Science.gov

Sample records for targeted nanogel delivery

  1. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  2. Peptide-Functionalized Nanogels for Targeted siRNA Delivery

    PubMed Central

    Blackburn, William H.; Dickerson, Erin B.; Smith, Michael H.; McDonald, John F.; Lyon, L. Andrew

    2009-01-01

    A major bottleneck in the development of siRNA therapies is their delivery to the desired cell type or tissue, followed by effective passage across the cell membrane with subsequent silencing of the targeted mRNA. To address this problem, we describe the synthesis of core/shell hydrogel nanoparticles (nanogels) with surface-localized peptides that specifically target ovarian carcinoma cell lines possessing high expression levels of the Eph2A receptor. These nanogels are also demonstrated to be highly effective in the noncovalent encapsulation of siRNA and enable cell-specific delivery of the oligonucleotides in serum-containing medium. Cell toxicity and viability assays reveal that the nanogel construct is nontoxic under the conditions studied, as no toxicity or decrease in cell proliferation is observed following delivery. Importantly, a preliminary investigation of gene silencing illustrates that nanogel-mediated delivery of siRNA targeted to the EGF receptor results in knockdown of that receptor. Excellent protection of siRNA during endosomal uptake and endosomal escape of the nanogels is suggested by these results since siRNA activity in the cytosol is required for gene silencing. PMID:19341276

  3. Targeted nanogels: a versatile platform for drug delivery to tumors.

    PubMed

    Murphy, Eric A; Majeti, Bharat K; Mukthavaram, Rajesh; Acevedo, Lisette M; Barnes, Leo A; Cheresh, David A

    2011-06-01

    Although nanoparticle-based drug delivery formulations can improve the effectiveness and safety of certain anticancer drugs, many drugs, due to their chemical composition, are unsuitable for nanoparticle loading. Here, we describe a targeted nanogel drug delivery platform that can (i) encapsulate a wide range of drug chemotypes, including biological, small molecule, and cytotoxic agents; (ii) display targeting ligands and polymeric coatings on the surface; (iii) enhance drug retention within the nanogel core after photo-cross-linking; and (iv) retain therapeutic activity after lyophilization allowing for long-term storage. For therapeutic studies, we used integrin ?v?3-targeted lipid-coated nanogels with cross-linked human serum albumin in the core for carrying therapeutic cargoes. These particles exhibited potent activity in tumor cell viability assays with drugs of distinct chemotype, including paclitaxel, docetaxel, bortezomib, 17-AAG, sorafenib, sunitinib, bosutinib, and dasatinib. Treatment of orthotopic breast and pancreas tumors in mice with taxane-loaded nanogels produced a 15-fold improvement in antitumor activity relative to Abraxane by blocking both primary tumor growth and spontaneous metastasis. With a modifiable surface and core, the lipid-coated nanogel represents a platform technology that can be easily adapted for specific drug delivery applications to treat a wide range of malignant diseases. PMID:21518727

  4. LHRH-targeted nanogels as delivery system for cisplatin to ovarian cancer

    PubMed Central

    Nukolova, Natalia V.; Oberoi, Hardeep S.; Zhao, Yi; Chekhonin, Vladimir P.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2013-01-01

    Targeted drug delivery using multifunctional polymeric nanocarriers is a modern approach for cancer therapy. Our purpose was to prepare targeted nanogels for selective delivery of chemotherapeutic agent cisplatin to luteinizing hormone-releasing hormone (LHRH) receptor overexpressing tumor in vivo. Building blocks of such delivery systems consisted of innovative soft block copolymer nanogels with ionic cores serving as a reservoir for cisplatin (loading 35%) and a synthetic analog of LHRH conjugated to the nanogels via poly(ethylene glycol) spacer. Covalent attachment of (D-Lys6)-LHRH to nanogels was shown to be possible without loss in either the ligand binding affinity or the nanogel drug incorporation ability. LHRH-nanogel accumulation was specific to the LHRH-receptor positive A2780 ovarian cancer cells and not towards LHRH-receptor negative SKOV-3 cells. The LHRH-nanogel cisplatin formulation was more effective and less toxic than equimolar doses of free cisplatin or untargeted nanogels in the treatment of receptor-positive ovarian cancer xenografts in mice. Collectively, the study indicates that LHRH mediated nanogel-cisplatin delivery is a promising formulation strategy for therapy of tumors that express the LHRH receptor. PMID:23957812

  5. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06714b

  6. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yao, Ming-Hao; Wen, Lang; Song, Ji-Tao; Zhang, Ming-Zhen; Zhao, Yuan-Di; Liu, Bo

    2014-09-01

    A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy.A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03058c

  7. Nanogels for delivery, imaging and therapy.

    PubMed

    Sivaram, Amal J; Rajitha, P; Maya, S; Jayakumar, R; Sabitha, M

    2015-01-01

    Nanogels are hydrogels having size in nanoregime, which is composed of cross-linked polymer networks. The advantages of nanogels include stimuli-responsive nature, easy drug loading, and higher drug-loading capacity, physical stability, versatility in design, stability of entrapped drug, and controlled release of the anti-inflammatory, antimicrobial, protein, peptide and anticancer drugs. Stimuli-responsive nature of nanogel is of particular importance in anticancer and anti-inflammatory drug delivery, as cancer and inflammation are associated with acidic pH, heat generation, and change in ionic content. Nanogels composed of muco-adhesive polymers provide prolonged residence time and increase the ocular availability of loaded drugs. By forming suitably sized complex with proteins or by acting as artificial chaperones, they thus help to keep the proteins and enzymes in proper confirmation necessary for exerting biological activity; nanogels can increase the stability and activity of protein/peptide drugs. Better drug penetrations achieved by prolonged contact with skin contribute much in transdermal drug delivery. When it comes to cancer drug delivery, the presence of multiple interactive functional groups in nanogels different targeting agents can be conjugated for delivery of the selective drugs. This review focuses on applications of nanogels in cancer drug delivery and imaging, anti-inflammatory, anti-psoriatic, transdermal, ocular and protein/peptide drug delivery and therapy. PMID:25581024

  8. Nanogels for Oligonucleotide Delivery to the Brain

    PubMed Central

    Vinogradov, Serguei V.; Batrakova, Elena V.; Kabanov, Alexander V.

    2009-01-01

    Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the bloodbrain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine (nanogel). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain. PMID:14733583

  9. Multifunctional nanogels for siRNA delivery.

    PubMed

    Smith, Michael H; Lyon, L Andrew

    2012-07-17

    The application of RNA interference to treat disease is an important yet challenging concept in modern medicine. In particular, small interfering RNA (siRNA) have shown tremendous promise in the treatment of cancer. However, siRNA show poor pharmacological properties, which presents a major hurdle for effective disease treatment especially through intravenous delivery routes. In response to these shortcomings, a variety of nanoparticle carriers have emerged, which are designed to encapsulate, protect, and transport siRNA into diseased cells. To be effective as carrier vehicles, nanoparticles must overcome a series of biological hurdles throughout the course of delivery. As a result, one promising approach to siRNA carriers is dynamic, versatile nanoparticles that can perform several in vivo functions. Over the last several years, our research group has investigated hydrogel nanoparticles (nanogels) as candidate delivery vehicles for therapeutics, including siRNA. Throughout the course of our research, we have developed higher order architectures composed entirely of hydrogel components, where several different hydrogel chemistries may be isolated in unique compartments of a single construct. In this Account, we summarize a subset of our experiences in the design and application of nanogels in the context of drug delivery, summarizing the relevant characteristics for these materials as delivery vehicles for siRNA. Through the layering of multiple, orthogonal chemistries in a nanogel structure, we can impart multiple functions to the materials. We consider nanogels as a platform technology, where each functional element of the particle may be independently tuned to optimize the particle for the desired application. For instance, we can modify the shell compartment of a vehicle for cell-specific targeting or evasion of the innate immune system, whereas other compartments may incorporate fluorescent probes or regulate the encapsulation and release of macromolecular therapeutics. Proof-of-principle experiments have demonstrated the utility of multifunctional nanogels. For example, using a simple core/shell nanogel architecture, we have recently reported the delivery of siRNA to chemosensitize drug resistant ovarian cancer cells. Ongoing efforts have resulted in several advanced hydrogel structures, including biodegradable nanogels and multicompartment spheres. In parallel, our research group has studied other properties of the nanogels, including their behavior in confined environments and their ability to translocate through small pores. PMID:22181582

  10. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer.

    PubMed

    Harisa, Gamaleldin I; Badran, Mohamed M; AlQahtani, Saeed A; Alanazi, Fars K; Attia, Sabry M

    2016-01-01

    Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatin-chitosan nanogels (PR-CNG-ER) were utilized as a novel drug carrier to target liver cancer. Thus, PR-CNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48 h. Then, PR-CNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PR-CNG-ER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48 h. Moreover, PR-CNG-ER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PR-CNG-ER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PR-CNG-ER are promising drug carriers to target liver cancer. PMID:26903771

  11. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer

    PubMed Central

    Harisa, Gamaleldin I.; Badran, Mohamed M.; AlQahtani, Saeed A.; Alanazi, Fars K.; Attia, Sabry M.

    2015-01-01

    Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatinchitosan nanogels (PRCNGER) were utilized as a novel drug carrier to target liver cancer. Thus, PRCNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48h. Then, PRCNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PRCNGER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48h. Moreover, PRCNGER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PRCNGER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PRCNGER are promising drug carriers to target liver cancer.

  12. Polymer nanogels: a versatile nanoscopic drug delivery platform

    PubMed Central

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an ideal drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  13. New progress and prospects: The application of nanogel in drug delivery.

    PubMed

    Zhang, Hui; Zhai, Yingjie; Wang, Juan; Zhai, Guangxi

    2016-03-01

    Nanogel has attracted considerable attention as one of the most versatile drug delivery systems especially for site-specific and/or time-controlled delivery of bioactive agents owing to their combining features of hydrogel and nanoparticle. Physically synthesized nanogels can offer a platform to encapsulate various types of bioactive compounds, particularly hydrophobic drugs and biomacromolecules, but they have poor mechanical stability, whereas nanogels prepared by chemical cross-link have a wider application and larger flexibility. As an ideal drug-delivery carrier, nanogel has excellent drug loading capacity, high stability, biologic consistence and response to a wide variety of environmental stimuli. Nowadays, targeting and response especially multi-response of the nanogel system for drug delivery have become an issue in research. And the application study of nanogels mainly focuses on antitumor agents and proteins. This review focuses on the formation of nanogels (physical and chemical cross-linking) and their release behavior. Recent application of nanogels is also discussed. PMID:26706564

  14. Nanogel-an advanced drug delivery tool: Current and future.

    PubMed

    Sharma, Ankita; Garg, Tarun; Aman, Amrinder; Panchal, Kushan; Sharma, Rajiv; Kumar, Sahil; Markandeywar, Tanmay

    2016-02-01

    Nanogels are robust nanoparticles that could be used to deliver active drug compounds in controlled drug delivery applications. Nanogels drug delivery system is more effective and safer for both hydrophilic and hydrophobic drugs due to their chemical composition and formulations that are inappropriate for other formulations. Nanogels have enabled enlargement of functionalized nanoparticles, which act as a drug carriers that can be loaded with drugs and other active material to be released in a controlled manner at specific site. This review aims at providing general introduction on nanogels, recent synthesis methodology and their novel application in different fields. PMID:25053442

  15. Surface-Modified P(HEMA-co-MAA) Nanogel Carriers for Oral Vaccine Delivery: Design, Characterization, and In Vitro Targeting Evaluation

    PubMed Central

    Durn-Lobato, Matilde; Carrillo-Conde, Brenda; Khairandish, Yasmine; Peppas, Nicholas A.

    2015-01-01

    Oral drug delivery is a route of choice for vaccine administration because of its noninvasive nature and thus efforts have focused on efficient delivery of vaccine antigens to mucosal sites. An effective oral vaccine delivery system must protect the antigen from degradation upon mucosal delivery, penetrate mucosal barriers, and control the release of the antigen and costimulatory and immunomodulatory agents to specific immune cells (i.e., APCs). In this paper, mannan-modified pH-responsive P(HEMA-co-MAA) nanogels were synthesized and assessed as carriers for oral vaccination. The nanogels showed pH-sensitive properties, entrapping and protecting the loaded cargo at low pH values, and triggered protein release after switching to intestinal pH values. Surface decoration with mannan as carbohydrate moieties resulted in enhanced internalization by macrophages as well as increasing the expression of relevant costimulatory molecules. These findings indicate that mannan-modified P(HEMA-co-MAA) nanogels are a promising approach to a more efficacious oral vaccination regimen. PMID:24955658

  16. Bioreducible heparin-based nanogel drug delivery system.

    PubMed

    Wu, Wei; Yao, Wei; Wang, Xin; Xie, Chen; Zhang, Jialiang; Jiang, Xiqun

    2015-01-01

    Bioreducible heparin (HEP)-based nanogels were prepared by derivatizing HEP with vinyl group followed by copolymerizing with cystamine bisacrylamide in aqueous medium in the absence of surfactant. The hydrodynamic diameter of the HEP nanogels could be tuned in the range from 80 to 200nm. Doxorubicin (DOX) was loaded into the HEP nanogels, and high drug loading content (30%) and efficiency (90%) were achieved. In vitro drug release test revealed that this drug delivery system exhibited strongly redox-sensitive drug release behavior that would greatly favor the invivo drug delivery performance of the nanogels. After injected into tumor-bearing mice through tail vein, the DOX-loaded HEP nanogels showed remarkable accumulation in tumors as demonstrated by invivo near infared fluorescence imaging and exvivo DOX concentration measurements. The doxorubicin accumulation at tumor site goes beyond 9% injected dose per gram of tumor through such delivery system, making that DOX-loaded HEP nanogels have significantly superior invivo antitumor activity. PMID:25468376

  17. Nanocarrier-Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drug-Delivery Systems.

    PubMed

    Tahara, Yoshiro; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2015-09-01

    A nanocarrier-integrated bottom-up method is a promising strategy for advanced drug-release systems. Self-assembled nanogels, which are one of the most beneficial nanocarriers for drug-delivery systems, are tectonically integrated to prepare nanogel-crosslinked (NanoClik) microspheres. NanoClik microspheres consisting of nanogel-derived structures (observed by STED microscopy) release "drug-loaded nanogels" after hydrolysis, resulting in successful sustained drug delivery in vivo. PMID:26198172

  18. Polyethyleneimine modified biocompatible poly(N-isopropylacrylamide)-based nanogels for drug delivery.

    PubMed

    Quan, Chang-Yun; Wei, Hua; Sun, Yun-Xia; Cheng, Si-Xue; Shen, Kun; Gu, Zhong-Wei; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2008-05-01

    A series of biocompatible and stimuli-sensitive poly(N-isopropylacrylamide-co-propyl acrylic acid) (P(NIPAAm-co-PAAc)) nanogels were synthesized by emulsion polymerization. In addition, polyethyleneimine (PEI) was further grafted to modify the PNIPAAm-based nanogels. The P(NIPAAm-co-PAAc)-g-PEI nanogels exhibited good thermosensitivity as well as pH sensitivity. Transmission electron microscopy (TEM) showed that the P(NIPAAm-co-PAAc)-g-PEI and P(NIPAAm-co-PAAc) nanogels displayed well dispersed spherical morphology. The mean sizes of the nanogels measured by dynamic light scattering (DLS) were from 100 nm to 500 nm at different temperatures. The cytotoxicity study indicated P(NIPAAm-co-PAAc) nanogels exhibited a better biocompatibility than both PNIPAAm nanogel and P(NIPAAm-co-PAAc)-g-PEI nanogel although all the three kinds of nanogels did not exhibit apparent cytotoxicity. The drug-loaded nanogels, especially the PEI-grafted nanogels, showed temperature-trigged controlled release behaviors, indicating the potential applications as an intelligent drug delivery system. PMID:18572652

  19. Nanogel-based antigen-delivery system for nasal vaccines.

    PubMed

    Yuki, Yoshikazu; Nochi, Tomonori; Kong, Il Gyu; Takahashi, Haruko; Sawada, Shin-ichi; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2013-01-01

    Nasal vaccination is considered a potent and practical immunization route for the induction of effective immunity to infectious diseases. Successful nasal vaccines require efficient delivery to, and retention of antigens within, nasal mucosa, including both the inductive (e.g., nasopharynx-associated lymphoid tissues) and effector (e.g., turbinate covered with single-layer epithelium) tissues, where antigen-specific immune responses are initiated and executed, respectively. We developed an approach towards successful nasal vaccination by using self-assembled nano-sized hydrogel particles, known as nanogels, which are composed of a cationic type of cholesteryl group-bearing pullulan. Here, we review the merging of nanotechnological and immunological concepts leading to the development of next-generation nasal vaccines, and demonstrate the applicability of novel nanogel-based vaccine for the prevention of infectious diseases. PMID:24568253

  20. Multifunctional hybrid nanogels for theranostic applications.

    PubMed

    Sierra-Martin, B; Fernandez-Barbero, A

    2015-11-14

    This paper reviews a wide set of theranostic applications based on the special properties associated with composite nanogels. The nanogels presented here are mostly hybridized with quantum dots, magnetic nanoparticles, and plasmonic metal noble nanoparticles. These inorganic components confer nanogels multifunctional properties that extend their applications from drug delivery systems to diagnosis and therapy. Nanogels can also be surface functionalized with specific ligands to achieve targeted therapy and reduce toxicity. This versatility makes hybrid nanogels very promising agents for imaging, diagnosis and treatment of cancer and other diseases. PMID:26371991

  1. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine.

    PubMed

    Knipe, Jennifer M; Strong, Laura E; Peppas, Nicholas A

    2016-03-14

    Inflammatory bowel diseases (IBD) manifest from excessive intestinal inflammation. Local delivery of siRNA that targets these inflammatory cytokines would provide a novel treatment approach. Microencapsulated nanogels are designed and validated as platforms for oral delivery of siRNA targeting TNF-α, a common clinical target of IBD treatments. The preferred platform was designed to (i) protect siRNA-loaded nanogels from the harsh acidic environment of the upper GI tract and (ii) enzymatically degrade and release the nanogels once the carrier has reached the intestinal region. This platform consists of microgels composed of poly(methacrylic acid-co-N-vinyl-2-pyrrolidone) (P[MAA-co-NVP]) cross-linked with a trypsin-degradable peptide linker. The P(MAA-co-NVP) backbone is designed to collapse around and protect encapsulated nanogel from degradation at the low pH levels seen in the stomach (pH 2-4). At pH levels of 6-7.5, as typically observed in the intestine, the P(MAA-co-NVP) matrix swells, potentially facilitating diffusion of intestinal fluid and degradation of the matrix by intestinal enzymes such as trypsin, thus "freeing" the therapeutic nanogels for delivery and cellular uptake within the intestine. TNF-α siRNA-loaded nanogels released from this platform were capable of inducing potent knockdown of secreted TNF-α levels in murine macrophages, further validating the potential for this approach to be used for the treatment of IBD. PMID:26813877

  2. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Peng, Jinrong; Qi, Tingting; Liao, Jinfeng; Fan, Min; Luo, Feng; Li, He; Qian, Zhiyong

    2012-03-01

    In this study, a temperature/pH dual-response nanogel based on NIPAm, MAA, and PEGMA was synthesized via emulsion polymerization and characterized by 1H-NMR, FT-IR, TEM and DLS. By introducing a novel initiator, through which PEG-AIBN-PEG was synthesized, it was revealed that the PEG segments from PEG-AIBN-PEG with a dosage of initiator had a significant influence over the macro-state and stability of the nanogels. In order to optimize the feeding prescription for better application as a drug delivery system, the effect of the co-monomer contents on the response to stimuli (temperature and pH value) and cytotoxicity of the nanogels has been studied in detail. The results demonstrated that the responsiveness, reversibility and volume phase transition critical value of the nanogels could be controlled by adjusting the feeding ratio of the co-monomers in the synthesis process. MTT assay results revealed that nanogels with appropriate compositions showed good biocompatibility and relatively low toxicity. Most importantly, by studying the drug loading behavior, it was found that the dimensions of the drug molecules had a considerable influence on the drug loading efficiency and loading capacity of the nanogels, and that the mechanism by which drug molecule sizes influence the drug loading behavior of nanogels needs further investigation. The results indicated that such PNMP nanogels might have potential applications in drug delivery and other medical applications, but that the drug loading mechanism must be further developed.

  3. Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery.

    PubMed

    Lin, Liufeng; Xu, Wei; Liang, Hongshan; He, Lei; Liu, Shilin; Li, Yan; Li, Bin; Chen, Yijie

    2015-02-01

    Novel nano-particles were developed from lysozyme-pectin through self-assembly, and the nanogels could be used as a carrier for the antitumor agent, methotrexate (MTX). The nanogels exhibited spherical with diameters about 109 2 nm and narrow particle size distribution, as well as negative surface charge. Furthermore, the particle size and morphology of the nanogels hardly changed with the incorporation of MTX. The loading capacity of MTX in nanogels could reach 17.58 0.85%. MTX-loaded nanogels were pH-dependent, accelerated release of MTX at a decreasing pH from 7.4 to 5.3. The MTT assay indicated that encapsulated MTX exhibited higher anticancer activity than free MTX. Meanwhile, MTX-loaded nanogels could be effectively endocytosed by HepG2 cells, resulting in enhanced cancer-cell apoptosis comparing to free MTX. It indicated that the nanogels had good biocompatibility and low toxicity. The obtained nanogels had great potential in the development of a new nanocarrier for anti-cancer drug delivery. PMID:25601095

  4. Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

    PubMed Central

    Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, GS Vinod

    2012-01-01

    Methacrylic-based copolymers in drug-delivery systems demonstrate a pH-sensitive drug-releasing behavior in the colon. In this study, copolymers of methacrylic acid and 2-ethyl hexyl acrylate were prepared using a microemulsion polymerization technique. The purified copolymer was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. 5-Fluorouracil (5-FU) was entrapped within methacrylic-based copolymers by a solvent evaporation method. The size of the nanogels formed was characterized by transmission electron microscopy and atomic force microscopy. In vitro drug-release studies using phosphate-buffered saline at different pH levels demonstrated the sustained release of 5-FU and its pH dependence. Cell proliferation assay of a human colon tumor colon cancer cell line (HCT-116) was performed and showed that the nanogels containing 5-FU exhibited considerable cytotoxicity in comparison with free 5-FU. Cell uptake of the nanogels was also monitored using confocal microscopy. Western blot analysis and flow cytometry studies confirmed that the nanogels could be successfully used as an efficient vector for pH-sensitive and controlled delivery of drugs specifically targeted to the colon. PMID:23172988

  5. Bio-derived poly(gamma-glutamic acid) nanogels as controlled anticancer drug delivery carriers.

    PubMed

    Bae, Hee Ho; Cho, Mi Young; Hong, Ji Hyeon; Poo, Haryoung; Sung, Moon-Hee; Lim, Yong Taik

    2012-12-01

    We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(gamma- glutamic acid) (gamma-PGA). gamma-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated gamma-PGA was synthesized by covalent coupling between the carboxyl groups of gamma-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded gamma-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated gamma-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated gamma-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked gamma-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked gamma-PGA nanogels in aqueous solution were 136.3 +/- 37.6 nm and -32.5 +/- 5.3 mV, respectively. The loading amount of Dox was approximately 38.7 microgram per mg of gamma-PGA nanogel. The Dox-loaded disulfide cross-linked gamma-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1- 10 mM). Through fluorescence microscopy and FACS, the cellular uptake of gamma-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of gamma-PGA nanogels. The bio-derived gamma-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications. PMID:23221543

  6. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art

    PubMed Central

    Soni, Govind; Yadav, Khushwant S.

    2014-01-01

    Nanogels are being explored as drug delivery agents for targeting cancer due to their easy tailoring properties and ability to efficiently encapsulate therapeutics of diverse nature through simple mechanisms. Nanogels are proficiently internalized by the target cells, avoid accumulating in nontarget tissues thereby lower the therapeutic dosage and minimize harmful side effects. However, there is an urgent need for relevant clinical data from nanogels so as to allow translation of the nanogel concept into a viable therapeutic application for the treatment of cancer. This review highlights some of the recent progress in nanogels as a carrier in the field of nanomedicine for the treatment of cancer. The present review critically analyzes the use of extracellular pH targeting for nanogels, siRNA delivery, PEGylated nanogels, multi-responsive nanogels and intracellular delivery of nanogels for improved therapy of cancer. PMID:27013905

  7. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages.

    PubMed

    De Backer, Lynn; Naessens, Thomas; De Koker, Stefaan; Zagato, Elisa; Demeester, Jo; Grooten, Johan; De Smedt, Stefaan C; Raemdonck, Koen

    2015-11-10

    The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung. PMID:26307350

  8. Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity.

    PubMed

    Muraoka, Daisuke; Harada, Naozumi; Hayashi, Tae; Tahara, Yoshiro; Momose, Fumiyasu; Sawada, Shin-ichi; Mukai, Sada-atsu; Akiyoshi, Kazunari; Shiku, Hiroshi

    2014-09-23

    Because existing therapeutic cancer vaccines provide only a limited clinical benefit, a different vaccination strategy is necessary to improve vaccine efficacy. We developed a nanoparticulate cancer vaccine by encapsulating a synthetic long peptide antigen within an immunologically inert nanoparticulate hydrogel (nanogel) of cholesteryl pullulan (CHP). After subcutaneous injection to mice, the nanogel-based vaccine was efficiently transported to the draining lymph node, and was preferentially engulfed by medullary macrophages but was not sensed by other macrophages and dendritic cells (so-called "immunologically stealth mode"). Although the function of medullary macrophages in T cell immunity has been unexplored so far, these macrophages effectively cross-primed the vaccine-specific CD8(+) T cells in the presence of a Toll-like receptor (TLR) agonist as an adjuvant. The nanogel-based vaccine significantly inhibited in vivo tumor growth in the prophylactic and therapeutic settings, compared to another vaccine formulation using a conventional delivery system, incomplete Freund's adjuvant. We also revealed that lymph node macrophages were highly responsive to TLR stimulation, which may underlie the potency of the macrophage-oriented, nanogel-based vaccine. These results indicate that targeting medullary macrophages using the immunologically stealth nanoparticulate delivery system is an effective vaccine strategy. PMID:25180962

  9. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Cai, Huanxin; Yao, Ping

    2013-03-01

    An effective, green, and facile approach to synthesize gold nanoparticle-loaded protein-polysaccharide nanogels was developed in this study. Biocompatible gold nanoparticle-loaded lysozyme-dextran (Au@Lys-Dex) nanogels were produced using lysozyme-dextran nanogels as reducing and stabilizing agents. Lysozyme-dextran nanogels have a size of about 200 nm and a structure of lysozyme core and dextran shell. At pH around 4, AuCl4- ions are attracted and locally enriched by lysozyme due to the electrostatic and coordination interactions. When the solution is under UV irradiation, the AuCl4- ions are reduced to gold nanoparticles in situ by solvated electrons and reactive radicals produced from aromatic amino acid residues in the lysozyme. The produced gold nanoparticles with a size of about 8 nm are trapped inside the nanogels and the Au@Lys-Dex nanogels are well dispersible by virtue of the dextran shell. Antitumor drug, doxorubicin, can be loaded effectively inside Au@Lys-Dex nanogels via diffusion. In vitro study demonstrates the doxorubicin loaded Au@Lys-Dex nanogels have the same antitumor activity as free doxorubicin. The nanogels can be used as a contrasting agent in optical cell imaging, in which direct visual images of the subcellular distributions of the gold nanoparticles and the released doxorubicin are presented synchronously. The dual functional drug loaded Au@Lys-Dex nanogels are a promising system for simultaneous drug delivery and biomedical imaging.

  10. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    PubMed

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. PMID:25681719

  11. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    NASA Astrophysics Data System (ADS)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  12. Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors

    PubMed Central

    Warren, G; Makarov, E; Lu, Y; Senanayake, T; Rivera, K; Gorantla, S; Poluektova, LY; Vinogradov, SV

    2015-01-01

    Progress in AIDS treatment shifted emphasis towards limiting adverse effects of antiviral drugs while improving the treatment of hard-to-reach viral reservoirs. Many therapeutic nucleoside reverse transcriptase inhibitors (NRTI) have a limited access to the central nervous system (CNS). Increased NRTI levels induced various complications during the therapy, including neurotoxicity, due to the NRTI toxicity to mitochondria. Here, we describe an innovative design of biodegradable cationic cholesterol-ε-polylysine nanogel carriers for delivery of triphosphorylated NRTIs that demonstrated high anti-HIV activity along with low neurotoxicity, warranting minimal side effects following systemic administration. Efficient CNS targeting was achieved by nanogel modification with brain-specific peptide vectors. Novel dual and triple-drug nanoformulations, analogous to therapeutic NRTI cocktails, displayed equal or higher antiviral activity in HIV-infected macrophages compared to free drugs. Our results suggest potential alternative approach to HIV-1 treatment focused on the effective nanodrug delivery to viral reservoirs in the CNS and reduced neurotoxicity. PMID:25559020

  13. Modular 'click-in-emulsion' bone-targeted nanogels.

    PubMed

    Heller, Daniel A; Levi, Yair; Pelet, Jeisa M; Doloff, Joshua C; Wallas, Jasmine; Pratt, George W; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S; Langer, Robert; Anderson, Daniel G

    2013-03-13

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ∼70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free clickable functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects. PMID:23280931

  14. Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels

    PubMed Central

    Heller, Daniel A.; Levi, Yair; Pelet, Jeisa M.; Doloff, Joshua C.; Wallas, Jasmine; Pratt, George W.; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E.; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S.; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, 67 nm in diameter and synthesized via an astoichiometric click-chemistry-inemulsion method, controllably display residual, free click-able functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects. PMID:23280931

  15. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: Synthesis, characterization and implications for anticancer drug delivery

    PubMed Central

    Kim, Jong Oh; Oberoi, Hardeep S.; Desale, Swapnil; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

  16. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin.

    PubMed

    Jin, Bei; Zhou, Xiaosong; Li, Xiangzhong; Lin, Weiqin; Chen, Guangbin; Qiu, Riji

    2016-01-01

    A simple and green approach was developed to produce a novel nanogel via self-assembly of modified soy protein and dextran, to efficiently deliver riboflavin. First, modified soy protein was prepared by heating denaturation at 60 °C for 30 min or Alcalase hydrolysis for 40 min. Second, modified soy protein was mixed with dextran and ultrasonicated for 70 min so as to assemble nanogels. The modified soy protein-dextran nanogels were characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) and ζ-potential studies to confirm the formation of NGs. Transmission electron microscopy (TEM) revealed the NGs to be spherical with core-shell structures, in the range of 32-40 nm size. The nanogels were stable against various environmental conditions. Furthermore, the particle size of the nanogels hardly changed with the incorporation of riboflavin. The encapsulation efficiency of nanogels was found to be up to 65.9% at a riboflavin concentration of 250 μg/mL. The nanogels exhibited a faster release in simulated intestine fluid (SIF) compared with simulated gastric fluid (SGF). From the results obtained it can be concluded that modified soy protein-dextran nanogels can be considered a promising carrier for drugs and other bioactive molecule delivery purposes. PMID:26999081

  17. Designing Nanogel Carriers for Antibacterial Applications

    PubMed Central

    Ferrer, M. Carme Coll; Dastgheyb, Sana; Hickok, Noreen J.; Eckmann, David M.; Composto, Russell J.

    2014-01-01

    Recently, we developed a novel and simple synthesis route to create nanosized (~ 5 nm) silver nanoparticles (NP) embedded in a biocompatible nanogel (NG) comprised of degradable, natural polymers, namely, dextran and lysozyme. In this study, we prepare hybrid nanogels with varying lysozyme content, evaluate their potential to reduce Ag NPs in situ (UV-Vis, cryo-TEM, TGA and FTIR) and determine their antibacterial properties against Escherichia coli and Staphylococcus aureus. Lysozyme enhances nucleation and stabilization of Ag NPs while limiting their growth. As lysozyme concentration increases, larger nanogels with greater loading of smaller Ag NPs are obtained. The antibacterial properties of hybrid NGs depend upon nanogel type and bacterial conditions. Hybrid nanogels with the largest Ag NPs show the lowest minimum inhibition concentration (MIC). However, the greatest bacterial killing efficiency (up to 100%) occurs within one hour if the bacteria are exposed to hybrid nanogels with smaller Ag NPs while agitating the medium. These results suggest that nanogel properties as well as antibacterial activity can be tuned by varying lysozyme content. By targeting drug delivery (e.g., ligand grafted surface), these nanogels can be used to prevent biofilm formation and control infection without the complications (i.e., over exposure) associated with classical antibiotic delivery platforms. PMID:24434534

  18. Design and engineering of nanogels for cancer treatment

    PubMed Central

    Yallapu, Murali Mohan; Jaggi, Meena; Chauhan, Subhash

    2011-01-01

    Here, we provide a comprehensive insight into current advances in the use of nanogel-mediated chemotherapy for cancer treatment. Nanogels are composed of cross-linked three-dimensional polymer chain networks that are formed via covalent linkages or self-assembly processes. The porosity between the cross-linked networks of nanogels not only provides an ideal reservoir for loading drugs, oligonucleotides and imaging agents, but also protects them from environmental degradation and hazards. Here, we focus mainly on novel synthetic strategies and key considerations in the design of nanogel-based drug delivery systems for controlled and targeted cancer therapeutic applications. PMID:21414419

  19. Design and engineering of nanogels for cancer treatment.

    PubMed

    Yallapu, Murali Mohan; Jaggi, Meena; Chauhan, Subhash C

    2011-05-01

    Here, we provide a comprehensive insight into current advances in the use of nanogel-mediated chemotherapy for cancer treatment. Nanogels are composed of cross-linked three-dimensional polymer chain networks that are formed via covalent linkages or self-assembly processes. The porosity between the cross-linked networks of nanogels not only provides an ideal reservoir for loading drugs, oligonucleotides and imaging agents, but also protects them from environmental degradation and hazards. Here, we focus mainly on novel synthetic strategies and key considerations in the design of nanogel-based drug delivery systems for controlled and targeted cancer therapeutic applications. PMID:21414419

  20. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system.

    PubMed

    De Backer, Lynn; Braeckmans, Kevin; Stuart, Marc C A; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2015-05-28

    Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf) outer shell. The decoration of siNGs with a surfactant shell enhances the colloidal stability and prevents siRNA release in the presence of competing polyanions, which are abundantly present in biofluids. Additionally, the impact of the surfactant shell on the biological efficacy of the siNGs is determined in lung cancer cells. The presence of the surfactants substantially reduces the cellular uptake of siNGs. Remarkably, the lowered intracellular dose does not impede the gene silencing effect, suggesting a crucial role of the pulmonary surfactant in the intracellular processing of the nanoparticles. In order to surmount the observed reduction in cellular dose, folate is incorporated as a targeting ligand in the pulmonary surfactant shell to incite receptor-mediated endocytosis. The latter substantially enhances both cellular uptake and gene silencing potential, achieving efficient knockdown at siRNA concentrations in the low nanomolar range. PMID:25791835

  1. Multi Drug Loaded Thermo-Responsive Fibrinogen-graft-Poly(N-vinyl Caprolactam) Nanogels for Breast Cancer Drug Delivery.

    PubMed

    Rejinold, N Sanoj; Baby, Thejus; Chennazhi, K P; Jayakumar, R

    2015-03-01

    This study aims at the targeted delivery of 5-fluorouracil (5-FU) and Megestrol acetate (Meg) loaded fibrinogen-graft-poly(N-Vinyl caprolactam) nanogels (5-FU/Meg-fib-graft-PNVCL NGs) toward α5β1-integrins receptors expressed on breast cancer cells to have enhanced anti-cancer effect in vitro. To achieve this aim, we developed biocompatible thermoresponsive fib-graft-PNVCL NGs using fibrinogen and carboxyl terminated PNVCL via EDC/NHS amidation reaction. The Lower Critical Solution Temperature (LCST) of fib-graft-PNVCL could be tuned according to PNVCL/fibrinogen compositions. The 100-120 nm sized nanogels of fib-graft-PNVCL (LCST = 35 ?1 'C) was prepared using CaCl2 cross-linker. The 5-FU/Meg-fib-graft-PNVCL NGs showed a particle size of 150-170 nm size. The drug loading efficiency with 5-FU was 62% while Meg showed 74%. The 5-FU and Meg release was prominent above LCST than below LCST. The multi drug loaded fib-graft-PNVCL NGs showed enhanced toxicity, apoptosis and uptake by breast cancer (MCF-7) cells compared to their individual doses above their LCST. The in vivo assessment in Swiss albino mice showed sustained release of Meg and 5-FU as early as 3 days, confirming the therapeutic efficiency of the formulation. These results demonstrate an enhanced platform for the future animal studies on breast tumor xenograft model. PMID:26307823

  2. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs

    PubMed Central

    Shah, Punit; Desai, Pinaki; Patel, Apurva; Singh, Mandip

    2011-01-01

    The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP). To achieve this primary goal we have developed a skin permeating nanogel system (SPN) containing surface modified polymeric bilayered nanoparticles along with a gelling agent. Poly-(lactide-co-glycolic acid) and chitosan were used to prepare bilayered nanoparticles (NPS) and the surface was modified with oleic acid (NPSO). Hydroxypropyl methyl cellulose (HPMC) and Carbopol with the desired viscosity were utilized to prepare the nanogels. The nanogel system was further investigated for in vitro skin permeation, drug release and stability studies. Allergic contact dermatitis (ACD) and psoriatic plaque like model were used to assess the effectiveness of SPN. Dispersion of NPSO in HPMC (SPN) produced a stable and uniform dispersion. In vitro permeation studies revealed increase in deposition of SP for the SP-SPN or SP+KP-SPN in the epidermis and dermis by 8.5 and 9.5 folds, respectively than SP-gel. Further, the deposition of KP for KP-SPN or SP+KP-SPN in epidermis and dermis was 9.75 and 11.55 folds higher, respectively than KP-gel. Similarly the amount of KP permeated for KP-SPN or SP+KP-SPN was increased by 9.92 folds than KP-gel. The ear thickness in ACD model and the expression of IL-17 and IL-23; PASI score and TEWL values in psoriatic plaque like model were significantly less (p<0.001) for SPN compared to control gel. Our results suggest that SP+KP-SPN have significant potential for the percutaneous delivery of SP and KP to the deeper skin layers for treatment of various skin inflammatory disorders. PMID:22118820

  3. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs.

    PubMed

    Shah, Punit P; Desai, Pinaki R; Patel, Apurva R; Singh, Mandip S

    2012-02-01

    The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP). To achieve this primary goal, we have developed a skin permeating nanogel system (SPN) containing surface modified polymeric bilayered nanoparticles along with a gelling agent. Poly-(lactide-co-glycolic acid) and chitosan were used to prepare bilayered nanoparticles (NPS) and the surface was modified with oleic acid (NPSO). Hydroxypropyl methyl cellulose (HPMC) and Carbopol with the desired viscosity were utilized to prepare the nanogels. The nanogel system was further investigated for in vitro skin permeation, drug release and stability studies. Allergic contact dermatitis (ACD) and psoriatic plaque like model were used to assess the effectiveness of SPN. Dispersion of NPSO in HPMC (SPN) produced a stable and uniform dispersion. In vitro permeation studies revealed increase in deposition of SP for the SP-SPN or SP+KP-SPN in the epidermis and dermis by 8.5 and 9.5 folds, respectively than SP-gel. Further, the deposition of KP for KP-SPN or SP+KP-SPN in epidermis and dermis was 9.75 and 11.55 folds higher, respectively than KP-gel. Similarly the amount of KP permeated for KP-SPN or SP+KP-SPN was increased by 9.92 folds than KP-gel. The ear thickness in ACD model and the expression of IL-17 and IL-23; PASI score and TEWL values in psoriatic plaque like model were significantly less (p < 0.001) for SPN compared to control gel. Our results suggest that SP+KP-SPN have significant potential for the percutaneous delivery of SP and KP to the deeper skin layers for treatment of various skin inflammatory disorders. PMID:22118820

  4. Poly-α,β-Polyasparthydrazide-Based Nanogels for Potential Oral Delivery of Paclitaxel: In Vitro and In Vivo Properties.

    PubMed

    Guo, Jingwen; Ma, Mingxin; Chang, Di; Zhang, Qiang; Zhang, Chen; Yue, Yang; Liu, Jia; Wang, Siling; Jiang, Tongying

    2015-12-01

    A family of nanogel drug carriers has been designed to enhance the oral absorption of paclitaxel (PTX). The PAHy-based nanogels were prepared by the interpenetration of poly-α,β-polyasparthydrazide (PAHy) chains and dicarboxyl-poly (ethylene glycol) (CPEG), forming a smart chain network. The PAHy-based nanogels were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC). The adhesion and retention properties of fluorescein isothiocyanate (FITC)-nanogels in vivo were investigated using an in vivo imaging system and confocal laser scanning microscopy (CLSM). The smart nanogels had a particle size of -200 nm, increased the degree and rate of release, and spent over 12 h in the gastrointestinal tract. They also produced excellent adhesion, permeability and retention (APR) effects and increased oral absorption, confirming their use as potential sustained-release carriers for the oral delivery of the hydrophobic anticancer agent PTX. PMID:26510316

  5. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery.

    PubMed

    Yang, Chenchen; Wang, Xin; Yao, Xikuang; Zhang, Yajun; Wu, Wei; Jiang, Xiqun

    2015-05-10

    A methacrylation strategy was employed to functionalize hyaluronic acid and prepare hyaluronic acid (HA) nanogels. Dynamic light scattering, zeta potential analyzer and electron microscopy were utilized to characterize the nanogels and their enzyme-degradability in vitro. It was found that these nanogels had a spherical morphology with the diameter of about 70nm, and negative surface potential. When doxorubicin (DOX) was loaded into the nanogels, the diameter decreased to approximately 50nm with a drug loading content of 16% and encapsulation efficiency of 62%. Cellular uptake examinations showed that HA nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs) which both overexpress CD44 receptor. Near-infrared fluorescence imaging, biodistribution and penetration examinations in tumor tissue indicated that the HA nanogels could efficiently accumulate and penetrate the tumor matrix. In vivo antitumor evaluation found that DOX-loaded HA nanogels exhibited a significantly superior antitumor effect. PMID:25665867

  6. A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system.

    PubMed

    Sekine, Yurina; Moritani, Yuki; Ikeda-Fukazawa, Tomoko; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2012-11-01

    New hybrid poly(ethylene glycol) (PEG) hydrogels crosslinked with both nanogels and nanogel-coated liposome complexes are obtained by Michael addition of the acryloyl group of a cholesterol-bearing pullulan (CHP) nanogel to the thiol group of pentaerythritol tetra(mercaptoethyl) polyoxyethylene. The nanogel-coated liposome complex is stably retained after gelation and the complexes are well dispersed in the hybrid gel. Microrheological measurements show that the strength and gelation time of the hybrid hydrogel can be controlled by changing the liposome:nanogel ratio. The hydrogel is gradually degraded by hydrolysis under physiological conditions. In this process, the nanogel is released first, followed by the nanogel-coated liposomes. Hybrid hydrogels that can incorporate various molecules into the nanogel and liposomes, and release them in a two-step controllable manner, represent a new functional scaffold capable of delivering multiple drugs, proteins or DNA. PMID:23184823

  7. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate.

    PubMed

    Li, Zhenshun; Xu, Wei; Zhang, Chunlan; Chen, Yijie; Li, Bin

    2015-04-01

    Nanogels (NGs) were fabricated with lysozyme and carboxymethylcellulose via a green self-assembly method. The prepared NGs were characterized by dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Pyrene and isothiocyanate were introduced as fluorescent probes to research the hydrophobic area of the NGs and cells endocytosis, respectively. Methotrexate (MTX) was used to investigate the drug encapsulation property of the NGs. It turned out to be that the drug loaded NGs were regular spherical shape with a hydrodynamic diameter of about 123 nm. The drug loading efficiency was about 14.2%. The NGs can slowly release the drug and increase the bioavailability of the loaded drug. The NGs are promising carriers for the delivery of drugs and other bioactive molecules. PMID:25637692

  8. pH-Triggered Magnetic-Chitosan Nanogels (MCNs) For Doxorubicin Delivery: Physically vs. Chemically Cross Linking Approach

    PubMed Central

    Sadighian, Somayeh; Hosseini-Monfared, Hassan; Rostamizadeh, Kobra; Hamidi, Mehrdad

    2015-01-01

    Purpose: This paper evaluates the impact of cross linking strategy on the characteristics of magnetic chitosan nanogels (MCNs) as targeted drug delivery system for doxorubicin. Methods: Sodium tripolyphosphate (TPP) and glutaraldehyde were used as physical (electrostatic) and chemical (covalent binding) cross-linker agents, respectively. MCNs were characterized by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM). Scanning electron microscopy (SEM) indicated the formation of spherical nanostructures with the final average particle size of around 35-40 nm. Results: The finding proved the superparamagnetic properties of the MCNs with relatively high-magnetization values which indicate that the MCNs were enough sensitive to external magnetic fields as a magnetic drug carrier. To understand the differences between the drug delivery properties of chemically and physically cross linked MCNs, the drug release studies were also conducted. Altogether, the results of this study clearly indicate that, however, both MCNs exhibited sustained drug release behaviour, the chemically cross linked MCNs provided enhanced controlled drug release characteristics in comparison to physically cross linked MCNs. Besides, according to the drug release behaviour of MCNs in buffer solutions in two different medium with the pH values of 5.3 and 7.4, it was clear that both nanoparticles exhibited pH sensitivity where the extent of drug release in the acidic media was significantly higher than neutral media. Conclusion: It can be concluded that chemically cross linked MCNs may serve as an ideal carrier for stimuli-triggered and controlled anticancer drug delivery. PMID:25789228

  9. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery.

    PubMed

    Wang, Juan; Xu, Mengxue; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-01-20

    To develop insulin delivery system for the treatment of diabetes, two insulin-loaded nanogels with opposite zeta potential (-15.94 ± 0.449 mV for insulin:CMCS/CS-NGs(-) and +17.15 ± 0.492 mV for insulin:CMCS/CS-NGs(+)) were obtained. Ex vivo results showed that the nanogels with opposite surface charge exhibited different adhesion and permeation in specific intestinal segments. There was no significant differences in adhesion and permeation in rat duodenum, but in rat jejunum, insulin:CMCS/CS-NGs(-) exhibited enhanced adhesion and permeation, which were about 3 folds (adhesion) and 1.7 folds (permeation) higher than insulin:CMCS/CS-NGs(+). These results demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS-NGs(-) group had 3 mmol/L lower than insulin:CMCS/CS-NGs(+) group during 1h to 11h after the oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones. PMID:26572423

  10. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate.

    PubMed

    Salehi, Roya; Rasouli, Sepideh; Hamishehkar, Hamed

    2015-06-20

    Two novel dual temperature/pH-sensitive superparamagnetic nanogels were developed with the aim of simultaneously delivering two different anticancer drugs, doxorubicin (DOX) and methotrexate (MTX). The studied copolymers were characterized by (1)H NMR, SEM, and FTIR spectroscopy. Morphological investigations showed that both blank and drug-loaded nanogels had uniform shapes with a mean diameter of less than 30 nm. The drug storage/release behaviors were investigated. The nanogels showed an encapsulation efficiency of about 95% for both drugs. The cumulative in vitro release of the DOX/MTX-loaded nanogels exhibited an apparent thermo/pH-triggered controlled drug release in a sustained manner that was able to distinguish between tumor tissues. The cytotoxicity assay of a blank carrier to MCF7 and MDA-MB-231 cell lines indicated that the nanogels were suitable as drug carriers. Cell viability experiments further confirmed that the co-administration of DOX with MTX had a superior cytotoxicity to the mentioned cells compared with free dual drug- or single drug-loaded forms. Therefore, dual anticancer drug-loaded thermo/pH-sensitive nanogels have the potential to be used for cancer therapy, because they maintain a low premature drug release during blood circulation while having a rapid release upon reaching tumorous tissue. PMID:25895723

  11. Targeted delivery of platinum-taxane combination therapy in ovarian cancer.

    PubMed

    Desale, Swapnil S; Soni, Kruti S; Romanova, Svetlana; Cohen, Samuel M; Bronich, Tatiana K

    2015-12-28

    Biodegradable polypeptide-based nanogels have been developed from amphiphilic block copolymers, poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-phenylalanine), which effectively co-incorporate cisplatin and paclitaxel, the clinically used drug combination for the treatment of advanced ovarian cancer. In order to target both drugs selectively to the tumor cells, we explored the benefits of ligand-mediated drug delivery by targeting folate receptors, which are overexpressed in most ovarian cancers. Drug-loaded nanogels were surface-functionalized with folic acid (FA) with the help of a PEG spacer without affecting the ligand binding affinity and maintaining the stability of the carrier system. FA-decorated nanogels significantly suppressed the growth of intraperitoneal ovarian tumor xenografts outperforming their nontargeted counterparts without extending their cytotoxicity to the normal tissues. We also confirmed that synchronized co-delivery of the platinum-taxane drug combination via single carrier to the same targeted cells is more advantageous than a combination of targeted single drug formulations administered at the same drug ratio. Lastly, we demonstrated that the same platform can also be used for localized chemotherapy. Our data indicate that intraperitoneal administration can be more effective in the context of targeted combination therapy. Our findings suggest that multifunctional nanogels are promising drug delivery carriers for improvement of current treatment for ovarian cancer. PMID:26381902

  12. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery.

    PubMed

    Zhou, Ting; Xiao, Chuanfu; Fan, Jiao; Chen, Shoumin; Shen, Jing; Wu, Weitai; Zhou, Shuiqin

    2013-01-01

    A smart, soft and small nanoparticulate drug carrier that can efficiently transport therapeutics into tumor cells to control the intracellular drug concentration will enable major advancements in cancer therapy. To facilitate a remote modulation of the intracellular pH-regulated drug release, we have designed a new class of pH-responsive chitosan-based nanogels (<200 nm) by the physical interpenetration of chitosan chains into a nonlinear poly(ethylene glycol) (nonlinear PEG) chain network. The resultant PEG-chitosan nanogels not only respond to the changes in environmental pH over the physiologically important range of 5.0-7.4, but - more importantly - also enable us to remotely modulate the pH response by external cooling/heating. The nanogel, as well as the nanogel loaded with a model anticancer drug 5-fluorouracil (5-FU), is capable of varying its surface charge from nearly neutral to positive around tumor extracellular pH (~6.0-6.2) to facilitate cell internalization. Subsequently, the significantly increased acidity in subcellular compartments (~5.0) can trigger 5-FU release from the endocytosed drug carriers. While this nanogel serving as a drug carrier exhibits a reduced toxicity in combined chemo-thermo treatments, it has shown significantly enhanced therapeutic efficacy in combined chemo-cryo treatments of the model B16F10 melanoma cells, indicating its great potential for cancer therapy. PMID:22906624

  13. Multi-stage, charge conversional, stimuli-responsive nanogels for therapeutic protein delivery.

    PubMed

    Zhang, Xuejiao; Zhang, Kai; Haag, Rainer

    2015-11-01

    A boronate ester crosslinked zwitterionic nanogel (NGCA) with ATP/pH-sensitivity has been developed with an inverse nanoprecipitation technique to achieve a two-stage charge conversion that responds to tumor extracellular conditions (pH 6.5-6.8) and an intracellular acidic environment (pH 5-6). Cationic cytochrome C (CC), a therapeutic protein, has been encapsulated into NGCA through inverse nanoprecipitation via electrostatic interactions to form protein-loaded nanogel (NGCA-CC). By adjusting the ratio of the amino and carboxyl groups in the nanogels, negatively charged nanogels that are safer under physiological conditions (pH 7.4) can convert their surface charge to positive at tumor extracellular pH, which enhance their cellular uptake efficiency. The citraconic amide formed from citraconic anhydride and amine can be cleaved in the intracellular acidic organelles to expose more amino groups and facilitate endosomal escape. The release of CC is accelerated in the presence of 5 mM ATP or under acidic conditions. Confocal laser scanning microscopy (CLSM) and flow cytometry have shown that NGCA-CC's cell uptake is higher at pH 6.5 than at pH 7.4. MTT and real-time cell analysis (RTCA) have illustrated that there is more toxicity at pH 6.5 than at pH 7.4. The apoptosis process induced by CC was determined by flow cytometry. PMID:26288853

  14. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment

    PubMed Central

    Fujii, Hidetaka; Shin-Ya, Masaharu; Takeda, Shigeo; Hashimoto, Yoshihide; Mukai, Sada-atsu; Sawada, Shin-ichi; Adachi, Tetsuya; Akiyoshi, Kazunari; Miki, Tsuneharu; Mazda, Osam

    2014-01-01

    RNAi enables potent and specific gene silencing, potentially offering useful means for treatment of cancers. However, safe and efficient drug delivery systems (DDS) that are appropriate for intra-tumor delivery of siRNA or shRNA have rarely been established, hindering clinical application of RNAi technology to cancer therapy. We have devised hydrogel polymer nanoparticles, or nanogel, and shown its validity as a novel DDS for various molecules. Here we examined the potential of self-assembled nanogel of cholesterol-bearing cycloamylose with spermine group (CH-CA-Spe) to deliver vascular endothelial growth factor (VEGF)-specific short interfering RNA (siVEGF) into tumor cells. The siVEGF/nanogel complex was engulfed by renal cell carcinoma (RCC) cells through the endocytotic pathway, resulting in efficient knockdown of VEGF. Intra-tumor injections of the complex significantly suppressed neovascularization and growth of RCC in mice. The treatment also inhibited induction of myeloid-derived suppressor cells, while it decreased interleukin-17A production. Therefore, the CH-CA-Spe nanogel may be a feasible DDS for intra-tumor delivery of therapeutic siRNA. The results also suggest that local suppression of VEGF may have a positive impact on systemic immune responses against malignancies. PMID:25283373

  15. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors.

    PubMed

    Wei, Xin; Senanayake, Thulani H; Warren, Galya; Vinogradov, Serguei V

    2013-04-17

    Many drug-resistant tumors and cancer stem cells (CSC) express elevated levels of CD44 receptor, a cellular glycoprotein binding hyaluronic acid (HA). Here, we report the synthesis of nanogel-drug conjugates based on membranotropic cholesteryl-HA (CHA) for efficient targeting and suppression of drug-resistant tumors. These conjugates significantly increased the bioavailability of poorly soluble drugs with previously reported activity against CSC, such as etoposide, salinomycin, and curcumin. The small nanogel particles (diameter 20-40 nm) with a hydrophobic core and high drug loads (up to 20%) formed after ultrasonication and demonstrated a sustained drug release following the hydrolysis of biodegradable ester linkage. Importantly, CHA-drug nanogels demonstrated 2-7 times higher cytotoxicity in CD44-expressing drug-resistant human breast and pancreatic adenocarcinoma cells compared to that of free drugs and nonmodified HA-drug conjugates. These nanogels were efficiently internalized via CD44 receptor-mediated endocytosis and simultaneous interaction with the cancer cell membrane. Anchoring by cholesterol moieties in the cellular membrane after nanogel unfolding evidently caused more efficient drug accumulation in cancer cells compared to that in nonmodified HA-drug conjugates. CHA-drug nanogels were able to penetrate multicellular cancer spheroids and displayed a higher cytotoxic effect in the system modeling tumor environment than both free drugs and HA-drug conjugates. In conclusion, the proposed design of nanogel-drug conjugates allowed us to significantly enhance drug bioavailability, cancer cell targeting, and the treatment efficacy against drug-resistant cancer cells and multicellular spheroids. PMID:23547842

  16. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for targeting of CD44-positive and drug-resistant tumors

    PubMed Central

    Wei, Xin; Senanayake, Thulani H.; Warren, Galya; Vinogradov, Serguei V.

    2013-01-01

    Many drug-resistant tumors and cancer stem cells (CSC) express elevated levels of CD44 receptor, a cellular glycoprotein binding hyaluronic acid (HA). Here, we report the synthesis of nanogel-drug conjugates based on membranotropic cholesteryl-HA (CHA) for efficient targeting and suppression of drug-resistant tumors. These conjugates significantly increased the bioavailability of poorly soluble drugs with previously reported activity against CSC, such as etoposide, salinomycin, and curcumin. The small nanogel particles (diam. 2040 nm) with a hydrophobic core and high drug loads (up to 20%) formed after ultrasonication and demonstrated a sustained drug release following the hydrolysis of biodegradable ester linkage. Importantly, CHA-drug nanogels demonstrated 27 times higher cytotoxicity in CD44-expressing drug-resistant human breast and pancreatic adenocarcinoma cells compared to free drugs and non-modified HA-drug conjugates. These nanogels were efficiently internalized via CD44 receptor-mediated endocytosis and simultaneous interaction with the cancer cell membrane. Anchoring by cholesterol moieties in the cellular membrane after nanogel unfolding evidently caused more efficient drug accumulation in cancer cells compared to non-modified HA-drug conjugates. CHA-drug nanogels were able to penetrate multicellular cancer spheroids and displayed higher cytotoxic effect in the system modeling tumor environment than both free drugs and HA-drug conjugates. In conclusion, the proposed design of nanogel-drug conjugates allowed us to significantly enhance drug bioavailability, cancer cell targeting, and the treatment efficacy against drug-resistant cancer cells and multicellular spheroids. PMID:23547842

  17. Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking.

    PubMed

    Huang, Juan; Xue, Yanan; Cai, Ning; Zhang, Han; Wen, Kaikai; Luo, Xiaogang; Long, Sihui; Yu, Faquan

    2015-01-01

    To reduce leakage on the drug-delivery pathway to minimize side effect of reduction or pH sensitive drug delivery systems, we designed a glutathione (GSH)/pH co-triggered magnetic nanogel drug delivery system for doxorubicin (DOX) based on the GSH concentration and pH difference between intracellular and extracellular environments. The introduction of superparamagnetic iron oxide nanoparticles (SPION) was intended for magnetic targeting. The magnetic DOX-loaded nanogel was then prepared by the oxidation of thiolated alginate with thiolated SPION in the presence of DOX. The nanogel size can be readily regulated in a range of 120-320 nm upon preparation conditions, with a negative surface charge of around -40 mV. Saturation magnetization was estimated at 27.4 emu/g Fe by VSM. In vitro release was conducted in simulated cancerous environment conditions such as a high GSH concentration and mild acidity. As a result, the nanogel expressed, upon dual stimuli of pH 5/10 mM GSH, significantly higher accumulative release than upon single stimulus of pH 5 without GSH or pH 7.4/10 mM GSH. In vitro cytotoxicity against HeLa cells clearly illustrated that the nanogel could effectively inhibit cell growth, and the IC50 was figured out to be 2.3 ?g/mL of the nanogel, while the nanogel exclusive of DOX was nontoxic. Confocal laser scanning microscopy observation, combined with the result of Prussian blue staining, indicated that DOX was efficiently internalized into HeLa cells through endocytosis, released into the cytoplasm, and then principally entered the nuclei. The quantitative examination of the iron content revealed an exponential increase in the cellular uptake and an exponential decrease in the uptake efficiency with the fed nanogel. This drug-loaded nanogel could be a promising drug carrier for effective tumor-targeted chemotherapy. PMID:25491958

  18. Therapeutic Effect of Nanogel-Based Delivery of Soluble FGFR2 with S252W Mutation on Craniosynostosis

    PubMed Central

    Yokota, Masako; Kobayashi, Yukiho; Morita, Jumpei; Suzuki, Hiroyuki; Hashimoto, Yoshihide; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Moriyama, Keiji

    2014-01-01

    Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder. PMID:25003957

  19. Colloidal chitin nanogels: A plethora of applications under one shell.

    PubMed

    Vishnu Priya, M; Sabitha, M; Jayakumar, R

    2016-01-20

    Chitin nanogels (CNGs) are a relatively new class of natural polymeric nanomaterials which have a large potential in the field of drug delivery and nanotherapeutics. These nanogels being very biocompatible are non-toxic when internalized by cells. In this review various properties, preparation techniques and applications of CNGs have been described. CNGs because of their nano-size possess certain unique properties which enable them to be used in a number of biomedical applications. CNGs are prepared by simple regeneration technique without using any cross-linkers. Various polymers, drugs and fluorescent dyes can be blended or incorporated or labelled with the chitin hydrogel network. Drugs and molecules encapsulated within CNGs can be used for targeted delivery, in vivo monitoring or even for therapeutic purposes. Here various applications of CNGs in the field of drug delivery, imaging, sensing and therapeutics have been discussed. PMID:26572393

  20. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery.

    PubMed

    Madhusudana Rao, K; Krishna Rao, K S V; Ramanjaneyulu, G; Ha, Chang-Sik

    2015-01-30

    Interpenetrating polymeric network nanogels (IPN-NGs) composed of natural gelatin biological protein macromolecules and poly(acrylamidoglycolic acid) were produced by simple free radical emulsion polymerization. The developed IPN-NGs were characterized by Fourier-transform infra-red spectroscopy to confirm the formation of NGs. The hydrophobic curcumin drug was loaded successfully into these NGs using an in-situ method. The curcumin-encapsulated NGs were well dispersed in aqueous solutions and showed good bioavailability. Curcumin was dispersed molecularly in the IPN-NGs, which was confirmed by differential scanning calorimetry and X-ray diffraction. The NGs exhibited pH sensitive properties according to dynamic light scattering and the zeta size potentials. Transmission electron microscopy revealed the NGs to be spherical, approximately 100nm in size. The encapsulation efficiency of these IPN-NGs drug formulations ranged from 42 to 48%. In addition, the release of curcumin from the NGs was examined in phosphate buffer medium. The cytotoxicity of the IPN-NGs was studied using in vitro cultures of fibroblasts and a colorectal cancer cell line. The results suggest that the newly developed pH sensitive gelatin-poly(acrylamidoglycolic acid)-curcumin NGs can be applied for colorectal cancer drug delivery applications. PMID:25528297

  1. Magnetic and pH dual responsive core-shell hybrid nanogels: a single nano-object for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery

    SciTech Connect

    Wu, Weitai; Shen, Jing; Gai, Zheng; Hong, Kunlun; Banerjeea, Probal; Zhou, Shuiqin

    2011-01-01

    Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell of poly(ethylene glycol-co-methacrylic acid) [p(EG-MAA)] onto the Ni-Ag bimetallic NP cores (18 {+-} 5 nm). The introduction of the pH-responsive p(EG-MAA) gel shell onto the magnetic and fluorescent Ni-Ag NPs makes the polymer-bound Ni-Ag NPs responsive to pH over the physiologically important range 5.0-7.4. The hybrid nanogels can adapt to surrounding pH and regulate the sensitivity in response to external magnetic field (such as a small magnet of 0.1 T), resulting in the accumulation of the hybrid nanogels within the duration from hours to a few seconds as the pH value decreases from 7.4 to 5.0. The pH-dependent magnetic response characteristic of the hybrid nanogels were further integrated with the pH change to fluorescent signal transduction and pH-regulated anticancer drug (a model drug 5-fluorouracil) delivery functions. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The multiple responsive hybrid nanogel that can be manipulated in tandem endogenous and exogenous activation should enhance our ability to address the complexity of biological systems.

  2. Receptor-mediated gene delivery into human mesenchymal stem cells using hyaluronic acid-shielded polyethylenimine/pDNA nanogels.

    PubMed

    Park, Ji Sun; Yi, Se Won; Kim, Hye Jin; Park, Keun-Hong

    2016-01-20

    Polyethylenimine (PEI) has been used as a vehicle to deliver genes to cancer cells and somatic cells. In this study, cationic polymers of PEI were shielded with anionic polymers of hyaluronic acid (HA) to safely and effectively deliver genes into human mesenchymal stem cells (hMSCs). HA interacted with CD44 in the plasma membranes of hMSCs to facilitate the internalization of HA-shielded PEI/pDNA complexes. The HA-shielded PEI/pDNA nanogels were confirmed by size changes, ζ-potential, and gel retardation assays. HA-shielded nanogels were easily internalized by hMSCs, and this was reduced by pretreatment with a specific monoclonal antibody that blocked CD44. By shielding PEI/pDNA complexes with HA, nanogels were easily internalized to hMSCs when it did not blocked by anti-CD44. These shielded nanogels were also easily internalized by HeLa cells, and this was reduced by pretreatment with an anti-CD44 monoclonal antibody. Following internalization of the SOX9 gene, chondrogenesis of hMSCs was increased, as determined by RT-PCR, real-time quantitative PCR, and histological analyses. PMID:26572414

  3. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment.

    PubMed

    Wu, Weitai; Shen, Jing; Banerjee, Probal; Zhou, Shuiqin

    2010-10-01

    We report a class of core-shell structured hybrid nanogels to demonstrate the conception of integrating the functional building blocks into a single nanoparticle system for simultaneously optical temperature-sensing, cancer cell targeting, fluorescence imaging, and combined chemo-photothermal treatment. The hybrid nanogels were constructed by coating the Ag-Au bimetallic NP core with a thermo-responsive nonlinear poly(ethylene glycol) (PEG)-based hydrogel as shell, and semi-interpenetrating the targeting ligands of hyaluronic acid chains into the surface networks of gel shell. The Ag-Au NP core can emit strong visible fluorescence for imaging of mouse melanoma B16F10 cells. The reversible thermo-responsive volume phase transition of the nonlinear PEG-based gel shell cannot only modify the physicochemical environment of the Ag-Au NP core to manipulate the fluorescence intensity for sensing the environmental temperature change, but also provide a high loading capacity for a model anticancer drug temozolomide and offer a thermo-triggered drug release. The drug release can be induced by both the heat generated by external NIR irradiation and the temperature increase of local environmental media. The ability of the hybrid nanogels to combine the local specific chemotherapy with external NIR photothermal treatment significantly improves the therapeutic efficacy due to a synergistic effect. PMID:20643481

  4. Stimuli-responsive polyamine-DNA blend nanogels for co-delivery in cancer therapy.

    PubMed

    Costa, Diana; Valente, Artur J M; Queiroz, João

    2015-08-01

    Polyamine plasmid DNA (pDNA) hydrogels have been synthesized by an original approach which conjugates pDNA condensation by polyamines and cross-linking reaction with ethylene glycol diglycidyl ether. In an attempt to design more sophisticated vectors with enhanced transfection efficiency and targeting ability, the cell-binding ligand transferrin has been incorporated into polyethylenimine formulations. All systems are photodegradable which allows for the controlled release of different plasmids (pVAX1-LacZ and pcDNA3-FLAG-p53) and anticancer drugs (doxorubicin, epirubicin and paclitaxel). The tumoral treatment through the combined action of pcDNA3-FLAG-p53 gene and an anticancer drug has a stronger potential to suppress the development of cancer cells. The effect is greatly improved when transferrin is encapsulated into the carriers. This study is a relevant contribution for the design of novel generation of plasmid biopharmaceuticals for progresses in gene cancer therapy, feeding the hope of cancer cure. PMID:26047882

  5. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  6. Sunflower-type nanogels carrying a quantum dot nanoprobe for both superior gene delivery efficacy and tracing of human mesenchymal stem cells.

    PubMed

    Park, Ji Sun; Yi, Se Won; Kim, Hye Jin; Kim, Seong Min; Shim, Sung Han; Park, Keun-Hong

    2016-01-01

    Sunflower-type nanogels carrying the QD 655 nanoprobe can be used for both gene transfection and bioimaging of hMSCs. The entry of sunflower-type nanogels into hMSCs can be possibly controlled by changing the formation of QDs. The physico-chemical properties of sunflower-type nanogels internalized by hMSCs were confirmed by AFM, SEM, TEM, gel retardation, and ζ-potential analyses. The bioimaging capacity was confirmed by confocal laser microscopy, Kodak imaging, and Xenogen imaging. Specifically, we investigated the cytotoxicity of sunflower-type nanogels via SNP analysis. Internalization of sunflower-type nanogels does not cause malfunction of hMSCs. PMID:26576046

  7. Ex vivo skin permeation and retention studies on chitosan-ibuprofen-gellan ternary nanogel prepared by in situ ionic gelation technique--a tool for controlled transdermal delivery of ibuprofen.

    PubMed

    Abioye, Amos Olusegun; Issah, Sureya; Kola-Mustapha, Adeola Tawakalitu

    2015-07-25

    The chemical potentials of drug-polymer electrostatic interaction have been utilized to develop a novel ternary chitosan-ibuprofen-gellan nanogel as controlled transdermal delivery tool for ibuprofen. The ternary nanogels were prepared by a combination of electrostatic nanoassembly and ionic gelation techniques. The electrostatic and hydrophobic interactions as well as hydrogen bonding between ibuprofen and chitosan were confirmed with FTIR, while DSC, TGA and SEM confirmed the physical state, thermal and morphological characteristics, respectively. The ex vivo delivery of ibuprofen onto and across the skin was evaluated based on system specific drug release parameters such as steady state permeation rate, permeability coefficient, permeability enhancement ratio, skin/gel partition coefficient, diffusion coefficient, lag time and release rate constant and mechanisms of release were determined using mathematical models. Interaction between ibuprofen and chitosan produced new spherical eutectic nanoconjugates with remarkable decrease in particle size of ibuprofen from 4580 (length-to-breadth aspect ratio) to a minimum of 14.15 nm (324-times), and thermally stable amorphous characteristics. The nanogels exhibited significant elastic and pseudoplastic characteristics dictated by the concentration of chitosan with maximum swelling capacity of 775% w/w at 6.55 mM chitosan compared with 281.16 and 506.50% for plain gellan and control ibuprofen hydrogel, respectively. Chitosan enhanced the skin penetration, permeability and the rate of transdermal release of ibuprofen by a factor of 4, dictated by the extent of ibuprofen-chitosan ionic interaction and its concentration. The major mechanism of ibuprofen release through the pig skin was drug diffusion however drug partition and matrix erosion also occurred. It was evident that ternary nanogels are novel formulations with potential application in controlled transdermal delivery of ibuprofen. PMID:25997660

  8. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells.

    PubMed

    Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Mohammadi, Samaneh; Amoozgar, Zohreh; Dinarvand, Rasoul

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn(2+)-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-l-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by (1)H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77-83nm and a relatively high drug loading (54±4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. PMID:26952497

  9. Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model

    PubMed Central

    Liu, Xingang; Wang, Jianmeng; Xu, Weiguo; Ding, Jianxun; Shi, Bo; Huang, Kexin; Zhuang, Xiuli; Chen, Xuesi

    2015-01-01

    The reduction-responsive polymeric nanocarriers have attracted considerable interest because of a significantly higher concentration of intracellular glutathione in comparison with that outside cells. The smart nanovehicles can selectively transport the antitumor drugs into cells to improve efficacies and decrease side effects. In this work, a facilely prepared glutathione-degradable nanogel was employed for targeting intracellular delivery of an antitumor drug (ie, doxorubicin [DOX]). DOX was loaded into nanogel through a sequential dispersion and dialysis approach with a drug loading efficiency of 56.8 wt%, and the laden nanogel (noted as NG/DOX) showed an appropriate hydrodynamic radius of 56.13.5 nm. NG/DOX exhibited enhanced or improved maximum tolerated dose on healthy Kunming mice and enhanced intratumoral accumulation and dose-dependent antitumor efficacy toward H22 hepatoma-xenografted mouse model compared with free drug. In addition, the upregulated antitumor efficacy of NG/DOX was further confirmed by the histopathological and immunohistochemical analyses. Furthermore, the excellent in vivo security of NG/DOX was confirmed by the detection of body weight, histopathology, and biochemical indices of corresponding organs and serum. With controllable large-scale preparation and fascinating in vitro and in vivo properties, the reduction-responsive nanogel exhibited a good prospect for clinical chemotherapy. PMID:26543363

  10. Boronate cross-linked ATP- and pH-responsive nanogels for intracellular delivery of anticancer drugs.

    PubMed

    Zhang, Xuejiao; Achazi, Katharina; Haag, Rainer

    2015-03-11

    A novel adenosine-5'-triphosphate (ATP) and pH dual-responsive degradable nanogel (NG) system are developed based on the complexation of 1,2-diols in dendritic polyglycerol (dPG), and boronic acids, which are conjugated with dPG as the macromolecular cross-linker. The NG is formed by a mild and surfactant-free inverse nanoprecipitation method. An anticancer drug, methotrexate (MTX), is coprecipitated with the macromolecular precursors and cross-linkers to form MTX-loaded NG (NG-MTX) with a loading capacity of 13 wt%. The size of NG is controllable from 100 to 300 nm, which is suitable for the enhanced permeation and retention (EPR) effect and can be degraded into small fragments that are within the clearance limitation in the presence of 5 10(-3) m ATP or at pH 4 after 24 h. Increasing ATP concentrations and decreasing pH values of the release medium accelerate the release of MTX. Both the real-time cell analysis (RTCA) and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) results show no cytotoxic effect of NG and a dose-dependent effect of NG-MTX on HeLa cells as well as MCF-7 cells. The fluorescein isothiocyanate (FITC)-labeled NG (FITC-NG) exhibits a time-dependent intracellular uptake tendency and cell organelle permeability as determined by confocal laser scanning microscopy (CLSM) or flow cytometry. PMID:25388994

  11. Hybrid Fe3O4-Poly(acrylic acid) Nanogels for Theranostic Cancer Treatment.

    PubMed

    Chen, Ying; Nan, Jingya; Lu, Yue; Wang, Chunpeng; Chu, Fuxiang; Gu, Zhen

    2015-05-01

    Multifunctional nanomedicine integrated with both therapy and diagnostics holds vast potential in cancer treatment. We developed hybrid Fe3O4-poly(acrylic acid) (PAA) nanogels for both drug delivery and magnetic resonance imaging (MRI). Superparamagnetic Fe3O4 nanoparticles were encapsulated inside porous PAA nanogels via an in situ co-precipitation approach. With successive growth of magnetic nanoparticles, the highest magnetization saturation (M(s)) value of the Fe3O4 nanoparticles in the PAA nanogels was determined as 20 emu/g. The resulting hybrid Fe3O4-PAA nanogels showed high drug loading capacity (98%) and sustained drug release in vitro. Cytotoxicity assays and cellular imaging demonstrated that the hybrid nanogels were highly biocompatible and efficiently internalized in human neuroblastoma SH-SY5Y cells. In MRI studies, the hybrid nanogels exhibited an excellent contrast in T2 weighted imaging and a high MRI sensitivity in the tumor site. PMID:26349390

  12. Smart nanogels at the air/water interface: structural studies by neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina

    2016-02-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07538f

  13. Aptamer-targeted Antigen Delivery

    PubMed Central

    Wengerter, Brian C; Katakowski, Joseph A; Rosenberg, Jacob M; Park, Chae Gyu; Almo, Steven C; Palliser, Deborah; Levy, Matthew

    2014-01-01

    Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines. PMID:24682172

  14. Ultrasound-Targeted Retroviral Gene Delivery

    NASA Astrophysics Data System (ADS)

    Taylor, Sarah L.; Rahim, Ahad A.; Bush, Nigel L.; Bamber, Jeffrey C.; Porter, Colin D.

    2007-05-01

    This study demonstrates the ability of focused ultrasound to target retroviral gene delivery. Key to our experiments was the use of non-infectious virus particles lacking the envelope protein required for receptor-mediated entry. The novelty of our approach is that spatial control at a distance is exerted upon viral delivery by subsequent exposure to ultrasound, leading to stable gene delivery. The technology is ideally suited to controlling gene delivery in vivo following systemic vector administration. Our data provide a solution to the critical issue of obtaining tissue specificity with retroviral vectors and impart stability of expression to ultrasound-mediated gene delivery.

  15. Brain tumor-targeted drug delivery strategies

    PubMed Central

    Wei, Xiaoli; Chen, Xishan; Ying, Man; Lu, Weiyue

    2014-01-01

    Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges. PMID:26579383

  16. Targeted Drug Delivery in Pancreatic Cancer

    PubMed Central

    Yu, Xianjun; Zhang, Yuqing; Chen, Changyi; Yao, Qizhi; Li, Min

    2009-01-01

    Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor and antibody has been a success in recent pre-clinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer, and provides important information on potential therapeutic targets for pancreatic cancer treatment. PMID:19853645

  17. Polymers for Colon Targeted Drug Delivery

    PubMed Central

    Rajpurohit, H.; Sharma, P.; Sharma, S.; Bhandari, A.

    2010-01-01

    The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems. PMID:21969739

  18. Curcumin-encapsulating Nanogels as an Effective Anticancer Formulation for Intracellular Uptake

    PubMed Central

    Reeves, Anna; Vinogradov, Serguei V.; Morrissey, Phil; Chernin, Mitchell; Ahmed, Mansoor M.

    2016-01-01

    Nanoscale drug delivery systems represent an attractive strategy to improve both the efficacy and safety of anticancer drugs. In this work, we describe nanoformulation of curcumin, a most potent natural anticancer compound capable of killing cancer cells while sparing the normal tissues. Since curcumin is a natural hydrophobic polyphenol, it has a low aqueous solubility and bioavailability, which are challenging to its therapeutic efficacy. We developed and evaluated a novel colloidal nanogel carrier for encapsulation of curcumin to increase its solubility and cytotoxicity. Amphiphilic Poloxamer-cationic network in the nanogel NG127 was designed to efficiently encapsulate curcumin. Homogenous drug complexes were obtained with 20–25% content of curcumin and the particle size of ca. 150 nm. Using ImageStream multispectral imaging flow cytometry, we demonstrated that the curcumin-nanogel formulation (C-NG) was readily internalized into MDA-231 breast cancer cells. A real-time cell growth electronic sensing assay was used to measure proliferation responses of various breast cancer cells to C-NG treatments. Our results indicated that the C-NG formulation was 70–85% more effective in inhibiting growth, at concentrations lower than IC50 of free curcumin. This was also confirmed morphologically by modified acridine orange/ethidium bromide staining and fluorescent microscopy. Importantly, nanocarrier NG127 alone displayed practically no cytotoxicity. We conclude that nanogel carriers offer an innovative way to encapsulate curcumin and to obtain more effective anticancer therapeutics than curcumin alone with a potential to specific tumor targeting, such as using antibodies against surface receptors specific to breast cancer cells. PMID:26937266

  19. Functionalized polyglycerol amine nanogels as nanocarriers for DNA.

    PubMed

    Hellmund, Markus; Zhou, Haixia; Samsonova, Olga; Welker, Pia; Kissel, Thomas; Haag, Rainer

    2014-09-01

    Polyglycerol based nanogels (nPG) can function as cellular delivery systems. These nPGs are synthesized with different amine densities (nPG amines) by acid-catalyzed epoxide-opening polymerization using a mini-emulsion approach and surface modification. All the synthesized nanogels are characterized by NMR, dynamic light scattering, and ?-potential, showing slightly positive surface charge and a homogeneous size of ?100?nm. The use of these systems for delivery applications is demonstrated with regard to polyplex formation, cytotoxicity, and cellular uptake studies. It is depicted that the CE50 value of the high loaded nPG amines is eight times higher than the low loaded ones. The influence of the amine loading percentage on the nanogel and the effects of polyvalency in these architecture is discussed. PMID:24863397

  20. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications. PMID:25563951

  1. Targeted delivery of therapeutics to endothelium

    PubMed Central

    Simone, Eric; Ding, Bi-Sen

    2009-01-01

    The endothelium is a target for therapeutic and diagnostic interventions in a plethora of human disease conditions including ischemia, inflammation, edema, oxidative stress, thrombosis and hemorrhage, and metabolic and oncological diseases. Unfortunately, drugs have no affinity to the endothelium, thereby limiting the localization, timing, specificity, safety, and effectiveness of therapeutic interventions. Molecular determinants on the surface of resting and pathologically altered endothelial cells, including cell adhesion molecules, peptidases, and receptors involved in endocytosis, can be used for drug delivery to the endothelial surface and into intracellular compartments. Drug delivery platforms such as protein conjugates, recombinant fusion constructs, targeted liposomes, and stealth polymer carriers have been designed to target drugs and imaging agents to these determinants. We review endothelial target determinants and drug delivery systems, describe parameters that control the binding of drug carriers to the endothelium, and provide examples of the endothelial targeting of therapeutic enzymes designed for the treatment of acute vascular disorders including ischemia, oxidative stress, inflammation, and thrombosis. PMID:18815813

  2. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-03-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed. PMID:26061298

  3. Tumor-Targeted Drug Delivery with Aptamers

    PubMed Central

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2011-01-01

    Cancer is one of the leading causes of death around the world. Tumor-targeted drug delivery is one of the major areas in cancer research. Aptamers exhibit many desirable properties for tumor-targeted drug delivery, such as ease of selection and synthesis, high binding affinity and specificity, low immunogenicity, and versatile synthetic accessibility. Over the last several years, aptamers have quickly become a new class of targeting ligands for drug delivery applications. In this review, we will discuss in detail about aptamer-based delivery of chemotherapy drugs (e.g. doxorubicin, docetaxel, daunorubicin, and cisplatin), toxins (e.g. gelonin and various photodynamic therapy agents), and a variety of small interfering RNAs. Although the results are promising which warrants enthusiasm for aptamer-based drug delivery, tumor homing of aptamer-based conjugates after systemic injection has only been achieved in one report. Much remains to be done before aptamer-based drug delivery can reach clinical trials and eventually the day-to-day management of cancer patients. Therefore, future directions and challenges in aptamer-based drug delivery are also discussed. PMID:21838687

  4. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  5. Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

    2013-09-01

    Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy.Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. Electronic supplementary information (ESI) available: Synthesis and characterization of compounds, dynamic time sweep, H&E result and body weight change of mice. See DOI: 10.1039/c3nr02937a

  6. Special delivery: targeted therapy with small RNAs.

    PubMed

    Peer, D; Lieberman, J

    2011-12-01

    Harnessing RNA interference using small RNA-based drugs has great potential to develop drugs designed to knock down expression of any disease-causing gene, thereby greatly expanding the universe of possible drug targets. However, delivering small RNAs into specific tissues and cells is still a hurdle. Here, we review recent progress in overcoming systemic, local and cellular barriers to RNA drug delivery, focusing on strategies for targeted uptake. PMID:21490679

  7. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    PubMed

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. PMID:26952436

  8. Integrin targeted delivery of gene therapeutics.

    PubMed

    Juliano, Rudy L; Ming, Xin; Nakagawa, Osamu; Xu, Rongzuo; Yoo, Hoon

    2011-01-01

    Integrins have become key targets for molecular imaging and for selective delivery of anti-cancer agents. Here we review recent work concerning the targeted delivery of antisense and siRNA oligonucleotides via integrins. A variety of approaches have been used to link oligonucleotides to ligands capable of binding integrins with high specificity and affinity. This includes direct chemical conjugation, incorporating oligonucleotides into lipoplexes, and use of various polymeric nanocarriers including dendrimers. The ligand-oligonucleotide conjugate or complex associates selectively with the integrin, followed by internalization into endosomes and trafficking through subcellular compartments. Escape of antisense or siRNA from the endosome to the cytosol and nucleus may come about through endogenous trafficking mechanisms, or because of membrane disrupting capabilities built into the conjugate or complex. Thus a variety of useful strategies are available for using integrins to enhance the pharmacological efficacy of therapeutic oligonucleotides. PMID:21547161

  9. Integrin Targeted Delivery of Gene Therapeutics

    PubMed Central

    Juliano, Rudy L; Ming, Xin; Nakagawa, Osamu; Xu, Rongzuo; Yoo, Hoon

    2011-01-01

    Integrins have become key targets for molecular imaging and for selective delivery of anti-cancer agents. Here we review recent work concerning the targeted delivery of antisense and siRNA oligonucleotides via integrins. A variety of approaches have been used to link oligonucleotides to ligands capable of binding integrins with high specificity and affinity. This includes direct chemical conjugation, incorporating oligonucleotides into lipoplexes, and use of various polymeric nanocarriers including dendrimers. The ligand-oligonucleotide conjugate or complex associates selectively with the integrin, followed by internalization into endosomes and trafficking through subcellular compartments. Escape of antisense or siRNA from the endosome to the cytosol and nucleus may come about through endogenous trafficking mechanisms, or because of membrane disrupting capabilities built into the conjugate or complex. Thus a variety of useful strategies are available for using integrins to enhance the pharmacological efficacy of therapeutic oligonucleotides. PMID:21547161

  10. Production of Cisplatin-Incorporating Hyaluronan Nanogels via Chelating Ligand-Metal Coordination.

    PubMed

    Ohta, Seiichi; Hiramoto, Syota; Amano, Yuki; Sato, Mayu; Suzuki, Yukimitsu; Shinohara, Marie; Emoto, Shigenobu; Yamaguchi, Hironori; Ishigami, Hironori; Sakai, Yasuyuki; Kitayama, Joji; Ito, Taichi

    2016-03-16

    Hyaluronan (HA) is a promising drug carrier for cancer therapy because of its CD44 targeting ability, good biocompatibility, and biodegradability. In this study, cisplatin (CDDP)-incorporating HA nanogels were fabricated through a chelating ligand-metal coordination cross-linking reaction. We conjugated chelating ligands, iminodiacetic acid or malonic acid, to HA and used them as a precursor polymer. By mixing the ligand-conjugated HA with CDDP, cross-linking occurred via coordination of the ligands with the platinum in CDDP, resulting in the spontaneous formation of CDDP-loaded HA nanogels. The nanogels showed pH-responsive release of CDDP, because the stability of the ligand-platinum complex decreases in an acidic environment. Cell viability assays for MKN45P human gastric cancer cells and Met-5A human mesothelial cells revealed that the HA nanogels selectively inhibited the growth of gastric cancer cells. In vivo experiments using a mouse model of peritoneal dissemination of gastric cancer demonstrated that HA nanogels specifically localized in peritoneal nodules after the intraperitoneal administration. Moreover, penetration assays using multicellular tumor spheroids indicated that HA nanogels had a significantly higher ability to penetrate tumors than conventional, linear HA. These results suggest that chelating-ligand conjugated HA nanogels will be useful for targeted cancer therapy. PMID:26781684

  11. Formulations of biodegradable Nanogel carriers with 5'-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity.

    PubMed

    Kohli, Ekta; Han, Huai-Yun; Zeman, Arin D; Vinogradov, Serguei V

    2007-08-16

    Therapies including nucleoside analogs are associated with severe toxic side effects and acquirement of drug resistance. We have previously reported the drug delivery in the form of 5'-triphosphates (NTP) encapsulated in cross-linked cationic networks of polyethylenimine (PEI) and PEG/Pluronic polymers (Nanogels). In this study, Nanogels, containing biodegradable PEI that could easily dissociate in reducing cytosolic environment and form products with minimal toxicity, were synthesized and displayed low cytotoxicity. Toxicity of Nanogels was clearly dependent on the total positive charge of carriers and was 5-6 fold lower for carriers loaded with NTP. Though intracellular ATP level was immediately reduced by ca. 50% following the treatment with Nanogels, it was largely restored 24 h later. Effect of Nanogels on various respiratory components of cells was reversible too, and, therefore, resulted in low immediate cell death. Nanogel alone and formulations with AZT-TP demonstrated a much lower mitochondrial toxicity than AZT. As an example of potential antiviral applications of low-toxic Nanogel carriers, a 5'-triphosphorylated Ribavirin-Nanogel formulation was prepared that demonstrated a 30-fold decrease in effective drug concentration (EC(90)) and, totally, a 10-fold increase in selectivity index compared to the drug alone in MDCK cells infected with influenza A virus. PMID:17509713

  12. Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release.

    PubMed

    Zhan, Fuxing; Chen, Wei; Wang, Zhongjuan; Lu, Wentao; Cheng, Ru; Deng, Chao; Meng, Fenghua; Liu, Haiyan; Zhong, Zhiyuan

    2011-10-10

    Endosomal pH-activatable doxorubicin (DOX) prodrug nanogels were designed, prepared, and investigated for triggered intracellular drug release in cancer cells. DOX prodrugs with drug grafting contents of 3.9, 5.7, and 11.7 wt % (denoted as prodrugs 1, 2, and 3, respectively) were conveniently obtained by sequential treatment of poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-co-ethyl glycinate methacrylamide) (PEG-b-P(HEMA-co-EGMA)) copolymers with hydrazine and doxorubicin hydrochloride. Notably, prodrugs 1, 2, and 3 formed monodispersed nanogels with average sizes of 114.4, 75.3, and 66.3 nm, respectively, in phosphate buffer (PB, 10 mM, pH 7.4). The in vitro release results showed that DOX was released rapidly and nearly quantitatively from DOX prodrug nanogels at endosomal pH and 37 C in 48 h, whereas only a minor amount (ca. 20% or less) of drug was released at pH 7.4 under otherwise the same conditions. Confocal laser scanning microscope (CLSM) observations revealed that DOX prodrug nanogels delivered and released DOX into the cytosols as well as cell nuclei of RAW 264.7 cells following 24 h incubation. MTT assays demonstrated that prodrug 3 had pronounced cytotoxic effects to tumor cells following 72 h incubation with IC(50) data determined to be 2.0 and 3.4 ?g DOX equiv/mL for RAW 264.7 and MCF-7 tumor cells, respectively. The corresponding polymer carrier, PEG-b-P(HEMA-co-GMA-hydrazide), was shown to be nontoxic up to a tested concentration of 1.32 mg/mL. These endosomal pH-activatable DOX prodrug nanogels uniquely combining features of water-soluble macromolecular prodrugs and nanogels offer a promising platform for targeted cancer therapy. PMID:21905663

  13. New Approaches to Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Cooper, James; Oliver, William; Fologea, Daniel

    2013-03-01

    For targeted drug delivery, one of the primary drawbacks lies with the inability to design a delivery system that can be loaded with a variety of drugs and biomolecules. Motivated by this challenge, we will present data showing 400 nm liposomes loaded via the novel method of lysenin pores. These pores are approximately 3 nm in diameter and can be closed with divalent and trivalent ions in addition to charged polymers. This new method allows for the controllable passage of large biomolecules such as DNA and protein without the inherent problems common to active and passive loading methods. We will show proof-of-concept results of this method using fluorescent calcein as a drug simulator. Furthermore, data demonstrating current attempts at loading DNA will also be presented.

  14. Cooperative assembly in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  15. Targeted delivery of colloids by swimming bacteria

    PubMed Central

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  16. Targeted delivery of colloids by swimming bacteria

    NASA Astrophysics Data System (ADS)

    Koumakis, N.; Lepore, A.; Maggi, C.; di Leonardo, R.

    2013-10-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems.

  17. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  18. Targeted Lung Delivery of Nasally Administered Aerosols

    PubMed Central

    Tian, Geng; Hindle, Michael; Longest, P. Worth

    2014-01-01

    Using the nasal route to deliver pharmaceutical aerosols to the lungs has a number of advantages including co-administration during non-invasive ventilation. The objective of this study was to evaluate the growth and deposition characteristics of nasally administered aerosol throughout the conducting airways based on delivery with streamlined interfaces implementing two forms of controlled condensational growth technology. Characteristic conducting airways were considered including a nose-mouth-throat (NMT) geometry, complete upper tracheobronchial (TB) model through the third bifurcation (B3), and stochastic individual path (SIP) model to the terminal bronchioles (B15). Previously developed streamlined nasal cannula interfaces were used for the delivery of submicrometer particles using either enhanced condensational growth (ECG) or excipient enhanced growth (EEG) techniques. Computational fluid dynamics (CFD) simulations predicted aerosol transport, growth and deposition for a control (4.7 ?m) and three submicrometer condensational aerosols with budesonide as a model insoluble drug. Depositional losses with condensational aerosols in the cannula and NMT were less than 5% of the initial dose, which represents an order-of-magnitude reduction compared to the control. The condensational growth techniques increased the TB dose by a factor of 1.12.6x, delivered at least 70% of the dose to the alveolar region, and produced final aerosol sizes ?2.5 ?m. Compared to multiple commercial orally inhaled products, the nose-to-lung delivery approach increased dose to the biologically important lower TB region by factors as large as 35x. In conclusion, nose-to-lung delivery with streamlined nasal cannulas and condensational aerosols was highly efficient and targeted deposition to the lower TB and alveolar regions. PMID:24932058

  19. Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages.

    PubMed

    Fernandes Stefanello, Talitha; Szarpak-Jankowska, Anna; Appaix, Florence; Louage, Benoit; Hamard, Lauriane; De Geest, Bruno G; van der Sanden, Boudewijn; Nakamura, Celso Vataru; Auzély-Velty, Rachel

    2014-11-01

    Delivery systems for macrophages are particularly attractive since these phagocytic cells play a important role in immunological and inflammatory responses, also acting as host cells for microorganisms that are involved in deadly infectious diseases, such as leishmaniasis. Hyaluronic acid (HA) is specifically recognized by macrophages that are known to express HA receptors. Therefore, in this study, we focused on HA-based nanogels as drug carriers for these cells. The drug delivery was validated in an in vivo study on mice using intravital two-photon laser scanning microscopy. HA derivatives were modified with a biocompatible oligo(ethylene glycol)-based thermoresponsive polymer to form nanogels. These HA conjugates were readily prepared by varying the molar mass of initial HA and the degree of substitution via radical-mediated thiol-ene chemistry in aqueous solution. The derivatives were shown to self-assemble into spherical gel particles with diameters ranging from 150 to 214 nm above 37 °C. A poorly water-soluble two-photon dye was successfully loaded into the nanogels during this self-assembly process. In vitro cellular uptake tests using a RAW 264.7 murine macrophage cell line showed successful intracellular delivery of the hydrophobic dye. After intravenous injection in mice, the nanogels circulated freely in the blood but were rapidly phagocytized within 13 min by circulating macrophages and stored in the liver and spleen, as observed by two-photon microscopy. Benefit can be thus expected in using such a delivery system for the liver and spleen macrophage-associated diseases. PMID:25110287

  20. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges.

    PubMed

    Zhu, Jie; Huang, He; Dong, Shiwu; Ge, Liang; Zhang, Yuan

    2014-01-01

    Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics. PMID:25057317

  1. Progress in Aptamer-Mediated Drug Delivery Vehicles for Cancer Targeting and Its Implications in Addressing Chemotherapeutic Challenges

    PubMed Central

    Zhu, Jie; Huang, He; Dong, Shiwu; Ge, Liang; Zhang, Yuan

    2014-01-01

    Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics. PMID:25057317

  2. Targeted estrogen delivery reverses the metabolic syndrome

    PubMed Central

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

    2013-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  3. Targeted estrogen delivery reverses the metabolic syndrome.

    PubMed

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Mller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; Garca-Cceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrab?; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschp, Matthias H

    2012-12-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1-targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1-estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  4. Fluorescent nanogel based on four-arm PEG-PCL copolymer with porphyrin core for bioimaging.

    PubMed

    Dong, Xia; Wei, Chang; Lu, Li; Liu, Tianjun; Lv, Feng

    2016-04-01

    Four-arm PEG-PCL copolymer with porphyrin core (POR-PEG-PCL) exhibits beneficial fluorescence ability in vivo. To further develop an application of thermosensitive porphyrin hydrogel based on four-arm PEG-PCL copolymer as a drug carrier, a POR-PEG-PCL nanogel was tracked and located to tumor tissue with porphyrin as a fluorescence tag via intravenous injection. The structure and function of the nanogel were evaluated by TEM, DLS, H-NMR, UV-vis and fluorescence spectra. The fluorescent nanogel was monitored by an in vivo imaging system with hepatoma tumor-bearing mice. Good biocompatibility and safety in vitro and in vivo show that the POR-PEG-PCL nanogel is a potential drug carrier that targets tumor tissues with fluorescence bioimaging. PMID:26838843

  5. Fibronectin-targeted drug delivery in cancer.

    PubMed

    Kumra, Heena; Reinhardt, Dieter P

    2016-02-01

    Fibronectin is an extracellular matrix protein with pivotal physiological and pathological functions in development and adulthood. Alternative splicing of the precursor mRNA, produced from the single copy fibronectin gene, occurs at three sites coding for the EDA, EDB and IIICS domains. Fibronectin isoforms comprising the EDA or EDB domains are known as oncofetal forms due to their developmental importance and their re-expression in tumors, contrasting with restricted presence in normal adult tissues. These isoforms are also recognized as important markers of angiogenesis, a crucial physiological process in development and required by tumor cells in cancer progression. Attributed to this feature, EDA and EDB domains have been extensively used for the targeted delivery of cytokines, cytotoxic agents, chemotherapy drugs and radioisotopes to fibronectin-expressing tumors to exert therapeutic effects on primary cancers and metastatic lesions. In addition to drug delivery, the EDA and EDB domains of fibronectin have also been utilized to develop imaging strategies for tumor tissues. Furthermore, EDA and EDB based vaccines seem to be promising for the treatment and prevention of certain cancer types. In this review, we will summarize recent advances in fibronectin EDA and EDB-based therapeutic strategies developed to treat cancer. PMID:26639577

  6. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques.

    PubMed

    Fukuyama, Y; Yuki, Y; Katakai, Y; Harada, N; Takahashi, H; Takeda, S; Mejima, M; Joo, S; Kurokawa, S; Sawada, S; Shibata, H; Park, E J; Fujihashi, K; Briles, D E; Yasutomi, Y; Tsukada, H; Akiyoshi, K; Kiyono, H

    2015-09-01

    We previously established a nanosized nasal vaccine delivery system by using a cationic cholesteryl group-bearing pullulan nanogel (cCHP nanogel), which is a universal protein-based antigen-delivery vehicle for adjuvant-free nasal vaccination. In the present study, we examined the central nervous system safety and efficacy of nasal vaccination with our developed cCHP nanogel containing pneumococcal surface protein A (PspA-nanogel) against pneumococcal infection in nonhuman primates. When [(18)F]-labeled PspA-nanogel was nasally administered to a rhesus macaque (Macaca mulatta), longer-term retention of PspA was noted in the nasal cavity when compared with administration of PspA alone. Of importance, no deposition of [(18)F]-PspA was seen in the olfactory bulbs or brain. Nasal PspA-nanogel vaccination effectively induced PspA-specific serum IgG with protective activity and mucosal secretory IgA (SIgA) Ab responses in cynomolgus macaques (Macaca fascicularis). Nasal PspA-nanogel-induced immune responses were mediated through T-helper (Th) 2 and Th17 cytokine responses concomitantly with marked increases in the levels of miR-181a and miR-326 in the serum and respiratory tract tissues, respectively, of the macaques. These results demonstrate that nasal PspA-nanogel vaccination is a safe and effective strategy for the development of a nasal vaccine for the prevention of pneumonia in humans. PMID:25669148

  7. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques

    PubMed Central

    Fukuyama, Y; Yuki, Y; Katakai, Y; Harada, N; Takahashi, H; Takeda, S; Mejima, M; Joo, S; Kurokawa, S; Sawada, S; Shibata, H; Park, E J; Fujihashi, K; Briles, D E; Yasutomi, Y; Tsukada, H; Akiyoshi, K; Kiyono, H

    2015-01-01

    We previously established a nanosized nasal vaccine delivery system by using a cationic cholesteryl group-bearing pullulan nanogel (cCHP nanogel), which is a universal protein-based antigen-delivery vehicle for adjuvant-free nasal vaccination. In the present study, we examined the central nervous system safety and efficacy of nasal vaccination with our developed cCHP nanogel containing pneumococcal surface protein A (PspA-nanogel) against pneumococcal infection in nonhuman primates. When [18F]-labeled PspA-nanogel was nasally administered to a rhesus macaque (Macaca mulatta), longer-term retention of PspA was noted in the nasal cavity when compared with administration of PspA alone. Of importance, no deposition of [18F]-PspA was seen in the olfactory bulbs or brain. Nasal PspA-nanogel vaccination effectively induced PspA-specific serum IgG with protective activity and mucosal secretory IgA (SIgA) Ab responses in cynomolgus macaques (Macaca fascicularis). Nasal PspA-nanogel-induced immune responses were mediated through T-helper (Th) 2 and Th17 cytokine responses concomitantly with marked increases in the levels of miR-181a and miR-326 in the serum and respiratory tract tissues, respectively, of the macaques. These results demonstrate that nasal PspA-nanogel vaccination is a safe and effective strategy for the development of a nasal vaccine for the prevention of pneumonia in humans. PMID:25669148

  8. Mitochondrial biology, targets, and drug delivery.

    PubMed

    Milane, Lara; Trivedi, Malav; Singh, Amit; Talekar, Meghna; Amiji, Mansoor

    2015-06-10

    In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application. PMID:25841699

  9. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    PubMed

    Rady Raz, Nasibeh; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes. PMID:26529771

  10. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  11. Nanoparticle-based targeted drug delivery.

    PubMed

    Singh, Rajesh; Lillard, James W

    2009-06-01

    Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the "nanometer" size range. These nano-sized objects, e.g., "nanoparticles", take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad((c)) nanoparticle formulation that has shown efficacy in treating solid tumors, single dose vaccination, and oral delivery of therapeutic proteins. PMID:19186176

  12. Nanoparticle-based targeted drug delivery

    PubMed Central

    Singh, Rajesh; Lillard, James W.

    2009-01-01

    Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the “nanometer” size range. These nano-sized objects, e.g., “nanoparticles”, take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad© nanoparticle formulation that has shown efficacy in treating solid tumors, for single dose vaccination, and oral delivery of therapeutic proteins. PMID:19186176

  13. Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity

    PubMed Central

    Kohli, Ekta; Han, Huai-Yun; Zeman, Arin D.; Vinogradov, Serguei V.

    2007-01-01

    Therapies including nucleoside analogs are associated with severe toxic side effects and acquirement of drug resistance. We have previously reported the drug delivery in the form of 5′-triphosphates (NTP) encapsulated in cross-linked cationic networks of polyethylenimine (PEI) and PEG/Pluronic® polymers (Nanogels). In this study, Nanogels, containing biodegradable PEI that could easily dissociate in reducing cytosolic environment and form products with minimal toxicity, were synthesized and displayed low cytotoxicity. Toxicity of Nanogels was clearly dependent on the total positive charge of carriers and was 5–6-fold lower for carriers loaded with NTP. Though intracellular ATP level was immediately reduced by ca. 50% following the treatment with Nanogels, it was largely restored 24 h later. Effect of Nanogels on various respiratory components of cells was reversible too, and, therefore, resulted in low immediate cell death. Nanogel alone and formulations with AZT-TP demonstrated a much lower mitochondrial toxicity than AZT. As an example of potential antiviral applications of low-toxic Nanogel carriers, a 5′-triphosphorylated Ribavirin-Nanogel formulation was prepared that demonstrated a 30-fold decrease in effective drug concentration (EC90) and, totally, a 10-fold increase in selectivity index compared to the drug alone in MDCK cells infected with influenza A virus. PMID:17509713

  14. Antiproliferative Activity of Fucan Nanogel

    PubMed Central

    Dantas-Santos, Nednaldo; Almeida-Lima, Jailma; Vidal, Arthur Anthunes Jacome; Gomes, Dayanne Lopes; Oliveira, Ruth Medeiros; Santos Pedrosa, Silvia; Pereira, Paula; Gama, Francisco Miguel; Oliveira Rocha, Hugo Alexandre

    2012-01-01

    Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of −38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%–43.7% at nanogel concentrations of 0.05–0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%–22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle. PMID:23118717

  15. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    PubMed Central

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery. PMID:26759029

  16. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol.

    PubMed

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-?-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery. PMID:26759029

  17. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy.

    PubMed

    Chari

    1998-04-01

    The potential of targeted delivery of chemotherapeutic drugs for the treatment of cancer has not yet been realized owing to the difficulty of delivering therapeutic concentrations to the target site. While in vivo studies in animal tumor models have produced very encouraging results, clinical studies with antibody-drug conjugates have been less successful. This paper will review the current status of the targeted delivery approach and analyze some of the reasons for the lack of success so far. Starting with a historical perspective, this review will end with a description of newer, more potent and specific antibody-drug conjugates, which behave like tumor-activated prodrugs that may yet fulfil the promise of the targeted delivery approach for the treatment of cancer. PMID:10837619

  18. Receptor-targeted nanocarriers for therapeutic delivery to cancer

    PubMed Central

    YU, BO; TAI, HENG CHIAT; XUE, WEIMING; LEE, L. JAMES; LEE, ROBERT J.

    2013-01-01

    Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles. PMID:21028937

  19. Differentiation of endothelial progenitor cells into endothelial cells byheparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes.

    PubMed

    Yang, Han Na; Choi, Jong Hoon; Park, Ji Sun; Jeon, Su Yeon; Park, Ki Dong; Park, Keun-Hong

    2014-05-01

    Specific genes and growth factors are involved in stem cell differentiation. In this study, we fabricated a delivery carrier for both protein and gene delivery that was introduced into human endothelial progenitor cells (EPCs). The highly negative charge carried by the heparin-modified pluronic nanogels allowed for binding to growth factors and localization in the core of nanogels. The residues of negatively charged heparin can complex with positively charged cationic materials, making it suitable for gene delivery. Supramolecular nanogels can be easily encapsulated the hydrophilic drugs and highly positive surfaces can be complexed with negative charge carrying plasmid DNA (pDNA). The size distribution, gel retardation, and denaturation of encapsulated growth factors and supramolecular nanogels modified with heparin were evaluated. The supramolecular nanogels containing basic fibroblast growth factors and complexing VEGF165 pDNA internalized into EPCs have been well formed vascular formation in matrigel gels. Proteins and genes introduced into EPCs using nanogels promoted neovascularization in an animal model of limb ischemia. EPCs that differentiated into endothelial cells both invitro and invivo were tested. PMID:24630837

  20. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin

    2014-06-01

    Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr01030b

  1. Strategies for optimizing targeting and delivery of mucosal HIV vaccines.

    PubMed

    Ahlers, Jeffrey D; Belyakov, Igor M

    2009-10-01

    Effective frontline defenses against HIV-1 will require targeting vaccines to mucosal tissue in order to induce alphabeta CD8(+) lymphocytes in mucosal effector sites (lamina propria and intraepithelial compartment) as well as antibody secreting plasma cells that can neutralize and limit free virus. A concerted second wave of assault against the virus will require the activation and recruitment of antigen specific memory CD4(+) and CD8(+) T cells in mesenteric lymph nodes and distal secondary lymphoid organs. New delivery strategies targeting the "right" DC subsets in combination with delivery of mucosal adjuvants and innate signals for activating DC will be essential for mucosal vaccines in order to circumvent the naturally tolerogenic environment and the induction of Tregs. Mucosal delivery of antigen in combination with inflammatory signals has been shown to empower systemic immunization by directing responses to mucosal sites for imprinting optimum mucosal memory. Here, we discuss novel vaccine strategies and adjuvants for optimizing mucosal delivery of HIV vaccines. PMID:19609978

  2. Cationic Nanogels Based On Diethylaminoethyl Methacrylate

    PubMed Central

    Marek, Steve R.; Conn, Charles A.; Peppas, Nicholas A.

    2010-01-01

    The effect of polymer composition and polymerization parameters such as comonomers, crosslinking ratio, and polymerization method, on the surface characteristics, surface chemistry, and swelling response of crosslinked 2-(diethylaminoethyl methacrylate) (DEAEM) and polyethylene glycol monoethyl ether monomethacrylate (PEGMMA) nanogels was studied. A novel inverse-emulsion polymerization method was developed, which formed latex nanoparticles on the order of 100400 nm. The properties of these nanogels were compared to microparticles synthesized via solution polymerization. The new polymerization method allowed the incorporation of PEG surface tethers of lengths 400 Da up to 2000 Da. Surface tethers successfully decreased the ?-potential of these nanogels from 70 mV to 30 mV in acidic conditions and from ?60 mV to 2 mV in basic media. Nanogels swelled from 100 nm in basic media to 800 nm in acidic media due to the protonation of the tertiary amine on DEAEM. PMID:20436948

  3. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  4. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting. PMID:26587994

  5. Synthetic LDL as targeted drug delivery vehicle

    DOEpatents

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  6. Targeted Delivery of Radioprotective Agents to Mitochondria

    PubMed Central

    Zabbarova, Irina; Kanai, Anthony

    2010-01-01

    Adverse effects of ionizing radiation are mediated through reactive oxygen and nitrogen species. Mitochondria are the principal source of these species in the cell and play an important role in irradiation-induced apoptosis. The use of free radical scavengers and nitric oxide synthase inhibitors has proven to protect normal tissues and, in some cases, to sensitize tumor tissues to radiation damage. Dual molecules that combine radical-scavenging and NOS-inhibitory functions may be particularly effective. Drugging strategies that target mitochondria can enhance the effectiveness of such agents, in comparison to systemic administration, and circumvent side effects. PMID:19144902

  7. Untethered magnetic millirobot for targeted drug delivery.

    PubMed

    Iacovacci, Veronica; Lucarini, Gioia; Ricotti, Leonardo; Dario, Paolo; Dupont, Pierre E; Menciassi, Arianna

    2015-01-01

    This paper reports the design and development of a novel millimeter-sized robotic system for targeted therapy. The proposed medical robot is conceived to perform therapy in relatively small diameter body canals (spine, urinary system, ovary, etc.), and to release several kinds of therapeutics, depending on the pathology to be treated. The robot is a nearly-buoyant bi-component system consisting of a carrier, in which the therapeutic agent is embedded, and a piston. The piston, by exploiting magnetic effects, docks with the carrier and compresses a drug-loaded hydrogel, thus activating the release mechanism. External magnetic fields are exploited to propel the robot towards the target region, while intermagnetic forces are exploited to trigger drug release. After designing and fabricating the robot, the system has been tested in vitro with an anticancer drug (doxorubicin) embedded in the carrier. The efficiency of the drug release mechanism has been demonstrated by both quantifying the amount of drug released and by assessing the efficacy of this therapeutic procedure on human bladder cancer cells. PMID:26009273

  8. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery

    PubMed Central

    Yun, Yeonhee; Cho, Yong Woo; Park, Kinam

    2012-01-01

    As the field of biotechnology has advanced, oral protein delivery has also made significant progress. Oral delivery is the most common method of drug administration with high levels of patient acceptance. Despite the preference of oral delivery, administration of therapeutic proteins has been extremely difficult. Increasing the bioavailability of oral protein drugs to the therapeutically acceptable level is still a challenging goal. Poor membrane permeability, high molecular weight, and enzymatic degradation of protein drugs have remained unsolved issues. Among diverse strategies, nanotechnology has provided a glimpse of hope in oral delivery of protein drugs. Nanoparticles have advantages, such as small size, high surface area, and modification using functional groups for high capacity or selectivity. Nanoparticles with peptidic ligands are especially worthy of notice because they can be used for specific targeting in the gastrointestinal (GI) tract. This article reviews the transport mechanism of the GI tract, barriers to protein absorption, current status and limitations of nanotechnology for oral protein delivery system. PMID:23123292

  9. Targeted delivery to bone and mineral deposits using bisphosphonate ligands.

    PubMed

    Cole, Lisa E; Vargo-Gogola, Tracy; Roeder, Ryan K

    2016-04-01

    The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes. PMID:26482186

  10. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release.

    PubMed

    Chen, Wei; Achazi, Katharina; Schade, Boris; Haag, Rainer

    2015-05-10

    Charge-conversional and reduction-sensitive polyvinyl alcohol (PVA) nanogels were developed for efficient cancer treatment by enhanced cell uptake and intracellular triggered doxorubicin (DOX) release. These PVA nanogels were prepared in a straightforward manner by inverse nanoprecipitation via "click" reaction with an average diameter of 118nm. The introduction of COOH into the PVA nanogels efficiently improved the DOX encapsulation due to the electrostatic interaction. The in vitro release result showed that the decrease of electrostatic interaction between COOH and DOX under a mimicking endosomal pH, in combination with the cleavage of the intervening disulfide bonds in response to a high glutathione (GSH) concentration led to a fast and complete release of DOX. Furthermore, confocal laser scanning microscopy (CLSM) revealed that the ultra pH-sensitive terminal groups allowed nanogels to reverse their surface charge from negative to positive under a tumor extracellular pH (6.5-6.8) which facilitated cell internalization. MTT assays and real time cell analysis (RTCA) showed that these DOX-loaded charge-conversional and reducible PVA nanogels had much better cell toxicity than DOX-loaded non-charge-conversional or reduction-insensitive PVA nanogels following 48h of incubation. These novel charge-conversional and stimuli-responsive PVA nanogels are highly promising for targeted intracellular anticancer drug release. PMID:25445693

  11. Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery.

    PubMed

    Prez, Elena; Martnez, Ana; Teijn, Csar; Teijn, Jose M; Blanco, M Dolores

    2014-08-15

    Environmentally sensitive hydrogels have gained considerable attention in recent years as one of the most promising drug delivery systems. In the present study, two new formulations of pH and temperature stimuli-responsive nanogels (NGs) based on poly-N-isopropylacrylamide (NIPA), N-hydroxyethyl acrylamide (HEAA) and tert-butyl 2-acrylamidoethyl carbamate (2AAECM) were synthesized and evaluated for passive targeting of paclitaxel (PTX). Nanogels were prepared by microemulsion polymerization method using N-methylenebis(acrylamide) (NMBA) as crosslinking agent. TEM images and DLS results showed nanosized spherical hydrogels. FTIR spectra confirmed the synthesis of nanogels by radical polymerization among vinyl groups of monomers. The PTX loading capacity, encapsulation efficiency and in vitro release were analyzed by HPLC. The cumulative release profile of the PTX-loaded nanohydrogels within 144h showed a faster drug release at acid pH (pH 5), similar to those observed at lysosome compartment, whereas a fewer PTX amount was released from NGs at pH similar to plasma levels. Cellular uptake assays revealed rapid penetration and intracellular accumulation of those nanogels in MCF7, HeLa and T47D cells after 48h incubation. MTT assays showed cell viability dependence on concentration and time incubation. Finally, the PTX effect on cell viability showed a G2/M cell arrest after using PTX-loaded NGs and pure PTX. PMID:24813784

  12. Liver cell-targeted delivery of therapeutic molecules.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-02-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies. PMID:25025274

  13. Bioengineered Silk Gene Delivery System for Nuclear Targeting

    PubMed Central

    Yigit, Sezin; Tokareva, Olena; Varone, Antonio; Georgakoudi, Irene

    2015-01-01

    Gene delivery research has gained momentum with the use of lipophilic vectors that mimic viral systems to increase transfection efficiency. However, maintaining cell viability with these systems remains a major challenge. Therefore biocompatible and nontoxic biopolymers that are designed by combining non-immunological viral mimicking components with suitable carriers have been explored to address these limitations. In the present study recombinant DNA technology was used to design a multi-functional gene delivery system for nuclear targeting, while also supporting cell viability. Spider dragline silk recombinant proteins were modified with DNA condensing units and the proton sponge endosomal escape pathway was utilized for enhanced delivery. Short-term transfection efficiency in a COS-7 cell line (adherent kidney cells isolated from African green monkey) was enhanced compared to lipofectamine and polyethyleneimine (PEI), as was cell viability with these recombinant bio-polyplexes. Endosomal escape and consequent nuclear targeting were shown with fluorescence microscopy. PMID:24889658

  14. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    NASA Astrophysics Data System (ADS)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  15. 'Smart' non-viral delivery systems for targeted delivery of RNAi to the lungs.

    PubMed

    Ramsey, Joanne M; Hibbitts, Alan; Barlow, James; Kelly, Ciara; Sivadas, Neeraj; Cryan, Sally-Ann

    2013-01-01

    The emergence of RNAi offers a potentially exciting new therapeutic paradigm for respiratory diseases. However, effective delivery remains a key requirement for their translation into the clinic and has been a major factor in the limited clinical success seen to date. Inhalation offers tissue-specific targeting of the RNAi to treat respiratory diseases and a diminished risk of off-target effects. In order to deliver RNAi directly to the respiratory tract via inhalation, 'smart' non-viral carriers are required to protect the RNAi during delivery/aerosolization and enhance cell-specific uptake to target cells. Here, we review the state-of-the-art in therapeutic aerosol bioengineering, and specifically non-viral siRNA delivery platforms, for delivery via inhalation. This includes developments in inhaler device engineering and particle engineering, including manufacturing methods and excipients used in therapeutic aerosol bioengineering that underpin the development of smart, cell type-specific delivery systems to target siRNA to respiratory epithelial cells and/or alveolar macrophages. PMID:23323781

  16. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty, targeted PA nanofibers showed enhanced binding by fluorescence relative to spherical micelles with the same targeting sequence, demonstrating the importance of nanostructure shape for vascular binding. Nitric oxide was functionalized onto the PA nanostructure through the S-nitrosylation (SNO) of a cysteine residue. Two weeks after vascular injury, the SNO-functionalized, targeted nanofibers showed significantly decreased levels of restenosis. In all treatment methods described, the control of multivalency through the tuning of supramolecular structure was essential to achieve optimal binding. Understanding the role of dynamic, supramolecular structures for the systemic delivery of peptide therapeutics should be an important focus of future work.

  17. Clinical implementation of target tracking by breathing synchronized delivery

    SciTech Connect

    Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang; Paliwal, Bhudatt; Metha, Minesh

    2006-11-15

    Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of target tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.

  18. Targeting homeostasis in drug delivery using bioresponsive hydrogel microforms.

    PubMed

    Wilson, A Nolan; Guiseppi-Elie, Anthony

    2014-01-30

    A drug delivery platform comprising a biocompatible, bioresponsive hydrogel and possessing a covalently tethered peptide-drug conjugate was engineered to achieve stasis, via a closed control loop, of the external biochemical activity of the actuating protease. The delivery platform contains a peptide-drug conjugate covalently tethered to the hydrogel matrix, which in the presence of the appropriate protease, was cleaved and the drug released into the bathing environment. This platform was developed and investigated in silico using a finite element modeling (FEM) approach. Firstly, the primary governing phenomena guiding drug release profiles were investigated, and it was confirmed that under transport-limited conditions, the diffusion of the enzyme within the hydrogel and the coupled enzyme kinetics accurately model the system and are in agreement with published results. Secondly, the FEM model was used to investigate the release of a competitive protease inhibitor, MAG283, via cleavage of Acetyl-Pro-Leu-Gly|Leu-MAG-283 by MMP9 in order to achieve targeted homeostasis of MMP-9 activity, such as in the pathophysiology of chronic wounds, via closed-loop feedback control. The key engineering parameters for the delivery device are the radii of the hydrogel microspheres and the concentration of the peptide-inhibitor conjugate. Homeostatic drug delivery, where the focus turns away from the drug release rate and turns toward achieving targeted control of biochemical activity within a biochemical pathway, is an emerging approach in drug delivery methodologies for which the potential has not yet been fully realized. PMID:24333901

  19. RAFT-mediated Control of Nanogel Structure and Reactivity: Chemical, Physical and Mechanical Properties of Monomer-dispersed Nanogel Compositions

    PubMed Central

    Liu, JianCheng; Stansbury, Jeffrey W.

    2014-01-01

    Objectives This study examines how nanogel structure correlates with photopolymerization and key polymer properties upon addition of nanogels with latent reactivity into a monomer dispersant to produce polymer/polymer composites. Methods Two nanogels that retained RAFT functionality based on the synthetic approach were prepared to have different branching densities. These reactive nanogels were dispersed in triethylene glycol dimethacrylate at 0–40 wt%. Reaction kinetics, volumetric shrinkage and shrinkage stress associated with the photopolymerization of nanogel-modified formulations were measured in real time with mechanical properties of the polymers also evaluated. The basic structure of RAFT-derived nanogel particles was examined by the preparation of a separate nanogel constructed with degradable disulfide crosslinking groups. The model nanogel molecular weight and polydispersity were compared before and after degradation. Results Despite the controlled radical synthetic approach, the nanogels, which are composed of multiple interconnected, short primary chains presented relatively high polydispersity. Through addition of the reactive nanogels to a monomer that both infiltrates and disperses the nanogels, the photopolymerization rate was moderately reduced with the increase of nanogel loading levels. Volumetric shrinkage decreased proportionally with nanogel concentration; however, a greater than proportional reduction of polymerization-induced stress was observed. Mechanical properties, such as flexural strength, storage modulus were maintained at the same levels as the control resin for nanogel systems up to 40 wt%. Significance This study demonstrated that beyond the use of RAFT functionality to produce discrete nano-polymeric structures, the residual chain end groups are important to maintain reactivity and mechanical properties of nanogel-modified resin materials. PMID:25205366

  20. Synthesis of Multifunctional Nanogels Using a Protected Macromonomer Approach

    PubMed Central

    Singh, Neetu; Lyon, L. Andrew

    2008-01-01

    Nanoparticles possessing multiple functionalities provide synthetic handles for varied surface chemistries, making them useful for a range of applications such as biotargeting and drug delivery. However, the combination of interfering functionalities on the same particle is often challenging. We have employed a synthetic scheme involving chemical protection/deprotection to combine interfering functional groups on the same hydrogel nanoparticle. The synthesis of amine-containing poly(N-isopropylacrylamide) nanogels was carried out via free radical precipitation polymerization by incorporating a Fmoc-protected amine PEG macromonomer. The Fmoc group was then removed to obtain free amines, which were shown to be available for conjugation. We further explored pNIPAm-co-acrylic acid nanogels with a protected amine-PEG, yielding zwitterionic particles. With careful attention to the order of the chemoligation and deprotection steps, these interfering functional groups can be forced to behave in a pseudo-orthogonal fashion, allowing for multiple chemoligation steps that employ both the amine and carboxylic acid groups. PMID:19079744

  1. Delivery of Polymeric Nanoparticles to Target Vascular Diseases

    PubMed Central

    Agyare, Edward; Kandimalla, Karunyna

    2015-01-01

    Current advances in nanotechnology have paved the way for the early detection, prevention and treatment of various diseases such as vascular disorders and cancer. These advances have provided novel approaches or modalities of incorporating or adsorbing therapeutic, biosensor and targeting agents into/on nanoparticles. With significant progress, nanomedicine for vascular therapy has shown significant advantages over traditional medicine because of its ability to selectively target the disease site and reduce adverse side effects. Targeted delivery of nanoparticles to vascular endothelial cells or the vascular wall provides an effective and more efficient way for early detection and/or treatment of vascular diseases such as atherosclerosis, thrombosis and Cerebrovascular Amyloid Angiopathy (CAA). Clinical applications of biocompatible and biodegradable polymers in areas such as vascular graft, implantable drug delivery, stent devices and tissue engineering scaffolds have advanced the candidature of polymers as potential nano-carriers for vascular-targeted delivery of diagnostic agents and drugs. This review focuses on the basic aspects of the vasculature and its associated diseases and relates them to polymeric nanoparticle-based strategies for targeting therapeutic agents to diseased vascular site. PMID:26069867

  2. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery

    PubMed Central

    Barve, Ashutosh; Jin, Wei; Cheng, Kun

    2014-01-01

    Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184

  3. Localized, targeted, and sustained siRNA delivery.

    PubMed

    Krebs, Melissa D; Alsberg, Eben

    2011-03-01

    Short interfering RNA (siRNA) functions directly in the cytoplasm, where it is assembled into an RNA-induced silencing complex (RISC). The localized delivery of siRNA to a specific site in vivo is highly challenging. There are many disease states in which a systemic effect of RNAi may be desirable; some examples include non-localized cancers, HIV, neurodegenerative diseases, respiratory viruses, and heart and vascular disease. In this Concept, we will focus on the localized delivery of siRNA to a target site using various delivery modalities. In certain tissues, such as the eye, central nervous system and lung, it has been demonstrated that a simple injection of naked siRNA will silence gene expression specifically in that tissue. To achieve local gene silencing in other tissues, a variety of approaches have been pursued to help stabilize the siRNA and facilitate uptake; they include chemical modification of the siRNA or complexation within liposomes or polymers to form nanoparticles. Recently, the use of macroscopic biomaterial scaffolds for siRNA delivery has been reported, and although there is still significant work to be done in this area to optimize the delivery systems, it is an important area of research that offers the potential for having great impact on the field of siRNA delivery. PMID:21341332

  4. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Krger, Nils; Voelcker, Nicolas H

    2015-01-01

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites. PMID:26556723

  5. Non-Spherical Particles for Targeted Drug Delivery

    PubMed Central

    Chen, Jinrong; Clay, Nicholas; Kong, Hyunjoon

    2015-01-01

    Nano- and microparticles loaded with various bioimaging contrast agents or therapeutic molecules have been increasingly used for the diagnosis and treatment of diseases and tissue defects. These particles, often a filled or hollow sphere, can extend the lifetime of encapsulated biomedical modalities in circulation and in target tissue. However, there is a great need to improve the drug loading and targeting efficiency of these particles. Recently, several simulation and in vitro experimental studies reported that particle shape plays a pivotal role in the targeted delivery of molecules. To better understand these findings and subsequently expedite the use of particles in biomedical applications, this review paper summarizes the methods to prepare non-spherical nano- and micro-scaled particles. In addition, this review covers studies reporting the effects of particle shape on the loading, delivery and release of encapsulated bioactive cargos. Finally, it discusses future directions to further improve the properties of non-spherical particles. PMID:25838583

  6. Targeted Drug Delivery to Treat Pain and Cerebral Hypoxia

    PubMed Central

    Davis, Thomas P.

    2013-01-01

    Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic aniontransporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia. PMID:23343976

  7. TLR9-Targeted SiRNA Delivery In Vivo.

    PubMed

    Hossain, Dewan Md Sakib; Moreira, Dayson; Zhang, Qifang; Nechaev, Sergey; Swiderski, Piotr; Kortylewski, Marcin

    2016-01-01

    The SiRNA strategy is a potent and versatile method for modulating expression of any gene in various species for investigational or therapeutic purposes. Clinical translation of SiRNA-based approaches proved challenging, mainly due to the difficulty of targeted SiRNA delivery into cells of interest and the immunogenic side effects of oligonucleotide reagents. However, the intrinsic sensitivity of immune cells to nucleic acids can be utilized for the delivery of SiRNAs designed for the purpose of cancer immunotherapy. We have demonstrated that synthetic ligands for the intracellular receptor TLR9 can serve as targeting moiety for cell-specific delivery of SiRNAs. Chemically synthesized CpG-SiRNA conjugates are quickly internalized by TLR9-positive cells in the absence of transfection reagents, inducing target gene silencing. The CpG-SiRNA strategy allows for effective targeting of TLR9-positive cells in vivo after local or systemic administration of these oligonucleotides into mice. PMID:26472451

  8. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, peripheral functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  9. Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells.

    PubMed

    Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Jeon, Su Yeon; Park, Keun-Hong

    2013-11-01

    Drugs, proteins, and cells can be macro- and micro-encapsulated by unique materials that respond to specific stimuli. The phases and hydrophobic interactions of these materials are reversibly altered by environmental stimuli such as pH and temperature. These changes can lead to self-assembly of the materials, which enables controlled drug release and safe gene delivery into cells and tissues. The fate of stem cells delivered by such methods is of great interest. The formation of transgenic tissues requires genes to be delivered safely into stem cells. A cell tracing vehicle and a gene delivery carrier were simultaneously introduced into human mesenchymal stem cells (hMSCs). A thermo-sensitive hydrogel, poly(N-isopropylacrylamide-co-acrylic acid) (p(NiPAAm-co-AAc)), was created to generate self-assembled nanoparticles with nanogel characteristics. Hydrophobic interactions mediated the binding of the carboxyl group on the outside of p(NiPAAm-co-AAc) with the amine group of iron oxide. Nanogels carrying iron oxide and a fluorescent dye were complexed with specific genes. These nanogels could be internalized by hMSCs, and the transplantation of these cells into mice was monitored by in vivo imaging. Self-assembled p(NiPAAm-co-dAAc) nanogels complexed with green fluorescent protein were highly expressed in hMSCs and are a potential material for gene delivery. PMID:23937912

  10. Immunoliposomes for Targeted Delivery of an Antifibrotic Drug.

    PubMed

    Schuster, Liane; Seifert, Oliver; Vollmer, Stefanie; Kontermann, Roland E; Schlosshauer, Burkhard; Hartmann, Hanna

    2015-09-01

    Excessive extracellular matrix formation in organs and tissues arises from an imbalance between the synthesis and degradation of matrix proteins, especially collagen. This condition interferes with proper wound healing and regeneration, and to date, no specific treatment is available. In the present study, we propose a targeted drug delivery system consisting of cell-specific immunoliposomes (ILs) loaded with deferoxamine (DFO) as an antifibrotic drug. ILs were functionalized with polyethylene glycol (PEG) to improve the steric stability and prolong their half-life. In addition, a single-chain Fv (scFv) antibody fragment that specifically targets fibroblast activation protein (FAP) was incorporated. An in vitro fibrosis model was employed to test this construct. This model consisted of highly activated pro-fibrotic fibroblasts with 2- to 6-fold induction of selected fibrosis markers: cell/matrix deposited collagen I, total soluble collagen, and ? smooth muscle actin. The activation was accompanied by a significant and cell-specific elevation of FAP expression and activity, thereby confirming that FAP is an adequate target for antifibrotic drug delivery. Purified anti-FAP scFv was shown to bind specifically to these cells without influencing the FAP enzymatic activity. DFO was demonstrated to have a dose-dependent antifibrotic activity as quantified by collagen deposition. Specific binding and intracellular uptake of DiI-labeled ILs into the activated fibroblasts were shown by flow cytometry and microscopy. Finally, DFO-loaded ILs targeted to FAP caused a significant reduction in the collagen deposition, whereas no effect was observed using liposomes that lacked the targeting antibody fragment. These results suggest that the FAP-specific scFv-conjugated liposomes have considerable potential for cell-specific targeting applicable as a therapy for excessive collagen deposition during fibrosis. In general, through liposome encapsulation, bioactive molecules, such as DFO, that have broad effects and poor cell penetration can be converted into cell-specific composites for targeted drug delivery. PMID:26181293

  11. Ocular Drug Delivery - New Strategies for Targeting Anterior and Posterior Segments of the Eye.

    PubMed

    Fangueiro, Joana F; Veiga, Francisco; Silva, Amelia M; Souto, Eliana B

    2016-01-01

    The ocular delivery of drugs encounters several limitations because of the dynamic and static barriers of the human's eye anatomy and physiology. The poor bioavailability of drugs are mainly related to the topical administration, i.e. eye drops which is the most common drug dosage form for the treatment of eye pathologies. Precorneal factors and drug limitations related to its solubility and susceptibility for physicochemical degradation could be the main reasons for the poor permeation and uptake in the ocular mucosa. Pathologies affecting the anterior and posterior segment of the eye are thereafter difficult to be treated and, given the chronic and degenerative nature of some of these injuries, it is crucial to improve drugs therapeutic effect. Nanotechnology-based delivery systems could be a suitable approach to overcome these limitations. Some of the most important colloidal systems are highlighted in this review, such as the use of mucoadhesive polymers, prodrugs, nanogels, liposomes, microemulsions, lipid and polymeric nanoparticles, cyclodextrins, dendrimers and nanocrystals, along with their clinical and therapeutic relevance for the administration of drugs for ocular delivery. PMID:26675225

  12. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-03-24

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. PMID:26974603

  13. Cutting Edge: Nanogel-Based Delivery of an Inhibitor of CaMK4 to CD4+ T Cells Suppresses Experimental Autoimmune Encephalomyelitis and Lupus-like Disease in Mice.

    PubMed

    Otomo, Kotaro; Koga, Tomohiro; Mizui, Masayuki; Yoshida, Nobuya; Kriegel, Christina; Bickerton, Sean; Fahmy, Tarek M; Tsokos, George C

    2015-12-15

    Treatment of autoimmune diseases is still largely based on the use of systemically acting immunosuppressive drugs, which invariably cause severe side effects. Calcium/calmodulin-dependent protein kinase IV is involved in the suppression of IL-2 and the production of IL-17. Its pharmacologic or genetic inhibition limits autoimmune disease in mice. In this study, we demonstrate that KN93, a small-molecule inhibitor of calcium/calmodulin-dependent protein kinase IV, targeted to CD4(+) T cells via a nanolipogel delivery system, markedly reduced experimental autoimmune encephalomyelitis and was 10-fold more potent than the free systemically delivered drug in the lupus mouse models. The targeted delivery of KN93 did not deplete T cells but effectively blocked Th17 cell differentiation and expansion as measured in the spinal cords and kidneys of mice developing experimental autoimmune encephalomyelitis or lupus, respectively. These results highlight the promise of cell-targeted inhibition of molecules involved in the pathogenesis of autoimmunity as a means of advancing the treatment of autoimmune diseases. PMID:26561550

  14. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin.

    PubMed

    Li, XueMing; Ding, Liyan; Xu, Yuanlong; Wang, Yonglu; Ping, QiNeng

    2009-05-21

    Site-specific delivery of drugs and therapeutics can significantly reduce drug toxicity and increase the therapeutic effect. Transferrin (Tf) is one suitable ligand to be conjugated to drug delivery systems to achieve site-specific targeting, due to its specific binding to transferrin receptors (TfR), highly expressed on the surfaces of tumor cells. Stealth liposomes are effective vehicles for drugs, genes and vaccines and can be easily modified with proteins, antibodies, and other appropriate ligands, resulting in attractive formulations for targeted drug delivery. In this study, we prepared doxorubicin-loaded stealth liposomes (Tf-SL-DOX) by film dispersion followed by ammonium sulphate gradient method, then conjugated Tf to the liposome surface by an amide bound between DSPE-PEG(2000)-COOH and Tf. The results of the intracellular uptake study indicated that Tf-modified SL was able to enhance the intracellular uptake of the entrapped DOX by HepG2 cells compared to SL-DOX. We studied tissue distribution and therapeutic effects of Free DOX, SL-DOX and Tf-SL-DOX in tumor-bearing mice and pharmacokinetics in rats. The pharmacokinetic behavior of Tf-SL-DOX in the plasma was closed to SL-DOX. Administration of Tf-SL-DOX to tumor-bearing mice could be used to deliver DOX effectively to the targeted site, significantly increasing DOX concentration in tumor and decreasing DOX concentration in heart and kidney. In summary, our study indicated that the Tf-coupled PEG liposomes (Tf-SL) could be as the targeted carriers to facilitate the delivery of the encapsulated anticancer drugs into tumor cells by receptor-mediated way. PMID:19429296

  15. Peptide Anchor for Folate-Targeted Liposomal Delivery.

    PubMed

    Nogueira, Eugnia; Mangialavori, Irene C; Loureiro, Ana; Azoia, Nuno G; Srria, Marisa P; Nogueira, Patrcia; Freitas, Jaime; Hrmark, Johan; Shimanovich, Ulyana; Rollett, Alexandra; Lacroix, Ghislaine; Bernardes, Gonalo J L; Guebitz, Georg; Hebert, Hans; Moreira, Alexandra; Carmo, Alexandre M; Rossi, Juan Pablo F C; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-09-14

    Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol. PMID:26241560

  16. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    PubMed

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed. PMID:23313176

  17. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    PubMed

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-01

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. PMID:26436442

  18. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  19. Multifunctional TK-VLPs nanocarrier for tumor-targeted delivery.

    PubMed

    Ren, Yachao; Mu, Yu; Jiang, Lei; Yu, Hui; Yang, Shuman; Zhang, Yu; Wang, Jianzhong; Zhang, Hua; Sun, Hunan; Xiao, Cuihong; Peng, Haisheng; Zhou, Yulong; Lu, Weiyue

    2016-04-11

    Virus-like particles (VLPs) have been exploited for various biomedical applications, such as the monitoring, prevention, diagnosis and therapy of disease. In this study, a novel multifunctional VLPs nanocarrier (TK-VLPs) was prepared and used for tumor-targeted delivery. The SPR and cell uptake results indicated that the TK peptide is a "bi-functional ligand" with high affinity for Caco-2, HRT-18 and HUVEC cells through the integrin α6β1 and integrin αvβ3 receptors. The results of the direct immunofluorescence, SDS-PAGE and western blot assays demonstrated that the TK-VLPs were successfully prepared using the baculovirus expression system. Confocal laser scanning microscopy and the flow cytometry analysis validated that the TK-VLPs could target to Caco-2, HRT-18 and HUVEC cells. An in vivo study further confirmed that the TK-VLPs could target and efficiently deliver fluorescein to tumor cells and the tumor vasculature in mice bearing subcutaneous tumors. TK-VLPs-DOX displayed a uniform, spherical shape and an average size of approximately 28nm. The results of the cell uptake and cytotoxicity assays indicated that TK-VLPs-DOX could enhance the selectivity for colorectal cancer cells. Together, our studies provide strong evidence that TK-VLPs could target colon tumor cells and tumor angiogenesis with enhanced permeability and retention effects, suggesting that the TK-VLPs are a multifunctional nanocarrier with potential applications in a colon tumor-targeted drug delivery system. PMID:26915810

  20. In vivo targeted delivery of nanoparticles for theranosis.

    PubMed

    Koo, Heebeom; Huh, Myung Sook; Sun, In-Cheol; Yuk, Soon Hong; Choi, Kuiwon; Kim, Kwangmeyung; Kwon, Ick Chan

    2011-10-18

    Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future. PMID:21851104

  1. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  2. Magnetic nanoparticles as targeted delivery systems in oncology

    PubMed Central

    Prijic, Sara; Sersa, Gregor

    2011-01-01

    Background Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer. PMID:22933928

  3. Visualization of real-time degradation of pH-responsive polyglycerol nanogels via atomic force microscopy.

    PubMed

    Richter, Marcel; Steinhilber, Dirk; Haag, Rainer; von Klitzing, Regine

    2014-12-01

    Polyglycerol nanogels (nPG) have a huge impact in biomedical applications as drug deliverer due to their high biocompability. For such nPG nanogels, particle degradation is widely used as drug delivery method. The knowledge of this degradation process is limited up to date. In this communication, a real time visualization of such a degradation process is presented for pH-responsive nPG nanogels via atomic force microscopy (AFM) under ambient and in liquid conditions. The particle height plays a major role in the degradation process and decays exponentially in the beginning of this process. The particle width increases during the process indicating a "decross-linking" step of the particles into their starting monomers. Measurements under ambient conditions confirm this assumption and provide further insight in the "decross-linking" step of the nanogels into individual dendritic particles. The present work gives a detailed insight in the particle degradation process, which is essential for further progress for the development of new drug delivery systems. PMID:25346236

  4. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. PMID:26706565

  5. Delivery and targeting of nanoparticles into hair follicles.

    PubMed

    Fang, Chia-Lang; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-01-01

    It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization. PMID:25375342

  6. Multifunctional particles for melanoma-targeted drug delivery.

    PubMed

    Wadajkar, Aniket S; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T

    2012-08-01

    New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. PMID:22561668

  7. Cell membrane-formed nanovesicles for disease-targeted delivery.

    PubMed

    Gao, Jin; Chu, Dafeng; Wang, Zhenjia

    2016-02-28

    Vascular inflammation is the underlying component of most diseases. To target inflamed vasculature, nanoparticles are commonly engineered by conjugating antibody to the nanoparticle surface, but this bottom-up approach could affect nanoparticle targeting and therapeutic efficacy in complex, physiologically related systems. During vascular inflammation endothelium via the NF-κB pathway instantly upregulates intercellular adhesion molecule 1 (ICAM-1) which binds integrin β2 on neutrophil membrane. Inspired by this interaction, we created a nanovesicle-based drug delivery system using nitrogen cavitation which rapidly disrupts activated neutrophils to make cell membrane nanovesicles. Studies using intravital microscopy of live mouse cremaster venules showed that these vesicles can selectively bind inflamed vasculature because they possess intact targeting molecules of integrin β2. Administering of nanovesicles loaded with TPCA-1 (a NF-κB inhibitor) markedly mitigated mouse acute lung inflammation. Our studies reveal a new top-down strategy for directly employing a diseased tissue to produce biofunctional nanovesicle-based drug delivery systems potentially applied to treat various diseases. PMID:26778696

  8. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  9. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  10. "Nanotheranostics" for tumor imaging and targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Zou, Peng

    The magnetic resonance imaging (MRI) technique is a promising tool that improves cancer detection, facilitates diagnosis and monitors therapeutic effects. Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as MRI contrast agents for tumor imaging and as potential vectors for targeted anti-cancer drug delivery; nevertheless, the application of SPIOs has been hampered due to a lack of specificity to tumor tissues and premature drug release. This project aims at developing multifunctional SPIOs for both cancer imaging and targeted drug delivery via conjugation of tumor specific antibodies with SPIOs. The application of anti-TAG-72 antibodies as tumor targeting modalities was evaluated in cultured colorectal cancer cells and in xenograft models by using fluorescent imaging and positron emission tomography (PET) imaging. It was demonstrated that antibody-labeled SPIOs were superior imaging agents and drug carriers for increased tumor specificity. The regulation and kinetics of intracellular drug release from SPIOs were explored by means of fluorescence imaging. In vitro and in vivo fluorescence resonance energy transfer (FRET) imaging was employed to investigate the mechanisms of premature drug release from nanocarriers. The large volume and high hydrophobicity of cell membranes were found to play an important role in premature drug release. The encapsulation of SPIOs into nanocarriers decreased drug release in a dose-dependent mode. This study provided future opportunities to improve the efficiency of nanocarriers by exploring the mechanism of drug release and disassembly of SPIO-loaded polymeric nanoparticles.

  11. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  12. Antibody-drug conjugates: targeted drug delivery for cancer.

    PubMed

    Alley, Stephen C; Okeley, Nicole M; Senter, Peter D

    2010-08-01

    The antibody-drug conjugate field has made significant progress recently owing to careful optimization of several parameters, including mAb specificity, drug potency, linker technology, and the stoichiometry and placement of conjugated drugs. The underlying reason for this has been obtained in pre-clinical biodistribution and pharmacokinetics studies showing that targeted delivery leads to high intratumoral free drug concentrations, while non-target tissues are largely spared from chemotherapeutic exposure. Recent developments in the field have led to an increase in the number of ADCs being tested clinically, with 3 in late stage clinical trials: brentuximab vedotin (also referred to as SGN-35) for Hodgkin lymphoma; Trastuzumab-DM1 for breast cancer; and Inotuzumab ozogamicin for non-Hodgkin lymphoma. This review highlights the recent pre-clinical and clinical advances that have been made. PMID:20643572

  13. Nanostructured porous Si-based nanoparticles for targeted drug delivery

    PubMed Central

    Shahbazi, Mohammad-Ali; Herranz, Barbara; Santos, Hlder A.

    2012-01-01

    One of the backbones in nanomedicine is to deliver drugs specifically to unhealthy cells. Drug nanocarriers can cross physiological barriers and access different tissues, which after proper surface biofunctionalization can enhance cell specificity for cancer therapy. Recent developments have highlighted the potential of mesoporous silica (PSiO2) and silicon (PSi) nanoparticles for targeted drug delivery. In this review, we outline and discuss the most recent advances on the applications and developments of cancer therapies by means of PSiO2 and PSi nanomaterials. Bio-engineering and fine tuning of anti-cancer drug vehicles, high flexibility and potential for sophisticated release mechanisms make these nanostructures promising candidates for smart cancer therapies. As a result of their physicochemical properties they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting. The main emphasis of this review will be on the in vitro and in vivo studies. PMID:23507894

  14. Cancer nanomedicine: from targeted delivery to combination therapy.

    PubMed

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-04-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of various diseases, including cancer. The unique properties of nanoparticles (NPs), such as large surface-to-volume ratio, small size, the ability to encapsulate various drugs, and tunable surface chemistry, give them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make NPs a mode of treatment potentially superior to conventional cancer therapies. This review highlights the most recent developments in cancer treatment using NPs as drug delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  15. Design and Application of Nanogel-Based Polymer Networks

    NASA Astrophysics Data System (ADS)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating densely crosslinked, small monomer free dental materials. Nanogel-based networks showed no decrease in flexural modulus between the dry and water-equilibrated states in contrast to nanogel-monomer composites that exhibited a decrease in modulus upon water infiltration. The nanogel networks also exhibited higher conversion and lower volumetric shrinkage compared to the composite networks. Adhesive nanogels were designed with amphiphilic character and specific hydrogen-bonding groups. These nanogels gelled within 10 s of low intensity UV light exposure and demonstrated the ability to bond strongly to both hydrophilic and hydrophobic substrates that were dry or under water. Nanogel-based coatings were explored as a means to create multistructured, multifunctional polymer networks. Shape memory polymers were coated with nanogels through a dip-coating and subsequent photocrosslinking method. The presence of the coating did not affect the shape recovery of the polymer, and coatings formed with dexamethasone-loaded nanogels were demonstrated to release a physiologically relevant amount of the anti-inflammatory drug. These materials have potential application as minimally invasive implantable devices. Coatings were also formed from interfacial redox polymerizations. Nanogels with varying crosslinking density were coated onto dexamethasone-loaded networks, which had the effect of changing the diffusion coefficient of dexamethasone as it was released from the core network. A fluorescein-loaded nanogel was coated onto a rhodamine-loaded network, which provided multidrug release from both the coating and the core material through two distinct release profiles.

  16. Targeted Intracellular Delivery of Proteins with Spatial and Temporal Control

    PubMed Central

    2015-01-01

    While a host of methods exist to deliver genetic materials or small molecules to cells, very few are available for protein delivery to the cytosol. We describe a modular, light-activated nanocarrier that transports proteins into cells by receptor-mediated endocytosis and delivers the cargo to the cytosol by light triggered endosomal escape. The platform is based on hollow gold nanoshells (HGN) with polyhistidine tagged proteins attached through an avidity-enhanced, nickel chelation linking layer; here, we used green fluorescent protein (GFP) as a model deliverable cargo. Endosomal uptake of the GFP loaded nanocarrier was mediated by a C-end Rule (CendR) internalizing peptide fused to the GFP. Focused femtosecond pulsed-laser excitation triggered protein release from the nanocarrier and endosome disruption, and the released protein was capable of targeting the nucleoli, a model intracellular organelle. We further demonstrate the generality of the approach by loading and releasing Sox2 and p53. This method for targeting of individual cells, with resolution similar to microinjection, provides spatial and temporal control over protein delivery. PMID:25490248

  17. Amphoteric hyaluronic acid derivative for targeting gene delivery.

    PubMed

    Yao, Jing; Fan, Ying; Du, Ronghui; Zhou, Jianping; Lu, Yun; Wang, Wei; Ren, Jin; Sun, Xiaojing

    2010-12-01

    The study aimed to develop an amphoteric hyaluronic acid (HA) derivative with polyethyleneimine (PEI) chains (HAP) for gene delivery to overcome the disadvantages of PEI as gene carrier including the cytotoxicity caused by excess of positive charge, non-special interaction and aggregation in the blood, and non-target gene delivery. The HAP was synthesized by an imine reaction between periodate-oxidized HA and PEI. The HAP/DNA complex was prepared, and its characterization was investigated. The size of complex with higher molecular weight HA in PBS was about 200nm at optimal charge ratio. No apparent aggregation among the particles was observed. The HAPs also showed high protection of DNA from nuclease, better dissociation of DNA from the complex and lower cytotoxicity. It also exhibited higher transfection efficiency in HepG2 cells than the PEI/DNA complex. Among all complexes, the HAP50/DNA complex was especially found to be most efficient, yielding comparable transfection efficiency with that of Lipofectamine/DNA lipoplexes. Moreover, the HAP-IR820 obviously accumulated in tumor after i.v. administration as compared to the PEI-IR820, which indicated that the HAP could assist the DNA targeting to the tumor. Therefore, HAP should be a promising non-viral gene vector. PMID:20864163

  18. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    NASA Astrophysics Data System (ADS)

    Hwang, Tae Heon; Kim, Jin Bum; Som Yang, Da; Park, Yong-il; Ryu, WonHyoung

    2013-03-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro.

  19. Combinatorial approaches for the identification of brain drug delivery targets.

    PubMed

    Stutz, Charles C; Zhang, Xiaobin; Shusta, Eric V

    2014-01-01

    The blood-brain barrier (BBB) represents a large obstacle for the treatment of central nervous system diseases. Targeting endogenous nutrient transporters that transcytose the BBB is one promising approach to selectively and noninvasively deliver a drug payload to the brain. The main limitations of the currently employed transcytosing receptors are their ubiquitous expression in the peripheral vasculature and the inherent low levels of transcytosis mediated by such systems. In this review, approaches designed to increase the repertoire of transcytosing receptors which can be targeted for the purpose of drug delivery are discussed. In particular, combinatorial protein libraries can be screened on BBB cells in vitro or in vivo to isolate targeting peptides or antibodies that can trigger transcytosis. Once these targeting reagents are discovered, the cognate BBB transcytosis system can be identified using techniques such as expression cloning or immunoprecipitation coupled with mass spectrometry. Continued technological advances in BBB genomics and proteomics, membrane protein manipulation, and in vitro BBB technology promise to further advance the capability to identify and optimize peptides and antibodies capable of mediating drug transport across the BBB. PMID:23789958

  20. Dexamethasone eye drops containing ?-cyclodextrin-based nanogels.

    PubMed

    Moya-Ortega, Maria D; Alves, Tiago F G; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Stefnsson, Einar; Thorsteinsdttir, Margrt; Loftsson, Thorsteinn

    2013-01-30

    Sustained release aqueous eye drops of dexamethasone, based on cyclodextrin (CD) nanogels, were designed and tested in vivo. ?CD units were cross-linked in the form of nanogels by means of an emulsification/solvent evaporation process. The composition of the nanogels was optimized with regard to drug loading and release rate. The eye drops consisted of an aqueous solution of dexamethasone in 2-hydroxypropyl-?-cyclodextrin (HP?CD) medium containing ?CD nanogels. The nanogel eye drops (containing 25 mg dexamethasone per ml) were tested in rabbits and compared to the commercially available product Maxidex() (suspension with 1 mg dexamethasone per ml). One drop administration of the nanogel eye drops resulted in nearly constant dexamethasone concentration for at least 6h in the tear fluid (mean concentrationSD=29559 ?g/ml) whereas the concentration after administration of Maxidex() fell rapidly from 9.723.45 ?g/ml 1 h after application to 3.763.26 ?g/ml 3 h after application. The maximum dexamethasone concentration in the aqueous humor (2 h after application) was 13624 mg/ml after application of the nanogel eye drops, and only 44.47.8 ?g/ml after application of Maxidex(). The dexamethasone nanogel eye drops were well tolerated with no macroscopic signs of irritation, redness or other toxic effects. PMID:23149258

  1. Improved Biochemical Strategies for Targeted Delivery of Taxoids

    PubMed Central

    Ganesh, Thota

    2008-01-01

    Paclitaxel (Taxol ®) and docetaxel (Taxotere ®) are very important anti-tumor drugs in clinical use for cancer. However, their clinical utility is limited due to systemic toxicity, low solubility and inactivity against drug resistant tumors. To improve chemotherapeutic levels of these drugs, it would be highly desirable to design strategies which bypass the above limitations. In this respect various prodrug and drug targeting strategies have been envisioned either to improve oral bioavailability or tumor specific delivery of taxoids. Abnormal properties of cancer cells with respect to normal cells have guided in designing of these protocols. This review article records the designed biochemical strategies and their biological efficacies as potential taxoid chemotherapeutics. PMID:17419065

  2. Targeting tumor metastases: drug delivery mechanisms and technologies

    PubMed Central

    Ganapathy, Vidya; Moghe, Prabhas V.; Roth, Charles M.

    2016-01-01

    Primary sites of tumor are the focal triggers of cancers, yet it is the subsequent metastasis events that cause the majority of the morbidity and mortality. Metastatic tumor cells exhibit a phenotype that differs from that of the parent cells, as they represent a resistant, invasive subpopulation of the original tumor, may have acquired additional genetic or epigenetic alterations under exposure to prior chemotherapeutic or radiotherapeutic treatments, and reside in a microenvironment differing from that of its origin. This combination of resistant phenotype and distal location make tracking and treating metastases particularly challenging. In this review, we highlight some of the unique biological traits of metastasis, which in turn, inspire emerging strategies for targeted imaging of metastasized tumors and metastasis-directed delivery of therapeutics. PMID:26409123

  3. Engineering Polymer Hydrogel Nanoparticles for Lymph Node-Targeted Delivery.

    PubMed

    De Koker, Stefaan; Cui, Jiwei; Vanparijs, Nane; Albertazzi, Lorenzo; Grooten, Johan; Caruso, Frank; De Geest, Bruno G

    2016-01-01

    The induction of antigen-specific adaptive immunity exclusively occurs in lymphoid organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects the efficacy of the vaccine. Here, we report the design of polymer hydrogel nanoparticles that efficiently target multiple immune cell subsets in the draining lymph nodes. Nanoparticles are fabricated by infiltrating mesoporous silica particles (ca. 200 nm) with poly(methacrylic acid) followed by disulfide-based crosslinking and template removal. PEGylation of these nanoparticles does not affect their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. The functional relevance of these observations is further illustrated by the increased priming of antigen-specific T cells. Our findings highlight the potential of engineered hydrogel nanoparticles for the lymphatic delivery of antigens and immune-modulating compounds. PMID:26666207

  4. Possibilities of acoustic thermometry for controlling targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Nemchenko, O. Yu.; Less, Yu. A.; Kazanskii, A. S.; Mansfel'd, A. D.

    2015-07-01

    Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.

  5. Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy.

    PubMed

    Nam, Joung-Pyo; Nah, Jae-Woon

    2016-01-01

    In this study, we designed a novel carrier which was having low cytotoxicity, site-specific target function, and high transfection efficiency using low molecular weight water soluble O-carboxymethyl chitosan (OCMCh), branched low molecular weight poly(ethyleneimine) (bPEI), and targeting ligand (epitope type, HER-2/neu). OCMCh/bPEI/targeting ligand, HPOCP copolymer, and targeting ligand-modified polyamphoteric polymer, and were prepared by chemical reaction and characterized by (1)H NMR and FT-IR. The binding affinity, protecting efficiency, and releasing ability of gene/HPOCP polyplex were confirmed by gel retardation assay. The pDNA(pEGFP)/HPOCP polyplexes showed high gene transfection efficiency in HCT 119 cell. In addition, siRNA/HPOCP polyplexes formed spherical shape and have particle sizes from 100 to 300nm. The siRNA/HPOCP polyplexes have lower cytotoxicity than PEI in the all of siRNA concentrations ranging from 0 to 2?g/?L in HEK 293 cells. The cell viability of siRNA/HPOCP polyplexes was performed in SK-Br3 cells with VEGF siRNA or BCL2 siRNA. In addition, confocal laser-scanning microscopy and flow cytometry assay were performed for cellular localization and cellular uptake efficiency of siRNA/HPOCP polyplexes. The results of the present study demonstrate that HPOCP copolymer is a good candidate as gene delivery carriers for gene delivery system or gene therapy. PMID:26453863

  6. Glucan Particles for Macrophage Targeted Delivery of Nanoparticles

    PubMed Central

    Soto, Ernesto R.; Caras, Abaigeal C.; Kut, Lindsey C.; Castle, Melissa K.; Ostroff, Gary R.

    2012-01-01

    Glucan particles (GPs) are hollow, porous 24??m microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-?-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing ?-glucan receptors. GPs have been used for macrophage-targeted delivery of soluble payloads (DNA, siRNA, protein, and small molecules) encapsulated inside the hollow GPs via core polyplex and layer-by-layer (LbL) synthetic strategies. In this communication, we report the incorporation of nanoparticles as cores inside GPs (GP-NP) or electrostatically bound to the surface of chemically derivatized GPs (NP-GP). GP nanoparticle formulations benefit from the drug encapsulation properties of NPs and the macrophage-targeting properties of GPs. GP nanoparticle formulations were synthesized using fluorescent anionic polystyrene nanoparticles allowing visualization and quantitation of NP binding and encapsulation. Mesoporous silica nanoparticles (MSNs) containing the chemotherapeutic doxorubicin (Dox) were bound to cationic GPs. Dox-MSN-GPs efficiently delivered Dox into GP phagocytic cells resulting in enhanced Dox-mediated growth arrest. PMID:22013535

  7. Magnetically responsive microparticles for targeted drug and radionuclide delivery.

    SciTech Connect

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-02-16

    We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial system (RES) prefer to associate with hydrophobic surfaces. Accordingly, we will tackle this challenge by modifying the particles with hydrophilic coatings such as PEG or poloxamer (co-polymers containing hydrophobic polyoxypropylene segments and repetitive polyoxyethylene hydrophilic groups), which have a proven ability to mask recognition by the RES. Modeling is needed to help optimize the performance of targeted magnetic-particle delivery, enhance its medicinal value, and expedite its medical application. To this end, scientists at Argonne National Laboratory, working with The University of Chicago and Cleveland Clinic Hospital, are working on an effective magnetic drug targeting system based on custom magnetic field designs coupled to a three-dimensional imaging platform that addresses all associated physical and theoretical problems. Furthermore, while our clinical trial results are encouraging with regard to the tolerance and applicability of the system, more improvements must be made with respect to future study designs and systems being used. Given the technical hurdles in developing this potentially important technology, we believe we have made great progress and that we have a strong developmental plan.

  8. Chimeric aptamers in cancer cell-targeted drug delivery

    PubMed Central

    Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

    2011-01-01

    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities. PMID:21955150

  9. Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Chu, Hsiao Mei Annie

    2011-12-01

    Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and without any attached support. As composites of aligned nanofibers, yarns potentially combine the inherent advantages of nanofibers with the strength and pliability of larger sized fibers. As such, we became interested in exploring the potential of nanofiber yarns as drug carriers. Our study evolved to accommodate comparative studies between the behavior of traditional nonwoven mats and nanofiber yarns. Throughout the process, we sought to answer the bigger question: Can guar galactomannan nanofibers be used as a new biodegradable platform for drug delivery?

  10. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    PubMed Central

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4C and 25C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer circulation and biodistrbution study confirmed high RES uptake (75%) in RES organs like liver lung spleen etc. Conclusion: The high RES uptake suggests BPQ SLN as a promising approach for targeted and improved delivery in theileriosis. PMID:24459400

  11. Preparation and characterisation of thermoresponsive nanogels for smart antibacterial fabrics.

    PubMed

    Zafar, Muhammad; Shah, Tahir; Rawal, Amit; Siores, Elias

    2014-07-01

    The present investigation involves the preparation and characterisation of silver containing nanogels and their incorporation onto the surface of woven fabrics so that they can be potentially used in biomedical applications such as wound dressings. These silver nanoparticles were mixed with N-isopropylacrylamide (NIPAM) based nanogels during and at the end of polymerisation process prior to their application onto the fabrics. NIPAM based nanogels were found to have a peak of lower critical solution temperature (LCST) that is close to the human body temperature. These nanogels were applied on cotton fabrics and cured for 15 h at 30°C. Silver based nanogels were padded onto the fabrics followed by drying at 30°C overnight. Scanning electron microscopy images have shown excellent distribution of silver nanoparticles on the fabric surface. EDX analysis was also conducted to confirm the presence of silver particles on the fabric surface. The results showed that a cotton fabric treated with silver based nanogels prevented the growth of bacteria, i.e. Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli), on whereas the control cotton fabric samples exhibited considerable level of bacterial growth. Specifically, the nanogels in which the silver particles were added during the polymerisation process were observed to have higher antibacterial efficacy towards both types of bacteria. PMID:24857475

  12. Botryoidal assembly of cholesteryl-pullulan/poly(N-isopropylacrylamide) nanogels.

    PubMed

    Morimoto, Nobuyuki; Winnik, Françoise M; Akiyoshi, Kazunari

    2007-01-01

    Hybrid nanogels consisting of cholesteryl-modified pullulan (CHP) and poly(N-isopropylacrylamide) (PNIPAM) were synthesized by graft free-radical copolymerization of N-isopropylacrylamide (NIPAM) onto methacryloyl-substituted CHP nanogels (CHPMA) in water at 50 degrees C in the presence of a water-soluble free radical initiator. Depending on the initial NIPAM/CHPMA ratio, CHP-PNIPAM (CN) nanogels containing 30.8-84.8 wt % PNIPAM were obtained in the form of self-assembled nanoparticles with a hydrodynamic radius (Rh) of 69.0-116.0 nm in water kept at 20 degrees C. Hybrid nanogels of sufficiently high NIPAM content, such as the sample CN90, which contains 79.6 wt % NIPAM, exhibited a two-step response to changes in solution (3 mg/mL) temperature: a decrease in Rh from 93 to 57 nm as the temperature increased from 20 to 35 degrees C, followed by a sharp increase in Rh from 57 nm to 90 nm at 55 degrees C. Both steps in this temperature response were reversible. The multistep response to temperature of the CN nanogels was attributed to the morphology of the nanogels, which are seen as consisting of grape-like (botryoidal) clusters of associated native nanogels held together via cholesteryl cross-linking points and held together by the grafted PNIPAM chains. PMID:17190507

  13. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Khatun, Zehedina; Nurunnabi, Md; Nafiujjaman, Md; Reeck, Gerald R.; Khan, Haseeb A.; Cho, Kwang Jae; Lee, Yong-Kyu

    2015-06-01

    The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK).The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK). Electronic supplementary information (ESI) available: In vitro stability study method and results, FT-IR data, optical properties and thermal stability (TGA and DTA), cell image and in vivo optical image and histological images. See DOI: 10.1039/c5nr01075f

  14. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery.

    PubMed

    Lee, Min Hee; Sessler, Jonathan L; Kim, Jong Seung

    2015-11-17

    Theranostics, chemical entities designed to combine therapeutic effects and imaging capability within one molecular system, have received considerable attention in recent years. Much of this interest reflects the promise inherent in personalized medicine, including disease-targeted treatments for cancer patients. One important approach to realizing this latter promise involves the development of so-called theranostic conjugates, multicomponent constructs that selectively target cancer cells and deliver cytotoxic agents while producing a readily detectable signal that can be monitored both in vitro and in vivo. This requires the synthesis of relatively complex systems comprising imaging reporters, masked chemotherapeutic drugs, cleavable linkers, and cancer targeting ligands. Ideally, the cleavage process should take place within or near cancer cells and be activated by cellular components that are associated with cancer states or specifically expressed at a higher level in cancer cells. Among the cleavable linkers currently being explored for the construction of such localizing conjugates, disulfide bonds are particularly attractive. This is because disulfide bonds are stable in most blood pools but are efficiently cleaved by cellular thiols, including glutathione (GSH) and thioredoxin (Trx), which are generally found at elevated levels in tumors. When disulfide bonds are linked to fluorophores, changes in emission intensity or shifts in the emission maxima are typically seen upon cleavage as the result of perturbations to internal charge transfer (ICT) processes. In well-designed systems, this allows for facile imaging. In this Account, we summarize our recent studies involving disulfide-based fluorescent drug delivery conjugates, including preliminary tests of their biological utility in vitro and in vivo. To date, a variety of chemotherapeutic agents, such as doxorubicin, gemcitabine, and camptothecin, have been used to create disulfide-based conjugates, as have a number of fluorophores, including naphthalimide, coumarin, BODIPY, rhodol, and Cy7. The resulting theranostic core (drug-disulfide-fluorophore) can be further linked to any of several site-localizing entities, including galactose, folate, biotin, and the RGD (Arg-Gly-Asp) peptide sequence, to create systems with an intrinsic selectivity for cancer cells over normal cells. Site-specific cleavage by endogenous thiols serves to release the cytotoxic drug and produce an easy-to-monitor change in the fluorescence signature of the cell. On the basis of the results summarized in this Account, we propose that disulfide-based cancer-targeting theranostics may have a role to play in advancing drug discovery efforts, as well as improving our understanding of cellular uptake and drug release mechanisms. PMID:26513450

  15. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery.

    PubMed

    Vooturi, Sunil K; Kadam, Rajendra S; Kompella, Uday B

    2012-11-01

    In this work, we aim to design and synthesize prodrugs of gatifloxacin targeting organic cation transporter (OCT), monocarboxylate transporter (MCT), and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. An LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and log D (pH 7.4) were measured for prodrugs and the parent drug. The permeability of the prodrugs was determined in the cornea, conjunctiva, and sclera-choroid-retinal pigment epitheluim (SCRPE) and compared with gatifloxacin using an Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits, and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across the cornea, conjunctiva, and SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3-, and 2.5-fold improvement in permeability across the cornea, conjunctiva, and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), the permeability of CP-GFX was reduced across the conjunctiva. However, the cornea and SCRPE permeability of CP-GFX was not affected by nicotinic acid. APM-GFX did not show any improvement in permeability when compared to GFX across the cornea, conjunctiva, and SCRPE. Based on solubility and permeability, DMAP-GFX was selected for in vivo studies. DMAP-GFX showed 3.6- and 1.95-fold higher levels in vitreous humor and CRPE compared to that of GFX at 1 h after topical dosing. In vivo conversion of DMAP-GFX prodrug to GFX was quantified in tissues isolated at 1 h after dosing. The parent drug-to-prodrug ratio was 8, 70, 24, 21, 29, 13, 55, and 60% in the cornea, conjunctiva, iris-ciliary body, aqueous humor, sclera, CRPE, retina, and vitreous humor, respectively. In conclusion, DMAP-GFX prodrug enhanced solubility, log D, as well as OCT mediated delivery of gatifloxacin to the back of the eye. PMID:23003105

  16. Targeting interleukin-6 receptor inhibits preterm delivery induced by inflammation.

    PubMed

    Wakabayashi, Atsuko; Sawada, Kenjiro; Nakayama, Masahiro; Toda, Aska; Kimoto, Akihito; Mabuchi, Seiji; Kinose, Yasuto; Nakamura, Koji; Takahashi, Kazuhiro; Kurachi, Hirohisa; Kimura, Tadashi

    2013-11-01

    Intrauterine infection is still a common trigger of preterm delivery (PTD) and also a determinant risk factor for the subsequent development of neurodevelopmental abnormalities in neonates. In this study, we examined the expressional pattern of various inflammatory cytokines such as interleukin-1? (IL-1?), IL-6 and tumor necrosis factor-? (TNF-?) in placentae complicated with severe chorioamnionitis (CAM) and found that IL-6 is mainly expressed in macrophages in villous mesenchyme by immunohistochemical analysis with anti-CD-68 antibody. Using an experimental lipopolysaccharide (LPS)-induced PTD model, the therapeutic potential of targeting this cytokine was investigated. Anti-IL-6 receptor antibody (MR16-1) was delivered 6 h before LPS treatment. Mice in the MR16-1 group had a significantly lower rate of PTD (17%) than in the controls (53%, P = 0.026). As a result, MR16-1 treatment significantly prolonged the gestational period (control; 18.4 1.7d, MR16-1; 19.8 1.5d, P = 0.007) without any apparent adverse events on the mice and their pups. In primary human amniotic epithelial cells, pretreatment with a humanized anti-human IL-6 receptor antibody, tocilizumab, significantly inhibited the production of prostaglandin E2 induced by IL-6. In conclusion, IL-6 was strongly expressed mainly in macrophages in villous mesenchyme in placentae complicated with CAM. Anti-IL-6R antibody significantly decreased the rate of PTD in LPS-induced inflammatory model in mice, and inhibited PGE2 production from human primary amniotic epithelial cells. Targeting IL-6 signaling could be a promising option for the prevention of PTD and needs to be further explored for future clinical application. PMID:23969038

  17. Modern prodrug design for targeted oral drug delivery.

    PubMed

    Dahan, Arik; Zimmermann, Ellen M; Ben-Shabat, Shimon

    2014-01-01

    The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options. PMID:25317578

  18. Targeted drug delivery using immunoconjugates: principles and applications.

    PubMed

    Pasquetto, Maria Valentina; Vecchia, Luca; Covini, Daniele; Digilio, Rita; Scotti, Claudia

    2011-01-01

    Antibody-drug conjugates (also known as "immunoconjugates") have only recently entered the arsenal of anticancer drugs, but the number of undergoing clinical trials including them is ever increasing and most therapeutic antibodies are now patented including their potential immunoconjugate derivatives. They typically consist of three components: antibody, linker, and cytotoxin. An antibody or antibody fragment targeted to a tumor-associated antigen acts as a carrier for drug delivery and can be conjugated by cleavable or uncleavable linkers to a variety of effector molecules, either a drug, toxin, radioisotope, enzyme (the latter also used in Antibody-Directed Enzyme Prodrug Therapy), or to drug-containing liposomes or nanoparticles. In this review, we propose a general outline of the field, starting from the diagnostic and clinical applications of this class of molecules. Special attention will be devoted to the principles and issues in molecular design (choice of tumor-associated antigen, critical milestones in antibody development, available alternatives for linkers and effector molecule, and strategies for fusion proteins building) to the importance of antibody affinity modulation to optimize therapeutic effect and the potential of emerging alternative scaffolds. Most of the power of these molecules is to reach high concentrations in the tumor, relatively unaffecting normal cells, although one drawback lies in their short half-life. In this respect, modifications of immunoconjugates, which have shown to strongly influence pharmacokinetics, like glycosylation and PEGylation, will be discussed. Undergoing clinical trials and active patents will be analyzed and problems present in clinical use will be reported. PMID:21989410

  19. Universal conformational properties of polymers in ionic nanogels

    PubMed Central

    Kobayashi, Hideki; Winkler, Roland G.

    2016-01-01

    Polyelectrolyte gels are known to undergo significant conformational changes in response to external stimuli such as pH, temperature, or the dielectric constant. Specifically, an increase of the degree of ionization associated with an increasing number of counterions leads to swelling of the network. For a macroscopically large gel, which is electrostatically neutral in its interior, swelling is no longer governed by electrostatic interactions, but rather by the osmotic pressure of counterions. However, this electrostatic neutrality is typically violated for nanogels, because counterions are free to leave a gel particle. Although nanogel-swelling exhibits similar features as swelling of micro- and macrogels, another mechanism has to be relevant. Here, we use molecular dynamics simulations and scaling theory to unravel the structural properties of nanogels upon changing the electrostatic interactions. We demonstrate that the swelling of nanogels is governed by screened electrostatic interactions without a relevant contribution by the counterion osmotic pressure. PMID:26830457

  20. Universal conformational properties of polymers in ionic nanogels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideki; Winkler, Roland G.

    2016-02-01

    Polyelectrolyte gels are known to undergo significant conformational changes in response to external stimuli such as pH, temperature, or the dielectric constant. Specifically, an increase of the degree of ionization associated with an increasing number of counterions leads to swelling of the network. For a macroscopically large gel, which is electrostatically neutral in its interior, swelling is no longer governed by electrostatic interactions, but rather by the osmotic pressure of counterions. However, this electrostatic neutrality is typically violated for nanogels, because counterions are free to leave a gel particle. Although nanogel-swelling exhibits similar features as swelling of micro- and macrogels, another mechanism has to be relevant. Here, we use molecular dynamics simulations and scaling theory to unravel the structural properties of nanogels upon changing the electrostatic interactions. We demonstrate that the swelling of nanogels is governed by screened electrostatic interactions without a relevant contribution by the counterion osmotic pressure.

  1. Poly(2-oxazoline)-based nanogels as biocompatible pseudopolypeptide nanoparticles.

    PubMed

    Legros, Camille; Wirotius, Anne-Laure; De Pauw-Gillet, Marie-Claire; Tam, Kam Chiu; Taton, Daniel; Lecommandoux, Sbastien

    2015-01-12

    Hydrophilic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline) were synthesized in dilute aqueous media in the presence of 1,6-hexanediol diglycidyl ether as a cross-linker. Nanogel formation was monitored by DLS and HSQC NMR spectroscopy, and the final nano-objects were characterized by DLS, TEM, AFM, and NanoSight analyses. Nanogels with a hydrodynamic radius of 78 nm exhibiting a slight positive surface charge were obtained. MTS assays (cell metabolic activity test) evidenced that nanogels were nontoxic in the investigated concentration range (i.e., 0.1 to 400 ?g/mL) and that no specific interaction with bovine serum albumin was observed. PMID:25409266

  2. Stimuli responsive magnetic nanogels for biomedical application

    SciTech Connect

    Craciunescu, I.; Petran, A.; Turcu, R.; Daia, C.; Marinica, O.; Vekas, L.

    2013-11-13

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.

  3. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    PubMed

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery. PMID:25818430

  4. Microemulsion-based drug delivery system for transnasal delivery of Carbamazepine: preliminary brain-targeting study.

    PubMed

    Patel, Rashmin Bharatbhai; Patel, Mrunali Rashmin; Bhatt, Kashyap K; Patel, Bharat G; Gaikwad, Rajiv V

    2016-01-01

    This study reports the development and evaluation of Carbamazepine (CMP)-loaded microemulsions (CMPME) for intranasal delivery in the treatment of epilepsy. The CMPME was prepared by the spontaneous emulsification method and characterized for physicochemical parameters. All formulations were radiolabeled with (99m)Tc (technetium) and biodistribution of CMP in the brain was investigated using Swiss albino rats. Brain scintigraphy imaging in rats was also performed to determine the uptake of the CMP into the brain. CMPME were found crystal clear and stable with average globule size of 34.11 ± 1.41 nm. (99m)Tc-labeled CMP solution (CMPS)/CMPME/CMP mucoadhesive microemulsion (CMPMME) were found to be stable and suitable for in vivo studies. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMPMME compared to intravenous CMPME was found to be 2- to 3-fold higher signifying larger extent of distribution of the CMP in brain. Drug targeting efficiency and direct drug transport were found to be highest for CMPMME post-intranasal administration compared to intravenous CMP. Rat brain scintigraphy also demonstrated higher intranasal uptake of the CMP into the brain. This investigation demonstrates a prompt and larger extent of transport of CMP into the brain through intranasal CMPMME, which may prove beneficial for treatment of epilepsy. PMID:24825492

  5. Hybrid micro-/nanogels for optical sensing and intracellular imaging

    PubMed Central

    Wu, Weitai; Zhou, Shuiqin

    2010-01-01

    Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications. PMID:22110866

  6. Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy

    2015-04-01

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.

  7. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2015-12-30

    Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting. PMID:26516100

  8. A light sensitive self-assembled nanogel as a tecton for protein patterning materials.

    PubMed

    Nishimura, Tomoki; Takara, Masahiro; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2016-01-01

    A self-assembled nanogel is constructed from light-sensitive cholesteryl pullulan (Ls-CHP) by using photo-labile ortho-nitrobenzyl (o-NB) units. The nanogel-based film is obtained by evaporation of an Ls-CHP nanogel solution. Exposure of the resulting nanogel-based film to light with a mask resulted in a patterned film that can encapsulate FITC-insulin. PMID:26610266

  9. One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol.

    PubMed

    Sousa-Herves, Ana; Wedepohl, Stefanie; Caldern, Marcelo

    2015-03-28

    Doxorubicin-loaded nanogels with multiresponsive properties are prepared using hyperbranched polyglycerol as a biocompatible scaffold. The nanogels are synthesized in a single step combining free-radical polymerization and a mild nanoprecipitation technique. The nanogels respond to different biological stimuli such as low pH and reductive environments, resulting in a more efficient cell proliferation inhibition in A549 cells. PMID:25757793

  10. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery

    PubMed Central

    Pan, Dipanjan; Pham, Christine TN; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a ‘magic bullet’ to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a ‘Grail Quest’ by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made ‘made the turn’ toward meaningful translational success. PMID:26296541

  11. Cell-mediated Delivery and Targeted Erosion of Noncovalently Crosslinked Hydrogels

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin.

  12. Cell targeted gene delivery system based on modified pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus pectin modified with various amine groups have been studied for its potential as a novel non-viral gene delivery carrier. The modified cationic pectin was able to condense DNA and mediate transfection in a cell type specific manner. The modified pectin seems to be a promising carrier, attra...

  13. Nanostructured lipid carriers and their current application in targeted drug delivery.

    PubMed

    Jaiswal, Piyush; Gidwani, Bina; Vyas, Amber

    2016-02-01

    In the last few decades, various drug-delivery technologies have emerged and a fascinating part of this has been the development of nanoscale drug delivery devices. Nanoparticles (NPs) and other colloidal drug-delivery systems modify the kinetics, drug distribution in the body and release profile of an associated drug. Nanostructured lipid carriers (NLCs) have been reported to be an alternative system to emulsions, liposomes, microparticles, solid lipid nanoparticles (SLNs) and their polymeric counterparts due to their numerous advantages. This paper basically reviews the types of NLCs, mechanism of skin penetration, stability related issues along with their production techniques, characterisation and applications towards targeted drug delivery. PMID:24813223

  14. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L

    2015-03-31

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  15. Synthetic Aptamer-Polymer Hybrid Constructs for Programmed Drug Delivery into Specific Target Cells

    PubMed Central

    2015-01-01

    Viruses have evolved specialized mechanisms to efficiently transport nucleic acids and other biomolecules into specific host cells. They achieve this by performing a coordinated series of complex functions, resulting in delivery that is far more efficient than existing synthetic delivery mechanisms. Inspired by these natural systems, we describe a process for synthesizing chemically defined molecular constructs that likewise achieve targeted delivery through a series of coordinated functions. We employ an efficient click chemistry technique to synthesize aptamer-polymer hybrids (APHs), coupling cell-targeting aptamers to block copolymers that secure a therapeutic payload in an inactive state. Upon recognizing the targeted cell-surface marker, the APH enters the host cell via endocytosis, at which point the payload is triggered to be released into the cytoplasm. After visualizing this process with coumarin dye, we demonstrate targeted killing of tumor cells with doxorubicin. Importantly, this process can be generalized to yield APHs that specifically target different surface markers. PMID:25290917

  16. Plasmid DNA nanogels as photoresponsive materials for multifunctional bio-applications.

    PubMed

    Costa, Diana; Valente, Artur J M; Queiroz, Joo

    2015-05-20

    This study provides a detailed description on the synthesis and characterization of novel polyamine plasmid DNA nanogels. Ethylene glycol diglycidyl ether was used as cross-linker, in conjugation with polyamines to promote pDNA condensation. The biocompatible nanovectors exhibit a unique swelling behavior in water and salt solutions. These systems are light photodegradable allowing their use in a broad range of biotechnological applications. Different plasmids, pVAX1-LacZ and pcDNA3-FLAG-p53, and anticancer drugs were, thus, efficiently loaded in the nanogels and their controlled release was demonstrated. Furthermore, the dual delivery of pcDNA3-FLAG-p53 gene and anticancer drugs illustrates the possibility of the combination of chemical and gene therapies. This new versatile and easy method of nanohydrogels preparation provides a potential synthetic approach for the design of tunable systems which can display multiple functions, sensitivity to different stimuli and exhibit programmed responses as well. PMID:25449013

  17. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    PubMed Central

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Atik Badshah, Shaikh; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  18. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  19. Size matters: gold nanoparticles in targeted cancer drug delivery

    PubMed Central

    Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

    2013-01-01

    Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward. PMID:22834077

  20. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ?R, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ?L. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ?R, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ?L. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (?L = 1820/?m2, KD = 120 ?M) nanoparticle selective binding to cancer (?R = 256/?m2) vs. healthy (?R = 64/?m2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  1. Photo-Reactive Nanogel as a Means to Tune Properties during Polymer Network Formation

    PubMed Central

    Liu, JianCheng; Rad, Ima Y.; Sun, Fang; Stansbury, Jeffrey W.

    2013-01-01

    Photo-reactive nanogels with an integrated photoinitiator-based functionality were synthesized via a Reversible Addition-Fragmentation Chain Transfer (RAFT) process. Without additional free initiators, this nanogel is capable of radical generation and initiating polymerization of a secondary monomer (i.e. dimethacrylate) that infiltrates and disperses the nanogel particles. Due to the presence of RAFT functionality and the fact that all initiating sites are initially located within the nanogel structure, gelation can be delayed by sequencing the polymerization from the nanogel to the bulk matrix. During polymerization of a nanogel-filled resin system, a progressive delay of gelation conversion from about 2 % for conventional chain growth polymerization to 18 % for the same monomer containing 20 wt% nanogel additive was achieved. A significant delay of stress development was also observed with much lower final stress achieved with the nanogel-modified systems due to the change of network formation mechanics. Compared with the nanogel-free dimethacrylate control, which contained uniformly distributed free initiator, the flexural modulus and mechanical strength results were maintained for the photopolymers with nanogel contents greater than 10 wt%. There appears to be a critical interparticle spacing of the photo-reactive nanogel that provides effective photopolymerization while providing delayed gelation and substantial stress reduction. PMID:24348753

  2. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials

    PubMed Central

    Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.

    2011-01-01

    Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. PMID:21388669

  3. Novel targeted bladder drug-delivery systems: a review

    PubMed Central

    Zacchè, Martino Maria; Srikrishna, Sushma; Cardozo, Linda

    2015-01-01

    The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. PMID:26649286

  4. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery

    PubMed Central

    Rajapaksa, Thejani E.; Stover-Hamer, Mary; Fernandez, Xiomara; Eckelhoefer, Holly A.; Lo, David D.

    2009-01-01

    Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system. PMID:19896996

  5. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery

    PubMed Central

    Chang, Tsung-Yao; Shi, Peng; Steinmeyer, Joseph D.; Chatnuntawech, Itthi; Tillberg, Paul; Love, Kevin T.; Eimon, Peter M.; Anderson, Daniel G.; Yanik, Mehmet Fatih

    2014-01-01

    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with nearly perfect repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationship, which can potentially be applied to design novel delivery vehicles. PMID:25184623

  6. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery.

    PubMed

    Chang, Tsung-Yao; Shi, Peng; Steinmeyer, Joseph D; Chatnuntawech, Itthi; Tillberg, Paul; Love, Kevin T; Eimon, Peter M; Anderson, Daniel G; Yanik, Mehmet Fatih

    2014-10-01

    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with high repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationships, which can potentially be applied to design novel delivery vehicles. PMID:25184623

  7. Magnetizable implants and functionalized magnetic carriers: A novel approach for noninvasive yet targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Rosengart, Axel J.; Kaminski, Michael D.; Chen, Haitao; Caviness, Patricia L.; Ebner, Armin D.; Ritter, James A.

    2005-05-01

    We describe a targeted drug delivery system consisting of two steps: first, intravenous injection and circulation of biocompatible, magnetic nanospheres encapsulated with a drug; and second, focal concentration and release of the drug at the target site utilizing an implanted, magnetizable intraluminal stent or seed. We introduce the system concept, outline the biomedical feasibility, and discuss potential clinical advantages.

  8. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

    PubMed

    Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success. WIREs Nanomed Nanobiotechnol 2015, 8:85-106. doi: 10.1002/wnan.1355 For further resources related to this article, please visit the WIREs website. PMID:26296541

  9. Targeted drug delivery to the brain using magnetic nanoparticles.

    PubMed

    Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

    2015-10-01

    Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain. PMID:26446407

  10. Cancer cell-targeted drug delivery utilizing oligopeptide transport activity.

    PubMed

    Nakanishi, T; Tamai, I; Takaki, A; Tsuji, A

    2000-10-15

    To study the drug delivery to tumor by utilization of an oligopeptide transport activity, we examined the accumulation of dipeptides and the peptide-mimetic anti-cancer drug, bestatin, a substrate of oligopeptide transporter PepT1. Firstly, we established HeLa cells stably expressing human peptide transporter (hPepT1) (HeLa-hPepT1). Secondly, we constructed an experimental model by inoculation of HeLa-hPepT1 cells subcutaneously into Balb/c nu/nu mice to demonstrate the contribution of PepT1 to the tissue-selective drug delivery. The accumulations of a hydrolysis-resistant dipeptide [(3)H]carnosine and bestatin in solid tumors formed by HeLa-hPepT1 or HeLa-pcDNA3, which are transfected with vector DNA (pcDNA3) were measured. After I.V. administration, tissue-to-plasma concentration ratios (K(p)) of both compounds, in HeLa-hPepT1 tumor was significantly greater than that of [(14)C]inulin, a marker for extracellular fluid space, those of dipeptides in muscle, or those in HeLa-pcDNA3 tumor. Furthermore, bestatin exhibited growth inhibition of HeLa-hPepT1 in vitro. In vivo, repeated oral administration of bestatin for 28 days suppressed the growth of HeLa-hPepT1 tumor specifically. When HT-1080 cells, which may naturally express oligopeptide transport activity, were transplanted, K(p) of [(3)H]carnosine was significantly increased in comparison with that in muscle. In addition, oligopeptide transport activities among various human cell lines were examined. These results provide the first demonstration for the selective delivery of oligopeptides to tumors by specific oligopeptide transport activity. PMID:11004680

  11. Functionalized Hollow Mesoporous Silica Nanoparticles for Tumor Vasculature Targeting and PET Image-Guided Drug Delivery

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Hong, Hao; Chen, Feng; Valdovinos, Hector F.; Hernandez, Reinier; Barnhart, Todd E.; Cai, Weibo

    2014-01-01

    Aim Development of multifunctional and well-dispersed hollow mesoporous silica nanoparticles (HMSNs) for tumor vasculature targeted drug delivery and positron emission tomography (PET) imaging. Materials and Methods Amine functionalized HMSNs (150250 nm) were conjugated with a macrocyclic chelator, NOTA, PEGylated and loaded with anti-angiogenesis drug, Sunitinib. Cyclo(Arg-Gly-Asp-D-Tyr-Lys) (cRGDyK) peptide was attached to the nanoconjugate and radiolabeled with 64Cu for PET imaging. Results 64Cu-NOTA-HMSN-PEG-cRGDyK exhibited integrin specific uptake both in vitro and in vivo. PET results indicated ~ 8 %ID/g uptake of targeted nanoconjugates in U87MG tumors, which correlated well with ex vivo and histological analyses. Enhanced tumor targeted delivery of sunitinib was also observed. Conclusions We successfully developed tumor vasculature targeted HMSNs for PET imaging and image guided drug delivery. PMID:25955122

  12. Magnetic Targeted Delivery of Dexamethasone Acetate across the Round Window Membrane in Guinea Pigs

    PubMed Central

    Du, Xiaoping; Chen, Kejian; Kuriyavar, Satish; Kopke, Richard D.; Grady, Brian P.; Bourne, David H.; Li, Wei; Dormer, Kenneth J.

    2012-01-01

    Hypothesis Magnetically susceptible PLGA nanoparticles will effectively target the round window membrane (RWM) for delivery of dexamethasone-acetate (Dex-Ac) to the scala tympani. Background Targeted delivery of therapeutics to specific tissues can be accomplished using different targeting mechanisms. One technology includes iron oxide nanoparticles, susceptible to external magnetic fields. If a nanocomposite composed of biocompatible polymer (PLGA), magnetite, and Dex-Ac can be pulled into and across the mammalian RWM, drug delivery can be enhanced. Method In vitro targeting and release kinetics of PLGA-magnetite-Dex-Ac nanoparticles first were measured using a RWM model. Next, these optimized nanocomposites were targeted to the RWM by filling the niche in anesthetized guinea pigs. A permanent magnet was placed opposite the RWM for 1 hour. Cochlear soft tissues, perilymph, and RWM were harvested after euthanasia and steroid levels were measured using HPLC. Results Membrane transport, in vitro, proved optimal targeting using a lower particle magnetite concentration (1 versus 5 or 10 mg/ml). In vivo targeted PLGA-magnetite-Dex-Ac particles had an average size of 482.8 158 nm (DLS) and an average zeta potential ?19.9 3.3 mV. In 1 hour, there was significantly increased cochlear targeted delivery of Dex or Dex-Ac, compared with diffusion alone. Conclusion Superparamagnetic PLGA-magnetite-Dex-Ac nanoparticles under an external magnetic field (0.26 mT) for 1 hour significantly increased Dex-Ac delivery to the inner ear. The RWM was not completely permeated and also became loaded with nanocomposites, indicating that delivery to the cochlea would continue for weeks by PLGA degradation and passive diffusion. PMID:23187928

  13. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  14. Targeted drug delivery system for oral cancer therapy using sonoporation.

    PubMed

    Maeda, Hironobu; Tominaga, Kazuhiro; Iwanaga, Kenjiro; Nagao, Fuminori; Habu, Manabu; Tsujisawa, Toshiyuki; Seta, Yuji; Toyoshima, Kuniaki; Fukuda, Jin-ichi; Nishihara, Tatsuji

    2009-08-01

    Ultrasound-mediated destruction of microbubbles has been proposed as an innovative non-invasive drug delivery system for cancer therapy. We developed a specific drug delivery system for squamous cell carcinoma that uses sonoporation with the anti-epidermal growth factor receptor (EGFR) antibody. Administration of a low dose of bleomycin (BLM) by sonoporation with the anti-EGFR antibody produced a marked growth inhibition of Ca9-22 cells in vitro. In addition, scanning electron microscopic analysis revealed apparent surface deformation of Ca9-22 cells treated with sonoporation in the presence of the antibody. Interestingly, the population of apoptotic cells was remarkably increased when a low dose of BLM was delivered using sonoporation with the Fab fragment of the anti-EGFR antibody. These findings indicate that sonoporation with the Fab fragment makes it possible to administer drugs into cells more efficiently and specifically, suggesting a novel application for chemotherapy and gene therapy treatments for oral squamous cell carcinoma. PMID:19549112

  15. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  16. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. ); Bittner, D.N.; Hendricks, C.D. )

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  17. Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches

    PubMed Central

    Philip, Anil K.; Philip, Betty

    2010-01-01

    The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery) namely prodrugs, pH and time dependent systems, and microbially triggered systems, which achieved limited success and had limitations as compared with newer CDDS namely pressure controlled colonic delivery capsules, CODESTM, and osmotic controlled drug delivery which are unique in terms of achieving in vivo site specificity, and feasibility of manufacturing process. PMID:22125706

  18. Cell-Mediated Delivery of Nanoparticles: Taking Advantage of Circulatory Cells to Target Nanoparticles

    PubMed Central

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Cellular hitchhiking leverages the use of circulatory cells to enhance the biological outcome of nanoparticle drug delivery systems, which often suffer from poor circulation time and limited targeting. Cellular hitchhiking utilizes the natural abilities of circulatory cells to: (i) navigate the vasculature while avoiding immune system clearance, (ii) remain relatively inert until needed and (iii) perform specific functions, including nutrient delivery to tissues, clearance of pathogens, and immune system surveillance. A variety of synthetic nanoparticles attempt to mimic these functional attributes of circulatory cells for drug delivery purposes. By combining the advantages of circulatory cells and synthetic nanoparticles, many advanced drug delivery systems have been developed that adopt the concept of cellular hitchhiking. Here, we review the development and specific applications of cellular hitchhiking-based drug delivery systems. PMID:24747161

  19. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    PubMed

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites. PMID:26342659

  20. New approaches to targeted drug delivery to tumour cells

    NASA Astrophysics Data System (ADS)

    Severin, E. S.

    2015-01-01

    Basic approaches to the design of targeted drugs for the treatment of human malignant tumours have been considered. The stages of the development of these approaches have been described in detail and theoretically substantiated, and basic experimental results have been reported. Considerable attention is paid to the general characteristic of nanopharmacological drugs and to the description of mechanisms of cellular interactions with nanodrugs. The potentialities and limitations of application of nanodrugs for cancer therapy and treatment of other diseases have been considered. The use of nanodrugs conjugated with vector molecules seems to be the most promising trend of targeted therapy of malignant tumours. The bibliography includes 122 references.

  1. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery.

    PubMed

    Leach, John C; Wang, Andrew; Ye, Kaiming; Jin, Sha

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient's health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA⁺ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

  2. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.

    PubMed

    Kanamala, Manju; Wilson, William R; Yang, Mimi; Palmer, Brian D; Wu, Zimei

    2016-04-01

    As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy. PMID:26871891

  3. Method for Targeted Therapeutic Delivery of Proteins into Cells

    Cancer.gov

    Current methods to deliver proteins into cells (e.g., using retrovirus, DNA transfection, protein transduction, microinjection, complexing the protein with lipids, etc.) have many shortcomings, such as lack of target specificity toxicity, or unwanted random integration into the host chromosome.

  4. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  5. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery.

    PubMed

    Kesharwani, Prashant; Iyer, Arun K

    2015-05-01

    Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748

  6. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    PubMed Central

    Omidi, Yadollah; Barar, Jaleh

    2012-01-01

    Introduction Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics). Conclusion The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent. PMID:23678437

  7. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    PubMed Central

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to un-targeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging. PMID:25519743

  8. Novel colon targeted drug delivery system using natural polymers.

    PubMed

    Ravi, V; Pramod Kumar, T M; Siddaramaiah

    2008-01-01

    A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs. PMID:20390095

  9. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yi, Jinhui; Mukherjee, Sumit; Banerjee, Probal; Zhou, Shuiqin

    2014-10-01

    The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical applications due to their excellent optical properties, magnetic properties, high drug loading capacity and responsive drug release behavior.The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical applications due to their excellent optical properties, magnetic properties, high drug loading capacity and responsive drug release behavior. Electronic supplementary information (ESI) available: Fig. S1-S12. See DOI: 10.1039/c4nr03748k

  10. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery.

    PubMed

    Xu, Minghui; Qian, Junmin; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid "burst" release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)-doxorubicin (PEG-DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG-DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG-DOX prodrug were confirmed by (1)H NMR analysis. The PEG-DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG-DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy. PMID:25746279

  11. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    PubMed Central

    2011-01-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies. PMID:21995320

  12. Cationic nanogels as Trojan carriers for disruption of endosomes.

    PubMed

    Maximova, Ekaterina D; Zhiryakova, Marina V; Faizuloev, Evgenyi B; Nikonova, Alexandra A; Ezhov, Alexander A; Izumrudov, Vladimir A; Orlov, Victor N; Grozdova, Irina D; Melik-Nubarov, Nickolay S

    2015-12-01

    The comparison study of interaction of linear poly(2-dimethyl amino)ethyl methacrylate and its cationic nanogels of various cross-linking with both DNA and sodium poly(styrene sulfonate) has been performed. Although all amino groups of the nanogels proved to be susceptible for protonation, their accessibility for ion pairing with the polyanions was controlled and impaired with the cross-linking. The investigation of nanogels complexes with cells in culture that was accomplished by using of calcein pH-sensitive probe revealed a successive increase in the cytoplasmic fluorescence upon the growth in the cross-linking due to calceine leakage from acidic compartments to cytosol. This regularity implies that amino groups which are buried presumably inside the nanogel are protected against the ion-pairing with polyanions of plasma membrane and hence are able to manifest buffer properties while captured into acidic endosomes, i.e. possess lyso/endosomolytic capacity. These findings suggest that network architecture makes an important contribution to proton sponge properties of weak polycations. PMID:26562190

  13. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers

    NASA Astrophysics Data System (ADS)

    Qu, Qiuyu; Ma, Xing; Zhao, Yanli

    2015-10-01

    A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery.A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery. Electronic supplementary information (ESI) available: Additional synthesis and characterization data. See DOI: 10.1039/c5nr05139h

  14. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  15. Acoustic Molecular Imaging and Targeted Drug Delivery with Perfluorocarbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lanza, Gregory M.; Hughes, Michael. S.; Marsh, Jon N.; Scott, Michael J.; Zhang, Huiying; Lacy, Elizabeth K.; Allen, John S.; Wickline, Samuel A.

    2005-03-01

    Advances in molecular biology and cellular biochemistry are providing new opportunities for diagnostic medical imaging to "see" beyond the anatomical manifestations of disease to the earliest biochemical signatures of disease. Liquid perfluorocarbon nanoparticles provide inherent acoustic contrast when bound to targets, e.g., fibrin deposits in a thrombus, but unbound nanoparticles are undetectable. This nanoparticle platform may be further functionalized with paramagnetic metals, such as gadolinium, or radionuclides, with homing ligands, like anti-αvβ3-integrins, and therapeutic agents. Acoustic imaging of densely distributed biomarkers, e.g., fibrin epitopes, is readily accommodated with fundamental imaging, but for sparse biomarkers, e.g., integrins, we have developed and implemented novel, nonlinear imaging techniques based upon information-theoretic receivers (i.e., thermodynamic receivers). These novel receivers allow sensitive direct imaging of contrast development.

  16. Characterization of magnetic viral complexes for targeted delivery in oncology.

    PubMed

    Almsttter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2(*) relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2(*) compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  17. Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology

    PubMed Central

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J.; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  18. Targeted delivery of carbon nanotubes to cancer cells

    NASA Astrophysics Data System (ADS)

    Chakravarty, Pavitra

    CD22 is broadly expressed on human B cell lymphomas. Monoclonal anti-CD22 antibodies (MAbs) alone, or coupled to toxins, have been used to selectively target these tumors both in severe combined immunodeficient (SCID) mice with xenografted human lymphomas and in patients. Single-walled carbon nanotubes (CNTs) attached to antibodies or peptides represent another approach to targeting cancer cells. CNTs convert absorbed near-infrared (NIR) light into heat, which can thermally ablate cells in the vicinity of the CNTs. We have made MAb-CNT constructs where the MAb was either noncovalently or covalently coupled to CNTs, and investigated their ability to bind specifically to cells and to thermally ablate them after exposure to NIR light. The specific binding of these MAb-CNT constructs to antigen-positive and antigen-negative cells was demonstrated in vitro by using CD22+CD25 - Daudi cells, CD22-CD25+ phytohemagglutinin (PHA)-activated normal human peripheral blood mononuclear cells (PBMCs) and CNTs coupled non-covalently or covalently to either anti-CD22 or anti-CD25. We then demonstrated that the MAb-CNTs could bind to tumor cells expressing the relevant antigen but not to cells lacking the antigen. Furthermore we showed that, following exposure to NIR light, the cells could be thermally ablated. We also determined the stability of the MAb-CNTs in conditions designed to mimic the in vivo environment, i.e. mouse serum at 37°C. We then use the intrinsic Raman signature of CNTs to study the circulation and tissue distribution of intravenously injected MAb-CNTs in a murine xenograft model of lymphoma in vivo over a period of 24 hrs. We demonstrated that the MAb-CNTs have a short half-life in blood and that most of them are cleared by the reticuloendothelial system (RES). In the current embodiment, these constructs would therefore be of limited effectiveness in vivo.

  19. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting.

    PubMed

    Mehra, Neelesh Kumar; Jain, Narendra Kumar

    2016-04-01

    Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs-dendrimer, CNTs-nanoparticles, CNTs-quantum dots conjugate for delivery of bioactives, not discussed so far. PMID:26147085

  20. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  1. Mineralocorticoid receptor mediated liposomal delivery system for targeted induction of apoptosis in cancer cells.

    PubMed

    Sharma, Priyanka; Banerjee, Rajkumar; Narayan, Kumar Pranav

    2016-02-01

    Mineralocorticoid receptors (MRs) are nuclear hormone receptors that are ubiquitously present in all cell types and are known to mediate distinct physiological functions like regulating Na(+) and K(+) balance and water excretion. MRs are linked to cell proliferation and can be exploited for the targeted control of cell mass in cancer. The present study is aimed towards extending the concept of using MR ligand spironolactone for selective delivery of genes in cancer cells. The lipoplex (SP) has shown MR mediated targeted transfections as indicated by receptor down-regulation studies using MR antagonists and siRNA. SP-targeted delivery of genes resulted in apoptosis in cell-specific manner while free drug was found to be cytotoxic irrespective of the cancerous or non-cancerous nature. In conclusion, this study presents MR as a target for efficiently delivering anticancer genes and thereby treating cancer through MR-mediated pathway. PMID:26620075

  2. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    NASA Astrophysics Data System (ADS)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  3. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  4. Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer.

    TOXLINE Toxicology Bibliographic Information

    Wang B; Rosano JM; Cheheltani R; Achary MP; Kiani MF

    2010-10-01

    IMPORTANCE OF THE FIELD: Significant improvements in breast cancer treatments have resulted in a significant decrease in mortality. However, current breast cancer therapies, for example, chemotherapy, often result in high toxicity and nonspecific side effects. Other treatments, such as hormonal and antiangiogenic therapies, often have low treatment efficacy if used alone. In addition, acquired drug resistance decreases further the treatment efficacy of these therapies. Intra-tumor heterogeneity of the tumor tissue may be a major reason for the low treatment efficacy and the development of chemoresistance. Therefore, targeted multi-drug therapy is a valuable option for addressing the multiple mechanisms that may be responsible for reduced efficacy of current therapies.AREAS COVERED IN THIS REVIEW: In this article, different classes of drugs for treating breast cancer, the possible reasons for the drug resistance in breast cancer, as well as different targeted drug delivery systems are summarized. The current targeting strategies used in cancer treatment are discussed.WHAT THE READER WILL GAIN: This article considers the current state of breast cancer therapy and the possible future directions in targeted multi-drug delivery for treating breast cancer.TAKE HOME MESSAGE: A better understanding of tumor biology and physiological responses to nanoparticles, as well as advanced nanoparticle design, are needed to improve the therapeutic outcomes for treating breast cancer using nanoparticle-based targeted drug delivery systems. Moreover, selective delivery of multi-drugs to tumor tissue using targeted drug delivery systems may reduce systemic toxicity further, overcome drug resistances, and improve therapeutic efficacy in treating breast cancer.

  5. Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery

    PubMed Central

    Ronaldson, Patrick T; Davis, Thomas P

    2012-01-01

    The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221

  6. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    PubMed Central

    Islam, Md. Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery. PMID:26579539

  7. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery

    PubMed Central

    Pearson, Ryan M.; Juettner, Vanessa V.; Hong, Seungpyo

    2014-01-01

    Achieving controlled cellular responses of nanoparticles (NP) is critical for the successful development and translation of NP-based drug delivery systems. However, precise control over the physicochemical and biological properties of NPs could become convoluted, diminished, or completely lost as a result of the adsorption of biomolecules to their surfaces. Characterization of the formation of the biomolecular corona has thus received increased attention due to its impact on NP and protein structure as well as its negative effect on NP-based targeted drug delivery. This review presents a concise survey of the recent literature concerning the importance of the NP-biomolecule corona and how it can be utilized to improve the in vivo efficacy of targeted delivery systems. PMID:25506050

  8. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery

    PubMed Central

    Thomas, Susan N.; Schudel, Alex

    2015-01-01

    Despite drug formulation improving circulation times and targeting, efficacy is stymied by inadequate penetration into and retention within target tissues. This review highlights the barriers restricting delivery to the connective tissue interstitium, lymphatics, and lymph nodes as well as advances in engineering drug carriers to overcome these delivery challenges. Three-dimensional tissue physiology is discussed in the context of providing material design principles for delivery to these tissues; in particular the influence of interstitial and lymphatic flows as well as differential permeabilities of the blood and lymphatic capillaries. Key examples of materials with different characteristics developed to overcome these transport barriers are discussed as well as potential areas for further development. PMID:25745594

  9. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  10. Chimeric nucleolin aptamer with survivin DNAzyme for cancer cell targeted delivery.

    PubMed

    Subramanian, Nithya; Kanwar, Jagat R; Akilandeswari, Balachandran; Kanwar, Rupinder K; Khetan, Vikas; Krishnakumar, Subramanian

    2015-04-25

    A chimeric aptamer-DNAzyme conjugate was generated for the first time using a nucleolin aptamer (NCL-APT) and survivin Dz (Sur_Dz) and exhibited the targeted killing of cancer cells. This proof of concept of using an aptamer for the delivery of DNAzyme can be applied to other cancer types to target survivin in cancer cells in a specific manner. PMID:25797393

  11. Alveolar targeting of aerosol pentamidine. Toward a rational delivery system

    SciTech Connect

    Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. )

    1990-04-01

    Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

  12. Targeted delivery of curcumin for treating type 2 diabetes.

    PubMed

    Maradana, Muralidhara Rao; Thomas, Ranjeny; O'Sullivan, Brendan J

    2013-09-01

    Type 2 diabetes is a chronic condition in which cells have reduced insulin signalling, leading to hyperglycemia and long-term complications, including heart, kidney and liver disease. Macrophages activated by dying or stressed cells, induce the transcription factor nuclear factor kappa-B leading to the production of pro-inflammatory cytokines including TNF and IL-6. These inflammatory macrophages in liver and adipose tissue promote insulin resistance, and medications which reduce inflammation and enhance insulin signalling improve glucose control. Curcumin is an anti-oxidant and nuclear factor kappa-B inhibitor derived from turmeric. A number of studies have shown that dietary curcumin reduces inflammation and delays or prevents obesity-induced insulin resistance and associated complications, including atherosclerosis and immune mediate liver disease. Unfortunately dietary curcumin is poorly absorbed by the digestive system and undergoes glucuronidation and excretion rather than being released into the serum and systemically distributed. This confounds understanding of how dietary curcumin exerts its beneficial effects in type 2 diabetes and associated diseases. New improved methods of delivering curcumin are being developed including nanoparticles and lipid/liposome formulations that increase absorption and bioavailability of curcumin. Development and refinement of these technologies will enable cell-directed targeting of curcumin and improved therapeutic outcome. PMID:23495213

  13. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges

    NASA Astrophysics Data System (ADS)

    Rosenholm, Jessica M.; Sahlgren, Cecilia; Lindén, Mika

    2010-10-01

    One of the big challenges of medicine today is to deliver drugs specifically to defected cells. Nanoparticulate drug carriers have the potential to answer to this call, as nanoparticles can cross physiological barriers and access different tissues, and also be provided in a targetable form aimed at enhancing cell specificity of the carrier. Recent developments within material science and strong collaborative efforts crossing disciplinary borders have highlighted the potential of mesoporous silica nanoparticles (MSNs) for such targeted drug delivery. Here we outline recent advances which in this sense push MSNs to the forefront of drug delivery development. Relatively straightforward inside-out tuning of the vehicles, high flexibility, and potential for sophisticated release mechanisms make these nanostructures promising candidates for targeted drug delivery such as `smart' cancer therapies. Moreover, due to the large surface area and the controllable surface functionality of MSNs, they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting, simultaneously carrying traceable (fluorescent or magnetically active) modalities, also making them highly interesting as theragnostic agents. However, the increased relative surface area and small size, and flexible surface functionalization which is beneficially exploited in nanomedicine, consequently also includes potential risks in their interactions with biological systems. Therefore, we also discuss some safety issues regarding MSNs and highlight how different features of the drug delivery platform influence their behaviour in a biological setting. Addressing these burning questions will facilitate the application of MSNs in nanomedicine.

  14. Sodium Dependent Multivitamin Transporter (SMVT): A Potential Target for Drug Delivery

    PubMed Central

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K.

    2015-01-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge, etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems. PMID:22420308

  15. TARGETED DELIVERY OF INHALED PHARMACEUTICALS USING AN IN SILICO DOSIMETRY MODEL

    EPA Science Inventory

    We present an in silico dosimetry model which can be used for inhalation toxicology (risk assessment of inhaled air pollutants) and aerosol therapy ( targeted delivery of inhaled drugs). This work presents scientific and clinical advances beyond the development of the original in...

  16. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    PubMed

    Peters, Christian; Hoop, Marcus; Pan, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-01

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. PMID:26603856

  17. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  18. Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells

    PubMed Central

    Ferris, Daniel P.; Lu, Jie; Gothard, Chris; Yanes, Rolando; Thomas, Courtney R.; Olsen, John-Carl; Stoddart, J. Fraser; Tamanoi, Fuyuhiko; Zink, Jeffrey I.

    2011-01-01

    Synthetic methodologies integrating hydrophobic drug delivery and biomolecular targeting with mesoporous silica nanoparticles are described. Transferrin and cyclic-RGD peptides are covalently attached to the nanoparticles utilizing different techniques and provide selectivity between primary and metastatic cancer cells. The increase in cellular uptake of the targeted particles is examined using fluorescence microscopy and flow cytometry. Transferrin-modified silica nanoparticles display enhancement in particle uptake by Panc-1 cancer cells over that of normal HFF cells. The endocytotic pathway for these particles is further investigated through plasmid transfection of the transferrin receptor into the normal HFF cell line, which results in an increase in particle endocytosis as compared to unmodified HFF cells. By designing and attaching a synthetic cyclic-RGD, selectivity between primary cancer cells (BT-549) and metastatic cancer cells (MDA-MB 435) is achieved with enhanced particle uptake by the metastatic cancer cell line. Incorporation of the hydrophobic drug Camptothecin into these two types of biomolecular-targeted nanoparticles causes an increase in mortality of the targeted cancer cells compared to that caused by both the free drug and nontargeted particles. These results demonstrate successful biomolecular-targeted hydrophobic drug delivery carriers that selectively target specific cancer cells and result in enhanced drug delivery and cell mortality. PMID:21595023

  19. Theranostic Nanoparticles Carrying Doxorubicin Attenuate Targeting Ligand Specific Antibody Responses Following Systemic Delivery

    PubMed Central

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N.; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y. Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers. PMID:25553097

  20. Expert Opinion on Drug Delivery: Strategies for the targeted delivery of therapeutics for osteosarcoma

    PubMed Central

    Hughes, DP

    2014-01-01

    Background Conventional therapy for osteosarcoma has reached a plateau of 60-70%, a five-year survival rate that has changed little in two decades, highlighting the need for new approaches. Objective I wished to review the alternate means of delivering effective therapy for osteosarcoma that reach beyond the central venous catheter. Methods Drawing on my own experiences providing care to high-risk osteosarcoma patients and reviewing the last two decades of literature describing sarcoma therapy, I summarize available information about potential osteosarcoma treatments that deliver therapy by a less conventional route. Results/Conclusions Intra-arterial chemotherapy has a limited impact on survival, but may help achieve a better limb salvage. Intrapleural chemotherapy is important for managing malignant effusions. Development of inhalation therapies, treatments that target new bone formation such as bisphosphonates, chemically targeted radiation and antibody-based therapies all have potential to improve osteosarcoma therapy. PMID:19761419

  1. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue.

    PubMed

    Saucier-Sawyer, Jennifer K; Deng, Yang; Seo, Young-Eun; Cheng, Christopher J; Zhang, Junwei; Quijano, Elias; Saltzman, W Mark

    2015-01-01

    Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles (NPs) can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer NP systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All the NP preparations were able to cross the BBB, although generally in low amounts (<0.5% of the injected dose), which was consistent with prior reports. One NP produced significantly higher brain uptake (?0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad NPs provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing NP transport across the BBB does not necessarily yield proportional pharmacological effects. PMID:26453169

  2. Transferrin Decorated Thermoresponsive Nanogels as Magnetic Trap Devices for Circulating Tumor Cells.

    PubMed

    Asadian-Birjand, Mazdak; Biglione, Catalina; Bergueiro, Julian; Cappelletti, Ariel; Rahane, Chinmay; Chate, Govind; Khandare, Jayant; Klemke, Bastian; Strumia, Miriam C; Calderón, Marcelo

    2016-03-01

    A rational design of magnetic capturing nanodevices, based on a specific interaction with circulating tumor cells (CTCs), can advance the capturing efficiency and initiate the development of modern smart nanoformulations for rapid isolation and detection of these CTCs from the bloodstream. Therefore, the development and evaluation of magnetic nanogels (MNGs) based on magnetic nanoparticles and linear thermoresponsive polyglycerol for the capturing of CTCs with overexpressed transferrin (Tf(+) ) receptors has been presented in this study. The MNGs are synthesized using a strain-promoted "click" approach which has allowed the in situ surface decoration with Tf-polyethylene glycol (PEG) ligands of three different PEG chain lengths as targeting ligands. An optimal value of around 30% of cells captures is achieved with a linker of eight ethylene glycol units. This study shows the potential of MNGs for the capture of CTCs and the necessity of precise control over the linkage of the targeting moiety to the capturing device. PMID:26691543

  3. Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins.

    PubMed

    Wu, Changzhu; Bttcher, Christoph; Haag, Rainer

    2015-02-01

    The enormous potential of nanogel scaffolds for protein encapsulation has been widely recognized. However, constructing stable polymeric nanoscale networks in a facile, mild, and controllable fashion still remains a technical challenge. Here, we present a novel nanogel formation strategy using horseradish peroxidase (HRP) catalyzed crosslinking on phenolic derivatized dendritic polyglycerol (dPG) in the presence of H2O2 in an inverse miniemulsion. This "enzymatic nanogelation" approach was efficient to produce stable 200 nm dPG nanogel particles, and was performed under physiological conditions, thus making it particularly beneficial for encapsulating biological proteins. Purification of the nanogels was easy to handle and practical because there was no need for a post-quenching step. Interestingly, the use of dPG resulted in higher HRP laden nanogels than for linear polyethylene glycol (PEG) analogs, which illustrates the benefits of dendritic backbones in nanogels for protein encapsulation. In addition, the mild immobilization contributed to the enhanced thermal stability and reusability of HRP. The nanogel preparation could be easily optimized to achieve the best HRP activity. Furthermore, a second enzyme, Candida antarctica lipase B (CalB), was successfully encapsulated and optimized for activity in dPG nanogels by the same enzymatic methodology, which shows the perspective applications of such techniques for encapsulation of diverse proteins. PMID:25519490

  4. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery.

    PubMed

    Unsoy, Gozde; Khodadust, Rouhollah; Yalcin, Serap; Mutlu, Pelin; Gunduz, Ufuk

    2014-10-01

    Targeted drug delivery is a promising alternative to overcome the limitations of classical chemotherapy. In an ideal targeted drug delivery system carrier nanoparticles would be directed to the tumor tissue and selectively release therapeutic molecules. As a novel approach, chitosan coated magnetic nanoparticles (CS MNPs) maintain a pH dependent drug delivery which provides targeting of drugs to the tumor site under a magnetic field. Among various materials, chitosan has a great importance as a pH sensitive, natural, biodegradable, biocompatible and bioadhesive polymer. The aim of this study was to obtain an effective targeted delivery system for Doxorubicin, using chitosan coated MNPs. Different sized CS MNPs were produced by in situ synthesis method. The anti-cancer agent Doxorubicin was loaded onto CS MNPs which were characterized previously. Doxorubicin loading was confirmed by FTIR. Drug loading and release characteristics, and stability of the nanoparticles were investigated. Our results showed that the CS MNPs have pH responsive release characteristics. The cellular internalization of Doxorubicin loaded CS MNPs were visualized by fluorescent microscopy. Doxorubicin loaded CS MNPs are efficiently taken up by MCF-7 (MCF-7/S) and Doxorubicin resistant MCF-7 (MCF-7/1 ?M) breast cancer cells, which increases the efficacy of drug and also maintains overcoming the resistance of Doxorubicin in MCF-7/Dox cells. Consequently, CS MNPs synthesized at various sizes can be effectively used for the pH dependent release of Doxorubicin in cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy. PMID:24931189

  5. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes.

    PubMed

    Sebestyn, Magdolna G; Wong, So C; Trubetskoy, Vladimir; Lewis, David L; Wooddell, Christine I

    2015-01-01

    The discoveries of RNA interference (RNAi) and short interfering RNAs (siRNAs) have provided the opportunity to treat diseases in a fundamentally new way: by co-opting a natural process to inhibit gene expression at the mRNA level. Given that siRNAs must interact with the cells' natural RNAi machinery in order to exert their silencing effect, one of the most fundamental requirements for their use is efficient delivery to the desired cell type and, specifically, into the cytoplasm of those cells. Numerous research efforts involving the testing of a large number of delivery approaches using various carrier molecules and inventing several distinct formulation technologies during the past decade illustrate the difficulty and complexity of this task. We have developed synthetic polymer formulations for in vivo siRNA delivery named Dynamic PolyConjugates (DPCs) that are designed to mimic the features viruses possess for efficient delivery of their nucleic acids. These include small size, long half-life in circulation, capability of displaying distinct host cell tropism, efficient receptor binding and cell entry, disassembly in the endosome and subsequent release of the nucleic acid cargo to the cytoplasm. Here we present an example of this delivery platform composed of a hepatocyte-targeted endosome-releasing agent and a cholesterol-conjugated siRNA (chol-siRNA). This delivery platform forms the basis of ARC-520, an siRNA-based therapeutic for the treatment of chronic hepatitis B virus (HBV) infection. In this chapter, we provide a general overview of the steps in developing ARC-520 and detailed protocols for two critical stages of the discovery process: (1) verifying targeted in vivo delivery to hepatocytes and (2) evaluating in vivo drug efficacy using a mouse model of chronic HBV infection. PMID:25319651

  6. Targeted Delivery of Proteasome Inhibitors to Somatostatin-Receptor-Expressing Cancer Cells by Octreotide Conjugation.

    PubMed

    Beck, Philipp; Cui, Haissi; Hegemann, Julian D; Marahiel, Mohammed A; Krger, Achim; Groll, Michael

    2015-12-01

    Clinical application of proteasome inhibitors (PIs) is so far limited to peripheral blood cancers due to the pronounced cytotoxicity towards all cell types. Targeted delivery of PIs could permit the treatment of other cancers along with decreasing side effects. Herein we describe the first small-molecule proteasome inhibitor conjugate for targeted delivery, created by fusing PIs to a synthetic ligand of somatostatin receptors, which are highly expressed in a variety of tumors. X-ray crystallographic studies and in vitro IC50 measurements demonstrated that addition of the cyclopeptide octreotide as a targeting vehicle does not affect the PI's binding mode. The cytotoxicity of the conjugate against somatostatin-receptor-expressing cells was up to 11-fold higher than that of a non-targeting surrogate. We have therefore established PIs as a new payload for drug conjugates and have shown that targeted delivery thereof could be a promising approach for the broader application of this FDA-approved class of compounds. PMID:26471124

  7. Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis.

    PubMed

    Roblek, Marko; Calin, Manuela; Schlesinger, Martin; Stan, Daniela; Zeisig, Reiner; Simionescu, Maya; Bendas, Gerd; Borsig, Lubor

    2015-12-28

    Enhanced levels of the inflammatory chemokine CCL2 are known to correlate with increased tumorigenesis and metastases, and thereby poor prognosis for cancer patients. The CCL2-CCR2 chemokine axis was shown to facilitate the metastatic initiation through the recruitment of inflammatory monocytes and the activation of endothelial cells at metastatic sites. Both steps are required for efficient cancer cell trans-endothelial migration and seeding in the targeted tissue. The translation of preclinical evidence proved to be challenging due to systemic effects of chemokine inhibition and limited target specificity. Here we tested an approach of a targeted delivery of the CCR2 antagonist Teijin Compound 1 to metastatic sites. VCAM-1 binding peptide tagged liposomes carrying the CCR2 antagonist enabled a specific delivery to cancer cell-activated endothelium. The subsequent binding of target-sensitive liposomes triggered the release of the Teijin Compound 1 and thereby local inhibition of CCR2 in the lungs. Blocking of CCR2 resulted in reduced induction of the lungs vascular permeability, and thereby reduced tumor cell extravasation. However, the recruitment of inflammatory monocytes to the pre-metastatic lungs remained unaltered. Endothelial VCAM-1 targeted delivery of the CCR2 antagonist resulted in inhibition of pulmonary metastases both in a murine (MC-38GFP cells) and a human xenograft (patient-derived cells) model. Thus, timely- and spatially-defined inhibition of CCR2 signaling represents a potential therapeutic approach for treatment of metastasis without affecting homeostatic functions. PMID:26522070

  8. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications.

    PubMed

    Upadhyaya, Laxmi; Singh, Jay; Agarwal, Vishnu; Tewari, Ravi Prakash

    2014-07-28

    Over the last decade carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer for the development of new drug delivery systems and improved scaffolds along with other tissue engineering devices for regenerative medicine that is currently one of the most rapidly growing fields in the life sciences. CMCS is amphiprotic ether, derived from chitosan, exhibiting enhanced aqueous solubility, excellent biocompatibility, controllable biodegradability, osteogenesis ability and numerous other outstanding physicochemical and biological properties. More strikingly, it can load hydrophobic drugs and displays strong bioactivity which highlight its suitability and extensive usage for preparing different drug delivery and tissue engineering formulations respectively. This review provides a comprehensive introduction to various types of CMCS based formulations for delivery of therapeutic agents and tissue regeneration and further describes their preparation procedures and applications in different tissues/organs. Detailed information of CMCS based nano/micro systems for targeted delivery of drugs with emphasis on cancer specific and organ specific drug delivery have been described. Further, we have discussed various CMCS based tissue engineering biomaterials along with their preparation procedures and applications in different tissues/organs. The article then, gives a brief account of therapy combining drug delivery and tissue engineering. Finally, identification of major challenges and opportunities for current and ongoing application of CMCS based systems in the field are summarised. PMID:24806482

  9. Recent advances in lymphatic targeted drug delivery system for tumor metastasis

    PubMed Central

    Zhang, Xiao-Yu; Lu, Wei-Yue

    2014-01-01

    The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers. PMID:25610710

  10. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics.

    PubMed

    Latorre, Alfonso; Posch, Christian; Garcimartn, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, lvaro

    2014-07-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. PMID:24882040

  11. Trastuzumab-cisplatin conjugates for targeted delivery of cisplatin to HER2-overexpressing cancer cells.

    PubMed

    Huang, Rong; Wang, Qiucui; Zhang, Xiangyang; Zhu, Jin; Sun, Baiwang

    2015-05-01

    Cisplatin is widely used for the treatment of numerous types of cancer, while its application is limited by the adverse side effects for its poor selectivity. Trastuzumab is a highly targeting protein to HER2 protein, and it is usually combined with paclitaxel or cisplatin for the treatment of HER2-overexpressing breast cancer. In the present work, we used trastuzumab as a targeting carrier for platinum drug delivery. In ELISA assays and immunofluorescence study, Tmab-1 exhibited high and specific binding affinity to HER2 protein and HER2-overexpressing SK-BR-3 cells. In cytotoxicity test, Tmab-1 showed promising antiproliferative activity to SK-BR-3 cells, while it hardly inhibited the growth of MCF-7 cells and MDA-MB-231 cells. The cell cycle arrest study showed Tmab-1 induced the cell cycle arrest mainly at G2/M phase. This work indicates that trastuzumab is an effective and potential targeting carrier for drug delivery. PMID:26054670

  12. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.

    PubMed

    Tan, Jifu; Thomas, Antony; Liu, Yaling

    2011-12-22

    Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications. PMID:22375153

  13. Colon-targeted oral drug delivery systems: design trends and approaches.

    PubMed

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS. PMID:26070545

  14. Feasibility of noninvasive ultrasound delivery for tumor ablation and targeted drug delivery in the brain

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; McDannold, Nathan; Clement, Greg; White, Jason; Treat, Lisa; Yin, Xiangtao; Jolesz, Ferenc; Sheikov, Nickolai; Vykhodtseva, Natalia

    2005-04-01

    The objective of our research during the past few years has been to develop multichannel ultrasound phased arrays for noninvasive brain interventions. We have been successful in developing methods for correcting the skull induced beam distortions and thus, are able to produce sharp focusing through human skulls. This method is now being tested for thermal ablation of tumors, with results from animal studies demonstrating feasibility. In addition, the ability of ultrasound to open the blood-brain barrier (BBB) locally has been explored in animal models. The results suggest that the transcranial ultrasound exposures can induce BBB opening such that therapeutic agents can be localized in the brain. This tool is especially powerful since the beam can be guided by MR images, thus providing anatomical or functional targeting. This talk will review our current status in this research, which ultimately aims for the clinical use of this methodology.

  15. Reiterated Targeting Peptides on the Nanoparticle Surface Significantly Promote Targeted Vascular Endothelial Growth Factor Gene Delivery to Stem Cells.

    PubMed

    Wang, Dong-Dong; Yang, Mingying; Zhu, Ye; Mao, Chuanbin

    2015-12-14

    Nonviral gene delivery vectors hold great promise for gene therapy due to the safety concerns with viral vectors. However, the application of nonviral vectors is hindered by their low transfection efficiency. Herein, in order to tackle this challenge, we developed a nonviral vector integrating lipids, sleeping beauty transposon system and 8-mer stem cell targeting peptides for safe and efficient gene delivery to hard-to-transfect mesenchymal stem cells (MSCs). The 8-mer MSC-targeting peptides, when synthetically reiterated in three folds and chemically presented on the surface, significantly promoted the resultant lipid-based nanoparticles (LBNs) to deliver VEGF gene into MSCs with a high transfection efficiency (?52%) and long-lasting gene expression (for longer than 170 h) when compared to nonreiterated peptides. However, the reiterated stem cell targeting peptides do not enable the highly efficient gene transfer to other control cells. This work suggests that the surface presentation of the reiterated stem cell-targeting peptides on the nonviral vectors is a promising method for improving the efficiency of cell-specific nonviral gene transfection in stem cells. PMID:26588028

  16. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartn, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, lvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00019f

  17. Phage display: development of nanocarriers for targeted drug delivery to the brain.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Khalaj-Kondori, Mohammad

    2015-06-01

    The blood brain barrier represents a formidable obstacle for the transport of most systematically administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for finding brain targeting peptide ligands. Surface functionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efficient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future. PMID:26199590

  18. Phage display: development of nanocarriers for targeted drug delivery to the brain

    PubMed Central

    Bakhshinejad, Babak; Karimi, Marzieh; Khalaj-Kondori, Mohammad

    2015-01-01

    The blood brain barrier represents a formidable obstacle for the transport of most systematically administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for finding brain targeting peptide ligands. Surface functionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efficient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future. PMID:26199590

  19. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article. PMID:26576089

  20. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review.

    PubMed

    Sultana, Shaheen; Khan, Mohd Rashid; Kumar, Mukesh; Kumar, Sokindra; Ali, Mohammed

    2013-02-01

    Cancer has become the leading cause of death among different populations of the world. The treatment is limited to chemotherapy, radiation, and surgery. Selective targeting to the tumor cells is possible by nanoparticles-based drug delivery system. It maximizes the drug concentration at the desired target and protects the surrounding healthy tissues at the same time. To improve the targeting potential of the anticancer drugs, nanoparticles were optimized for the size and surface characteristics to enhance their circulation time and targeting efficiency. Passive targeting involves surface modification with polyethylene glycol to avoid its elimination by natural body defense mechanism. Active targeting involves chemical interaction with certain antigen, receptors, and genes which are over expressed during progression of disease. In addition, the article highlights recent developments in "smart"-stimulus-responsive-drug carriers designed to enhance the localization and efficacy of therapeutic payloads as compared with free drug. Enhanced targeting potential, imaging, and controlled release of drugs or therapeutic molecules could be possible through multi-functional nanocarrier. Such multi-faceted, versatile nanocarriers and drug delivery systems promise a substantial increase in the efficacy of diagnostic and therapeutic applications in pharmaceutical sciences. PMID:22873288

  1. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.

  2. Targeted drug delivery for cancer therapy: the other side of antibodies.

    PubMed

    Firer, Michael A; Gellerman, Gary

    2012-01-01

    Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144

  3. Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery.

    PubMed

    Song, Nijia; Ding, Mingming; Pan, Zhicheng; Li, Jiehua; Zhou, Lijuan; Tan, Hong; Fu, Qiang

    2013-12-01

    New strategies for the construction of versatile nanovehicles to overcome the multiple challenges of targeted delivery are urgently needed for cancer therapy. To address these needs, we developed a novel targeting-clickable and tumor-cleavable polyurethane nanomicelle for multifunctional delivery of antitumor drugs. The polyurethane was synthesized from biodegradable poly(?-caprolactone) (PCL) and L-lysine ethyl ester diisocyanate (LDI), further extended by a new designed L-cystine-derivatized chain extender bearing a redox-responsive disulfide bond and clickable alkynyl groups (Cys-PA), and finally terminated by a detachable methoxyl-poly(ethylene glycol) with a highly pH-sensitive benzoic-imine linkage (BPEG). The obtained polymers show attractive self-assembly characteristics and stimuli-responsiveness, good cytocompatibility, and high loading capacity for doxorubicin (DOX). Furthermore, folic acid (FA) as a model targeting ligand was conjugated to the polyurethane micelles via an efficient click reaction. The decoration of FA results in an enhanced cellular uptake and improved drug efficacy toward FA-receptor positive HeLa cancer cells in vitro. As a proof-of-concept, this work provides a facile approach to the design of extracellularly activatable nanocarriers for tumor-targeted and programmed intracellular drug delivery. PMID:24219322

  4. Targeted drug delivery for cancer therapy: the other side of antibodies

    PubMed Central

    2012-01-01

    Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144

  5. Cell-mediated Delivery and Targeted Erosion of Vascular Endothelial Growth Factor-Crosslinked Hydrogelsa

    PubMed Central

    Kim, Sung Hye; Kiick, Kristi L.

    2011-01-01

    We have previously reported a novel polymeric delivery vehicle that is assembled via interaction between heparin and the vascular endothelial growth factor (VEGF). Here, the cell-responsiveness of this hydrogel including the delivery of VEGF in response to VEGFR-2 overexpressing PAE/KDR cells (porcine aortic endothelial cells (PAE) equipped with the transcript for the kinase insert domain receptor (KDR)), consequent erosion of the hydrogel matrix, and cellular response are highlighted. The release of VEGF and hydrogel erosion reached 100% only in the presence of PAE/KDR. The [PEG-LMWH/VEGF] hydrogel (PEG = poly(ethylene glycol), LMWH = low molecular weight heparin) correspondingly prompted increases in VEGFR-2 phosphorylation and proliferation of PAE/KDR cells. This study proves that growth factor-crosslinked hydrogels can liberate VEGF in response to specific receptors, causing gel erosion and desired cell responses. The promise of these approaches in therapeutic applications, including targeted delivery, is suggested. PMID:21567519

  6. Radiofrequency-triggered tumor-targeting delivery system for theranostics application.

    PubMed

    Wang, Lei; Zhang, Panpan; Shi, Jinjin; Hao, Yongwei; Meng, Dehui; Zhao, Yalin; Yanyan, Yin; Li, Dong; Chang, Junbiao; Zhang, Zhenzhong

    2015-03-18

    In this study, a new type of magnetic tumor-targeting PEGylated gold nanoshell drug delivery system (DOX-TSMLs-AuNSs-PEG) based on doxorubicin-loaded thermosensitive magnetoliposomes was successfully obtained. The reverse-phase evaporation method was used to construct the magnetoliposomes, and then gold nanoshells were coated on the surface of it. The DOX-TSMLs-AuNSs-PEG delivery system was synthesized after SH-PEG2000 modification. This multifunction system was combined with a variety of functions, such as radiofrequency-triggered release, chemo-hyperthermia therapy, and dual-mode magnetic resonance/X-ray imaging. Importantly, the DOX-TSMLs-AuNSs-PEG complex was found to escape from endosomes after cellular uptake by radiofrequency-induced endosome disruption before lysosomal degradation. All results in vitro and in vivo indicated that DOX-TSMLs-AuNSs-PEG is a promising effective drug delivery system for diagnosis and treatment of tumors. PMID:25706857

  7. Liver-Targeted SiRNA Delivery Using Biodegradable Poly(amide) Polymer Conjugates.

    PubMed

    Barrett, Stephanie E; Guidry, Erin N

    2016-01-01

    The realization of polymer conjugate-based RNA delivery as a clinical modality requires the development and optimization of novel formulations. Although many literature examples of polymer conjugate-based SiRNA delivery systems exist, the protocols described herein represent a robust and facile way of screening any poly(amine)-based polymer system for SiRNA delivery. In this chapter, we describe the synthetic methods used to prepare poly(amide) polymers using a controlled polymerization method, as well as the preparation of the resulting targeted SiRNA polymer conjugates. In addition, detailed methods are provided for the characterization of the biodegradable poly(peptides) as well as the polymer conjugate that ensues. PMID:26472438

  8. Smart Cancer Cell Targeting Imaging and Drug Delivery System by Systematically Engineering Periodic Mesoporous Organosilica Nanoparticles.

    PubMed

    Lu, Nan; Tian, Ying; Tian, Wei; Huang, Peng; Liu, Ying; Tang, Yuxia; Wang, Chunyan; Wang, Shouju; Su, Yunyan; Zhang, Yunlei; Pan, Jing; Teng, Zhaogang; Lu, Guangming

    2016-02-10

    The integration of diagnosis and therapy into one nanoplatform, known as theranostics, has attracted increasing attention in the biomedical areas. Herein, we first present a cancer cell targeting imaging and drug delivery system based on engineered thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs). The PMOs are stably and selectively conjugated with near-infrared fluorescence (NIRF) dye Cyanine 5.5 (Cy5.5) and anti-Her2 affibody on the outer surfaces to endow them with excellent NIRF imaging and cancer targeting properties. Also, taking the advantage of the thioether-group-incorporated mesopores, the release of chemotherapy drug doxorubicin (DOX) loaded in the PMOs is responsive to the tumor-related molecule glutathione (GSH). The drug release percentage reaches 84.8% in 10 mM of GSH solution within 24 h, which is more than 2-fold higher than that without GSH. In addition, the drug release also exhibits pH-responsive, which reaches 53.6% at pH 5 and 31.7% at pH 7.4 within 24 h. Confocal laser scanning microscopy and flow cytometry analysis demonstrate that the PMOs-based theranostic platforms can efficiently target to and enter Her2 positive tumor cells. Thus, the smart imaging and drug delivery nanoplatforms induce high tumor cell growth inhibition. Meanwhile, the Cy5.5 conjugated PMOs perform great NIRF imaging ability, which could monitor the intracellular distribution, delivery and release of the chemotherapy drug. In addition, cell viability and histological assessments show the engineered PMOs have good biocompatibility, further encouraging the following biomedical applications. Over all, the systemically engineered PMOs can serve as a novel cancer cell targeting imaging and drug delivery platform with NIRF imaging, GSH and pH dual-responsive drug release, and high tumor cell targeting ability. PMID:26767305

  9. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings.

    PubMed

    Donahoe, Casey D; Cohen, Thomas L; Li, Wenlu; Nguyen, Peter K; Fortner, John D; Mitra, Robi D; Elbert, Donald L

    2013-03-26

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by quartz crystal microbalance with dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly(L-lysine)-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface cross-linking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  10. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: Benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings

    PubMed Central

    Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.

    2013-01-01

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  11. Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: surface functionalization, natural biodistribution, and acute toxicity

    PubMed Central

    Galagudza, Michael M; Korolev, Dmitry V; Sonin, Dmitry L; Postnov, Viktor N; Papayan, Garry V; Uskov, Ivan S; Belozertseva, Anastasia V; Shlyakhto, Eugene V

    2010-01-01

    The clinical outcome of patients with ischemic heart disease can be significantly improved with the implementation of targeted drug delivery into the ischemic myocardium. In this paper, we present our original findings relevant to the problem of therapeutic heart targeting with use of nanoparticles. Experimental approaches included fabrication of carbon and silica nanoparticles, their characterization and surface modification. The acute hemodynamic effects of nanoparticle formulation as well as nanoparticle biodistribution were studied in male Wistar rats. Carbon and silica nanoparticles are nontoxic materials that can be used as carriers for heart-targeted drug delivery. Concepts of passive and active targeting can be applied to the development of targeted drug delivery to the ischemic myocardial cells. Provided that ischemic heart-targeted drug delivery can be proved to be safe and efficient, the results of this research may contribute to the development of new technologies in the pharmaceutical industry. PMID:20463939

  12. In vitro Assay for Screening of Optimal Targets for Antigen-Delivery to Murine Dendritic Cells.

    PubMed

    Pugholm, L H; Varming, K; Agger, R

    2015-12-01

    Targeting of antigen to dendritic cells (DCs) increase the efficiency of immunization procedures and may facilitate the development of more effective vaccines. Several surface molecules on DCs have shown to be useful for antigen targeting, but many more deserves investigation for their efficacy in this respect. With this end in mind, a simple invitro assay for screening of optimal targets for antigen-delivery to murine DCs was established. Splenocytes from mice immunized with rat IgG were targeted invitro with a panel of different rat monoclonal antibodies (mAbs) directed against surface markers on murine DCs. The resulting T-cell activation was analysed by determining the number of IFN-? and IL-4 secreting cells by ELISPOT. A positive effect of targeting was evident with several of the mAbs. Thus, mAbs against CD11c, CD36, CD205 and Clec7A all induced IFN-? responses that were significantly higher than those induced by non-targeting control mAbs. Anti-CD36 also induced IL-4 responses that were significantly higher than the control. The assay described here allows simultaneous analysis of a large number of potential target structures and facilitates direct comparison between the different targets regarding the strength of the T-cell responses induced by the targeted DCs. The assay could be useful as a first-line screening of potential target structures on murine DCs. PMID:26331836

  13. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    PubMed Central

    Shan, Lingling; Liu, Ming; Wu, Chao; Zhao, Liang; Li, Siwen; Xu, Lisheng; Cao, Wengen; Gao, Guizhen; Gu, Yueqing

    2015-01-01

    In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX) as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6)-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX) and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX), composed of folic acid (FA, target), amino acids (Arg or Glu, linker), and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo) in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. PMID:26366078

  14. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

    PubMed

    Kim, Jin-Ho; Kim, Youngwook; Bae, Ki Hyun; Park, Tae Gwan; Lee, Jung Hee; Park, Keunchil

    2015-04-01

    Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics. PMID:25686010

  15. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system.

    PubMed

    Riegler, Johannes; Wells, Jack A; Kyrtatos, Panagiotis G; Price, Anthony N; Pankhurst, Quentin A; Lythgoe, Mark F

    2010-07-01

    The success of cell therapies depends on the ability to deliver the cells to the site of injury. Targeted magnetic cell delivery is an emergent technique for localised cell transplantation therapy. The use of permanent magnets limits such a treatment to organs close to the body surface or an implanted magnetic source. A possible alternative method for magnetic cell delivery is magnetic resonance targeting (MRT), which uses magnetic field gradients inherent to all magnetic resonance imaging system, to steer ferromagnetic particles to their target region. In this study we have assessed the feasibility of such an approach for cell targeting, using a range of flow rates and different super paramagnetic iron oxide particles in a vascular bifurcation phantom. Using MRT we have demonstrated that 75% of labelled cells could be guided within the vascular bifurcation. Furthermore we have demonstrated the ability to image the labelled cells before and after magnetic targeting, which may enable interactive manipulation and assessment of the distribution of cellular therapy. This is the first demonstration of cellular MRT and these initial findings support the potential value of MRT for improved targeting of intravascular cell therapies. PMID:20382425

  16. Targeted Delivery of Antiglaucoma Drugs to the Supraciliary Space Using Microneedles

    PubMed Central

    Kim, Yoo C.; Edelhauser, Henry F.; Prausnitz, Mark R.

    2014-01-01

    Purpose. In this work, we tested the hypothesis that highly targeted delivery of antiglaucoma drugs to the supraciliary space by using a hollow microneedle allows dramatic dose sparing of the drug compared to topical eye drops. The supraciliary space is the most anterior portion of the suprachoroidal space, located below the sclera and above the choroid and ciliary body. Methods. A single, hollow 33-gauge microneedle, 700 to 800 ?m in length, was inserted into the sclera and used to infuse antiglaucoma drugs into the supraciliary space of New Zealand white rabbits (N = 36 per group). Sulprostone, a prostaglandin analog, and brimonidine, an ?2-adrenergic agonist, were delivered via supraciliary and topical administration at various doses. The drugs were delivered unilaterally, and intraocular pressure (IOP) of both eyes was measured by rebound tonometry for 9 hours after injection to assess the pharmacodynamic responses. To assess safety of the supraciliary injection, IOP change immediately after intravitreal and supraciliary injection were compared. Results. Supraciliary delivery of both sulprostone and brimonidine reduced IOP by as much as 3 mm Hg bilaterally in a dose-related response; comparison with topical administration at the conventional human dose showed approximately 100-fold dose sparing by supraciliary injection for both drugs. A safety study showed that the kinetics of IOP elevation immediately after supraciliary and intravitreal injection of placebo formulations were similar. Conclusions. This study introduced the use of targeted drug delivery to the supraciliary space by using a microneedle and demonstrated dramatic dose sparing of antiglaucoma therapeutic agents compared to topical eye drops. Targeted delivery in this way can increase safety by reducing side effects and could allow a single injection to contain enough drug for long-term sustained delivery. PMID:25212782

  17. Light-Controlled Delivery of Monoclonal Antibodies for Targeted Photoinactivation of Ki-67.

    PubMed

    Wang, Sijia; Httmann, Gereon; Zhang, Zhenxi; Vogel, Alfred; Birngruber, Reginald; Tangutoori, Shifalika; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2015-09-01

    The selective inhibition of intracellular and nuclear molecules such as Ki-67 holds great promise for the treatment of cancer and other diseases. However, the choice of the target protein and the intracellular delivery of the functional agent remain crucial challenges. Main hurdles are (a) an effective delivery into cells, (b) endosomal escape of the delivered agents, and (c) an effective, externally triggered destruction of cells. Here we show a light-controlled two-step approach for selective cellular delivery and cell elimination of proliferating cells. Three different cell-penetrating nano constructs, including liposomes, conjugates with the nuclear localization sequence (NLS), and conjugates with the cell penetrating peptide Pep-1, delivered the light activatable antibody conjugate TuBB-9-FITC, which targets the proliferation associated protein Ki-67. HeLa cells were treated with the photosensitizer benzoporphyrin monoacid derivative (BPD) and the antibody constructs. In the first optically controlled step, activation of BPD at 690 nm triggered a controlled endosomal escape of the TuBB-9-FITC constructs. In more than 75% of Ki-67 positive, irradiated cells TuBB-9-FITC antibodies relocated within 24 h from cytoplasmic organelles to the cell nucleus and bound to Ki-67. After a second light irradiation at 490 nm, which activated FITC, cell viability decreased to approximately 13%. Our study shows an effective targeting strategy, which uses light-controlled endosomal escape and the light inactivation of Ki-67 for cell elimination. The fact that liposomal or peptide-assisted delivery give similar results leads to the additional conclusion that an effective mechanism for endosomal escape leaves greater variability for the choice of the delivery agent. PMID:26226545

  18. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid.

    PubMed

    Shinde, Rajshree L; Bharkad, Gopal P; Devarajan, Padma V

    2015-10-01

    Intranasal Microemulsions (MEs) for nose to brain delivery of a novel combination of Albendazole sulfoxide (ABZ-SO) and Curcumin (CUR) for Neurocysticercosis (NCC), a brain infection are reported. MEs prepared by simple solution exhibited a globule size <20nm, negative zeta potential and good stability. The docosahexaenoic acid (DHA) ME revealed high and rapid ex vivo permeation of drugs through sheep nasal mucosa. Intranasal DHA ME resulted in high brain concentrations and 10.76 (ABZ-SO) and 3.24 (CUR) fold enhancement in brain area-under-the-curve (AUC) compared to intravenous DHA MEs at the same dose. Direct nose to brain transport (DTP) of >95% was seen for both drugs. High drug targeting efficiency (DTE) to the brain compared to Capmul ME and drug solution (P<0.05) suggested the role of DHA in aiding nose to brain delivery. Histopathology study confirmed no significant changes. High efficacy of ABZ-SO: CUR (100:10ng/mL) DHA ME in vitro on Taenia solium cysts was confirmed by complete ALP inhibition and disintegration of cysts at 96h. Considering that the brain concentration at 24h was 1400160.1ng/g (ABZ-SO) and 12035.2ng/g (CUR), the in vitro efficacy seen at a 10 fold lower concentration of the drugs strongly supports the assumption of clinical efficacy. The intranasal DHA ME is a promising delivery system for targeted nose to brain delivery. PMID:26318978

  19. Quantification of Mesenchymal Stem Cell (MSC) Delivery to a Target Site Using In Vivo Confocal Microscopy

    PubMed Central

    Mortensen, Luke J.; Levy, Oren; Phillips, Joseph P.; Stratton, Tara; Triana, Brian; Ruiz, Juan P.; Gu, Fangqi; Karp, Jeffrey M.; Lin, Charles P.

    2013-01-01

    The ability to deliver cells to appropriate target tissues is a prerequisite for successful cell-based therapy. To optimize cell therapy it is therefore necessary to develop a robust method of in vivo cell delivery quantification. Here we examine Mesenchymal Stem Cells (MSCs) labeled with a series of 4 membrane dyes from which we select the optimal dye combination for pair-wise comparisons of delivery to inflamed tissue in the mouse ear using confocal fluorescence imaging. The use of an optimized dye pair for simultaneous tracking of two cell populations in the same animal enables quantification of a test population that is referenced to an internal control population, thereby eliminating intra-subject variations and variations in injected cell numbers. Consistent results were obtained even when the administered cell number varied by more than an order of magnitude, demonstrating an ability to neutralize one of the largest sources of in vivo experimental error and to greatly reduce the number of cells required to evaluate cell delivery. With this method, we are able to show a small but significant increase in the delivery of cytokine pre-treated MSCs (TNF-α & IFN-γ) compared to control MSCs. Our results suggest future directions for screening cell strategies using our in vivo cell delivery assay, which may be useful to develop methods to maximize cell therapeutic potential. PMID:24205131

  20. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non-transport permissive and intact BBB, we also assessed the role of magnetic resonance imaging (MRI) guided focused ultrasound (MRgFUS) disruption of the BBB in enhancing permeation of AuNPs across the intact BBB and tumor BBB in vivo. MRgFUS is a novel technique that can transiently increase BBB permeability thereby allowing delivery of therapeutics into the CNS. We demonstrated enhanced delivery of AuNPs with therapeutic potential into the CNS via MRgFUS. Our study was the first to establish a definitive role for MRgFUS in delivering AuNPs into the CNS. In summary, this thesis describes results from a series of research projects that have contributed to our understanding of the influence of design features on AuNP permeation through the BBB and also the potential role of MRgFUS in AuNP permeation across the BBB.

  1. Targeted delivery of growth factors by HSV-mediated gene transfer for peripheral neuropathy.

    PubMed

    Chattopadhyay, Munmun

    2013-10-01

    Dysfunction of peripheral nerves due to metabolic, toxic, infectious, or genetic causes is a common and debilitating syndrome resulting in sensory loss. Peripheral neuropathies are one of the most widespread neurological disorders, affecting nearly 20 million people in the United States alone. Pharmacologic treatment for peripheral neuropathies is one of the most challenging fields in the clinical research. Sensory neurons are widely distributed and relatively inaccessible to direct drug delivery. Targeted delivery of neurotrophic factors to the primary sensory afferent for treatment of polyneuropathy by gene transfer approach offers the possibility of a highly selective targeted release of bioactive molecules within the nervous system. Preclinical studies with non-replicating herpes simplex virus (HSV)-based vectors injected into the skin to transduce neurons in the dorsal root ganglion (DRG) have demonstrated efficacy in preventing progression of sensory neuropathy without any possible systemic side effects. PMID:24369058

  2. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells.

    PubMed

    Whitney, John C; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N; Ledvina, Hannah E; Tran, Bao Q; Robinson, Howard; Goo, Young Ah; Goodlett, David R; Raunser, Stefan; Mougous, Joseph D

    2015-10-22

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria. PMID:26456113

  3. Occlusion of retinal vessels using targeted delivery of a platelet aggregating agent.

    PubMed Central

    Ogura, Y; Guran, T; Takahashi, K; Zeimer, R

    1993-01-01

    Local laser targeted delivery of a platelet aggregating agent to occlude retinal and choroidal vessels was evaluated in rabbits and rats. Liposomes containing adenosine diphosphate (ADP) were administered intravenously and an argon laser was used to lyse the liposomes in main retinal arteries. Control vessels were treated with the same energy of laser without administering ADP. Fluorescein angiography performed 2 weeks later showed that all the control vessels were perfused. Ninety percent of the ADP-treated arteries showed complete or partial occlusion. Successful occlusion increased with the laser energy and decreased with increasing vessel diameter. Histopathology showed that occlusion was achieved in retinal as well as choroidal vessels. The inner retina remained relatively unaffected at the treatment site but the outer retina was thermally damaged. These preliminary results suggest that targeted delivery of a platelet aggregating agent holds promise for occluding vessels in the fundus. Images PMID:8494860

  4. Collagen Coated Nanoliposome as a Targeted and Controlled Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, G.; Stephen, P.; Prabhu, M.; Sehgal, P. K.; Sadulla, S.

    2010-10-01

    The collagen coated nanoliposome (CCNL) have been prepared and characterized in order to develop a targeted and controlled drug delivery system. The zeta potential (ZP) measurement, Fourier transform infrared (FT-IR) spectral and Scanning Electron Microscopy (SEM) and Cell viability assay data showed that the collagen coated nanoliposome particle size and charges, structural interaction and surface morphology and high bio-cyto-compatibility of collagen coated nanoliposome. The particle sizes of nanoliposome (NL) and collagen coated nanoliposome are 20-300 nm and 0.1-10 ?m respectively. The introduction of triple helical, coiled coil and fibrous protein of collagen into nanoliposome can improves the stability of nanoliposome, resistant to phospholipase activities and decreasing the phagocytosis of liposomes by reticuloendothelial system. The collagen coated nanoliposome is expected to be used as for targeted and controlled drug delivery system, and tissue engineering application.

  5. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels.

    PubMed

    Jin, Haiqiang; Tan, Hui; Zhao, Lingling; Sun, Weiping; Zhu, Lijun; Sun, Yongan; Hao, Hongjun; Xing, Haiying; Liu, Linlin; Qu, Xiaozhong; Huang, Yining; Yang, Zhenzhong

    2012-09-15

    To find a way to modulate the effect of thrombolytic proteins by increasing their specificity, minimizing their adverse effect as well as lengthening their circulation time for the treatment of ischemic vascular disease holds great promise. In this work, urokinase-type plasminogen activator (uPA) was encapsulated into hollow nanogels which are generated by the reaction of glycol chitosan and aldehyde capped poly(ethylene glycol) (OHC-PEG-CHO) through a one-step approach of ultrasonic spray. The uPA-loaded nanogels, with size of 200-300 nm, have longer circulation time than that of the nude urokinase in vivo, besides the protein can be triggered to release in faster rate under diagnostic ultrasonic condition of 2 MHz, which significantly enhanced the thrombolysis of clots. The results are promising for increasing the specificity and positive effects of thrombolytic agents like recombinant tissue plasminogen activator (rt-PA) for the current treatment of ischemic vascular disease. PMID:22683455

  6. Efficient management of fruit pests by pheromone nanogels.

    PubMed

    Bhagat, Deepa; Samanta, Suman K; Bhattacharya, Santanu

    2013-01-01

    Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops. PMID:23416455

  7. Efficient Management of Fruit Pests by Pheromone Nanogels

    PubMed Central

    Bhagat, Deepa; Samanta, Suman K.; Bhattacharya, Santanu

    2013-01-01

    Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops. PMID:23416455

  8. Dual surface-functionalized Janus nanocomposites for targeted stimulus responsive drug delivery.

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Yilong; Pauletti, Giovanni; Shi, Donglu

    2014-03-01

    A novel superparamagnetic Janus nanocomposite (SJNC) of polystyrene/Fe3O4@SiO2 was designed and developed for the first time using a miniemulsion method. Both surfaces were readily functionalized for bio-medical application. Folic acid (FA) and doxorubicin (DOX) were conjugated stepwise to the surfaces. It was found that SJNCs achieved cell-targeted drug delivery in a pH-responsive manner.

  9. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  10. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    NASA Astrophysics Data System (ADS)

    Wang, Chan; Lv, Piping; Wei, Wei; Tao, Shengyang; Hu, Tao; Yang, Jingbang; Meng, Changgong

    2011-10-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m2 g - 1, a pore size of 1.91 nm and a saturation magnetization of 32 emu g - 1. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  11. Aptamer-MiRNA Conjugates for Cancer Cell-Targeted Delivery.

    PubMed

    Esposito, Carla L; Catuogno, Silvia; de Franciscis, Vittorio

    2016-01-01

    microRNAs (miRNAs) are short noncoding RNAs that effectively regulate the expression of a wide variety of genes. Increasing evidences have shown a fundamental role of miRNAs in cancer initiation and progression, thus indicating these molecules among the most promising for new approaches in cancer therapy. However, several hurdles limit the translation of miRNAs into the clinic. One of the most critical aspects is represented by the lack of a safe and reliable way to selectively target organs and tissues. Therefore, the development of cell-specific delivery means has become an essential step for the translation of miRNA-based therapeutics to clinic for cancer management. To this end aptamer-based approaches may provide efficient delivery tools for the selective accumulation of miRNA to target tumors, their intracellular uptake, processing, and functional silencing of target genes. In this chapter, we discuss the direct conjugation of miRNAs to aptamers against transmembrane receptors as innovative experimental approach for their selective delivery to cancer cells. PMID:26472452

  12. Formulation design for target delivery of iron nanoparticles to TCE zones

    NASA Astrophysics Data System (ADS)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy.

  13. Targeted Delivery with Imaging Assessment of siRNA Expressing Nanocassettes into Cancer.

    PubMed

    Chen, Wei; Yang, Lily

    2016-01-01

    Molecular therapy using small interfering RNA (siRNA) shows great promise in the development of novel therapeutics for cancer. Although various approaches have been developed for in vivo delivery of siRNAs into tumors, stability of siRNA in blood circulation, and low efficiency of siRNA delivery into tumor cells are the major obstacles for further translation into cancer therapeutics. In this protocol, we describe methods of the production of shRNA expressing DNA nanocassettes by PCR amplification of double-stranded DNA fragments containing a U6 promoter and a shRNA gene. Those DNA nanocassettes can be conjugated to the polymer coating of nanoparticles that are targeted to cellular receptors highly expressed in tumor cells, such as urokinase plasminogen activator receptor (uPAR), for targeted delivery and receptor mediated internalization of shRNA expressing DNA nanocassettes. Methods for in vitro and in vivo evaluation of target specificity and gene-knockdown effect are also provided. PMID:26530914

  14. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery.

    PubMed

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-01-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications. PMID:26955887

  15. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    PubMed Central

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-01-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications. PMID:26955887

  16. Glycan-targeted drug delivery for intravesical therapy: in the footsteps of uropathogenic bacteria.

    PubMed

    Neutsch, Lukas; Gabor, Franz; Wirth, Michael

    2014-05-01

    The human urothelium belongs to the most efficient biobarriers, and represents a highly rewarding but challenging target for local drug administration. Inadequate urothelial bioavailability is a major obstacle for successful treatment of bladder cancer and other diseases, yet little research has addressed the development of advanced delivery concepts for the intravesical route. A prominent example of how to overcome the urothelial barrier by means of specific biorecognition is the efficient cytoinvasion of UPEC bacteria, mediated by the mannose-targeted lectin domain FimH. Similar mechanisms of non-bacterial origin may be exploited for enhancing drug uptake from the bladder cavity. This review covers the current status in the development of lectin-based delivery strategies for the urinary tract. Different concepts for preparing and optimizing carbohydrate-targeted delivery systems are presented, along with important design parameters, benefits and shortcomings. Bioconjugate- and nano-/microparticle-based systems are discussed in further detail with regard to their performance in preclinical testing. PMID:24998273

  17. Synthesis and Characterization of Aptamer-Targeted SNALPs for the Delivery of siRNA.

    PubMed

    Wilner, Samantha E; Levy, Matthew

    2016-01-01

    Aptamers selected against cell surface receptors represent a unique set of ligands that can be used to target nanoparticles and other therapeutics to specific cell types. Here, we describe a method for using aptamers to deliver stable nucleic acid lipid particles (SNALPs) encapsulating small interfering RNA (siRNA) to cells in vitro. Using this method, we have demonstrated the ability of aptamer-conjugated SNALPs to achieve target-specific delivery and siRNA-mediated knockdown of a gene of interest. We also describe methods to characterize SNALP size, siRNA encapsulation efficiency, and aptamer conjugation efficiency. PMID:26552829

  18. Furin Targeted Drug Delivery for Treatment of Rhabdomyosarcoma in a Mouse Model

    PubMed Central

    Hajdin, Katarina; D'Alessandro, Valentina; Niggli, Felix K.; Schfer, Beat W.; Bernasconi, Michele

    2010-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Improvement of treatment efficacy and decreased side effects through tumor-targeted drug delivery would be desirable. By panning with a phage-displayed cyclic random peptide library we selected a peptide with strong affinity for RMS in vitro and in vivo. The peptide minimal binding motif Arg-X-(Arg/Lys)(Arg/Lys) identified by alanine-scan, suggested the target receptor to be a proprotein convertase (PC). Expression profiling of all PCs in RMS biopsies and cell lines revealed consistent high expression levels for the membrane-bound furin and PC7. Direct binding of RMS-P3 peptide to furin was demonstrated by affinity chromatography and supported by activity and colocalization studies. Treatment of RMS in mice with doxorubicin coupled to the targeting peptide resulted in a two-fold increase in therapeutic efficacy compared to doxorubicin treatment alone. Our findings indicate surface-furin binding as novel mechanism for therapeutic cell penetration which needs to be further investigated. Furthermore, this work demonstrates that specific targeting of membrane-bound furin in tumors is possible for and suggests that RMS and other tumors might benefit from proprotein convertases targeted drug delivery. PMID:20454619

  19. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies

    NASA Astrophysics Data System (ADS)

    Ren, Lili; Chen, Shizhen; Li, Haidong; Zhang, Zhiying; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-07-01

    Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-approved formulation of PTX-Cre (Taxol®) and improved drug delivery efficiency to the tumor. c(RGDyk) modification greatly enhanced the cytotoxicity of the drug in tumor cells A549. The T1 relaxivity in tumor cells treated with the targeted liposome formulation was increased 16-fold when compared with the non-targeted group. In vivo, the tumors in mice were visualized using T1-weighted imaging after administration of the liposome. Also the tumor growth could be inhibited well after the treatment. Fluorescence images in vitro and ex vivo also showed the targeting effect of this liposome in tumor cells, indicating that this nanovehicle could limit the off-target side effects of anticancer drugs and contrast agents. These findings lay the foundation for further tumor inhibition study and application of this delivery vehicle in cancer therapy settings.

  20. AAV9-mediated central nervous system–targeted gene delivery via cisterna magna route in mice

    PubMed Central

    Lukashchuk, Vera; Lewis, Katherine E; Coldicott, Ian; Grierson, Andrew J; Azzouz, Mimoun

    2016-01-01

    Current barriers to the use of adeno-associated virus serotype 9 (AAV9) in clinical trials for treating neurological disorders are its high expression in many off-target tissues such as liver and heart, and lack of cell specificity within the central nervous system (CNS) when using ubiquitous promoters such as human cytomegalovirus (CMV) or chicken-β-actin hybrid (CAG). To enhance targeting the transgene expression in CNS cells, self-complementary (sc) AAV9 vectors, scAAV9-GFP vectors carrying neuronal Hb9 and synapsin 1, and nonspecific CMV and CAG promoters were constructed. We demonstrate that synapsin 1 and Hb9 promoters exclusively targeted neurons in vitro, although their strengths were up to 10-fold lower than that of CMV. In vivo analyses of mouse tissue after scAAV9-GFP vector delivery via the cisterna magna revealed a significant advantage of synapsin 1 promoter over both Hb9 variants in targeting neurons throughout the brain, since Hb9 promoters were driving gene expression mainly within the motor-related areas of the brain stem. In summary, this study demonstrates that cisterna magna administration is a safe alternative to intracranial or intracerebroventricular vector delivery route using scAAV9, and introduces a novel utility of the Hb9 promoter for the targeted gene expression for both in vivo and in vitro applications. PMID:26942208

  1. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  2. Oxidation-Induced Degradable Nanogels for Iron Chelation.

    PubMed

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between ?-cyclodextrin (?-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  3. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro; Toledano Furman, Naama E; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    In a perfect sequence of events, nanoparticles (NPs) are injected into the bloodstream where they circulate until they reach the target tissue. The ligand on the NP surface recognizes its specific receptor expressed on the target tissue and the drug is released in a controlled manner. However, once injected in a physiological environment, NPs interact with biological components and are surrounded by a protein corona (PC). This can trigger an immune response and affect NP toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the NP-PC interactions and discuss how the PC can be used to modulate both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. PMID:26653875

  4. Towards Targeted Delivery Systems: Ligand Conjugation Strategies for mRNA Nanoparticle Tumor Vaccines

    PubMed Central

    Phua, Kyle K. L.

    2015-01-01

    The use of nanoparticles encapsulating messenger RNA (mRNA) as a vaccine has recently attracted much attention because of encouraging results achieved in many nonviral genetic antitumor vaccination studies. Notably, in all of these studies, mRNA nanoparticles are passively targeted to dendritic cells (DCs) through careful selection of vaccination sites. Hence, DC-targeted mRNA nanoparticle vaccines may be an imminent next step forward. In this brief report, we will discuss established conjugation strategies that have been successfully applied to both polymeric and liposomal gene delivery systems. We will also briefly describe promising DC surface receptors amenable for targeting mRNA nanoparticles. Practicable conjugation strategies and receptors reviewed in this paper will provide a convenient reference to facilitate future development of targeted mRNA nanoparticle vaccine. PMID:26819957

  5. Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels.

    PubMed

    Daniel-da-Silva, Ana L; Ferreira, Luciana; Gil, Ana M; Trindade, Tito

    2011-03-15

    Crosslinked κ-carrageenan hydrogel nanoparticles (nanogels) with an average size smaller than 100 nm were prepared using reverse microemulsions combined with thermally induced gelation. The size of the nanogels varied with biopolymer concentration at a constant water/surfactant concentration ratio. The nanogels were found to be thermo-sensitive in a temperature range acceptable for living cells (37-45°C) undergoing reversible volume transitions in response to thermal stimuli. This opens the possibility to explore the application of these nanogels in smart therapeutics such as thermo-sensitive drug carriers. As such, the sustained release of methylene blue from the nanogels was evaluated in in vitro conditions as proof of concept experiments and the release rate was found to be controlled with temperature. PMID:21251667

  6. Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells.

    PubMed

    Limasale, Yanuar Dwi Putra; Tezcaner, Ay?en; zen, Can; Keskin, Dilek; Banerjee, Sreeparna

    2015-02-20

    Cyclooxygenase-2 (COX-2) is highly expressed in many different cancers. Therefore, the inhibition of the COX-2 pathway by a selective COX-2 inhibitor, celecoxib (CLX), may be an alternative strategy for cancer prevention and therapy. Liposomal drug delivery systems can be used to increase the therapeutic efficacy of CLX while minimizing its side effects. Previous studies have reported the encapsulation of CLX within the non-targeted long circulating liposomes and functional effect of these formulations against colorectal cancer cell lines. However, the selectivity and internalization of CLX-loaded liposomes can further be improved by grafting targeting ligands on their surface. Cetuximab (anti-epidermal growth factor receptor - EGFR - monoclonal antibody) is a promising targeting ligand since EGFR is highly expressed in a wide range of solid tumors. The aim of this study was to develop EGFR-targeted immunoliposomes for enhancing the delivery of CLX to cancer cells and to evaluate the functional effects of these liposomes in cancer cell lines. EGFR-targeted ILs, having an average size of 120nm, could encapsulate 40% of the CLX, while providing a sustained drug release profile. Cell association studies have also shown that the immunoliposome uptake was higher in EGFR-overexpressing cells compared to the non-targeted liposomes. In addition, the CLX-loaded-anti-EGFR immunoliposomes were significantly more toxic compared to the non-targeted ones in cancer cells with EGFR-overexpression but not in the cells with low EGFR expression, regardless of their COX-2 expression status. Thus, selective targeting of CLX with anti-EGFR immunoliposomes appears to be a promising strategy for therapy of tumors that overexpress EGFR. PMID:25595386

  7. Enhanced Affinity Bifunctional Bisphosphonates for Targeted Delivery of Therapeutic Agents to Bone

    PubMed Central

    Yewle, Jivan N.; Puleo, David A.; Bachas, Leonidas G.

    2011-01-01

    Skeletal diseases have a major impact on the worldwide population and economy. Although several therapeutic agents and treatments are available for addressing bone diseases, they are not being fully utilized because of their uptake in non-targeted sites and related side effects. Active targeting with controlled delivery is an ideal approach for treatment of such diseases. Because bisphosphonates are known to have high affinity to bone and are being widely used in treatment of osteoporosis, they are well-suited for drug targeting to bone. In this study, a targeted delivery of therapeutic agent to resorption sites and wound healing sites of bone was explored. Towards this goal, bifunctional hydrazine-bisphosphonates (HBPs), with spacers of various lengths, were synthesized and studied for their enhanced affinity to bone. Crystal growth inhibition studies showed that these HBPs have high affinity to hydroxyapatite, and HBPs with shorter spacers bind stronger than alendronate to hydroxyapatite. The HBPs did not affect proliferation of MC3T3-E1 pre-osteoblasts, did not induce apoptosis, and were not cytotoxic at the concentration range tested (10−6 - 10−4 M). Furthermore, drugs can be linked to the HBPs through a hydrazone linkage that is cleavable at the low pH of bone resorption and wound healing sites, leading to release of the drug. This was demonstrated using hydroxyapatite as a model material of bone and 4-nitrobenzaldehyde as a model drug. This study suggests that these HBPs could be used for targeted delivery of therapeutic agents to bone. PMID:22073906

  8. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery.

    PubMed

    Kim, Hyun Ah; Nam, Kihoon; Kim, Sung Wan

    2014-08-01

    Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind ?v?3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG, 1kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RAD in ?v?3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy. PMID:24894645

  9. Matrix-specific anchors: a new concept for targeted delivery and retention of therapeutic cells.

    PubMed

    Steplewski, Andrzej; Fertala, Jolanta; Beredjiklian, Pedro; Wang, Mark L; Fertala, Andrzej

    2015-04-01

    Biomedical strategies for tissue engineering and repair utilize specific cells, scaffolds, and growth factors to reconstruct elements of damaged tissue. The cellular element of these strategies is limited, however, by poor efficiency of delivery and retention of therapeutic cells in target sites. We propose that the presence of a cellular anchor that is able to specifically bind a defined element of target tissue will facilitate efficient binding and retention of therapeutic cells, thereby promoting repair of the target site. To do so, we engineered an artificial collagen-specific anchor (ACSA) that is able to specifically bind collagen I. The ACSA was engineered by creating a construct comprising rationally designed consecutive domains. The binding specificity of the ACSA was achieved by employing variable regions of a monoclonal antibody that recognizes a unique epitope present in human collagen I. Meanwhile, cell membrane localization of the ACSA was provided by the presence of a transmembrane domain. We determined that the ACSA was localized within cell membranes and interacted with its intended target, that is, collagen I. We have demonstrated that, in comparison to the control, the cells expressing the ACSA attached better to collagen I and exhibited improved retention in sites of seeding. We have also demonstrated that the presence of the ACSA did not interfere with cell proliferation, the biosynthesis of endogenous collagen I, or the biological functions of native collagen receptors. Since the presented cell delivery system utilizes a common characteristic of major connective tissues, namely the presence of collagen I, the findings described here could have a broad positive impact for improving the repair processes of tendon, ligament, bone, intervertebral disc, skin, and other collagen I-rich connective tissues. If successful, the ACSA approach to deliver cells will serve as an outline for developing cell delivery methods that target other elements of extracellular matrices, including other collagen types, laminins, and fibronectins. PMID:25435302

  10. Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels

    PubMed Central

    Kawano, Shintaro; Akashi, Mitsuru; Sato, Hirofumi; Shizuma, Motohiro

    2015-01-01

    Summary Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD) works as an attractive emulsion stabilizer through the formation of a CD–oil complex at the oil–water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel) with a unique surface-active property. Results: CD nanogels were prepared by crosslinking heptakis(2,6-di-O-methyl)-β-cyclodextrin with phenyl diisocyanate and subsequent immersion of the resulting polymer in water. A dynamic light scattering study shows that primary CD nanogels with 30–50 nm diameter assemble into larger CD nanogels with 120 nm diameter by an increase in the concentration of CD nanogel from 0.01 to 0.1 wt %. The CD nanogel has a surface-active property at the air–water interface, which reduces the surface tension of water. The CD nanogel works as an effective Pickering emulsion stabilizer even at a low concentration (0.1 wt %), forming stable oil-in-water emulsions through interfacial adsorption by the CD nanogels. Conclusion: Soft CD nanogel particles adsorb at the oil–water interface with an effective coverage by forming a strong interconnected network and form a stable Pickering emulsion. The adsorption property of CD nanogels on the droplet surface has great potential to become new microcapsule building blocks with porous surfaces. These microcapsules may act as stimuli-responsive nanocarriers and nanocontainers. PMID:26734085

  11. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction. PMID:26706547

  12. Nanogel-Conjugated Reverse Transcriptase Inhibitors and Their Combinations as Novel Antiviral Agents with Increased Efficacy against HIV-1 Infection.

    PubMed

    Senanayake, T H; Gorantla, S; Makarov, E; Lu, Y; Warren, G; Vinogradov, S V

    2015-12-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) are an integral part of the current antiretroviral therapy (ART), which dramatically reduced the mortality from AIDS and turned the disease from lethal to chronic. The further steps in curing the HIV-1 infection must include more effective targeting of infected cells and virus sanctuaries inside the body and modification of drugs and treatment schedules to reduce common complications of the long-term treatment and increase patient compliancy. Here, we describe novel NRTI prodrugs synthesized from cholesteryl-?-polylysine (CEPL) nanogels by conjugation with NRTI 5'-succinate derivatives (sNRTI). Biodegradability, small particle size, and high NRTI loading (30% by weight) of these conjugates; extended drug release, which would allow a weekly administration schedule; high therapeutic index (>1000) with a lower toxicity compared to NRTIs; and efficient accumulation in macrophages known as carriers for HIV-1 infection are among the most attractive properties of new nanodrugs. Nanogel conjugates of zidovudine (AZT), lamivudine (3TC), and abacavir (ABC) have been investigated individually and in formulations similar to clinical NRTI cocktails. Nanodrug formulations demonstrated 10-fold suppression of reverse transcriptase activity (EC90) in HIV-infected macrophages at 2-10, 2-4, and 1-2 ?M drug levels, respectively, for single nanodrugs and dual and triple nanodrug cocktails. Nanogel conjugate of lamivudine was the most effective single nanodrug (EC90 2 ?M). Nanodrugs showed a more favorable pharmacokinetics compared to free NRTIs. Infrequent iv injections of PEGylated CEPL-sAZT alone could efficiently suppress HIV-1 RT activity to background level in humanized mouse (hu-PBL) HIV model. PMID:26565115

  13. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle.

    PubMed

    Lapteva, Maria; Mller, Michael; Gurny, Robert; Kalia, Yogeshvar N

    2015-11-28

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A() Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 1.1% vs. 0.4 0.1% and 7.5 0.8% vs. 0.8 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm() (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A() Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A() Micro in terms of delivery efficiency to PSU presenting human skin (10.4 3.2% vs. 0.6 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient clinical management of acne. PMID:26498006

  14. Hyaluronic acid-conjugated apoferritin nanocages for lung cancer targeted drug delivery.

    PubMed

    Luo, Yanan; Wang, Xuenv; Du, Dan; Lin, Yuehe

    2015-10-15

    In this paper, we proposed a naturally derived protein cage based pH-responsive delivery system for intracellular prodrug controlled release. The drug delivery system is based on apoferritin as delivery vehicles to encapsulate the anticancer drug daunomycin (DN) and alleviate the side effect. The hydrophobic drug DN was encapsulated into the interior of apoferritin by the hydrophobic channels of the cage with swelling at slight acidic pH and electrostatic adsorption. The negatively charged poly-l-aspartic acid (PLAA) was further introduced into the apoferritin to absorb the positively charged DN. The mixture of PLAA and DN easily flew into the apoferritin cage and was stably stored in the physiological fluids. PLAA protected the leakage of DN and encapsulated a sufficient amount of drug molecules in the cage. To specifically target the tumor cells, the surface of apoferritin was modified with hyaluronic acid (HA) which can easily bind to the HA-receptor CD44. Here, human embryonic lung MRC-5 cells and lung cancer A549 cells were used to observe the specific binding of HA and morphological changes in vitro and examine the antitumor activity. This unique protein based drug delivery platform using the apoferritin cage shows great potential in the therapeutic administration of the anti-cancer agents. PMID:26301700

  15. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    PubMed Central

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  16. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

    2012-06-01

    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ~ 24.2 min) than the parent siRNA (t1/2 ~ 6 min).

  17. Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery across Biological Barriers

    PubMed Central

    Kievit, Forrest M.; Zhang, Miqin

    2012-01-01

    Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge that requires targeted therapy to treat effectively. Targeted therapy can be achieved with appropriate designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of materials commonly used to synthesize nanotheranostic particles and their use in imaging. We then discuss biological barriers that these nanoparticles encounter and must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells using nanoparticles, adult stem cells, and T cells in immunotherapy. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy. PMID:21842473

  18. Potential of targeted drug delivery system for the treatment of bone metastasis.

    PubMed

    Vinay, Raichur; KusumDevi, V

    2016-01-01

    Bone metastasis is a devastating complication of cancer that requires an immediate attention. Although our understanding of the metastatic process has improved over the years, yet a number of questions still remain unanswered, and more research is required for complete understanding of the skeletal consequences of metastasis. Furthermore, as no effective treatments are available for some of the most common skeleton disorders such as arthritis, osteoarthritis, osteosarcoma and metastatic bone cancer, there is an urgent need to develop new drugs and drug delivery systems for safe and efficient clinical treatments. Hence this article describes the potential of targeted delivery platforms aimed specifically at bone metastasized tumors. The review gives a brief understanding of the proposed mechanisms of metastasis and focuses primarily on the targeting moieties such as bisphosphonates, which represent the current gold standard in bone metastasis therapies. Special focus has been given to the targeted nanoparticulate systems for treating bone metastasis and its future. Also highlighted are some of the therapeutic targets that can be exploited for designing therapies for bone metastasis. Some of the patented molecules for bone metastasis prevention and treatment have also been discussed. Recently proposed HIFU-CHEM, which utilizes High Intensity Focused ultrasound (HIFU) guided by MRI in combination with temperature-sensitive nanomedicines has also been briefed. The study has been concluded with a focus on the innovations requiring an immediate attention that could improve the treatment modality of bone metastasis. PMID:24839990

  19. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells.

    PubMed

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors. PMID:26901756

  20. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Yang, Yinlong; An, Feifei; Liu, Zhuang; Zhang, Xiujuan; Zhang, Xiaohong

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines.

  1. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

    PubMed

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M

    2015-06-20

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  2. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model

    PubMed Central

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A.; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2015-01-01

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  3. A novel liposomal formulation of FTY720 (Fingolimod) for promising enhanced targeted delivery

    PubMed Central

    Mao, Yicheng; Wang, Jiang; Zhao, Yuan; Wu, Yun; Kwak, Kwang Joo; Chen, Ching-Shih; Byrd, John C.; Lee, Robert J.; Phelps, Mitch A.; Lee, L. James; Muthusamy, Natarajan

    2014-01-01

    We describe here the development and characterization of the physicochemical and pharmacokinetic properties of a novel liposomal formulation for FTY720 delivery, LP-FTY720. The mean diameter of LP-FTY720 was ~157 nm, and the FTY720 entrapment efficiency was ~85%. The liposomal formulation protected FTY720 from degradation in aqueous buffer and showed toxicity in CLL patient B cells comparable to that of free FTY720. Following intravenous injection in ICR mice, LP-FTY720 had an increased elimination phase half-life (~28 vs. ~19 hr) and decreased clearance (235 vs. 778 mL/h/kg) compared to the free drug. Antibodies against CD19, CD20 and CD37 were incorporated into LP-FTY720, which provided targeted delivery to CLL patient B cells and thus achieved higher killing efficacy. The novel liposomal carrier of FTY720 demonstrated improved pharmacokinetic properties, comparable activity, and a potential platform for targeted delivery to CLL by overcoming the limited application of free FTY720 to B malignancy treatment. PMID:23969101

  4. Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium.

    PubMed

    Asgeirsdttir, Sigridur A; Kamps, Jan A A M; Bakker, Hester I; Zwiers, Peter J; Heeringa, Peter; van der Weide, Karen; van Goor, Harry; Petersen, Arjen H; Morselt, Henritte; Moorlag, Henk E; Steenbergen, E; Kallenberg, Cees G; Molema, Grietje

    2007-07-01

    Glomerulonephritis represents a group of renal diseases with glomerular inflammation as a common pathologic finding. Because of the underlying immunologic character of these disorders, they are frequently treated with glucocorticoids and cytotoxic immunosuppressive agents. Although effective, use of these compounds has limitations as a result of toxicity and systemic side effects. In the current study, we tested the hypothesis that targeted delivery of dexamethasone (dexa) by immunoliposomes to activated glomerular endothelium decreases renal injury but prevents its systemic side effects. E-selectin was chosen as a target molecule based on its disease-specific expression on activated glomerular endothelium in a mouse anti-glomerular basement membrane glomerulonephritis. Site-selective delivery of Ab(Esel) liposome-encapsulated dexamethasone strongly reduced glomerular proinflammatory gene expression without affecting blood glucose levels, a severe side effect of administration of free dexamethasone. Dexa-Ab(Esel) liposomes reduced renal injury as shown by a reduction of blood urea nitrogen levels, decreased glomerular crescent formation, and down-regulation of disease-associated genes. Immunoliposomal drug delivery to glomerular endothelium presents a powerful new strategy for treatment of glomerulonephritis to sustain efficacy and prevent side effects of potent anti-inflammatory drugs. PMID:17452496

  5. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  6. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway

    PubMed Central

    Hai, Jun; Serradji, Nawal; Mouton, Ludovic; Redeker, Virginie; Cornu, David; El Hage Chahine, Jean-Michel

    2016-01-01

    Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies. PMID:26919720

  7. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway.

    PubMed

    Hai, Jun; Serradji, Nawal; Mouton, Ludovic; Redeker, Virginie; Cornu, David; El Hage Chahine, Jean-Michel; Verbeke, Philippe; Hémadi, Miryana

    2016-01-01

    Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies. PMID:26919720

  8. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery

    PubMed Central

    Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A

    2015-01-01

    In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginineglycineaspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOXlinkerFbg microspheres could be a suitable drug carrier for safer and effective drug delivery. PMID:26366073

  9. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery.

    PubMed

    Veiseh, Omid; Kievit, Forrest M; Fang, Chen; Mu, Ni; Jana, Soumen; Leung, Matthew C; Mok, Hyejung; Ellenbogen, Richard G; Park, James O; Zhang, Miqin

    2010-11-01

    Ribonucleic acid interference (RNAi) is a powerful molecular tool that has potential to revolutionize the treatment of cancer. One major challenge of applying this technology for clinical application is the lack of site-specific carriers that can effectively deliver short interfering RNA (siRNA) to cancer cells. Here we report the development and assessment of a cancer-cell specific magnetic nanovector construct for efficient siRNA delivery and non-invasive monitoring through magnetic resonance imaging (MRI). The base of the nanovector construct is comprised of a superparamagnetic iron oxide nanoparticle core coated with polyethylene glycol (PEG)-grafted chitosan, and polyethylenimine (PEI). The construct was then further functionalized with siRNA and a tumor-targeting peptide, chlorotoxin (CTX), to improve tumor specificity and potency. Flow cytometry, quantitative RT-PCR, and fluorescence microscopy analyses confirmed receptor-mediated cellular internalization of nanovectors and enhanced gene knockdown through targeted siRNA delivery. The ability of this nanovector construct to generate specific contrast enhancement of glioblastoma cells was demonstrated through MR imaging. These findings suggest that this CTX enabled nanoparticle carrier may be well suited for delivery of RNAi therapeutics to brain cancer cells. PMID:20673683

  10. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  11. Nanoparticle-Mediated Target Delivery of TRAIL as Gene Therapy for Glioblastoma.

    PubMed

    Wang, Kui; Kievit, Forrest M; Jeon, Mike; Silber, John R; Ellenbogen, Richard G; Zhang, Miqin

    2015-12-01

    Human tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is an attractive cancer therapeutic because of its ability to induce apoptosis in tumor cells while having a negligible effect on normal cells. However, the short serum half-life of TRAIL and lack of efficient in vivo administration approaches have largely hindered its clinical use. Using nanoparticles (NPs) as carriers in gene therapy is considered as an alternative approach to increase TRAIL delivery to tumors as transfected cells would be induced to secrete TRAIL into the tumor microenvironment. To enable effective delivery of plasmid DNA encoding TRAIL into glioblastoma (GBM), we developed a targeted iron oxide NP coated with chitosan-polyethylene glycol-polyethyleneimine copolymer and chlorotoxin (CTX) and evaluated its effect in delivering TRAIL in vitro and in vivo. NP-TRAIL successfully delivers TRAIL into human T98G GBM cells and induces secretion of 40 pg mL(-1) of TRAIL in vitro. Transfected cells show threefold increased apoptosis as compared to the control DNA bound NPs. Systemic administration of NP-TRAIL-CTX to mice bearing T98G-derived flank xenografts results in near-zero tumor growth and induces apoptosis in tumor tissue. Our results suggest that NP-TRAIL-CTX can potentially serve as a targeted anticancer therapeutic for more efficient TRAIL delivery to GBM. PMID:26498165

  12. Chitosan-DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery

    PubMed Central

    Dai, Hui; Jiang, Xuan; Tan, Geoffrey CY; Chen, Yong; Torbenson, Michael; Leong, Kam W; Mao, Hai-Quan

    2006-01-01

    The goal of this study was to examine the efficacy of liver-targeted gene delivery by chitosan-DNA nanoparticles through retrograde intrabiliary infusion (RII). The transfection efficiency of chitosan-DNA nanoparticles, as compared with PEI-DNA nanoparticles or naked DNA, was evaluated in Wistar rats by infusion into the common bile duct, portal vein, or tail vein. Chitosan-DNA nanoparticles administrated through the portal vein or tail vein did not produce detectable luciferase expression. In contrast, rats that received chitosan-DNA nanoparticles showed more than 500 times higher luciferase expression in the liver 3 days after RII; and transgene expression levels decreased gradually over 14 days. Luciferase expression in the kidney, lung, spleen, and heart was negligible compared with that in the liver. RII of chitosan-DNA nanoparticles did not yield significant toxicity and damage to the liver and biliary tree as evidenced by liver function analysis and histopathological examination. Luciferase expression by RII of PEI-DNA nanoparticles was 17-fold lower than that of chitosan-DNA nanoparticles on day 3, but it increased slightly over time. These results suggest that RII is a promising routine to achieve liver-targeted gene delivery by non-viral nanoparticles; and both gene carrier characteristics and mode of administration significantly influence gene delivery efficiency. PMID:17369870

  13. Modification of Polymer Network Properties through the Addition of Functional Nanogel Particles

    NASA Astrophysics Data System (ADS)

    Liu, JianCheng

    Multifunctional acrylic and methacrylic monomers have been widely applied in many photopolymerization applications to produce crosslinked polymers with advantages such as rapid curing, broad choices of commercially available monomers and desirable physical and mechanical properties. However, there still remain critical challenges for these materials during polymerization including limited conversion and early onset of gelation as well as the generation of significant polymerization shrinkage and stress. This thesis explores the effects of network property modification through the addition of polymeric nanoparticles or nanogels. In order to understand the relationship between nanogel structure and composite material properties, nanogels with different architectures and functionalities were studied during polymerization in terms of kinetics, shrinkage and stress reduction, mechanical performance and reaction mechanisms. Nanogel composite formulations were evaluated to understand the interaction between nanogel structure with the resin matrix during polymerization through adjustment of nanogel branching densities and reactivity of polymer chain ends. It was found that both the chemical crosslinking from reactive chain ends and physical entanglements of high branching density nanogels with the resin matrix dramatically could improve final material mechanical strength. The reductions in overall volumetric shrinkage and shrinkage stress were found to follow at least proportional behavior with respect to nanogel loading concentration while maintaining similar final conversion and modulus results compared with the control resin. Nanogels containing unique functionalities were designed in order to modify reaction mechanism during secondary polymerization. A nanogel containing an integrated photoinitiator and active chain-end RAFT groups was able to initiate secondary polymerization from the nanogel phase so that localized polymerization was achieved from the beginning of the reaction process to prevent early bulk gelation. A large amount of stress was dissipated before gelation to yield materials with low residual stress. With the incorporation of a photochromic functionality, another nanogel was found to be able to change dimensions under UV irradiation due to the change of solubility parameter after isomerization. It was observed that the final conversion of the resin matrix increased significantly with the addition of only small amounts of this nanogel albeit with somewhat reduced rates of polymerization. A delay of vitrification was also noticed for these nanogel systems with dramatic stress reduction achieved with minimal nanogel additive levels. Finally, due to the non-controlled nature of nanogel synthesis from solution polymerization, whether free radical or RAFT controlled radical based processes, uniform nanogel structure formation was studied through a block copolymer self-assembly method. Core-shell micelles were formed through the assembly of an amphiphilic block copolymer in hydrophilic environment. The crosslinking in the core region generated well-controlled, internally crosslinked nanogel particles with 30 nm dimension in aqueous solution. The uniform nanogel particles were further applied to understand particle-particle interspacing by dispersing in an inert solvent at different concentrations followed by macrogel formation tests with interparticle reaction.

  14. Synthesis and Characterization of Polymer Nanocarriers for the Targeted Delivery of Therapeutic Enzymes

    PubMed Central

    Simone, Eric; Dziubla, Thomas; Shuvaev, Vladimir; Muzykantov, Vladimir R.

    2011-01-01

    Protein drugs, such as recombinant enzymes useful for detoxification and replacement therapies, have extraordinary specificity and potency. However, inherently inadequate delivery to target sites and rapid inactivation limit their medical utility. Using chaperone polymeric particles designed within an injectible size range (sub-micron) may help solve these shortcomings. Such nanocarriers would (i) prevent premature inactivation of encapsulated therapeutic protein cargoes, (ii) provide a carrier that can be surface decorated by targeting ligands, and (iii) optimize sub-cellular localization of the drug. This chapter describes the techniques successfully employed for the preparation of polymer nanocarriers (PNC) loaded with the antioxidant enzyme, catalase, and targeted to endothelial cells. Methods of PNC synthesis, loading with catalase, characterization, coupling of a targeting moiety, and in vitro testing of the enzymatic and targeting activities are provided here. Advantages and disadvantages of specific designs are discussed. Due to the modular nature of the targeting methodology employed, it is believed that these protocols will provide a solid foundation for the formulation of a wide variety of enzymatic drug targeting strategies. PMID:20013177

  15. Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Gu, Frank; Langer, Robert; Farokhzad, Omid C.

    Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly( d, l-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

  16. Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery

    PubMed Central

    Gu, Frank; Langer, Robert; Farokhzad, Omid C.

    2014-01-01

    Summary Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices. PMID:19488725

  17. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging

    PubMed Central

    Veiseh, Omid; Gunn, Jonathan; Zhang, Miqin

    2009-01-01

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties. PMID:19909778

  18. Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis.

    PubMed

    Chappell, John C; Song, Ji; Burke, Caitlin W; Klibanov, Alexander L; Price, Richard J

    2008-10-01

    Therapeutic strategies in which recombinant growth factors are injected to stimulate arteriogenesis in patients suffering from occlusive vascular disease stand to benefit from improved targeting, less invasiveness, better growth-factor stability, and more sustained growth-factor release. A microbubble contrast-agent-based system facilitates nanoparticle deposition in tissues that are targeted by 1-MHz ultrasound. This system can then be used to deliver poly(D,L-lactic-co-glycolic acid) nanoparticles containing fibroblast growth factor-2 to mouse adductor muscles in a model of hind-limb arterial insufficiency. Two weeks after treatment, significant increases in both the caliber and total number of collateral arterioles are observed, indicating that the delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction may represent an effective and minimally invasive strategy for the targeted stimulation of therapeutic arteriogenesis. PMID:18720443

  19. Targeted Delivery of Nanoparticles Bearing Fibroblast Growth Factor-2 by Ultrasonic Microbubble Destruction for Therapeutic Arteriogenesis

    PubMed Central

    Chappell, John C.; Song, Ji; Burke, Caitlin W.

    2009-01-01

    Therapeutic strategies in which recombinant growth factors are injected to stimulate arteriogenesis in patients suffering from occlusive vascular disease stand to benefit from improved targeting, less invasiveness, better growth-factor stability, and more sustained growth-factor release. A microbubble contrast-agent-based system facilitates nanoparticle deposition in tissues that are targeted by 1-MHz ultrasound. This system can then be used to deliver poly(d,l-lactic-co-glycolic acid) nanoparticles containing fibroblast growth factor-2 to mouse adductor muscles in a model of hind-limb arterial insufficiency. Two weeks after treatment, significant increases in both the caliber and total number of collateral arterioles are observed, indicating that the delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction may represent an effective and minimally invasive strategy for the targeted stimulation of therapeutic arteriogenesis. PMID:18720443

  20. pH-sensitive drug-delivery systems for tumor targeting.

    PubMed

    He, Xi; Li, Jianfeng; An, Sai; Jiang, Chen

    2013-12-01

    Drug-delivery system responses to stimuli have been well investigated recently. As pH decrease is observed in most solid tumors, drug-delivery systems responsive to the slightly acidic extracellular pH environment of solid tumors have been developed as a general strategy for tumor targeting. Drug vehicles that are sensitive to acidic endosome/lysosome pH have been constructed for efficient drug release in tumor cells. This review explains the mechanisms of acidic pH in the tumor microenvironment and endocytic-related organelles, endosomes and lysosomes. Nanoparticle responses to acidic extracellular pH are discussed, along with approaches for improving tumor-specific therapy. Endosome/lysosome pH-triggered vehicles are reviewed, which achieve rapid drug release in tumor cells and overcome multidrug resistance. PMID:24304248

  1. Strategies for targeted nonviral delivery of siRNAs in vivo

    PubMed Central

    Kim, Sang-Soo; Garg, Himanshu; Joshi, Anjali; Manjunath, N.

    2015-01-01

    Silencing specific gene expression by RNA interference (RNAi) has rapidly become a standard tool for reverse-genetic analysis of gene functions. It also has a tremendous potential in the treatment of diseases for which currently effective treatment is not available or is suboptimal. However, the poor cellular uptake of synthetic small interfering RNAs (siRNAs) is a major impediment for their clinical use. Great progress has been made in recent years to overcome this barrier and several methods have been described for in vivo delivery of siRNA. Moreover, latest advances have focused on achieving targeted siRNA delivery restricted to relevant tissues and cell types in vivo. These approaches are expected to reduce the dose requirement as well as minimize siRNA-induced toxicities, thereby advancing the field of siRNA therapy towards clinical use. PMID:19846342

  2. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy.

    PubMed

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-10-14

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free "green" post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. PMID:26372069

  3. Investigation of strategies for drug delivery by combination targeting of nanocarriers to multiple epitopes or receptors

    NASA Astrophysics Data System (ADS)

    Papademetriou, Iason Titos

    Development of drug delivery systems (ie. nanocarriers) with controllable composition, architecture, and functionalities is heavily investigated in the field of drug delivery in order to improve clinical interventions. Designing drug nanocarriers which possess targeting properties is critical to enable them to reach the intended site of intervention in the body. To achieve this goal, the surface of drug nanocarriers can be modified with targeting moieties (antibodies, peptides, etc.) addressed to cell surface molecules expressed on the diseased tissues and cells. If these molecules are receptors capable of internalizing bound ligands via endocytosis, targeting can then enable drug transport into cells or across cellular barriers in the body. Yet, addressing nanocarriers to single targets presents limited control over cellular interactions and biodistribution. Since most cell-surface markers are not exclusively expressed in a precise site in vivo, high affinity of targeted nanocarriers may lead to non-desired accumulation in regions of the body associated with low expression. Modification of nanocarriers to achieve combined-targeting (binding to more than one cell-surface receptor) may help modulate binding to cells and also endocytosis, since cell receptors possess distinct functions and features affecting these parameters, such as their expression, location on the plasmalemma, activation in disease, mechanism of endocytosis, etc. Further, targeting nanocarriers to multiple epitopes of the same receptor, a strategy which has never been tested, may also modulate these parameters since they are highly epitope specific. In this dissertation, we investigate the effect of targeting model polymer nanocarriers to: (1) multiple receptors of similar function (intercellular-, platelet-endothelial-, and/or vascular-cell adhesion molecules), (2) multiple receptors of different function (intercellular adhesion molecule 1 and transferrin receptor), or (3) multiple epitopes of the same receptor (transferrin receptor epitopes 8D3 and R17). Binding to cells, endocytosis within cells, and biodistribution in mice were tested. Results indicate that combination targeting enhanced performance of nanocarriers with regard to these three parameters as compared to non-targeted nanocarriers and modulated their outcome relative to single-targeted nanocarriers. This modulation was observed as enhanced, intermediate, or diminished interaction with cells, accumulation in particular organs, and specificity for diseased sites relative to single-targeted nanocarriers. These results were general to strategies 1--3 and were difficult to foresee a priori due to the complex nature of said interactions. Importantly, outcomes depended on the multiplicity (dual- vs. triple-targeting) and/or combination of affinity moieties displayed on the nanocarrier surface, as well as the physiological/pathological state of cells and tissues. Modulation of the delivery of a model therapeutic cargo in mice relative to single-targeted nanocarriers demonstrated the potential of these strategies to control the biodistribution of therapeutic agents. Therefore, these findings illustrate that combination-targeting enables modulation over cellular interactions and biodistribution of nanocarriers, which may aid the development of nanocarriers tailored for particular therapeutic needs.

  4. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-09-01

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available: Synthesis procedure, 1HNMR, ESI-MS and additional data. See DOI: 10.1039/c5nr04045k

  5. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery

    PubMed Central

    George, Rohini; Suh, Yelin; Murphy, Martin; Williamson, Jeffrey; Weiss, Elizabeth; Keall, Paul

    2008-01-01

    Real-time tumor targeting involves the continuous realignment of the radiation beam with the tumor. Real-time tumor targeting offers several advantages such as improved accuracy of tumor treatment and reduced dose to surrounding tissue. Current limitations to this technique include mechanical motion constraints. The purpose of this study was to investigate an alternative treatment scenario using a moving average algorithm. The algorithm, using a suitable averaging period, accounts for variations in the average tumor position, but respiratory induced target position variations about this average are ignored during delivery and can be treated as a random error during planning. In order to test the method a comparison between five different treatment techniques was performed: (1) moving average algorithm, (2) real-time motion tracking, (3) respiration motion gating (at both inhale and exhale), (4) moving average gating (at both inhale and exhale) and (5) static beam delivery. Two data sets were used for the purpose of this analysis: (a) external respiratory-motion traces using different coaching techniques included 331 respiration motion traces from 24 lung-cancer patients acquired using three different breathing types [free breathing (FB), audio coaching (A) and audio-visual biofeedback (AV)]; (b) 3D tumor motion included implanted fiducial motion data for over 160 treatment fractions for 46 thoracic and abdominal cancer patients obtained from the Cyberknife Synchrony. The metrics used for comparison were the group systematic error (M), the standard deviation (SD) of the systematic error (?) and the root mean square of the random error (?). Margins were calculated using the formula by Stroom et al. [Int. J. Radiat. Oncol., Biol., Phys. 43(4), 905919 (1999)]: 2?+0.7?. The resultant calculations for implanted fiducial motion traces (all values in cm) show that M and ? are negligible for moving average algorithm, moving average gating, and real-time tracking (i.e., M and ?=0 cm) compared to static beam (M=0.02 cm and ?=0.16 cm) or gated beam delivery (M=?0.05 and 0.16 cm at both exhale and inhale, respectively, and ?=0.17 and 0.26 cm at both exhale and inhale, respectively). Moving average algorithm ?=0.22 cm has a slightly lower random error than static beam delivery ?=0.24 cm, though gating, moving average gating, and real-time tracking have much lower random error values for implanted fiducial motion. Similar trends were also observed for the results using the external respiratory motion data. Moving average algorithm delivery significantly reduces M and ? compared with static beam delivery. The moving average algorithm removes the nonstationary part of the respiration motion which is also achieved by AV, and thus the addition of the moving average algorithm shows little improvement with AV. Overall, a moving average algorithm shows margin reduction compared with gating and static beam delivery, and may have some mechanical advantages over real-time tracking when the beam is aligned with the target and patient compliance advantages over real-time tracking when the target is aligned to the beam. PMID:18649469

  6. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery.

    PubMed

    Zhu, HongYan; Zhang, ShengYu; Ling, Yong; Meng, GuoLiang; Yang, Yu; Zhang, Wei

    2015-12-28

    Hypoxia is a characteristic of cancer and plays a key role in tumorigenesis, angiogenesis and resistance to cancer therapies. SiRNA treatment is effective against hypoxic tumors by gene silencing. However, siRNA delivery to the hypoxic regions of solid tumors still presents a challenge due to the distance from blood vessels and the increased presence of efflux transporters. Therefore, tumor therapies would be improved through the immediate development of an effective siRNA delivery system to hypoxic regions. To this end, we synthesized a system to deliver HIF-1? siRNA into hypoxic tumor cells. The system consists of a functional shell composed of 2-deoxyglucose (DG)-polyethylene glycol (PEG) connected with the compound of lipoic acid, lysine and 9-poly-d-arginine (LA-Lys-9R) by a hydrazone bond and a core of CdTe quantum dots (QDs). The molecular structure of DG-PEG-LA-Lys-9R was confirmed by liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The multifunctional CdTe QDs measured approximately 200nm and showed excellent biocompatibility, perfect siRNA binding capability and enhanced hypoxic tumor targeting. Importantly, the system described here is pH-responsive with a hydrazone bond; therefore, it avoids GLUT1 receptor-mediated endocytic recycling, resulting in irreversible delivery of the siRNA. We used Western blots to confirm the superior gene silencing efficiency induced by the DG-PEG-LA-Lys-9R with hydrazone modified CdTe QDs. Here, we demonstrate high efficacy of the siRNA tumor delivery system using in vitro and in vivo experiments. In addition, these studies demonstrate that pH-responsive hybrid quantum dots show improved antitumor efficacy with decreased organ toxicity, indicating a promising siRNA delivery system for hypoxic cancer therapy. PMID:26590349

  7. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    NASA Astrophysics Data System (ADS)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient clinical management of acne.Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient clinical management of acne. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04770f

  8. Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel.

    PubMed

    Chen, Conghui; Hu, Haiyang; Qiao, Mingxi; Zhao, Xiuli; Wang, Yinjie; Chen, Kang; Guo, Xiong; Chen, Dawei

    2015-03-01

    In the present study, we constructed a tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier containing paclitaxel (FA-BSA-LC/DOPE-PTX), by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and oleic acid as pH-sensitive components into the formulation of lipid core and then coating with folic acid modified bovine serum albumin (FA-BSA) for tumor targeting activity. In vitro drug release study demonstrated that paclitaxel (PTX) was released from FA-BSA-LC/DOPE in a pH-dependent manner. The vitro cytotoxicity assays showed that all the blank nanocarriers were nontoxic. However, MTT assay showed that FA-BSA-LC/DOPE-PTX was highly cytotoxic. Cellular uptake experiments analyzed with flow cytometry and laser scan confocal microscope (LSCM) revealed that FA-BSA-LC/DOPE was taken up in great amount via folate receptor-mediated endocytosis and pH-sensitive release of drug to cytoplasm. Furthermore, the study of intracellular drug release behavior demonstrated that the FA-BSA-LC/DOPE escaped from lysosomes and released drug into cytoplasm. The in vivo targeting activity showed that the nanocarrier selectively targeted tumor and had long residence time for BSA layer increased the stability in blood. Moreover, FA-BSA-LC/DOPE-PTX produced very marked anti-tumor activity in tumor-bearing mice in vivo. Therefore, FA-BSA-LC/DOPE as biocompatible, tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier is a promising system for effective intracellular delivery of PTX to tumor. PMID:25615984

  9. Targeted Delivery of Chemotherapy Agents Using a Liver Cancer-Specific Aptamer

    PubMed Central

    Meng, Ling; Yang, Liu; Zhao, Xiangxuan; Zhang, Lucy; Zhu, Haizhen

    2012-01-01

    Background Using antibody/aptamer-drug conjugates can be a promising method for decreasing toxicity, while increasing the efficiency of chemotherapy. Methodology/Principal Findings In this study, the antitumor agent Doxorubicin (Dox) was incorporated into the modified DNA aptamer TLS11a-GC, which specifically targets LH86, a human hepatocellular carcinoma cell line. Cell viability tests demonstrated that the TLS11a-GC-Dox conjugates exhibited both potency and target specificity. Importantly, intercalating Dox into the modified aptamer inhibited nonspecific uptake of membrane-permeable Dox to the non-target cell line. Since the conjugates are selective for cells that express higher amounts of target proteins, both criteria noted above are met, making TLS11a-GC-Dox conjugates potential candidates for targeted delivery to liver cancer cells. Conclusions/Significance Considering the large number of available aptamers that have specific targets for a wide variety of cancer cells, this novel aptamer-drug intercalation method will have promising implications for chemotherapeutics in general. PMID:22558072

  10. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs

    PubMed Central

    Accardo, Antonella; Aloj, Luigi; Aurilio, Michela; Morelli, Giancarlo; Tesauro, Diego

    2014-01-01

    Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors. PMID:24741304

  11. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    PubMed

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy. PMID:26373039

  12. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells.

    PubMed

    Tarvirdipour, Shabnam; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Bardania, Hassan

    2016-03-30

    In recent decades, targeted drug delivery systems for breast cancer treatment emerged as an ideal alternative and promising solution to reduce systemic side effects of chemotherapeutic agents. In this study, the preparation and characterization of cationic doxorubicin (DOX) loaded magnetic dextran-spermine (DEX-SP) nanocarriers (DEX-SP-DOX) by ionic gelation were fully investigated. Then, anti-HER2 as a monoclonal antibody (mAb) and targeting ligand was conjugated via EDC/NHS reagents. The binding was confirmed by Bradford assay and further assessments were carried out by size and zeta potential measurements. Cytotoxicity effect and internalization of magnetic nanocarriers were assessed by MTT and Prussian blue assays and transmission electron microscopy (TEM), respectively. DLS measurements indicated that the size of nanocarriers increased from 62 to 84nm by conjugation of anti-HER2 to them. The in vitro release of DOX from mAb conjugated magnetic nanocarriers at pHs 5 and 7.4 was found to be 85 and 55.5%, respectively. The MTT and Prussian blue assays demonstrated enhanced and selective uptake of DEX-SP-DOX-mAb by SKBR cell (HER2 overexpressed cells) in comparison with unconjugated nanocarriers due to higher cellular binding. The TEM result also confirmed cellular internalization of DEX-SP-DOX-mAb magnetic nanocarriers. These results are very promising for targeted delivery of DOX to HER2 positive breast cancer cells. PMID:26875475

  13. Delivery and targeting of miRNAs for treating liver fibrosis.

    PubMed

    Kumar, Virender; Mahato, Ram I

    2015-02-01

    Liver fibrosis is a pathological condition originating from liver damage that leads to excess accumulation of extracellular matrix (ECM) proteins in the liver. Viral infection, chronic injury, local inflammatory responses and oxidative stress are the major factors contributing to the onset and progression of liver fibrosis. Multiple cell types and various growth factors and inflammatory cytokines are involved in the induction and progression of this disease. Various strategies currently being tried to attenuate liver fibrosis include the inhibition of HSC activation or induction of their apoptosis, reduction of collagen production and deposition, decrease in inflammation, and liver transplantation. Liver fibrosis treatment approaches are mainly based on small drug molecules, antibodies, oligonucleotides (ODNs), siRNA and miRNAs. MicroRNAs (miRNA or miR) are endogenous noncoding RNA of ~22 nucleotides that regulate gene expression at post transcription level. There are several miRNAs having aberrant expressions and play a key role in the pathogenesis of liver fibrosis. Single miRNA can target multiple mRNAs, and we can predict its targets based on seed region pairing, thermodynamic stability of pairing and species conservation. For in vivo delivery, we need some additional chemical modification in their structure, and suitable delivery systems like micelles, liposomes and conjugation with targeting or stabilizing the moiety. Here, we discuss the role of miRNAs in fibrogenesis and current approaches of utilizing these miRNAs for treating liver fibrosis. PMID:25186440

  14. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery.

    PubMed

    Wei, Xiaoli; Zhan, Changyou; Shen, Qing; Fu, Wei; Xie, Cao; Gao, Jie; Peng, Chunmei; Zheng, Ping; Lu, Weiyue

    2015-03-01

    Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)-mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D-peptide ligand of nAChRs (termed (D)CDX), which binds to nAChRs with an IC50 value of 84.5 nM, was developed by retro-inverso isomerization. (D)CDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood-brain barrier monolayer compared with the parent L-peptide. When modified on liposomal surface, (D)CDX facilitated significant brain-targeted delivery of liposomes. As a result, brain-targeted delivery of (D)CDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs-mediated transcytosis, and paves the way for developing stable brain-targeted entities. PMID:25600241

  15. Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery.

    PubMed

    Sun, Chun-Yang; Shen, Song; Xu, Cong-Fei; Li, Hong-Jun; Liu, Yang; Cao, Zhi-Ting; Yang, Xian-Zhu; Xia, Jin-Xing; Wang, Jun

    2015-12-01

    Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth. PMID:26571079

  16. Hyperbranched PEG-based supramolecular nanoparticles for acid-responsive targeted drug delivery.

    PubMed

    Chen, Xiaofei; Yao, Xuemei; Wang, Chunran; Chen, Li; Chen, Xuesi

    2015-06-01

    Herein, hyperbranched poly(ethylene glycol)-based supramolecular nanoparticles with pH-sensitive properties were designed and used for targeted drug delivery. Via host-guest recognition between benzimidazole anchored poly(ethylene glycol)-hyperbranched polyglycerol (PEG-HPG-BM) and folic acid modified CD (FA-CD), targeted supramolecular nanoparticles (TSNs) were fabricated. At neutral aqueous conditions TSNs could load the model drug DOX. While under intracellular acidic conditions the loaded-drug would be released due to the protonation of BM. This protonation allowed the supramolecular nanoparticles to expand or even disassemble, which showes the pH-dependent property. The introduction of the active targeting FA molecule and the specific interactions with the receptor of HeLa cells means that DOX-loaded TSNs show a significantly improved anticancer efficacy. In vitro drug release assays and intracellular experiments confirmed that TSNs had an obvious pH-sensitive property and remarkably improved anticancer effects, which hold great potential for further biomedical applications such as anticancer drug delivery. PMID:26221847

  17. Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery

    SciTech Connect

    Chen,J.; Wong,S.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; and Ojima, I.

    2008-11-14

    A novel single-walled carbon nanotube (SWNT)-based tumor-targeted drug delivery system (DDS) has been developed, which consists of a functionalized SWNT linked to tumor-targeting modules as well as prodrug modules. There are three key features of this nanoscale DDS: (a) use of functionalized SWNTs as a biocompatible platform for the delivery of therapeutic drugs or diagnostics, (b) conjugation of prodrug modules of an anticancer agent (taxoid with a cleavable linker) that is activated to its cytotoxic form inside the tumor cells upon internalization and in situ drug release, and (c) attachment of tumor-recognition modules (biotin and a spacer) to the nanotube surface. To prove the efficacy of this DDS, three fluorescent and fluorogenic molecular probes were designed, synthesized, characterized, and subjected to the analysis of the receptor-mediated endocytosis and drug release inside the cancer cells (L1210FR leukemia cell line) by means of confocal fluorescence microscopy. The specificity and cytotoxicity of the conjugate have also been assessed and compared with L1210 and human noncancerous cell lines. Then, it has unambiguously been proven that this tumor-targeting DDS works exactly as designed and shows high potency toward specific cancer cell lines, thereby forming a solid foundation for further development.

  18. Preparation and characterization of vinculin-targeted polymer–lipid nanoparticle as intracellular delivery vehicle

    PubMed Central

    Wang, Junping; Örnek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer–lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin–fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin–fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles. PMID:23293518

  19. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery.

    PubMed

    Assal, Yasmine; Mizuguchi, Yoshinori; Mie, Masayasu; Kobatake, Eiry

    2015-08-19

    Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery. PMID:26079837

  20. Multifunctional Nanoprobes for Cancer Cell Targeting, Imaging and Anticancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Linkov, Pavel; Laronze-Cochard, Marie; Sapi, Janos; Sidorov, Lev N.; Nabiev, Igor

    The diagnosis and treatment of cancer have been greatly improved with recent developments in bio-nanotechnology, including engineering of multifunctional probes. One of the promising nanoscale tools for cancer imaging is fluorescent quantum dots (QDs), whose small size and unique optical properties allow them to penetrate into cells and ensure highly sensitive optical diagnosis of cancer at the cellular level. Furthermore, novel multi-functional probes have been developed in which QDs are conjugated with one or several functional molecules, including targeting moieties and therapeutic agents. Here, the strategy for engineering novel nanocarriers for controlled nucleus-targeted antitumor drug delivery and real-time imaging by single- or two-photon microscopy is described. A triple multifunctional nanoprobe is being developed that consists of a nitrogen-based heterocyclic derivative, an anticancer agent interacting with a DNA in living cells; a recognized molecule serving as a vector responsible for targeted delivery of the probe into cancer cells; and photoluminescent QDs providing the imaging capability of the probe. Subsequent optimization of the multifunctional nanoprobe will offer new possibilities for cancer diagnosis and treatment.

  1. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

    PubMed

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

    2015-08-12

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

  2. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy.

    PubMed

    Kim, Min Ju; Park, Jong-Sung; Lee, So Jin; Jang, Jiyeon; Park, Jin Su; Back, Seung Hyun; Bahn, Gahee; Park, Jae Hyung; Kang, Young Mo; Kim, Sun Hwa; Kwon, Ick Chan; Jo, Dong-Gyu; Kim, Kwangmeyung

    2015-10-28

    Notch pathway plays a pivotal role in synoviocytes involved in progression of rheumatoid arthritis (RA). Herein, we designed the Notch1 targeting siRNA delivery nanoparticles (siRNA-NPs) in order to confirm the anti-inflammatory effect in collagen-induced arthritis (CIA) model. The siRNA-NPs were successfully produced by encapsulating polymerized siRNA (poly-siRNA) into thiolated glycol chitosan (tGC) nanoparticles in aqueous condition. The in vitro Notch1 inhibition of siRNA-NPs in murine macrophage cell (RAW 264.7) was confirmed using confocal microscopy and real time PCR. Fluorescently labeled siRNA-NPs were successfully transfected in RAW 264.7 and modulated the expression of Notch1 in mRNA level. For in vivo study, siRNA-NPs exhibited the higher targeting efficiency in the arthritic joins of CIA mice, confirmed by the near-infrared fluorescence (NIRF) imaging. Furthermore, inhibition of Notch1 with siRNA-NPs resulted in retarded progression of inflammation, bone erosion, and cartilage damage in CIA mice. Novel Notch1 targeting siRNA delivery system of siRNA-NPs showed effective RA treatment by suppressing Notch1 signaling pathway without undesirable severe toxicity. Thus, Notch1 inhibiting siRNA-NPs demonstrated the great potential in RA therapeutics that was hard to be achieved using conventional drugs. PMID:26282098

  3. Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer.

    PubMed

    McBride, John W; Massey, Ashley S; McCaffrey, J; McCrudden, Cian M; Coulter, Jonathan A; Dunne, Nicholas J; Robson, Tracy; McCarthy, Helen O

    2016-03-16

    Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles <100nm and were capable of transfecting PC-3 metastatic prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine(®) 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor. PMID:26802497

  4. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy.

    PubMed

    Wei, Yanchun; Zhou, Feifan; Zhang, Da; Chen, Qun; Xing, Da

    2016-02-14

    Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the 'on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy. PMID:26799192

  5. Drug-loaded nano-microcapsules delivery system mediated by ultrasound-targeted microbubble destruction: A promising therapy method

    PubMed Central

    MA, JING; DU, LIAN FANG; CHEN, MING; WANG, HANG HUI; XING, LING XI; JING, LI FANG; LI, YUN HUA

    2013-01-01

    The nano-microcapsules drug delivery system is currently a promising method for the treatment of many types of diseases, particularly tumors. However, the drug delivery efficiency does not reach a satisfactory level to meet treatment demands. Therefore, the effectiveness of delivery needs to be improved. Based on the alterations in the structure and modification of nano-microcapsules, ultrasound-targeted microbubble destruction (UTMD), a safe physical targeted method, may increase tissue penetration and cell membrane permeability, aiding the drug-loaded nano-microcapsules ingress the interior of targeted tissues and cells. The effectiveness and exact mechanism of action of the drug-loaded nano-microcapsules delivery system mediated by UTMD have yet to be fully elucidated. In this study, the latest advancement in UTMD-mediated drug loaded nano-microcapsules system technology was reviewed and the hindrances of UTMD-mediated drug delivery were assessed, in combination with a prospective study. The findings suggested that the drug delivery efficiency of nano-microcapsules mediated by UTMD was distinctly improved. Thus, the UTMD-mediated drug-loaded nano-microcapsules delivery system may significantly improve the efficiency of drug delivery, which may be a promising new therapeutic method. PMID:24648976

  6. Systemic delivery of sticky siRNAs targeting the cell cycle for lung tumor metastasis inhibition.

    PubMed

    Bonnet, Marie-Elise; Gossart, Jean-Baptiste; Benoit, Elodie; Messmer, Mélanie; Zounib, Omar; Moreau, Valérie; Behr, Jean-Paul; Lenne-Samuel, Nathalie; Kedinger, Valérie; Meulle, Aline; Erbacher, Patrick; Bolcato-Bellemin, Anne-Laure

    2013-09-10

    RNA interference allows the design of new inhibitors that target deregulated pathways in cancer. However systemic delivery of siRNA for the treatment of solid tumors still remains an issue. In our study, in order to suppress the progression of lung cancer metastasis in mice, we developed sticky siRNA (ssiRNA) to inhibit survivin and cyclin B1, two candidates involved in cell survival and proliferation. We exploited the linear polyethylenimine (PEI) as potent non-viral carrier to efficiently deliver our inhibitors. As a proof of concept, we have chosen a very aggressive mammary adenocarcinoma model (TSA-Luc cells), which forms lung metastases upon systemic cell injection. We confirmed in vitro, that the ssiRNAs delivered with PEI are not only able to inhibit our target genes at the mRNA and protein levels, but are also able to block the cell cycle and cell proliferation through a mechanism of RNA interference. More importantly, we showed in vivo by luciferase dosage, bioimaging and tissue section, an inhibition of lung tumor metastases after systemic delivery of cyclin B1 and survivin ssiRNA complexed with PEI. Alternating treatment with cisplatin and ssiRNA/PEI showed an additive effect between the two anticancer drugs on lung tumor inhibition leading to a significant increase in animal survival. Moreover a promising window between activity (IC₅₀) and toxicity (LD₅₀), essential for therapeutic application, was observed. Our data show that systemic delivery of ssiRNA/PEI complexes targeting the cell cycle is a valuable strategy for the treatment of lung tumor metastasis and that it can be combined with chemotherapy. PMID:23727288

  7. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery.

    PubMed

    Yin, Hui; Zhao, Feng; Zhang, Daohai; Li, Jun

    2015-04-10

    A new CD44-targeted gene delivery system, the star-shaped cationic polymer containing a β-cyclodextrin (β-CD) core and multiple branched oligoethylenimine (OEI) arms with conjugated oligomer of hyaluronic acid (HA), was synthesized by reductive amination between β-CD-OEI star polymer and HA, and was characterized for pDNA condensation and nanoparticle formation, followed by evaluation for targeted gene delivery of luciferase reporter gene and wild type p53 gene in CD44-positive and CD44-negative cell lines. The β-CD-OEI-HA polymer contained 6 arms of OEI (600 Da) and a short HA segment. It could fully condense pDNA to form nanoparticles with sizes ranging from 100 to 200 nm at N/P ratios of 8 or higher. The conjugation of HA reduced cytotoxicity of β-CD-OEI-HA/pDNA polyplexes. It was found that CD44 receptor was highly expressed and localized at the membrane of MDA-MB-231 breast cancer cell line, while no CD44 was found at the membrane of MCF-7 epithelial cell line. Compared with PEI (25 kDa) and β-CD-OEI star polymers, β-CD-OEI-HA demonstrated significant increased gene transfection efficiency in MDA-MB-231 cells, while such effect was absent in MCF-7 cells. The targeted delivery of wild type p53 gene by β-CD-OEI-HA in MDA-MB-231 cells resulted in an increased cell cycle arrest at sub-G1 phase. PMID:25681725

  8. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

    PubMed

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

  9. A Study of Shrinkage Stress Reduction and Mechanical Properties of Nanogel-Modified Resin Systems

    PubMed Central

    Liu, JianCheng; Howard, Gregory D.; Lewis, Steven H.; Barros, Matthew D.; Stansbury, Jeffrey W.

    2012-01-01

    A series of nanogel compositions were prepared from urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The linear oligomer of IBMA was synthesized by a similar solution polymerization technique. The nanogels were prepared with different crosslinker concentrations to achieve varied branching densities and molecular weights. The prepolymers were dispersed in triethylene glycol dimethacrylate at loading levels ranging from 10 wt% to 50 wt%. Photopolymerization reaction kinetics of all prepolymer modified systems were enhanced relative to the nanogel-free control during early stage polymerization while limiting conversion was similar for most samples. Volumetric polymerization shrinkage was reduced proportionally with the prepolymer content while the corresponding decrease in polymerization stress was potentially greater than an additive linear behavior. Flexural strength for inert linear polymer-modified systems decreased significantly with the increase in the prepolymer content; however, with an increase in the crosslinker concentration within the nanogel additives, and an increase in the concentration of residual pendant reactive sites, flexural strength was maintained or improved regardless of the nanogel loading level. This demonstrates that covalent attachment rather than just physical entanglement with the polymer matrix is important for effective polymer mechanical reinforcement by nanogel additives. Reactive nanogel additives can be considered as a practical, generic means to achieve substantial reductions in polymerization shrinkage and shrinkage stress in common polymers. PMID:23109731

  10. On the scattered light by dilute aqueous dispersions of nanogel particles.

    PubMed

    Callejas-Fernndez, J; Ramos, J; Forcada, J; Moncho-Jord, A

    2015-07-15

    This work deals with the scattered light by nanoparticles formed by a temperature sensitive polymer networks, namely nanogel particles. The scattered light is measured as a function of the scattering angle at temperatures below and above the volume phase transition temperature (VPTT) of nanogel particles. Our experimental results indicate that nanogel particles have a core-shell structure, formed by a uniform highly cross-linked core surrounded by a fuzzy shell where the polymer density decays to zero gradually for swollen configurations and sharply for shrunken states. The theoretical fitting of the experimental curves shows that the scattered light at low angle obeys a decreasing power law with the scattering vector, q(-?). The value of exponent ? provides information about the radial dependence of the polymer density at the external shell of the particles for swollen nanogels, and about the degree of roughness of the surface for the case of shrunken nanogels. On the one hand, at low temperatures (below the VPPT), the nanogel particle is in the swollen state and the light scattering data show that its shell structure follows a fractal behaviour, with a polymer density that decays as r(?-3), where r is the distance to the particle centre. On the other hand, above the VPPT the results indicate that nanogel collapses into a core of uniform polymer density and a rough shell, with a fractal surface dimension of 2.5. PMID:25837408

  11. Targeted Delivery of Paclitaxel to EphA2-Expressing Cancer Cells

    PubMed Central

    Wang, Si; Noberini, Roberta; Stebbins, John L.; Das, Swadesh; Zhang, Ziming; Wu, Bainan; Mitra, Sayantan; Billet, Sandrine; Fernandez, Ana; Bhowmick, Neil A.; Kitada, Shinichi; Pasquale, Elena B.; Fisher, Paul B.; Pellecchia, Maurizio

    2012-01-01

    Purpose YSA is an EphA2-targeting peptide that effectively delivers anti-cancer agents to prostate cancer tumors (1). Here, we report on how we increased the drug-like properties of this delivery system. Experimental Design By introducing non-natural amino acids, we have designed two new EphA2 targeting peptides: YNH, where norleucine and homoserine replace the two methionine residues of YSA, and dYNH, where a D-tyrosine replaces the L-tyrosine at the first position of the YNH peptide. We describe the details of the synthesis of YNH and dYNH paclitaxel conjugates (YNH-PTX and dYNH-PTX) and their characterization in cells and in vivo. Results dYNH-PTX showed improved stability in mouse serum and significantly reduced tumor size in a prostate cancer xenograft model and also reduced tumor vasculature in a syngeneic orthotopic allograft mouse model of renal cancer compared to vehicle or paclitaxel treatments. Conclusion This study reveals that targeting EphA2 with dYNH drug conjugates could represent an effective way to deliver anti-cancer agents to a variety of tumor types. Translational Relevance Overexpression of the EphA2 positively correlates with tumor malignancy and poor prognosis. For this reason, EphA2 is an attractive target for cancer cell specific drug delivery. In this study, we report on the development of dYNH, an EphA2 targeting peptide that when coupled to paclitaxel (PTX) has favorable pharmacological properties and possesses powerful anti-tumor activity in vivo. dYNH-PTX may allow for an expanded therapeutic index of paclitaxel as well as precluding the need for complex formulations and long infusion times. PMID:23155185

  12. Odorranalectin Is a Small Peptide Lectin with Potential for Drug Delivery and Targeting

    PubMed Central

    Xu, Xueqing; Yang, Hailong; Wu, Bingxian; Wang, Yipeng; Zhu, Jianhua; Lai, Ren; Jiang, Xinguo; Lin, Donghai; Prescott, Mark C.; Rees, Huw H.

    2008-01-01

    Background Lectins are sugar-binding proteins that specifically recognize sugar complexes. Based on the specificity of protein–sugar interactions, different lectins could be used as carrier molecules to target drugs specifically to different cells which express different glycan arrays. In spite of lectin's interesting biological potential for drug targeting and delivery, a potential disadvantage of natural lectins may be large size molecules that results in immunogenicity and toxicity. Smaller peptides which can mimic the function of lectins are promising candidates for drug targeting. Principal Findings Small peptide with lectin-like behavior was screened from amphibian skin secretions and its structure and function were studied by NMR, NMR-titration, SPR and mutant analysis. A lectin-like peptide named odorranalectin was identified from skin secretions of Odorrana grahami. It was composed of 17 aa with a sequence of YASPKCFRYPNGVLACT. L-fucose could specifically inhibit the haemagglutination induced by odorranalectin. 125I-odorranalectin was stable in mice plasma. In experimental mouse models, odorranalectin was proved to mainly conjugate to liver, spleen and lung after i.v. administration. Odorranalectin showed extremely low toxicity and immunogenicity in mice. The small size and single disulfide bridge of odorranalectin make it easy to manipulate for developing as a drug targeting system. The cyclic peptide of odorranalectin disclosed by solution NMR study adopts a β-turn conformation stabilized by one intramolecular disulfide bond between Cys6-Cys16 and three hydrogen bonds between Phe7-Ala15, Tyr9-Val13, Tyr9-Gly12. Residues K5, C6, F7, C16 and T17 consist of the binding site of L-fucose on odorranalectin determined by NMR titration and mutant analysis. The structure of odorranalectin in bound form is more stable than in free form. Conclusion These findings identify the smallest lectin so far, and show the application potential of odorranalectin for drug delivery and targeting. It also disclosed a new strategy of amphibian anti-infection. PMID:18584053

  13. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    SciTech Connect

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  14. Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery

    PubMed Central

    Yang, Qiang; Arathorn, David W.; Tiruveedhula, Pavan; Vogel, Curtis R.; Roorda, Austin

    2010-01-01

    We demonstrate an integrated FPGA solution to project highly stabilized, aberration-corrected stimuli directly onto the retina by means of real-time retinal image motion signals in combination with high speed modulation of a scanning laser. By reducing the latency between target location prediction and stimulus delivery, the stimulus location accuracy, in a subject with good fixation, is improved to 0.15 arcminutes from 0.26 arcminutes in our earlier solution. We also demonstrate the new FPGA solution is capable of delivering stabilized large stimulus pattern (up to 256x256 pixels) to the retina. PMID:20721171

  15. Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound

    PubMed Central

    2013-01-01

    Brain diseases are notoriously difficult to treat due to the presence of the blood-brain barrier (BBB). Here, we review the development of focused ultrasound (FUS) as a noninvasive method for BBB disruption, aiding in drug delivery to the brain. FUS can be applied through the skull to a targeted region in the brain. When combined with microbubbles, FUS causes localized and reversible disruption of the BBB. The cellular mechanisms of BBB disruption are presented. Several therapeutic agents have been delivered to the brain resulting in significant improvements in pathology in models of glioblastoma and Alzheimers disease. The requirements for clinical translation of FUS will be discussed. PMID:23379618

  16. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels.

    PubMed

    Chen, Jiaming; Dai, Huafeng; Lin, Hui; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2016-05-01

    In this work, we proposed a new strategy based on electrospray technique to prepare nanogels. Compared with other methods of preparing nanogels, electrospray technique is more simple and efficient. A biodegradable and multi-responsive poly(ether urethane) (PEU) was synthesized via a facile one-pot method and used as the electrospray material. By using electrospray technique, pH- and redox-responsive poly(ether urethane) nanogels were prepared. The morphologies of the electrospray nanoparticles before and after swelling were demonstrated to be spherical and uniform, as characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) results showed that the mean hydrodynamic diameter of nanogels was about 500nm. The pH- and redox-sensitive behaviors of nanogels were studied with DLS and TEM. In acidic media the nanogels dissociated, while in the presence of GSH the nanogels degraded. The nanogels suspension was stored at 4°C and was stable without aggregation for at least 30 days. Doxorubicin (DOX) can be further loaded into the poly(ether urethane) nanogels. The electrospray nanogels can change the release rate of loaded drug in response to pH and GSH stimuli. PMID:26859119

  17. AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication

    PubMed Central

    Weber, Nicholas D.; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Schiffer, Joshua T.; Aubert, Martine; Jerome, Keith R.

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  18. Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson’s Disease

    PubMed Central

    Fan, Ching-Hsiang; Ting, Chien-Yu; Lin, Chung‐Yin; Chan, Hong-Lin; Chang, Yuan-Chih; Chen, You-Yin; Liu, Hao-Li; Yeh, Chih-Kuang

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) supports the growth and survival of dopaminergic neurons. CNS gene delivery currently relies on invasive intracerebral injection to transit the blood-brain barrier. Non-viral gene delivery via systematic transvascular route is an attractive alternative because it is non-invasive, but a high-yield and targeted gene-expressed method is still lacking. In this study, we propose a novel non-viral gene delivery approach to achieve targeted gene transfection. Cationic microbubbles as gene carriers were developed to allow the stable formation of a bubble-GDNF gene complex, and transcranial focused ultrasound (FUS) exposure concurrently interacting with the bubble-gene complex allowed transient gene permeation and induced local GDNF expression. We demonstrate that the focused ultrasound-triggered GDNFp-loaded cationic microbubbles platform can achieve non-viral targeted gene delivery via a noninvasive administration route, outperform intracerebral injection in terms of targeted GDNF delivery of high-titer GDNF genes, and has a neuroprotection effect in Parkinson’s disease (PD) animal models to successfully block PD syndrome progression and to restore behavioral function. This study explores the potential of using FUS and bubble-gene complexes to achieve noninvasive and targeted gene delivery for the treatment of neurodegenerative disease. PMID:26786201

  19. Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson's Disease.

    PubMed

    Fan, Ching-Hsiang; Ting, Chien-Yu; Lin, Chung-Yin; Chan, Hong-Lin; Chang, Yuan-Chih; Chen, You-Yin; Liu, Hao-Li; Yeh, Chih-Kuang

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) supports the growth and survival of dopaminergic neurons. CNS gene delivery currently relies on invasive intracerebral injection to transit the blood-brain barrier. Non-viral gene delivery via systematic transvascular route is an attractive alternative because it is non-invasive, but a high-yield and targeted gene-expressed method is still lacking. In this study, we propose a novel non-viral gene delivery approach to achieve targeted gene transfection. Cationic microbubbles as gene carriers were developed to allow the stable formation of a bubble-GDNF gene complex, and transcranial focused ultrasound (FUS) exposure concurrently interacting with the bubble-gene complex allowed transient gene permeation and induced local GDNF expression. We demonstrate that the focused ultrasound-triggered GDNFp-loaded cationic microbubbles platform can achieve non-viral targeted gene delivery via a noninvasive administration route, outperform intracerebral injection in terms of targeted GDNF delivery of high-titer GDNF genes, and has a neuroprotection effect in Parkinson's disease (PD) animal models to successfully block PD syndrome progression and to restore behavioral function. This study explores the potential of using FUS and bubble-gene complexes to achieve noninvasive and targeted gene delivery for the treatment of neurodegenerative disease. PMID:26786201

  20. A novel in situ gel for sustained drug delivery and targeting.

    PubMed

    Ganguly, Sudipta; Dash, Alekha K

    2004-05-19

    The objective of this study was to develop a novel chitosan-glyceryl monooleate (GMO) in situ gel system for sustained drug delivery and targeting. The delivery system consisted of 3% (w/v) chitosan and 3% (w/v) GMO in 0.33M citric acid. In situ gel was formed at a biological pH. In vitro release studies were conducted in Sorensen's phosphate buffer (pH 7.4) and drugs were analyzed either by HPLC or spectrophotometry. Characterization of the gel included the effect of cross-linker, determination of diffusion coefficient and water uptake by thermogravimetric analysis (TGA). Mucoadhesive property of the gel was evaluated in vitro using an EZ-Tester. Incorporation of a cross-linker (glutaraldehyde) retarded the rate and extent of drug release. The in vitro release can further be sustained by replacing the free drug with drug-encapsulated microspheres. Drug release from the gel followed a matrix diffusion controlled mechanism. Inclusion of GMO enhanced the mucoadhesive property of chitosan by three- to sevenfold. This novel in situ gel system can be useful in the sustained delivery of drugs via oral as well as parenteral routes. PMID:15113617

  1. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    PubMed Central

    Khalin, Igor; Alyautdin, Renad; Kocherga, Ganna; Bakar, Muhamad Abu

    2015-01-01

    Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. PMID:25995632

  2. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery.

    PubMed

    Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2015-04-01

    Nanofiber scaffold formulations (diameter less than 1000 nm) were successfully used to deliver the drug/cell/gene into the body organs through different routes for an effective treatment of various diseases. Various fabrication methods like drawing, template synthesis, fiber-mesh, phase separation, fiber-bonding, self-assembly, melt-blown, and electrospinning are successfully used for fabrication of nanofibers. These formulations are widely used in various fields such as tissue engineering, drug delivery, cosmetics, as filter media, protective clothing, wound dressing, homeostatic, sensor devices, etc. The present review gives a detailed account on the need of the nanofiber scaffold formulation development along with the biomaterials and techniques implemented for fabrication of the same against innumerable diseases. At present, there is a huge extent of research being performed worldwide on all aspects of biomolecules delivery. The unique characteristics of nanofibers such as higher loading efficiency, superior mechanical performance (stiffness and tensile strength), controlled release behavior, and excellent stability helps in the delivery of plasmid DNA, large protein drugs, genetic materials, and autologous stem-cell to the target site in the future. PMID:25539071

  3. Synthesis of Bisethylnorspermine Lipid Prodrug as Gene Delivery Vector Targeting Polyamine Metabolism in Breast Cancer

    PubMed Central

    Dong, Yanmei; Zhu, Yu; Li, Jing; Zhou, Qing-Hui; Wu, Chao; Oupick, David

    2013-01-01

    Progress in the development of nonviral gene delivery vectors continues to be hampered by low transfection activity and toxicity. Here we proposed to develop a lipid prodrug based on a polyamine analogue bisethylnorspermine (BSP) that can function dually as gene delivery vector and, after intracellular degradation, as active anticancer agent targeting dysregulated polyamine metabolism. We synthesized a prodrug of BSP (LS-BSP) capable of intracellular release of BSP using thiolytically sensitive dithiobenzyl carbamate linker. Biodegradability of LS-BSP contributed to decreased toxicity compared with nondegradable control L-BSP. BSP showed a strong synergistic enhancement of cytotoxic activity of TNF-related apoptosis-inducing ligand (TRAIL) in human breast cancer cells. Decreased enhancement of TRAIL activity was observed for LS-BSP when compared with BSP. LS-BSP formed complexes with plasmid DNA and mediated transfection activity comparable to DOTAP and L-BSP. Our results show that BSP-based vectors are promising candidates for combination drug/gene delivery. PMID:22545813

  4. Engineering RNA for Targeted siRNA Delivery and Medical Application

    PubMed Central

    Guo, Peixuan; Coban, Oana; Snead, Nick; Trebley, Joe; Hoeprich, Steve; Guo, Songchuan; Shu, Yi

    2010-01-01

    RNA engineering for nanotechnology and medical applications is an exciting emerging research field. RNA has intrinsically defined features on the nanometer scale and is a particularly interesting candidate for such applications due to its amazing diversity, flexibility and versatility in structure and function. Specifically, the current use of siRNA to silence target genes involved in disease has generated much excitement in the scientific community. The intrinsic ability to sequence-specifically down-regulate gene expression in a temporally- and spatially-controlled fashion has led to heightened interest and rapid development of siRNA-based therapeutics. Though methods for gene silencing with high efficacy and specificity have been achieved in vitro, the effective delivery of nucleic acids to specific cells in vivo has been a hurdle for RNA therapeutics. This review covers different RNA-based approaches for diagnosis, prevention and treatment of human disease, with a focus on the latest developments of nonviral carriers of siRNA for delivery in vivo. The applications and challenges of siRNA therapy, as well as potential solutions to these problems, the approaches for using phi29 pRNA-based vectors as polyvalent vehicles for specific delivery of siRNA, ribozymes, drugs or other therapeutic agents to specific cells for therapy will also be addressed. PMID:20230868

  5. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Thomas, Antony; Liu, Yaling

    2011-11-01

    In this paper, a particle-cell hybrid model is developed to model Nanoparticle (NP) transport, dispersion, and binding dynamics in blood suspension under the influence of Red blood cells (RBCs). The motion and deformation of RBCs is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of RBCs, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

  6. Targeted Delivery of GDNF through the Blood–Brain Barrier by MRI-Guided Focused Ultrasound

    PubMed Central

    Lu, Lin; Liu, Li; Cai, Youli; Zheng, Hairong; Liu, Xin; Yan, Fei; Zou, Chao; Sun, Chengyu; Shi, Jie; Lu, Shukun; Chen, Yun

    2012-01-01

    Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood–brain barrier (BBB) prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS). Focused ultrasound combined with microbubbles (MBs) using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI)-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin–avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases. PMID:23300823

  7. Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound

    PubMed Central

    Hsu, Po-Hung; Wei, Kuo-Chen; Huang, Chiung-Yin; Wen, Chih-Jen; Yen, Tzu-Chen; Liu, Chao-Lin; Lin, Ya-Tin; Chen, Jin-Chung; Shen, Chia-Rui; Liu, Hao-Li

    2013-01-01

    Recombinant adeno-associated viral (rAAV) vectors are potentially powerful tools for gene therapy of CNS diseases, but their penetration into brain parenchyma is severely limited by the blood-brain barrier (BBB) and current delivery relies on invasive stereotactic injection. Here we evaluate the local, targeted delivery of rAAV vectors into the brains of mice by noninvasive, reversible, microbubble-facilitated focused ultrasound (FUS), resulting in BBB opening that can be monitored and controlled by magnetic resonance imaging (MRI). Using this method, we found that IV-administered AAV2-GFP (green fluorescence protein) with a low viral vector titer (1109 vg/g) can successfully penetrate the BBB-opened brain regions to express GFP. We show that MRI monitoring of BBB-opening could serve as an indicator of the scale and distribution of AAV transduction. Transduction peaked at 3 weeks and neurons and astrocytes were affected. This novel, noninvasive delivery approach could significantly broaden the application of AAV-viral-vector-based genes for treatment of CNS diseases. PMID:23460893

  8. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    PubMed Central

    Jin, Li-Fang; Li, Fan; Wang, Hui-Ping; Wei, Fang; Qin, Peng; Du, Lian-Fang

    2013-01-01

    The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD) to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV) into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM) revealed that UTMD stimulated formation of clathrin-coated pits (CPs) and uncoated pits (nCPs). Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery. PMID:23652832

  9. Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery.

    PubMed

    Charoenphol, Phapanin; Onyskiw, Peter J; Carrasco-Teja, Mariana; Eniola-Adefeso, Omolola

    2012-11-15

    The outcome of vascular-targeted therapies is generally determined by how efficiently vascular-targeted carriers localize and adhere to the endothelial wall at the targeted site. This study investigates the impact of leukocytes, platelets and red blood cells on the margination of vascular-targeted polymeric nanospheres and microspheres under various physiological blood flow conditions. We report that red blood cells either promote or hinder particle adhesion to an endothelial wall in a parallel plate flow chamber depending on the blood flow pattern, hematocrit, and particle size. Leukocytes prevent microspheres - but not nanospheres - from adhering in laminar and pulsatile flows via (1) competition for the available binding space and (2) physical removal of previously bound spheres. In recirculating blood flow, the negative effect of leukocytes on particle adhesion is minimal for large microspheres in the disturbed flow region beyond the flow reattachment. Resting platelets were found to have no effect on particle binding likely due to their dimensions and minimal interaction with the endothelial wall. Overall, the findings of the present work would be critical for designing effective vascular-targeted carriers for imaging and drug delivery applications in several human diseases. PMID:23010218

  10. A novel hydrolysis-resistant lipophilic folate derivative enables stable delivery of targeted liposomes in vivo

    PubMed Central

    Huang, Yifei; Yang, Tan; Zhang, Wendian; Lu, Yao; Ye, Peng; Yang, Guang; Li, Bin; Qi, Shibo; Liu, Yong; He, Xingxing; Lee, Robert J; Xu, Chuanrui; Xiang, Guangya

    2014-01-01

    Instability of targeting ligand is a roadblock towards successful development of folate targeted liposomes. Folate ligands have been linked to polyethylene glycol (PEG) and cholesterol by an amide bond to form folate-CONH-PEG-CONH-Cholesterol (F-CONH-PEG-CONH-Chol), which is subject to hydrolysis. To increase the stability of folate ligands and promote the long circulation and targeting effects, we synthesized a chemically stable lipophilic folate derivative, folate-CONH-PEG-NH-Cholesterol (F-CONH-PEG-NH-Chol), where the amide bond was replaced by a C-N bond, to deliver liposomal doxorubicin (Dox). Its physical stability, cellular uptake, cellular toxicity, pharmacokinetics, distribution, anti-tumor efficacy, and cardiac toxicity were investigated. Our results indicate that F-CONH-PEG-NH-Chol conjugated liposomes are taken up selectively by folate receptor-positive HeLa and KB cells. Compared with F-CONH-PEG-CONH-Chol with two carbonate linkages, F-CONH-PEG-NH-Chol better retained its drug entrapment efficiency and folate receptor-targeting activity during prolonged circulation. F-CONH-PEG-NH-Chol thus represents a physically stable and effective ligand for delivering folate receptor-targeted liposomes, with prolonged circulation time and efficient tissue distribution, as well as higher efficacy and less cardiac toxicity. Collectively, these results suggest that this novel conjugate can serve as a promising derivative for the delivery of anti-tumor therapeutic agents. PMID:25302024

  11. Mito-DCA: A Mitochondria Targeted Molecular Scaffold for Efficacious Delivery of Metabolic Modulator Dichloroacetate

    PubMed Central

    2015-01-01

    Tumor growth is fueled by the use of glycolysis, which normal cells use only in the scarcity of oxygen. Glycolysis makes tumor cells resistant to normal death processes. Targeting this unique tumor metabolism can provide an alternative strategy to selectively destroy the tumor, leaving normal tissue unharmed. The orphan drug dichloroacetate (DCA) is a mitochondrial kinase inhibitor that has the ability to show such characteristics. However, its molecular form shows poor uptake and bioavailability and limited ability to reach its target mitochondria. Here, we describe a targeted molecular scaffold for construction of a multiple DCA loaded compound, Mito-DCA, with three orders of magnitude enhanced potency and cancer cell specificity compared to DCA. Incorporation of a lipophilic triphenylphosphonium cation through a biodegradable linker in Mito-DCA allowed for mitochondria targeting. Mito-DCA did not show any significant metabolic effects toward normal cells but tumor cells with dysfunctional mitochondria were affected by Mito-DCA, which caused a switch from glycolysis to glucose oxidation and subsequent cell death via apoptosis. Effective delivery of DCA to the mitochondria resulted in significant reduction in lactate levels and played important roles in modulating dendritic cell (DC) phenotype evidenced by secretion of interleukin-12 from DCs upon activation with tumor antigens from Mito-DCA treated cancer cells. Targeting mitochondrial metabolic inhibitors to the mitochondria could lead to induction of an efficient antitumor immune response, thus introducing the concept of combining glycolysis inhibition with immune system to destroy tumor. PMID:24617941

  12. Folated Synperonic-Cholesteryl Hemisuccinate Polymeric Micelles for the Targeted Delivery of Docetaxel in Melanoma

    PubMed Central

    Varshosaz, Jaleh; Taymouri, Somayeh; Hassanzadeh, Farshid; Haghjooy Javanmard, Shaghayegh; Rostami, Mahboobeh

    2015-01-01

    The objective of this study was the synthesis of folic acid- (FA-) targeted polymeric micelles of Synperonic PE/F 127-cholesteryl hemisuccinate (PF127-Chol) for specific delivery of docetaxel (DTX). Targeted or nontargeted micelles loaded with DTX were prepared via dialysis method. The effects of processing variables on the physicochemical properties of targeted micelles were evaluated using a full factorial design. After the optimization of the polymer/drug ratio, the organic solvent type used for the preparation of the micelles, and the temperature of dialyzing medium, the in vitro cytotoxicity and cellular uptake of the optimized micelles were studied on B16F10 melanoma cells by flow cytometry and fluorescent microscopy. The anticancer efficacy of DTX-loaded FA-PF127-Chol was evaluated in mice bearing melanoma tumor. Optimized targeted micelles had the particle size of 171.3 nm, zeta potential of −7.8 mV, PDI of 0.325, and a high encapsulation efficiency that released the drug within 144 h. The MTT assay indicated that targeted micelles carrying DTX were significantly more cytotoxic, had higher cellular uptake, and reduced the tumor volume significantly more than the nontargeted micelles and the free drug. FA-PF127-Chol could be, therefore, a promising biomaterial for tumors overexpressing folate receptors. PMID:25839040

  13. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery

    PubMed Central

    2012-01-01

    Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications. PMID:23046982

  14. Dendrimerlike mesoporous silica nanoparticles as pH-responsive nanocontainers for targeted drug delivery and bioimaging.

    PubMed

    Dai, Liangliang; Zhang, Qingfeng; Li, Jinghua; Shen, Xinkun; Mu, Caiyun; Cai, Kaiyong

    2015-04-01

    In this work, we employed dendrimerlike mesoporous silica nanoparticles with hierarchical pores (HPSNs) to fabricate drug delivery system bioimaging and targeted tumor therapy in vivo. N,N-phenylenebis(salicylideneimine)dicarboxylic acid (Salphdc) was used both as the gatekeeper of HPSNs via pH-responsive coordination bonds between -COOH of Salphdc and In(3+) ions and as a fluorescence imaging agent. Folic acid was then conjugated to Salphdc as the targeting unit. The results revealed that the system could deliver model drug DOX to the tumor site with high efficiency and then cause cell apoptosis and tumor growth inhibition. Moreover, the conjugated Salphdc was proved to be a promising fluorescence probe for tracing distribution of the system in vivo. The study affords a potential nanoconainer for cancer therapy and biological imaging. PMID:25765172

  15. Vector delivery methods and targeting strategies for gene therapy of brain tumors.

    PubMed

    Rainov, N G; Kramm, C M

    2001-11-01

    Efficient virus and non-virus vector systems for gene transfer to tumor cells have been developed and tested in cell culture and in animal experiments. With some of the earliest and most comprehensively evaluated vectors, such as retroviruses, advanced clinical trials were performed in tumor patients. Malignant primary brain tumors (gliomas) have been chosen for the first clinical studies on novel gene therapy approaches because these tumors are non-metastatic and develop on the largely postmitotic background of normal glial and neuronal tissue. However, the human cancer gene therapy studies performed so far were not as successful as preclinical animal experiments. Furthermore, the clinical studies did not address major limiting factors for in vivo gene therapy, such as insufficient gene transfer rates to the tumor with the used local delivery modalities, and the resulting inability of a particular transgene-prodrug system to confer permanently eradicating cytotoxicity to the whole neoplasm. Critical evaluation of gene transfer and therapy studies has led to the conclusion that, even using identical vectors, the anatomical route of vector administration can dramatically affect both the efficiency of tumor transduction and its spatial distribution, as well as the extent of intratumoral and intracerebral transgene expression. This review concentrates on different physical methods for vector delivery to malignant primary brain tumors in experimental or clinical settings: stereotactic or direct intratumoral injection or convection-enhanced bulk-flow interstitial delivery; intrathecal and intraventricular injection; and intravascular infusion with or without modification of the blood-tumor-barrier. The advantages and drawbacks of the different modes and delivery routes of in vivo vector application, and the possibilities for tumor targeting by modifications of the native tropism of virus vectors or by using tissue-specific or inducible transgene expression are summarized. PMID:12109063

  16. Biodegradable Film for the Targeted Delivery of siRNA-Loaded Nanoparticles to Vaginal Immune Cells.

    PubMed

    Gu, Jijin; Yang, Sidi; Ho, Emmanuel A

    2015-08-01

    The goal of this study was to develop and characterize a novel intravaginal film platform for targeted delivery of small interfering RNA (siRNA)-loaded nanoparticles (NP) to dendritic cells as a potential gene therapy for the prevention of sexually transmitted human immunodeficiency virus (HIV) infection. Poly(ethylene glycol) (PEG)-functionalized poly(D, L-lactic-co-glycolic acid) (PLGA)/polyethylenimine (PEI)/siRNA NP (siRNA-NP) were fabricated using a modified emulsion-solvent evaporation method and characterized for particle size, zeta potential, encapsulation efficiency (EE), and siRNA release. siRNA-NP were decorated with anti-HLA-DR antibody (siRNA-NP-Ab) for targeting delivery to HLA-DR+ dendritic cells (DCs) and homogeneously dispersed in a biodegradable film consisting of poly vinyl alcohol (PVA) and ?-carrageenan. The siRNA-NP-Ab-loaded film (siRNA-NP-Ab-film) was transparent, displayed suitable physicomechanical properties, and was noncytotoxic. Targeting activity was evaluated in a mucosal coculture model consisting of a vaginal epithelial monolayer (VK2/E6E7 cells) and differentiated KG-1 cells (HLA-DR+ DCs). siRNA-NP-Ab were rapidly released from the film and were able to penetrate the epithelial layer to be taken up by differentiated KG-1 cells. siRNA-NP-Ab demonstrated higher targeting activity and significantly higher knockdown of synaptosome-associated 23-kDa protein (SNAP-23) mRNA and protein when compared to siRNA-NP without antibody conjugation. Overall, these data suggest that our novel siRNA-NP-Ab-film may be a promising platform for preventing HIV infection within the female genital tract. PMID:26099315

  17. Formulation of Functionalized PLGA-PEG Nanoparticles for In Vivo Targeted Drug Delivery

    PubMed Central

    Cheng, Jianjun; Teply, Benjamin A.; Sherifi, Ines; Sung, Josephine; Luther, Gaurav; Gu, Frank X.; Levy-Nissenbaum, Etgar; Radovic-Moreno, Aleksandar F.; Langer, Robert; Farokhzad, Omid C.

    2009-01-01

    Nanoparticle (NP) size has been shown to significantly effect the biodistribution of targeted and non-targeted NPs in an organ specific manner. Herein we have developed NPs from carboxy-terminated poly (d,l-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) polymer and studied the effects of altering the following formulation parameters on the size of NPs, including: 1) polymer concentration, 2) drug loading, 3) water miscibility of solvent, and 4) the ratio of water to solvent. We found that NP mean volumetric size correlates linearly with polymer concentration for NPs between 70 and 250 nm in diameter (linear coefficient = 0.99 for NPs formulated with solvents studied). NPs with desirable size, drug loading, and polydispersity were conjugated to the A10 RNA aptamer (Apt) that binds to the Prostate Specific Membrane Antigen (PSMA), and NP and NP-Apt biodistribution was evaluated in a LNCaP (PSMA+) xenograft mouse model of PCa. The surface functionalization of NPs with the A10 PSMA aptamer significantly enhanced delivery of NPs to tumors vs. equivalent NPs lacking the A10 PSMA aptamer (a 3.77-fold increase at 24 hrs; NP-Apt 0.83% ± 0.21% vs. NP 0.22% ± 0.07% of injected dose per gram of tissue; mean ± s.d., n = 4, p = 0.002). The ability to control NP size together with targeted delivery may result in favorable biodistribution and development of clinically relevant targeted therapies. PMID:17055572

  18. Targeted delivery of peptide-conjugated biocompatible gold nanoparticles into cancer cell nucleus

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Curry, Taeyjuana; Che, Yong; Kopelman, Raoul

    2013-02-01

    Nucleus remains a significant target for nanoparticles with diagnostic and therapeutic applications because both genetic information of the cell and transcription machinery reside there. Novel therapeutic strategies (for example, gene therapy), enabled by safe and efficient delivery of nanoparticles and drug molecules into the nucleus, are heralded by many as the ultimate treatment for severe and intractable diseases. However, most nanomaterials and macromolecules are incapable of reaching the cell nucleus on their own, because of biological barriers carefully honed by evolution including cellular membrane and nuclear envelope. In this paper, we have demonstrated an approach of fabrication of biocompatible gold nanoparticle (Au NP)-based vehicles which can entering into cancer cell nucleus by modifying Au NPs with both PEG 5000 and two different peptides (RGD and nuclear localization signal (NLS) peptide). The Au NPs used were fabricated via femtosecond laser ablation of Au bulk target in deionized water. The Au NPs produced by this method provide chemical free, virgin surface, which allows us to carry out "Sequential Conjugation" to modify their surface with PEG 5000, RGD, and NLS. "Sequential Conjugation" described in this presentation is very critical for the fabrication of Au NP-based vehicles capable of entering into cancer cell nucleus as it enables the engineering and tuning surface chemistries of Au NPs by independently adjusting amounts of PEG and peptides bound onto surface of Au NPs so as to maximize their nuclear targeting performance and biocompatibility regarding the cell line of interest. Both optical microscopy and transmission electron microscopy (TEM) are used to confirm the in vitro targeted nuclear delivery of peptide-conjugated biocompatible Au NPs by showing their presence in the cancer cell nucleus.

  19. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics.

    PubMed

    Lorenzer, Cornelia; Dirin, Mehrdad; Winkler, Anna-Maria; Baumann, Volker; Winkler, Johannes

    2015-04-10

    Therapeutic gene silencing promises significant progress in pharmacotherapy, including considerable expansion of the druggable target space and the possibility for treating orphan diseases. Technological hurdles have complicated the efficient use of therapeutic oligonucleotides, and siRNA agents suffer particularly from insufficient pharmacokinetic properties and poor cellular uptake. Intense development and evolution of delivery systems have resulted in efficient uptake predominantly in liver tissue, in which practically all nanoparticulate and liposomal delivery systems show the highest accumulation. The most efficacious strategies include liposomes and bioconjugations with N-acetylgalactosamine. Both are in early clinical evaluation stages for treatment of liver-associated diseases. Approaches for achieving knockdown in other tissues and tumors have been proven to be more complicated. Selective targeting to tumors may be enabled through careful modulation of physical properties, such as particle size, or by taking advantage of specific targeting ligands. Significant barriers stand between sufficient accumulation in other organs, including endothelial barriers, cellular membranes, and the endosome. The brain, which is shielded by the blood-brain barrier, is of particular interest to facilitate efficient oligonucleotide therapy of neurological diseases. Transcytosis of the blood-brain barrier through receptor-specific docking is investigated to increase accumulation in the central nervous system. In this review, the current clinical status of siRNA therapeutics is summarized, as well as innovative and promising preclinical concepts employing tissue- and tumor-targeted ligands. The requirements and the respective advantages and drawbacks of bioconjugates and ligand-decorated lipid or polymeric particles are discussed. PMID:25660205

  20. MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells

    PubMed Central

    Guthi, Jagadeesh Setti; Yang, Su-Geun; Huang, Gang; Li, Shunzi; Khemtong, Chalermchai; Kessinger, Chase W.; Peyton, Michael; Minna, John D.; Brown, Kathlynn C.; Gao, Jinming

    2010-01-01

    Polymeric micelles are emerging as a highly integrated nanoplatform for cancer targeting, drug delivery and tumor imaging applications. In this study, we describe a multifunctional micelle (MFM) system that is encoded with a lung cancer-targeting peptide (LCP), and encapsulated with superparamagnetic iron oxide (SPIO) and doxorubicin (Doxo) for MR imaging and therapeutic delivery, respectively. The LCP-encoded MFM showed significantly increased αvβ6-dependent cell targeting in H2009 lung cancer cells over a scrambled peptide (SP)-encoded MFM control as well as in an αvβ6-negative H460 cell control. 3H-Labeled MFM nanoparticles were used to quantify the time- and dose-dependent cell uptake of MFM nanoparticles with different peptide encoding (LCP vs SP) and surface densities (20% and 40%) in H2009 cells. LCP functionalization of the micelle surface increased uptake of the MFM by more than 3-fold compared to the SP control. These results were confirmed by confocal laser scanning microscopy, which further demonstrated the successful Doxo release from MFM and accumulation in the nucleus. SPIO clustering inside the micelle core resulted in high T2 relaxivity (>400 Fe mM−1 s−1) of the resulting MFM nanoparticles. T2-weighted MRI images showed clear contrast differences between H2009 cells incubated with LCP-encoded MFM over the SP-encoded MFM control. An ATP activity assay showed increased cytotoxicity of LCP-encoded MFM over SP-encoded MFM in H2009 cells (IC50 values were 28.3 ± 6.4 nM and 73.6 ± 6.3 nM, respectively; p < 0.005). The integrated diagnostic and therapeutic design of MFM nanomedicine potentially allows for image-guided, target-specific treatment of lung cancer. PMID:19708690

  1. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    SciTech Connect

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari; E-mail: akiyoshi.org@tmd.ac.jp

    2005-06-17

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH{sub 2}). The CHPNH{sub 2}-QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging.

  2. Targeted Delivery of PSC-RANTES for HIV-1 Prevention using Biodegradable Nanoparticles

    PubMed Central

    Ham, Anthony S.; Cost, Marilyn R.; Sassi, Alexandra B.; Dezzutti, Charlene S.; Rohan, Lisa Cencia

    2014-01-01

    Purpose Nanoparticles formulated from the biodegradable co-polymer poly(lactic-co-glycolic acid) (PLGA), were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting for PSC-RANTES anti-HIV-1 activity. Materials and Methods PSC-RANTES nanoparticles formulated via a double emulsion process and characterized in both in vitro and ex vivo systems to determine PSC-RANTES release rate, nanoparticle tissue permeation, and anti-HIV bioactivity. Results Spherical, monodisperse (PDI = 0.098 0.054) PSC-RANTES nanoparticles (d = 256.58 19.57 nm) with an encapsulation efficiency of 82.23 8.35% were manufactured. In vitro release studies demonstrated a controlled release profile of PSC-RANTES (71.48 5.25% release). PSC-RANTES nanoparticle maintained comparable anti-HIV activity with unformulated PSC-RANTES in a HeLa cell-based system with an IC50 of approximately 1pM. In an ex vivo cervical tissue model, PSC-RANTES nanoparticles displayed a fivefold increase in tissue uptake, enhanced tissue permeation, and significant localization at the basal layers of the epithelium over unformulated PSC-RANTES. Conclusions These results indicate that PSC-RANTES can readily be encapsulated into a PLGA nanoparticle drug delivery system, retain its anti-HIV-1 activity, and deliver PSC-RANTES to the target tissue. This is crucial for the success of this drug candidate as a topical microbicide product. PMID:19002569

  3. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin

    PubMed Central

    Peng, Xinsheng; Zhou, Yanfang; Han, Ke; Qin, Lingzhen; Dian, Linghui; Li, Ge; Pan, Xin; Wu, Chuanbin

    2015-01-01

    Phytantriol- and glycerol monooleate-based cubosomes were produced and characterized as a targeted and sustained transdermal delivery system for capsaicin. The cubosomes were prepared by emulsification and homogenization of phytantriol (F1), glycerol monooleate (F2), and poloxamer dispersions, characterized for morphology and particle size distribution by transmission electron microscope and photon correlation spectroscopy. Their Im3m crystallographic space group was confirmed by small-angle X-ray scattering. An in vitro release study showed that the cubosomes provided a sustained release system for capsaicin. An in vitro diffusion study conducted using Franz diffusion cells indicated that the skin retention of capsaicin from cubosomes in the stratum corneum was much higher (2.75±0.22 μg versus 4.32±0.13 μg, respectively) than that of capsaicin cream (0.72±0.13 μg). The stress testing showed that the cubosome formulations were stable under strong light and high temperature for up to 10 days. After multiapplications on mouse skin, the irritation of capsaicin cubosomes and cream was light with the least amount of side effects. Overall, the present study demonstrated that cubosomes may be a suitable skin-targeted and sustained delivery system for the transdermal administration of capsaicin. PMID:26345516

  4. Intraneural convection enhanced delivery of AAVrh20 for targeting primary sensory neurons

    PubMed Central

    Pleticha, Josef; Jeng-Singh, Christian; Rezek, Rahaf; Zaibak, Manal; Beutler, Andreas S.

    2014-01-01

    Gene therapy using adeno-associated virus (AAV) is an attractive strategy to treat disorders of the peripheral nervous system (PNS), such as chronic pain or peripheral neuropathies. Although intrathecal (IT) administration of AAV has been the standard in the field for targeting the PNS, it lacks anatomical specificity and results in wide rostro-caudal distribution of the vector. An alternative approach is to deliver AAV directly to the peripheral nerve axon. The present study employed convection-enhanced delivery (CED) of a novel AAV serotype, AAVrh20, expressing enhanced green fluorescent protein (EGFP) into rat sciatic nerve investigating its efficacy, anatomical selectivity, and safety, compared to the IT route. Intraneural CED resulted in transduction confined to the ipsilateral L4 and L5 DRG while IT administration led to promiscuous DRG transduction encompassing the entire lumbar region bilaterally. The transduction rate for intraneural AAV administration was similar to IT delivery (24% for L4 and 31.5% for L5 DRG versus 50% for L4 and 19.5% for L5 DRG). Use of hyperosmotic diluent did not further improve the transduction efficiency. AAVrh20 was superior to reference serotypes previously described to be most active for each route. Intraneural CED of AAV was associated with transient allodynia that resolved spontaneously. These findings establish intraneural CED as an alternative to IT administration for AAV mediated gene transfer to the PNS and, based on a reference rodent model, suggest AAVrh20 as a superior serotype for targeting the PNS. PMID:24769104

  5. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting

    PubMed Central

    Zheng, Nan; Yin, Lichen; Song, Ziyuan; Ma, Liang; Tang, Haoyu; Gabrielson, Nathan P.; Lu, Hua; Cheng, Jianjun

    2014-01-01

    The application of non-viral gene delivery vectors is often accompanied with the poor correlation between transfection efficiency and the safety profiles of vectors: vectors with high transfection efficiencies often suffer from high toxicities, making it unlikely to improve their efficiencies by increasing the DNA dosage. In the current study, we developed a ternary complex system which consisted of a highly membrane-active cationic helical polypeptide (PVBLG-8), a low-toxic, membrane-inactive cationic helical polypeptide (PVBLG-7) capable of mediating mannose receptor targeting, and DNA. The PVBLG-7 moiety notably enhanced the cellular uptake and transfection efficiency of PVBLG-8 in a variety of mannose receptor-expressing cell types (HeLa, COS-7, and Raw 264.7), while it did not compromise the membrane permeability of PVBLG-8 or bring additional cytotoxicities. Because of the simplicity and adjustability of the self-assembly approach, optimal formulations of the ternary complexes with a proper balance between membrane activity and targeting capability were easily identified in each specific cell type. The optimal ternary complexes displayed desired cell tolerability and markedly outperformed the PVBLG-8/DNA binary complexes as well as commercial reagent Lipofectamine 2000 in terms of transfection efficiency. This study therefore provides an effective and facile strategy to overcome the efficiency-toxicity poor correlation of non-viral vectors, which contributes insights into the design strategy of effective and safe non-viral gene delivery vectors. PMID:24211080

  6. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting.

    PubMed

    Zheng, Nan; Yin, Lichen; Song, Ziyuan; Ma, Liang; Tang, Haoyu; Gabrielson, Nathan P; Lu, Hua; Cheng, Jianjun

    2014-01-01

    The application of non-viral gene delivery vectors is often accompanied with the poor correlation between transfection efficiency and the safety profiles of vectors. Vectors with high transfection efficiencies often suffer from high toxicities, making it unlikely to improve their efficiencies by increasing the DNA dosage. In the current study, we developed a ternary complex system which consisted of a highly membrane-active cationic helical polypeptide (PVBLG-8), a low-toxic, membrane-inactive cationic helical polypeptide (PVBLG-7) capable of mediating mannose receptor targeting, and DNA. The PVBLG-7 moiety notably enhanced the cellular uptake and transfection efficiency of PVBLG-8 in a variety of mannose receptor-expressing cell types (HeLa, COS-7, and Raw 264.7), while it did not compromise the membrane permeability of PVBLG-8 or bring additional cytotoxicities. Because of the simplicity and adjustability of the self-assembly approach, optimal formulations of the ternary complexes with a proper balance between membrane activity and targeting capability were easily identified in each specific cell type. The optimal ternary complexes displayed desired cell tolerability and markedly outperformed the PVBLG-8/DNA binary complexes as well as commercial reagent Lipofectamine 2000 in terms of transfection efficiency. This study therefore provides an effective and facile strategy to overcome the efficiency-toxicity poor correlation of non-viral vectors, which contributes insights into the design strategy of effective and safe non-viral gene delivery vectors. PMID:24211080

  7. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery.

    PubMed

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-04-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects. PMID:26972577

  8. Systematic Studies of Phase Transitions in Thermo-Responsive Polymers Used in Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Bradley, Janae; Denmark, Daniel; Witanachchi, Sarath

    2015-03-01

    Thermo-responsive polymers such as poly-N-isopropylacrylamide (PNIPAM) can undergo reversible phase transitions in aqueous solutions under varying temperatures. They are ideal candidates for the polymer shell of a targeted drug delivery capsule. Concentration and pH can affect the lower critical solution temperature (LCST) of the PNIPAM polymer and its physical properties. In this work, a systematic study of the factors that influence the LCST of the PNIPAM polymer mixed with Fe3O4 nanoparticles (MNPs) during thermal bath heating is presented. A series of PNIPAM solutions with varying concentrations of PNIPAM with MNPs were prepared and characterized using scanning electron microscopy. In-situ transmission measurements were used to determine the LCST of PNIPAM concentrations. A systematic decrease in the LCST was observed as the concentration of PNIPAM was increased. In addition, the impact of pH on the LCST of PNIPAM was examined by increasing the basicity of the PNIPAM solutions by adding adjusted KOH pellets. An increase in the thermal stability of the LCST was observed when the basicity of the PNIPAM solution was increased. The results from this study provide valuable information towards using these thermo-responsive polymers in targeted drug delivery. Principal Investigator

  9. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  10. Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts.

    PubMed

    Ferkol, Thomas; Cohn, Leah A; Phillips, Thomas E; Smith, Arnold; Davis, Pamela B

    2003-05-15

    The cystic fibrosis (CF) lung is uniquely susceptible to Pseudomonas aeruginosa, and infection with this organism incites an intense, compartmentalized inflammatory response that leads to chronic airway obstruction and bronchiectasis. Neutrophils migrate into the airway, and released neutrophil elastase contributes to the progression of the lung disease characteristic of CF. We have developed a strategy that permits the delivery of antiproteases to the inaccessible CF airways by targeting the respiratory epithelium via the human polymeric immunoglobulin receptor (hpIgR). A fusion protein consisting of a single-chain Fv directed against secretory component, the extracellular portion of the pIgR, linked to human alpha1-antitrypsin is effectively ferried across human tracheal xenografts and delivers the antiprotease to the apical surface to a much greater extent than occurs by passive diffusion of human alpha1-antitrypsin alone. Targeted antiprotease delivery paralleled hpIgR expression in the respiratory epithelium in vivo and was not increased by escalating dose, so airway penetration was receptor-dependent, not dose-dependent. Thus, this approach provides us with the ability to deliver therapeutics, like antiproteases, specifically to the lumenal surface of the respiratory epithelium, within the airway surface fluid, where it will be in highest concentration at this site. PMID:12615618

  11. Formulation, Evaluation and Optimization of Pectin- Bora Rice Beads for Colon Targeted Drug Delivery System

    PubMed Central

    Ramteke, Kuldeep Hemraj; Nath, Lilakant

    2014-01-01

    Purpose: The purpose of this research was to established new polysaccharide for the colon targeted drug delivery system, its formulation and in vitro and in vivo evaluation. Methods: Microspheres containing pectin and bora rice were prepared by ionotropic gelation technique using zinc acetate as cross linking agent and model drug used was glipizide. A 32 full factorial design was employed to study the effect of independent variables, polymer to drug ratio (A), and concentration of cross linking agent (B) on dependent variables, particle size, swelling index, drug entrapment efficiency and percentage drug release. Results: Results of trial batches indicated that polymer to drug ratio and concentration of cross linking agent affects characteristics of beads. Beads were discrete, spherical and free flowing. Beads exhibited small particle size and showed higher percentage of drug entrapment efficiency. The optimized batch P2 exhibited satisfactory drug entrapment efficiency 68% and drug release was also controlled for more than 24 hours. The polymer to drug ratio had a more significant effect on the dependent variables. In vivo gamma scintigraphy study of optimized pectin-bora rice beads demonstrated degradation of beads whenever they reached to the colon. Conclusion: Bora rice is potential polysaccharide for colon targeted drug delivery system. PMID:24511481

  12. Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery.

    PubMed

    Yang, Huihui; Bremner, David H; Tao, Lei; Li, Heyu; Hu, Juan; Zhu, Limin

    2016-01-01

    In order to enhance the efficiency and specificity of anticancer drug delivery and realize intelligently controlled release, a new drug carrier was developed. Graphene oxide (GO) was first modified with carboxymethyl chitosan (CMC), followed by conjugation of hyaluronic acid (HA) and fluorescein isothiocyanate (FI). The resulting GO-CMC-FI-HA conjugate was characterized and used as a carrier to encapsulate the anticancer drug doxorubicin (DOX) to study in vitro release behavior. The drug loading capacity is as high as 95% and the drug release rate under tumor cell microenvironment of pH 5.8 is significantly higher than that under physiological conditions of pH 7.4. Cell uptake studies show that the GO-CMC-FI-HA/DOX complex can specifically target cancer cells, which are over-expressing CD44 receptors and effectively inhibit their growth. The above results suggest that the functionalized graphene-based material has potential applications for targeted delivery and controlled release of anticancer drugs. PMID:26453853

  13. Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite for targeted drug delivery

    SciTech Connect

    Gu, Lina; He, Xiaomei; Wu, Zhenyu

    2014-11-15

    Highlights: • Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe{sub 3}O{sub 4}/hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug release behavior of Fe{sub 3}O{sub 4}/HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe{sub 3}O{sub 4}/hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery.

  14. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Ganeshkumar, Moorthy; Ponrasu, Thangavel; Raja, Modhugoor Devendiran; Subamekala, Muthaiya Kannappan; Suguna, Lonchin

    2014-09-01

    The aim of this study was to synthesize green chemistry based gold nanoparticles using liver specific biopolymer and to develop a liver cancer targeted drug delivery system with enhanced efficacy and minimal side effects. Pullulan stabilized gold nanoparticles (PAuNPs) were coupled with 5-Fluorouracil (5-Fu) and folic acid (Fa) which could be used as a tool for targeted drug delivery and imaging of cancer. The toxicity of 5-Fu, 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs), Fa-coupled 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs-Fa), was studied using zebrafish embryo as an in vivo model. The in vitro cytotoxicity of free 5-Fu, 5-Fu@AuNPs, 5-Fu@AuNPs-Fa against HepG2 cells was studied and found that the amount of 5-Fu required to achieve 50% of growth of inhibition (Ic50) was much lower in 5-Fu@AuNP-Fa than in free 5-Fu, 5-Fu@AuNPs. The in vivo biodistribution of PAuNPs showed that higher amount of gold had been accumulated in liver (54.42 ± 5.96 μg) than in other organs.

  15. Targeted delivery of neurogenin-2 protein in the treatment for cerebral ischemia-reperfusion injury.

    PubMed

    Deng, Bin; Gou, Xingchun; Chen, Hai; Li, Liya; Zhong, Haixing; Xu, Hao; Jiang, Fengliang; Zhao, Zhijing; Wang, Qiang; Xu, Lixian

    2013-11-01

    Neurogenin-2 (Ngn2), as a proneural gene that promotes the survival and differentiation of neural precursor cells, is an attractive candidate for therapy against cerebral ischemia-reperfusion injury. However, the delivery approach limits its clinical application. To deliver Ngn2 protein into the cerebral ischemic region and exert a therapeutic effect on injured neurons after ischemia, we here reported that the fusion protein TAT-LBD-Ngn2 was constructed by fusing a transactivator of transcription (TAT) domain and a laminin-binding domain (LBD) to Ngn2. TAT-LBD-Ngn2 promoted the outgrowth of neuronal neurite, increased the survival rate and alleviated apoptosis of hippocampal neurons exposed to oxygen glucose deprivation invitro. Furthermore, a focal cerebral ischemia model in C57BL/6 mice showed that TAT-LBD-Ngn2 efficiently crossed the blood brain barrier, aggregated in the ischemic zone and was consistently incorporated into neurons. Moreover, TAT-LBD-Ngn2 transduced into brains attenuated neuronal degeneration and apoptosis in the ischemic zone. TAT-LBD-Ngn2 treatment resulted in a reduction of infarct volume that was associated with a parallel improvement in neurological functional outcomes after reperfusion. In conclusion, the targeted delivery of TAT-LBD-Ngn2 into the ischemic zone attenuated cerebral ischemia-reperfusion injury through the inhibition of neuronal degeneration and apoptosis, suggesting that TAT-LBD-Ngn2 is a promising target candidate for the treatment of ischemic stroke. PMID:23942209

  16. Intracellular delivery of 10-hydroxycamptothecin with targeted nanostructured lipid carriers against multidrug resistance.

    PubMed

    Liu, Min; Chen, Didi; Mukerabigwi, Jean Felix; Chen, Sha; Zhang, Yuannian; Lei, Shaojun; Luo, Shiying; Wen, Zhili; Cao, Yu; Huang, Xueying; He, Hongxuan

    2016-06-01

    10-Hydroxycamptothecin (HCPT) is a clinical therapy agent against hepatoma. The chemotherapy of HCPT is strongly obstructed by the emergence of multidrug resistance (MDR), serious systemic toxicity, malfunction of rapid phagocytic and renal clearance disorder which are undesirable for its chemotherapy. In this paper, a drug delivery system (DDS) for HCPT has been developed in order to overcome MDR. Nanostructured lipid carriers (NLC) coated with xyloglucan (XG) was prepared by soya oil and XG consisting of side chains with galactose residues, a terminal moiety that can be used to target HCPT to hepatoma. The therapeutic potential of XG-NLC/HCPT was investigated on HepG2/HCPT cells and on human tumor xenograft nude mouse model (implanted with HepG2/HCPT cells). XG-NLC/HCPT not only indicated superior cytotoxicity against the drug resistant HepG2 cells but also in vivo, generated a higher therapeutic effect. Systemic toxicity study demonstrated that the carrier reduced systemic toxicity. XG-NLC/HCPT proved a great potential to serve as DDS to overcome MDR of HepG2/HCPT cells. These results suggested that XG NLC/HCPT represent a promising carrier for drug delivery to the hepatoma and reverse the drug resistant of HepG2 cells and XG could be exploited as a potential targeting device for liver tissue. PMID:26422582

  17. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

    PubMed

    Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

    2015-12-01

    Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy. PMID:26433349

  18. Evaluation of improved PAMAM-G5 conjugates for gene delivery targeted to the transferrin receptor.

    PubMed

    Urbiola, Koldo; Blanco-Fernndez, Laura; Navarro, Gemma; Rdl, Wolfgang; Wagner, Ernst; Ogris, Manfred; Tros de Ilarduya, Conchita

    2015-08-01

    The transfection activity of non-viral vectors is highly dependent on the delivery capacity of the carriers. Therefore, the aim of this work was to evaluate the activity of a new PAMAM dendrimer-Transferrin conjugate (P-Tf) with improved gene delivery activity to cancer cells. The formulations containing the novel P-Tf were able to bind pDNA and protect it from the activity of DNAse I enzyme. Moreover, it formed nanoparticles with positive surface charge, although the presence of Tf led to a decrease of the zeta potential to almost electroneutral values. This new vector, formulated at N/P 6, exhibited excellent transfection efficacy in HeLa, HepG2 and CT26 cell lines, whereas in Neuro2A no improvement was achieved. Compared to control complexes with branched polyethylenimine (bPEI), targeted dendriplexes (complexes formed by cationic polymeric dendrimers and DNA) were more efficient in HepG2 and HeLa cells. Cellular viability was always kept over 80% in these cell lines with higher values than bPEI control polyplexes. The uptake via receptor-mediated endocytosis was ensured by a competition assay, by adding an excess of free Tf, which led to a decrease in the transfection activity of targeted dendriplexes. PMID:26004821

  19. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

    PubMed Central

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. PMID:23836972

  20. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery.

    PubMed

    Vaidya, Bhuvaneshwar; Gupta, Vivek

    2015-08-10

    Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery. PMID:26036906