salman, Nasr; Reichel, Kathrin; Jilg, Cordula A; Werner, Martin; Meyer, Philipp T; Bock, Michael; Baltas, Dimos; Grosu, Anca L

    2018-05-02

    Focal radiation therapy has gained of interest in treatment of patients with primary prostate cancer (PCa). The question of how to define the intraprostatic boost volume is still open. Previous studies showed that multiparametric MRI (mpMRI) or PSMA PET alone could be used for boost volume definition. However, other studies proposed that the combined usage of both has the highest sensitivity in detection of intraprostatic lesions. The aim of this study was to demonstrate the feasibility and to evaluate the tumour control probability (TCP) and normal tissue complication probability (NTCP) of radiation therapy dose painting using 68 Ga-HBED-CC PSMA PET/CT, mpMRI or the combination of both in primary PCa. Ten patients underwent PSMA PET/CT and mpMRI followed by prostatectomy. Three gross tumour volumes (GTVs) were created based on PET (GTV-PET), mpMRI (GTV-MRI) and the union of both (GTV-union). Two plans were generated for each GTV. Plan95 consisted of whole-prostate IMRT to 77 Gy in 35 fractions and a simultaneous boost to 95 Gy (Plan95 PET /Plan95 MRI /Plan95 union ). Plan80 consisted of whole-prostate IMRT to 76 Gy in 38 fractions and a simultaneous boost to 80 Gy (Plan80 PET /Plan80 MRI /Plan80 union ). TCPs were calculated for GTV-histo (TCP-histo), which was delineated based on PCa distribution in co-registered histology slices. NTCPs were assessed for bladder and rectum. Dose constraints of published protocols were reached in every treatment plan. Mean TCP-histo were 99.7% (range: 97%-100%) and 75.5% (range: 33%-95%) for Plan95 union and Plan80 union , respectively. Plan95 union had significantly higher TCP-histo values than Plan95 MRI (p = 0.008) and Plan95 PET (p = 0.008). Plan80 union had significantly higher TCP-histo values than Plan80 MRI (p = 0.012), but not than Plan80 PET (p = 0.472). Plan95 MRI had significantly lower NTCP-rectum than Plan95 union (p = 0.012). No significant differences in NTCP-rectum and NTCP-bladder were

  6. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  7. TU-AB-201-06: Evaluation of Electromagnetically Guided High- Dose Rate Brachytherapy for Ablative Treatment of Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, D.W.; Shultz, D.; Loo, B.W.

    Purpose: The advent of electromagnetic navigation bronchoscopy has enabled minimally invasive access to peripheral lung tumors previously inaccessible by optical bronchoscopes. As an adjunct to Stereotactic Ablative Radiosurgery (SABR), implantation of HDR catheters can provide focal treatments for multiple metastases and sites of retreatments. The authors evaluate a procedure to deliver ablative doses via Electromagnetically-Guided HDR (EMG-HDR) to lung metastases, quantify the resulting dosimetry, and assess its role in the comprehensive treatment of lung cancer. Methods: A retrospective study was conducted on ten patients, who, from 2009 to 2011, received a hypo-fractionated SABR regimen with 6MV VMAT to lesions inmore » various lobes ranging from 1.5 to 20 cc in volume. A CT visible pathway was delineated for EM guided placement of an HDR applicator (catheter) and dwell times were optimized to ensure at least 98% prescription dose coverage of the GTV. Normal tissue doses were calculated using inhomogeneity corrections via a grid-based Boltzmann solver (Acuros-BV-1.5.0). Results: With EMG-HDR, an average of 83% (+/−9% standard deviation) of each patient’s GTV received over 200% of the prescription dose, as compared to SABR where the patients received an average maximum dose of 125% (+/−5%). EMG-HDR enabled a 59% (+/−12%) decrease in the aorta maximum dose, a 63% (+/−26%) decrease in the spinal cord max dose, and 57% (+/−23%) and 70% (+/−17%) decreases in the volume of the body receiving over 50% and 25% of the prescription dose, respectively. Conclusion: EMG-HDR enables delivery of higher ablative doses to the GTV, while concurrently reducing surrounding normal tissue doses. The single catheter approach shown here is limited to targets smaller than 20 cc. As such, the technique enables ablation of small lesions and a potentially safe and effective retreatment option in situations where external beam utility is limited by normal tissue constraints.« less

  8. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  9. A prospective pilot study on early toxicity from a simultaneously integrated boost technique for canine sinonasal tumours using image-guided intensity-modulated radiation therapy.

    PubMed

    Soukup, A; Meier, V; Pot, S; Voelter, K; Rohrer Bley, C

    2018-05-14

    In order to overcome the common local treatment failure of canine sinonasal tumours, integrated boost techniques were tried in the cobalt/orthovoltage era, but dismissed because of unacceptable early (acute) toxicity. Intriguingly, a recent calculation study of a simultaneously integrated boost (SIB) technique for sinonasal irradiation using intensity-modulated radiation therapy (IMRT) predicted theoretical feasibility. In this prospective pilot study we applied a commonly used protocol of 10 × 4.2 Gy to the planning target volume (PTV) with a 20%-SIB dose to the gross tumour volume (GTV). Our hypothesis expected this dose escalation to be clinically tolerable if applied with image-guided IMRT. We included 9 dogs diagnosed with sinonasal tumours without local/distant metastases. For treatment planning, organs at risk were contoured according to strict anatomical guidelines. Planning volume extensions (GTV/CTV/PTV) were standardized to minimize interplanner variability. Treatments were applied with rigid patient positioning and verified daily with image guidance. After radiation therapy, we set focus on early ophthalmologic complications as well as mucosal and cutaneous toxicity. Early toxicity was evaluated at week 1, 2, 3, 8 and 12 after radiotherapy. Only mild ophthalmologic complications were found. Three patients (33%) had self-limiting moderate to severe early toxicity (grade 3 mucositis) which was managed medically. No patient developed ulcerations/haemorrhage/necrosis of skin/mucosa. The SIB protocol applied with image-guided IMRT to treat canine sinonasal tumours led to clinically acceptable side effects. The suspected increased tumour control probability and the risk of late toxicity with the used dose escalation of 20% has to be further investigated. © 2018 John Wiley & Sons Ltd.

  10. Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy

    PubMed Central

    Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H

    2017-01-01

    The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898

  11. Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT.

    PubMed

    Thomas, David H; Santhanam, Anand; Kishan, Amar U; Cao, Minsong; Lamb, James; Min, Yugang; O'Connell, Dylan; Yang, Yingli; Agazaryan, Nzhde; Lee, Percy; Low, Daniel

    2018-02-01

    To evaluate variations in intra- and interfractional tumour motion, and the effect on internal target volume (ITV) contour accuracy, using deformable image registration of real-time two-dimensional-sagittal cine-mode MRI acquired during lung stereotactic body radiation therapy (SBRT) treatments. Five lung tumour patients underwent free-breathing SBRT treatments on the ViewRay system, with dose prescribed to a planning target volume (defined as a 3-6 mm expansion of the 4DCT-ITV). Sagittal slice cine-MR images (3.5 × 3.5 mm 2 pixels) were acquired through the centre of the tumour at 4 frames per second throughout the treatments (3-4 fractions of 21-32 min). Tumour gross tumour volumes (GTVs) were contoured on the first frame of the MR cine and tracked for the first 20 min of each treatment using offline optical-flow based deformable registration implemented on a GPU cluster. A ground truth ITV (MR-ITV 20 min ) was formed by taking the union of tracked GTV contours. Pseudo-ITVs were generated from unions of the GTV contours tracked over 10 s segments of image data (MR-ITV 10 s ). Differences were observed in the magnitude of median tumour displacement between days of treatments. MR-ITV 10 s areas were as small as 46% of the MR-ITV 20 min . An ITV offers a "snapshot" of breathing motion for the brief period of time the tumour is imaged on a specific day. Real-time MRI over prolonged periods of time and over multiple treatment fractions shows that ITV size varies. Further work is required to investigate the dosimetric effect of these results. Advances in knowledge: Five lung tumour patients underwent free-breathing MRI-guided SBRT treatments, and their tumours tracked using deformable registration of cine-mode MRI. The results indicate that variability of both intra- and interfractional breathing amplitude should be taken into account during planning of lung radiotherapy.

  12. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments.

    PubMed

    Tyler, Madelaine K

    2016-01-08

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5-30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ± 2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ± 15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ± 3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI.

  13. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments

    PubMed Central

    2016-01-01

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5–30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ±2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ±15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ±3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI. PACS numbers: 87.55.km, 87.56.Fc PMID:26894347

  14. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, B-T; Lu, J-Y

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures weremore » transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.« less

  15. Changes in the planning target volume and liver volume dose based on the selected respiratory phase in respiratory-gated radiation therapy for a hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.

  16. Interobserver variability in target volume delineation of hepatocellular carcinoma : An analysis of the working group "Stereotactic Radiotherapy" of the German Society for Radiation Oncology (DEGRO).

    PubMed

    Gkika, E; Tanadini-Lang, S; Kirste, S; Holzner, P A; Neeff, H P; Rischke, H C; Reese, T; Lohaus, F; Duma, M N; Dieckmann, K; Semrau, R; Stockinger, M; Imhoff, D; Kremers, N; Häfner, M F; Andratschke, N; Nestle, U; Grosu, A L; Guckenberger, M; Brunner, T B

    2017-10-01

    Definition of gross tumor volume (GTV) in hepatocellular carcinoma (HCC) requires dedicated imaging in multiple contrast medium phases. The aim of this study was to evaluate the interobserver agreement (IOA) in gross tumor delineation of HCC in a multicenter panel. The analysis was performed within the "Stereotactic Radiotherapy" working group of the German Society for Radiation Oncology (DEGRO). The GTVs of three anonymized HCC cases were delineated by 16 physicians from nine centers using multiphasic CT scans. In the first case the tumor was well defined. The second patient had multifocal HCC (one conglomerate and one peripheral tumor) and was previously treated with transarterial chemoembolization (TACE). The peripheral lesion was adjacent to the previous TACE site. The last patient had an extensive HCC with a portal vein thrombosis (PVT) and an inhomogeneous liver parenchyma due to cirrhosis. The IOA was evaluated according to Landis and Koch. The IOA for the first case was excellent (kappa: 0.85); for the second case moderate (kappa: 0.48) for the peripheral tumor and substantial (kappa: 0.73) for the conglomerate. In the case of the peripheral tumor the inconsistency is most likely explained by the necrotic tumor cavity after TACE caudal to the viable tumor. In the last case the IOA was fair, with a kappa of 0.34, with significant heterogeneity concerning the borders of the tumor and the PVT. The IOA was very good among the cases were the tumor was well defined. In complex cases, where the tumor did not show the typical characteristics, or in cases with Lipiodol (Guerbet, Paris, France) deposits, IOA agreement was compromised.

  17. SU-E-J-184: Volumetric Indices to Aid Definition of Respiratory Gates with Particular Reference to Lung Stereotactic Body Radiotherapy (SBRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, H; Gomez, J

    Purpose: Conventional definition of respiratory gates relies on tumor motion determination in limited planes. We are proposing a new method to define the RPM gates in a consistent manner ensuring that the tumor motion is restricted to 4 mm in 3D for lung SBRT patients. The method relies on studying the ratio of volumes obtained by GTVnn intersection with GTV50+2mm margin and GTVnn where GTVnn is the GTV volume in phase nn (=0,10,30.) while GTV50+2mm is a pseudo structure created by adding an isotropic margin of 2mm to GTV50. If for any phase nn, above ratio equals 1, it ensuresmore » that the tumor motion is ≤ ±2 mm in 3D from GTV50. Methods: This method was tested for 50 patients (14-Central, 36-peripheral) to determine the RPM gates which were then compared with the gates used clinically. The minimum cut-off value of the above coefficient for its inclusion of a phase in RPM gate was taken as 0.97 for central and 0.95 for peripheral tumors. Results: 15 (30%) of the patients did not require any change in the RPM gates w.r.t. gates defined using conventional motion assessment methods. In 15(30%) cases, the RPM gates could have been smaller while in remaining 20 patients, gates could have been larger. 5(/14) patient’s central tumors and 10 (/36) peripheral tumors did not need any gate change. 8(/50) patients could have RPM gate change of 30% while 10(/50) could have a gate change of up to 20%. 10, 20 & 30% RPM gate change could have happened for 11, 10 & 9 patients, respectively. Conclusion: Proposed volumetric indices based method allows a consistent, scientific and objective method to decide optimal RPM gates which is free from any inter or intra person variability and satisfies the tumor motion limits as defined by AAPM TG-76 in totality.« less

  18. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  19. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Lorraine; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 daysmore » post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.« less

  20. SU-F-T-498: A Comparative Evaluation of 6MV Flatten Beam and Flattening Filter Free Photon Beam in Carcinoma Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamilarasu, Suresh; Saminathan, Madeswaran

    Purpose: Aim of the current study is to look plan quality, treatment beam ON time for IMRT using 6MV FB (Flatten Beam) and FFFB (Flattening Filter Free Beam) in left breast cancer cases. Methods: Ten left breast cancer patients treated with breast conserving surgical (BCS) procedure approach and adjuvant radiotherapy were selected from the department database. Simultaneous Integrated boost (SIB) technique was used to irradiate the total left breast (PTV) to a dose of 50.40Gy with concomitant enhance to the lumpectomy cavity known as gross tumour volume (GTV) to a dose of 59.40Gy in 28 fractions. Plans 6MV FB IMRTmore » and 6MV FFFB IMRT had been generated to achieve dose to 95% target volume (TV) and spare Organ at risks (OAR’s). Homogeneity index (HI), conformity index (CI), treatment monitor unit (MU),normal tissues integral dose (NTID) and low dose volume of normal tissue were compared. Results: There was no statistically huge difference among the plans with respect to target volume coverage, CI HI, Ipsilateral Lung and Breast. But statistically significant difference (p< 0.05) as observed in Heart, V5Gy of Contralateral Lung, MU’s NTID and low dose volume of normal tissue. Conclusion: 6MV FB and FFF beam produce almost equivalent plans in IMRT modality with admire to target volume coverage, HI, CI. Beam on time and NTID was determined to be much less in 6MV FFFB IMRT. FFF beam leads to a time saving treatment delivery and fewer NTID in cancer of left breast cases.« less

  1. Impact of case volume on outcome and performance of targeted temperature management in out-of-hospital cardiac arrest survivors.

    PubMed

    Lee, Seung Joon; Jeung, Kyung Woon; Lee, Byung Kook; Min, Yong Il; Park, Kyu Nam; Suh, Gil Joon; Kim, Kyung Su; Kang, Gu Hyun

    2015-01-01

    This study aimed to determine the effect of case volume on targeted temperature management (TTM) performance, incidence of adverse events, and neurologic outcome in comatose out-of-hospital cardiac arrest (OHCA) survivors treated with TTM. We used a Web-based, multicenter registry (Korean Hypothermia Network registry), to which 24 hospitals throughout the Republic of Korea participated to study adult (≥18 years) comatose out-of-hospital cardiac arrest patients treated with TTM between 2007 and 2012. The primary outcome was neurologic outcome at hospital discharge. The secondary outcomes were inhospital mortality, TTM performance, and adverse events. We extracted propensity-matched cohorts to control for bias. Multivariate logistic regression analysis was performed to assess independent risk factors for neurologic outcome. A total of 901 patients were included in this study; 544 (60.4%) survived to hospital discharge, and 248 (27.5%) were discharged with good neurologic outcome. The high-volume hospitals initiated TTM significantly earlier and had lower rates of hyperglycemia, bleeding, hypotension, and rebound hyperthermia. However, neurologic outcome and inhospital mortality were comparable between high-volume (27.7% and 44.6%, respectively) and low-volume hospitals (21.1% and 40.5%) in the propensity-matched cohorts. The adjusted odds ratio for the high-volume hospitals compared with low-volume hospitals was 1.506 (95% confidence interval, 0.875-2.592) for poor neurologic outcome. Higher TTM case volume was significantly associated with early initiation of TTM and lower incidence of adverse events. However, case volume had no association with neurologic outcome and inhospital mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Overlap of highly FDG-avid and FMISO hypoxic tumor subvolumes in patients with head and neck cancer.

    PubMed

    Mönnich, David; Thorwarth, Daniela; Leibfarth, Sara; Pfannenberg, Christina; Reischl, Gerald; Mauz, Paul-Stefan; Nikolaou, Konstantin; la Fougère, Christian; Zips, Daniel; Welz, Stefan

    2017-11-01

    PET imaging may be used to personalize radiotherapy (RT) by identifying radioresistant tumor subvolumes for RT dose escalation. Using the tracers [ 18 F]-fluorodeoxyglucose (FDG) and [ 18 F]-fluoromisonidazole (FMISO), different aspects of tumor biology can be visualized. FDG depicts various biological aspects, e.g., proliferation, glycolysis and hypoxia, while FMISO is more hypoxia specific. In this study, we analyzed size and overlap of volumes based on the two markers for head-and-neck cancer patients (HNSCC). Twenty five HNSCC patients underwent a CT scan, as well as FDG and dynamic FMISO PET/CT prior to definitive radio-chemotherapy in a prospective FMISO dose escalation study. Three PET-based subvolumes of the primary tumor (GTV prim ) were segmented: a highly FDG-avid volume V FDG , a hypoxic volume on the static FMISO image acquired four hours post tracer injection (V H ) and a retention/perfusion volume (V M ) using pharmacokinetic modeling of dynamic FMISO data. Absolute volumes, overlaps and distances to agreement (DTA) were evaluated. Sizes of PET-based volumes and the GTV prim are significantly different (GTV prim >V FDG >V H >V M ; p < .05). V H is covered by V FDG or DTAs are small (mean coverage 74.4%, mean DTA 1.4 mm). Coverage of V M is less pronounced. With respect to V FDG and V H , the mean coverage is 48.7% and 43.1% and the mean DTA is 5.3 mm and 6.3 mm, respectively. For two patients, DTAs were larger than 2 cm. Hypoxic subvolumes from static PET imaging are typically covered by or in close proximity to highly FDG-avid subvolumes. Therefore, dose escalation to FDG positive subvolumes should cover the static hypoxic subvolumes in most patients, with the disadvantage of larger volumes, resulting in a higher risk of dose-limiting toxicity. Coverage of subvolumes from dynamic FMISO PET is less pronounced. Further studies are needed to explore the relevance of mismatches in functional imaging.

  3. SU-G-BRB-17: Dosimetric Evaluation of the Respiratory Interplay Effect During VMAT Delivery Using IPAGAT Polymer Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, K; Fujimoto, S; Akagi, Y

    Purpose: To evaluate the dosimetric impact of the interplay effect between multileaf collimator (MLC) movement and tumor respiratory motion during delivery of volumetric modulate arc therapy (VMAT) by using customized polymer gel dosimeter. Methods: Polyacrylamide-based gel dosimeter contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. An excellent gas barrier PAN (BAREX) techno bottle (φ8 cm, 650 mL) filled with iPAGAT was set to the QUASAR™ respiratory motion phantom, and was moved with motion amplitudes of 1 and 2 cm with a 4 second period during VMAT delivery by the Novalis Tx linear accelerator (Varian/BrainLAB). Two sphericalmore » tumors with a 2 cm diameter (GTV1 and GTV2) were defined, and ITV1 (GTV1+1 cm) and ITV2 (GTV2+2 cm) with expansion in the superior-inferior (S-I) direction were also defined with simulated respiratory motion. PTV margin was 2 mm around the ITV considering the setup uncertainty. Two single arc VMAT plans with 30 Gy at 3 Gy per fraction (GTV: D98>100%, PTV: D95=100%) were generated by the Varian Eclipse treatment planning system. Three-dimensional dose distribution in iPAGAT was read out by the Signa 1.5T MRI system (GE), and was evaluated by dose-volume histogram (DVH) using in-house developed software. Results: According to DVH analysis by iPAGAT, D98 of GTV1 and GTV2 were more than 100% of the prescribed dose. In contrast, D95 of PTV1 and PTV2 were about 85% and 65%, respectively. Furthermore, low-to-intermediate dose was widespread with motion amplitude of 2 cm. Conclusion: DVH analysis using iPAGAT polymer gel dosimeter was performed in this study. As a result, interplay effect was negligible, since dose coverage of GTV was sufficient during VMAT delivery with simulated respiratory motion. However, the dose reduction of PTV and the spread of low-to-intermediate dose compared to the planned dose require scrupulous attention for large tumor respiratory motion.« less

  4. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    PubMed

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Target volume and artifact evaluation of a new data-driven 4D CT.

    PubMed

    Martin, Rachael; Pan, Tinsu

    Four-dimensional computed tomography (4D CT) is often used to define the internal gross target volume (IGTV) for radiation therapy of lung cancer. Traditionally, this technique requires the use of an external motion surrogate; however, a new image, data-driven 4D CT, has become available. This study aims to describe this data-driven 4D CT and compare target contours created with it to those created using standard 4D CT. Cine CT data of 35 patients undergoing stereotactic body radiation therapy were collected and sorted into phases using standard and data-driven 4D CT. IGTV contours were drawn using a semiautomated method on maximum intensity projection images of both 4D CT methods. Errors resulting from reproducibility of the method were characterized. A comparison of phase image artifacts was made using a normalized cross-correlation method that assigned a score from +1 (data-driven "better") to -1 (standard "better"). The volume difference between the data-driven and standard IGTVs was not significant (data driven was 2.1 ± 1.0% smaller, P = .08). The Dice similarity coefficient showed good similarity between the contours (0.949 ± 0.006). The mean surface separation was 0.4 ± 0.1 mm and the Hausdorff distance was 3.1 ± 0.4 mm. An average artifact score of +0.37 indicated that the data-driven method had significantly fewer and/or less severe artifacts than the standard method (P = 1.5 × 10 -5 for difference from 0). On average, the difference between IGTVs derived from data-driven and standard 4D CT was not clinically relevant or statistically significant, suggesting data-driven 4D CT can be used in place of standard 4D CT without adjustments to IGTVs. The relatively large differences in some patients were usually attributed to limitations in automatic contouring or differences in artifacts. Artifact reduction and setup simplicity suggest a clinical advantage to data-driven 4D CT. Published by Elsevier Inc.

  6. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  7. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanben; Fei, Zhaodong; Chen, Lisha

    This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less

  8. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer

    PubMed Central

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT. PMID:26929651

  9. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer.

    PubMed

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT.

  10. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  11. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastasesmore » were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.« less

  12. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.

    PubMed

    Kawata, Yasuo; Arimura, Hidetaka; Ikushima, Koujirou; Jin, Ze; Morita, Kento; Tokunaga, Chiaki; Yabu-Uchi, Hidetake; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-10-01

    The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e., fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions, which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated into the automated delineation framework of GTVs followed by an optimum contour selection (OCS) method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for 16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets of planning computed tomography (CT) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those estimated using the automated framework. The FCM-based framework achieved the highest DSCs of 0.79±0.06, whereas DSCs of the ANN-based and SVM-based frameworks were 0.76±0.14 and 0.73±0.14, respectively. The FCM-based framework provided the highest segmentation accuracy and precision without a learning process (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor regions in practical treatment planning. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    PubMed

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  14. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less

  15. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT.

    PubMed

    Oh, Seungjong; Stewart, James; Moseley, Joanne; Kelly, Valerie; Lim, Karen; Xie, Jason; Fyles, Anthony; Brock, Kristy K; Lundin, Anna; Rehbinder, Henrik; Milosevic, Michael; Jaffray, David; Cho, Young-Bin

    2014-02-01

    Substantial organ motion and tumor shrinkage occur during radiotherapy for cervix cancer. IMRT planning studies have shown that the quality of radiation delivery is influenced by these anatomical changes, therefore the adaptation of treatment plans may be warranted. Image guidance with off-line replanning, i.e. hybrid-adaptation, is recognized as one of the most practical adaptation strategies. In this study, we investigated the effects of soft tissue image guidance using on-line MR while varying the frequency of off-line replanning on the adaptation of cervix IMRT. 33 cervical cancer patients underwent planning and weekly pelvic MRI scans during radiotherapy. 5 patients of 33 were identified in a previous retrospective adaptive planning study, in which the coverage of gross tumor volume/clinical target volume (GTV/CTV) was not acceptable given single off-line IMRT replan using a 3mm PTV margin with bone matching. These 5 patients and a randomly selected 10 patients from the remaining 28 patients, a total of 15 patients of 33, were considered in this study. Two matching methods for image guidance (bone to bone and soft tissue to dose matrix) and three frequencies of off-line replanning (none, single, and weekly) were simulated and compared with respect to target coverage (cervix, GTV, lower uterus, parametrium, upper vagina, tumor related CTV and elective lymph node CTV) and OAR sparing (bladder, bowel, rectum, and sigmoid). Cost (total process time) and benefit (target coverage) were analyzed for comparison. Hybrid adaptation (image guidance with off-line replanning) significantly enhanced target coverage for both 5 difficult and 10 standard cases. Concerning image guidance, bone matching was short of delivering enough doses for 5 difficult cases even with a weekly off-line replan. Soft tissue image guidance proved successful for all cases except one when single or more frequent replans were utilized in the difficult cases. Cost and benefit analysis preferred

  16. Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma.

    PubMed

    Greenfield, Brad J; Okcu, Mehmet F; Baxter, Patricia A; Chintagumpala, Murali; Teh, Bin S; Dauser, Robert C; Su, Jack; Desai, Snehal S; Paulino, Arnold C

    2015-02-01

    To report long-term progression-free survival (PFS) and late-toxicity outcomes in pediatric craniopharyngioma patients treated with IMRT. Twenty-four children were treated with IMRT to a median dose of 50.4Gy (range, 49.8-54Gy). The clinical target volume (CTV) was the gross tumor volume (GTV) with a 1cm margin. The planning target volume (PTV) was the CTV with a 3-5mm margin. Median follow-up was 107.3months. The 5- and 10-year PFS rates were 65.8% and 60.7%. The 5- and 10-year cystic PFS rates were 70.2% and 65.2% while the 5- and 10-year solid PFS were the same at 90.7%. Endocrinopathy was seen in 42% at initial diagnosis and in 74% after surgical intervention, prior to IMRT. Hypothalamic dysfunction and visual deficits were associated with increasing PTV and number of surgical interventions. IMRT is a viable treatment option for pediatric craniopharyngioma. Despite the use of IMRT, majority of the craniopharyngioma patients experienced long-term toxicity, many of which present prior to radiotherapy. Limitations of retrospective analyses on small patient cohort elicit the need for a prospective multi-institutional study to determine the absolute benefit of IMRT in pediatric craniopharyngioma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Chemoradiation for ductal pancreatic carcinoma: principles of combining chemotherapy with radiation, definition of target volume and radiation dose.

    PubMed

    Wilkowski, Ralf; Thoma, Martin; Weingandt, Helmut; Dühmke, Eckhart; Heinemann, Volker

    2005-05-10

    Review of the role of chemoradiotherapy in the treatment of locally advanced pancreatic cancer with a specific focus on the technical feasibility and the integration of chemoradiotherapy into multimodal treatment concepts. Combined chemoradiotherapy of pancreatic cancer is a safe treatment with an acceptable profile of side effects when applied with modern planning and radiation techniques as well as considering tissue tolerance. Conventionally fractionated radiation regimens with total doses of 45-50 Gy and small-volume boost radiation with 5.4 Gy have found the greatest acceptance. Locoregional lymphatic drainage should be included in the planning of target volumes because the risk of tumor involvement and local or loco-regional recurrence is high. Up to now, 5-fluorouracil has been considered the "standard" agent for concurrent chemoradiotherapy. The role of gemcitabine given concurrently with radiation has not yet been defined, since high local efficacy may also be accompanied by enhanced toxicities. In addition, no dose or administration form has been determined to be "standard" up to now. The focus of presently ongoing research is to define an effective and feasible regimen of concurrent chemoradiotherapy. While preliminary results indicate promising results using gemcitabine-based chemoradiotherapy, reliable data derived from mature phase III trials are greatly needed. Intensity-modulated radiotherapy has been developed to improve target-specific radiation and to reduce organ toxicity. Its clinical relevance still needs to be defined.

  18. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer.

    PubMed

    Muijs, Christina T; Schreurs, Liesbeth M; Busz, Dianne M; Beukema, Jannet C; van der Borden, Arnout J; Pruim, Jan; Van der Jagt, Eric J; Plukker, John Th; Langendijk, Johannes A

    2009-12-01

    To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p<0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  19. Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Read, Paul W.; Baisden, Joseph M.

    Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less

  20. A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF.

    PubMed

    Sheng, Ke; Cai, Jing; Brookeman, James; Molloy, Janelle; Christopher, John; Read, Paul

    2006-09-01

    Lung tumor motion trajectories measured by four-dimensional CT or dynamic MRI can be converted to a probability density function (PDF), which describes the probability of the tumor at a certain position, for PDF based treatment planning. Using this method in simulated sequential tomotherapy, we study the dose reduction of normal tissues and more important, the effect of PDF reproducibility on the accuracy of dosimetry. For these purposes, realistic PDFs were obtained from two dynamic MRI scans of a healthy volunteer within a 2 week interval. The first PDF was accumulated from a 300 s scan and the second PDF was calculated from variable scan times from 5 s (one breathing cycle) to 300 s. Optimized beam fluences based on the second PDF were delivered to the hypothetical gross target volume (GTV) of a lung phantom that moved following the first PDF The reproducibility between two PDFs varied from low (78%) to high (94.8%) when the second scan time increased from 5 s to 300 s. When a highly reproducible PDF was used in optimization, the dose coverage of GTV was maintained; phantom lung receiving 10%-20% prescription dose was reduced by 40%-50% and the mean phantom lung dose was reduced by 9.6%. However, optimization based on PDF with low reproducibility resulted in a 50% underdosed GTV. The dosimetric error increased nearly exponentially as the PDF error increased. Therefore, although the dose of the tumor surrounding tissue can be theoretically reduced by PDF based treatment planning, the reliability and applicability of this method highly depend on if a reproducible PDF exists and is measurable. By correlating the dosimetric error and PDF error together, a useful guideline for PDF data acquisition and patient qualification for PDF based planning can be derived.

  1. A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Ke; Cai Jing; Brookeman, James

    2006-09-15

    Lung tumor motion trajectories measured by four-dimensional CT or dynamic MRI can be converted to a probability density function (PDF), which describes the probability of the tumor at a certain position, for PDF based treatment planning. Using this method in simulated sequential tomotherapy, we study the dose reduction of normal tissues and more important, the effect of PDF reproducibility on the accuracy of dosimetry. For these purposes, realistic PDFs were obtained from two dynamic MRI scans of a healthy volunteer within a 2 week interval. The first PDF was accumulated from a 300 s scan and the second PDF wasmore » calculated from variable scan times from 5 s (one breathing cycle) to 300 s. Optimized beam fluences based on the second PDF were delivered to the hypothetical gross target volume (GTV) of a lung phantom that moved following the first PDF. The reproducibility between two PDFs varied from low (78%) to high (94.8%) when the second scan time increased from 5 s to 300 s. When a highly reproducible PDF was used in optimization, the dose coverage of GTV was maintained; phantom lung receiving 10%-20% prescription dose was reduced by 40%-50% and the mean phantom lung dose was reduced by 9.6%. However, optimization based on PDF with low reproducibility resulted in a 50% underdosed GTV. The dosimetric error increased nearly exponentially as the PDF error increased. Therefore, although the dose of the tumor surrounding tissue can be theoretically reduced by PDF based treatment planning, the reliability and applicability of this method highly depend on if a reproducible PDF exists and is measurable. By correlating the dosimetric error and PDF error together, a useful guideline for PDF data acquisition and patient qualification for PDF based planning can be derived.« less

  2. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    PubMed

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  3. Sci—Fri AM: Mountain — 06: Optimizing planning target volume in lung radiotherapy using deformable registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, P; Wierzbicki, M; Juravinski Cancer Centre, Medical Physics Department, Hamilton, Ontario

    A four dimensional computed tomography (4DCT) image is acquired for all radically treated, lung cancer patients to define the internal target volume (ITV), which encompasses tumour motion due to breathing and subclinical disease. Patient set-up error and anatomical motion that is not due to breathing is addressed through an additional 1 cm margin around the ITV to obtain the planning target volume (PTV). The objective of this retrospective study is to find the minimum PTV margin that provides an acceptable probability of delivering the prescribed dose to the ITV. Acquisition of a kV cone beam computed tomography (CBCT) image atmore » each fraction was used to shift the treatment couch to accurately align the spinal cord and carina. Our method utilized deformable image registration to automatically position the planning ITV on each CBCT. We evaluated the percentage of the ITV surface that fell within various PTVs for 79 fractions across 18 patients. Treatment success was defined as a situation where at least 99% of the ITV is covered by the PTV. Overall, this is to be achieved in at least 90% of the treatment fractions. The current approach with a 1cm PTV margin was successful ∼96% of the time. This analysis revealed that the current margin can be reduced to 0.8cm isotropic or 0.6×0.6×1 cm{sup 3} non-isotropic, which were successful 92 and 91 percent of the time respectively. Moreover, we have shown that these margins maintain accuracy, despite intrafractional variation, and maximize CBCT image guidance capabilities.« less

  4. Comparison of Magnetic Resonance Imaging and Computed Tomography for Breast Target Volume Delineation in Prone and Supine Positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, Elise M.; Liverpool and Macarthur Cancer Therapy Centres, Liverpool; Ingham Institute for Applied Medical Research, Liverpool

    2016-11-15

    Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modalitymore » did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.« less

  5. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen

    2005-10-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans

  6. TU-E-BRA-11: Volume of Interest Cone Beam CT with a Low-Z Linear Accelerator Target: Proof-of-Concept.

    PubMed

    Robar, J; Parsons, D; Berman, A; MacDonald, A

    2012-06-01

    This study demonstrates feasibility and advantages of volume of interest (VOI) cone beam CT (CBCT) imaging performed with an x-ray beam generated from 2.35 MeV electrons incident on a carbon linear accelerator target. The electron beam energy was reduced to 2.35 MeV in a Varian 21EX linear accelerator containing a 7.6 mm thick carbon x-ray target. Arbitrary imaging volumes were defined in the planning system to produce dynamic MLC sequences capable of tracking off-axis VOIs in phantoms. To reduce truncation artefacts, missing data in projection images were completed using a priori DRR information from the planning CT set. The feasibility of the approach was shown through imaging of an anthropomorphic phantom and the head-and-neck section of a lamb. TLD800 and EBT2 radiochromic film measurements were used to compare the VOI dose distributions with those for full-field techniques. CNR was measured for VOIs ranging from 4 to 15 cm diameter. The 2.35 MV/Carbon beam provides favorable CNR characteristics, although marked boundary and cupping artefacts arise due to truncation of projection data. These artefacts are largely eliminated using the DRR filling technique. Imaging dose was reduced by 5-10% and 75% inside and outside of the VOI, respectively, compared to full-field imaging for a cranial VOI. For the 2.35 MV/Carbon beam, CNR was shown to be approximately invariant with VOI dimension for bone and lung objects. This indicates that the advantage of the VOI approach with the low-Z target beam is substantial imaging dose reduction, not improvement of image quality. VOI CBCT using a 2.35 MV/Carbon beam is a feasible technique whereby a chosen imaging volume can be defined in the planning system and tracked during acquisition. The novel x-ray beam affords good CNR characteristics while imaging dose is localized to the chosen VOI. Funding for this project has been received from Varian Medical, Incorporated. © 2012 American Association of Physicists in Medicine.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.or; Chitti, Ramana M.; Li Chenghong

    Purpose: To identify risk factors associated with incomplete neurological recovery in pediatric patients with infratentorial ependymoma treated with postoperative conformal radiation therapy (CRT). Methods: The study included 68 patients (median age +- standard deviation of 2.6 +- 3.8 years) who were followed for 5 years after receiving CRT (54-59.4 Gy) and were assessed for function of cranial nerves V to VII and IX to XII, motor weakness, and dysmetria. The mean (+- standard deviation) brainstem dose was 5,487 (+-464) cGy. Patients were divided into four groups representing those with normal baseline and follow-up, those with abnormal baseline and full recovery,more » those with abnormal baseline and partial or no recovery, and those with progressive deficits at 12 (n = 62 patients), 24 (n = 57 patients), and 60 (n = 50 patients) months. Grouping was correlated with clinical and treatment factors. Results: Risk factors (overall risk [OR], p value) associated with incomplete recovery included gender (male vs. female, OR = 3.97, p = 0.036) and gross tumor volume (GTV) (OR/ml = 1.23, p = 0.005) at 12 months, the number of resections (>1 vs. 1; OR = 23.7, p = 0.003) and patient age (OR/year = 0.77, p = 0.029) at 24 months, and cerebrospinal fluid (CSF) shunting (Yes vs. No; OR = 21.9, p = 0.001) and GTV volume (OR/ml = 1.18, p = 0.008) at 60 months. An increase in GTV correlated with an increase in the number of resections (p = 0.001) and CSF shunting (p = 0.035); the number of resections correlated with CSF shunting (p < 0.0001), and male patients were more likely to undergo multiple tumor resections (p = 0.003). Age correlated with brainstem volume (p < 0.0001). There were no differences in outcome based on the absolute or relative volume of the brainstem that received more than 54 Gy. Conclusions: Incomplete recovery of brainstem function after CRT for infratentorial ependymoma is related to surgical morbidity and the volume and the extent of tumor.« less

  8. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    PubMed

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  9. Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter

    NASA Astrophysics Data System (ADS)

    Camp, H. A.; Moyer, Steven; Moore, Richard K.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search (TLS) model, which makes use of the targeting task performance (TTP) metric to describe image quality, does not explicitly account for the effects of visual clutter on observer performance. The TLS model is currently based on empirical fits to describe human performance for a time of day, spectrum and environment. Incorporating a clutter metric into the TLS model may reduce the number of these empirical fits needed. The masked target transform volume (MTTV) clutter metric has been previously presented and compared to other clutter metrics. Using real infrared imagery of rural images with varying levels of clutter, NVESD is currently evaluating the appropriateness of the MTTV metric. NVESD had twenty subject matter experts (SME) rank the amount of clutter in each scene in a series of pair-wise comparisons. MTTV metric values were calculated and then compared to the SME observers rankings. The MTTV metric ranked the clutter in a similar manner to the SME evaluation, suggesting that the MTTV metric may emulate SME response. This paper is a first step in quantifying clutter and measuring the agreement to subjective human evaluation.

  10. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.

    PubMed

    Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula

    2015-06-01

    Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p<0.05). 2/10 PET/CT-ITVs exceeded the PTVs derived from CT-ITVs by >1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Riyahi, S; Lu, W

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM])more » were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Aihong; Zeng Zhaochong, E-mail: zeng.zhaochong@zs-hospital.sh.c; Ji Yuan

    Purpose: To quantify microscopic invasion of intrahepatic cholangiocarcinoma (IHC) into nontumor tissue and define the gross tumor volume (GTV)-to-clinical target volume (CTV) expansion necessary for radiotherapy. Methods and Materials: One-hundred IHC patients undergoing radical resection from January 2004 to July 2008 were enrolled in this study. Pathologic and clinical data including maximum tumor diameter, tumor boundary type, TNM stage, histologic grade, tumor markers, and liver enzymes were reviewed. The distance of microinvasion from the tumor boundary was measured by microscopy. The contraction coefficient for tumor measurements in radiographs and slide-mounted tissue was calculated. SPSS15.0 was used for statistical analysis. Results:more » Sixty-five patients (65%) exhibited tumor microinvasions. Microinvasions ranged from 0.4-8 mm, with 96% of patients having a microinvasion distance {<=}6 mm measured on slide. The radiograph-to-slide contraction coefficient was 82.1%. The degree of microinvasion was correlated with tumor boundary type, TNM stage, histologic grade, and serum levels of carbohydrate antigen 19-9, alanine aminotransferase, aspartate aminotransferase, {gamma}-glutamyltransferase and alkaline phosphatase. To define CTV accurately, we devised a scoring system based on combination of these factors. According to this system, a score {<=}1.5 is associated with 96.1% sensitivity in detecting patients with a microextension {<=}4.9 mm in radiographs, whereas a score {>=}2 has a 95.1% sensitivity in detecting microextension {<=}7.9 mm measured on radiograph. Conclusions: Patients with a score {<=}1.5 and {>=}2 require a radiographic GTV-to-CTV expansions of 4.9 and 7.9 mm, respectively, to encompass >95% of microinvasions.« less

  13. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer.

    PubMed

    Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A

    2014-11-01

    The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Single-Isocenter Multiple-Target Stereotactic Radiosurgery: Risk of Compromised Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roper, Justin, E-mail: justin.roper@emory.edu; Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, Georgia; Chanyavanich, Vorakarn

    2015-11-01

    Purpose: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multitarget stereotactic radiosurgery (SRS). Methods and Materials: This retrospective study included 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, noncoplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage was relatedmore » to PTV volume, PTV separation, and rotational error. Results: At 0.5° rotational error, D95 values and V95 coverage rates were ≥95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values <95%. Coverage worsened substantially when the rotational error increased to 2.0°: D95 and V95 values were >95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage. Conclusions: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increased with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.« less

  15. Helical tomotherapy significantly reduces dose to normal tissues when compared to 3D-CRT for locally advanced rectal cancer.

    PubMed

    Jhaveri, Pavan M; Teh, Bin S; Paulino, Arnold C; Smiedala, Mindy J; Fahy, Bridget; Grant, Walter; McGary, John; Butler, E Brian

    2009-10-01

    Combined modality treatment (neoadjuvant chemoradiotherapy followed by surgery) for locally advanced rectal cancer requires special attention to various organs at risk (OAR). As a result, the use of conformal dose delivery methods has become more common in this disease setting. Helical tomotherapy is an image-guided intensity modulated delivery system that delivers dose in a fan-beam manner at 7 degree intervals around the patient and can potentially limit normal tissue from high dose radiation while adequately treating targets. In this study we dosimetrically compare helical tomotherapy to 3D-CRT for stage T3 rectal cancer. The helical tomotherapy plans were optimized in the TomoPlan system to achieve an equivalent uniform dose of 45 Gy for 10 patients with T3N0M0 disease that was at least 5cm from the anal verge. The GTV included the rectal thickening and mass evident on colonoscopy and CT scan as well as with the help of a colorectal surgeon. The CTV included the internal iliac, obturator, and pre-sacral lymphatic chains. The OAR that were outlined included the small bowel, pelvic bone marrow, femoral heads, and bladder. Anatom-e system was used to assist in delineating GTV, CTV and OAR. These 10 plans were then duplicated and optimized into 3-field 3D-CRT plans within the Pinnacle planning system.The V[45], V[40], V[30], V[20], V[10], and mean dose to the OAR were compared between the helical tomotherapy and 3D-CRT plans. Statistically significant differences were achieved in the doses to all OAR, including all volumes and means except for V[10] for the small bowel and the femoral heads. Adequate dosimetric coverage of targets were achieved with both helical tomotherapy and 3D-CRT. Helical tomotherapy reduces the volume of normal tissue receiving high-dose RT when compared to 3D-CRT treatment. Both modalities adequately dose the tumor. Clinical studies addressing the dosimetric benefits are on-going.

  16. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  17. SU-F-J-173: Online Replanning for Dose Painting Based On Changing ADC Map of Pancreas Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ates, O; Ahunbay, E; Erickson, B

    Purpose: The introduction of MR-guided radiation therapy (RT), e.g., MR-Linac, would allow dose painting to adapt spatial RT response revealed from MRI data during the RT delivery. The purpose of this study is to investigate the use of an online replanning method to adapt dose painting from the MRI Apparent Diffusion Coefficient (ADC) map acquired during the delivery of RT for pancreatic cancers. Methods: Original dose painting plans were created based on multi-parametric simulation MRI including T1, T2 and ADC, using a treatment planning system (MONACO, Elekta) equipped with an online replanning algorithm (WSO, warm start optimization). Multiple GTVs, identifiedmore » based on various ADC levels were prescribed to different doses ranging from 50–70 Gy with simultaneous integrated boost in 28 fractions. The MRI acquired after RT were used to mimic weekly MRI, on which the changing GTVs, pancreatic head and other organs-at-risk (OAR) (duodenum, stomach, small bowel) were delineated. The adaptive plan was generated by applying WSO algorithm starting from the deformed original plan based on the weekly MRI using a deformable image registration (DIR) software (ADMIRE, Elekta). The online replanning method takes <10 min. including DIR, target delineation, WSO execution and final dose calculation. Standard IGRT repositioning and full-blown reoptimization plans were also generated to compare with the adaptive plans. Results: The online replanning method significantly improved the multiple target coverages and OAR sparing for pancreatic cancers. For example, for a case with two GTVs with prescriptions of 60 and 70 Gy in pancreatic head, V100-GTV70 (the volume covered by 100% of prescription dose for GTV with 70 Gy)/V100-GTV60/V100-CTV50/V45-duodenum were (95.1/22.2/69.5/85.7), (95.0/97.0/98.6/34.3), and (95.0/98.1/100.0/38.7) for the IGRT, adaptive and reoptimization plans, respectively. Conclusion: The introduced online adaptive replanning method can effectively

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Broussard, G; De, K

    Purpose: Recurrent chordomas are difficult to control locally. This dosimetric study investigates the feasibility of dose escalation to hypoxic regions, visualized on FMISO-PET, while respecting the dose constraints to the neighboring normal tissues/organs. We propose to deliver a higher dose to the areas of hypoxia (84.5Gy) using IMPT with the goal of improving local control. Methods: We currently have four patients with hypoxic subvolumes (HSV) greater than 10cc from the FMISO-PET image. The HSV was delineated based on the standardized uptake values of greater than 1.4 times of the muscle mean. Gross tumor volume (GTV) was delineated using planning CTmore » with the assistance of MRI fusion. The dose scheme is 50.4Gy RBE to CTV in 1.8Gy fractions, followed by an integrated boost of 27.0Gy RBE to GTV in 1.8Gy fractions and 34.5Gy RBE to HSV in 2.3Gy fractions. IMPT integrated boost plans were optimized with multi-criteria optimization (MCO). Posterior-anterior beam angles were used for these plans. We also propose using two posterior oblique fields to boost HSV to spare the skin folding. A medium spot size with 8mm to 15 mm (σ) in air at isocenter with energies from 220 MeV down to 90 MeV was used. Aperture was used for the medium spot size. A small spot size of 2.5 mm to 4.5 mm (σ) in air at isocenter with energies from 240 MeV down to 70 MeV was also proposed. Target coverage and dose to OARs were evaluated. Results: For the sacral chordoma patient that has been planned, the target homogeneity index is 3.2% for HSV, 55.9% for CTV and 11.9% for GTV. The max dose is 77GyRBE to rectum, 86.2GyRBE to sacral nerves and 73.9GyRBE to cauda equina. Conclusion: IMPT with integrated high dose boost to HSV determined from FMISO PET image is feasible. OAR dose constraints were met.« less

  19. Magnetic resonance (MR) imaging for tumor staging and definition of tumor volumes on radiation treatment planning in nonsmall cell lung cancer: A prospective radiographic cohort study of single center clinical outcome.

    PubMed

    Zhao, Dan; Hu, Qiaoqiao; Qi, Liping; Wang, Juan; Wu, Hao; Zhu, Guangying; Yu, Huiming

    2017-02-01

    We investigate the impact of magnetic resonance (MR) on the staging and radiotherapy planning for patients with nonsmall cell lung cancer (NSCLC).A total of 24 patients with NSCLC underwent MRI, which was fused with radiotherapy planning CT using rigid registration. Gross tumor volume (GTV) was delineated not only according to CT image alone (GTVCT), but also based on both CT and MR image (GTVCT/MR). For each patient, 2 conformal treatment plans were made according to GTVCT and GTVCT/MR, respectively. Dose-volume histograms (DVH) for lesion and normal organs were generated using both GTVCT and GTVCT/MR treatment plans. All patients were irradiated according to GTVCT/MR plan.Median volume of the GTVCT/MR and GTVCT were 105.42 cm and 124.45 cm, respectively, and the mean value of GTVCT/MR was significantly smaller than that of GTVCT (145.71 ± 145.04 vs 174.30 ± 150.34, P < 0.01). Clinical stage was modified in 9 patients (37.5%). The objective response rate (ORR) was 83.3% and the l-year overall survival (OS) was 87.5%.MR is a useful tool in radiotherapy treatment planning for NSCLC, which improves the definition of tumor volume, reduces organs at risk dose and does not increase the local recurrence rate.

  20. Differential response rates to irradiation among patients with human papillomavirus positive and negative oropharyngeal cancer.

    PubMed

    Chen, Allen M; Li, Judy; Beckett, Laurel A; Zhara, Talia; Farwell, Gregory; Lau, Derick H; Gandour-Edwards, Regina; Vaughan, Andrew T; Purdy, James A

    2013-01-01

    To evaluate the responsiveness of human papillomavirus (HPV) -positive and HPV-negative oropharyngeal cancer to intensity-modulated radiotherapy (IMRT), using axial imaging obtained daily during the course of image-guided radiotherapy (IGRT). Observational cohort study with matched-pair analysis of patients irradiated for HPV-positive and HPV-negative oropharygeal cancer. Ten patients treated by IMRT to 70 Gy for locally advanced, HPV-positive squamous cell carcinoma of the oropharynx were matched to one HPV-negative control subject by age, gender, performance status, T-category, tumor location, and the use of concurrent chemotherapy. The gross tumor volume (GTV) was delineated on daily IGRT scans obtained via kilovoltage cone-beam computed tomography (CBCT). Mathematical modeling using fitted mixed-effects repeated measure analysis was performed to quantitatively and descriptively assess the trajectory of tumor regression. Patients with HPV-positive tumors experienced a more rapid rate of tumor regression between day 1 of IMRT and the beginning of week 2 (-33% Δ GTV) compared to their counterparts with HPV-negative tumors (-10% Δ GTV), which was statistically significant (p<0.001). During this initial period, the average absolute change in GTV was -22.9 cc/week for HPV-positive tumors and -5.9 cc/week for HPV-negative tumors (p<0.001). After week 2 of IMRT, the rates of GTV regression were comparable between the two groups. HPV-positive oropharyngeal cancers exhibited an enhanced response to radiation, characterized by a dramatically more rapid initial regression than those with HPV-negative tumors. Implications for treatment de-intensification in the context of future clinical trials and the possible mechanisms underlying this increased radiosensitivity will be discussed. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. Three-dimensional conformal radiotherapy by delineations on CT-based simulation in different respiratory phases for the treatment of senile patients with non-small cell lung cancer.

    PubMed

    Wang, Weifeng; Yuan, Feng; Wang, Guoping; Lin, Zhiren; Pan, Yanling; Chen, Longhua

    2015-01-01

    This study aimed to evaluate the application of three-dimensional conformal radiotherapy (3D-CRT) for elderly patients with non-small cell lung cancer (NSCLC) based on computed tomography (CT) simulations in different respiratory phases. A total of 64 patients aged >70 years old with NSCLC were treated by 3D-CRT using CT images in different respiratory phases. The gross tumor volumes (GTVs) at the end of inspiration and end of expiration were combined to obtain the total GTV, which was close to the motional range of tumors during respiration, and no additional expansion of the clinical target volume (CTAV) to planning target volume (PTV) (CTAV:PTV) was included during the recording of respiratory movements. Patients were also planned according to the classic 3D-CRT approach. Efficacy, prognostic factors, and side effects were evaluated. Compared with the classic approach, the average PTV was 18.9% lower (median: 17.3%), and the average lung volume receiving a prescribed dose for a tumor was 22.4% lower (median: 20.9%). The 1-, 2-, and 3-year survival rates were 70.6%, 54.9%, and 29.4%, respectively, with an overall tumor response rate of 79.7%. The Karnofsky performance status and N stage were independent prognostic factors, whereas age was not. Without affecting therapeutic effects, CT simulations in different respiratory phases were well-tolerated in elderly patients with NSCLC, could effectively reduce PTV, and could improve the quality of life.

  2. Automatic FDG-PET-based tumor and metastatic lymph node segmentation in cervical cancer

    NASA Astrophysics Data System (ADS)

    Arbonès, Dídac R.; Jensen, Henrik G.; Loft, Annika; Munck af Rosenschöld, Per; Hansen, Anders Elias; Igel, Christian; Darkner, Sune

    2014-03-01

    Treatment of cervical cancer, one of the three most commonly diagnosed cancers worldwide, often relies on delineations of the tumour and metastases based on PET imaging using the contrast agent 18F-Fluorodeoxyglucose (FDG). We present a robust automatic algorithm for segmenting the gross tumour volume (GTV) and metastatic lymph nodes in such images. As the cervix is located next to the bladder and FDG is washed out through the urine, the PET-positive GTV and the bladder cannot be easily separated. Our processing pipeline starts with a histogram-based region of interest detection followed by level set segmentation. After that, morphological image operations combined with clustering, region growing, and nearest neighbour labelling allow to remove the bladder and to identify the tumour and metastatic lymph nodes. The proposed method was applied to 125 patients and no failure could be detected by visual inspection. We compared our segmentations with results from manual delineations of corresponding MR and CT images, showing that the detected GTV lays at least 97.5% within the MR/CT delineations. We conclude that the algorithm has a very high potential for substituting the tedious manual delineation of PET positive areas.

  3. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  4. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-07

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  5. SU-E-J-124: FDG PET Metrics Analysis in the Context of An Adaptive PET Protocol for Node Positive Gynecologic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Light, K

    2014-06-01

    Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less

  6. Projection-data based temporal maximum attenuation computed tomography: determination of internal target volume for lung cancer against intra-fraction motion

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Kanematsu, Nobuyuki; Asakura, Hiroshi; Endo, Masahiro

    2007-02-01

    The concept of internal target volume (ITV) is highly significant in radiotherapy for the lung, an organ which is hampered by organ motion. To date, different methods to obtain the ITV have been published and are therefore available. To define ITV, we developed a new method by adapting a time filter to the four-dimensional CT scan technique (4DCT) which is projection-data processing (4D projection data maximum attenuation (4DPM)), and compared it with reconstructed image processing (4D image maximum intensity projection (4DIM)) using a phantom and clinical evaluations. 4DIM and 4DPM captured accurate maximum intensity volume (MIV), that is tumour encompassing volume, easily. Although 4DIM increased the CT number 1.8 times higher than 4DPM, 4DPM provided the original tumour CT number for MIV via a reconstruction algorithm. In the patient with lung fibrosis honeycomb, the MIV with 4DIM is 0.7 cm larger than that for cine imaging in the cranio-caudal direction. 4DPM therefore provided an accurate MIV independent of patient characteristics and reconstruction conditions. These findings indicate the usefulness of 4DPM in determining ITV in radiotherapy.

  7. Are there benefits or harm from pressure targeting during lung-protective ventilation?

    PubMed

    MacIntyre, Neil R; Sessler, Curtis N

    2010-02-01

    Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.

  8. Factors Associated With Early Mortality in Patients Treated With Concurrent Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Andrew; Dahele, Max; Hu, Bo

    Purpose: Concurrent chemoradiation therapy (con-CRT) is recommended for fit patients with locally advanced non-small cell lung cancer (LA-NSCLC) but is associated with toxicity, and observed survival continues to be limited. Identifying factors associated with early mortality could improve patient selection and identify strategies to improve prognosis. Methods and Materials: Analysis of a multi-institutional LA-NSCLC database consisting of 1245 patients treated with con-CRT in 13 institutions was performed to identify factors predictive of 180-day survival. Recursive partitioning analysis (RPA) was performed to identify prognostic groups for 180-day survival. Multivariate logistic regression analysis was used to create a clinical nomogram predicting 180-daymore » survival based on important predictors from RPA. Results: Median follow-up was 43.5 months (95% confidence interval [CI]: 40.3-48.8) and 127 patients (10%) died within 180 days of treatment. Median, 180-day, and 1- to 5-year (by yearly increments) actuarial survival rates were 20.9 months, 90%, 71%, 45%, 32%, 27%, and 22% respectively. Multivariate analysis adjusted by region identified gross tumor volume (GTV) (odds ratio [OR] ≥100 cm{sup 3}: 2.61; 95% CI: 1.10-6.20; P=.029) and pulmonary function (forced expiratory volume in 1 second [FEV{sub 1}], defined as the ratio of FEV{sub 1} to forced vital capacity [FVC]) (OR <80%: 2.53; 95% CI: 1.09-5.88; P=.030) as significant predictors of 180-day survival. RPA resulted in a 2-class risk stratification system: low-risk (GTV <100 cm{sup 3} or GTV ≥100 cm{sup 3} and FEV{sub 1} ≥80%) and high-risk (GTV ≥100 cm{sup 3} and FEV{sub 1} <80%). The 180-day survival rates were 93% for low risk and 79% for high risk, with an OR of 4.43 (95% CI: 2.07-9.51; P<.001), adjusted by region. A clinical nomogram predictive of 180-day survival, incorporating FEV{sub 1}, GTV, N stage, and maximum esophagus dose yielded favorable calibration (R{sup 2} = 0

  9. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M., E-mail: brad.oborn@gmail.com; Ge, Y.; Hardcastle, N.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, whilemore » the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Karen; Small, William; Portelance, Lorraine

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aidmore » in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.« less

  11. Variation in uterus position prior to brachytherapy of the cervix: A case report.

    PubMed

    Georgescu, M T; Anghel, R

    2017-01-01

    Rationale: brachytherapy is administered in the treatment of patients with locally advanced cervical cancer following chemoradiotherapy. Lack of local anatomy evaluation prior to this procedure might lead to the selection of an inappropriate brachytherapy applicator, increasing the risk of side effects (e.g. uterus perforation, painful procedure ...). Objective: To assess the movement of the uterus and cervix prior to brachytherapy in patients with gynecological cancer, in order to select the proper type of brachytherapy applicator. Also we wanted to promote the replacement of the plain X-ray brachytherapy with the image-guided procedure. Methods and results: We presented the case of a 41-year-old female diagnosed with a biopsy that was proven cervical cancer stage IIIB. At diagnosis, the imaging studies identified an anteverted uterus. The patient underwent preoperative chemoradiotherapy. Prior to brachytherapy, the patient underwent a pelvic magnetic resonance imaging (MRI), which identified a displacement of the uterus in the retroverted position. Discussion: A great variety of brachytherapy applicators is available nowadays. Major changes in uterus position and lack of evaluation prior to brachytherapy might lead to a higher rate of incidents during this procedure. Also, by using orthogonal simulation and bidimensional (2D) treatment planning, brachytherapy would undoubtedly fail to treat the remaining tumoral tissue. This is the reason why we proposed the implementation of a prior imaging of the uterus and computed tomography (CT)/ MRI-based simulation in the brachytherapy procedure. Abbreviations: MRI = magnetic resonance imaging, CT = computed tomography, CTV = clinical target volume, DVH = dose-volume histogram, EBRT = external beam radiotherapy, GTV = gross tumor volume, Gy = Gray (unit), ICRU = International Commission of Radiation Units, IGRT = image guided radiotherapy, IM = internal margin, IMRT = image modulated radiotherapy, ITV = internal target

  12. Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Grigorov, Grigor; Yu, Edward; Yartsev, Slav; Chen, Jeff Z.; Wong, Eugene; Rodrigues, George; Trenka, Kris; Coad, Terry; Bauman, Glenn; Van Dyk, Jake

    2004-08-01

    Lung cancer treatment is one of the most challenging fields in radiotherapy. The aim of the present study was to investigate what role helical tomotherapy (HT), a novel approach to the delivery of highly conformal dose distributions using intensity-modulated radiation fan beams, can play in difficult cases with large target volumes typical for many of these patients. Tomotherapy plans were developed for 15 patients with stage III inoperable non-small-cell lung cancer. While not necessarily clinically indicated, elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate primary planning target volume (PTV2) and 1 cm margin around elective nodes for secondary planning target volume (PTV1) resulting in PTV1 volumes larger than 1000 cm3 in 13 of the 15 patients. Tomotherapy plans were created using an inverse treatment planning system (TomoTherapy Inc.) based on superposition/convolution dose calculation for a fan beam thickness of 25 mm and a pitch factor between 0.3 and 0.8. For comparison, plans were created using an intensity-modulated radiation therapy (IMRT) approach planned on a commercial treatment planning system (TheraplanPlus, Nucletron). Tomotherapy delivery times for the large target volumes were estimated to be between 4 and 19 min. Using a prescribed dose of 60 Gy to PTV2 and 46 Gy to PTV1, the mean lung dose was 23.8 ± 4.6 Gy. A 'dose quality factor' was introduced to correlate the plan outcome with patient specific parameters. A good correlation was found between the quality of the HT plans and the IMRT plans with HT being slightly better in most cases. The overlap between lung and PTV was found to be a good indicator of plan quality for HT. The mean lung dose was found to increase by approximately 0.9 Gy per percent overlap volume. Helical tomotherapy planning resulted in highly conformal dose distributions. It

  13. Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small-cell lung cancer: a prospective study.

    PubMed

    Kolodziejczyk, Milena; Kepka, Lucyna; Dziuk, Miroslaw; Zawadzka, Anna; Szalus, Norbert; Gizewska, Agnieszka; Bujko, Krzysztof

    2011-07-15

    To evaluate prospectively how positron emission tomography (PET) information changes treatment plans for non-small-cell lung cancer (NSCLC) patients receiving or not receiving elective nodal irradiation (ENI). One hundred consecutive patients referred for curative radiotherapy were included in the study. Treatment plans were carried out with CT data sets only. For stage III patients, mediastinal ENI was planned. Then, patients underwent PET-CT for diagnostic/planning purposes. PET/CT was fused with the CT data for final planning. New targets were delineated. For stage III patients with minimal N disease (N0-N1, single N2), the ENI was omitted in the new plans. Patients were treated according to the PET-based volumes and plans. The gross tumor volume (GTV)/planning tumor volume (PTV) and doses for critical structures were compared for both data sets. The doses for areas of potential geographical misses derived with the CT data set alone were compared in patients with and without initially planned ENI. In the 75 patients for whom the decision about curative radiotherapy was maintained after PET/CT, there would have been 20 cases (27%) with potential geographical misses by using the CT data set alone. Among them, 13 patients would receive ENI; of those patients, only 2 patients had the PET-based PTV covered by 90% isodose by using the plans based on CT alone, and the mean of the minimum dose within the missed GTV was 55% of the prescribed dose, while for 7 patients without ENI, it was 10% (p = 0.006). The lung, heart, and esophageal doses were significantly lower for plans with ENI omission than for plans with ENI use based on CT alone. PET/CT should be incorporated in the planning of radiotherapy for NSCLC, even in the setting of ENI. However, if PET/CT is unavailable, ENI may to some extent compensate for an inadequate dose coverage resulting from diagnostic uncertainties. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myerson, Robert J.; Garofalo, Michael C.; El Naqa, Issam

    2009-07-01

    Purpose: To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials: The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, presacral, and perirectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning andmore » for select rectal cases), and to outline these areas on individual computed tomographic images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (I.E.N.) used binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results: The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion: This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.« less

  15. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algan, Ozer, E-mail: oalgan@ouhsc.edu; Jamgade, Ambarish; Ali, Imad

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had amore » shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35

  16. Multimodal Hierarchical Imaging of Serial Sections for Finding Specific Cellular Targets within Large Volumes

    PubMed Central

    Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.

    2018-01-01

    Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs

  17. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  18. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation.

    PubMed

    Ji, Kai; Zhao, Lujun; Yang, Chengwen; Meng, Maobin; Wang, Ping

    2012-11-27

    To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Thirty-nine patients with medically inoperable T1-4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Under a 60 Gy dosage, the median D mean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40 Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.

  19. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    PubMed Central

    2012-01-01

    Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions. PMID:23186308

  20. MO-DE-210-07: Investigation of Treatment Interferences of a Novel Robotic Ultrasound Radiotherapy Guidance System with Clinical VMAT Plans for Liver SBRT Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Bruder, R; Schweikard, A

    Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in amore » prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95

  1. Functional Requirements of a Target Description System for Vulnerability Analysis

    DTIC Science & Technology

    1979-11-01

    called GIFT .1,2 Together the COMGEOM description model and GIFT codes make up the BRL’s target description system. The significance of a target...and modifying target descriptions are described. 1 Lawrence W. Bain, Jr. and Mathew J. Reisinger, "The GIFT Code User Manual; Volume 1...34The GIFT Code User Manual; Volume II, The Output Options," unpublished draft of BRL report. II. UNDERLYING PHILOSOPHY The BRL has a computer

  2. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  3. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy.

    PubMed

    Clements, N; Kron, T; Franich, R; Dunn, L; Roxby, P; Aarons, Y; Chesson, B; Siva, S; Duplan, D; Ball, D

    2013-02-01

    Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs. Breathing patterns with a

  4. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, N.; Kron, T.; Roxby, P.

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of thismore » work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  5. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404.

    PubMed

    Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P

    2017-07-06

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for

  6. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.

    2017-08-01

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard

  7. Maxillary sinus volume in patients with impacted canines.

    PubMed

    Oz, Aslihan Zeynep; Oz, Abdullah Alper; El, Hakan; Palomo, Juan Martin

    2017-01-01

    To evaluate the maxillary sinus volumes in unilaterally impacted canine patients and to compare the volumetric changes that occur after the eruption of canines to the dental arch using cone beam computed tomography (CBCT). Pre- (T0) and posttreatment (T1) CBCT records of 30 patients were used to calculate maxillary sinus volumes between the impacted and erupted canine sides. The InVivoDental 5.0 program was used to measure the volume of the maxillary sinuses. The distance from impacted canine cusp tip to the target point on the palatal plane was also measured. Right maxillary sinus volume was statistically significantly smaller compared to that of the left maxillary sinus when the canine was impacted on the right side at T0. According to the T1 measurements there was no significant difference between the mean volumes of the impaction side and the contralateral side. The distance from the canine tip to its target point on the palatal plane were 17.17 mm, and the distance from the tip to the target point was 15.14 mm for the left- and right-side impacted canines, respectively, and there was a significant difference between the mean amount of change of both sides of maxillary sinuses after treatment of impacted canines. Orthodontic treatment of impacted canines created a significant increase in maxillary sinus volume when the impacted canines were closer with respect to the maxillary sinus.

  8. Analysis of incidental radiation dose to uninvolved mediastinal/supraclavicular lymph nodes in patients with limited-stage small cell lung cancer treated without elective nodal irradiation.

    PubMed

    Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W; Fulp, William J; Dilling, Thomas J

    2011-01-01

    Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI(off)) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI(on)). Nodal stations were contoured using published guidelines, then placed into 4 "bins" (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI(on) plans demonstrated a statistically significant degradation in dose coverage compared with the ENI(off) plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the "1 echelon away" nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to anatomically distant lymph nodes

  9. Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, James J.; Wall, Donald; Wittman, Richard S.

    Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less

  10. Setup Variations in Radiotherapy of Anal Cancer: Advantages of Target Volume Reduction Using Image-Guided Radiation Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yijen, E-mail: yichen@coh.org; Suh, Steve; Nelson, Rebecca A.

    2012-09-01

    Purpose: To define setup variations in the radiation treatment (RT) of anal cancer and to report the advantages of image-guided RT (IGRT) in terms of reduction of target volume and treatment-related side effects. Methods and Materials: Twelve consecutive patients with anal cancer treated by combined chemoradiation by use of helical tomotherapy from March 2007 to November 2008 were selected. With patients immobilized and positioned in place, megavoltage computed tomography (MVCT) scans were performed before each treatment and were automatically registered to planning CT scans. Patients were shifted per the registration data and treated. A total of 365 MVCT scans weremore » analyzed. The primary site received a median dose of 55 Gy. To evaluate the potential dosimetric advantage(s) of IGRT, cases were replanned according to Radiation Therapy Oncology Group 0529, with and without adding recommended setup variations from the current study. Results: Significant setup variations were observed throughout the course of RT. The standard deviations for systematic setup correction in the anterior-posterior (AP), lateral, and superior-inferior (SI) directions and roll rotation were 1.1, 3.6, and 3.2 mm, and 0.3 Degree-Sign , respectively. The average random setup variations were 3.8, 5.5, and 2.9 mm, and 0.5 Degree-Sign , respectively. Without daily IGRT, margins of 4.9, 11.1, and 8.5 mm in the AP, lateral, and SI directions would have been needed to ensure that the planning target volume (PTV) received {>=}95% of the prescribed dose. Conversely, daily IGRT required no extra margins on PTV and resulted in a significant reduction of V15 and V45 of intestine and V10 of pelvic bone marrow. Favorable toxicities were observed, except for acute hematologic toxicity. Conclusions: Daily MVCT scans before each treatment can effectively detect setup variations and thereby reduce PTV margins in the treatment of anal cancer. The use of concurrent chemotherapy and IGRT provided favorable

  11. Distance-to-Agreement Investigation of Tomotherapy's Bony Anatomy-Based Autoregistration and Planning Target Volume Contour-Based Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Steve, E-mail: ssuh@coh.org; Schultheiss, Timothy E.

    Purpose: To compare Tomotherapy's megavoltage computed tomography bony anatomy autoregistration with the best achievable registration, assuming no deformation and perfect knowledge of planning target volume (PTV) location. Methods and Materials: Distance-to-agreement (DTA) of the PTV was determined by applying a rigid-body shift to the PTV region of interest of the prostate from its reference position, assuming no deformations. Planning target volume region of interest of the prostate was extracted from the patient archives. The reference position was set by the 6 degrees of freedom (dof)—x, y, z, roll, pitch, and yaw—optimization results from the previous study at this institution. Themore » DTA and the compensating parameters were calculated by the shift of the PTV from the reference 6-dof to the 4-dof—x, y, z, and roll—optimization. In this study, the effectiveness of Tomotherapy's 4-dof bony anatomy–based autoregistration was compared with the idealized 4-dof PTV contour-based optimization. Results: The maximum DTA (maxDTA) of the bony anatomy-based autoregistration was 3.2 ± 1.9 mm, with the maximum value of 8.0 mm. The maxDTA of the contour-based optimization was 1.8 ± 1.3 mm, with the maximum value of 5.7 mm. Comparison of Pearson correlation of the compensating parameters between the 2 4-dof optimization algorithms shows that there is a small but statistically significant correlation in y and z (0.236 and 0.300, respectively), whereas there is very weak correlation in x and roll (0.062 and 0.025, respectively). Conclusions: We find that there is an average improvement of approximately 1 mm in terms of maxDTA on the PTV going from 4-dof bony anatomy-based autoregistration to the 4-dof contour-based optimization. Pearson correlation analysis of the 2 4-dof optimizations suggests that uncertainties due to deformation and inadequate resolution account for much of the compensating parameters, but pitch variation also makes a statistically

  12. The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.

    PubMed

    Hubley, Emily; Pierce, Greg

    2017-08-01

    Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoh, Kheng-Wei; Mikhaeel, N. George, E-mail: George.Mikhaeel@gstt.nhs.uk

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CTmore » data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.« less

  14. Comparative planning evaluation of intensity-modulated radiotherapy techniques for complex lung cancer cases.

    PubMed

    Yartsev, Slav; Chen, Jeff; Yu, Edward; Kron, Tomas; Rodrigues, George; Coad, Terry; Trenka, Kristina; Wong, Eugene; Bauman, Glenn; Dyk, Jake Van

    2006-02-01

    Lung cancer treatment can be one of the most challenging fields in radiotherapy. The aim of the present study was to compare different modalities of radiation delivery based on a balanced scoring scheme for target coverage and normal tissue avoidance. Treatment plans were developed for 15 patients with stage III inoperable non-small cell lung cancer using 3D conformal technique and intensity-modulated radiotherapy (IMRT). Elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate PTV2 and 1cm margin around elective nodes for PTV1 resulting in PTV1 volumes larger than 1000 cm(3) in 13 of the 15 patients. 3D conformal and IMRT plans were generated on a commercial treatment planning system (TheraPlan Plus, Nucletron) with various combinations of beam energies and gantry angles. A 'dose quality factor' (DQF) was introduced to correlate the plan quality with patient specific parameters. A good correlation was found between the quality of the plans and the overlap between PTV1 and lungs. The patient feature factor (PFF), which is a product of several pertinent characteristics, was introduced to facilitate the choice of a particular technique for a particular patient. This approach may allow the evaluation of different treatment options prior to actual planning, subject to validation in larger prospective data sets.

  15. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Dawson, L A; Anzai, Y; Marsh, L; Martel, M K; Paulino, A; Ship, J A; Eisbruch, A

    2000-03-15

    To analyze the patterns of local-regional recurrence in patients with head and neck cancer treated with parotid-sparing conformal and segmental intensity-modulated radiotherapy (IMRT). Fifty-eight patients with head and neck cancer were treated with bilateral neck radiation (RT) using conformal or segmental IMRT techniques, while sparing a substantial portion of one parotid gland. The targets for CT-based RT planning included the gross tumor volume (GTV) (primary tumor and lymph node metastases) and the clinical target volume (CTV) (postoperative tumor bed, expansions of the GTVs and lymph node groups at risk of subclinical disease). Lymph node targets at risk of subclinical disease included the bilateral jugulodigastric and lower jugular lymph nodes, bilateral retropharyngeal lymph nodes at risk, and high jugular nodes at the base of skull in the side of the neck at highest risk (containing clinical neck metastases and/or ipsilateral to the primary tumor). The CTVs were expanded by 5 mm to yield planning target volumes (PTVs). Planning goals included coverage of all PTVs (with a minimum of 95% of the prescribed dose) and sparing of a substantial portion of the parotid gland in the side of the neck at less risk. The median RT doses to the gross tumor, the operative bed, and the subclinical disease PTVs were 70.4 Gy, 61.2 Gy, and 50.4 Gy respectively. All recurrences were defined on CT scans obtained at the time of recurrence, transferred to the pretreatment CT dataset used for RT planning, and analyzed using dose-volume histograms. The recurrences were classified as 1) "in-field," in which 95% or more of the recurrence volume (V(recur)) was within the 95% isodose; 2) "marginal," in which 20% to 95% of V(recur) was within the 95% isodose; or 3) "outside," in which less than 20% of V(recur) was within the 95% isodose. With a median follow-up of 27 months (range 6 to 60 months), 10 regional recurrences, 5 local recurrences (including one noninvasive recurrence) and 1

  16. Planned Subtotal Resection of Vestibular Schwannoma Differs from the Ideal Radiosurgical Target Defined by Adaptive Hybrid Surgery.

    PubMed

    Sheppard, John P; Lagman, Carlito; Prashant, Giyarpuram N; Alkhalid, Yasmine; Nguyen, Thien; Duong, Courtney; Udawatta, Methma; Gaonkar, Bilwaj; Tenn, Stephen E; Bloch, Orin; Yang, Isaac

    2018-06-01

    To retrospectively compare ideal radiosurgical target volumes defined by a manual method (surgeon) to those determined by Adaptive Hybrid Surgery (AHS) operative planning software in 7 patients with vestibular schwannoma (VS). Four attending surgeons (3 neurosurgeons and 1 ear, nose, and throat surgeon) manually contoured planned residual tumors volumes for 7 consecutive patients with VS. Next, the AHS software determined the ideal radiosurgical target volumes based on a specified radiotherapy plan. Our primary measure was the difference between the average planned residual tumor volumes and the ideal radiosurgical target volumes defined by AHS (dRV AHS-planned ). We included 7 consecutive patients with VS in this study. The planned residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (1.6 vs. 4.5 cm 3 , P = 0.004). On average, the actual post-operative residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (2.2 cm 3 vs. 4.5 cm 3 ; P = 0.02). The average difference between the ideal radiosurgical target volume defined by AHS and the planned residual tumor volume (dRV AHS-planned ) was 2.9 ± 1.7 cm 3 , and we observed a trend toward larger dRV AHS-planned in patients who lost serviceable facial nerve function compared with patients who maintained serviceable facial nerve function (4.7 cm 3 vs. 1.9 cm 3 ; P = 0.06). Planned subtotal resection of VS diverges from the ideal radiosurgical target defined by AHS, but whether that influences clinical outcomes is unclear. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. SU-E-J-77: Dose Tracking On An MR-Linac for Online QA and Plan Adaptation in Abdominal Organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzner, M; Crijns, S; Kontaxis, C

    2015-06-15

    Recent developments made MRI-guided radiotherapy feasible. Simultaneously performed imaging during dose delivery reveals the influence of changes in anatomy not yet known at the planning stage. When targeting highly motile abdominal organs, respiratory gating is commonly employed in MRI and investigated in external beam radiotherapy to mitigate malicious motion effects. The purpose of the presented work is to investigate anatomy-adaptive dose reconstruction in the treatment of abdominalorgans using concurrent (duplex) gating of an integrated MRlinac modality.Using navigators, 3D-MR images were sampled during exhale phase, requiring 3s per axial volume (360×260×100mm{sup 3}, waterselective T1w-FFE). Deformation vector fields (DVF) were calculated formore » all imaging dynamics with respect to initial anatomy, yielding an estimation of anatomy changes over the time of a fraction. A pseudo-CT was generated from the outline of a reference MR image, assuming a water-filled body. Consecutively, a treatment was planned on a fictional kidney lesion and optimized simulating a 6MV linac in a 1.5T magnetic field. After delivery, using the DVF, the pseudo-CT was deformed and dose accumulated for every individual gating interval yielding the true accumulated dose on the dynamic anatomy during beam-on.Dose-volume parameters on the PTV show only moderate changes when incorporating motion, i.e. ΔD{sub 99} (GTV)=0.3Gy with D{sub 99} (GTV)=20Gy constraints. However, local differences in the PTV region showed underdosages as high as 2.7Gy and overdosages up to 1.4Gy as compared to the optimized dose on static anatomy.A dose reconstruction toolchain was successfully implemented and proved its potential in the duplex gated treatment of abdominal organs by means of an MR-linac modality. While primary dose constraints were not violated on the fictional test data, large deviations could be found locally, which are left unaccounted for in conventional treatments. Dose-tracking of both

  18. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning.

    PubMed

    Sarkar, B; Pradhan, A; Munshi, A

    2016-01-01

    Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monitor units (MUs) of the stereotactic treatment plans for different commercially available MLC models and beam profiles. Ten patients having 12 planning target volume (PTV)/gross target volume's (GTVs) who received the SRS/SRT treatment in our clinic using Axesse Linac (considered reference arm gold standard) were considered for this study. The test arms comprised of plans using Elekta Agility with FFF, Elekta Agility with the plane beam, Elekta APEX, Varian Millennium 120, Varian Millennium 120HD, and Elekta Synergy in Monaco treatment planning system. Planning constraints and calculation grid spacing were not altered in the test plans. To objectively evaluate the efficacy of MLC-beam model, the resultant dosimetric outcomes were subtracted from the reference arm parameters. V95%, V100%, V105%, D1%, maximum dose, and mean dose of PTV/GTV showed a maximum inter MLC - beam model variation of 1.5% and 2% for PTV and GTV, respectively. Average PTV conformity index and heterogeneity index shows a variation in the range 0.56-0.63 and 1.08-1.11, respectively. Mean dose difference (excluding Axesse) for all organs varied between 1.1 cGy and 74.8 cGy (mean dose = 6.1 cGy standard deviation [SD] = 26.9 cGy) and 1.7 cGy-194.5 cGy (mean dose 16.1 cGy SD = 57.2 cGy) for single and multiple fraction, respectively. The dosimetry of VMAT-based SRS/SRT treatment plan had minimal dependence on MLC and beam model variations. All tested MLC and beam model could fulfil the desired PTV coverage and organs at risk

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahig, Houda; Simard, Dany; Létourneau, Laurent

    Purpose: To determine the incidence of pseudoprogression (PP) after spine stereotactic body radiation therapy based on a detailed and quantitative assessment of magnetic resonance imaging (MRI) morphologic tumor alterations, and to identify predictive factors distinguishing PP from local recurrence (LR). Methods and Materials: A retrospective analysis of 35 patients with 49 spinal segments treated with spine stereotactic body radiation therapy, from 2009 to 2014, was conducted. The median number of follow-up MRI studies was 4 (range, 2-7). The gross tumor volumes (GTVs) within each of the 49 spinal segments were contoured on the pretreatment and each subsequent follow-up T1- andmore » T2-weighted MRI sagittal sequence. T2 signal intensity was reported as the mean intensity of voxels constituting each volume. LR was defined as persistent GTV enlargement on ≥2 serial MRI studies for ≥6 months or on pathologic confirmation. PP was defined as a GTV enlargement followed by stability or regression on subsequent imaging within 6 months. Kaplan-Meier analysis was used for estimation of actuarial local control, disease-free survival, and overall survival. Results: The median follow-up was 23 months (range, 1-39 months). PP was identified in 18% of treated segments (9 of 49) and LR in 29% (14 of 49). Earlier volume enlargement (5 months for PP vs 15 months for LR, P=.005), greater GTV to reference nonirradiated vertebral body T2 intensity ratio (+30% for PP vs −10% for LR, P=.005), and growth confined to 80% of the prescription isodose line (80% IDL) (8 of 9 PP cases vs 1 of 14 LR cases, P=.002) were associated with PP on univariate analysis. Multivariate analysis confirmed an earlier time to volume enlargement and growth within the 80% IDL as significant predictors of PP. LR involved the epidural space in all but 1 lesion, whereas PP was confined to the vertebral body in 7 of 9 cases. Conclusions: PP was observed in 18% of treated spinal segments. Tumor growth

  20. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less

  1. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

    PubMed

    Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan

    2011-06-08

    , without incurring penalty with respect to adjacent organs-at-risk. For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  2. VOLUMNECT: measuring volumes with Kinect

    NASA Astrophysics Data System (ADS)

    Quintino Ferreira, Beatriz; Griné, Miguel; Gameiro, Duarte; Costeira, João. Paulo; Sousa Santos, Beatriz

    2014-03-01

    This article presents a solution to volume measurement object packing using 3D cameras (such as the Microsoft KinectTM). We target application scenarios, such as warehouses or distribution and logistics companies, where it is important to promptly compute package volumes, yet high accuracy is not pivotal. Our application auto- matically detects cuboid objects using the depth camera data and computes their volume and sorting it allowing space optimization. The proposed methodology applies to a point cloud simple computer vision and image processing methods, as connected components, morphological operations and Harris corner detector, producing encouraging results, namely an accuracy in volume measurement of 8mm. Aspects that can be further improved are identified; nevertheless, the current solution is already promising turning out to be cost effective for the envisaged scenarios.

  3. SU-F-BRD-09: Is It Sufficient to Use Only Low Density Tissue-Margin to Compensate Inter-Fractionation Setup Uncertainties in Lung Treatment?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, K; Yue, N; Chen, T

    2014-06-15

    Purpose: In lung radiation treatment, PTV is formed with a margin around GTV (or CTV/ITV). Although GTV is most likely of water equivalent density, the PTV margin may be formed with the surrounding low-density tissues, which may lead to unreal dosimetric plan. This study is to evaluate whether the concern of dose calculation inside the PTV with only low density margin could be justified in lung treatment. Methods: Three SBRT cases were analyzed. The PTV from the original plan (Plan-O) was created with a 5–10 mm margin outside the ITV to incorporate setup errors and all mobility from 10 respiratorymore » phases. Test plans were generated with the GTV shifted to the PTV edge to simulate the extreme situations with maximum setup uncertainties. Two representative positions as the very posterior-superior (Plan-PS) and anterior-inferior (Plan-AI) edge were considered. The virtual GTV was assigned a density of 1.0 g.cm−3 and surrounding lung, including the PTV margin, was defined as 0.25 g.cm−3. Also, additional plan with a 1mm tissue-margin instead of full lung-margin was created to evaluate whether a composite-margin (Plan-Comp) has a better approximation for dose calculation. All plans were generated on the average CT using Analytical Anisotropic Algorithm with heterogeneity correction on and all planning parameters/monitor unites remained unchanged. DVH analyses were performed for comparisons. Results: Despite the non-static dose distribution, the high-dose region synchronized with tumor positions. This might due to scatter conditions as greater doses were absorbed in the solid-tumor than in the surrounding low-density lungtissue. However, it still showed missing target coverage in general. Certain level of composite-margin might give better approximation for the dosecalculation. Conclusion: Our exploratory results suggest that with the lungmargin only, the planning dose of PTV might overestimate the coverage of the target during treatment. The significance of

  4. Transorbital target localization in the porcine model

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.

    2013-03-01

    Current pharmacological therapies for the treatment of chronic optic neuropathies such as glaucoma are often inadequate due to their inability to directly affect the optic nerve and prevent neuron death. While drugs that target the neurons have been developed, existing methods of administration are not capable of delivering an effective dose of medication along the entire length of the nerve. We have developed an image-guided system that utilizes a magnetically tracked flexible endoscope to navigate to the back of the eye and administer therapy directly to the optic nerve. We demonstrate the capabilities of this system with a series of targeted surgical interventions in the orbits of live pigs. Target objects consisted of NMR microspherical bulbs with a volume of 18 μL filled with either water or diluted gadolinium-based contrast, and prepared with either the presence or absence of a visible coloring agent. A total of 6 pigs were placed under general anesthesia and two microspheres of differing color and contrast content were blindly implanted in the fat tissue of each orbit. The pigs were scanned with T1-weighted MRI, image volumes were registered, and the microsphere containing gadolinium contrast was designated as the target. The surgeon was required to navigate the flexible endoscope to the target and identify it by color. For the last three pigs, a 2D/3D registration was performed such that the target's coordinates in the image volume was noted and its location on the video stream was displayed with a crosshair to aid in navigation. The surgeon was able to correctly identify the target by color, with an average intervention time of 20 minutes for the first three pigs and 3 minutes for the last three.

  5. A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

    PubMed

    Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming

    2018-02-19

    The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

  6. Geometric convex cone volume analysis

    NASA Astrophysics Data System (ADS)

    Li, Hsiao-Chi; Chang, Chein-I.

    2016-05-01

    Convexity is a major concept used to design and develop endmember finding algorithms (EFAs). For abundance unconstrained techniques, Pixel Purity Index (PPI) and Automatic Target Generation Process (ATGP) which use Orthogonal Projection (OP) as a criterion, are commonly used method. For abundance partially constrained techniques, Convex Cone Analysis is generally preferred which makes use of convex cones to impose Abundance Non-negativity Constraint (ANC). For abundance fully constrained N-FINDR and Simplex Growing Algorithm (SGA) are most popular methods which use simplex volume as a criterion to impose ANC and Abundance Sum-to-one Constraint (ASC). This paper analyze an issue encountered in volume calculation with a hyperplane introduced to illustrate an idea of bounded convex cone. Geometric Convex Cone Volume Analysis (GCCVA) projects the boundary vectors of a convex cone orthogonally on a hyperplane to reduce the effect of background signatures and a geometric volume approach is applied to address the issue arose from calculating volume and further improve the performance of convex cone-based EFAs.

  7. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase.

    PubMed

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2015-10-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.

  8. Automated linking of suspicious findings between automated 3D breast ultrasound volumes

    NASA Astrophysics Data System (ADS)

    Gubern-Mérida, Albert; Tan, Tao; van Zelst, Jan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Automated breast ultrasound (ABUS) is a 3D imaging technique which is rapidly emerging as a safe and relatively inexpensive modality for screening of women with dense breasts. However, reading ABUS examinations is very time consuming task since radiologists need to manually identify suspicious findings in all the different ABUS volumes available for each patient. Image analysis techniques to automatically link findings across volumes are required to speed up clinical workflow and make ABUS screening more efficient. In this study, we propose an automated system to, given the location in the ABUS volume being inspected (source), find the corresponding location in a target volume. The target volume can be a different view of the same study or the same view from a prior examination. The algorithm was evaluated using 118 linkages between suspicious abnormalities annotated in a dataset of ABUS images of 27 patients participating in a high risk screening program. The distance between the predicted location and the center of the annotated lesion in the target volume was computed for evaluation. The mean ± stdev and median distance error achieved by the presented algorithm for linkages between volumes of the same study was 7.75±6.71 mm and 5.16 mm, respectively. The performance was 9.54±7.87 and 8.00 mm (mean ± stdev and median) for linkages between volumes from current and prior examinations. The proposed approach has the potential to minimize user interaction for finding correspondences among ABUS volumes.

  9. Radiobiological modeling of two stereotactic body radiotherapy schedules in patients with stage I peripheral non-small cell lung cancer.

    PubMed

    Huang, Bao-Tian; Lin, Zhu; Lin, Pei-Xian; Lu, Jia-Yang; Chen, Chuang-Zhen

    2016-06-28

    This study aims to compare the radiobiological response of two stereotactic body radiotherapy (SBRT) schedules for patients with stage I peripheral non-small cell lung cancer (NSCLC) using radiobiological modeling methods. Volumetric modulated arc therapy (VMAT)-based SBRT plans were designed using two dose schedules of 1 × 34 Gy (34 Gy in 1 fraction) and 4 × 12 Gy (48 Gy in 4 fractions) for 19 patients diagnosed with primary stage I NSCLC. Dose to the gross target volume (GTV), planning target volume (PTV), lung and chest wall (CW) were converted to biologically equivalent dose in 2 Gy fraction (EQD2) for comparison. Five different radiobiological models were employed to predict the tumor control probability (TCP) value. Three additional models were utilized to estimate the normal tissue complication probability (NTCP) value for the lung and the modified equivalent uniform dose (mEUD) value to the CW. Our result indicates that the 1 × 34 Gy dose schedule provided a higher EQD2 dose to the tumor, lung and CW. Radiobiological modeling revealed that the TCP value for the tumor, NTCP value for the lung and mEUD value for the CW were 7.4% (in absolute value), 7.2% (in absolute value) and 71.8% (in relative value) higher on average, respectively, using the 1 × 34 Gy dose schedule.

  10. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.

    PubMed

    Daisne, Jean-François; Blumhofer, Andreas

    2013-06-26

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.

  11. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  12. An automatic brain tumor segmentation tool.

    PubMed

    Diaz, Idanis; Boulanger, Pierre; Greiner, Russell; Hoehn, Bret; Rowe, Lindsay; Murtha, Albert

    2013-01-01

    This paper introduces an automatic brain tumor segmentation method (ABTS) for segmenting multiple components of brain tumor using four magnetic resonance image modalities. ABTS's four stages involve automatic histogram multi-thresholding and morphological operations including geodesic dilation. Our empirical results, on 16 real tumors, show that ABTS works very effectively, achieving a Dice accuracy compared to expert segmentation of 81% in segmenting edema and 85% in segmenting gross tumor volume (GTV).

  13. SU-E-T-560: Inter- and Intra-Fraction Variations in Esophageal Dose for Lung Cancer Patients, and the Impact of Setup Technique and Treatment Modality.

    PubMed

    Carroll, M; Cheung, J; Zhang, L; Court, L

    2012-06-01

    To understand the dose-response of the esophagus in photon and proton therapy, it is important to appreciate the variations in delivered dose caused by inter- and intra-fraction motion. Four lung cancer patients were identified who had experienced grade 3 esophagitis during their treatment, and for whom their esophagus was close, but not encompassed by, the treatment volume. Each patient had been treated with proton therapy using 35-37 2Gy fractions, and had received weekly 4DCT imaging. IMRT plans were also created using the same treatment planning constraints. In-house image registration software was used to deform the esophagus contour from the treatment plan to each phase of the 4DCT for each weekly image set. Daily setup using both bony and soft tissue (GTV) registration was simulated, and the treatment dose calculated for each CT image. Changes to the esophagus DVH relative to the treatment plan were quantified in terms of the relative volume of the esophagus receiving 45, 55, and 65Gy (V45, V55 and V65). For all combinations of treatment modality (photon, proton) and setup method (bony, GTV), intra-fraction motion resulted in a range of V45, V55 and V65 from 3.6 to 5.5%. Inter-fraction motion comparing daily exhale or inhale phases showed the range of V45, V55 and V65 from 8.5 to 18.6% (exhale) and 9.8 to 16.3% (inhale). Inter-fractional motion resulted in larger variations in dose delivered to the esophagus than intra-fractional motion. The inter-fraction range for V45, V55 and V65 varied by around 10% between patients. The treatment modality (photon, proton) and setup technique (bony, GTV) had minimal impact on the results. © 2012 American Association of Physicists in Medicine.

  14. [Target volume segmentation of PET images by an iterative method based on threshold value].

    PubMed

    Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L

    2014-01-01

    An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  15. Volumetric-modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer.

    PubMed

    Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-05-06

    Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose

  16. Volumetric‐modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer

    PubMed Central

    Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-01-01

    Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation

  17. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    PubMed

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/- 1.4 to 48.5 +/- 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/- 4.2 to 3.2 +/- 2.5% (p < 0.001). Heart volumes receiving low (10-20 Gy) and high (30-50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/- 6.7) Gy and 14.8 (+/- 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors

  18. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    PubMed

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  19. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh

    2011-01-01

    Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482

  20. Reducing late effects of radiotherapy in average risk medulloblastoma.

    PubMed

    Ibrahim, Noha Yehia; Abdel Aal, Hisham H; Abdel Kader, Mohamed S; Makaar, Wael S; Shaaban, Ahmed H

    2014-03-01

    To assess the efficacy and safety in average-risk pediatric medulloblastoma (MB) receiving tumor bed boost irradiation compared to a posterior fossa (PF) boost. Thirty patients were enrolled in the study and divided evenly into two treatment arms of 15. Both arms received 23.4 Gy craniospinal irradiation (CS) and a 32.4 Gy boost. Patients in arm 1 were given PF boosts, and those in arm 2 were given boosts to the gross target volume (GTV). Weekly oncovin was given throughout all radiotherapy (RT). Eight cycles of adjuvant chemotherapy of CCNU, oncovin and platinol were given to all patients after RT. MRI, pure tone audiogram (PTA) and intelligence quotient (IQ) tests were performed before and after RT and every three months thereafter. There were significant differences in the sparing dose to the cochlea and brain stem as well as the volume of the normal brain receiving a 100% dose. There was a significant initial improvement of hearing function in patients given the target volume boost after RT, which was lost after chemotherapy. With a median follow up of 23 months, there was no difference in progression free survival or overall survival between the two arms. Irradiation of the tumor bed after 23.4 Gy craniospinal irradiation for average-risk MB results in similar disease control as a PF boost. Dosimetric sparing for the cochleae and normal tissue is evident in patients receiving tumor bed boosts. The hearing improvement and cognitive function preservation effects of the treatment need more follow up.

  1. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Badkul, R

    Purpose: To compare dose distributions calculated using PB-hete vs. XVMC algorithms for SRT treatments of cavernous sinus tumors. Methods: Using PB-hete SRT, five patients with cavernous sinus tumors received the prescription dose of 25 Gy in 5 fractions for planning target volume PTV(V100%)=95%. Gross tumor volume (GTV) and organs at risk (OARs) were delineated on T1/T2 MRI-CT-fused images. PTV (range 2.1–84.3cc, mean=21.7cc) was generated using a 5mm uniform-margin around GTV. PB-hete SRT plans included a combination of non-coplanar conformal arcs/static beams delivered by Novalis-TX consisting of HD-MLCs and a 6MV-SRS(1000 MU/min) beam. Plans were re-optimized using XVMC algorithm with identicalmore » beam geometry and MLC positions. Comparison of plan specific PTV(V99%), maximal, mean, isocenter doses, and total monitor units(MUs) were evaluated. Maximal dose to OARs such as brainstem, optic-pathway, spinal cord, and lenses as well as normal tissue volume receiving 12Gy(V12) were compared between two algorithms. All analysis was performed using two-tailed paired t-tests of an upper-bound p-value of <0.05. Results: Using either algorithm, no dosimetrically significant differences in PTV coverage (PTVV99%,maximal, mean, isocenter doses) and total number of MUs were observed (all p-values >0.05, mean ratios within 2%). However, maximal doses to optic-chiasm and nerves were significantly under-predicted using PB-hete (p=0.04). Maximal brainstem, spinal cord, lens dose and V12 were all comparable between two algorithms, with exception of one patient with the largest PTV who exhibited 11% higher V12 with XVMC. Conclusion: Unlike lung tumors, XVMC and PB-hete treatment plans provided similar PTV coverage for cavernous sinus tumors. Majority of OARs doses were comparable between two algorithms, except for small structures such as optic chiasm/nerves which could potentially receive higher doses when using XVMC algorithm. Special attention may need to be paid on a

  4. Target volume definition for post prostatectomy radiotherapy: Do the consensus guidelines correctly define the inferior border of the CTV?

    PubMed

    Manji, Mo; Crook, Juanita; Schmid, Matt; Rajapakshe, Rasika

    2016-01-01

    We compare urethrogram delineation of the caudal aspect of the anastomosis to the recommended guidelines of post prostatectomy radiotherapy. Level one evidence has established the indications for, and importance of, adjuvant radiotherapy following radical prostatectomy. Several guidelines have recently addressed delineation of the prostate bed target volume including identification of the vesico-urethral anastomosis, taken as the first CT slice caudal to visible urine in the bladder neck. The inferior border of clinical target volume is then variably defined 5-12 mm below this anastomosis or 15 mm cranial to the penile bulb. Thirty-three patients who received adjuvant radiotherapy following radical prostatectomy were reviewed. All underwent planning CT with urethrogram. The authors (MM, JC) independently identified the CT slice caudal to the last slice showing urine in the bladder neck (called the CT Reference Slice), and measured the distance between this and the tip of the urethrogram cone. Five patients also had a diagnostic MRI at the time of CT planning to better visualize the anatomy. Sixty-six readings were obtained. The mean distance between the Bladder CT Reference Slice and the most cranial urethrogram contrast slice was 16.1 mm (MM 16.4 mm, JC 15.8 mm), range: 6.8-34.2 mm. The mean distance between the urethrogram tip and the ischial tuberosities was 19.9 mm (range 12.5-29.8 mm). The mean distance between the CT Reference Slice and the ischial tuberosities was 36.9 mm (range 28.3-52.4 mm). Guidelines for prostate bed radiation post prostatectomy have been developed after publication of the trials proving benefit of such treatment, and are thus untested. The anastomosis is a frequent site of local relapse but is variably defined by the existing guidelines, none of which take into account anatomic patient variation and all of which are at variance with urethrogram data. We recommend the use of planning urethrogram to better delineate the vesico

  5. The role of PET in target localization for radiotherapy treatment planning.

    PubMed

    Rembielak, Agata; Price, Pat

    2008-02-01

    Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.

  6. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B.

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model wasmore » used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to

  7. Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood

    2011-01-01

    A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration

  8. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Andrew J.; Tao, Randa; Rebueno, Neal C.

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared withmore » patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized

  9. LLE Review Quarterly Report (October - December 2007). Volume 113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuegel, Jonathan D.

    2007-12-01

    This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats themore » solid-density plasma through collisions. X-ray spectroscopic measurements of absolute K α (x-radiation) photon yields and variations of the K β/K α b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.« less

  10. Pragmatics & Language Learning. Volume 12

    ERIC Educational Resources Information Center

    Kasper, Gabriele, Ed.; Nguyen, Hanh thi, Ed.; Yoshimi, Dina Rudolph, Ed.; Yoshioka, Jim K., Ed.

    2010-01-01

    This volume examines the organization of second language and multilingual speakers' talk and pragmatic knowledge across a range of naturalistic and experimental activities. Based on data collected on Danish, English, Hawai'i Creole, Indonesian, and Japanese as target languages, the contributions explore the nexus of pragmatic knowledge,…

  11. Clinical outcomes of stage I and IIA non-small cell lung cancer patients treated with stereotactic body radiotherapy using a real-time tumor-tracking radiotherapy system.

    PubMed

    Katoh, Norio; Soda, Itaru; Tamamura, Hiroyasu; Takahashi, Shotaro; Uchinami, Yusuke; Ishiyama, Hiromichi; Ota, Kiyotaka; Inoue, Tetsuya; Onimaru, Rikiya; Shibuya, Keiko; Hayakawa, Kazushige; Shirato, Hiroki

    2017-01-05

    To investigate the clinical outcomes of stage I and IIA non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT) using a real-time tumor-tracking radiotherapy (RTRT) system. Patterns-of-care in SBRT using RTRT for histologically proven, peripherally located, stage I and IIA NSCLC was retrospectively investigated in four institutions by an identical clinical report format. Patterns-of-outcomes was also investigated in the same manner. From September 2000 to April 2012, 283 patients with 286 tumors were identified. The median age was 78 years (52-90) and the maximum tumor diameters were 9 to 65 mm with a median of 24 mm. The calculated biologically effective dose (10) at the isocenter using the linear-quadratic model was from 66 Gy to 126 Gy with a median of 106 Gy. With a median follow-up period of 28 months (range 0-127), the overall survival rate for the entire group, for stage IA, and for stage IB + IIA was 75%, 79%, and 65% at 2 years, and 64%, 70%, and 50% at 3 years, respectively. In the multivariate analysis, the favorable predictive factor was female for overall survival. There were no differences between the clinical outcomes at the four institutions. Grade 2, 3, 4, and 5 radiation pneumonitis was experienced by 29 (10.2%), 9 (3.2%), 0, and 0 patients. The subgroup analyses revealed that compared to margins from gross tumor volume (GTV) to planning target volume (PTV) ≥ 10 mm, margins < 10 mm did not worsen the overall survival and local control rates, while reducing the risk of radiation pneumonitis. This multi-institutional retrospective study showed that the results were consistent with the recent patterns-of-care and patterns-of-outcome analysis of SBRT. A prospective study will be required to evaluate SBRT using a RTRT system with margins from GTV to PTV < 10mm.

  12. Is a Clinical Target Volume (CTV) Necessary in the Treatment of Lung Cancer in the Modern Era Combining 4-D Imaging and Image-guided Radiotherapy (IGRT)?

    PubMed

    Kilburn, Jeremy M; Lucas, John T; Soike, Michael H; Ayala-Peacock, Diandra N; Blackstock, Arthur W; Hinson, William H; Munley, Michael T; Petty, William J; Urbanic, James J

    2016-01-23

    We hypothesized that omission of clinical target volumes (CTV) in lung cancer radiotherapy would not compromise control by determining retrospectively if the addition of a CTV would encompass the site of failure. Stage II-III patients were treated from 2009-2012 with daily cone-beam imaging and a 5 mm planning target volume (PTV) without a CTV. PTVs were expanded 1 cm and termed CTVretro. Recurrences were scored as 1) within the PTV, 2) within CTVretro, or 3) outside the PTV. Locoregional control (LRC), distant control (DC), progression-free survival (PFS), and overall survival (OS) were estimated. Among 110 patients, Stage IIIA 57%, IIIB 32%, IIA 4%, and IIB 7%. Eighty-six percent of Stage III patients received chemotherapy. Median dose was 70 Gy (45-74 Gy) and fraction size ranged from 1.5-2.7 Gy. Median follow-up was 12 months, median OS was 22 months (95% CI 19-30 months), and LRC at two years was 69%. Fourteen local and eight regional events were scored with two CTVretro failures equating to a two-year CTV failure-free survival of 98%. Omission of a 1 cm CTV expansion appears feasible based on only two events among 110 patients and should be considered in radiation planning.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Lin, T; Jin, L

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases ofmore » reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.« less

  14. Definition of the key target volume in radiosurgical management of arteriovenous malformations: a new dynamic concept based on angiographic circulation time.

    PubMed

    Valle, Ramiro Del; Zenteno, Marco; Jaramillo, José; Lee, Angel; De Anda, Salvador

    2008-12-01

    The cumulative experience worldwide indicates complete radiosurgical obliteration rates of brain arteriovenous malformations (AVMs) ranging from 35 to 90%. The purpose of this study was to propose a strategy to increase the obliteration rate for AVMs through the dynamic definition of the key target volume (KTV). A prospective series of patients harboring an AVM was assessed using digital subtraction angiography in which a digital counter was used to measure the several stages of the frame-by-frame circulation time. All the patients were analyzed using dynamic measurement planning to define the KTV, corresponding to the volume of the shunt with the least vascular resistance and the earliest venous drainage. All patients underwent catheter-based angiography, a subgroup was additionally assessed by means of a superselective catheterization, and among these a further subgroup received embolization. The shunts were also categorized according to their angioarchitectural type: fistulous, plexiform, or mixed. The authors applied the radiosurgery-based grading system (RBGS) as well to find a correlation with the obliteration rate. This series includes 44 patients treated by radiosurgery; global angiography was performed for all patients, including dynamic measurement planning. Eighty-four percent of them underwent superselective catheterization, and 50% of the total population underwent embolization. In the embolized arm of the study, the pretreatment volume was up to 120 ml. In patients with a single treatment, the mean volume was 8.5 ml, and the median volume was 6.95 +/- 4.56 ml (mean +/- standard deviation), with a KTV of up to 15 ml. For prospectively staged radiosurgery, the mean KTV was 28 ml. The marginal radiation dose was 18-22 Gy, with a mean of dose 20 Gy. The mean RBGS score was 1.70. The overall obliteration rate was 91%, including the repeated radiosurgery group (4 patients), in which 100% showed complete obliteration. The overall permanent deficit was 2 of

  15. A dual resolution measurement based Monte Carlo simulation technique for detailed dose analysis of small volume organs in the skull base region

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi

    2014-11-01

    The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose

  16. Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: optimization of treatment algorithms for locally advanced pancreatic cancer.

    PubMed

    Kessel, Kerstin A; Habermehl, Daniel; Jäger, Andreas; Floca, Ralf O; Zhang, Lanlan; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E

    2013-06-07

    In radiation oncology recurrence analysis is an important part in the evaluation process and clinical quality assurance of treatment concepts. With the example of 9 patients with locally advanced pancreatic cancer we developed and validated interactive analysis tools to support the evaluation workflow. After an automatic registration of the radiation planning CTs with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence and the distance between the boost and recurrence volume. We calculated the percentage of the recurrence volume within the 80%-isodose volume and compared it to the location of the recurrence within the boost volume, boost + 1 cm, boost + 1.5 cm and boost + 2 cm volumes. Recurrence analysis of 9 patients demonstrated that all recurrences except one occurred within the defined GTV/boost volume; one recurrence developed beyond the field border/outfield. With the defined distance volumes in relation to the recurrences, we could show that 7 recurrent lesions were within the 2 cm radius of the primary tumor. Two large recurrences extended beyond the 2 cm, however, this might be due to very rapid growth and/or late detection of the tumor progression. The main goal of using automatic analysis tools is to reduce time and effort conducting clinical analyses. We showed a first approach and use of a semi-automated workflow for recurrence analysis, which will be continuously optimized. In conclusion, despite the limitations of the automatic calculations we contributed to in-house optimization of subsequent study concepts based on an improved and validated target volume definition.

  17. Target volume geometric change and/or deviation from the cranium during fractionated stereotactic radiotherapy for brain metastases: potential pitfalls in image guidance based on bony anatomy alignment.

    PubMed

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2014-12-01

    This study sought to evaluate the potential geometrical change and/or displacement of the target relative to the cranium during fractionated stereotactic radiotherapy (FSRT) for treating newly developed brain metastases. For 16 patients with 21 lesions treated with image-guided frameless FSRT in 5 or 10 fractions using a 6-degree-of-freedom image guidance system-integrated platform, the unenhanced computed tomography or T2-weighted magnetic resonance images acquired until the completion of FSRT were fused to the planning image datasets for comparison. Significant change was defined as ≥3-mm change in the tumour diameter or displacement of the tumour centroid. FSRT was started 1 day after planning image acquisition. Tumour shrinkage, deviation and both were observed in 2, 1 and 1 of the 21 lesions, respectively, over a period of 7-13 days. Tumour shrinkage or deviation resulted in an increase or decrease in the marginal dose to the tumour, respectively, and a substantial increase in the irradiated volume for the surrounding tissue irrespective of the pattern of alteration. No obvious differences in the clinical and treatment characteristics were noted among the populations with or without significant changes in tumour volume or position. Target deformity and/or deviation can unexpectedly occur even during relatively short-course FSRT, inevitably leading to a gradual discrepancy between the planned and actually delivered doses to the tumour and surrounding tissue. To appropriately weigh the treatment outcome against the planned dose distribution, target deformity and/or deviation should also be considered in addition to the immobilisation accuracy, as image guidance with bony anatomy alignment does not necessarily guarantee accurate target localisation until completion of FSRT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  18. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    PubMed

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.

  19. Spatial and dose–response analysis of fibrotic lung changes after stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Yevegeniy; Diot, Quentin; Kavanagh, Brian

    2013-08-15

    Purpose: Stereotactic body radiation therapy (SBRT) is becoming the standard of care for early stage nonoperable lung cancers. Accurate dose–response modeling is challenging for SBRT because of the decreased number of clinical toxicity events. As a surrogate for a clinical toxicity endpoint, studies have proposed to use radiographic changes in follow up computed tomography (CT) scans to evaluate lung SBRT normal tissue effects. The purpose of the current study was to use local fibrotic lung regions to spatially and dosimetrically evaluate lung changes in patients that underwent SBRT.Methods: Forty seven SBRT patients treated at our institution from 2003 to 2009more » were used for the current study. Our patient cohort had a total of 148 follow up CT scans ranging from 3 to 48 months post-therapy. Post-treatment scans were binned into intervals of 3, 6, 12, 18, 24, 30, and 36 months after the completion of treatment. Deformable image registration was used to align the follow up CT scans with the pretreatment CT and dose distribution. Areas of visible fibrotic changes were contoured. The centroid of each gross tumor volume (GTV) and contoured fibrosis volume was calculated and the fibrosis volume location and movement (magnitude and direction) relative to the GTV and 30 Gy isodose centroid were analyzed. To perform a dose–response analysis, each voxel in the fibrosis volume was sorted into 10 Gy dose bins and the average CT number value for each dose bin was calculated. Dose–response curves were generated by plotting the CT number as a function of dose bin and time posttherapy.Results: Both fibrosis and GTV centroids were concentrated in the upper third of the lung. The average radial movement of fibrosis centroids relative to the GTV centroids was 2.6 cm with movement greater than 5 cm occurring in 11% of patients. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. The authors observed a CT number

  20. Anatomic and dosimetric changes in patients with head and neck cancer treated with an integrated MRI-tri-60Co teletherapy device.

    PubMed

    Raghavan, Govind; Kishan, Amar U; Cao, Minsong; Chen, Allen M

    2016-11-01

    Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri- 60 Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66-70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5-72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92-2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future.

  1. Anatomic and dosimetric changes in patients with head and neck cancer treated with an integrated MRI-tri-60Co teletherapy device

    PubMed Central

    Raghavan, Govind; Kishan, Amar U; Cao, Minsong

    2016-01-01

    Objective: Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. Methods: 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri-60Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66–70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Results: Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5–72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92–2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Conclusion: Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future. PMID:27653787

  2. SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Gallmeier, Franz X; Rennich, Mark J

    2016-01-01

    Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less

  3. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, James T.; Miller, John R.

    1984-01-01

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  4. Set-up uncertainties: online correction with X-ray volume imaging.

    PubMed

    Kataria, Tejinder; Abhishek, Ashu; Chadha, Pranav; Nandigam, Janardhan

    2011-01-01

    To determine interfractional three-dimensional set-up errors using X-ray volumetric imaging (XVI). Between December 2007 and August 2009, 125 patients were taken up for image-guided radiotherapy using online XVI. After matching of reference and acquired volume view images, set-up errors in three translation directions were recorded and corrected online before treatment each day. Mean displacements, population systematic (Σ), and random (σ) errors were calculated and analyzed using SPSS (v16) software. Optimum clinical target volume (CTV) to planning target volume (PTV) margin was calculated using Van Herk's (2.5Σ + 0.7 σ) and Stroom's (2Σ + 0.7 σ) formula. Patients were grouped in 4 cohorts, namely brain, head and neck, thorax, and abdomen-pelvis. The mean vector displacement recorded were 0.18 cm, 0.15 cm, 0.36 cm, and 0.35 cm for brain, head and neck, thorax, and abdomen-pelvis, respectively. Analysis of individual mean set-up errors revealed good agreement with the proposed 0.3 cm isotropic margins for brain and 0.5 cm isotropic margins for head-neck. Similarly, 0.5 cm circumferential and 1 cm craniocaudal proposed margins were in agreement with thorax and abdomen-pelvic cases. The calculated mean displacements were well within CTV-PTV margin estimates of Van Herk (90% population coverage to minimum 95% prescribed dose) and Stroom (99% target volume coverage by 95% prescribed dose). Employing these individualized margins in a particular cohort ensure comparable target coverage as described in literature, which is further improved if XVI-aided set-up error detection and correction is used before treatment.

  5. Draft Site Treatment Plan (DSTP), Volumes I and II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Amelio, J.

    1994-08-30

    Site Treatment Plans (STP) are required for facilities at which the DOE generates or stores mixed waste. This Draft Site Treatment Plan (DSTP) the second step in a three-phase process, identifies the currently preferred options for treating mixed waste at the Savannah River Site (SRS) or for developing treatment technologies where technologies do not exist or need modification. The DSTP reflects site-specific preferred options, developed with the state`s input and based on existing available information. To the extent possible, the DSTP identifies specific treatment facilities for treating the mixed waste and proposes schedules. Where the selection of specific treatment facilitiesmore » is not possible, schedules for alternative activities such as waste characterization and technology assessment are provided. All schedule and cost information presented is preliminary and is subject to change. The DSTP is comprised of two volumes: this Compliance Plan Volume and the Background Volume. This Compliance Plan Volume proposes overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) of RCRA and procedures for converting the target dates into milestones to be enforced under the Order. The more detailed discussion of the options contained in the Background Volume is provided for informational purposes only.« less

  6. [Role of 18FDG-PET/CT in the management and gross tumor volume definition for radiotherapy of head and neck cancer; single institution experiences based on long-term follow-up].

    PubMed

    Hideghéty, Katalin; Cserháti, Adrienne; Besenyi, Zsuzsanna; Zag, Levente; Gaál, Szilvia; Együd, Zsófia; Mózes, Petra; Szántó, Erika; Csenki, Melinda; Rusz, Orsolya; Varga, Zoltán; Dobi, Ágnes; Maráz, Anikó; Pávics, László; Lengyel, Zsolt

    2015-06-01

    The purpose of our work is evaluation of the impact of 18FDG-PET/CT on the complex management of locoregionally advanced (T3-4N1-3) head and neck squamous cell cancer (LAHNSC), and on the target definition for 3D conformal (3DCRT) and intensity-modulated radiotherapy (IMRT). 18FDG-PET/CT were performed on 185 patients with LAHNSC prior to radiotherapy/chemoradiation in the treatment position between 2006 and 2011. Prior to it 91 patients received induction chemotherapy (in 20 cases of these, baseline PET/CT was also available). The independently delineated CT-based gross tumor volume (GTVct) and PET/CT based ones (GTVpet) were compared. Impact of PET/CT on the treatment strategy, on tumor response evaluation to ICT, on GTV definition furthermore on overall and disease-specific survival (OS, DSS) was analysed. PET/CT revealed 10 head and neck, 2 lung cancers for 15 patients with carcinoma of unknown primary (CUP) while 3 remained unknown. Second tumors were detected in 8 (4.4%), distant metastasis in 15 (8.2%) cases. The difference between GTVct and GTVpet was significant (p=0.001). In 16 patients (14%) the GTVpet were larger than GTVct due to multifocal manifestations in the laryngo-pharyngeal regions (4 cases) or lymph node metastases (12 cases). In the majority of the cases (82 pts, 72%) PET/CT-based conturing resulted in remarkable decrease in the volume (15-20%: 4 cases, 20-50%: 46 cases, >50%: 32 cases). On the basis of the initial and post-ICT PET/CT comparison in 15/20 patients more than 50% volume reduction and in 6/20 cases complete response were achieved. After an average of 6.4 years of follow-up the OS (median: 18.3±2.6 months) and DSS (median: 25.0±4.0 months) exhibited close correlation (p=0.0001) to the GTVpet. In cases with GTVpet <10 cm3 prior to RT, DSS did not reach the median, the mean is 82.1±6.1 months, while in cases with GTVpet 10-40 cm3 the median of the DSS was 28.8±4.9 months (HR = 3.57; 95% CI: 1.5-8.3), and in those with GTVpet >40

  7. SU-F-T-497: Spatiotemporally Optimal, Personalized Prescription Scheme for Glioblastoma Patients Using the Proliferation and Invasion Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Rockhill, J; Phillips, M

    Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3more » cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without

  8. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z; Moore, J; Rosati, L

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goalmore » of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  9. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins.

    PubMed

    Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T

    2017-01-01

    To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Manning, M; Sintay, B

    Purpose: Tumor motion in lung SBRT is typically managed by creating an internal target volume (ITV) based on 4D-CT information. Another option, which may reduce lung dose and imaging artifact, is to use a breath hold (BH) during simulation and delivery. Here we evaluate the reproducibility of tumor position at repeated BH using a newly released spirometry system. Methods: Three patients underwent multiple BH CT’s at simulation. All patients underwent a BH cone beam CT (CBCT) prior to each treatment. All image sets were registered to a patient’s first simulation CT based on local bony anatomy. The gross tumor volumemore » (GTV), and the diaphragm or the apex of the lung were contoured on the first image set and expanded in 1 mm increments until the GTVs and diaphragms on all image sets were included inside an expanded structure. The GTV and diaphragm margins necessary to encompass the structures were recorded. Results: The first patient underwent 2 BH CT’s and fluoroscopy at simulation, the remaining patients underwent 3 BH CT’s at simulation. In all cases the GTV’s remained within 1 mm expansions and the diaphragms remained within 2 mm expansions on repeat scans. Each patient underwent 3 daily BH CBCT’s. In all cases the GTV’s remained within a 2 mm expansions, and the diaphragms (or lung apex in one case) remained within 2 mm expansions at daily BH imaging. Conclusions: These case studies demonstrate spirometry as an effective tool for limiting tumor motion (and imaging artifact) and facilitating reproducible tumor positioning over multiple set-ups and BH’s. This work was partially supported by Qfix.« less

  11. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafata, K; Czito, B; Palta, M

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D imagesmore » were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation

  12. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, J.T.; Miller, J.R.

    1984-08-07

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  13. Thinkers on Education. Volume 2.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the second volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  14. Thinkers on Education. Volume 1.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the first volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  15. Thinkers on Education. Volume 4.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the fourth volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  16. Continuous Positive Airway Pressure for Motion Management in Stereotactic Body Radiation Therapy to the Lung: A Controlled Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Jeffrey D.; Lawrence, Yaacov R.; Sackler School of Medicine, Tel Aviv University, Tel Aviv

    Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test.more » CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.« less

  17. What Is the Optimal Target Convective Volume in On-Line Hemodiafiltration Therapy?

    PubMed

    Canaud, Bernard; Koehler, Katrin; Bowry, Sudhir; Stuard, Stefano

    2017-01-01

    Conventional diffusion-based dialysis modalities including high-flux hemodialysis are limited in their capacity to effectively remove large uremic toxins and to improve outcomes for end-stage chronic kidney disease (ESKD) patients. By increasing convective solute transport, hemodiafiltration (HDF) enhances solute removal capacity over a broad range of middle- and large-size uremic toxins implicated in the pathophysiology of chronic kidney disease. Furthermore, by offering flexible convection volume, on-line HDF permits customizing the treatment dose to the patient's needs. In addition, convective-based modalities have been shown to improve hemodynamic stability and to reduce patients' inflammation profile - both of which are implicated in CKD morbidity and mortality. Growing clinical evidence indicates that HDF-based modalities provide ESKD patients with a number of clinical and biological benefits, including improved outcomes. Interestingly, it has recently emerged that the clinical benefits associated with HDF are positively associated with the total ultrafiltered volume per session (and per week), namely convective dose. In this chapter, we revisit the concept of convective dose and discuss the threshold value above which an improvement in ESKD patient outcome can be expected. This particular point will be addressed by stratifying the level of efficacy of convective volumes, schematically defined as minimal, optimal, personalized, and maximal. In addition, factors and best clinical practices implicated in the achievement of an optimal convective dose are reviewed. To conclude, we show how HDF differs from standard hemodialysis and why HDF offers a paradigm shift in renal replacement therapy. © 2017 S. Karger AG, Basel.

  18. A model to predict the risk of lethal nasopharyngeal necrosis after re-irradiation with intensity-modulated radiotherapy in nasopharyngeal carcinoma patients.

    PubMed

    Yu, Ya-Hui; Xia, Wei-Xiong; Shi, Jun-Li; Ma, Wen-Juan; Li, Yong; Ye, Yan-Fang; Liang, Hu; Ke, Liang-Ru; Lv, Xing; Yang, Jing; Xiang, Yan-Qun; Guo, Xiang

    2016-06-29

    For patients with nasopharyngeal carcinoma (NPC) who undergo re-irradiation with intensity-modulated radiotherapy (IMRT), lethal nasopharyngeal necrosis (LNN) is a severe late adverse event. The purpose of this study was to identify risk factors for LNN and develop a model to predict LNN after radical re-irradiation with IMRT in patients with recurrent NPC. Patients who underwent radical re-irradiation with IMRT for locally recurrent NPC between March 2001 and December 2011 and who had no evidence of distant metastasis were included in this study. Clinical characteristics, including recurrent carcinoma conditions and dosimetric features, were evaluated as candidate risk factors for LNN. Logistic regression analysis was used to identify independent risk factors and construct the predictive scoring model. Among 228 patients enrolled in this study, 204 were at risk of developing LNN based on risk analysis. Of the 204 patients treated, 31 (15.2%) developed LNN. Logistic regression analysis showed that female sex (P = 0.008), necrosis before re-irradiation (P = 0.008), accumulated total prescription dose to the gross tumor volume (GTV) ≥145.5 Gy (P = 0.043), and recurrent tumor volume ≥25.38 cm(3) (P = 0.009) were independent risk factors for LNN. A model to predict LNN was then constructed that included these four independent risk factors. A model that includes sex, necrosis before re-irradiation, accumulated total prescription dose to GTV, and recurrent tumor volume can effectively predict the risk of developing LNN in NPC patients who undergo radical re-irradiation with IMRT.

  19. Quantitative targeting maps based on experimental investigations for a branched tube model in magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Gitter, K.; Odenbach, S.

    2011-12-01

    Magnetic drug targeting (MDT), because of its high targeting efficiency, is a promising approach for tumour treatment. Unwanted side effects are considerably reduced, since the nanoparticles are concentrated within the target region due to the influence of a magnetic field. Nevertheless, understanding the transport phenomena of nanoparticles in an artery system is still challenging. This work presents experimental results for a branched tube model. Quantitative results describe, for example, the net amount of nanoparticles that are targeted towards the chosen region due to the influence of a magnetic field. As a result of measurements, novel drug targeting maps, combining, e.g. the magnetic volume force, the position of the magnet and the net amount of targeted nanoparticles, are presented. The targeting maps are valuable for evaluation and comparison of setups and are also helpful for the design and the optimisation of a magnet system with an appropriate strength and distribution of the field gradient. The maps indicate the danger of accretion within the tube and also show the promising result of magnetic drug targeting that up to 97% of the nanoparticles were successfully targeted.

  20. SU-F-T-617: Remotely Pre-Planned Stereotactic Ablative Radiation Therapy: Validation of Treatment Plan Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Bush, K; Loo, B

    Purpose: We propose a workflow to improve access to stereotactic ablative radiation therapy (SABR) for rural patients. When implemented, a separate trip to the central facility for simulation can be eliminated. Two elements are required: (1) Fabrication of custom immobilization devices to match positioning on prior diagnostic CT (dxCT). (2) Remote radiation pre-planning on dxCT, with transfer of contours/plan to simulation CT (simCT) and initiation of treatment same-day or next day. In this retrospective study, we validated part 2 of the workflow using patients already treated with SABR for upper lobe lung tumors. Methods: Target/normal structures were contoured on dxCT;more » a plan was created and approved by the physician. Structures were transferred to simCT using deformable image registration and the plan was re-optimized on simCT. Plan quality was evaluated through comparison to gold-standard structures contoured on simCT and a gold-standard plan based on these structures. Workflow-generated plan quality in this study represents a worst-case scenario as these patients were not treated using custom immobilization to match dxCT position as would be done when the workflow is implemented clinically. Results: 5/6 plans created through the pre-planning workflow were clinically acceptable. For all six plans, the gold-standard GTV received full prescription dose, along with median PTV V95%=95.2% and median PTV D95%=95.4%. Median GTV DSC=0.80, indicating high degree of similarity between the deformed and gold-standard GTV contours despite small GTV sizes (mean=3.0cc). One outlier (DSC=0.49) resulted in inadequate PTV coverage (V95%=62.9%) in the workflow plan; in clinical practice, this mismatch between deformed/gold-standard GTV would be revised by the physician after deformable registration. For all patients, normal tissue doses were comparable to the gold-standard plan and well within constraints. Conclusion: Pre-planning SABR cases on diagnostic imaging

  1. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  2. Factors influencing the difference between forecasted and actual drug sales volumes under the price-volume agreement in South Korea.

    PubMed

    Park, Sun-Young; Han, Euna; Kim, Jini; Lee, Eui-Kyung

    2016-08-01

    This study analyzed factors contributing to increases in the actual sales volumes relative to forecasted volumes of drugs under price-volume agreement (PVA) policy in South Korea. Sales volumes of newly listed drugs on the national formulary are monitored under PVA policy. When actual sales volume exceeds the pre-agreed forecasted volume by 30% or more, the drug is subject to price-reduction. Logistic regression assessed the factors related to whether drugs were the PVA price-reduction drugs. A generalized linear model with gamma distribution and log-link assessed the factors influencing the increase in actual volumes compared to forecasted volume in the PVA price-reduction drugs. Of 186 PVA monitored drugs, 34.9% were price-reduction drugs. Drugs marketed by pharmaceutical companies with previous-occupation in the therapeutic markets were more likely to be PVA price-reduction drugs than drugs marketed by firms with no previous-occupation. Drugs of multinational pharmaceutical companies were more likely to be PVA price-reduction drugs than those of domestic companies. Having more alternative existing drugs was significantly associated with higher odds of being PVA price-reduction drugs. Among the PVA price-reduction drugs, the increasing rate of actual volume compared to forecasted volume was significantly higher in drugs with clinical usefulness. By focusing the negotiation efforts on those target drugs, PVA policy can be administered more efficiently with the improved predictability of the drug sales volumes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. SU-E-J-269: Tracking of Tumor Regression for Stage III Lung Cancer Using CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, K; Biswas, T; Podder, T

    2015-06-15

    Purpose: This study is to evaluate the tumor regression over the course of EBRT treatment and to determine the difference of tumor reduction for stage III lung squamous cell cancer (SCC) and adenocarcinoma using CBCT. Methods: Twenty three stage III lung cancer patients treated in our clinic who had daily cone beam CT (CBCT) were selected for this study (16 adenocarcinoma and 7 SCC cases). Patients received prescription dose in the range of 50Gy–71.4Gy (mean =60.3Gy, median =50Gy) at 1.8Gy or 2Gy per fraction. Treatments spanned over a minimum of five weeks. Initial mean volume of the gross tumor volumemore » (GTV) was 123cc (range = 14.7cc–353.3cc). For this study, we choose six sets of CBCTs at an interval of one week, starting from the first fraction of treatment. Daily CBCTs from treatment linac computer were transferred to MIM Software version 6.0. An experienced physician contoured the primary GTV on each slices of the CBCT for these patients. Results: A consistent regression of the GTVs was observed in all patients, except in one patient (adeno case) where GTV did not change. Weekly volumetric reduction was in the range of 11.2%–16.6%. Maximum reductions were noticed in the first two weeks of the treatment cycle; mean overall (for adeno+SCC) reductions were 16.6%, 14.2% in week-1 and week-2, respectively. Mean reduction over five weeks of treatment was 49.8% (range = 0.1%–75.5%). Higher reduction was observed in SCC patients as compare to adenocarcinoma cases (54.9% vs. 47.6%); however, the difference was not statistically significant (p-value > 0.05). Conclusion: Large regression of tumors over the course of EBRT for stage III lung cancer patients was observed. Both SCC and adenocarcinoma responded well; overall reduction for SCC cases was higher. A future study is warranted for determining the co-relation between tumor volume reduction and treatment outcome.« less

  4. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer.

    PubMed

    Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun

    2016-01-01

    The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  5. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    PubMed Central

    Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models

  6. SU-G-JeP3-13: Use of Volumetric Indices to Study the Viability of Respiratory Gating in Conjunction with Abdominal Compression in the Management of Non-Small Cell Lung Cancer Tumors Using Stereotactic Body Radiation Therapy Under the Conditions of Controlled Breathing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, H; Gomez, J

    Purpose: AAPM TG-76 report advises lung patients experiencing tumor motion >5mm to use some form of motion management with even smaller limit for complex/special procedures like SBRT. Generally, either respiratory gating or abdominal compression is used for motion management. In this retrospective study, we are using an innovative index, Volumetric Indices (VI) = (GTVnn AND GTV{sub 50+}Xmm)/(GTVnn) to quantify how much of the tumor remains within 1, 2, and 3mm margins throughout the breathing cycle using GTV{sub 50+}Xmm margin on GTV{sub 50}[nn=0,10,20,…90]. Using appropriate limits, VI can provide tumor motion information and to check if RPM gates could have beenmore » used in conjunction with abdominal compression to better manage tumor motion. Methods: 64 SBRT patients with a total of 67 lung tumors were studied. 4DCT scans were taken, fully capturing tumor motion throughout the 10 phases of the breathing cycle. For each phase, Gross Tumor Volume (GTV) was segmented and appropriates structures were defined to determine VI values. For the 2mm margin, VI values less than 0.95 for peripheral lesions and 0.97 for central lesions indicate tumor movement greater than 4mm. VI values for 1mm and 3mm margins were also analyzed signifying tumor motion of 2mm & 6mm, respectively. Results: Of the 64 patients, 35 (55%) had motion greater than 4mm & could have benefited from respiratory gating. For 5/8 (63%) middle lobe lesions, 21/27 (78%) lower lobe lesions, and 10/32 (31%) upper lobe lesions, gating could have resulted in smaller ITV. 32/55 (58%) peripheral lesions and 4/12 (33%) central lesions could have had gating. Average ITV decreased by 1.25cc (11.43%) and average VI increased by 0.11. Conclusion: Out of 64 patients, 55% exhibited motion greater than 4mm even with abdominal compression. Even with abdominalcompression, lung tumors can move >4mm as the degree of pressure which a patient can tolerate, is patient specific.« less

  7. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind

    2014-08-15

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear,more » and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these

  8. Limitations of the planning organ at risk volume (PRV) concept.

    PubMed

    Stroom, Joep C; Heijmen, Ben J M

    2006-09-01

    Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  9. Youth Attitude Tracking Study. Volume 1. Spring 1980.

    DTIC Science & Technology

    1980-08-01

    JobICharacteristics 11 Active Duty Positive Propensity Respondents Target Market Profile 13 Advertising Awareness 14 ’LIAttitudes Toward Enlistment Incentives...service advertising awareness. The fact that target market men value job characteristics that pertain to improving oneself suggests that this change in copy...W,0-R143 ii4 YOUTH ATTITUDE TRACKING STUDY VOLUME i SPRING i988(U) 1/3 MARKET FACTS INC CHICAGO IL PUBLIC SECTOR RESEARCH CORP J T HEISLER AUG 80

  10. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Q; Kavanagh, B; Miften, M

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans tomore » guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent

  11. Correspondence model-based 4D VMAT dose simulation for analysis of local metastasis recurrence after extracranial SBRT

    NASA Astrophysics Data System (ADS)

    Sothmann, T.; Gauer, T.; Wilms, M.; Werner, R.

    2017-12-01

    The purpose of this study is to introduce a novel approach to incorporate patient-specific breathing variability information into 4D dose simulation of volumetric arc therapy (VMAT)-based stereotactic body radiotherapy (SBRT) of extracranial metastases. Feasibility of the approach is illustrated by application to treatment planning and motion data of lung and liver metastasis patients. The novel 4D dose simulation approach makes use of a regression-based correspondence model that allows representing patient motion variability by breathing signal-steered interpolation and extrapolation of deformable image registration motion fields. To predict the internal patient motion during treatment with only external breathing signal measurements being available, the patients’ internal motion information and external breathing signals acquired during 4D CT imaging were correlated. Combining the correspondence model, patient-specific breathing signal measurements during treatment and time-resolved information about dose delivery, reconstruction of a motion variability-affected dose becomes possible. As a proof of concept, the proposed approach is illustrated by a retrospective 4D simulation of VMAT-based SBRT treatment of ten patients with 15 treated lung and liver metastases and known clinical endpoints for the individual metastases (local metastasis recurrence yes/no). Resulting 4D-simulated dose distributions were compared to motion-affected dose distributions estimated by standard 4D CT-only dose accumulation and the originally (i.e. statically) planned dose distributions by means of GTV D98 indices (dose to 98% of the GTV volume). A potential linkage of metastasis-specific endpoints to differences between GTV D98 indices of planned and 4D-simulated dose distributions was analyzed.

  12. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Amy V.; Department of Radiation Oncology, St. Luke's-Roosevelt Hospital, New York, NY; Wortham, Angela

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical targetmore » volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the

  13. Defining the "Hostile Pelvis" for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy.

    PubMed

    Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü

    2015-07-15

    The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (Dmin), maximum dose (Dmax), and mean dose (Dmean) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (VD) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Defining the “Hostile Pelvis” for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yirmibeşoğlu Erkal, Eda, E-mail: eyirmibesoglu@yahoo.com; Karabey, Sinan; Karabey, Ayşegül

    2015-07-15

    Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less

  15. SU-E-J-221: A Novel Expansion Method for MRI Based Target Delineation in Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, B; East Carolina University, Greenville, NC; Feng, Y

    Purpose: To compare a novel bladder/rectum carveout expansion method on MRI delineated prostate to standard CT and expansion based methods for maintaining prostate coverage while providing superior bladder and rectal sparing. Methods: Ten prostate cases were planned to include four trials: MRI vs CT delineated prostate/proximal seminal vesicles, and each image modality compared to both standard expansions (8mm 3D expansion and 5mm posterior, i.e. ∼8mm) and carveout method expansions (5mm 3D expansion, 4mm posterior for GTV-CTV excluding expansion into bladder/rectum followed by additional 5mm 3D expansion to PTV, i.e. ∼1cm). All trials were planned to total dose 7920 cGy viamore » IMRT. Evaluation and comparison was made using the following criteria: QUANTEC constraints for bladder/rectum including analysis of low dose regions, changes in PTV volume, total control points, and maximum hot spot. Results: ∼8mm MRI expansion consistently produced the most optimal plan with lowest total control points and best bladder/rectum sparing. However, this scheme had the smallest prostate (average 22.9% reduction) and subsequent PTV volume, consistent with prior literature. ∼1cm MRI had an average PTV volume comparable to ∼8mm CT at 3.79% difference. Bladder QUANTEC constraints were on average less for the ∼1cm MRI as compared to the ∼8mm CT and observed as statistically significant with 2.64% reduction in V65. Rectal constraints appeared to follow the same trend. Case-by-case analysis showed variation in rectal V30 with MRI delineated prostate being most favorable regardless of expansion type. ∼1cm MRI and ∼8mm CT had comparable plan quality. Conclusion: MRI delineated prostate with standard expansions had the smallest PTV leading to margins that may be too tight. Bladder/rectum carveout expansion method on MRI delineated prostate was found to be superior to standard CT based methods in terms of bladder and rectal sparing while maintaining prostate coverage

  16. Laser Irradiated Foam Targets: Absorption and Radiative Properties

    NASA Astrophysics Data System (ADS)

    Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.

    2018-01-01

    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.

  17. Target motion tracking in MRI-guided transrectal robotic prostate biopsy.

    PubMed

    Tadayyon, Hadi; Lasso, Andras; Kaushal, Aradhana; Guion, Peter; Fichtinger, Gabor

    2011-11-01

    MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this paper: 1) is rigid registration sufficient in tracking the targets with an error smaller than the clinically significant size of prostate cancer and 2) what is the effect of the number of intraoperative slices on registration accuracy and speed? we propose multislice-to-volume registration algorithms for tracking the biopsy targets within the prostate. Three orthogonal plus additional transverse intraoperative slices are acquired in the approximate center of the prostate and registered with a high-resolution target planning volume. Both rigid and deformable scenarios were implemented. Both simulated and clinical MRI-guided robotic prostate biopsy data were used to assess tracking accuracy. average registration errors in clinical patient data were 2.6 mm for the rigid algorithm and 2.1 mm for the deformable algorithm. rigid tracking appears to be promising. Three tracking slices yield significantly high registration speed with an affordable error.

  18. Accelerated partial breast irradiation using 3D conformal radiotherapy: toxicity and cosmetic outcome.

    PubMed

    Gatti, M; Ponzone, R; Bresciani, S; Panaia, R; Kubatzki, F; Maggiorotto, F; Di Virgilio, M R; Salatino, A; Baiotto, B; Montemurro, F; Stasi, M; Gabriele, P

    2013-12-01

    The aim of this paper is to analyze the incidence of acute and late toxicity and cosmetic outcome in breast cancer patients submitted to breast conserving surgery and three-dimensional conformal radiotherapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). 84 patients were treated with 3D-CRT for APBI. This technique was assessed in patients with low risk stage I breast cancer enrolled from September 2005 to July 2011. The prescribed dose was 34/38.5 Gy delivered in 10 fractions twice daily over 5 consecutive days. Four to five no-coplanar 6 MV beams were used. In all CT scans Gross Tumor Volume (GTV) was defined around the surgical clips. A 1.5 cm margin was added by defining a Clinical Target Volume (CTV). A margin of 1 cm was added to CTV to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the NSABP/RTOG protocol. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed using the Harvard scale. Median patient age was 66 years (range 51-87). Median follow-up was 36.5 months (range 13-83). The overall incidence of acute skin toxicities was 46.4% for grade 1 and 1% for grade 2. The incidence of late toxicity was 16.7% for grade 1, 2.4% for grade 2 and 3.6% for grade 3. No grade 4 toxicity was observed. The most pronounced grade 2 late toxicity was telangiectasia, developed in three patients. Cosmetics results were excellent for 52%, good for 42%, fair for 5% and poor for 1% of the patients. There was no statistical correlation between toxicity rates and prescribed doses (p = 0.33) or irradiated volume (p = 0.45). APBI using 3D-CRT is technically feasible with very low acute and late toxicity. Long-term results are needed to assess its efficacy in reducing the incidence of breast relapse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. SU-F-J-99: Dose Accumulation and Evaluation in Lung SBRT Among All Phases of Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azcona, JD; Barbes, B; Aristu, J

    Purpose: To calculate the total planning dose on lung tumors (GTV) by accumulating the dose received in all respiration phases. Methods: A patient 4D planning CT (phase-binned, from a Siemens Somatom CT) was used to locate the GTV of a lung tumor in all respiratory phases with Pinnacle (v9.10). GTV contours defined in all phases were projected to the reference phase, where the ITV was defined. Centroids were calculated for all the GTV projections. No deformation or rotation was taken into account. The only GTV contour as defined in the reference phase was voxelized to track each voxel individually. Wemore » accumulated the absorbed dose in different phases on each voxel. A 3DCRT and a VMAT plan were designed on the reference phase fulfilling the ITV dosimetric requirements, using the 10MV FFF photon model from an Elekta Versa linac. ITV-to-PTV margins were set to 5mm. In-house developed MATLAB code was used for tumor voxeling and dose accumulation, assuming that the dose distribution planned in the reference phase behaved as a “dose-cloud” during patient breathing. Results: We tested the method on a patient 4DCT set of images exhibiting limited tumor motion (<5mm). For the 3DCRT plan, D95 was calculated for the GTV with motion and for the ITV, showing an agreement of 0.04%. For the VMAT plan, we calculated the D95 for every phase as if the GTV in that phase had received the whole treatment. Differences in D95 for all phases are within 1%, and estimate the potential interplay effect during delivery. Conclusion: A method for dose accumulation and assessment was developed that can compare GTV motion with ITV dosage, and estimate the potential interplay effect for VMAT plans. Work in progress includes the incorporation of deformable image registration and 4D CBCT dose calculation for dose reconstruction and assessment during treatment.« less

  20. A comparative study of the target volume definition in radiotherapy with «Slow CT Scan» vs. 4D PET/CT Scan in early stages non-small cell lung cancer.

    PubMed

    Molla, M; Anducas, N; Simó, M; Seoane, A; Ramos, M; Cuberas-Borros, G; Beltran, M; Castell, J; Giralt, J

    To evaluate the use of 4D PET/CT to quantify tumor respiratory motion compared to the «Slow»-CT (CTs) in the radiotherapy planning process. A total of 25 patients with inoperable early stage non small cell lung cancer (NSCLC) were included in the study. Each patient was imaged with a CTs (4s/slice) and 4D PET/CT. The adequacy of each technique for respiratory motion capture was evaluated using the volume definition for each of the following: Internal target volume (ITV) 4D and ITVslow in relation with the volume defined by the encompassing volume of 4D PET/CT and CTs (ITVtotal). The maximum distance between the edges of the volume defined by each technique to that of the total volume was measured in orthogonal beam's eye view. The ITV4D showed less differences in relation with the ITVtotal in both the cranio-caudal and the antero-posterior axis compared to the ITVslow. The maximum differences were 0.36mm in 4D PET/CTand 0.57mm in CTs in the antero-posterior axis. 4D PET/CT resulted in the definition of more accurate (ITV4D/ITVtotal 0.78 vs. ITVs/ITVtotal 0.63), and larger ITVs (19.9 cc vs. 16.3 cc) than those obtained with CTs. Planning with 4D PET/CT in comparison with CTs, allows incorporating tumor respiratory motion and improving planning radiotherapy of patients in early stages of lung cancer. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  1. A scaling relationship for impact-induced melt volume

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Rubie, D. C.; Melosh, H., IV; Jacobson, S. A.; Golabek, G.; Nimmo, F.; Morbidelli, A.

    2016-12-01

    During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. The impactor's core sinks through the molten part of the target mantle (magma ocean) and experiences metal-silicate partitioning (e.g., Stevenson, 1990). For understanding the chemical evolution of the planetary mantle and core, we need to determine the impact-induced melt volume because the partitioning strongly depends on the ranges of the pressures and temperatures within the magma ocean. Previous studies have investigated the effects of small impacts (i.e. impact cratering) on melt volume, but those for giant impacts are not well understood yet. Here, we perform giant impact simulations to derive a scaling law for melt volume as a function of impact velocity, impact angle, and impactor-to-target mass ratio. We use two different numerical codes, namely smoothed particle hydrodynamics we developed (SPH, a particle method) and the code iSALE (a grid-based method) to compare their outcomes. Our simulations show that these two codes generally agree as long as the same equation of state is used. We also find that some of the previous studies developed for small impacts (e.g., Abramov et al., 2012) overestimate giant impact melt volume by orders of magnitudes partly because these models do not consider self-gravity of the impacting bodies. Therefore, these models may not be extrapolated to large impacts. Our simulations also show that melt volume can be scaled by the total mass of the system. In this presentation, we further discuss geochemical implications for giant impacts on planets, including Earth and Mars.

  2. The ADVANCE project : formal evaluation of the targeted deployment. Volume 2

    DOT National Transportation Integrated Search

    1997-01-01

    This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...

  3. Time to achieve target mean arterial pressure during resuscitation from experimental anaphylactic shock in an animal model. A comparison of adrenaline alone or in combination with different volume expanders.

    PubMed

    Tajima, K; Zheng, F; Collange, O; Barthel, G; Thornton, S N; Longrois, D; Levy, B; Audibert, G; Malinovsky, J M; Mertes, P M

    2013-11-01

    Anaphylactic shock is a rare, but potentially lethal complication, combining life-threatening circulatory failure and massive fluid shifts. Treatment guidelines rely on adrenaline and volume expansion by intravenous fluids, but there is no solid evidence for the choice of one specific type of fluid over another. Our purpose was to compare the time to achieve target mean arterial pressure upon resuscitation using adrenaline alone versus adrenaline with different resuscitation fluids in an animal model and to compare the tissue oxygen pressures (PtiO2) with the various strategies. Twenty-five ovalbumin-sensitised Brown Norway rats were allocated to five groups after anaphylactic shock induction: vehicle (CON), adrenaline alone (AD), or adrenaline with isotonic saline (AD+IS), hydroxyethyl starch (AD+HES) or hypertonic saline (AD+HS). Time to reach a target mean arterial pressure value of 75 mmHg, cardiac output, skeletal muscle PtiO2, lactate/pyruvate ratio and cumulative doses of adrenaline were recorded. Non-treated rats died within 15 minutes. The target mean arterial pressure value was reached faster with AD+HES (median: 10 minutes, range: 7.5 to 12.5 minutes) and AD+IS (median: 17.5 minutes, range: 5 to 25 minutes) versus adrenaline alone (median: 25 minutes, range: 20-30 minutes). There were also reduced adrenaline requirements in these groups. The skeletal muscle PtiO2 was restored only in the AD+HES group. Although direct extrapolation to humans should be made with caution, our results support the combined use of adrenaline and volume expansion for resuscitation from anaphylactic shock. When used with adrenaline the most effective fluid was hydroxyethyl starch, whereas hypertonic saline was the least effective.

  4. Dynamic magnetic resonance imaging assessment of vascular targeting agent effects in rat intracerebral tumor models

    PubMed Central

    Muldoon, Leslie L.; Gahramanov, Seymur; Li, Xin; Marshall, Deborah J.; Kraemer, Dale F.; Neuwelt, Edward A.

    2011-01-01

    We used dynamic MRI to evaluate the effects of monoclonal antibodies targeting brain tumor vasculature. Female athymic rats with intracerebral human tumor xenografts were untreated or treated with intetumumab, targeting αV-integrins, or bevacizumab, targeting vascular endothelial growth factor (n = 4–6 per group). Prior to treatment and at 1, 3, and 7 days after treatment, we performed standard MRI to assess tumor volume, dynamic susceptibility-contrast MRI with the blood-pool iron oxide nanoparticle ferumoxytol to evaluate relative cerebral blood volume (rCBV), and dynamic contrast-enhanced MRI to assess tumor vascular permeability. Tumor rCBV increased by 27 ± 13% over 7 days in untreated rats; intetumumab increased tumor rCBV by 65 ± 10%, whereas bevacizumab reduced tumor rCBV by 31 ± 10% at 7 days (P < .001 for group and day). Similarly, intetumumab increased brain tumor vascular permeability compared with controls at 3 and 7 days after treatment, whereas bevacizumab decreased tumor permeability within 24 hours (P = .0004 for group, P = .0081 for day). All tumors grew over the 7-day assessment period, but bevacizumab slowed the increase in tumor volume on MRI. We conclude that the vascular targeting agents intetumumab and bevacizumab had diametrically opposite effects on dynamic MRI of tumor vasculature in rat brain tumor models. Targeting αV-integrins increased tumor vascular permeability and blood volume, whereas bevacizumab decreased both measures. These findings have implications for chemotherapy delivery and antitumor efficacy. PMID:21123368

  5. TH-A-BRF-04: Intra-Fraction Motion Characterization for Early Stage Rectal Cancer Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleijnen, J; Asselen, B; Burbach, M

    2014-06-15

    Purpose: To investigate the intra-fraction motion in patients with early stage rectal cancer using cine-MRI. Methods: Sixteen patient diagnosed with early stage rectal cancer underwent 1.5 T MR imaging prior to each treatment fraction of their short course radiotherapy (n=76). During each scan session, three 2D sagittal cine-MRIs were performed: at the beginning (Start), after 9:30 minutes (Mid), and after 18 minutes (End). Each cine-MRI has a duration of one minute at 2Hz temporal resolution, resulting in a total of 3:48 hours of cine-MRI. Additionally, standard T2-weighted (T2w) imaging was performed. Clinical target volume (CTV) an tumor (GTV) were delineatedmore » on the T2w scan and transferred to the first time-point of each cine-MRI scan. Within each cine-MRI, the first frame was registered to the remaining frames of the scan, using a non-rigid B-spline registration. To investigate potential drifts, a similar registration was performed between the first frame of the Start and End scans.To evaluate the motion, the distances by which the edge pixels of the delineations move in anterior-posterior (AP) and cranial-caudal (CC) direction, were determined using the deformation field of the registrations. The distance which incorporated 95% of these edge pixels (dist95%) was determined within each cine-MRI, and between Start- End scans, respectively. Results: Within a cine-MRI, we observed an average dist95% for the CTV of 1.3mm/1.5mm (SD=0.7mm/0.6mm) and for the GTV of 1.2mm/1.5mm (SD=0.8mm/0.9mm), in respectively AP/CC. For the CTV motion between the Start and End scan, an average dist95% of 5.5mm/5.3mm (SD=3.1mm/2.5mm) was found, in respectively AP/CC. For the GTV motion, an average dist95% of 3.6mm/3.9mm (SD=2.2mm/2.5mm) was found in AP/CC, respectively. Conclusion: Although intra-fraction motion within a one minute cine-MRI is limited, substantial intra-fraction motion was observed within the 18 minute time period between the Start and End cine-MRI.« less

  6. Predicting Nonauditory Adverse Radiation Effects Following Radiosurgery for Vestibular Schwannoma: A Volume and Dosimetric Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark

    2012-04-01

    Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; andmore » trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.« less

  7. Focusing analytes from 50 μL into 500 pL: On-chip focusing from large sample volumes using isotachophoresis.

    PubMed

    van Kooten, Xander F; Truman-Rosentsvit, Marianna; Kaigala, Govind V; Bercovici, Moran

    2017-09-05

    The use of on-chip isotachophoresis assays for diagnostic applications is often limited by the small volumes of standard microfluidic channels. Overcoming this limitation is particularly important for detection of 'discrete' biological targets (such as bacteria) at low concentrations, where the volume of processed liquid in a standard microchannel might not contain any targets. We present a novel microfluidic chip that enables ITP focusing of target analytes from initial sample volumes of 50 μL into a concentrated zone with a volume of 500 pL, corresponding to a 100,000-fold increase in mean concentration, and a 300,000-fold increase in peak concentration. We present design considerations for limiting sample dispersion in such large-volume focusing (LVF) chips and discuss the trade-off between assay time and Joule heating, which ultimately governs the scalability of LVF designs. Finally, we demonstrate a 100-fold improvement of ITP focusing performance in the LVF chip as compared to conventional microchannels, and apply this enhancement to achieve highly sensitive detection of both molecular targets (DNA, down to 10 fM) and whole bacteria (down to 100 cfu/mL).

  8. Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and Reference Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.

    1994-12-22

    The Compliance Plan Volume provides overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) and contains procedures to establish milestones to be enforced under the Order. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume and is provided for informational purposes only.

  9. A pilot prospective feasibility study of organ-at-risk definition using Target Contour Testing/Instructional Computer Software (TaCTICS), a training and evaluation platform for radiotherapy target delineation.

    PubMed

    Kalpathy-Cramer, Jayashree; Bedrick, Steven D; Boccia, Kelly; Fuller, Clifton D

    2011-01-01

    Target volume delineation is a critical, but time-consuming step in the creation of radiation therapy plans used in the treatment of many types of cancer. However, variability in target volume definitions can introduce substantial differences in resulting doses to tumors and critical structures. We developed TaCTICS, a web-based educational training software application targeted towards non-expert users. We report on a small, prospective study to evaluate the utility of this online tool in improving conformance of regions-of-interest (ROIs) with a reference set. Eight residents contoured a set of structures for a head-and-neck cancer case. Subsequently, they were provided access to TaCTICS as well as contouring atlases to allow evaluation of their contours in reference to other users as well as reference ROIs. The residents then contoured a second case using these resources. Volume overlap metrics between the users showed a substantial improvement following the intervention. Additionally, 66% of users reported that they found TaCTICS to be a useful educational tool and all participants reported they would like to use TaCTICS to track their contouring skills over the course of their residency.

  10. More Accurate Definition of Clinical Target Volume Based on the Measurement of Microscopic Extensions of the Primary Tumor Toward the Uterus Body in International Federation of Gynecology and Obstetrics Ib-IIa Squamous Cell Carcinoma of the Cervix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wen-Jia; Wu, Xiao; Xue, Ren-Liang

    Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopicmore » extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.« less

  11. Raytracing and Direct-Drive Targets

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Bates, Jason; Fyfe, David; Eimerl, David

    2013-10-01

    Accurate simulation of the effects of laser imprinting and drive asymmetries in directly driven targets requires the ability to distinguish between raytrace noise and the intensity structure produced by the spatial and temporal incoherence of optical smoothing. We have developed and implemented a smoother raytrace algorithm for our mpi-parallel radiation hydrodynamics code, FAST3D. The underlying approach is to connect the rays into either sheets (in 2D) or volume-enclosing chunks (in 3D) so that the absorbed energy distribution continuously covers the propagation area illuminated by the laser. We will describe the status and show the different scalings encountered in 2D and 3D problems as the computational size, parallelization strategy, and number of rays is varied. Finally, we show results using the method in current NIKE experimental target simulations and in proposed symmetric and polar direct-drive target designs. Supported by US DoE/NNSA.

  12. SU-C-210-01: Are Clinically Relevant Dosimetric Endpoints Significantly Better with Gating of Lung SBRT Vs. ITV-Based Treatment?: Results of a Large Cohort Investigation Analyzing Predictive Dosimetric Indicators as a Function of Tumor Volume and Motion Amplitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Zhao, B; Ajlouni, M

    2015-06-15

    Purpose: To quantitatively compare patient internal target volume (ITV)-based plans with retrospectively generated gated plans to evaluate potential dosimetric improvements in lung toxicity from gated radiotherapy. Methods: Evaluation was conducted for 150 stereotactic body radiation therapy (SBRT) treatment plans for 128 early-stage (T1–T3, <5cm) NSCLC patients. PTV margins were: ITV+5 mm (ITV-plan) and GTV+5 mm (Gated-plan). ITV-based and gated treatment plans were compared on the same free-breathing CT. ITV-based plan constraints were used to re-optimize and recalculate new gated plans. Plans were generated for 3 fractionation regimens: 3×18Gy, 4×12Gy (original), and 5×10Gy. Physical dose was converted to equivalent dose inmore » 2Gy fractions (EQD2), which was used to determine mean lung dose (MLD) and percent volume of lung receiving ≥20Gy (V20). MLD and V20 differences between gating and ITV-based plans were analyzed as a function of both three-dimensional (3D) motion and tumor volume. The low dose region, V5, was also evaluated. Results: MLD and V20 differences between gated and ITV-based plans were larger for lower (1.48±1.32Gy and 1.44±1.29%) than for upper lobe tumors (0.89±0.74Gy and 0.92±0.71%) due to smaller tumor motion (2.9±3.4mm) compared to lower lobe tumors (8.1±6.1mm). Average differences of <1–2% were noted in V5 between ITV and gated plans. Dosimetric differences between gating and ITV-based methods increased with increasing tumor motion and decreasing tumor volume. Overall, average MLD (8.04±3.92Gy) and V20 (8.29±4.33%) values for ITV-based plans were already well below clinical guidelines, even for the 3×18Gy dose scheme, for which largest differences were noted relative to gated plans. Similar results were obtained for 5×10Gy and 4×12Gy regimens. Conclusion: Clinically relevant improvement in pulmonary toxicity, based on predictors of radiation pneumonitis (MLD and V20) was not generally observed, though improvement for

  13. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  14. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  15. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  16. High-Target Versus Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial.

    PubMed

    Vedel, Anne G; Holmgaard, Frederik; Rasmussen, Lars S; Langkilde, Annika; Paulson, Olaf B; Lange, Theis; Thomsen, Carsten; Olsen, Peter Skov; Ravn, Hanne Berg; Nilsson, Jens C

    2018-04-24

    Cerebral injury is an important complication after cardiac surgery with the use of cardiopulmonary bypass. The rate of overt stroke after cardiac surgery is 1% to 2%, whereas silent strokes, detected by diffusion-weighted magnetic resonance imaging, are found in up to 50% of patients. It is unclear whether a higher versus a lower blood pressure during cardiopulmonary bypass reduces cerebral infarction in these patients. In a patient- and assessor-blinded randomized trial, we allocated patients to a higher (70-80 mm Hg) or lower (40-50 mm Hg) target for mean arterial pressure by the titration of norepinephrine during cardiopulmonary bypass. Pump flow was fixed at 2.4 L·min -1 ·m -2 . The primary outcome was the total volume of new ischemic cerebral lesions (summed in millimeters cubed), expressed as the difference between diffusion-weighted imaging conducted preoperatively and again postoperatively between days 3 and 6. Secondary outcomes included diffusion-weighted imaging-evaluated total number of new ischemic lesions. Among the 197 enrolled patients, mean (SD) age was 65.0 (10.7) years in the low-target group (n=99) and 69.4 (8.9) years in the high-target group (n=98). Procedural risk scores were comparable between groups. Overall, diffusion-weighted imaging revealed new cerebral lesions in 52.8% of patients in the low-target group versus 55.7% in the high-target group ( P =0.76). The primary outcome of volume of new cerebral lesions was comparable between groups, 25 mm 3 (interquartile range, 0-118 mm 3 ; range, 0-25 261 mm 3 ) in the low-target group versus 29 mm 3 (interquartile range, 0-143 mm 3 ; range, 0-22 116 mm 3 ) in the high-target group (median difference estimate, 0; 95% confidence interval, -25 to 0.028; P =0.99), as was the secondary outcome of number of new lesions (1 [interquartile range, 0-2; range, 0-24] versus 1 [interquartile range, 0-2; range, 0-29] respectively; median difference estimate, 0; 95% confidence interval, 0-0; P =0

  17. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, N. Andres; Maudsley, Andrew A.; Gupta, Rakesh K.

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients.more » Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based

  18. MO-FG-BRA-04: A Novel Time Weighted Density Correction for Stereotactic Lung Radiotherapy: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohatt, D; Malhotra, H

    Purpose: Conventional treatment plans for lung radiotherapy are created using either the free breathing (FB) scheme which represents the tumor at an arbitrary breathing phase of the patient’s respiratory cycle, or the average computed tomography (ACT) intensity projection over 10-binned phases. Neither method is entirely accurate because of the absence of time dependence of tumor movement. In the present “Hybrid” method, the HU of tumor in 3D space is determined by relative weighting of the HU of the tumor and lung in proportion to the time they spend at that location during the entire breathing cycle. Methods: A Quasar respiratorymore » motion phantom was employed to simulate lung tumor movement. Utilizing 4DCT image scans, volumetric modulated arc therapy (VMAT) plans were generated for three treatment planning scenarios which included conventional FB and ACT schemes, along with a third alternative Hybrid approach. Our internal target volume (ITV) hybrid structure was created using Boolean operation in Eclipse (ver. 11) treatment planning system, where independent sub-regions created by the gross tumor volume (GTV) overlap from the 10 motion phases were each assigned a time weighted CT value. The dose-volume-histograms (DVH) for each scheme were compared and analyzed. Results: Using our hybrid technique, we have demonstrated a reduction of 1.9% – 3.4% in total monitor units with respect to conventional treatment planning strategies, along with a 6 fold improvement in high dose spillage over the FB plan. The higher density ACT and Hybrid schemes also produced a slight enhancement in target conformity and reduction in low dose spillage. Conclusion: All treatment plans created in this study exceeded RTOG protocol criteria. Our results determine the free breathing approach yields an inaccurate account of the target treatment density. A significant decrease in unnecessary lung irradiation can be achieved by implementing Hybrid HU method with ACT method

  19. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition.

    PubMed

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru; Ueda, Takashi; Kohno, Ryosuke; Nishio, Teiji; Arahira, Satoko; Motegi, Atsushi; Zenda, Sadamoto; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi

    2013-12-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n = 21) and/or N2/3 (n = 24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer.

  20. Moderator's view: High-volume plasma exchange: pro, con and consensus.

    PubMed

    Kaplan, Andre A

    2017-09-01

    I have been asked to comment on the pro and con opinions regarding high-volume plasma exchange. The authors of both positions have provided cogent arguments and a reasonable approach to choosing the exchange volume for any given therapeutic plasma exchange. The major issue of relevance in this discussion is the nature of the toxins targeted for removal. These parameters include molecular weight, the apparent volume of distribution, the degree of protein binding, the biologic and chemical half-life, and the severity and rapidity of its toxicity. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. SU-F-J-115: Target Volume and Artifact Evaluation of a New Device-Less 4D CT Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R; Pan, T

    2016-06-15

    Purpose: 4DCT is often used in radiation therapy treatment planning to define the extent of motion of the visible tumor (IGTV). Recent available software allows 4DCT images to be created without the use of an external motion surrogate. This study aims to compare this device-less algorithm to a standard device-driven technique (RPM) in regards to artifacts and the creation of treatment volumes. Methods: 34 lung cancer patients who had previously received a cine 4DCT scan on a GE scanner with an RPM determined respiratory signal were selected. Cine images were sorted into 10 phases based on both the RPM signalmore » and the device-less algorithm. Contours were created on standard and device-less maximum intensity projection (MIP) images using a region growing algorithm and manual adjustment to remove other structures. Variations in measurements due to intra-observer differences in contouring were assessed by repeating a subset of 6 patients 2 additional times. Artifacts in each phase image were assessed using normalized cross correlation at each bed position transition. A score between +1 (artifacts “better” in all phases for device-less) and −1 (RPM similarly better) was assigned for each patient based on these results. Results: Device-less IGTV contours were 2.1 ± 1.0% smaller than standard IGTV contours (not significant, p = 0.15). The Dice similarity coefficient (DSC) was 0.950 ± 0.006 indicating good similarity between the contours. Intra-observer variation resulted in standard deviations of 1.2 percentage points in percent volume difference and 0.005 in DSC measurements. Only two patients had improved artifacts with RPM, and the average artifact score (0.40) was significantly greater than zero. Conclusion: Device-less 4DCT can be used in place of the standard method for target definition due to no observed difference between standard and device-less IGTVs. Phase image artifacts were significantly reduced with the device-less method.« less

  3. Component extraction on CT volumes of assembled products using geometric template matching

    NASA Astrophysics Data System (ADS)

    Muramatsu, Katsutoshi; Ohtake, Yutaka; Suzuki, Hiromasa; Nagai, Yukie

    2017-03-01

    As a method of non-destructive internal inspection, X-ray computed tomography (CT) is used not only in medical applications but also for product inspection. Some assembled products can be divided into separate components based on density, which is known to be approximately proportional to CT values. However, components whose densities are similar cannot be distinguished using the CT value driven approach. In this study, we proposed a new component extraction algorithm from the CT volume, using a set of voxels with an assigned CT value with the surface mesh as the template rather than the density. The method has two main stages: rough matching and fine matching. At the rough matching stage, the position of candidate targets is identified roughly from the CT volume, using the template of the target component. At the fine matching stage, these candidates are precisely matched with the templates, allowing the correct position of the components to be detected from the CT volume. The results of two computational experiments showed that the proposed algorithm is able to extract components with similar density within the assembled products on CT volumes.

  4. Significant Reduction of Late Toxicities in Patients With Extremity Sarcoma Treated With Image-Guided Radiation Therapy to a Reduced Target Volume: Results of Radiation Therapy Oncology Group RTOG-0630 Trial.

    PubMed

    Wang, Dian; Zhang, Qiang; Eisenberg, Burton L; Kane, John M; Li, X Allen; Lucas, David; Petersen, Ivy A; DeLaney, Thomas F; Freeman, Carolyn R; Finkelstein, Steven E; Hitchcock, Ying J; Bedi, Manpreet; Singh, Anurag K; Dundas, George; Kirsch, David G

    2015-07-10

    We performed a multi-institutional prospective phase II trial to assess late toxicities in patients with extremity soft tissue sarcoma (STS) treated with preoperative image-guided radiation therapy (IGRT) to a reduced target volume. Patients with extremity STS received IGRT with (cohort A) or without (cohort B) chemotherapy followed by limb-sparing resection. Daily pretreatment images were coregistered with digitally reconstructed radiographs so that the patient position could be adjusted before each treatment. All patients received IGRT to reduced tumor volumes according to strict protocol guidelines. Late toxicities were assessed at 2 years. In all, 98 patients were accrued (cohort A, 12; cohort B, 86). Cohort A was closed prematurely because of poor accrual and is not reported. Seventy-nine eligible patients from cohort B form the basis of this report. At a median follow-up of 3.6 years, five patients did not have surgery because of disease progression. There were five local treatment failures, all of which were in field. Of the 57 patients assessed for late toxicities at 2 years, 10.5% experienced at least one grade ≥ 2 toxicity as compared with 37% of patients in the National Cancer Institute of Canada SR2 (CAN-NCIC-SR2: Phase III Randomized Study of Pre- vs Postoperative Radiotherapy in Curable Extremity Soft Tissue Sarcoma) trial receiving preoperative radiation therapy without IGRT (P < .001). The significant reduction of late toxicities in patients with extremity STS who were treated with preoperative IGRT and absence of marginal-field recurrences suggest that the target volumes used in the Radiation Therapy Oncology Group RTOG-0630 (A Phase II Trial of Image-Guided Preoperative Radiotherapy for Primary Soft Tissue Sarcomas of the Extremity) study are appropriate for preoperative IGRT for extremity STS. © 2015 by American Society of Clinical Oncology.

  5. SU-E-P-30: Clinical Applications of Spatially Fractionated Radiation Therapy (GRID) Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Liang, X; Penagaricano, J

    2015-06-15

    Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD),more » GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are

  6. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM

  7. Evolution of egg target size: an analysis of selection on correlated characters.

    PubMed

    Podolsky, R D

    2001-12-01

    In broadcast-spawning marine organisms, chronic sperm limitation should select for traits that improve chances of sperm-egg contact. One mechanism may involve increasing the size of the physical or chemical target for sperm. However, models of fertilization kinetics predict that increasing egg size can reduce net zygote production due to an associated decline in fecundity. An alternate method for increasing physical target size is through addition of energetically inexpensive external structures, such as the jelly coats typical of eggs in species from several phyla. In selection experiments on eggs of the echinoid Dendraster excentricus, in which sperm was used as the agent of selection, eggs with larger overall targets were favored in fertilization. Actual shifts in target size following selection matched quantitative predictions of a model that assumed fertilization was proportional to target size. Jelly volume and ovum volume, two characters that contribute to target size, were correlated both within and among females. A cross-sectional analysis of selection partitioned the independent effects of these characters on fertilization success and showed that they experience similar direct selection pressures. Coupled with data on relative organic costs of the two materials, these results suggest that, under conditions where fertilization is limited by egg target size, selection should favor investment in low-cost accessory structures and may have a relatively weak effect on the evolution of ovum size.

  8. SU-F-J-95: Impact of Shape Complexity On the Accuracy of Gradient-Based PET Volume Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Wu, G; Gao, Y

    2016-06-15

    Purpose: Explore correlation of tumor complexity shape with PET target volume accuracy when delineated with gradient-based segmentation tool. Methods: A total of 24 clinically realistic digital PET Monte Carlo (MC) phantoms of NSCLC were used in the study. The phantom simulated 29 thoracic lesions (lung primary and mediastinal lymph nodes) of varying size, shape, location, and {sup 18}F-FDG activity. A program was developed to calculate a curvature vector along the outline and the standard deviation of this vector was used as a metric to quantify a shape’s “complexity score”. This complexity score was calculated for standard geometric shapes and MC-generatedmore » target volumes in PET phantom images. All lesions were contoured using a commercially available gradient-based segmentation tool and the differences in volume from the MC-generated volumes were calculated as the measure of the accuracy of segmentation. Results: The average absolute percent difference in volumes between the MC-volumes and gradient-based volumes was 11% (0.4%–48.4%). The complexity score showed strong correlation with standard geometric shapes. However, no relationship was found between the complexity score and the accuracy of segmentation by gradient-based tool on MC simulated tumors (R{sup 2} = 0.156). When the lesions were grouped into primary lung lesions and mediastinal/mediastinal adjacent lesions, the average absolute percent difference in volumes were 6% and 29%, respectively. The former group is more isolated and the latter is more surround by tissues with relatively high SUV background. Conclusion: The complexity shape of NSCLC lesions has little effect on the accuracy of the gradient-based segmentation method and thus is not a good predictor of uncertainty in target volume delineation. Location of lesion within a relatively high SUV background may play a more significant role in the accuracy of gradient-based segmentation.« less

  9. SU-E-T-513: Investigating Dose of Internal Target Volume After Correcting for Tissue Heterogeneity in SBRT Lung Plans with Homogeneity Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, P; Zhuang, T; Magnelli, A

    2015-06-15

    Purpose It was recommended to use the prescription of 54 Gy/3 with heterogeneity corrections for previously established dose scheme of 60 Gy/3 with homogeneity calculation. This study is to investigate dose coverage for the internal target volume (ITV) with and without heterogeneity correction. Methods Thirty patients who received stereotactic body radiotherapy (SBRT) to a dose of 60 Gy in 3 fractions with homogeneous planning for early stage non-small-cell lung cancer (NSCLC) were selected. ITV was created either from 4DCT scans or a fusion of multi-phase respiratory scans. Planning target volume (PTV) was a 5 mm expansion of the ITV. Formore » this study, we recalculated homogeneous clinical plans using heterogeneity corrections with monitor units set as clinically delivered. All plans were calculated with 3 mm dose grids and collapsed cone convolution algorithm. To account for uncertainties from tumor delineation and image-guided radiotherapy, a structure ITV2mm was created by expanding ITV with 2 mm margins. Dose coverage to the PTV, ITV and ITV2mm were compared with a student paired t-test. Results With heterogeneity corrections, the PTV V60Gy decreased by 10.1% ± 18.4% (p<0.01) while the maximum dose to the PTV increased by 3.7 ± 4.3% (p<0.01). With and without corrections, D99% was 65.8 ± 4.0 Gy and 66.7 ± 4.8 Gy (p=0.15) for the ITV, and 63.9 ± 3.4 Gy and 62.9 ± 4.6 Gy for the ITV2mm (p=0.22), respectively. The mean dose to the ITV and ITV2mm increased 3.6% ± 4.7% (p<0.01) and 2.3% ± 5.2% (p=0.01) with heterogeneity corrections. Conclusion After heterogeneity correction, the peripheral coverage of the PTV decreased to approximately 54 Gy, but D99% of the ITV and ITV2mm was unchanged and the mean dose to the ITV and ITV2mm was increased. Clinical implication of these results requires more investigation.« less

  10. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    PubMed

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  11. Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment.

    PubMed

    Ricotti, Rosalinda; Seregni, Matteo; Ciardo, Delia; Vigorito, Sabrina; Rondi, Elena; Piperno, Gaia; Ferrari, Annamaria; Zerella, Maria Alessia; Arculeo, Simona; Francia, Claudia Maria; Sibio, Daniela; Cattani, Federica; De Marinis, Filippo; Spaggiari, Lorenzo; Orecchia, Roberto; Riboldi, Marco; Baroni, Guido; Jereczek-Fossa, Barbara Alicja

    2018-04-01

    Evaluation of target coverage and verification of safety margins, in motion management strategies implemented by Lung Optimized Treatment (LOT) module in CyberKnife system. Three fiducial-less motion management strategies provided by LOT can be selected according to tumor visibility in the X ray images acquired during treatment. In 2-view modality the tumor is visible in both X ray images and full motion tracking is performed. In 1-view modality the tumor is visible in a single X ray image, therefore, motion tracking is combined with an internal target volume (ITV)-based margin expansion. In 0-view modality the lesion is not visible, consequently the treatment relies entirely on an ITV-based approach. Data from 30 patients treated in 2-view modality were selected providing information on the three-dimensional tumor motion in correspondence to each X ray image. Treatments in 1-view and 0-view modalities were simulated by processing log files and planning volumes. Planning target volume (PTV) margins were defined according to the tracking modality: end-exhale clinical target volume (CTV) + 3 mm in 2-view and ITV + 5 mm in 0-view. In the 1-view scenario, the ITV encompasses only tumor motion along the non-visible direction. Then, non-uniform ITV to PTV margins were applied: 3 mm and 5 mm in the visible and non-visible direction, respectively. We defined the coverage of each voxel of the CTV as the percentage of X ray images where such voxel was included in the PTV. In 2-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the predicted target position, as recorded in log files. In 1-view modality, coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the projected predictor data. In 0-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the non

  12. MO-F-CAMPUS-T-02: Optimizing Orientations of Hundreds of Intensity-Modulated Beams to Treat Multiple Brain Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Dong, P; Larson, D

    Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanarmore » and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal

  13. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  14. Radiation Dose-Volume Effects and the Penile Bulb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Nam, Jiho; Gagliardi, Giovanna

    2010-03-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulbmore » may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.« less

  15. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  16. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation.

    PubMed

    Pawar, Smita; Shevalkar, Ganesh; Vavia, Pradeep

    2016-09-01

    Efficacy of anticancer drug is limited due to non-selectivity and toxicities allied with the drug; therefore the heart of the present work is to formulate drug delivery systems targeted selectively towards cancer cells with minimal toxicity to normal cells. Targeted drug delivery system of doxorubicin (DOX)-loaded niosomes using synthesized N-lauryl glucosamine (NLG) as a targeting ligand. NLG-anchored DOX niosomes were developed using ethanol injection method. Developed niosomes had particle size <150 nm and high entrapment efficiency ∼90%. In vivo pharmacokinetics exhibited long circulating nature of targeted niosomes with improved bioavailability, which significantly reduced CL and Vd than DOX solution and non-targeted niosomes (35 fold and 2.5 fold, respectively). Tissue-distribution study and enzymatic assays revealed higher concentration of DOX solution in heart while no toxicity to major organs with developed targeted niosomes was observed. Solid skin melanoma tumor model in mice manifested the commendable targeting potential of targeted niosomes with significant reduction in tumor volume and high % survival rate without drop in body weight in comparison with DOX solution and non-targeted niosomes of DOX. The glucosamine-anchored DOX-loaded targeted niosomes showed its potential in cancer targeted drug therapy with reduced toxicity. Abbreviations ALT alanine transaminase CL clearance CPK creatinine phosphokinase DOX doxorubicin EDC.HCL ethyl carbidimide hydrochloride GLUT glucose transporter GSH glutathione S-transferase LDH lactate dehydrogenase LHRH luteinizing hormone-releasing hormone MDA malonaldehyde NHS N-hydroxy succinimide NLG N-lauryl glucosamine NTAR DoxNio non-targeted doxorubicin niosomes PBS phosphate buffer saline RGD argynyl glycyl aspartic acid SGOT serum glutamate oxaloacetate transaminase SGPT serum glutamate pyruvate transaminase SOD superoxide dismutase TAR DoxNio targeted doxorubicin niosomes Vd volume of distribution.

  17. A novel, volumizing cosmetic formulation significantly improves the appearance of target Glabellar lines, nasolabial folds, and crow's feet in a double-blind, vehicle-controlled clinical trial.

    PubMed

    Farris, Patricia K; Edison, Brenda L; Weinkauf, Ronni L; Green, Barbara A

    2014-01-01

    Facial lines and wrinkles are caused by many factors including constant exposure to external elements, such as UV rays, as well as the dynamic nature of facial expression. Many cosmetic products and procedures provide global improvement to aging skin, whereas injectable therapies are frequently utilized to diminish specific, target wrinkles. Despite their broad availability, some patients are unwilling to undergo injectables and would benefit from an effective topical option. A noninvasive option to volumize target wrinkle areas could also extend benefits of commonly used cosmetic anti-aging products. To this end, a two-step formulation containing the novel, cosmetic anti-aging ingredient, N-acetyl tyrosinamide, was developed for use on targeted wrinkle areas. The tolerability and efficacy of the serum plus cream were tested for 16 weeks in women with moderate facial photodamage on predetermined wrinkle areas (glabellar lines, nasolabial folds, under eye lines, and lateral canthal (crow's feet) wrinkles) in a single-center, randomized, double-blind, vehicle-controlled, clinical trial. Seventy women (47 Active group, 23 Vehicle group) completed the study. Digital photography, clinical grading, ultrasound and self-assessment scores confirmed improvement to wrinkle areas. The topical cosmetic formulation was statistically superior (P<0.05) to its vehicle in visually improving nasolabial folds, glabellar lines, crow's feet, and under eye wrinkles and in reducing pinch recoil time. Both the test formulation and its vehicle were tolerated well. The novel, two-step cosmetic formulation reduced the appearance of wrinkles and increased skin elasticity thus providing an effective anti-aging option for target wrinkle areas. This study suggests that in addition to its use as monotherapy for reducing targeted lines and wrinkles this cosmetic formulation may be also serve as an adjuvant to injectable therapies.

  18. [Radiotherapy volume delineation based on (18F)-fluorodeoxyglucose positron emission tomography for locally advanced or inoperable oesophageal cancer].

    PubMed

    Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U

    2017-06-01

    To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights

  19. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  20. Repeatability of FDG PET/CT metrics assessed in free breathing and deep inspiration breath hold in lung cancer patients.

    PubMed

    Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M

    2018-01-01

    We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.

  1. [Low dose volume histogram analysis of the lungs in prediction of acute radiation pneumonitis in patients with esophageal cancer treated with three-dimensional conformal radiotherapy].

    PubMed

    Shen, Wen-bin; Zhu, Shu-chai; Gao, Hong-mei; Li, You-mei; Liu, Zhi-kun; Li, Juan; Su, Jing-wei; Wan, Jun

    2013-01-01

    To investigate the predictive value of low dose volume of the lung on acute radiation pneumonitis (RP) in patients with esophageal cancer treated with three-dimensional conformal radiotherapy (3D-CRT) only, and to analyze the relation of comprehensive parameters of the dose-volume V5, V20 and mean lung dose (MLD) with acute RP. Two hundred and twenty-two patients with esophageal cancer treated by 3D-CRT have been followed up. The V5-V30 and MLD were calculated from the dose-volume histogram system. The clinical factors and treatment parameters were collected and analyzed. The acute RP was evaluated according to the RTOG toxicity criteria. The acute RP of grade 1, 2, 3 and 4 were observed in 68 (30.6%), 40 (18.0%), 8 (3.6%) and 1 (0.5%) cases, respectively. The univariate analysis of measurement data:The primary tumor length, radiation fields, MLD and lung V5-V30 had a significant relationship with the acute RP. The magnitude of the number of radiation fields, the volume of GTV, MLD and Lung V5-V30 had a significant difference in whether the ≥ grade 1 and ≥ grade 2 acute RP developed or not. Binary logistic regression analysis showed that MLD, Lung V5, V20 and V25 were independent risk factors of ≥ grade 1 acute RP, and the radiation fields, MLD and Lung V5 were independent risk factors of ≥ grade 2 acute RP. The ≥ grade 1 and ≥ grade 2 acute RP were significantly decreased when MLD less than 14 Gy, V5 and V20 were less than 60% and 28%,respectively. When the V20 ≤ 28%, the acute RP was significantly decreased in V5 ≤ 60% group. When the MLD was ≤ 14 Gy, the ≥ 1 grade acute RP was significantly decreased in the V5 ≤ 60% group. When the MLD was >14 Gy, the ≥ grade 2 acute RP was significantly decreased in the V5 ≤ 60% group. The low dose volume of the lung is effective in predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-CRT only. The comprehensive parameters combined with V5, V20 and MLD may increase the

  2. Variability in target delineation of cervical carcinoma: A Korean radiation oncology group study (KROG 15-06)

    PubMed Central

    Joo, Ji Hyeon; Cho, Byung Chul; Jeong, Chi Young; Park, Won; Kim, Hak Jae; Yoon, Won Sup; Yoon, Mee Sun; Kim, Ji-Yoon; Choi, Jin Hwa; Choi, Youngmin; Kim, Joo-Young

    2017-01-01

    Purpose To determine inter-observer variability in target volume definition of cervical cancer in radical and adjuvant radiotherapy (RT) settings. Methods Eight physicians contoured CTVs of 2 patients underwent definitive and postoperative RT. Each volume was analyzed using the individual/median volume ratio and generalized conformity index (CIgen). And center of mass (COM) of each contour was calculated. Expert agreement was quantified using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE). Results For definitive RT, the individual/median volume ratio ranged from 0.51 to 1.41, and CIgen was 0.531. Mean 3-dimensional distances of average to each COM were 7.8 mm. For postoperative RT setting, corresponding values were 0.65–1.38, 0.563, and 5.3 mm. Kappa value of expert agreement was 0.65 and 0.67, respectively. STAPLE estimates of the sensitivity, specificity, and kappa measures of inter-physician agreement were 0.73, 0.98, and 0.65 for the definitive and 0.75, 0.98, and 0.67 for the adjuvant radiotherapy setting. The largest difference was observed in the superior-inferior direction, particularly in the upper vagina and the common iliac area. Conclusion As there was still some variability in target delineation, more detailed guidelines for target volume delineation and continuing education would help to reduce this uncertainty. PMID:28301492

  3. Analysis of radiation exposure for naval units of Operation Crossroads. Volume 3. (Appendix B) support ships. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitz, R.; Thomas, C.; Klemm, J.

    1982-03-03

    External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details themore » results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.« less

  4. [State of the art in fluid and volume therapy : A user-friendly staged concept].

    PubMed

    Rehm, M; Hulde, N; Kammerer, T; Meidert, A S; Hofmann-Kiefer, K

    2017-03-01

    Adequate fluid therapy is highly important for the perioperative outcome of our patients. Both, hypovolemia and hypervolemia can lead to an increase in perioperative complications and can impair the outcome. Therefore, perioperative infusion therapy should be target-oriented. The main target is to maintain the patient's preoperative normovolemia by using a sophisticated, rational infusion strategy.Perioperative fluid losses should be discriminated from volume losses (surgical blood loss or interstitial volume losses containing protein). Fluid losses as urine or perspiratio insensibilis (0.5-1.0 ml/kg/h) should be replaced by balanced crystalloids in a ratio of 1:1. Volume therapy step 1: Blood loss up to a maximum value of 20% of the patient's blood volume should be replaced by balanced crystalloids in a ratio of 4(-5):1. Volume therapy step 2: Higher blood losses should be treated by using iso-oncotic, preferential balanced colloids in a ratio of 1:1. For this purpose hydroxyethyl starch can also be used perioperatively if there is no respective contraindication, such as sepsis, burn injuries, critically ill patients, renal impairment or renal replacement therapy, and severe coagulopathy. Volume therapy step 3: If there is an indication for red cell concentrates or coagulation factors, a differentiated application of blood and blood products should be performed.

  5. Anterior Insula Volume and Guilt

    PubMed Central

    Belden, Andy C.; Barch, Deanna M.; Oakberg, Timothy J.; April, Laura M.; Harms, Michael P.; Botteron, Kelly N.; Luby, Joan L.

    2016-01-01

    IMPORTANCE This is the first study to date to examine volumetric alterations in the anterior insula (AI) as a potential biomarker for the course of childhood major depressive disorder (MDD). OBJECTIVES To examine whether children with a history of preschool-onset (PO) MDD show reduced AI volume, whether a specific symptom of PO MDD (pathological guilt) is related to AI volume reduction (given the known relationship between AI and guilt processing), and whether AI volumes predict subsequent likelihood of having an episode of MDD. DESIGN, SETTING, AND PARTICIPANTS In a prospective longitudinal study, 306 children (age range, 3.00–5.11 years) and caregivers completed DSM diagnostic assessments at 6 annual time points during 10 years as part of the Preschool Depression Study. Magnetic resonance imaging was completed on a subset of 145 school-age children (age range, 6.11–12.11 years). MAIN OUTCOMES AND MEASURES Whole-brain–adjusted AI volume measured using magnetic resonance imaging at school age and children’s diagnosis of MDD any time after their imaging. RESULTS Compared with children without a history of PO MDD, school-age children previously diagnosed as having PO MDD had smaller left and right AI volumes (Wilks Λ = 0.94, F2,124 = 3.37, P = .04, Cohen d = 0.23). However, the effect of PO MDD on reduced AI volumes was better explained by children’s experience of pathological guilt during preschool (Λ = 0.91, F2,120 = 6.17, P = .003, d = .30). When covarying for children’s lifetime history of MDD episodes, their experience of pathological guilt during preschool, as well as their sex and age at the time of imaging, schoolchildren’s right-side AI volume was a significant predictor of being diagnosed as having an MDD episode after imaging (odds ratio, 0.96; 95% CI, 0.01–0.75; P = .03). CONCLUSIONS AND RELEVANCE These results provide evidence that structural abnormalities in AI volume are related to the neurobiology of depressive disorders starting in

  6. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  7. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Eli; Biomedical Engineering, University of Western Ontario, London, Ontario; Centre for Medical Image Computing, University College London, London

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs onmore » each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate

  8. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    PubMed Central

    2012-01-01

    Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy

  9. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example.

    PubMed

    Rosewall, Tara; Yan, Jing; Alasti, Hamideh; Cerase, Carla; Bayley, Andrew

    2017-04-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2  = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were -0.4 to 1.8 mm (LR), -1.2 to 5.2 mm (SI) and -1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer. © 2016 The Royal Australian and New Zealand College of Radiologists.

  10. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.

    2005-11-15

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to amore » common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities.« less

  11. Validation of a reaction volume reduction protocol for analysis of Y chromosome haplotypes targeting DNA databases.

    PubMed

    Souza, C A; Oliveira, T C; Crovella, S; Santos, S M; Rabêlo, K C N; Soriano, E P; Carvalho, M V D; Junior, A F Caldas; Porto, G G; Campello, R I C; Antunes, A A; Queiroz, R A; Souza, S M

    2017-04-28

    The use of Y chromosome haplotypes, important for the detection of sexual crimes in forensics, has gained prominence with the use of databases that incorporate these genetic profiles in their system. Here, we optimized and validated an amplification protocol for Y chromosome profile retrieval in reference samples using lesser materials than those in commercial kits. FTA ® cards (Flinders Technology Associates) were used to support the oral cells of male individuals, which were amplified directly using the SwabSolution reagent (Promega). First, we optimized and validated the process to define the volume and cycling conditions. Three reference samples and nineteen 1.2 mm-diameter perforated discs were used per sample. Amplification of one or two discs (samples) with the PowerPlex ® Y23 kit (Promega) was performed using 25, 26, and 27 thermal cycles. Twenty percent, 32%, and 100% reagent volumes, one disc, and 26 cycles were used for the control per sample. Thereafter, all samples (N = 270) were amplified using 27 cycles, one disc, and 32% reagents (optimized conditions). Data was analyzed using a study of equilibrium values between fluorophore colors. In the samples analyzed with 20% volume, an imbalance was observed in peak heights, both inside and in-between each dye. In samples amplified with 32% reagents, the values obtained for the intra-color and inter-color standard balance calculations for verification of the quality of the analyzed peaks were similar to those of samples amplified with 100% of the recommended volume. The quality of the profiles obtained with 32% reagents was suitable for insertion into databases.

  12. Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification

    PubMed Central

    Saenz, Daniel L.; Yan, Yue; Christensen, Neil; Henzler, Margaret A.; Forrest, Lisa J.; Bayouth, John E.

    2015-01-01

    ViewRay is a novel MR‐guided radiotherapy system capable of imaging in near real‐time at four frames per second during treatment using 0.35T field strength. It allows for improved gating techniques and adaptive radiotherapy. Three cobalt‐60 sources (∼15,000 Curies) permit multiple‐beam, intensity‐modulated radiation therapy. The primary aim of this study is to assess the imaging stability, accuracy, and automatic segmentation algorithm capability to track motion in simulated and in vivo targets. Magnetic resonance imaging (MRI) characteristics of the system were assessed using the American College of Radiology (ACR)‐recommended phantom and accreditation protocol. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. ACR recommended T1‐ and T2‐weighted sequences were evaluated. Nine measurements were performed over a period of seven months, on just over a monthly basis, to establish consistency. A silicon dielectric gel target was attached to the motor via a rod. 40 mm total amplitude was used with cycles of 3 to 9 s in length in a sinusoidal trajectory. Trajectories of six moving clinical targets in four canine patients were quantified and tracked. ACR phantom images were analyzed, and the results were compared with the ACR acceptance levels. Measured slice thickness accuracies were within the acceptance limits. In the 0.35 T system, the image intensity uniformity was also within the ACR acceptance limit. Over the range of cycle lengths, representing a wide range of breathing rates in patients imaged at four frames/s, excellent agreement was observed between the expected and measured target trajectories. In vivo canine targets, including the gross target volume (GTV), as well as other abdominal soft tissue structures, were visualized with inherent MR contrast, allowing for preliminary results of target tracking. PACS number: 87.61.Tg PMID:26699552

  13. Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification.

    PubMed

    Saenz, Daniel L; Yan, Yue; Christensen, Neil; Henzler, Margaret A; Forrest, Lisa J; Bayouth, John E; Paliwal, Bhudatt R

    2015-11-08

    ViewRay is a novel MR-guided radiotherapy system capable of imaging in near real-time at four frames per second during treatment using 0.35T field strength. It allows for improved gating techniques and adaptive radiotherapy. Three cobalt-60 sources (~ 15,000 Curies) permit multiple-beam, intensity-modulated radiation therapy. The primary aim of this study is to assess the imaging stability, accuracy, and automatic segmentation algorithm capability to track motion in simulated and in vivo targets. Magnetic resonance imaging (MRI) characteristics of the system were assessed using the American College of Radiology (ACR)-recommended phantom and accreditation protocol. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. ACR recommended T1- and T2-weighted sequences were evaluated. Nine measurements were performed over a period of seven months, on just over a monthly basis, to establish consistency. A silicon dielectric gel target was attached to the motor via a rod. 40 mm total amplitude was used with cycles of 3 to 9 s in length in a sinusoidal trajectory. Trajectories of six moving clinical targets in four canine patients were quantified and tracked. ACR phantom images were analyzed, and the results were compared with the ACR acceptance levels. Measured slice thickness accuracies were within the acceptance limits. In the 0.35 T system, the image intensity uniformity was also within the ACR acceptance limit. Over the range of cycle lengths, representing a wide range of breathing rates in patients imaged at four frames/s, excellent agreement was observed between the expected and measured target trajectories. In vivo canine targets, including the gross target volume (GTV), as well as other abdominal soft tissue structures, were visualized with inherent MR contrast, allowing for preliminary results of target tracking.

  14. Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lina; Zhou, Shouhao; Balter, Peter

    Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis.more » Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD

  15. GEMINI-TITAN (GT)-V - PILOT - SUITING-UP - CAPE

    NASA Image and Video Library

    1965-08-19

    S65-46374 (21 Aug. 1965) --- Astronaut Charles Conrad Jr., Gemini-5 pilot, is pictured during suiting up operations on the morning of the flight of Gemini-5. With him is Dr. Eugene Tubbs, a member of the medical team at Cape Kennedy. The mission was originally set for Aug. 19, 1965, but was scrubbed and reset for Aug. 21. Command pilot for the flight is astronaut L. Gordon Cooper Jr.

  16. Portal imaging based definition of the planning target volume during pelvic irradiation for gynecological malignancies.

    PubMed

    Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R

    1999-08-01

    Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.

  17. [Dosimetry verification of radioactive seed implantation with 3D printing template and CT guidance for paravertebral/retroperitoneal malignant tumor].

    PubMed

    Ji, Z; Jiang, Y L; Guo, F X; Peng, R; Sun, H T; Fan, J H; Wang, J J

    2017-04-04

    Objective: To compare the dose distributions of postoperative plans with preoperative plans for seeds implantations of paravertebral/retroperitoneal tumors assisted by 3D printing guide template and CT guidance, explore the effects of the technology for seeds implantations in dosimetry level and provide data support for the optimization and standardization in seeds implantation. Methods: Between December 2015 and July 2016, a total of 10 patients with paravertebral/retroperitoneal tumors (12 lesions) received 3D printing template assist radioactive seeds implantations in department of radiation oncology of Peking University Third Hospital, and included in the study. The diseases included cervical cancer, kidney cancer, abdominal stromal tumor, leiomyosarcoma of kidney, esophageal cancer and carcinoma of ureter. The prescribed doses was 110-150 Gy. All patients received preoperative planning design, individual template design and production, and the dose distribution of postoperative plan was compared with preoperative plan. Dose parameters including D(90), MPD, V(100), V(150,)conformal index(CI), EI of target volume and D(2cc) of organs at risk (spinal cord, aorta, kidney). Statistical software was SPSS 19.0 and statistical method was non-parameters Wilcoxon symbols test. Results: A total of 10 3D printing templates were designed and produced which were including 12 treatment areas.The mean D(90) of postoperative target area (GTV) was 131.1 (97.8-167.4 Gy) Gy. The actual seeds number of post operation increased by 3 to 12 in 5 cases (42.0%). The needle was well distributed. For postoperative plans, the mean D(90,)MPD, V(100,)V(150) was 131.1 Gy, 69.3 Gy, 90.2% and 65.2%, respectively, and which was 140.2 Gy, 65.6 Gy, 91.7% and 26.8%, respectively, in preoperative plans. This meant that the actual dose of target volume was slightly lower than preplanned dose, and the high dose area of target volume was larger than preplanned range, but there was no statistical

  18. Effect of lung and target density on small-field dose coverage and PTV definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Patrick D., E-mail: higgi010@umn.edu; Ehler, Eric D.; Cho, Lawrence C.

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy wasmore » delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.« less

  19. Specific storage volumes: A useful tool for CO2 storage capacity assessment

    USGS Publications Warehouse

    Brennan, S.T.; Burruss, R.C.

    2006-01-01

    Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative storage capacities of these different settings. Typically, CO2 emissions are reported in units of mass, which are not directly applicable to comparing the CO2 storage capacities of the various storage targets. However, if the emission values are recalculated to volumes per unit mass (specific volume) then the volumes of geologic reservoirs necessary to store CO2 emissions from large point sources can be estimated. The factors necessary to convert the mass of CO2 emissions to geologic storage volume (referred to here as Specific Storage Volume or 'SSV') can be reported in units of cubic meters, cubic feet, and petroleum barrels. The SSVs can be used to estimate the reservoir volume needed to store CO2 produced over the lifetime of an individual point source, and to identify CO2 storage targets of sufficient size to meet the demand from that given point source. These storage volumes also can then be projected onto the land surface to outline a representative "footprint," which marks the areal extent of storage. This footprint can be compared with the terrestrial carbon sequestration capacity of the same land area. The overall utility of this application is that the total storage capacity of any given parcel of land (from surface to basement) can be determined, and may assist in making land management decisions. ?? Springer Science+Business Media, LLC 2006.

  20. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org; Kun, Larry E.; Hua, Chia-Ho

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treatedmore » with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently