Note: This page contains sample records for the topic targeted nanogel delivery from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery.  

PubMed

Bacteria-Responsive Multifunctional Nanogel: We developed a bacteria-responsive multifunctional nanogel for targeted antibiotic delivery, in which bacterial enzymes are utilized to trigger antibiotic release by degrading the polyphosphoester core. The mannosylated nanogel preferentially delivers drugs to macrophages and leads to drug accumulation at bacterial infection sites through macrophage transport. This nanogel provides macrophage targeting and lesion site-activatable drug release properties, which enhances bacterial growth inhibition. PMID:22961974

Xiong, Meng-Hua; Li, Ya-Juan; Bao, Yan; Yang, Xian-Zhu; Hu, Bing; Wang, Jun

2012-09-10

2

Polyelectrolyte Nanogels Decorated with Monoclonal Antibody for Targeted Drug Delivery  

PubMed Central

Novel surface-functionalized cross-linked nanogels were developed as a platform to allow conjugation of monoclonal antibodies (mAb) for targeted drug delivery. Well-defined diblock copolymers of poly(ethylene glycol)-b-poly(methacrylic acid) (PEG-b-PMA) with PEG terminal aldehyde functionality were synthesized by atom transfer radical polymerization (ATRP) and characterized by GPC and 1H NMR. These copolymers were used to prepare nanogels via condensation of PEG-b-PMA with Ca2+ ions into micelle-like aggregates, cross-linking of the PMA/Ca2+ cores and removal of Ca2+ ions. The resulting nanogels represent highly swollen spherical polyelectrolyte particles with free terminal aldehyde functionalities at the nonionic PEG chains. A reductive amination reaction between aldehyde groups and amino groups of mAb resulted in effective conjugation to the nanogels of mAb CC49 against tumor-associated glycoprotein 72 (TAG-72). The mAb retained the binding affinity to bovine submaxillary mucin after conjugation as shown by surface plasmon resonance (SPR). Therefore, aldehyde functionalized nanogels can be linked to mAb using a simple, one-step approach. They may have potential for targeted delivery of diagnostic and therapeutic agents to tumors.

Nukolova, Nataliya V.; Yang, Zigang; Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

2010-01-01

3

LHRH-Targeted Nanogels as a Delivery System for Cisplatin to Ovarian Cancer.  

PubMed

Targeted drug delivery using multifunctional polymeric nanocarriers is a modern approach for cancer therapy. Our purpose was to prepare targeted nanogels for selective delivery of chemotherapeutic agent cisplatin to luteinizing hormone-releasing hormone (LHRH) receptor overexpressing tumor in vivo. Building blocks of such delivery systems consisted of innovative soft block copolymer nanogels with ionic cores serving as a reservoir for cisplatin (loading 35%) and a synthetic analogue of LHRH conjugated to the nanogels via poly(ethylene glycol) spacer. Covalent attachment of (d-Lys6)-LHRH to nanogels was shown to be possible without loss in either the ligand binding affinity or the nanogel drug incorporation ability. LHRH-nanogel accumulation was specific to the LHRH-receptor positive A2780 ovarian cancer cells and not toward LHRH-receptor negative SKOV-3 cells. The LHRH-nanogel cisplatin formulation was more effective and less toxic than equimolar doses of free cisplatin or untargeted nanogels in the treatment of receptor-positive ovarian cancer xenografts in mice. Collectively, the study indicates that LHRH mediated nanogel-cisplatin delivery is a promising formulation strategy for therapy of tumors that express the LHRH receptor. PMID:23957812

Nukolova, Natalia V; Oberoi, Hardeep S; Zhao, Yi; Chekhonin, Vladimir P; Kabanov, Alexander V; Bronich, Tatiana K

2013-08-30

4

Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX.  

PubMed

Cancer-targeting gold/polyacrylamide (Au-PAm) hybrid nanogels were successfully synthesized via water/oil microemulsion polymerization followed by in situ reduction of gold and chemical modification with methotrexate (MTX). The Au nanoparticles range from ?3 to 7nm and the loading in the hydrogel can be easily controlled. Dynamic light scattering results showed that the hydrodynamic size distribution of these hybrid nanogels is similar to that of blank PAm nanogels (average diameter of ?30nm), indicating that the Au nanoparticles were mostly incorporated into/onto the nanogels. MTX was used as both a targeting ligand and an anti-cancer drug for chemotherapy. The MTX-functionalized Au-PAm hybrid nanogels (Au-PAm-MTX) at a dosage of 0.5mg/ml or higher can kill KB cells with high efficacy and suppress recovery of the cancer cells. On the other hand, the viability of macrophages showed no obvious decrease after incubation with Au-PAm-MTX, indicating that such materials are not likely to initiate immune responses in the physiological environment and their circulation life time will be prolonged. Hence, such hybrid nanogels can potentially enable safe and effective cancer chemotherapy via targeted co-delivery of cytotoxic Au NPs and MTX in a single carrier to KB cells while avoiding the macrophages. PMID:24144373

Lu, Shengjie; Neoh, Koon Gee; Huang, Chao; Shi, Zhilong; Kang, En-Tang

2013-09-17

5

Near-Infrared Light-Responsive Core-Shell Nanogels for Targeted Drug Delivery  

PubMed Central

A near-infrared light-responsive drug delivery platform based on Au-Ag-nanorods (Au-Ag NRs) coated with DNA-crosslinked polymeric shells was constructed. DNA complementarity has been applied to develop a polyacrylamide-based sol-gel transition system to encapsulate anticancer drugs into the gel scaffold. The Au-Ag NR based nanogels can also be readily functionalized with targeting moieties, such as aptamers, for specific recognition of tumor cells. When exposed to NIR irradiation, the photothermal effect of the Au-Ag NRs leads to a rapid rise in the temperature of the surrounding gel, resulting in the fast release of the encapsulated payload with high controllability. In vitro study confirmed that aptamer functionalized nanogels can be used as drug carriers feasible for targeted drug delivery with remote control capability by NIR light with high spatial/temporal resolution.

Kang, Huaizhi; Trondoli, Anna Carolina; Zhu, Guizhi; Chen, Yan; Chang, Ya-Jen; Liu, Haipeng; Huang, Yu-Fen; Zhang, Xiaoling; Tan, Weihong

2011-01-01

6

Thermosensitive P(NIPAAm-co-PAAc-co-HEMA) nanogels conjugated with transferrin for tumor cell targeting delivery  

NASA Astrophysics Data System (ADS)

Multifunctional and thermosensitive poly(N-isopropylacrylamide-co-propyl acrylic acid-co-hydroxyethyl methacrylate) (P(NIPAAm-co-PAAc-co-HEMA)) nanogels were prepared by miniemulsion polymerization. The mean sizes of the nanogels measured by dynamic light scattering (DLS) varied from 120 to 400 nm with an increase in temperature. Transmission electron microscopy (TEM) showed that the nanogels displayed well-dispersed spherical morphology. The nanogels were conjugated by human transferrin (Tf) and the coupling of transferrin molecules with nanogels was verified by UV-vis spectroscopy. The cytotoxicity study indicated that the nanogels did not exhibit apparent cytotoxicity. Fluorescence spectroscopy analysis as well as confocal laser scanning microscopy (CLSM) was used to confirm that the Tf-conjugated nanogels could specifically bind to A549 tumor cells. In addition, the Tf-conjugated nanogels loaded with Doxorubicin (Dox) could efficiently release the drug inside the cell, suggesting that the Tf-conjugated nanogels are useful drug carriers for tumor cell targeting.

Quan, Chang-Yun; Sun, Yun-Xia; Cheng, Han; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

2008-07-01

7

Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance  

Microsoft Academic Search

Multifunctional and degradable nanogels encapsulating both model drug (fluorescently labeled dextran) and imaging reagent (monodisperse Fe3O4 nanoparticles) were developed by polymerizing zwitterionic monomers with a disulfide crosslinker. Results show that the nanogels have a hydrodynamic size of about 110 nm in saline solution and their size remained unchanged for over 6 months. After being conjugated with a targeting ligand, the nanogels

Lei Zhang; Hong Xue; Zhiqiang Cao; Andrew Keefe; Jinnan Wang; Shaoyi Jiang

2011-01-01

8

Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels  

Microsoft Academic Search

Novel hyaluronic acid (HA) nanogels physically encapsulating small interfering RNA (siRNA) were fabricated by an inverse water-in-oil emulsion method. Thiol-conjugated HA dissolved in aqueous emulsion droplets was ultrasonically crosslinked via the formation of disulfide linkages to produce HA nanogels with a size distribution from 200 to 500 nm. Green fluorescence protein (GFP) siRNA was physically entrapped within the HA nanogels during

Hyukjin Lee; Hyejung Mok; Soohyeon Lee; Yu-Kyoung Oh; Tae Gwan Park

2007-01-01

9

Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels.  

PubMed

Novel hyaluronic acid (HA) nanogels physically encapsulating small interfering RNA (siRNA) were fabricated by an inverse water-in-oil emulsion method. Thiol-conjugated HA dissolved in aqueous emulsion droplets was ultrasonically crosslinked via the formation of disulfide linkages to produce HA nanogels with a size distribution from 200 to 500 nm. Green fluorescence protein (GFP) siRNA was physically entrapped within the HA nanogels during the emulsion/crosslinking process. The HA/siRNA nanogels were readily taken up by HA receptor positive cells (HCT-116 cells) having HA-specific CD44 receptors on the surface. Release rates of siRNA from the HA nanogels could be modulated by changing the concentration of glutathione (GSH) in the buffer solution, indicating that the degradation/erosion of disulfide crosslinked HA nanogels, triggered by an intracellular reductive agent, controlled the release pattern of siRNA. When HA nanogels containing GFP siRNA were co-transfected with GFP plasmid/Lipofectamine to HCT-116 cells, a significant extent of GFP gene silencing was observed in both serum and non-serum conditions. The gene silencing effect was reduced in the presence of free HA in the transfection medium, revealing that HA nanogels were selectively taken up by HCT-116 cells via receptor mediated endocytosis. PMID:17408798

Lee, Hyukjin; Mok, Hyejung; Lee, Soohyeon; Oh, Yu-Kyoung; Park, Tae Gwan

2007-02-27

10

Polymer nanogels: a versatile nanoscopic drug delivery platform  

PubMed Central

In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed.

Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

2012-01-01

11

Folate-Decorated Nanogels for Targeted Therapy of Ovarian Cancer  

PubMed Central

Nanogels are comprised of swollen polymer networks and nearly 95 % water and can entrap diverse chemical and biological agents for cancer therapy with very high loading capacities. Here we use diblock copolymer poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) to form nanogels with the desired degree of cross-linking. The nanogels are further conjugated to folic acid (FA) and loaded with different types of drugs (cisplatin, doxorubicin). For the first time we demonstrate a tumor-specific delivery and superior antitumor effect in vivo of an anti-cancer drug using these polyelectrolyte nanogels decorated with folate targeting groups. This reinforces the use of nanogels for the therapy of ovarian and other cancers, where folate receptor (FR) is over-expressed.

Nukolova, Natalia V.; Oberoi, Hardeep S.; Cohen, Samuel M.; Kabanov, Alexander V.; Bronich, Tatiana K.

2011-01-01

12

Folate-decorated nanogels for targeted therapy of ovarian cancer.  

PubMed

Nanogels are comprised of swollen polymer networks and nearly 95% water and can entrap diverse chemical and biological agents for cancer therapy with very high loading capacities. Here we use diblock copolymer poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) to form nanogels with the desired degree of cross-linking. The nanogels are further conjugated to folic acid (FA) and loaded with different types of drugs (cisplatin, doxorubicin). For the first time we demonstrate a tumor-specific delivery and superior anti-tumor effect in vivo of an anti-cancer drug using these polyelectrolyte nanogels decorated with folate-targeting groups. This reinforces the use of nanogels for the therapy of ovarian and other cancers, where folate receptor (FR) is overexpressed. PMID:21536326

Nukolova, Natalia V; Oberoi, Hardeep S; Cohen, Samuel M; Kabanov, Alexander V; Bronich, Tatiana K

2011-05-04

13

Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice  

PubMed Central

The ability to selectively inactivate immune cells with immunosuppressants is a much sought-after modality for the treatment of systemic lupus erythematosus and autoimmunity in general. Here, we designed and tested a novel nanogel drug delivery vehicle for the immunosuppressant mycophenolic acid (MPA). Treatment with MPA-loaded nanogels increased the median survival time (MST) of lupus-prone NZB/W F1 mice by 3 months with prophylactic use (MST was 50 weeks versus 38 weeks without treatment), and by 2 months when administered after the development of severe renal damage (MST after proteinuria onset was 12.5 weeks versus 4 weeks without treatment). Equivalent and greater doses of MPA administered in buffer were not efficacious. Nanogels had enhanced biodistribution to organs and association with immune cells. CD4-targeted nanogels yielded similar therapeutic results compared with nontargeted formulations, with protection from glomerulonephritis and decreases in IFN-?–positive CD4 T cells. DCs that internalized nanogels helped mediate immunosuppression, as they had reduced production of inflammatory cytokines such as IFN-? and IL-12. Our results demonstrate efficacy of nanogel-based lupus therapy and implicate a mechanism by which immunosuppression is enhanced, in part, by the targeting of antigen-presenting cells.

Look, Michael; Stern, Eric; Wang, Qin A.; DiPlacido, Leah D.; Kashgarian, Michael; Craft, Joe; Fahmy, Tarek M.

2013-01-01

14

Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand" drug delivery.  

PubMed

The pH and reduction dual-responsive polypeptide nanogels with self-reinforced endocytoses were prepared through ring-opening polymerization of l-glutamate N-carboxyanhydrides, deprotection of benzyl group and subsequent quaternization reaction between ?-2-chloroethyl-l-glutamate unit in polypeptide block and 2,2'-dithiobis(N,N-dimethylethylamine). The nanogels were revealed to exhibit smart pH and reduction dual-responsiveness, and excellent biocompatibilities, which expressed great potential as antitumor drug nanocarriers. Doxorubicin (DOX) as a model antitumor drug was loaded into nanogels through dispersion. DOX-loaded nanogels displayed a stable core-cross-linked structure under normal physiological condition (pH7.4), while rapidly releasing the payloads in the mimicking endosomal (pH5.3), tumor tissular (pH6.8) or intracellular reductive microenvironments (10.0mM glutathione). Confocal fluorescence microscopy demonstrated that DOX-loaded nanogels could deliver DOX into HepG2 cells (a human hepatoma cell line) more efficiently than the parent DOX-loaded micelle and free DOX. The enhanced cellular internalizations of DOX-loaded nanogels were more significant under tumor tissular acidic condition (pH6.8) ascribed to the quaternary ammonium groups in the cores. In addition, DOX-loaded nanogels exhibited improved in vitro and in vivo antitumor activities, and in vivo securities compared with DOX-loaded micelle and free DOX. These excellent features of the smart nanogels with quaternary ammonium groups were endowed with a bright prospect for intracellular targeting antitumor drug delivery. PMID:23742879

Ding, Jianxun; Xu, Weiguo; Zhang, Ying; Sun, Diankui; Xiao, Chunsheng; Liu, Donghong; Zhu, Xiaojuan; Chen, Xuesi

2013-06-03

15

Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels\\/nanogels for targeted drug delivery applications  

Microsoft Academic Search

This short review describes application of atom transfer radical polymerization (ATRP) in inverse miniemulsion and disulfide–thiol exchange to prepare well-defined biodegradable functional nanogels (ATRP-nanogels). Due to the formation of uniform network, the ATRP-nanogels have higher swelling ratios, better colloidal stability, and controlled degradation, as compared to nanogels prepared by conventional free-radical polymerization. Various water-soluble biomolecules such as anticancer drugs, carbohydrates,

Jung Kwon Oh; Sidi A. Bencherif; Krzysztof Matyjaszewski

2009-01-01

16

Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements.  

PubMed

In this work, the chitosan-based luminescent/magnetic (CLM) nanomaterials were synthesized by direct gelation of chitosan, CdTe and superparamagnetic iron oxide into the hybrid nanogels. The morphology, sizes and properties of the nanogels prepared with different chitosan/QD/MNP ratios and under different processing parameters were researched. Fluorescence microscopy, FTIR spectra and TEM images confirmed the success of the preparation of the CLM hybrid nanogels. Spherical CLM hybrid nanogels with appropriate average sizes (<160 nm) were used for insulin loading. The actual loading amount of insulin was approximately 40.1mg/g. Human normal hepatocytes L02 cell line was used to explore the effects of additives, such as mangiferin (MF), (-)-epigallocatechin gallate (EGCG), and (-)-epicatechin gallate (ECG) on the insulin-receptor-mediated cellular uptake using insulin-loaded CLM (ICLM) hybrid nanogels. Above 80% of viability of L02 cells were watched at a nanogels concentration of 500 ?g/mL whatever the additives existed or not. The study discovered that the fluorescent signals of the ICLM hybrid nanogels in L02 cells were more intense in the presence of MF, EGCG and ECG in medium than in the absence of these components, respectively. These results demonstrate that MF, EGCG and ECG are potentially able to enhance targeting combination of insulin with L02 cells and improve insulin sensitivity in L02 cells. The hybrid nanogels designed as a targeting carrier can potentially offer an approach for integration of insulin delivery, cell imaging, and antidiabetic investigation of dietary supplements. PMID:22342466

Shen, Jian-Min; Xu, Luan; Lu, Yan; Cao, Hui-Ming; Xu, Zhi-Gang; Chen, Tong; Zhang, Hai-Xia

2012-02-07

17

Intracellular delivery of DNA and enzyme in active form using degradable carbohydrate-based nanogels.  

PubMed

The facile encapsulation of biomolecules along with efficient formulation and storage makes nanogels ideal candidates for drug and gene delivery. So far, nanogels have not been used for the codelivery of plasmid DNA and proteins due to several limitations, including low encapsulation efficacy of biomolecule of similar charges and the size of cargo materials. In this study, temperature and pH sensitive carbohydrate-based nanogels are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization technique and are studied in detail for their capacity to encapsulate and codeliver plasmid DNA and proteins. The temperature sensitive property of nanogels allows the facile encapsulation of biomaterials, while its acid-degradable profile allows the burst release of biomolecules in endosomes. Hence these materials are expected to serve as efficient vectors to deliver biomolecules of choice either alone or as codelivery system. The nanogels produced are relatively monodisperse and are around 30-40 nm in diameter at 37 °C. DNA condensation efficacy of the nanogels is dependent on the hydrophobic property of the core of the nanogels. The DNA-nanogel complexes are formed by the interaction of carbohydrate residues of nanogels with the DNA, and complexes are further stabilized with linear cationic glycopolymers. The DNA-nanogels complexes are also studied for their protein loading capacity. The degradation of the nanogels and the controlled release of DNA and proteins are then studied in vitro. Furthermore, the addition of a nontoxic, cationic glycopolymer to the nanogel-DNA complexes is found to improve the cellular uptake and hence to improve gene expression. PMID:22970989

Ahmed, Marya; Narain, Ravin

2012-09-25

18

Methacrylic-based nanogels for the pH-sensitive delivery of 5-fluorouracil in the colon.  

PubMed

Methacrylic-based copolymers in drug-delivery systems demonstrate a pH-sensitive drug-releasing behavior in the colon. In this study, copolymers of methacrylic acid and 2-ethyl hexyl acrylate were prepared using a microemulsion polymerization technique. The purified copolymer was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. 5-Fluorouracil (5-FU) was entrapped within methacrylic-based copolymers by a solvent evaporation method. The size of the nanogels formed was characterized by transmission electron microscopy and atomic force microscopy. In vitro drug-release studies using phosphate-buffered saline at different pH levels demonstrated the sustained release of 5-FU and its pH dependence. Cell proliferation assay of a human colon tumor colon cancer cell line (HCT-116) was performed and showed that the nanogels containing 5-FU exhibited considerable cytotoxicity in comparison with free 5-FU. Cell uptake of the nanogels was also monitored using confocal microscopy. Western blot analysis and flow cytometry studies confirmed that the nanogels could be successfully used as an efficient vector for pH-sensitive and controlled delivery of drugs specifically targeted to the colon. PMID:23172988

Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, Gs Vinod

2012-11-15

19

Poly(ethylene glycol)–polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides  

Microsoft Academic Search

A novel type of drug delivery system, termed NanoGel™ is proposed. NanoGel™ represent particles of a hydrophilic polymer network that were synthesized by cross-linking of polyethyleneimine (PEI) and carbonyldiimidazole-activated poly(ethylene glycol) (PEG) using emulsification\\/solvent evaporation technique. The resulting NanoGel™ was fractionated by gel-permeation chromatography. A major fraction with an average particle size of 120 nm was used in further experiments.

Serguei Vinogradov; Elena Batrakova; Alexander Kabanov

1999-01-01

20

In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery  

NASA Astrophysics Data System (ADS)

An effective, green, and facile approach to synthesize gold nanoparticle-loaded protein-polysaccharide nanogels was developed in this study. Biocompatible gold nanoparticle-loaded lysozyme-dextran (Au@Lys-Dex) nanogels were produced using lysozyme-dextran nanogels as reducing and stabilizing agents. Lysozyme-dextran nanogels have a size of about 200 nm and a structure of lysozyme core and dextran shell. At pH around 4, AuCl4- ions are attracted and locally enriched by lysozyme due to the electrostatic and coordination interactions. When the solution is under UV irradiation, the AuCl4- ions are reduced to gold nanoparticles in situ by solvated electrons and reactive radicals produced from aromatic amino acid residues in the lysozyme. The produced gold nanoparticles with a size of about 8 nm are trapped inside the nanogels and the Au@Lys-Dex nanogels are well dispersible by virtue of the dextran shell. Antitumor drug, doxorubicin, can be loaded effectively inside Au@Lys-Dex nanogels via diffusion. In vitro study demonstrates the doxorubicin loaded Au@Lys-Dex nanogels have the same antitumor activity as free doxorubicin. The nanogels can be used as a contrasting agent in optical cell imaging, in which direct visual images of the subcellular distributions of the gold nanoparticles and the released doxorubicin are presented synchronously. The dual functional drug loaded Au@Lys-Dex nanogels are a promising system for simultaneous drug delivery and biomedical imaging.

Cai, Huanxin; Yao, Ping

2013-03-01

21

Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery.  

PubMed

Abstract Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(l-glutamic acid), hydrophobically modified with l-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70?nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

Kim, Jong Oh; Oberoi, Hardeep S; Desale, Swapnil; Kabanov, Alexander V; Bronich, Tatiana K

2013-09-02

22

Poly(L-aspartic acid) nanogels for lysosome-selective antitumor drug delivery.  

PubMed

Advanced materials that have controllable pH-responsive properties when submerged in the lysosome have a great potential in intracellular drug delivery. We developed novel poly(L-amino acid) nanogels that were prepared by a facile cross-linking of poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol)-maleimide [poly(L-Asp-g-DEAP)-b-PEG-Mal] and poly(L-aspartic acid-g-ethyl thiol)-b-PEG [poly(L-Asp-SH)-b-PEG] in an oil/water emulsion condition. Interestingly, these nanogels (~125 nm in diameter) modulated volume expansion (~375 nm in diameter) in a lysosomal pH (~pH 5.0) due to an extensive proton absorption of DEAP at a low pH, which mediated lysosome swelling and the subsequent lysosome destabilization. In the in vitro tumor cell cytotoxicity test, they encouraged tumor cell death, probably owing to the leakage of lysosomal enzymes. Furthermore, encapsulating antitumor drug (e.g., doxorubicin, DOX) into these nanogels enhanced tumor cell cytotoxicity. We conclude that this nanogel system will have great potential for tumor therapy. PMID:23010033

Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Don Haeng; Lee, Eun Seong

2012-07-20

23

Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines  

Microsoft Academic Search

Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment

Tomonori Nochi; Yoshikazu Yuki; Haruko Takahashi; Shin-Ichi Sawada; Mio Mejima; Tomoko Kohda; Norihiro Harada; Il Gyu Kong; Ayuko Sato; Nobuhiro Kataoka; Daisuke Tokuhara; Shiho Kurokawa; Yuko Takahashi; Hideo Tsukada; Shunji Kozaki; Kazunari Akiyoshi; Hiroshi Kiyono

2010-01-01

24

Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release  

NASA Astrophysics Data System (ADS)

In this paper, both arginine-glycine-aspartic acid (RGD)-containing peptide and transferrin (Tf) were conjugated to the thermosensitive poly(N-isopropylacrylamide-co-propyl acrylic acid) (poly(NIPAAm-co-PAAc)) nanogel to prepare a dual-targeting drug carrier. The obtained nanogel was characterized in terms of fluorescence spectroscopy, UV-vis spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). In order to track the dual-ligand conjugated nanogel, fluorescein isothiocyanate (FITC) was further conjugated to the nanogel. A cell internalization experiment showed that the dual-ligand conjugated nanogel exhibited obviously enhanced endocytosis by HeLa cells as compared with non-tumorous cells (COS-7 cells). The drug-loaded dual-ligand conjugated nanogel could be transported efficiently into the target tumor cells and the anti-tumor effect was enhanced significantly, suggesting that the dual-ligand conjugated nanogel has great potential as a tumor targeting drug carrier.

Quan, Chang-Yun; Chang, Cong; Wei, Hua; Chen, Chang-Sheng; Xu, Xiao-Ding; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

2009-08-01

25

Nanogels as Pharmaceutical Carriers  

Microsoft Academic Search

Nanogels are nanosized networks of chemically or physically cross-linked polymers that swell in a good solvent. The term “nanogel”\\u000a (NanoGel™) was first introduced by us to define cross-linked bifunctional networks of a polyion and a nonionic polymer for\\u000a delivery of polynucleotides (cross-linked polyethyleneimine (PEI) and poly(ethylene glycol) (PEG) or PEG-cl-PEI) (Lemieux et al., 2000; Vinogradov et al., 1999). However, some

Alexander V. Kabanov; Serguei V. Vinogradov

26

Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs  

PubMed Central

The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP). To achieve this primary goal we have developed a skin permeating nanogel system (SPN) containing surface modified polymeric bilayered nanoparticles along with a gelling agent. Poly-(lactide-co-glycolic acid) and chitosan were used to prepare bilayered nanoparticles (NPS) and the surface was modified with oleic acid (NPSO). Hydroxypropyl methyl cellulose (HPMC) and Carbopol with the desired viscosity were utilized to prepare the nanogels. The nanogel system was further investigated for in vitro skin permeation, drug release and stability studies. Allergic contact dermatitis (ACD) and psoriatic plaque like model were used to assess the effectiveness of SPN. Dispersion of NPSO in HPMC (SPN) produced a stable and uniform dispersion. In vitro permeation studies revealed increase in deposition of SP for the SP-SPN or SP+KP-SPN in the epidermis and dermis by 8.5 and 9.5 folds, respectively than SP-gel. Further, the deposition of KP for KP-SPN or SP+KP-SPN in epidermis and dermis was 9.75 and 11.55 folds higher, respectively than KP-gel. Similarly the amount of KP permeated for KP-SPN or SP+KP-SPN was increased by 9.92 folds than KP-gel. The ear thickness in ACD model and the expression of IL-17 and IL-23; PASI score and TEWL values in psoriatic plaque like model were significantly less (p<0.001) for SPN compared to control gel. Our results suggest that SP+KP-SPN have significant potential for the percutaneous delivery of SP and KP to the deeper skin layers for treatment of various skin inflammatory disorders.

Shah, Punit; Desai, Pinaki; Patel, Apurva; Singh, Mandip

2011-01-01

27

Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs.  

PubMed

The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP). To achieve this primary goal, we have developed a skin permeating nanogel system (SPN) containing surface modified polymeric bilayered nanoparticles along with a gelling agent. Poly-(lactide-co-glycolic acid) and chitosan were used to prepare bilayered nanoparticles (NPS) and the surface was modified with oleic acid (NPSO). Hydroxypropyl methyl cellulose (HPMC) and Carbopol with the desired viscosity were utilized to prepare the nanogels. The nanogel system was further investigated for in vitro skin permeation, drug release and stability studies. Allergic contact dermatitis (ACD) and psoriatic plaque like model were used to assess the effectiveness of SPN. Dispersion of NPSO in HPMC (SPN) produced a stable and uniform dispersion. In vitro permeation studies revealed increase in deposition of SP for the SP-SPN or SP+KP-SPN in the epidermis and dermis by 8.5 and 9.5 folds, respectively than SP-gel. Further, the deposition of KP for KP-SPN or SP+KP-SPN in epidermis and dermis was 9.75 and 11.55 folds higher, respectively than KP-gel. Similarly the amount of KP permeated for KP-SPN or SP+KP-SPN was increased by 9.92 folds than KP-gel. The ear thickness in ACD model and the expression of IL-17 and IL-23; PASI score and TEWL values in psoriatic plaque like model were significantly less (p < 0.001) for SPN compared to control gel. Our results suggest that SP+KP-SPN have significant potential for the percutaneous delivery of SP and KP to the deeper skin layers for treatment of various skin inflammatory disorders. PMID:22118820

Shah, Punit P; Desai, Pinaki R; Patel, Apurva R; Singh, Mandip S

2011-11-26

28

Multifunctional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery  

Microsoft Academic Search

Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell

Weitai Wu; Jing Shen; Zheng Gai; Kunlun Hong; Probal Banerjee; Shuiqin Zhou

2011-01-01

29

Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.  

PubMed

Dextrin, a glucose polymer with low molecular weight, was used to develop a fully resorbable hydrogel, without using chemical initiators. Dextrin was first oxidized (oDex) with sodium periodate and then cross-linked with adipic acid dihidrazide, a nontoxic cross-linking molecule. Furthermore, a new bidimensional composite hydrogel, made of oxidized dextrin incorporating dextrin nanogels (oDex-nanogel), was also developed. The oDex hydrogels showed good mechanical properties and biocompatibility, allowing the proliferation of mouse embryo fibroblasts 3T3 cultured on top of the gel. The gelation time may be controlled selecting the concentrations of the polymer and reticulating agent. Both the oDex and oDex-nanogel hydrogels are biodegradable and present a 3-D network with a continuous porous structure. The obtained hybrid hydrogel enables the release of the dextrin nanogel over an extended period of time, paralleling the mass loss curve due to the degradation of the material. The dextrin nanogel allowed the efficient incorporation of interleukin-10 and insulin in the oDex hydrogel, providing a sophisticated system of controlled release. The new hydrogels present promising properties as an injectable carrier of bioactive molecules. Both proteins and poorly water-soluble low-molecular-weight drugs are efficiently encapsulated in the nanogel, which performs as a controlled release system entrapped in the hydrogel matrix. PMID:22288730

Molinos, Maria; Carvalho, Vera; Silva, Dina M; Gama, Francisco M

2012-01-30

30

Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery.  

PubMed

Polysaccharide-PEG hybrid nanogels (CHPOA-PEGSH) crosslinked by both covalent ester bonds and physical interactions were prepared by the reaction of a thiol-modified poly(ethylene glycol) (PEGSH) with acryloyl-modified cholesterol-bearing pullulan (CHPOA). Experimental parameters, including CHPOA concentration, the degree of acryloyl substitution of CHPOA, and the initial amounts of CHPOA and PEGSH, were modified in order to assess their effect on the size of the nanogels (50-150 nm) and on their degradation kinetics, monitored by dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AF4) chromatography. Rhodamine-labeled nanogels were injected intravenously into mice and their concentration in blood was determined by a fluorescence assay as a function of post-injection time. The elimination half-life (t(1/2)) of CHPOA-PEGSH nanoparticles was about 15-fold longer (18 h) than that of CHP nanogels (1.2 h). The half-life enhancement of CHPOA-PEGSH was attributed to the presence of the crosslinker PEG chains, which prevent non-specific protein adsorption, and to the slow hydrolysis kinetics of the crosslinking esters in the biological milieu. The hybrid CHPOA-PEGSH nanogels are expected to be useful as injectable nanocarriers for drugs and proteins, in view of their low surface fouling and slow hydrolysis rate. PMID:21996463

Shimoda, Asako; Sawada, Shin-ichi; Kano, Arihiro; Maruyama, Atsushi; Moquin, Alexandre; Winnik, Françoise M; Akiyoshi, Kazunari

2011-09-19

31

Magnetic and pH dual responsive core-shell hybrid nanogels: a single nano-object for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery  

Microsoft Academic Search

Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel

Weitai Wu; Jing Shen; Zheng Gai; Kunlun Hong; Probal Banerjeea; Shuiqin Zhou

2011-01-01

32

Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.  

PubMed

Nanosize hydrogels (nanogels) are polymer nanoparticles with three-dimensional networks, formed by chemical and/or physical cross-linking of polymer chains. Recently, various nanogels have been designed, with a particular focus on biomedical applications. In this review, we describe recent progress in the synthesis of nanogels and nanogel-integrated hydrogels (nanogel cross-linked gels) for drug-delivery systems (DDS), regenerative medicine, and bioimaging. We also discuss chaperone-like functions of physical cross-linking nanogel (chaperoning engineering) and organic-inorganic hybrid nanogels. PMID:20836092

Sasaki, Yoshihiro; Akiyoshi, Kazunari

2010-09-10

33

Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core.  

PubMed

For the development of an siRNA delivery system using polyion complexes (PICs) based on PEGylated nanogel consisting of a cross-linked poly[2-(N,N-diethylaminoethyl) methacrylate] (PEAMA) gel core and tethered poly(ethylene glycol) (PEG) chains, quaternary ammonium groups were introduced in the polyamine gel core to enhance the binding ability with siRNA and the stability of the PICs. Consequently, the quaternization of the polyamine core of the nanogel facilitated the binding ability with siRNA at a low N/P ratio, and the stability against polyanion displacement was enhanced as the degree of quaternization (DQ) of the nanogel increased. Although the installation of the positively charged quaternary ammonium moieties in the core of the nanogel resulted in the increment of the xi-potential of the PICs (e.g. + 23 mV for DQ=100%), the cytotoxicity was reduced with the increase of DQ presumably due to the hydrophilic character of the quaternary ammonium groups. The installation of quaternary ammonium groups in the core of the nanogel enhanced the endogenous gene silencing activity against the survivin gene in human hepatocarcinoma (HuH-7 cells), especially, the partly quaternized polyamine nanogel (DQ=10%) showed the highest gene silencing ability among the quaternized polyamine nanogels, including the tertiary amine nanogel. The cellular uptake analysis of the Rhodamine B-labeled Q-nanogel/fluorescein-labeled siRNA complex revealed that the quaternization of PEAMA moieties enhanced the cellular uptake level of fluorescein-labeled siRNA with the increase in DQ, whereas the cellular uptake of the Rhodamine B-labeled Q-nanogels was almost of the same level regardless of the DQ value, indicating that significant cellular uptake of the fluorescein-labeled siRNA is most likely due to the enhancement of the binding ability with siRNA in the serum-containing medium. Note that the endosomal escape efficiency was reduced with increase in the DQ value due to the decrease in the buffering capacity (tertiary amino groups) of the PEAMA core. On the basis of these results, the ratio of quaternary ammonium groups to tertiary amino groups in the core of the nanogel plays a pivotal role in the achievement of significant gene silencing through enhanced cellular uptake (quaternary ammonium groups) and subsequent endosomal escape (tertiary amino groups). PMID:20621664

Tamura, Atsushi; Oishi, Motoi; Nagasaki, Yukio

2010-06-04

34

Magnetic and pH dual responsive core-shell hybrid nanogels: a single nano-object for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery  

SciTech Connect

Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell of poly(ethylene glycol-co-methacrylic acid) [p(EG-MAA)] onto the Ni-Ag bimetallic NP cores (18 {+-} 5 nm). The introduction of the pH-responsive p(EG-MAA) gel shell onto the magnetic and fluorescent Ni-Ag NPs makes the polymer-bound Ni-Ag NPs responsive to pH over the physiologically important range 5.0-7.4. The hybrid nanogels can adapt to surrounding pH and regulate the sensitivity in response to external magnetic field (such as a small magnet of 0.1 T), resulting in the accumulation of the hybrid nanogels within the duration from hours to a few seconds as the pH value decreases from 7.4 to 5.0. The pH-dependent magnetic response characteristic of the hybrid nanogels were further integrated with the pH change to fluorescent signal transduction and pH-regulated anticancer drug (a model drug 5-fluorouracil) delivery functions. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The multiple responsive hybrid nanogel that can be manipulated in tandem endogenous and exogenous activation should enhance our ability to address the complexity of biological systems.

Wu, Weitai [City University of New York (CUNY); Shen, Jing [City University of New York (CUNY); Gai, Zheng [ORNL; Hong, Kunlun [ORNL; Banerjeea, Probal [City University of New York (CUNY); Zhou, Shuiqin [City University of New York (CUNY)

2011-01-01

35

The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo.  

PubMed

Abstract Stimulus-responsive nanogels have potential as carriers for drugs targeting the skin. It is important to estimate the biocompatibility of such materials with the skin since they are directly in contact upon application and may induce irritation or inflammation. In the current work, blank (drug-free) polyN-isopropylacrylamide (polyNIPAM), poly(NIPAM copolymerized butyl acrylate) [poly(NIPAM-co-BA)], and poly(NIPAM copolymerized with 5% w/v acrylic acid) [poly(NIPAM-co-AAc)(5%)] nanogels were dosed onto freshly excised full-thickness porcine ear skin and the effects on the expression of cyclooxygenase-2 (COX-2) determined ex vivo by Western blotting. Modulated COX-2 expression was indicative that the material had penetrated the skin and keratinocytes of the viable epidermis. The poly(NIPAM-co-BA) nanogel was found to exert a proinflammatory response when applied topically, as reflected by 67% higher COX-2 expression relative to the control treatment (p = 0.0035). The data obtained for the poly(NIPAM-co-AAc)(5%) nanogel, on the other hand, indicated no significant modulation in the expression of COX-2 (p = 0.1578), suggesting the particles are compatible with skin. This was even the case in the presence of co-administered aqueous citric acid solution. Overall the data support the use of the multi-responsive poly(NIPAM-co-AAc)(5%) nanogel for triggered or controlled topical drug delivery applications. PMID:23194376

Abu Samah, Nor H; Heard, Charles M

2013-01-01

36

COLON TARGETED DRUG DELIVERY SYSTEMS  

Microsoft Academic Search

Colon targeted drug delivery systems have the potential to deliver drugs for the treatment of a variety of colonic diseases and to deliver proteins and peptides to the colon for their systemic absorption. In recent years, various pharmaceutical approaches have been developed for targeting the drugs to the colon include, formation of prodrugs, coating of pH-sensitive polymers, use of colon

Ceyda Tuba

37

In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery.  

PubMed

We report a class of polysaccharide-based hybrid nanogels that can integrate the functional building blocks for optical pH-sensing, cancer cell imaging, and controlled drug release into a single nanoparticle system, which can offer broad opportunities for combined diagnosis and therapy. The hybrid nanogels were prepared by in-situ immobilization of CdSe quantum dots (QDs) in the interior of the pH and temperature dual responsive hydroxypropylcellulose-poly(acrylic acid) (HPC-PAA) semi-interpenetrating polymer networks. The-OH groups of the HPC chains are designed to sequester the precursor Cd(2+) ions into the nanogels as well as stabilize the in-situ formed CdSe QDs. The pH-sensitive PAA network chains are designed to induce a pH-responsive volume phase transition of the hybrid nanogels. The developed HPC-PAA-CdSe hybrid nanogels combine a strong trap emission at 741nm for sensing physicochemical environment in a pH dependent manner and a visible excitonic emission at 592nm for mouse melanoma B16F10 cell imaging. The hybrid nanogels also provide excellent stability as a drug carrier, which cannot only provide a high drug loading capacity for a model anticancer drug temozolomide, but also offer a pH-triggered sustained-release of the drug molecules in the gel network. PMID:20106519

Wu, Weitai; Aiello, Michael; Zhou, Ting; Berliner, Alexandra; Banerjee, Probal; Zhou, Shuiqin

2010-01-27

38

Synthesis and characterization of NIR-responsive Aurod@pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents  

NASA Astrophysics Data System (ADS)

A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV-vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.

Shang, Ting; Wang, Cai-ding; Ren, Lei; Tian, Xin-hua; Li, Dong-hui; Ke, Xue-bin; Chen, Min; Yang, An-qi

2013-01-01

39

Synthesis and characterization of NIR-responsive Aurod@pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents  

PubMed Central

A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV–vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.

2013-01-01

40

Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity.  

PubMed

Although doxorubicin (Dox) has been widely used in the treatment of different types of cancer, its insufficient cellular uptake and intracellular release is still a limitation. Herein, we report an easy process for the preparation of redox-sensitive nanogels that were shown to be highly efficient in the intracellular delivery of Dox. The nanogels (AG/Cys) were obtained through in situ cross-linking of alginate (AG) using cystamine (Cys) as a cross-linker via a miniemulsion method. Dox was loaded into the AG/Cys nanogels by simply mixing it in aqueous solution with the nanogels, that is, by the establishment of electrostatic interactions between the anionic AG and the cationic Dox. The results demonstrated that the AG/Cys nanogels are cytocompatible, have a high drug encapsulation efficiency (95.2 ± 4.7%), show an in vitro accelerated release of Dox in conditions that mimic the intracellular reductive conditions, and can quickly be taken up by CAL-72 cells (an osteosarcoma cell line), resulting in higher Dox intracellular accumulation and a remarkable cell death extension when compared with free Dox. The developed nanogels can be used as a tool to overcome the problem of Dox resistance in anticancer treatments and possibly be used for the delivery of other cationic drugs in applications beyond cancer. PMID:23927460

Maciel, Dina; Figueira, Priscilla; Xiao, Shili; Hu, Dengmai; Shi, Xiangyang; Rodrigues, João; Tomás, Helena; Li, Yulin

2013-08-22

41

Integrin Targeted Delivery of Radiotherapeutics  

PubMed Central

Targeted radionuclide therapy, which is based on the selective delivery of a sufficient radiation dose to tumors without significantly affecting normal tissues, is a promising therapeutic approach for the treatment of a wide variety of malignancies. Integrins, a family of cell adhesion molecules, play key roles during tumor angiogenesis and metastasis. Among all the integrins, ?v?3 seems to be the most important in the process of tumor angiogenesis. Integrin ?v?3 is highly expressed on activated endothelial cells, new-born vessels as well as some tumor cells, but is not present in resting endothelial cells and most normal organ systems, making it a suitable target for anti-tumor therapy. In this review, we summarize the current development and applications of antibody-, peptide-, and other ligand-based integrin targeted radiotherapeutics for tumor radiation therapy.

Liu, Zhaofei; Wang, Fan; Chen, Xiaoyuan

2011-01-01

42

A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: in vitro evaluation.  

PubMed

In this study, a novel pH-responsive nanogel composed of glycol chitosan (GCS) grafted with functional 3-diethylaminopropyl (DEAP) groups (denoted as GCS-g-DEAP hereafter) was fabricated. The GCS-g-DEAP was designed to have a self-assembled arrangement consisting of hydrophilic block (GCS) and hydrophobic block (DEAP) at physiological pH. As the pH decreased to tumor extracellular pH (pH(e)), the nanogel was destabilized due to the protonation of DEAP. The pH-responsive property of the nanogel at tumor extracellular pH (pH(e)) was characterized in drug-release kinetic studies. The release of doxorubicin (DOX) from DOX-loaded nanogels was significantly accelerated at lower pH values, which allowed for increased DOX uptake by non-small lung carcinoma A546 cells under a slightly acidic pH condition, as in tumor pH(e). PMID:20299192

Oh, Nam Muk; Oh, Kyung Taek; Baik, Hye Jung; Lee, Bo Reum; Lee, A Hyeong; Youn, Yu Seok; Lee, Eun Seong

2010-02-26

43

Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT.  

PubMed

A dual-function nano-system for synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) was constructed. Gold nanorods (GNRs) as a PTT agent and chlorin e6 (Ce6) as a photosensitizer (PS) for PDT were loaded into a chitosan-functionalized, Pluronic-based nanogel that was proven to be an efficient delivery vehicle to the tumor site in vivo. Previously reported combined therapy systems relied on quenching and de-quenching of PS for PDT upon thermo-impact of PTT, thus only PTT followed by PDT procedure was possible. In contrast, the present dual-acting system has no quenching between PS and GNRs by preventing direct contact and self-aggregation of photo-sensitizers, allowing independent PDT or PTT procedure. In both in vitro cell culture and in vivo tumor-bearing mice experiments, a remarkably enhanced tumor ablation compared to the treatment of PDT or PTT only was observed by the treatment of PDT followed by PTT, but not significantly by the treatment of PTT followed by PDT. Thus, the present study demonstrated the synergistic effect of PDT and PTT in a sequence-dependent manner, and our system is a promising dual function nano system to achieve the enhanced phototherapy in vivo. PMID:23860187

Kim, Ja-Young; Choi, Won Il; Kim, Manse; Tae, Giyoong

2013-07-13

44

Natural polypeptide-based supramolecular nanogels for stable noncovalent encapsulation.  

PubMed

Supramolecular nanogel, a physically cross-linked nanosize hydrogel, spontaneously self-assembles in aqueous solution via secondary interactions and is thus of great interest in nanomedicine as a drug carrier. We developed a versatile method for supramolecular nanogel self-assembled by electrostatic interaction between positive surfactant micelles and negative polypeptides. Core-shell-like structures of supramolecular nanogels provide stable hydrophobic pockets that prevent simple diffusion of hydrophobic guest molecules, resulting in high encapsulation stability. The size of the supramolecular nanogels can be systematically controlled by varying the size of the surfactant micelles. Furthermore, noncovalently encapsulated dye molecules can be released in response to matrix metalloproteinases highly overexpressed in tumor tissues, potentially providing tumor-triggered targeting. PMID:23962280

Kim, Keunsuk; Bae, Boram; Kang, Young Ji; Nam, Jwa-Min; Kang, Sebyung; Ryu, Ja-Hyoung

2013-09-03

45

Nanogel scavengers for drugs: local anesthetic uptake by thermoresponsive nanogels.  

PubMed

The use of functional nanogels based on poly(N-isopropylacrylamide) for effectively scavenging compounds (here, the model drug bupivacaine) is demonstrated using an in vitro cell-based assay. Nanogels containing higher loadings of acidic functional groups or more core-localized functional group distributions bound more bupivacaine, while nanogel size had no significant effect on drug binding. Increasing the dose of nanogel applied also facilitated more bupivacaine binding for all nanogel compositions tested. Binding was driven predominantly by acid-base interactions between the nanogels (anionic) and bupivacaine (cationic) at physiological pH, although both non-specific absorption and hydrophobic partitioning also contributed to drug scavenging. Nanogels exhibited minimal cytotoxicity to multiple cell types and were well tolerated in vivo via peritoneal injections, although larger nanogels caused limited splenic toxicity at higher concentrations. The cell-based assay described herein is found to facilitate more robust drug uptake measurements for nanogels than conventional centrifugation-based assays, in which nanogels can be compressed (and thus drug released) during the measurement. PMID:22244983

Hoare, Todd; Sivakumaran, Daryl; Stefanescu, Cristina F; Lawlor, Michael W; Kohane, Daniel S

2011-12-29

46

Nanogel scavengers for drugs: Local anesthetic uptake by thermoresponsive nanogels  

PubMed Central

The use of functional nanogels based on poly(N-isopropylacrylamide) for effectively scavenging compounds (here, the model drug bupivacaine) is demonstrated using an in vitro cell-based assay. Nanogels containing higher loadings of acidic functional groups or more core-localized functional group distributions bound more bupivacaine, while nanogel size had no significant effect on drug binding. Increasing the dose of nanogel applied also facilitated more bupivacaine binding for all nanogel compositions tested. Binding was driven predominantly by acid-base interactions between the nanogels (anionic) and bupivacaine (cationic) at physiological pH, although both non-specific absorption and hydrophobic partitioning also contributed to drug scavenging. Nanogels exhibited minimal cytotoxicity to multiple cell types and were well-tolerated in vivo via peritoneal injections, although larger nanogels caused limited splenic toxicity at higher concentrations. The cell-based assay described herein is found to facilitate more robust drug uptake measurements for nanogels than conventional centrifugation-based assays, in which nanogels can be compressed (and thus drug released) during the measurement.

Hoare, Todd; Sivakumaran, Daryl; Stefanescu, Cristina; Lawlor, Michael W.; Kohane, Daniel S.

2012-01-01

47

A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation  

Microsoft Academic Search

In this study, a novel pH-responsive nanogel composed of glycol chitosan (GCS) grafted with functional 3-diethylaminopropyl (DEAP) groups (denoted as GCS-g-DEAP hereafter) was fabricated. The GCS-g-DEAP was designed to have a self-assembled arrangement consisting of hydrophilic block (GCS) and hydrophobic block (DEAP) at physiological pH. As the pH decreased to tumor extracellular pH (pHe), the nanogel was destabilized due to

Nam Muk Oh; Kyung Taek Oh; Hye Jung Baik; Bo Reum Lee; A. Hyeong Lee; Yu Seok Youn; Eun Seong Lee

2010-01-01

48

Influence of Charge and Network Inhomogeneities on the Swollen-Collapsed Transition in Polyelectrolyte Nanogels  

NASA Astrophysics Data System (ADS)

Polyelectrolyte nanogels are sub-microscopic networks of solvent-permeated polyelectrolyte chains that undergo large reversible volume changes for a range of environmental stimuli. This volume phase transition behavior finds use in targeted drug delivery, optical switching in photonic crystals, and many other applications that require controlled tunability. Although the strength of electrostatic interactions have a strong influence on the nanogel response, these interactions are not well captured by the classical mean-field theories of macroscopic gels. We develop a simplified Poisson-Boltzmann model of spherical gels, that highlights the importance of charge inhomogeneities and the associated Coulomb interactions in determining the response of gels. Our analysis reveals that nanometer-sized gels, collapsed gels, and gels in media with low salinity or high dielectric constant, have large regions of excess charge, and show clear deviations from the classical Donnan picture of polyelectrolyte gels. The detailed swelling-collapse behavior is obtained using the theoretically-informed coarse-grained simulations, which includes the effects of network imperfections and thermal fluctuations. The simulations capture the universal features of volume phase transition in nanogels.

Jha, Prateek; Zwanikken, Jos; Detcheverry, François; de Pablo, Juan; Olvera de La Cruz, Monica

2012-02-01

49

Membranes and Barriers: Targeted Drug Delivery.  

National Technical Information Service (NTIS)

Contents: Retrometabolic Approaches to Drug Targeting; Vector-Mediated Delivery of Opioid Peptides to the Brain; Conformationally Constrained Peptide Drugs Targeted at the Blood-Brain Barrier; Passive and Facilitative Transport of Nucleobases, Nucleosides...

R. S. Rapaka

1995-01-01

50

Applying models of targeted drug delivery to gene delivery.  

PubMed

Gene delivery requires targeted delivery systems. Exploratory simulations using models of targeted drug delivery helps one assess the worthiness of such systems, and helps quantify the expected therapeutic benefits of the systems. The drug targeting index (DTI), a ratio of availabilities, is a measure of pharmacokinetic benefit of the delivery device, based on a combination of a physiologically-based pharmacokinetic model and a single pharmacodynamic Emaxmodel. Pharmacodynamic outcomes are quantified by the degree of separation between the dose-response and dose-toxicity curves (SRT). Simulations are undertaken to investigate the potential linkage of DTI and SRT, a pharmacodynamic outcome. A significant positive linear relationship is found between the DTI and SRT. The relationship can be translated into a minimum pharmacokinetic requirement that can be used to guide making decisions regarding whether or not further pursue the development of a candidate gene-delivery device as a therapeutic agent. PMID:17271053

Lam, Tai Ning; Hunt, C Anthony

2004-01-01

51

Thermoresponsive nanogels for prolonged duration local anesthesia  

PubMed Central

Nanogels based on poly(N-isopropylacrylamide) are attractive vehicles for prolonged duration local anesthesia because of their tunable size, number of functional groups, thermoresponsiveness, and their anionic charge. Nerve block durations of up to nine hours were achieved using acrylic acid-loaded nanogels loaded with bupivacaine. Increasing the anionic charge density of the nanogels or (for more highly acid-functionalized nanogels) decreasing the nanogel size facilitated longer duration anesthetic release. Small (<300 nm diameter) nanogels formed dense aggregates upon injection in vivo and induced only mild inflammatory responses, while large (>500 nm diameter) nanogels typically remained as liquid-like residues in vivo and induced more severe inflammatory reactions.

Hoare, Todd; Young, Stuart; Lawlor, Michael W.; Kohane, Daniel S.

2012-01-01

52

Stimuli-responsive smart nanogels for cancer diagnostics and therapy.  

PubMed

This article discusses stimuli-responsive poly(ethylene glycol) (PEG)-coated (PEGylated) nanogels and their biomedical applications. Preparation and characterization of stimuli-responsive PEGylated nanogels composed of a crosslinked poly(2-[N,N-diethylamino]ethyl methacrylate) (PEAMA) core and PEG tethered chains are initially described. Stimuli-responsive PEGylated nanogels show unique properties and functions in synchronizing with the reversible volume phase transition of the PEAMA core in response to the extracellular pH (7-6.5) of a tumor environment as well as endosomal/lysosomal pH (6.5-5.0) and temperature. We list several biomedical applications of stimuli-responsive PEGylated nanogels, including (19)F magnetic resonance spectroscopic imaging (MRS/I) probe to visualize acidosis (tumor tissue), intracellular drug and siRNA delivery, antennas for cancer photothermal therapy and apoptosis probe for monitoring response to cancer therapy. Thus, stimuli-responsive PEGylated nanogels can be utilized as smart nanomedicines for cancer diagnostics and therapy. PMID:20394537

Oishi, Motoi; Nagasaki, Yukio

2010-04-01

53

PVP superabsorbent nanogels  

Microsoft Academic Search

Monomer free hydrogel nanoparticles (nanogels) were prepared by crosslinking preformed poly(N-vinyl-2-pyrrolidone) (PVP) entrapped in the aqueous pool of hexadecyltrimethylammonium bromide reverse micelles using the\\u000a Fenton reaction. The PVP nanoparticles were spherical with a dry diameter of 27 nm. The diameter of the swollen particles\\u000a was ten times higher, i.e., a swelling ratio, Q, above 900, characterizing this preparation as superabsorbent. PVP

Vânia B. Bueno; Iolanda M. Cuccovia; Hernan Chaimovich; Luiz H. Catalani

2009-01-01

54

Targeted Delivery Systems for Oligonucleotide Therapeutics  

Microsoft Academic Search

Oligonucleotides including antisense oligonucleotides and siRNA are emerging as promising therapeutic agents against a variety\\u000a of diseases. Effective delivery of these molecules is critical to their successful clinical application. Targeted systems\\u000a can greatly improve the efficiency and specificity of oligonucleotides delivery. Meanwhile, an effective delivery system must\\u000a successfully overcome a multitude of biological barriers to enable the oligonucleotides to reach

Bo Yu; Xiaobin Zhao; L. James Lee; Robert J. Lee

2009-01-01

55

Polymers for colon targeted drug delivery.  

PubMed

The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems. PMID:21969739

Rajpurohit, H; Sharma, P; Sharma, S; Bhandari, A

2010-11-01

56

Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy  

NASA Astrophysics Data System (ADS)

Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy.Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. Electronic supplementary information (ESI) available: Synthesis and characterization of compounds, dynamic time sweep, H&E result and body weight change of mice. See DOI: 10.1039/c3nr02937a

Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

2013-09-01

57

Tumor-Targeted Drug Delivery with Aptamers  

PubMed Central

Cancer is one of the leading causes of death around the world. Tumor-targeted drug delivery is one of the major areas in cancer research. Aptamers exhibit many desirable properties for tumor-targeted drug delivery, such as ease of selection and synthesis, high binding affinity and specificity, low immunogenicity, and versatile synthetic accessibility. Over the last several years, aptamers have quickly become a new class of targeting ligands for drug delivery applications. In this review, we will discuss in detail about aptamer-based delivery of chemotherapy drugs (e.g. doxorubicin, docetaxel, daunorubicin, and cisplatin), toxins (e.g. gelonin and various photodynamic therapy agents), and a variety of small interfering RNAs. Although the results are promising which warrants enthusiasm for aptamer-based drug delivery, tumor homing of aptamer-based conjugates after systemic injection has only been achieved in one report. Much remains to be done before aptamer-based drug delivery can reach clinical trials and eventually the day-to-day management of cancer patients. Therefore, future directions and challenges in aptamer-based drug delivery are also discussed.

Zhang, Yin; Hong, Hao; Cai, Weibo

2011-01-01

58

Endocytic mechanisms for targeted drug delivery  

Microsoft Academic Search

Advances in the delivery of targeted drug systems have evolved to enable highly regulated site specific localization to subcellular organelles. Targeting therapeutics to individual intracellular compartments has resulted in benefits to therapies associated with these unique organelles. Endocytosis, a mechanism common to all cells in the body, internalizes macromolecules and retains them in transport vesicles which traffic along the endolysosomal

Lisa M. Bareford; Peter W. Swaan

2007-01-01

59

Mathematical modelling of magnetically targeted drug delivery  

Microsoft Academic Search

A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.

Andrew D. Grief; Giles Richardson

2005-01-01

60

Matrix metalloproteases: Underutilized targets for drug delivery  

PubMed Central

Pathophysiological molecules in the extracellular environment offer excellent targets that can be exploited for designing drug targeting systems. Matrix metalloproteases (MMPs) are a family of extracellular proteolytic enzymes that are characterized by their overexpression or overactivity in several pathologies. Over the last two decades, the MMP literature reveals heightened interest in the research involving MMP biology, pathology, and targeting. This review describes various strategies that have been designed to utilize MMPs for targeting therapeutic entities. Key factors that need to be considered in the successful design of such systems have been identified based on the analyses of these strategies. Development of targeted drug delivery using MMPs has been steadily pursued; however, drug delivery efforts using these targets need to be intensified and focused to realize the clinical application of the fast developing fundamental MMP research.

Vartak, Deepali G.; Gemeinhart, Richard A.

2013-01-01

61

Endocytic mechanisms for targeted drug delivery.  

PubMed

Advances in the delivery of targeted drug systems have evolved to enable highly regulated site specific localization to subcellular organelles. Targeting therapeutics to individual intracellular compartments has resulted in benefits to therapies associated with these unique organelles. Endocytosis, a mechanism common to all cells in the body, internalizes macromolecules and retains them in transport vesicles which traffic along the endolysosomal scaffold. An array of vesicular internalization mechanisms exist, therefore understanding the key players specific to each pathway has allowed researchers to bioengineer macromolecular complexes for highly specialized delivery. Membrane specific receptors most frequently enter the cell through endocytosis following the binding of a high affinity ligand. High affinity ligands interact with membrane receptors, internalize in membrane bound vesicles, and traffic through cells in different manners to allow for accumulation in early endosomal fractions or lysosomally associated fractions. Although most drug delivery complexes aim to avoid lysosomal degradation, more recent studies have shown the clinical utility in directed protein delivery to this environment for the enzymatic release of therapeutics. Targeting nanomedicine complexes to the endolysosomal pathway has serious potential for improving drug delivery for the treatment of lysosomal storage diseases, cancer, and Alzheimer's disease. Although several issues remain for receptor specific targeting, current work is investigating a synthetic receptor approach for high affinity binding of targeted macromolecules. PMID:17659804

Bareford, Lisa M; Swaan, Peter W

2007-06-28

62

Nanoparticles for intracellular-targeted drug delivery  

NASA Astrophysics Data System (ADS)

Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

2011-12-01

63

Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety  

Microsoft Academic Search

Recent researches to develop nano-carrier systems in anti-cancer drug delivery have focused on more complicated design to improve therapeutic efficacy and to reduce side effects. Although such efforts have great impact to biomedical science and engineering, the complexity has been a huddle because of clinical and economic problems. In order to overcome the problems, a simplest strategy to fabricate nano-carriers

Sungwon Kim; Kyong Mi Park; Jin Young Ko; Ick Chan Kwon; Hyeon Geun Cho; Dongmin Kang; In Tag Yu; Kwangmeyung Kim; Kun Na

2008-01-01

64

Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy.  

PubMed

Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. PMID:23982346

Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

2013-09-26

65

Special delivery: targeted therapy with small RNAs.  

PubMed

Harnessing RNA interference using small RNA-based drugs has great potential to develop drugs designed to knock down expression of any disease-causing gene, thereby greatly expanding the universe of possible drug targets. However, delivering small RNAs into specific tissues and cells is still a hurdle. Here, we review recent progress in overcoming systemic, local and cellular barriers to RNA drug delivery, focusing on strategies for targeted uptake. PMID:21490679

Peer, D; Lieberman, J

2011-04-14

66

Special delivery: targeted therapy with small RNAs  

Microsoft Academic Search

Harnessing RNA interference using small RNA-based drugs has great potential to develop drugs designed to knock down expression of any disease-causing gene, thereby greatly expanding the universe of possible drug targets. However, delivering small RNAs into specific tissues and cells is still a hurdle. Here, we review recent progress in overcoming systemic, local and cellular barriers to RNA drug delivery,

D Peer; J Lieberman

2011-01-01

67

Liposome-templated supramolecular assembly of responsive alginate nanogels.  

PubMed

Nanosized gel particles (nanogels) are of interest for a variety of applications, including drug delivery and single-molecule encapsulation. Here, we employ the cores of nanoscale liposomes as reaction vessels to template the assembly of calcium alginate nanogels. For our experiments, a liposome formulation with a high bilayer melting temperature (Tm) is selected, and sodium alginate is encapsulated in the liposomal core. The liposomes are then placed in an aqueous buffer containing calcium chloride, and the temperature is raised up to Tm. This allows permeation of Ca2+ ions through the bilayer and into the core, whereupon these ions gel the encapsulated alginate. Subsequently, the lipid bilayer covering the gelled core is removed by the addition of a detergent. The resulting alginate nanogels have a size distribution consistent with that of the template liposomes (ca. 120-200 nm), as confirmed by transmission electron microscopy and light scattering. Nanogels of different average sizes can be synthesized by varying the template dimensions, and the gel size can be further tuned after synthesis by the addition of monovalent salt to the solution. PMID:18338908

Hong, Jennifer S; Vreeland, Wyatt N; Lacerda, Silvia H DePaoli; Locascio, Laurie E; Gaitan, Michael; Raghavan, Srinivasa R

2008-03-14

68

Polysaccharides for colon targeted drug delivery.  

PubMed

Colon targeted drug delivery has the potential to deliver bioactive agents for the treatment of a variety of colonic diseases and to deliver proteins and peptides to the colon for their systemic absorption. Various strategies, currently available to target the release of drugs to colon, include formation of prodrug, coating of pH-sensitive polymers, use of colon-specific biodegradable polymers, timed released systems, osmotic systems, and pressure controlled drug delivery systems. Among the different approaches to achieve targeted drug release to the colon, the use of polymers especially biodegradable by colonic bacteria holds great promise. Polysaccharidases are bacterial enzymes that are available in sufficient quantity to be exploited in colon targeting of drugs. Based on this approach, various polysaccharides have been investigated for colon-specific drug release. These polysaccharides include pectin, guar gum, amylose, inulin, dextran, chitosan, and chondroitin sulphate. This family of natural polymers has an appeal to drug delivery as it is comprised of polymers with a large number of derivatizable groups, a wide range of molecular weights, varying chemical compositions, and, for the most part, low toxicity and biodegradability yet high stability. The most favorable property of these materials is their approval as pharmaceutical excipients. PMID:15200012

Chourasia, M K; Jain, S K

69

Application of nanogel systems in the administration of local anesthetics  

PubMed Central

Nanogels are robust nanoparticles that could be used to deliver active drug compounds in controlled drug delivery applications. This review discusses the design, synthesis, loading, and release of local anesthetics using polymeric nanoparticles produced via various types of polymerization techniques. The strategy of using layer-by-layer approach to control the burst release of procaine hydrochloride (PrHy; a local anesthetic drug of the amino ester group) is described and discussed.

Tan, Jeremy PK; Tan, Maureen BH; Tam, Michael KC

2010-01-01

70

Bioresorbable polymersomes for targeted delivery of cisplatin.  

PubMed

Nontoxic bioresorbable polymersomes have been developed that efficiently and site-selectively tether targeting peptides under mild conditions with no toxic catalysts. The binding and release properties of these polymersomes have been evaluated when targeting DLD-1 human colon cancer cells overexpressing the ?(5)?(1) integrin. The delivery efficacy to these cells is markedly improved over commonly used RGD targeting peptides by use of an ?(5)?(1)-specific targeting peptide, PR_b. Release profiles in buffered solution from pH 7.4 to 4.5 were evaluated and compared to release after binding to cells, and enzymatic degradation was identified as a major cause of rapid payload release in the cell. Intracellular trafficking and release were imaged via confocal microscopy in live cells and colocalization with organelles was evaluated quantitatively over time. Finally, the anticancer drug cisplatin was encapsulated in the PR_b functionalized polymersomes and the presence of PR_b greatly improved delivery efficacy, with increased cisplatin-induced losses to targeted DLD-1 colon cancer cell viability. When delivered to CACO-2 model human epithelial cells expressing low levels of ?(5)?(1) integrin, low toxicity was maintained, suggesting that targeting was specific to ?(5)?(1) overexpressing cells. These results demonstrate that PR_b-functionalized bioresorbable polymersomes may be an attractive route to minimizing the dose-limiting side effects associated with existing approaches to cisplatin chemotherapy. PMID:23521104

Petersen, Matthew A; Hillmyer, Marc A; Kokkoli, Efrosini

2013-04-05

71

Integrin Targeted Delivery of Gene Therapeutics  

PubMed Central

Integrins have become key targets for molecular imaging and for selective delivery of anti-cancer agents. Here we review recent work concerning the targeted delivery of antisense and siRNA oligonucleotides via integrins. A variety of approaches have been used to link oligonucleotides to ligands capable of binding integrins with high specificity and affinity. This includes direct chemical conjugation, incorporating oligonucleotides into lipoplexes, and use of various polymeric nanocarriers including dendrimers. The ligand-oligonucleotide conjugate or complex associates selectively with the integrin, followed by internalization into endosomes and trafficking through subcellular compartments. Escape of antisense or siRNA from the endosome to the cytosol and nucleus may come about through endogenous trafficking mechanisms, or because of membrane disrupting capabilities built into the conjugate or complex. Thus a variety of useful strategies are available for using integrins to enhance the pharmacological efficacy of therapeutic oligonucleotides.

Juliano, Rudy L; Ming, Xin; Nakagawa, Osamu; Xu, Rongzuo; Yoo, Hoon

2011-01-01

72

Functionalized nanospheres for targeted delivery of paclitaxel.  

PubMed

Targeted delivery of anti-cancer agents to cancer cells is a mature line of investigation that has yet to realize its full potential. In this study we report on the development of a delivery platform with the future goal of merging two thus far parallel methods for selective elimination of cancer cells: targeted nanospheres and pretargeted radioimmunotherapy. Several clinical trials have shown the promise of pretargeted radioimmunotherapy, which leverages the specificity of antibodies for targeted cell populations and delivers a localized dose of a biotinylated radionuclide that is most often administered following binding of a biotinylated antibody and streptavidin (StA) to the target cells. The work presented here describes the development of biotinylated nanospheres based on an ABA-type copolymer comprised of a tyrosine-derived oligomer as the B-block and poly(ethylene glycol) (PEG) A-blocks. The biotinylated nanospheres encapsulate paclitaxel (PTX) to the same extent as unbiotinylated nanospheres. Efficacy of targeting was shown on CD44 positive cells in the SUM159 breast cancer cell line by incubating the cells sequentially with a biotinylated anti-CD44 antibody, StA and the biotinylated nanospheres encapsulating PTX. Targeted nanospheres achieved the half maximal inhibitory concentration of PTX on SUM159 cells at a 5-10 fold lower concentration than that of PTX applied in either non-targeted nanospheres or free drug approaches. Moreover, targeted nanospheres selectively eliminated CD44 positive SUM159 cells compared to free PTX and untargeted nanospheres. This new generation of nano-sized carrier offers a versatile platform that can be adopted for a wide variety of drug and target specific applications and has the potential to be combined with the clinically emerging method of pretargeted radioimmunotherapy. PMID:23792807

Bushman, Jared; Vaughan, Asa; Sheihet, Larisa; Zhang, Zheng; Costache, Marius; Kohn, Joachim

2013-06-20

73

AS1411 aptamer for targetable photosensitizer delivery  

Microsoft Academic Search

A specialized G-quadruplex DNA aptamer with nucleolin targeting ability, AS1411, has been studied for cancer therapy. In this study, we report a novel delivery strategy for chemo-photodynamic combined treatment using AS1411 aptamer conjugated with tetra-(N-methyl-4-pyridyl)-porphine by intercalation and outside binding. Our results show that the apt-TMP complex exhibited higher TMPyP4 accumulation in nucleolin over-expressing MCF-7 breast cancer cells than in

M. J. Shieh; Y. A. Shieh; P. S. Lai

2009-01-01

74

New Approaches to Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

For targeted drug delivery, one of the primary drawbacks lies with the inability to design a delivery system that can be loaded with a variety of drugs and biomolecules. Motivated by this challenge, we will present data showing 400 nm liposomes loaded via the novel method of lysenin pores. These pores are approximately 3 nm in diameter and can be closed with divalent and trivalent ions in addition to charged polymers. This new method allows for the controllable passage of large biomolecules such as DNA and protein without the inherent problems common to active and passive loading methods. We will show proof-of-concept results of this method using fluorescent calcein as a drug simulator. Furthermore, data demonstrating current attempts at loading DNA will also be presented.

Cooper, James; Oliver, William; Fologea, Daniel

2013-03-01

75

Targeted delivery of colloids by swimming bacteria.  

PubMed

The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

Koumakis, N; Lepore, A; Maggi, C; Di Leonardo, R

2013-01-01

76

Targeted delivery of colloids by swimming bacteria  

NASA Astrophysics Data System (ADS)

The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems.

Koumakis, N.; Lepore, A.; Maggi, C.; di Leonardo, R.

2013-10-01

77

Targeted estrogen delivery reverses the metabolic syndrome.  

PubMed

We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1-targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1-estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrab?; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

2012-11-11

78

Multifunctional Magnetic Nanoparticles for Targeted Delivery  

PubMed Central

A major problem associated with therapy is the inability to deliver pharmaceuticals to a specific site of the body without causing nonspecific toxicity. Development of magnetic nanoparticles and techniques for their safe transport and concentration in specific sites in the body would constitute a powerful tool for gene/drug therapy in vivo. Furthermore, drug delivery in vitro could improve further if the drugs were modified with antibodies, proteins or ligands. For in vivo experiments, magnetic nanoparticles were conjugated with plasmid DNA expressing GFP and then coated with chitosan. These particles were injected into mice through tail vein and directed to heart and kidney by means of external magnets of 25 gauss or 2kA –kA/m. These particles were concentrated in the lungs, heart, and kidney of mice and the expression of GFP in these sites were monitored. The expression of GFP in specific locations was visualized by whole-body fluorescent imaging and the concentration of these particles in the designated body locations was confirmed by transmission electron microscopy. In another model system, we used atrial natriuretic peptide (ANP) and Carcino Embryonic Antigen (CEA) antibodies coupled to the chitosan coated magnetic nanoparticles to target cells in vitro. The present work demonstrates that a simple external magnetic field is all that is necessary to target a drug to a specific site inside the body without the need to functionalize the nanoparticles. However, the option to use magnetic targeting with external magnets on functionalized nanoparticles could prove as a more efficient means of drug delivery.

Kumar, Arun; Jena, Prasanna K.; Behera, Sumita; Lockey, Richard F.; Mohapatra, Subhra; Mohapatra, Shyam

2012-01-01

79

Toward Intracellular Targeted Delivery of Cancer Therapeutics  

PubMed Central

A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.

Pandya, Hetal; Debinski, Waldemar

2013-01-01

80

Magnetizable implants for targeted drug delivery  

Microsoft Academic Search

The capability to deliver high effective dosages to specific sites in the human body has become the holy grail of drug delivery research. Drugs with proven effectiveness under in vitro investigation often reach a major roadblock under in vivo testing due to a lack of an effective delivery strategy. In addition, many clinical scenarios require delivery of agents that are

Zachary Graham Forbes

2005-01-01

81

New dosage formulations for targeted delivery of cyclo-oxygenase-2 inhibitors: focus on use in the elderly.  

PubMed

NSAIDs are a widely used class of analgesic and anti-inflammatory drugs that act by inhibiting the cyclo-oxygenase (COX) enzyme. However, because of their nonspecificity of action, use of these agents as long-term therapy for chronic pain in diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA) is often discouraged. Among NSAIDs, COX-2 inhibitors are promising candidates for long-term therapy of chronic diseases, particularly in the elderly, because of their reduced incidence of gastrointestinal adverse effects. However, in recent times these agents have also been shown to cause adverse effects such as cardiovascular effects (myocardial infarction, stroke and hypertension) and renal effects (decreased renal blood flow/glomerular filtration rate), which in 2004 led to the withdrawal of rofecoxib and in 2005 the withdrawal of valdecoxib from the US market. Importantly, these adverse effects can be effectively reduced by achieving site specific/targeted delivery through new formulation approaches. These formulations not only restrict the drug supply to specific organs but also reduce the dose required. As a result, use of new delivery systems such as nanoparticles, microparticles, microemulsions and nanogels has gained widespread applicability in the management of chronic disease, especially in the elderly, and particularly when there is a need to decrease dose-dependent adverse effects (as is the case with COX-2 inhibitors). This article reviews various new approaches to the delivery of COX-2 inhibitors and highlights issues related to the development of delivery systems for these agents for RA, OA, cancer (familial adenomatous polyposis, prostate, breast and non-small cell lung cancer), ocular diseases (such as diabetic retinopathy) and inflammatory diseases of the skin, with emphasis on their potential for use in the elderly. Emphasis is also placed on the preparation of these particulate systems, their release profile and behaviour in biological systems. PMID:17571910

Bansal, Shyam S; Joshi, Abhijeet; Bansal, Arvind K

2007-01-01

82

Colon targeted drug delivery systems--an overview.  

PubMed

In the last two decades colon targeted drug delivery has gained increased importance not just for the deliver drugs for the treatment of various colonic diseases but also for its potential for delivery of proteins and therapeutic peptides. In the past various traditional approaches used for colon targeted delivery like prodrugs, pH, time dependent, and microflora activated systems, have achieved limited success. For successful colon targeted drug delivery, the drug needs to be protected from absorption and/or the environment of the upper gastrointestinal tract and then be abruptly released into the colon. Hence continuous efforts have been made on designing colon targeted drug delivery systems with improved site specificity and versatile drug release kinetics to fulfill different therapeutic needs. In last couple of years few new systems have been developed for colon targeted drug delivery such as pressure dependent systems, CODES technology, microsponges, pectin and galactomannan coating, microbially triggered osmotic systems, lectins and neoglyconjugated etc. which are reported to have better in-vivo site specificity and design rationale than the earlier approaches. This review article gives an overview of various approaches for colonic targeted drug delivery with emphasis on newer systems, their merits and demerits, in vitro/ in-vivo evaluation and market status of such delivery systems. PMID:18673262

Kumar, P; Mishra, B

2008-07-01

83

Targeted Drug Delivery to the Eye Enabled by Microneedles  

Microsoft Academic Search

\\u000a Drug delivery targeted to specific tissues within the eye represents an important advance over conventional methods of topical\\u000a and injectable delivery that have poor specificity for particular ocular tissues requiring therapy. This level of intraocular\\u000a targeting can be achieved using microneedles, which are solid and ­hollow needles of micron dimensions. Microneedles can selectively\\u000a target intraocular tissues by delivering drug formulations

Samirkumar R. Patel; Henry F. Edelhauser; Mark R. Prausnitz

84

Polypropylene nanogel: “Myth or reality”  

NASA Astrophysics Data System (ADS)

The objective of this work is the investigation of the nanogel and microgel formation in modified PP. The modified PP in pellets was synthesized by gamma irradiation of pristine PP under a crosslinking atmosphere of acetylene in dose of 5, 12.5 and 20 kGy, followed by thermal treatment for radical recombination and annihilation of the remaining radicals. The thin film gel of the polypropylenes was obtained by extraction in boiling xylene for period of 12 h at 138 °C, followed by decantation in beaker at room temperature of 25 °C with the total volatilization of the xylene and deposition of dried material film on glass substrate under agitation by Settling process. The thin film gel formed of pristine PP and modified PP (i.e., irradiated) was characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and differential scanning calorimetry (DSC). The PP morphology indicated the nanogels and microgel formation with increase of spherulitic concentration and crystallinity at dose of 12.5 kGy.

Oliani, W. L.; Parra, D. F.; Riella, H. G.; Lima, L. F. C. P.; Lugao, A. B.

2012-09-01

85

Targeted Gene Delivery to Accomplish Gene Therapy for Breast Cancer.  

National Technical Information Service (NTIS)

We are developing methods to derive gene transfer vectors capable of accomplishing targeted gene delivery to metastatic breast cancer cells. In this regard, strategies have been explored to modify adenoviral vectors by altering their binding tropism. Gene...

D. T. Curiel

1998-01-01

86

Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells.  

PubMed

A proposal is herein examined for a novel yet simple design of a polymeric nanogel, with tumor targeting properties and a controllable phototoxicity, utilizing a low molecular weight-hyaluronic acid (HA(LM))/photosensitizer conjugate. HA(LM) was acetylated prior to being dissolved in DMSO (Ac-HA(LM)) and then was conjugated with different amounts of pheophorbide a (Pba), resulting in the formulation of self-organizing nanogels in aqueous solutions (Ac-HA-Pba 1, 2, and 3). The nanogels observed were below 200 nm in size, with a monodispersed size distribution. The nanogels displayed auto photoquenching qualities in PBS, while their fluorescent intensity strongly correlated with the amount of Pba in the organic solvent (DMSO or DMF). The critical self-quenching concentration (CQC) of the conjugates was found to have decreased as the content of Pba rose. Although Pba was conjugated with HA, the nanogel's photoactivity, in terms of fluorescent properties, singlet oxygen generation, and photocytotoxicity, was approximately maintained. Confocal imaging and FACS analysis showed that Ac-HA-Pba nanogels were rapidly internalized into HeLa cells via an HA-induced endocytosis mechanism, a process which could be blocked with the application of an excess of HA polymer. The results of the study indicate that HA-based nanogels can potentially be applied in photodynamic therapy (PDT). PMID:20586473

Li, Fangyuan; Bae, Byoung-Chan; Na, Kun

2010-07-21

87

Tumor Targeting Peptides for Cytotoxic Chemotherapy Delivery.  

National Technical Information Service (NTIS)

Tumors cannot grow without a blood supply. The distinct characteristics of tumor vasculature make it possible to design therapeutic agents that specifically target the tumor, but not normal blood vessels. Identifying tools for therapeutic tumor targeting ...

K. Porkka

2001-01-01

88

Echogenic Lipsomes for Targeted Drug Delivery  

Microsoft Academic Search

Echogenic immunoliposomes (ELIP) are under development to enable ultrasound-controlled drug delivery. Mechanistic studies in vitro have revealed that stable cavitation is correlated with enhanced recombinant tissue Plasminogen Activator (rt-PA) thrombolysis, yet strategies to optimize the occurrence of such bubble activity and avoid potential harmful bioeffects have yet to be identified. Stable cavitation is characterized by bubbles pulsating gently in response

Christy K. Holland; David D. McPherson

2009-01-01

89

[Research progress of polyamidoamine dendrimer in targeting drug delivery system].  

PubMed

Targeting drug delivery system (TDDS) is one of the most concerned research fields in cancer treatment because it can bind selectively and react with the target diseased sites at the cellular or sub-cellular level, making distribution and release of drugs in a controlled manner, thus enhance therapeutic effects and reduce toxic and side-effects on normal cells. Polyamidoamine dendrimer (PAMAMD) is a kind of newly developed polymer in nanometer degree. Hyper-branched, monodispersity, three-dimensional structure and host-guest entrapment ability make it used as drug carrier, gene delivery system and imaging agent. Various targeting ligands, which have high affinity to specific organs, tissues or cells in human body, can be linked to surface functional groups of PAMAMD. And drugs and theoretical gene are carried by encapsulation or chemical conjugation. Finally, PAMAMD targeting drug delivery system can carry drugs and theoretical gene to diseased sites and then release them for targeted therapy. The PAMAMD-based conjugates have small size, ligh permeability and retention effect (EPR), low toxicity and so on. The research progress of PAMAMD modified by different ligands in targeting drug delivery system is reviewed, and research direction of the PAMAMD targeting delivery system in the future is also suggested. PMID:21800534

Ding, Rong-min; He, Hua; Li, Juan

2011-05-01

90

Nanocarriers targeting dendritic cells for pulmonary vaccine delivery.  

PubMed

Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most 'professional' antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation. PMID:23054093

Kunda, Nitesh K; Somavarapu, Satyanarayana; Gordon, Stephen B; Hutcheon, Gillian A; Saleem, Imran Y

2012-10-09

91

ECHOGENIC LIPSOMES FOR TARGETED DRUG DELIVERY.  

PubMed

Echogenic immunoliposomes (ELIP) are under development to enable ultrasound-controlled drug delivery. Mechanistic studies in vitro have revealed that stable cavitation is correlated with enhanced recombinant tissue Plasminogen Activator (rt-PA) thrombolysis, yet strategies to optimize the occurrence of such bubble activity and avoid potential harmful bioeffects have yet to be identified. Stable cavitation is characterized by bubbles pulsating gently in response to the time-varying acoustic pressure in an ultrasound field. A review of in vitro sonothrombolysis studies utilizing commercial US contrast agent or echogenic liposomes loaded with rt-PA to nucleate stable cavitation will be presented. Strategies for the development of ultrasound-enhanced thrombolysis and drug delivery will be discussed. PMID:20383294

Holland, Christy K; McPherson, David D

2009-06-28

92

Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures  

Microsoft Academic Search

Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, `peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can

Rangaramanujam Kannan; Parag Kolhe; Sujatha Kannan; Mary Lieh-Lai

2002-01-01

93

Subcellular targeting strategies for drug design and delivery  

Microsoft Academic Search

Many drug targets are localized to particular subcellular compartments, yet current drug design strategies are focused on bioavailability and tissue targeting and rarely address drug delivery to specific intracellular compartments. Insights into how the cell traffics its constituents to these different cellular locations could improve drug design. In this Review, we explore the fundamentals of membrane trafficking and subcellular organization,

Lawrence Rajendran; Hans-Joachim Knölker; Kai Simons

2010-01-01

94

Target delivery system for high repetition rate lasers  

Microsoft Academic Search

We present early prototype of a high repetition target delivery system, designed for nominal operation rate at 1 Hz but with possibility of running at up to 10 Hz. The system is primarily intended to deliver complex solid-state targets, such as composite foils or structured shapes, in vacuum environment into the focus of a high-repetition laser. The system in its

J. Polan; T. Havlicek; B. Rus

2007-01-01

95

Receptor-targeted nanocarriers for therapeutic delivery to cancer  

PubMed Central

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.

YU, BO; TAI, HENG CHIAT; XUE, WEIMING; LEE, L. JAMES; LEE, ROBERT J.

2013-01-01

96

Targeted Therapeutics and Nanodevices for Vascular Drug Delivery: Quo Vadis?  

PubMed Central

Summary This issue of the journal is dedicated to targeted delivery of therapeutics in the vasculature, an approach that holds promise to optimize treatment of diverse pathological conditions ranging from ischemia and tumor growth to metabolic and genetic diseases. From the standpoint of drug delivery, circulation system represents the natural route to the targets, whereas its components (blood and vascular cells) represent targets, carriers or barriers for drug delivery. Diverse nanodevices and targeted therapeutic agents that are designed and tested in animal and early clinical studies to achieve optimal and precise spatiotemporal control of the pharmacokinetics, destination, metabolism and effect of pharmacological agents will be discussed in this introductory essay and subsequent critical reviews in this series.

Muzykantov, Vladimir R.

2012-01-01

97

A new probe for targeting drug delivery system.  

PubMed

Recently, TDDS (Targeting drug delivery system) plays an important role in enhancing the bioavailability and targeting of anti-tumor drugs. How to transport drugs quickly and precisely to their target sites of action has not been solved fundamentally. A large number of researches have identified artemisinin and its analogs have the merit of precisely targeting to cancer cell, and low side effects to healthy tissue. Thus, if these compounds could be attached to established anti-tumor drugs with probe, a novel targeting anti-tumor drugs will be put into practice in the future. The novel drugs delivery system will be a powerful weapon against cancer disease for their unique targeting. PMID:18829175

Yu, Zhengwen; Wang, Bochu; Sui, Jing; Feng, Yingzhu; Zheng, Chao

2008-09-30

98

Targeted Delivery to Legumain-Expressing Cells.  

National Technical Information Service (NTIS)

The present invention relates to new agents and methods useful for preventing, treating and diagnosing diseases such as cancer. For example, the invention relates to prodrug agents useful for targeting and delivering cytotoxic drugs to cancerous cells.

C. Liu T. S. Edgington

2005-01-01

99

Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells.  

PubMed

Drugs, proteins, and cells can be macro- and micro-encapsulated by unique materials that respond to specific stimuli. The phases and hydrophobic interactions of these materials are reversibly altered by environmental stimuli such as pH and temperature. These changes can lead to self-assembly of the materials, which enables controlled drug release and safe gene delivery into cells and tissues. The fate of stem cells delivered by such methods is of great interest. The formation of transgenic tissues requires genes to be delivered safely into stem cells. A cell tracing vehicle and a gene delivery carrier were simultaneously introduced into human mesenchymal stem cells (hMSCs). A thermo-sensitive hydrogel, poly(N-isopropylacrylamide-co-acrylic acid) (p(NiPAAm-co-AAc)), was created to generate self-assembled nanoparticles with nanogel characteristics. Hydrophobic interactions mediated the binding of the carboxyl group on the outside of p(NiPAAm-co-AAc) with the amine group of iron oxide. Nanogels carrying iron oxide and a fluorescent dye were complexed with specific genes. These nanogels could be internalized by hMSCs, and the transplantation of these cells into mice was monitored by in vivo imaging. Self-assembled p(NiPAAm-co-dAAc) nanogels complexed with green fluorescent protein were highly expressed in hMSCs and are a potential material for gene delivery. PMID:23937912

Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Jeon, Su Yeon; Park, Keun-Hong

2013-08-12

100

Functionalized Nanosystems for Targeted Mitochondrial Delivery  

PubMed Central

Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer’s disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects.

Durazo, Shelley A.; Kompella, Uday B.

2011-01-01

101

Functionalized nanosystems for targeted mitochondrial delivery.  

PubMed

Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer's disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects. PMID:22138492

Durazo, Shelley A; Kompella, Uday B

2011-11-23

102

Endogenous lectins as targets for drug delivery  

Microsoft Academic Search

To minimize side effects of drugs it would be ideal to target them exclusively to those cell types which require treatment. As a means to this end prototypical cellular recognition systems pique our interest to devise biomimetic strategies. Since oligosaccharides of glycoconjugates outmatch other information-carrying biomolecules (proteins, nucleic acids) in theoretical storage capacity by far, work on the sugar code

N. Yamazaki; S. Kojima; N. V. Bovin; S. André; S. Gabius; H.-J. Gabius

2000-01-01

103

Adenoviral vectors: Systemic delivery and tumor targeting  

Microsoft Academic Search

The development of a targeted adenoviral vector, which can be delivered systemically, is one of the major challenges facing cancer gene therapy. The virus is readily cleared from the bloodstream, can be neutralised by pre-existing antibodies, and has a permissive cellular tropism. Clinical studies using the ONYX virus have shown limited efficacy, but there are several hurdles to overcome to

Nicola K Green; Leonard W Seymour

2002-01-01

104

Delivery to Intracellular Targets by Nanosized Particles  

Microsoft Academic Search

\\u000a Nanosized drug carrier systems, including liposomes and nanoparticles, have the potential of delivering their contents to\\u000a the interior of cells. However, engineering of the particle size and surface properties is necessary to achieve targeting\\u000a to particular cell types. Conventional particles with hydrophobic surfaces are rapidly engulfed by phagocytic cells. Modification\\u000a of the surface with hydrophilic polymers yields so-called “Stealth” particles

Gillian Barratt

105

Colon Targeted Delivery Systems: Review of Polysaccharides for Encapsulation and Delivery  

Microsoft Academic Search

Colon-targeted delivery of bioactives has recently gained importance in addressing specific needs in the therapy of colon-based diseases. Many approaches have been attempted for the development of colon-specific delivery systems, with not much success in the past. Recent research into the utilization of the metabolic activity and the colonic microenvironment in the lower gastrointestinal tract has attained great value in

Shantha L. Kosaraju

2005-01-01

106

Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles.  

PubMed

Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed. PMID:19085091

Jabbari, Esmaiel

2008-12-17

107

Targeted Delivery of Radioprotective Agents to Mitochondria  

PubMed Central

Adverse effects of ionizing radiation are mediated through reactive oxygen and nitrogen species. Mitochondria are the principal source of these species in the cell and play an important role in irradiation-induced apoptosis. The use of free radical scavengers and nitric oxide synthase inhibitors has proven to protect normal tissues and, in some cases, to sensitize tumor tissues to radiation damage. Dual molecules that combine radical-scavenging and NOS-inhibitory functions may be particularly effective. Drugging strategies that target mitochondria can enhance the effectiveness of such agents, in comparison to systemic administration, and circumvent side effects.

Zabbarova, Irina; Kanai, Anthony

2010-01-01

108

Strategies on the nuclear-targeted delivery of genes.  

PubMed

Abstract To improve the nuclear-targeted delivery of non-viral vectors, extensive effort has been carried out on the development of smart vectors which could overcome multiple barriers. The nuclear envelope presents a major barrier to transgene delivery. Viruses are capable of crossing the nuclear envelope to efficiently deliver their genome into the nucleus through the specialized protein components. However, non-viral vectors are preferred over viral ones because of the safety concerns associated with the latter. Non-viral delivery systems have been designed to include various types of components to enable nuclear translocation at the periphery of the nucleus. This review summarizes the progress of research regarding nuclear transport mechanisms. "Smart" non-viral vectors that have been modified by peptides and other small molecules are able to facilitate the nuclear translocation and enhance the efficacy of gene expression. The resulting technology may also enhance delivery of other macromolecules to the nucleus. PMID:23964565

Yao, Jing; Fan, Ying; Li, Yuanke; Huang, Leaf

2013-08-22

109

Liposomes surface conjugated with human hemoglobin target delivery to macrophages  

PubMed Central

Current strategies to deliver therapeutic molecules to specific cell and tissue types rely on conjugation of antibodies and other targeting ligands directly to the therapeutic molecule itself or its carrier. This work describes a novel strategy to deliver therapeutic molecules into macrophages that takes advantage of the native hemoglobin (Hb) scavenging activity of plasma haptoglobin (Hp) and the subsequent uptake of the Hb-Hp complex into macrophages via CD163 receptor mediated endocytosis. The drug delivery system described in this work consists of hemoglobin decorated liposomes that can encapsulate any therapeutic molecule of interest, in this case the model fluorescent dye calcein was used in this study. The results of this study clearly demonstrate that this delivery system is specific towards macrophages and demonstrates the feasibility of using this approach in targeted drug delivery.

Zhang, Ning; Palmer, Andre F.

2012-01-01

110

Adhesion Dynamics of Functional Nanoparticles for Targeted Drug Delivery  

Microsoft Academic Search

Adhesion of micro and nanoparticles onto cardiovascular walls is a critical process in applications such as targeted drug delivery, biomedical imaging, and cancer treatment. This paper intends to develop an understanding of the dynamic interaction between particle and vessel wall through computational modeling. The ligand-receptor binding dynamics is coupled with Immersed Finite Element Method to study the adhesion process of

Yaling Liu; Samar Shah; Wenchuang Hu; Jinming Gao

111

Development of colon targeted drug delivery systems for mebendazole  

Microsoft Academic Search

The objective of the present study is to develop colon targeted drug delivery systems for mebendazole using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for drug content uniformity, and were subjected to in vitro drug release studies. The

Y. S. R Krishnaiah; P Veer Raju; B Dinesh Kumar; P Bhaskar; V Satyanarayana

2001-01-01

112

Targeted drug delivery and enhanced intracellular release using functionalized liposomes  

Microsoft Academic Search

The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the

Ashish Garg

2009-01-01

113

Targeting the Delivery of Army Advertisements on Television.  

National Technical Information Service (NTIS)

The U.S. Army uses advertisements to affect the knowledge, attitudes, and behavioral intentions of youth to effectively recruit manpower. Both the message content and the delivery of the message are targeted to recruit soldiers who are most likely to prov...

T. Ellig

1988-01-01

114

Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae.  

PubMed

To establish a safer and more effective vaccine against pneumococcal respiratory infections, current knowledge regarding the antigens common among pneumococcal strains and improvements to the system for delivering these antigens across the mucosal barrier must be integrated. We developed a pneumococcal vaccine that combines the advantages of pneumococcal surface protein A (PspA) with a nontoxic intranasal vaccine delivery system based on a nanometer-sized hydrogel (nanogel) consisting of a cationic cholesteryl group-bearing pullulan (cCHP). The efficacy of the nanogel-based PspA nasal vaccine (cCHP-PspA) was tested in murine pneumococcal airway infection models. Intranasal vaccination with cCHP-PspA provided protective immunity against lethal challenge with Streptococcus pneumoniae Xen10, reduced colonization and invasion by bacteria in the upper and lower respiratory tracts, and induced systemic and nasal mucosal Th17 responses, high levels of PspA-specific serum immunoglobulin G (IgG), and nasal and bronchial IgA antibody responses. Moreover, there was no sign of PspA delivery by nanogel to either the olfactory bulbs or the central nervous system after intranasal administration. These results demonstrate the effectiveness and safety of the nanogel-based PspA nasal vaccine system as a universal mucosal vaccine against pneumococcal respiratory infection. PMID:23460513

Kong, Il Gyu; Sato, Ayuko; Yuki, Yoshikazu; Nochi, Tomonori; Takahashi, Haruko; Sawada, Shinichi; Mejima, Mio; Kurokawa, Shiho; Okada, Kazunari; Sato, Shintaro; Briles, David E; Kunisawa, Jun; Inoue, Yusuke; Yamamoto, Masafumi; Akiyoshi, Kazunari; Kiyono, Hiroshi

2013-03-04

115

Ex vivo investigation of magnetically targeted drug delivery system  

NASA Astrophysics Data System (ADS)

In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel.

Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

2007-03-01

116

Colon targeting: an emerging frontier for oral insulin delivery.  

PubMed

Subcutaneous administration of insulin is associated with several limitations such as discomfort, local pain, irritation, infections, immune reactions and lipoatrophy as well as lipohypertrophy manifestations at the injection site. To overcome these drawbacks, enormous research is currently going on worldwide for designing of an alternative noninvasive route of administration. Pulmonary and oral route seem to be the most promising ones, with respect to the market value. However, after the letdown by pulmonary delivery of insulin, oral colon targeted delivery of insulin has gained tremendous interest among researchers. Although bioavailability remains a challenge for oral colon specific delivery of insulin, the employment of protease inhibitors, permeation enhancers and polymeric delivery systems have proved to be advantageous to overcome the said problem. This Editorial article is not intended to offer a comprehensive review on drug delivery, but shall familiarize the readers with the strategies employed for attaining non-erratic bioavailability of insulin, and to highlight some of the formulation technologies that have been developed for attaining oral colon-specific delivery of insulin. PMID:23521062

Patel, Mayur Mahendrakumar

2013-03-25

117

Lipid carrier systems for targeted drug and gene delivery.  

PubMed

For effective chemotherapy, it is necessary to deliver therapeutic agents selectively to their target sites, since most drugs are associated with both beneficial effects and side effects. The use of lipid dispersion carrier systems, such as lipid emulsions and liposomes, as carriers of lipophilic drugs has attracted particular interest. A drug delivery system can be defined as a methodology for manipulating drug distribution in the body. Since drug distribution depends on the carrier, administration route, particle size of the carrier, lipid composition of the carrier, electric charge of the carrier and ligand density of the targeting carrier, these factors must be optimized. Recently, the lipid carrier system has also been applied to gene delivery systems for gene therapy. However, in both drug and gene medicine cases, a lack of cell-selectivity limits the wide application of this kind of drug and/or gene therapy. Therefore, lipid carrier systems for targeted drug and gene delivery must be developed for the rational therapy. In this review, we shall focus on the progress of research into lipid carrier systems for drug and gene delivery following systemic or local injection. PMID:16079512

Hashida, Mitsuru; Kawakami, Shigeru; Yamashita, Fumiyoshi

2005-08-01

118

Pharmacytes: an ideal vehicle for targeted drug delivery.  

PubMed

An ideal nanotechnology-based drug delivery system is a pharmacyte--a self-powered, computer-controlled medical nanorobot system capable of digitally precise transport, timing, and targeted delivery of pharmaceutical agents to specific cellular and intracellular destinations within the human body. Pharmacytes may be constructed using future molecular manufacturing technologies such as diamond mechanosynthesis which are currently being investigated theoretically using quantum ab initio and density-functional computational methods. Pharmacytes will have many applications in nanomedicine such as initiation of apoptosis in cancer cells and direct control of cell signaling processes. PMID:17048481

Freitas, Robert A

119

Bispecific digoxigenin-binding antibodies for targeted payload delivery  

PubMed Central

Bispecific antibodies that bind cell-surface targets as well as digoxigenin (Dig) were generated for targeted payload delivery. Targeting moieties are IgGs that bind the tumor antigens Her2, IGF1R, CD22, or LeY. A Dig-binding single-chain Fv was attached in disulfide-stabilized form to C termini of CH3 domains of targeting antibodies. Bispecific molecules were expressed in mammalian cells and purified in the same manner as unmodified IgGs. They are stable without aggregation propensity and retain binding specificity/affinity to cell-surface antigens and Dig. Digoxigeninylated payloads were generated that retain full functionality and can be complexed to bispecific antibodies in a defined 2?1 ratio. Payloads include small compounds (Dig-Cy5, Dig-Doxorubicin) and proteins (Dig-GFP). Complexed payloads are targeted by the bispecifics to cancer cells and because these complexes are stable in serum, they can be applied for targeted delivery. Because Dig bispecifics also effectively capture digoxigeninylated compounds under physiological conditions, separate administration of uncharged Dig bispecifics followed by application of Dig payload is sufficient to achieve antibody-mediated targeting in vitro and in vivo.

Metz, Silke; Haas, Alexander K.; Daub, Karin; Croasdale, Rebecca; Stracke, Jan; Lau, Wilma; Georges, Guy; Josel, Hans-Peter; Dziadek, Sebastian; Hopfner, Karl-Peter; Lammens, Alfred; Scheuer, Werner; Hoffmann, Eike; Mundigl, Olaf; Brinkmann, Ulrich

2011-01-01

120

Targeted Liposomal Drug Delivery to Monocytes and Macrophages  

PubMed Central

As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS), particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can have a very significant effect on the efficiency with which liposomes target MPS cells. MPS cells express a range of receptors including scavenger receptors, integrins, mannose receptors and Fc-receptors that can be targeted by the addition of ligands to liposome surfaces. These ligands include peptides, antibodies and lectins and have the advantages of increasing target specificity and avoiding the need for cationic lipids to trigger intracellular delivery. The goal for targeting monocytes/macrophages using liposomes includes not only drug delivery but also potentially a role in cell ablation and cell activation for the treatment of conditions including cancer, atherosclerosis, HIV, and chronic inflammation.

Kelly, Ciara; Jefferies, Caroline; Cryan, Sally-Ann

2011-01-01

121

Targeted drug delivery to treat pain and cerebral hypoxia.  

PubMed

Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia. PMID:23343976

Ronaldson, Patrick T; Davis, Thomas P

2013-01-23

122

Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures  

NASA Astrophysics Data System (ADS)

Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

2002-03-01

123

The use of shear stress for targeted drug delivery.  

PubMed

Stenosed segments of arteries significantly alter the blood flow known from healthy vessels. In particular, the wall shear stress at critically stenosed arteries is at least an order of magnitude higher than in healthy situations. This alteration represents a change in physical force and might be used as a trigger signal for drug delivery. Mechano-sensitive drug delivery systems that preferentially release their payload under increased shear stress are discussed. Therefore, besides biological or chemical markers, physical triggers are a further principle approach for targeted drug delivery. We hypothesize that such a physical trigger is much more powerful to release drugs for vasodilation, plaque stabilization, or clot lysis at stenosed arteries than any known biological or chemical ones. PMID:23645574

Saxer, Till; Zumbuehl, Andreas; Müller, Bert

2013-05-02

124

Nanostructured lipid carriers (NLCs) for drug delivery and targeting.  

PubMed

Nanostructured lipid carriers (NLCs) are drug-delivery systems composed of both solid and liquid lipids as a core matrix. It was shown that NLCs reveal some advantages for drug therapy over conventional carriers, including increased solubility, the ability to enhance storage stability, improved permeability and bioavailability, reduced adverse effect, prolonged half-life, and tissue-targeted delivery. NLCs have attracted increasing attention in recent years. This review describes recent developments in drug delivery using NLCs strategies. The structures, preparation techniques, and physicochemical characterization of NLCs are systematically elucidated in this review. The potential of NLCs to be used for different administration routes is highlighted. Special attention is paid to parenteral injection and topical delivery since these are the most common routes for investigating NLCs. Relevant issues for the introduction of NLCs to market, including pharmaceutical and cosmetic applications, are discussed. The related patents of NLCs for drug delivery are also reviewed. Finally, the future development and current obstacles needing to be resolved are elucidated. PMID:22946628

Fang, Chia-Lang; Al-Suwayeh, Saleh A; Fang, Jia-You

2013-01-01

125

Targeted gene knockout by direct delivery of ZFN proteins  

PubMed Central

Zinc-finger nucleases (ZFNs) are versatile reagents that have redefined genome engineering. Realizing the full potential of this technology requires the development of safe and effective methods for delivering ZFNs into cells. We demonstrate the intrinsic cell-penetrating capabilities of the standard ZFN architecture and show that direct delivery of ZFNs as proteins leads to efficient endogenous gene disruption in a variety of mammalian cell types with minimal off-target effects.

Gaj, Thomas; Guo, Jing; Kato, Yoshio; Sirk, Shannon J.; Barbas, Carlos F.

2012-01-01

126

Nanofabricated biomimetic structures for smart targeting and drug delivery  

Microsoft Academic Search

We present a new approach to hybrid artificial cells (AC) designed for specific targeting and active drug delivery by combining\\u000a an impermeable non-biological scaffold with an artificial bilayer lipid membrane (BLM) that supports the functioning bio-molecules\\u000a required to provide AC functionality. We report on the fabrication of the scaffold using nanotechnology, as well as on loading\\u000a of the scaffold and

Alma Dudia; Johannes S. Kanger; Vinod Subramaniam

2005-01-01

127

Magnetic lymphatic targeting drug delivery system using carbon nanotubes.  

PubMed

By controlling size, nanoparticles can be effectively taken up into lymphatics. On this basis, various nanoparticles have been investigated for transporters of chemotherapeutic pharmaceuticals, but only a few were retained in the draining lymph node. Here, we present a technology using a magnetic carbon nanotubes (MNTs) delivery system, and it may be possible to facilitate the targeted delivery of drugs in the lymphatic tissue more effectively. Chemotherapeutic agents were incorporated into the pores of functionalized MNTs synthesized with a layer of magnetite nanoparticles on the inner surface of the nanotubes. To improve drug delivery to cancer cells in the lymph nodes, individualized MNTs were noncovalently functionalized by folic acid (FA). By using an externally placed magnet to guide the drug matrix to the regional targeted lymph nodes, the MNTs can be retained in the draining targeted lymph nodes for several days and continuously release chemotherapeutic drugs. Selective killing of tumor cells overexpressing the folate receptors (FRs) in the lymph nodes can be achieved, as FR is overexpressed across a broad spectrum of human tumors. PMID:17910909

Yang, Feng; Fu, De Liang; Long, Jiang; Ni, Quan Xing

2007-10-01

128

Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery  

NASA Astrophysics Data System (ADS)

Multifunctional silica nanoparticles provide a framework for the attachment of imaging and targeting agents for applications in spectroscopy, microscopy, and biology while simultaneously serving as supports for molecular machines for the controlled release of cargo. The deliberate placing of molecules or other nanoparticles within specific regions of the mesostructure or the surface of the nanoparticles allows for multiple modes of characterization and application. This review focuses on research related to fluorescence and spectroscopic imaging techniques, targeting strategies to increase particle uptake efficiency in cells, and on demand drug delivery regulated by molecular machines.

Pecorelli, Travis A.; Dibrell, Marcelle M.; Li, Zongxi; Thomas, Courtney R.; Zink, Jeffrey I.

2010-02-01

129

In vivo targeted delivery of nanoparticles for theranosis.  

PubMed

Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future. PMID:21851104

Koo, Heebeom; Huh, Myung Sook; Sun, In-Cheol; Yuk, Soon Hong; Choi, Kuiwon; Kim, Kwangmeyung; Kwon, Ick Chan

2011-08-18

130

Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery  

PubMed Central

Targeted drug delivery using functionalized nanocarriers (NCs) is a strategy in therapeutic and diagnostic applications. In this paper we review the recent development of models at multiple length and time scales and their applications to targeting of antibody functionalized nanocarriers to antigens (receptors) on the endothelial cell (EC) surface. Our mesoscale (100 nm-1 ?m) model is based on phenomenological interaction potentials for receptor-ligand interactions, receptor-flexure and resistance offered by glycocalyx. All free parameters are either directly determined from independent biophysical and cell biology experiments or estimated using molecular dynamics simulations. We employ a Metropolis Monte Carlo (MC) strategy in conjunction with the weighted histogram analysis method (WHAM) to compute the free energy landscape (potential of mean force or PMF) associated with the multivalent antigen-antibody interactions mediating the NC binding to EC. The binding affinities (association constants) are then derived from the PMF by computing absolute binding free energy of binding of NC to EC, taking into account the relevant translational and rotational entropy losses of NC and the receptors. We validate our model predictions by comparing the computed binding affinities and PMF to a wide range of experimental measurements, including in vitro cell culture, in vivo endothelial targeting, atomic force microscopy (AFM), and flow chamber experiments. The model predictions agree closely and quantitatively with all types experimental measurements. On this basis, we conclude that our computational protocol represents a quantitative and predictive approach for model driven design and optimization of functionalized NCs in targeted vascular drug delivery.

Liu, Jin; Bradley, Ryan; Eckmann, David M.; Ayyaswamy, Portonovo S.; Radhakrishnan, Ravi

2011-01-01

131

Magnetic nanoparticles as targeted delivery systems in oncology  

PubMed Central

Background Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer.

Prijic, Sara; Sersa, Gregor

2011-01-01

132

Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma.  

PubMed

Glioma accounts for 80% of brain tumors and currently remains one of the most lethal forms of cancers. Gene therapy could potentially improve the dismal prognosis of patients with glioma, but this treatment modality has not yet reached the bedside from the laboratory due to the lack of safe and effective gene delivery vehicles. In this study we investigate targeted gene delivery to C6 glioma cells in a xenograft mouse model using chlorotoxin (CTX) labeled nanoparticles. The developed nanovector consists of an iron oxide nanoparticle core, coated with a copolymer of chitosan, polyethylene glycol (PEG), and polyethylenimine (PEI). Green fluorescent protein (GFP) encoding DNA was bound to these nanoparticles, and CTX was then attached using a short PEG linker. Nanoparticles without CTX were also prepared as a control. Mice bearing C6 xenograft tumors were injected intravenously with the DNA-bound nanoparticles. Nanoparticle accumulation in the tumor site was monitored using magnetic resonance imaging and analyzed by histology, and GFP gene expression was monitored through Xenogen IVIS fluorescence imaging and confocal fluorescence microscopy. Interestingly, the CTX did not affect the accumulation of nanoparticles at the tumor site but specifically enhanced their uptake into cancer cells as evidenced by higher gene expression. These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers. PMID:20731441

Kievit, Forrest M; Veiseh, Omid; Fang, Chen; Bhattarai, Narayan; Lee, Donghoon; Ellenbogen, Richard G; Zhang, Miqin

2010-08-24

133

Multifunctional Particles for Melanoma-Targeted Drug Delivery  

PubMed Central

New magnetic-based core-shell particles (MBCSP) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSP consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSP were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the ?5?3+ receptor of melanoma cell. MBCSP consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSP has an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 ?g ml?1. Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSP were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in presence of a magnet. Results indicate great potential of MBCSP as a platform technology to target, treat, and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents.

Wadajkar, Aniket S.; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T.

2012-01-01

134

"Nanotheranostics" for tumor imaging and targeted drug delivery  

NASA Astrophysics Data System (ADS)

The magnetic resonance imaging (MRI) technique is a promising tool that improves cancer detection, facilitates diagnosis and monitors therapeutic effects. Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as MRI contrast agents for tumor imaging and as potential vectors for targeted anti-cancer drug delivery; nevertheless, the application of SPIOs has been hampered due to a lack of specificity to tumor tissues and premature drug release. This project aims at developing multifunctional SPIOs for both cancer imaging and targeted drug delivery via conjugation of tumor specific antibodies with SPIOs. The application of anti-TAG-72 antibodies as tumor targeting modalities was evaluated in cultured colorectal cancer cells and in xenograft models by using fluorescent imaging and positron emission tomography (PET) imaging. It was demonstrated that antibody-labeled SPIOs were superior imaging agents and drug carriers for increased tumor specificity. The regulation and kinetics of intracellular drug release from SPIOs were explored by means of fluorescence imaging. In vitro and in vivo fluorescence resonance energy transfer (FRET) imaging was employed to investigate the mechanisms of premature drug release from nanocarriers. The large volume and high hydrophobicity of cell membranes were found to play an important role in premature drug release. The encapsulation of SPIOs into nanocarriers decreased drug release in a dose-dependent mode. This study provided future opportunities to improve the efficiency of nanocarriers by exploring the mechanism of drug release and disassembly of SPIO-loaded polymeric nanoparticles.

Zou, Peng

135

Development of magnetically targeted drug delivery system using superconducting magnet  

NASA Astrophysics Data System (ADS)

Development of a novel drug delivery system was made to accumulate/navigate magnetic drugs with the help of a superconducting magnet in order to control the drugs in blood vessels located deep inside the body. In the present paper, we tested the feasibility of a novel navigation system, made by applying a strong external (magnetic) field through SmBaCuO and YBaCuO bulk superconductors in order to realize the practice of using externally applied magnetic fields for targeting the magnetic particles to a circumscribed body region.

Takeda, Shin-Ichi; Mishima, Fumihito; Fujimoto, Suketaka; Izumi, Yoshinobu; Nishijima, Shigehiro

2007-04-01

136

Tumor Regression by Targeted Gene Delivery to the Neovasculature  

NASA Astrophysics Data System (ADS)

Efforts to influence the biology of blood vessels by gene delivery have been hampered by a lack of targeting vectors specific for endothelial cells in diseased tissues. Here we show that a cationic nanoparticle (NP) coupled to an integrin ?v?3-targeting ligand can deliver genes selectively to angiogenic blood vessels in tumor-bearing mice. The therapeutic efficacy of this approach was tested by generating NPs conjugated to a mutant Raf gene, ATP?-Raf, which blocks endothelial signaling and angiogenesis in response to multiple growth factors. Systemic injection of the NP into mice resulted in apoptosis of the tumor-associated endothelium, ultimately leading to tumor cell apoptosis and sustained regression of established primary and metastatic tumors.

Hood, John D.; Bednarski, Mark; Frausto, Ricardo; Guccione, Samira; Reisfeld, Ralph A.; Xiang, Rong; Cheresh, David A.

2002-06-01

137

Nanostructured porous Si-based nanoparticles for targeted drug delivery.  

PubMed

One of the backbones in nanomedicine is to deliver drugs specifically to unhealthy cells. Drug nanocarriers can cross physiological barriers and access different tissues, which after proper surface biofunctionalization can enhance cell specificity for cancer therapy. Recent developments have highlighted the potential of mesoporous silica (PSiO(2)) and silicon (PSi) nanoparticles for targeted drug delivery. In this review, we outline and discuss the most recent advances on the applications and developments of cancer therapies by means of PSiO(2) and PSi nanomaterials. Bio-engineering and fine tuning of anti-cancer drug vehicles, high flexibility and potential for sophisticated release mechanisms make these nanostructures promising candidates for "smart" cancer therapies. As a result of their physicochemical properties they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting. The main emphasis of this review will be on the in vitro and in vivo studies. PMID:23507894

Shahbazi, Mohammad-Ali; Herranz, Barbara; Santos, Hélder A

138

Hypertension control through the design of targeted delivery models.  

PubMed Central

If we discard some of the assumptions upon which curatively oriented medical care is based, we can design models to deliver more effective services for those with chronic diseases. Assumptions to be discarded are--that disease processes can be cured through the delivery of a "magic bullet" rather than controlled through continuous surveillance, -that the physician must be an active decision maker and thus act as gatekeeper and monitor for all disease victims, and -that care for a family of consumers must be provided together. Models for the delivery of services can then be designed to provide continuity of care for those with a specific chronic disease, and paraprofessionals can be used as gatekeepers and monitors, in combination with physicians, rather than physicians alone, to give services. Models can be targeted to reach specific high-risk groups within the population at the workplace, the school, unemployment office, or wherever groups routinely congregate for purposes other than health care. Building targeted models requires extensive knowledge of the specific geographic area and its population as well as knowledge of the natural history of the disease and its treatment. For hypertension programs, goals can be set in terms of numbers of persons whose disease is controlled and the number of new programs initiated as the result of the control efforts.

Bloom, J R

1978-01-01

139

Multiparticulate System for Colon Targeted Delivery of Ondansetron  

PubMed Central

Targeted delivery of drugs to colon has the potential for local treatment of a variety of colonic diseases. The main objective of the study was to develop a multiparticulate system containing chitosan microspheres for the colon targeted delivery of ondansetron for the treatment of irritable bowel syndrome. This work combines pH-dependent solubility of eudragit S-100 polymers and microbial degradability of chitosan polymers. Chitosan microspheres containing ondansetron were prepared by emulsion cross linking method. The effect of process variables like chitosan concentration, drug-polymer ratio, emulsifier concentration and stirring speed were studied on particle size and entrapment efficiency of chitosan microspheres. In vitro drug release studies in simulated gastro intestinal fluids showed a burst drug release pattern in the initial hour necessitating microencapsulation around the chitosan microspheres. The optimized formulation was then subjected to microencapsulation with eudragit S-100 by solvent evaporation technique. The effect of different coat/core ratio on particle size, drug entrapment efficiency and in vitro drug release were studied. Formulation which contain 1:10 core/coat ratio released lesser amount of drug in the upper gastro intestinal conditions and so selected as best formulation and then subjected to in vitro drug release studies in presence of rat ceacal contents to assess biodegradability of chitosan microspheres in colon. In order to study the drug release mechanism in vitro drug release data was fitted into various kinetic models. Analysis of regression values suggested that the possible drug release mechanism was Peppas model.

Jose, S.; Dhanya, K.; Cinu, T. A.; Aleykutty, N. A.

2010-01-01

140

Multiparticulate system for colon targeted delivery of ondansetron.  

PubMed

Targeted delivery of drugs to colon has the potential for local treatment of a variety of colonic diseases. The main objective of the study was to develop a multiparticulate system containing chitosan microspheres for the colon targeted delivery of ondansetron for the treatment of irritable bowel syndrome. This work combines pH-dependent solubility of eudragit S-100 polymers and microbial degradability of chitosan polymers. Chitosan microspheres containing ondansetron were prepared by emulsion cross linking method. The effect of process variables like chitosan concentration, drug-polymer ratio, emulsifier concentration and stirring speed were studied on particle size and entrapment efficiency of chitosan microspheres. In vitro drug release studies in simulated gastro intestinal fluids showed a burst drug release pattern in the initial hour necessitating microencapsulation around the chitosan microspheres. The optimized formulation was then subjected to microencapsulation with eudragit S-100 by solvent evaporation technique. The effect of different coat/core ratio on particle size, drug entrapment efficiency and in vitro drug release were studied. Formulation which contain 1:10 core/coat ratio released lesser amount of drug in the upper gastro intestinal conditions and so selected as best formulation and then subjected to in vitro drug release studies in presence of rat ceacal contents to assess biodegradability of chitosan microspheres in colon. In order to study the drug release mechanism in vitro drug release data was fitted into various kinetic models. Analysis of regression values suggested that the possible drug release mechanism was Peppas model. PMID:20582191

Jose, S; Dhanya, K; Cinu, T A; Aleykutty, N A

2010-01-01

141

Delivery of Retinoid-Based Therapies To Target Tissues†  

PubMed Central

Through its various metabolites, vitamin A controls essential physiological functions. Both naturally occurring metabolites and novel retinoid analogues have shown effectiveness in many clinical settings that include skin diseases and cancer, and in animal models of human conditions affecting vision. In this review, we analyze several potential retinoid-based therapies from the point of view of drug metabolism and transport to target tissues. We focus on the endogenous factors that affect the absorption, transport, and metabolism of retinoids by taking into account data obtained from the analysis of animal models that lack the enzymes or proteins involved in the storage and absorption of retinoids. We also discuss findings of toxicity associated with retinoids in an effort to improve the outcome of retinoid-based therapies. In this context, we review evidence that esterification of retinol and retinol-based drugs within target tissues provides one of the most efficient means to improve the absorption and to reduce the toxicity associated with pharmacological doses of retinoids. Future retinoid-based therapeutic strategies could involve targeted delivery mechanisms leading to lower toxicity and improved effectiveness of retinoids.

Moise, Alexander R.; Noy, Noa; Palczewski, Krzysztof; Blaner, William S.

2008-01-01

142

Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma  

PubMed Central

Background N-lactosyl-dioleoylphosphatidylethanolamine (Lac-DOPE) was synthesized and evaluated as a liver-specific targeting ligand via asialoglycoprotein receptors for liposomal delivery of doxorubicin. Methods Lactosylated liposomes encapsulating calcein (Lac-L-calcein) or doxorubicin (Lac-L-DOX) composed of egg phosphatidylcholine, cholesterol, monomethoxy polyethylene glycol 2000-distearoyl phosphatidylethanolamine, and Lac-DOPE at 50:35:5:10 (mol/mol) were prepared by polycarbonate membrane extrusion and evaluated in human hepatocellular carcinoma HepG2 cells. Cellular uptake of Lac-L-calcein was monitored by confocal microscopy and by flow cytometry. The cytotoxicity of Lac-L-DOX was evaluated by MTT assay. The pharmacokinetic properties of Lac-L-DOX were studied in normal mice, and its biodistribution and antitumor activity were studied in nude mice with HepG2 xenografts. Results The size of Lac-L-DOX was less than 100 nm and the liposomes demonstrated excellent colloidal stability. In vitro uptake of Lac-L-calcein by HepG2 cells was four times greater than that of non-targeted L-calcein. In the presence of 20 mM lactose, the uptake of Lac-L-calcein was inhibited, suggesting that asialoglycoprotein receptors mediated the observed cellular uptake. Lac-L-DOX exhibited enhanced in vivo cytotoxicity compared with the nontargeted liposomal doxorubicin (L-DOX), and its pharmacokinetic parameters indicate that Lac-L-DOX has a long blood circulation time (t1/2 8.73 hours). Tissue distribution and therapeutic efficacy studies in nude mice bearing HepG2 xenografts show that Lac-L-DOX had significantly stronger tumor inhibitory activity compared with L-DOX and free doxorubicin, along with a higher accumulation of drug within the tumor site and greater cellular uptake by tumor cells. Conclusion These data suggest that lactosylated liposomes are promising drug delivery vehicles for hepatocellular carcinoma.

Zhou, Xiaoju; Zhang, Mengzi; Yung, Bryant; Li, Hong; Zhou, Chenguang; Lee, L James; Lee, Robert J

2012-01-01

143

Tumor-targeted delivery of biologically active TRAIL protein  

PubMed Central

The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5? (E. coli DH5?) specifically replicates in solid tumors and metastases in live animals. E. coli DH5? does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high ‘tumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5? results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5? did not cause any detectable toxicity to any organs, suggesting that E. coli DH5?-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors.

Zhang, H-Y; Man, J-H; Liang, B; Zhou, T; Wang, C-H; Li, T; Li, H-Y; Li, W-H; Jin, B-F; Zhang, P-J; Zhao, J; Pan, X; He, K; Gong, W-L; Zhang, X-M; Li, A-L

2010-01-01

144

Development of colon targeted drug delivery systems for mebendazole.  

PubMed

The objective of the present study is to develop colon targeted drug delivery systems for mebendazole using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for drug content uniformity, and were subjected to in vitro drug release studies. The amount of mebendazole released from the matrix tablets at different time intervals was estimated by a high-performance liquid chromatography method. Guar gum matrix tablets released 8-15% of the mebendazole in the physiological environment of stomach and small intestine depending on the proportion of guar gum used in the formulation. When the dissolution study was continued in simulated colonic fluids the matrix tablets containing 20% of guar gum released another 83% of mebendazole after degradation into 2-3 pieces. The matrix tablets containing 30% of guar gum also released about 50% of mebendazole in simulated colonic fluids indicating the susceptibility of the guar gum formulations to the rat caecal contents. The results of the study show that matrix tablets containing either 20% or 30% of guar gum are most likely to provide targeting of mebendazole for local action in the colon. The mebendazole matrix tablets containing either 20% or 30% of guar gum showed no change either in physical appearance, drug content or dissolution pattern after storage at 45 degrees C/75% relative humidity for 3 months. Differential scanning calorimetry indicated no possibility of interaction between mebendazole and guar gum. PMID:11689262

Krishnaiah, Y S; Veer Raju, P; Dinesh Kumar, B; Bhaskar, P; Satyanarayana, V

2001-11-01

145

Transcranial Route of Brain Targeted Delivery of Methadone in Oil  

PubMed Central

The unique anatomical arrangement of blood vessels and sinuses in the human skull and the brain, the prevalence of a high density of skin appendages in the scalp, extracranial vessels of the scalp communicating with the brain via emissary veins and most importantly, the way that the scalp is used in Ayurvedic medical system in treating diseases associated with the brain show that a drug could be transcranially delivered and targeted to the brain through the scalp. The present study was to investigate by measuring the antinociceptive effect on rats whether the opioid analgesic methadone could be delivered and targeted to the brain by transcranial delivery route. A non aqueous solution of methadone base in sesame oil was used for the application on the scalp. Animal studies were carried out using six groups of male rats consisting of group 1, the oral control treated with distilled water 1 ml; group 2, the oral positive control treated with methadone hydrochloride solution 316.5 ?g/ml; group 3, the negative control treated transcranially with the blank sesame oil 0.2 ml and three test groups 4, 5 and 6 treated with three different dose levels of the transcranial oil formulation of methadone base, 41.6 ?g/0.2 ml, 104 ?g/0.2 ml and 208 ?g/0.2 ml, respectively. The antinociceptive effects were examined by subjecting the rats to the hot plate and tail flick tests. The two higher concentrations of the three transcranial methadone formulations yielded response vs time curves showing nearly equal maximum antinociceptive effects similar to that of the oral positive control. Maximum analgesic effect after transcranial administration was observed between 1st and 2nd h and declined up to 6th hour. The results indicate that the transcranial brain targeted delivery of methadone base in the form of an oil based non aqueous solution results in statistically significant antinociceptive effects under experimental conditions. Therefore, it is possible to deliver central nervous system drugs through the proposed transcranial route when suitably formulated.

Pathirana, W.; Abhayawardhana, P.; Kariyawasam, H.; Ratnasooriya, W. D.

2009-01-01

146

Transcranial route of brain targeted delivery of methadone in oil.  

PubMed

The unique anatomical arrangement of blood vessels and sinuses in the human skull and the brain, the prevalence of a high density of skin appendages in the scalp, extracranial vessels of the scalp communicating with the brain via emissary veins and most importantly, the way that the scalp is used in Ayurvedic medical system in treating diseases associated with the brain show that a drug could be transcranially delivered and targeted to the brain through the scalp. The present study was to investigate by measuring the antinociceptive effect on rats whether the opioid analgesic methadone could be delivered and targeted to the brain by transcranial delivery route. A non aqueous solution of methadone base in sesame oil was used for the application on the scalp. Animal studies were carried out using six groups of male rats consisting of group 1, the oral control treated with distilled water 1 ml; group 2, the oral positive control treated with methadone hydrochloride solution 316.5 mug/ml; group 3, the negative control treated transcranially with the blank sesame oil 0.2 ml and three test groups 4, 5 and 6 treated with three different dose levels of the transcranial oil formulation of methadone base, 41.6 mug/0.2 ml, 104 mug/0.2 ml and 208 mug/0.2 ml, respectively. The antinociceptive effects were examined by subjecting the rats to the hot plate and tail flick tests. The two higher concentrations of the three transcranial methadone formulations yielded response vs time curves showing nearly equal maximum antinociceptive effects similar to that of the oral positive control. Maximum analgesic effect after transcranial administration was observed between 1st and 2nd h and declined up to 6th hour. The results indicate that the transcranial brain targeted delivery of methadone base in the form of an oil based non aqueous solution results in statistically significant antinociceptive effects under experimental conditions. Therefore, it is possible to deliver central nervous system drugs through the proposed transcranial route when suitably formulated. PMID:20490292

Pathirana, W; Abhayawardhana, P; Kariyawasam, H; Ratnasooriya, W D

2009-05-01

147

Magnetically responsive microparticles for targeted drug and radionuclide delivery.  

SciTech Connect

We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial system (RES) prefer to associate with hydrophobic surfaces. Accordingly, we will tackle this challenge by modifying the particles with hydrophilic coatings such as PEG or poloxamer (co-polymers containing hydrophobic polyoxypropylene segments and repetitive polyoxyethylene hydrophilic groups), which have a proven ability to mask recognition by the RES. Modeling is needed to help optimize the performance of targeted magnetic-particle delivery, enhance its medicinal value, and expedite its medical application. To this end, scientists at Argonne National Laboratory, working with The University of Chicago and Cleveland Clinic Hospital, are working on an effective magnetic drug targeting system based on custom magnetic field designs coupled to a three-dimensional imaging platform that addresses all associated physical and theoretical problems. Furthermore, while our clinical trial results are encouraging with regard to the tolerance and applicability of the system, more improvements must be made with respect to future study designs and systems being used. Given the technical hurdles in developing this potentially important technology, we believe we have made great progress and that we have a strong developmental plan.

Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

2004-02-16

148

Targeted Spinal Cord Therapeutics Delivery: Stabilized Platform and Microelectrode Recording Guidance Validation  

Microsoft Academic Search

Background\\/Aims: No validated delivery technique exists for accurate, reproducible delivery of biological therapies to discrete spinal cord targets. To address this unmet need, we have constructed a stabilized platform capable of supporting physiologic mapping, through microelectrode recording, and cellular or viral payload delivery to the ventral horn. Methods: A porcine animal model (n = 7) has been chosen based upon

Jonathan Riley; John Butler; Kenneth B. Baker; Shearwood McClelland III; Qingshan Teng; Jun Yang; Mary Garrity-Moses; Thais Federici; Nicholas M. Boulis

2008-01-01

149

Physical blends of starch graft copolymers as matrices for colon targeting drug delivery systems  

Microsoft Academic Search

Colon targeting drug delivery systems have attracted many researchers due to the distinct advantages they present such as near neutral pH, longer transit time and reduced enzymatic activity. Moreover, in recent studies, colon specific drug delivery systems are gaining importance for use in the treatment of local pathologies of the colon and also for the systemic delivery of protein and

I. Silva; M. Gurruchaga; I. Goñi

2009-01-01

150

Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches  

Microsoft Academic Search

The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery)

Anil K. Philip; Betty Philip

2010-01-01

151

Advances in lipid nanodispersions for parenteral drug delivery and targeting.  

PubMed

Parenteral formulations, particularly intravascular ones, offer a unique opportunity for direct access to the bloodstream and rapid onset of drug action as well as targeting to specific organ and tissue sites. Triglyceride emulsions, liposomes and micellar solutions have been traditionally used to accomplish these tasks and there are several products on the market using these lipid formulations. The broader application of these lipid systems in parenteral drug delivery, however, particularly with new chemical entities, has been limited due primarily to the following reasons: a) only a small number of parenteral lipid excipients are approved, b) there is increasing number of drugs that are partially or not soluble in conventional oils and other lipid solvents, and c) the ongoing requirement for site-specific targeting and controlled drug release. Thus, there is growing need to expand the array of targetable lipid-based systems to deliver a wide variety of drugs and produce stable formulations which can be easily manufactured in a sterile form, are cost-effective and at least as safe and efficacious as the earlier developed systems. These advanced parenteral lipid-based systems are at various stages of preclinical and clinical development which include nanoemulsions, nanosuspensions and polymeric phospholipid micelles. This review article will showcase these parenteral lipid nanosystems and discuss advances in relation to formulation development, processing and manufacturing, and stability assessment. Factors controlling drug encapsulation and release and in vivo biodistribution will be emphasized along with in vitro/in vivo toxicity and efficacy case studies. Emerging lipid excipients and increasing applications of injectable lipid nanocarriers in cancer chemotherapy and other disease indications will be highlighted and in vitro/in vivo case studies will be presented. As these new parenteral lipid systems advance through the clinic and product launch, their therapeutic utility and value will certainly expand. PMID:18096269

Constantinides, Panayiotis P; Chaubal, Mahesh V; Shorr, Robert

2007-11-06

152

Chimeric aptamers in cancer cell-targeted drug delivery  

PubMed Central

Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.

Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

2011-01-01

153

Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells  

PubMed Central

Background To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs) more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG) and a series of its mannosylated derivatives. Methods PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs) using flow cytometry. Results PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation. Conclusion These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.

Sun, Xun; Chen, Simu; Han, Jianfeng; Zhang, Zhirong

2012-01-01

154

A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery  

PubMed Central

A DNA capsule fitted with aptamer controlled target sensing has been “woven” using a 7308-base single-stranded DNA “thread” and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces.

2012-01-01

155

Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and without any attached support. As composites of aligned nanofibers, yarns potentially combine the inherent advantages of nanofibers with the strength and pliability of larger sized fibers. As such, we became interested in exploring the potential of nanofiber yarns as drug carriers. Our study evolved to accommodate comparative studies between the behavior of traditional nonwoven mats and nanofiber yarns. Throughout the process, we sought to answer the bigger question: Can guar galactomannan nanofibers be used as a new biodegradable platform for drug delivery?

Chu, Hsiao Mei Annie

156

Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone  

Microsoft Academic Search

Targeted gene therapy can potentially minimize undesirable off-target toxicity due to specific delivery. Neuron-specific gene delivery in the central nervous system is challenging because neurons are non-dividing and also outnumbered by glial cells. One approach is to transfect dividing neural stem and progenitor cells (NSCs and NPCs, respectively). In this work, we demonstrate cell-specific gene delivery to NPCs in the

Ester J. Kwon; Jurate Lasiene; Berit E. Jacobson; In-Kyu Park; Philip J. Horner; Suzie H. Pun

2010-01-01

157

Recent developments in carbohydrate-decorated targeted drug/gene delivery.  

PubMed

Targeted delivery of a drug or gene to its site of action has clear therapeutic advantages by maximizing its therapeutic efficiency and minimizing its systemic toxicity. Generally, targeted drug or gene delivery is performed by loading a macromolecular carrier with an appropriate drug or gene, and by targeting the drug/gene carrier to specific cell or tissue with the help of specific targeting ligand. The emergence of glycobiology, glycotechnology, and glycomics and their continual adaptation by pharmaceutical scientists have opened exciting avenue of medicinal applications of carbohydrates. Among them, the biocompatibility and specific receptor recognition ability confer the ability of carbohydrates as potential targeting ligands for targeted drug and gene delivery applications. This review summarizes recent progress of carbohydrate-decorated targeted drug/gene delivery applications. PMID:19626595

Zhang, Hailong; Ma, Yong; Sun, Xue-Long

2010-03-01

158

Mucoadhesive platforms for targeted delivery to the colon.  

PubMed

A novel platform system, comprising a mucoadhesive core and a rapid release carrier, was designed for targeted drug delivery to the colon. Prednisolone pellets containing different carbomers, including Carbopol 971P, Carbopol 974P and Polycarbophil AA-1, with or without organic acids, were produced by extrusion-spheronization. Mucoadhesive pellets were coated with a new enteric double-coating system, which dissolves at pH 7. This system comprises an inner layer of partially neutralized Eudragit S and buffer salt and an outer coating of standard Eudragit S. A single layer of standard Eudragit S was also applied for comparison purposes. Dissolution of the coated pellets was assessed in USP II apparatus in 0.1N HCl followed by Krebs bicarbonate buffer pH 7.4. Visualization of the coating dissolution process was performed by confocal laser scanning microscopy using fluorescent markers in both layers. The mucoadhesive properties of uncoated, single-coated and-double coated pellets were evaluated ex vivo on porcine colonic mucosa. Mucoadhesive pellets coated with a single layer of Eudragit S release its cargo after a lag time of 120 min in Krebs buffer. In contrast, drug release from the double-coated mucoadhesive pellets was significantly accelerated, starting at 75 min. In addition, the mucoadhesive properties of the core of the double coated pellets were higher than those from single-coated pellets after the core had been exposed to the buffer medium. This novel platform technology has the potential to target the colon and overcome the variability in transit and harmonize drug release and bioavailability. PMID:21856393

Varum, Felipe J O; Veiga, Francisco; Sousa, João S; Basit, Abdul W

2011-08-11

159

Targeting Drug Delivery to the Lungs by Inhalation  

PubMed Central

Most drugs targeted to the respiratory tract are used for their local action. For example, ephidrine for nasal decongestion, beta-2 agonists for bronchodilatation, and inhaled steroids to suppress the inflammation seen in asthmatic airways. Since the drug is delivered directly to its required site, only a small quantity is needed for an adequate therapeutic response, and consequently there is a low incidence of systemic side effects compared with oral or intravenous administration. More recently, it has become apparent that the lining of the respiratory tract, from nasal mucosa to airways and alveoli, may be used for the absorption of a drug for its systemic effect. This route of administration may be particularly attractive if it avoids the metabolic destruction encountered when some drugs are administered by alternative routes (for instance, peptides and proteins are rapidly destroyed by peptidases when Oven by the oral route). If there is a lack ofclinical response to an aerosolized drug, it is important to question whether the drug has failed or whether delivery to the site of action is inadequate. To deliver therapeutic agents by inhalation to the lower respiratory tract, inhaled drug particles must have appropriate aerodynamic characteristics. In addition, the anatomy and pathophysiology of the patient's respiratory tract, mode of inhalation through the inhaler, and the characteristics of the inhalational device itself, may significantly affect drug deposition.

O'Callaghan, C.

1994-01-01

160

Intranasal nanoemulsion based brain targeting drug delivery system of risperidone.  

PubMed

The objective of investigation was to prepare nanoemulsion containing risperidone (RSP) to accomplish the delivery of drug to the brain via nose. Risperidone nanoemulsion (RNE) and mucoadhesive nanoemulsion (RMNE) were characterized for drug content, pH, percentage transmittance, globule size and zeta potential. Biodistribution of RNE, RMNE, and risperidone solution (RS) in the brain and blood of Swiss albino rats following intranasal (i.n.) and intravenous (i.v.) administration was examined using optimized technetium labeled ((99m)Tc-labeled) RSP formulations. Gamma scintigraphy imaging of rat brain following i.v. and i.n. administrations were performed to ascertain the localization of drug in brain. The brain/blood uptake ratio of 0.617, 0.754, 0.948, and 0.054 for RS (i.n.), RNE (i.n.), RMNE (i.n.), and RNE (i.v.), respectively, at 0.5h are indicative of direct nose to brain transport bypassing the blood-brain barrier. Higher drug transport efficiency (DTE%) and direct nose to brain drug transport (direct transport percentage, DTP%) for mucoadhesive nanoemulsions indicated more effective and best brain targeting of RSP amongst the prepared nanoemulsions. Studies conclusively demonstrated rapid and larger extent of transport of RSP by RMNE (i.n.) when compared to RS (i.n.), RNE (i.n.) and RNE (i.v.) into the rat brain. PMID:18455333

Kumar, Mukesh; Misra, Ambikanandan; Babbar, A K; Mishra, A K; Mishra, Puspa; Pathak, Kamla

2008-03-27

161

Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches  

PubMed Central

The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery) namely prodrugs, pH and time dependent systems, and microbially triggered systems, which achieved limited success and had limitations as compared with newer CDDS namely pressure controlled colonic delivery capsules, CODESTM, and osmotic controlled drug delivery which are unique in terms of achieving in vivo site specificity, and feasibility of manufacturing process.

Philip, Anil K.; Philip, Betty

2010-01-01

162

Targeted drug delivery using immunoconjugates: principles and applications.  

PubMed

Antibody-drug conjugates (also known as "immunoconjugates") have only recently entered the arsenal of anticancer drugs, but the number of undergoing clinical trials including them is ever increasing and most therapeutic antibodies are now patented including their potential immunoconjugate derivatives. They typically consist of three components: antibody, linker, and cytotoxin. An antibody or antibody fragment targeted to a tumor-associated antigen acts as a carrier for drug delivery and can be conjugated by cleavable or uncleavable linkers to a variety of effector molecules, either a drug, toxin, radioisotope, enzyme (the latter also used in Antibody-Directed Enzyme Prodrug Therapy), or to drug-containing liposomes or nanoparticles. In this review, we propose a general outline of the field, starting from the diagnostic and clinical applications of this class of molecules. Special attention will be devoted to the principles and issues in molecular design (choice of tumor-associated antigen, critical milestones in antibody development, available alternatives for linkers and effector molecule, and strategies for fusion proteins building) to the importance of antibody affinity modulation to optimize therapeutic effect and the potential of emerging alternative scaffolds. Most of the power of these molecules is to reach high concentrations in the tumor, relatively unaffecting normal cells, although one drawback lies in their short half-life. In this respect, modifications of immunoconjugates, which have shown to strongly influence pharmacokinetics, like glycosylation and PEGylation, will be discussed. Undergoing clinical trials and active patents will be analyzed and problems present in clinical use will be reported. PMID:21989410

Pasquetto, Maria Valentina; Vecchia, Luca; Covini, Daniele; Digilio, Rita; Scotti, Claudia

163

Epidermal growth factor receptor: Target for delivery and silencing  

Microsoft Academic Search

Epidermal growth factor receptor in cancer therapy Recently, cancer research has been able to identify molecular targets that are specific for (or highly expressed by) cancer cells. These molecular targets serve as models for the development of rationally designed anticancer drugs that target important mediators of tumour development. Also, some of these molecular targets have been explored for targeted drug

S. Oliveira

2008-01-01

164

Targeting Delivery of Chemotherapeutic Agents to Mammary Tumors.  

National Technical Information Service (NTIS)

Breast cancer is the second leading cause of cancer incidence and the leading cause of cancer mortality in women. Current chemotherapeutic treatments often have adverse effects primarily caused by the inefficient delivery and/or poor specificity of the co...

S. G. Brodie

2001-01-01

165

Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases.  

PubMed

Chronic airway inflammation is a hallmark of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease), and CF (cystic fibrosis). It is also a major challenge in delivery and therapeutic efficacy of nano-based delivery systems in these chronic airway conditions as nanoparticle (NP) need to bypass airways defense mechanisms as we recently discussed. NPs which are capable of overcoming airways defense mechanisms should allow targeted drug delivery to disease cells. Over the last decade there has been increasing interest in development of targeted NPs for cancer but relatively little effort on designing novel systems for treating chronic inflammatory and obstructive airway conditions. Here we describe methods for preparing drug loaded multifunctional nanoparticles for targeted delivery to specific cell types in airways. The formulations and methods for selective drug delivery, discussed here are currently under preclinical development in our laboratory for treating chronic airway conditions such as COPD, CF, and asthma. PMID:22791443

Vij, Neeraj

2012-01-01

166

Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity  

Microsoft Academic Search

Effective vaccines consist of 2 components: immunodominant antigens and effective adjuvants. Whereas it has been demonstrated that targeted delivery of antigens to dendritic cells (DCs) improves vaccine efficacy, we report here that co-targeting of TLR ligands (TLRLs) to DCs strongly enhances adjuvanticity and immunity. We encapsulated ligands for intracellular TLRs within biodegradable nanoparticles coated with Abs recognizing DC-specific receptors. Targeted

P. J. Tacken; I. S. Zeelenberg; L. J. Cruz; M. A. van Hout-Kuijer; G. van de Glind; R. G. Fokkink; A. J. A. Lambeck; C. G. Figdor

2011-01-01

167

Development and in vitro validation of a targeted delivery vehicle for DNA vaccines  

Microsoft Academic Search

Usage of DNA vaccination has been limited by inefficient cellular expression of plasmid constructs used in DNA vaccines. We describe a novel system for enhancing delivery of DNA vaccine plasmids into cells and their nuclei. This delivery system uses recombinant reovirus type 3 ?1 attachment protein genetically modified with a nuclear localization sequence (?1-NLS) as a targeting ligand. Purified ?1-NLS

Silke S. Talsma; Julia E. Babensee; Niren Murthy; Ifor R. Williams

2006-01-01

168

Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer.  

National Technical Information Service (NTIS)

Mesenchymal stem cells (MSCs) have been proposed to be cellular vehicles for the targeted delivery and local production of biological agents in tumors. In this proposal we will stably transfect mesenchymal stem cells with a lentiviral vector containing a ...

Z. Cheng

2010-01-01

169

Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation.  

PubMed

Dispersions of poly(N-isopropylacrylamide-co-butyl methacrylate) (PNB) nanogels are known to exhibit reversible thermosensitive sol-gel phase behavior and can consequently be used in a wide range of biomedical applications. However, some dissatisfactory mechanical properties of PNB nanogels can limit their applications. In this paper, bacterial cellulose (BC) whiskers were first prepared by sulfuric acid hydrolysis and then nanosized by high-pressure homogenization for subsequent use in the preparation of BC whisker/PNB nanogel complexes (designated as BC/PNB). The mechanical properties of PNB was successfully enhanced, resulting in good biosafety. The BC/PNB nanogel dispersions exhibited phase transitions from swollen gel to shrunken gel with increasing temperature. In addition, differential scanning calorimetry (DSC) data showed that the thermosensitivity of PNB nanogels was retained. Rheological tests also indicated that BC/PNB nanogel complexes had stronger gel strengths when compared with PNB nanogels. The concentrated dispersions showed shear thinning behavior and improved toughness, both of which can play a key role in the medical applications of nanogel complexes. Furthermore, the BC/PNB nanogel complexes were noncytotoxic according to cytotoxicity and hemolysis tests. Concentrated BC/PNB nanogel dispersion displayed gel a forming capacity in situ by catheter injection, which indicates potential for a wide range of medical applications. PMID:23458422

Wu, Lei; Zhou, Hui; Sun, Hao-Jan; Zhao, Yanbing; Yang, Xiangliang; Cheng, Stephen Z D; Yang, Guang

2013-03-21

170

Nano-encapsulation of lipase by self-assembled nanogels: induction of high enzyme activity and thermal stabilization.  

PubMed

The effects of self-assembled polysaccharide nanogels on colloidal and thermal stability of lipase from Pseudomonas cepacia were investigated. The enzyme activity, especially k(cat), drastically increased in the presence of nanogels of cholesterol-bearing pullulan (CHP). The thermostability of lipase complex increased because the denaturation temperature of lipase increased by more than 20 degrees C by complexation with CHP nanogels. Lipase denaturation and aggregation upon heating was effectively prevented by complexation with CHP nanogels. Moreover, complexation with CHP nanogels protected lipase from lyophilization-induced aggregation. Nano-encapsulation with CHP nanogel is a useful method for colloidal and thermal stabilization of unstable enzyme. PMID:20112238

Sawada, Shin-ichi; Akiyoshi, Kazunari

2010-04-01

171

Synergistic antitumor activity from two-stage delivery of targeted toxins and endosome-disrupting nanoparticles.  

PubMed

Plant-derived Type I toxins are candidate anticancer therapeutics requiring cytosolic delivery into tumor cells. We tested a concept for two-stage delivery, whereby tumor cells precoated with an antibody-targeted gelonin toxin were killed by exposure to endosome-disrupting polymer nanoparticles. Co-internalization of particles and tumor cell-bound gelonin led to cytosolic delivery and >50-fold enhancement of toxin efficacy. This approach allows the extreme potency of gelonin to be focused on tumors with significantly reduced potential for off-target toxicity. PMID:23444913

Su, Xingfang; Yang, Nicole; Wittrup, K Dane; Irvine, Darrell J

2013-03-11

172

Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery.  

PubMed

Prediction of nanoparticle (NP) distribution in a vasculature involves transport phenomena at various scales and is crucial for the evaluation of NP delivery efficiency. A combined particulate and continuum model is developed to model NP transport and delivery processes. In the particulate model ligand-receptor binding kinetics is coupled with Brownian dynamics to study NP binding on a microscale. An analytical formula is derived to link molecular level binding parameters to particulate level adhesion and detachment rates. The obtained NP adhesion rates are then coupled with a convection-diffusion-reaction model to study NP transport and delivery at macroscale. The binding results of the continuum model agree well with those from the particulate model. The effects of shear rate, particle size and vascular geometry on NP adhesion are investigated. Attachment rates predicted by the analytical formula also agree reasonably well with the experimental data reported in literature. The developed coupled model that links ligand-receptor binding dynamics to NP adhesion rate along with macroscale transport and delivery processes may serve as a faster evaluation and prediction tool to determine NP distribution in complex vascular networks. PMID:23729869

Tan, Jifu; Wang, Shunqiang; Yang, Jie; Liu, Yaling

2013-06-01

173

Targeted nanoparticles with novel non-peptidic ligands for oral delivery.  

PubMed

Orally administered targeted nanoparticles have a large number of potential biomedical applications and display several putative advantages for oral drug delivery, such as the protection of fragile drugs or modification of drug pharmacokinetics. These advantages notwithstanding, oral drug delivery by nanoparticles remains challenging. The optimization of particle size and surface properties and targeting by ligand grafting have been shown to enhance nanoparticle transport across the intestinal epithelium. Here, different grafting strategies for non-peptidic ligands, e.g., peptidomimetics, lectin mimetics, sugars and vitamins, that are stable in the gastrointestinal tract are discussed. We demonstrate that the grafting of these non-peptidic ligands allows nanoparticles to be targeted to M cells, enterocytes, immune cells or L cells. We show that these grafted nanoparticles could be promising vehicles for oral vaccination by targeting M cells or for the delivery of therapeutic proteins. We suggest that targeting L cells could be useful for the treatment of type 2 diabetes or obesity. PMID:23454185

des Rieux, Anne; Pourcelle, Vincent; Cani, Patrice D; Marchand-Brynaert, Jacqueline; Préat, Véronique

2013-02-20

174

Battling with environments: drug delivery to target tissues with particles and functional biomaterials  

PubMed Central

Recent years have seen a growing interest in drug-delivery technology as an enabling tool for complicated pharmacological activities. At the same time, this field has faced as many ideas into clinical benefits. The Laboratory for Therapeutic Particles and Biomaterials Engineering at Purdue University (IN, USA) has striven to identify the current challenges in drug delivery and find solutions through the design of new drug-delivery systems. We develop new inhalable formulations for drug and gene delivery for cystic fibrosis patients, simple particle platforms for inhalable drug delivery, anion-resistant nonviral gene vectors, tumor-targeted nanoparticle systems, and hydrogel-based therapeutics. Through expanded collaborations with researchers in medicine and related disciplines, we strive to contribute to advancing the drug delivery field in a clinically relevant manner.

Yeo, Yoon

2011-01-01

175

A two-component drug delivery system using Her-2-targeting thermosensitive liposomes.  

PubMed

We report on a new method for enhancing the specificity of drug delivery for tumor cells, using thermosensitive immunoliposomes. The liposomes are conjugated to the antibody trastuzumab (Herceptin), which targets the human epidermal growth factor receptor 2 (Her-2), a cell membrane receptor overexpressed in many human cancers. Being thermosensitive, the liposomes only release their contents when heated slightly above body temperature, allowing for the possibility of tissue targeting through localized hyperthermia. Using self-quenching calcein, we demonstrate the release of liposome contents into cell endosomes after brief heating to 42 degrees C. To further increase targeting specificity, we incorporate the concept of a two-component delivery system that requires the interaction of two different liposomes within the same endosome for cytoplasmic delivery. Experimental evaluation of the technique using fluorescently labeled liposomes shows that a two-component delivery system, combined with intracellular disruption of liposomes by hyperthermia, significantly increases specificity for Her-2-overexpressing tumor cells. PMID:19089689

Kullberg, Max; Mann, Kristine; Owens, Jesse Lee

2009-02-01

176

A combinatorial approach for targeted delivery using small molecules and reversible masking to bypass nonspecific uptake in vivo  

Microsoft Academic Search

We have developed a multi-disciplinary approach combining molecular biology, delivery technology, combinatorial chemistry and reversible masking to create improved systemic, targeted delivery of plasmid DNA while avoiding nonspecific uptake in vivo. We initially used a well-characterized model targeting the asialolglycoprotein receptor in the liver. Using our bilamellar invaginated vesicle (BIV) liposomal delivery system with reversible masking, we increased expression in

Q Shi; A T Nguyen; Y Angell; D Deng; C-R Na; K Burgess; D D Roberts; F C Brunicardi; N S Templeton

2010-01-01

177

Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells.  

PubMed

Noscapine, a tubulin binding anticancer agent undergoing Phase I/II clinical trials, inhibits tumor growth in nude mice bearing human xenografts of breast, lung, ovarian, brain, and prostrate origin. The analogues of noscapine like 9-bromonoscapine (EM011) are 5 to 10-fold more active than parent compound, noscapine. Noscapinoids inhibit the proliferation of cancer cells that are resistant to paclitaxel and epothilone. Noscapine also potentiated the anticancer activity of doxorubicin in a synergistic manner against triple negative breast cancer (TNBC). However, physicochemical and pharmacokinetic (ED50˜300-600 mg/kg bodyweight) limitations of noscapine present hurdle in development of commercial anticancer formulations. Therefore, objectives of the present review are to summarize the chemotherapeutic potential of noscapine and implications of nanoscale based drug delivery systems in enhancing the therapeutic efficacy of noscapine in cancer cells. We have constructed noscapine-enveloped gelatin nanoparticles, NPs and poly (ethylene glycol) grafted gelatin NPs as well as inclusion complex of noscapine in ?-cyclodextrin (?-CD) and evaluated their physicochemical characteristics. The Fe3O4 NPs were also used to incorporate noscapine in its polymeric nanomatrix system where molecular weight of the polymer governed the encapsulation efficiency of drug. The enhanced noscapine delivery using ?PAR-targeted optical-MR imaging trackable NPs offer a great potential for image directed targeted delivery of noscapine. Human Serum Albumin NPs (150-300 nm) as efficient noscapine drug delivery systems have also been developed for potential use in breast cancer. PMID:22571485

Chandra, Ramesh; Madan, Jitender; Singh, Prashant; Chandra, Ankush; Kumar, Pradeep; Tomar, Vartika; Dass, Sujata K

2012-12-01

178

The use of microbubbles to target drug delivery  

Microsoft Academic Search

Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to

Jeane M Tsutsui; Feng Xie; Richard Thomas Porter

2004-01-01

179

Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues  

PubMed Central

Non-invasive treatment of injuries and disorders affecting bones and connective tissue is a significant challenge facing the medical community. A treatment route that has recently been proposed is nitric oxide (NO) therapy. Nitric oxide plays several roles in physiology with many conditions lacking adequate levels of NO. As NO is a radical, localized delivery via NO donors is essential to promoting biological activity. Herein, we review current literature related to therapeutic NO delivery in the treatment of bone, skin and tendon repair.

Nichols, Scott P.; Storm, Wesley L.; Koh, Ahyeon; Schoenfisch, Mark H.

2012-01-01

180

Synthesis and characterization of cisplatin-loaded, EGFR-targeted biopolymer and in vitro evaluation for targeted delivery.  

PubMed

The design of smart targeted drug delivery systems that deliver drugs to specific cancer cells will give rise to cancer treatments with better efficacy and lower toxicity levels. We report the development and characterizations of maleimide-functionalized biopolymer (Mal-PGA-Asp) as an effective targeted drug delivery carrier synthesized from an amidation reaction between aspartylated PGA (PGA-Asp) and N-(maleimidohexanoyl)-ethylenediamine (NME). The epidermal growth factor receptor (EGFR) targeting peptide (TP13) was conjugated to Mal-PGA-Asp to obtain the targeting carrier (TP13-Mal-PGA-Asp). Cisplatin was finally loaded by complexation to form a biocompatible and tumor targeted therapeutic drug (TP13-Mal-PGA-Asp3-Pt). The resultant biopolymer with an average size 87 ± 28 nm showed a sustainable release profile with a half-maximal release time (t(1/2)) of approximately 15 h in physiological saline. Fluorescence imaging and flow cytometry analysis revealed that TP13 significantly enhanced the cellular uptake of TP13-Mal-PGA-Asp3-Pt in the human hepatoma cell line SMMC-7721. The IC(50) value demonstrated the superior anticancer activity of TP13-Mal-PGA-Asp3-Pt over PGA-Asp-Pt. Therefore, the newly developed drug carrier (TP13-Mal-PGA-Asp) obtained in this study may provide an efficient and targeted delivery of anticancer drugs, presenting a promising targeted chemotherapy in EGFR-positive cancers. PMID:22678850

Geng, Xu; Ye, Haifeng; Feng, Zhen; Lao, Xun; Zhang, Li; Huang, Jing; Wu, Zi-Rong

2012-06-07

181

Laser-induced disruption of systemically administered liposomes for targeted drug delivery  

Microsoft Academic Search

Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of

Mark A. Mackanos; Malika Larabi; Rajesh Shinde; Dmitrii M. Simanovskii; Samira Guccione; Christopher H. Contag

2009-01-01

182

Targeted drug delivery to ischemic heart with use of nanoparticulate carriers : Concepts, pitfalls and perspectives  

Microsoft Academic Search

Purpose – Clinical outcome in patients with ischemic heart disease can be significantly improved with the implementation of targeted drug delivery into the ischemic myocardium. The purpose of this paper is to review the data of recent literature and present original findings relevant to the problem of therapeutic heart targeting with use of nanoparticles. Design\\/methodology\\/approach – For literature review, a

Michael Galagudza; Dmitry Korolev; Dmitry Sonin; Viktor Postnov; Garry Papayan; Ivan Uskov; Anastasia Belozertseva; Eugene Shlyakhto

2010-01-01

183

Why I believe nanoparticles are crucial as a carrier for targeted drug delivery.  

PubMed

Nanoparticles are the only materials small enough to target cells in the body, and therefore are crucial to targeted drug delivery. Issues with the synthesis, consistency, and bioactivity of these molecules are still being addressed, but base on current proof of concept studies there is a reason to believe that the 'holy grail' of targeted drug delivery might someday be achieved using nanoparticle-based systems. WIREs Nanomed Nanobiotechnol 2013. doi: 10.1002/wnan.1226 Conflict of interest: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:23633301

Baker, James R

2013-04-30

184

Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery  

PubMed Central

Receptor-mediated, cell-specific delivery of siRNA enables silencing of target genes in specific tissues, opening the door to powerful therapeutic options for a multitude of diseases. However, development of delivery systems capable of targeted and effective siRNA delivery typically requires multiple steps and use of sophisticated, orthogonal chemistries. Previously, we developed diblock copolymers consisting of dimethaminoethyl methacrylate-b-dimethylaminoethyl methacrylate-co-butyl methacrylate-copropylacrylic acid as potent siRNA delivery systems that protect siRNA from enzymatic degradation and enable its cytosolic delivery through pH-responsive, endosomolytic behavior.1,2 These architectures were polymerized using a living radical polymerization method, specifically reversible addition-fragmentation chain transfer (RAFT) polymerization, which employs a chain transfer agent (CTA) to modulate the rate of reaction, resulting in polymers with low polydispersity and telechelic chain ends reflecting the chemistry of the CTA. Here, we describe the straightforward, facile synthesis of a folate receptor-targeted diblock copolymer siRNA delivery system, as the folate receptor is an attractive target for tumor-selective therapies due to its overexpression in a number of cancers. Specifically, we detail the de novo synthesis of a folate-functionalized CTA, use the folate-CTA for controlled polymerizations of diblock copolymers, and demonstrate efficient, specific cellular folate receptor interaction and in vitro gene knockdown using the folate-functionalized polymer.

Srinivasan, Selvi; Shubin, Andrew D.; Stayton, Patrick S.

2011-01-01

185

Design of novel bioconjugates for targeted drug delivery  

Microsoft Academic Search

This paper summarizes recent work on the design and development of targeted polymeric bioconjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. Polymerizable antibody Fab’ fragment (MA-Fab’) has been developed and used in the preparation of targeted HPMA copolymer–mesochlorin e6 conjugates for the treatment of human ovarian carcinomas. The reactivity of the MA-Fab’ in copolymerization with HPMA depended on the length of the

Zheng-Rong Lu; Jane-Guo Shiah; Shinji Sakuma; Pavla Kope?ková; Jind?ich Kope?ek

2002-01-01

186

Conceptual design report for the University of Rochester cryogenic target delivery system  

SciTech Connect

The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

1993-05-01

187

Dendritic polymer-based nanodevices for targeted drug delivery applications  

NASA Astrophysics Data System (ADS)

Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

2004-03-01

188

Colon targeted drug delivery systems: a review on primary and novel approaches.  

PubMed

The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery) namely prodrugs, pH and time dependent systems, and microbially triggered systems, which achieved limited success and had limitations as compared with newer CDDS namely pressure controlled colonic delivery capsules, CODESTM, and osmotic controlled drug delivery which are unique in terms of achieving in vivo site specificity, and feasibility of manufacturing process. PMID:22125706

Philip, Anil K; Philip, Betty

2010-04-01

189

Primary cardiomyocyte-targeted bioreducible polymer for efficient gene delivery to the myocardium  

Microsoft Academic Search

A cardiomyocyte-targeted Fas siRNA delivery system was developed using primary cardiomyocyte (PCM) specific peptide-modified polymers with high transfection efficiency and low cytotoxicity. Primary cardiomyocyte (PCM) specific peptide, selected by phage display, was conjugated to bioreducible poly(cystamine bisacrylamide-diaminohexane, CBA-DAH) (PCD). The specificity of the PCM-modified polymer to cardiomyocytes was confirmed by competition study with free PCM ligand and by delivery to

Hye Y. Nam; Arlo McGinn; Pyung-Hwan Kim; Sung W. Kim; David A. Bull

2010-01-01

190

New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.  

PubMed

Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches. PMID:23721204

Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

2013-08-01

191

Choline transporter-targeting and co-delivery system for glioma therapy.  

PubMed

Combination of gene therapy and chemotherapy is a promising approach for glioma therapy. In this study, a co-delivery system of plasmid encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL, Trail) and doxorubicin (DOX) has been simply constructed in two steps. Firstly, DOX was intercalated into Trail to form a stable complex. Secondly, DOX-Trail complex was condensed by Dendrigraft poly-l-lysine (DGL) to form a nanoscaled co-delivery system. Choline transporters are both expressed on blood-brain barrier (BBB) and glioma, Herein, a choline derivate with high choline transporter affinity was chosen as BBB and glioma dual targeting ligand. Choline-derivate modified co-delivery system showed higher cellular uptake efficiency and cytotoxicity than unmodified co-delivery system in U87 MG cells. In comparison with single medication or unmodified delivery system, Choline-derivate modified co-delivery system induced more apoptosis both in vitro and in vivo. The therapeutic efficacy on U87 MG bearing xenografts further confirmed the predominance of this dual targeting and co-delivery system. PMID:23993342

Li, Jianfeng; Guo, Yubo; Kuang, Yuyang; An, Sai; Ma, Haojun; Jiang, Chen

2013-08-28

192

Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic Mesalamine forms for colon delivery.  

PubMed

For drugs expected to act locally in the colon, and for successful treatment, a delivery device is necessary, in order to limit the systemic absorption which decreases effectiveness and causes important side effects. Various delayed release systems are currently commercialized; most of them based on pH-dependent release which is sensitive to gastrointestinal pH variation. This study proposes a novel excipient for colon delivery. This new preparation consists in the complexation between carboxymethyl starch (CMS) and Lecithin (L). As opposed to existing excipients, the new complex is pH-independent, inexpensive, and easy to manufacture and allows a high drug loading. FTIR, X-ray, and SEM structural analysis all support the hypothesis of the formation of a complex. By minor variation of the excipient content within the tablet, it is possible to modulate the release time and delivery at specific sites of the gastrointestinal tract. This study opens the door to a new pH-independent delivery system for mesalamine targeted administration. Our novel formulation fits well with the posology of mesalamine, used in the treatment of Inflammatory Bowel Disease (IBD), which requires repeated administrations (1g orally four times a day) to maintain a good quality of life. PMID:23562535

Mihaela Friciu, Maria; Canh Le, Tien; Ispas-Szabo, Pompilia; Mateescu, Mircea Alexandru

2013-04-01

193

A polyvalent aptamer system for targeted drug delivery.  

PubMed

Poor efficacy and off-target systemic toxicity are major problems associated with current chemotherapeutic approaches to treat cancer. We developed a new form of polyvalent therapeutics that is composed of multiple aptamer units synthesized by rolling circle amplification and physically intercalated chemotherapy agents (termed as "Poly-Aptamer-Drug"). Using a leukemia cell-binding aptamer and doxorubicin as a model system, we have successfully constructed Poly-Aptamer-Drug systems and demonstrated that the Poly-Aptamer-Drug is significantly more effective than its monovalent counterpart in targeting and killing leukemia cells due to enhanced binding affinity (?40 fold greater) and cell internalization via multivalent effects. We anticipate that our Poly-Aptamer-Drug approach will yield new classes of tunable therapeutics that can be utilized to effectively target and treat cancers while minimizing the side effects of chemotherapy. PMID:24044994

Zhang, Zhiqing; Ali, M Monsur; Eckert, Mark A; Kang, Dong-Ku; Chen, Yih Yang; Sender, Leonard S; Fruman, David A; Zhao, Weian

2013-09-14

194

Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve.  

PubMed

Polymersomes are nanosized vesicles formed from amphiphilic block copolymers, and have been identified as potential drug delivery vehicles to the inner ear. The aim of this study was to provide targeting to specific cells within the inner ear by functionalizing the polymersome surface with Tet1 peptide sequence. Tet1 peptide specifically binds to the trisialoganglioside clostridial toxin receptor on neurons and was expected to target the polymersomes toward the cochlear nerve. The Tet1 functionalized PEG-b-PCL polymersomes were administered using routine drug delivery routes: transtympanic injection and cochleostomy. Delivery via cochleostomy of Tet1 functionalized polymersomes resulted in cochlear nerve targeting; in contrast this was not seen after transtympanic injection. PMID:22403485

Zhang, Ya; Zhang, Weikai; Johnston, Alexander H; Newman, Tracey A; Pyykkö, Ilmari; Zou, Jing

2012-02-23

195

Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA.  

PubMed

A major challenge to the development of therapeutic small interfering RNAs (siRNAs) is specific and efficient in vivo delivery to target cells. Recent studies suggest that cell type-specific gene silencing in vivo can be achieved by combining siRNAs with cell type-specific affinity ligands such as monoclonal antibodies. The antibody-directed siRNA complex enters target cells through receptor endocytosis and is subsequently released to the cytosol to specifically silence target gene expression through biologically conserved RNA interference (RNAi) pathways. Antibody fragments fused with a small basic nucleic-acid-binding protein and antibody fragment-directed nanoimmunoliposomes are two examples of effective delivery vehicles in vivo. The demonstrated specificity of in vivo gene silencing and the lack of nonspecific immune activation and systemic toxicity encourage further development of therapies based on cell type-specific delivery of siRNA. PMID:17670766

Liu, Bin

2007-07-31

196

Azo polymeric hydrogels for colon targeted drug delivery  

Microsoft Academic Search

Azo polymeric hydrogels were developed for colon specific targeting. Methacryloyloxy azobenzene was synthesized and hydrogels were prepared by copolymerizing with hydroxyethyl methacrylate. These hydrogels were characterized by various spectral techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Equilibrium swelling measurements of the hydrogels were carried out in distilled water and also in simulated gastric and

K. L. Shantha; P. Ravichandran; K. Panduranga Rao

1995-01-01

197

Toward targeted retinal drug delivery with wireless magnetic microrobots  

Microsoft Academic Search

Retinal vein occlusion is an obstruction of blood flow due to clot formation in the retinal vasculature, and is among the most common causes of vision loss. Currently, the most promising therapy involves injection of t-PA directly into small and delicate retinal vessels. This procedure requires surgical skills at the limits of human performance. In this paper, targeted retinal drug

Gorkem Dogangil; Olgaç Ergeneman; Jake J. Abbott; Salvador Pane; Heike Hall; Simon Muntwyler; Bradley J. Nelson

2008-01-01

198

An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles  

Microsoft Academic Search

BackgroundCancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for

Athuluri Divakar Sai Krishna; Raj Kumar Mandraju; Golla Kishore; Anand Kumar Kondapi

2009-01-01

199

[Progress in the study of acid-sensitive micelles for the targeting drug delivery system].  

PubMed

As a novel targeting drug delivery system, acid-sensitive micelles have many advantages, such as increasing solubility of lipophilic drugs, acid-sensitive release, high drug loading, etc. They can load drugs though non-covalent encapsulation and covalent conjugation methods. In tumor tissues, drugs are released quickly from the depolymerized micelles with lipophilic copolymer protonation or lypohydrophilic copolymer hydrolysis and covalent conjugated drugs are released when the acid-sensitive covalent linkage breaks. This review mainly advances acid-sensitive micelles for the tumor targeting drug delivery systems from drug-loaded methods and release mechanisms. PMID:22799024

Huang, Rong-Bin; Tang, Guo-Tao

2012-04-01

200

Azo polymeric hydrogels for colon targeted drug delivery.  

PubMed

Azo polymeric hydrogels were developed for colon specific targeting. Methacryloyloxy azobenzene was synthesized and hydrogels were prepared by copolymerizing with hydroxyethyl methacrylate. These hydrogels were characterized by various spectral techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Equilibrium swelling measurements of the hydrogels were carried out in distilled water and also in simulated gastric and intestinal fluids. The in vitro release studies of the incorporated 5-flurouracil were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drug were also obtained in the presence of azoreductase in the culture of intestinal flora. The release was faster and almost followed a zero order pattern. This can be attributed to the cleavage of the azo crosslinks in the hydrogel by the azoreductase and the release of the entrapped drug at the site of targeting i.e., colon. PMID:8573669

Shantha, K L; Ravichandran, P; Rao, K P

1995-11-01

201

Novel colon targeted drug delivery system using natural polymers.  

PubMed

A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs. PMID:20390095

Ravi, V; Pramod Kumar, T M; Siddaramaiah

2008-01-01

202

Novel Colon Targeted Drug Delivery System Using Natural Polymers  

PubMed Central

A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs.

Ravi, V.; Pramod Kumar, T. M.; Siddaramaiah

2008-01-01

203

Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings.  

PubMed

Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by quartz crystal microbalance with dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly(L-lysine)-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface cross-linking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

Donahoe, Casey D; Cohen, Thomas L; Li, Wenlu; Nguyen, Peter K; Fortner, John D; Mitra, Robi D; Elbert, Donald L

2013-03-11

204

Targeted brain delivery of itraconazole via RVG29 anchored nanoparticles.  

PubMed

The blood-brain barrier is a major barrier in the neurological diseases treatment and precludes the entry of drugs from blood to brain. Here, we developed 29-amino-acid peptide derived from rabies virus glycoprotein (RVG29) peptide conjugated itraconazole-loaded albumin nanoparticles (RVG29-ITZ-NPs). The RVG29 peptide was conjugated to the albumin NPs using biotin-binding streptavidin as crosslinker. The NPs were characterized in terms of particle size, zeta potential, drug loading and release behavior in vitro. Cellular uptake of RVG29-ITZ-NPs was investigated by flow cytometry. Pharmacokinetics and brain distribution of RVG29-ITZ-NPs were investigated after intravenous administration of NPs. The particle size of RVG29-ITZ-NPs was 89.3?±?1.9?nm as determined by dynamic light scattering. The zeta potential of RVG29-ITZ-NPs was -33.1?±?0.9 mV. RVG29-ITZ-NPs exhibited a sustained release profile within 24?h. In vitro cellular uptake studies demonstrated that RVG29 significantly facilitated the intracellular delivery of NPs. A significant (P?

Chen, Wei; Zhan, Changyou; Gu, Bing; Meng, Qinggang; Wang, Hao; Lu, Weiyue; Hou, Huimin

2010-06-14

205

An orthopedic tissue adhesive for targeted delivery of intraoperative biologics.  

PubMed

Tissue adhesives can bind together damaged tissues and serve as tools to deliver and localize therapeutics to facilitate regeneration. One emerging therapeutic trend in orthopedics is the use of intraoperative biologics (IOB), such as bone marrow (BM) and platelet-rich plasma (PRP), to stimulate healing. Here, we introduce the application of the biomaterial chondroitin sulfate succinimidyl succinate (CS-NHS) to deliver IOB in a hydrogel adhesive. We demonstrate the biomaterial's ability to bind various tissue types and its cellular biocompatibility with encapsulated human mesenchymal stem cells (hMSCs). Further, we examine in detail the CS-NHS adhesive combined with BM aspirate for use in bone applications. hMSCs were encapsulated in CS-BM and cultured for 5 weeks in osteogenic medium. Quantitative RT-PCR demonstrated osteogenesis via upregulation of the osteogenic transcription factor Runx2 and bone markers alkaline phosphatase and osteocalcin. Significant deposition of calcium and osteocalcin was detected using biochemical, histological, and immunohistochemical techniques. Shear testing demonstrated that the CS-BM adhesive exhibited an adhesive strength approximately an order of magnitude stronger than fibrin glue and approaching that of a cyanoacrylate adhesive. These results indicate that CS-NHS is a promising delivery tool for IOB in orthopedic applications requiring a strong, degradable, and biocompatible adhesive that supports bone growth. PMID:23097279

Simson, Jacob; Crist, Joshua; Strehin, Iossif; Lu, Qiaozhi; Elisseeff, Jennifer H

2012-10-23

206

The application of carbon nanotubes in target drug delivery systems for cancer therapies  

PubMed Central

Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

2011-01-01

207

The application of carbon nanotubes in target drug delivery systems for cancer therapies  

NASA Astrophysics Data System (ADS)

Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

2011-10-01

208

Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers  

PubMed Central

The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides.

Ashley, Carlee E.; Carnes, Eric C.; Epler, Katharine E.; Padilla, David P.; Phillips, Genevieve K.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Sewell, Robin M.; Townson, Jason L.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S.; Wharton, Walker; Brinker, C. Jeffrey

2012-01-01

209

Bacteria and pH-sensitive polysaccharide-polymer films for colon targeted delivery.  

PubMed

The colon provides drug delivery opportunities for colon-specific and systemic delivery of various therapeutic agents. Different strategies have been utilized in targeting drugs to the colon. Recently, integrated systems which incorporate dual mechanisms in colon targeted delivery have received a lot of attention. Of particular interest is bacteria-aided biomaterials and pH-sensitive polymeric film (BPSF) coating for colon targeted drug delivery. The major constituents of these films are polysaccharides and pH-sensitive polymers. The pH-sensitive polymer retards drug release in the stomach and small intestine, while the polysaccharide is digested by colonic enzymes. Digestion of the polysaccharides by bacterial glycosidic enzymes increases the pore density in the film to facilitate drug release. Generally, bacteria-aided biomaterials and pH-sensitive films can be applied to the delivery of most small organic molecules to the colon. The review encompasses the pharmaceutical design parameters such as film digestibility, swelling index and dry mass loss (that provide molecular mechanistic analysis of film permeability) as well as tensile strength, elastic modulus, and elongation at break (that describe the desirable mechanical properties of the films). A critical analysis of formulation, techniques for characterization of film properties and drug-release kinetics from these systems are emphasized. PMID:22077200

Esseku, Fredrick; Adeyeye, Moji Christianah

2011-01-01

210

Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy.  

PubMed

Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near-infrared (NIR)-regulated hydrophobic drug-delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin-loaded AuMP-polyethylene glycol-folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote-controlled hydrophobic drug-delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR-controlled, targeted drug-delivery method would promote the development of high-performance hydrophobic anticancer drug-delivery system in future clinical applications. PMID:23765904

Yang, Xinjian; Liu, Zhen; Li, Zhenhua; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

2013-06-13

211

Laser-induced disruption of systemically administered liposomes for targeted drug delivery  

NASA Astrophysics Data System (ADS)

Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

2009-07-01

212

Targeted drug delivery to renal proximal tubule epithelial cells mediated by 2-glucosamine.  

PubMed

In order to develop a novel kidney-targeted drug delivery system, we synthesized prednisolone carbamate-glucosamine conjugate (PCG) using 2-glucosamine as a ligand, and investigated its potential targeting efficacy. In vitro studies demonstrated that PCG could remarkably improve the uptake of drug by kidney cells. And the specific uptake of PCG could be largely reduced by the inhibitors of megalin receptor. More importantly, PCG showed an excellent kidney targeting property in vivo, and the concentration of the conjugate in the kidney was 8.1-fold higher than that of prednisolone group at 60 min after intravenous injection. Besides, PCG could significantly reverse the disease progression in renal ischemia-reperfusion (I/R) injury animal models. Furthermore, PCG presented no adverse effect on bone density while prednisolone resulted in severe osteoporosis. Thus, it indicated that 2-glucosamine could be a potential ligand for kidney-targeted delivery of prednisolone. PMID:23415893

Lin, Yan; Li, Yanping; Wang, Xiaohong; Gong, Tao; Zhang, Ling; Sun, Xun

2013-02-13

213

Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice.  

PubMed

A hepta-guanidino-?-cyclodextrin (G-CD), its hepta-PEG conjugate (G-CD-PEG), and the corresponding anisamide-terminated PEG conjugate (G-CD-PEG-AA) have been synthesised and compared as delivery vectors for siRNA to prostate cancer cells and tumours in vivo. The G-CD-PEG-AA.siRNA formulations (in which anisamide targets the sigma receptor), but not the non-targeted formulations, induced prostate cell-specific internalisation of siRNA resulting in approximately 80% knockdown in vitro of the reporter gene, luciferase. Following intravenous administration of the anisamide-targeted formulation in a mouse prostate tumour model significant tumour inactivation with corresponding reductions in the level of vascular endothelial growth factor (VEGF) mRNA were achieved, without demonstrating enhanced toxicity. This data imply significant potential for anisamide-conjugated cyclodextrin vectors for targeted delivery of therapeutic siRNAs in the treatment of prostate cancer. PMID:22828585

Guo, Jianfeng; Ogier, Julien R; Desgranges, Stephane; Darcy, Raphael; O'Driscoll, Caitriona

2012-07-22

214

Enhancement of the efficiency of magnetic targeting for drug delivery: Development and evaluation of magnet system  

NASA Astrophysics Data System (ADS)

Deep magnetic capture and clinical application are the current trends for magnetic targeted drug delivery system. More promising and possible strategies are needed to overcome the current limitations and further improve the magnetic targeting technique. Recent advances in the development of targeting magnet system show promise in progressing this technology from the laboratory to the clinic. Starting from well-known basic concepts, current limitations of magnetic targeted drug delivery system are analyzed. Meanwhile, the design concepts and evaluations of some effective improvements in magnet system are discussed and reviewed with reference to (i) reasonable design of magnet system; (ii) control modes of magnet system used to generate dynamical magnetic fields; and (iii) magnetic field driving types.

Cao, Quanliang; Han, Xiaotao; Li, Liang

2011-08-01

215

Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors.  

PubMed

Delivery of macromolecules to pancreatic cancer is inhibited by a dense extracellular matrix composed of hyaluronic acid, smooth muscle actin and collagen fibers. Hyaluronic acid causes a high intratumoral fluidic pressure which prevents diffusion and penetration into the pancreatic tumor. This study involves the breaking down of hyaluronic acid by treating CAPAN-1 xenograft tumors in athymic nu/nu mice with targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers radiolabeled with (111)In for single photon emission computerized tomography (SPECT) imaging. Two targeting strategies were investigated including ?v?3 integrin and HER2 receptors. HPMA copolymers were targeted to these receptors by conjugating short peptide ligands cRGDfK and KCCYSL to the side chains of the copolymer. Results demonstrate that tumor targeting can be achieved in vivo after treatment with hyaluronidase. This approach shows promise for enhanced delivery of polymer-peptide conjugates to solid tumors. PMID:23933441

Buckway, Brandon; Wang, Yongjian; Ray, Abhijit; Ghandehari, Hamidreza

2013-08-08

216

Colon-targeted quercetin delivery using natural polymer to enhance its bioavailability  

PubMed Central

The aim of the present study is to develop a polymer (Guar Gum)-based matrix tablet (using quercetin as a model drug) with sufficient mechanical strength, and promising in vitro mouth-to-colon release profile. By definition, an oral colonic delivery system should retard drug release in the stomach and small intestine, and allow complete release in the colon. By drug delivery to the colon would therefore ensure direct treatment at the disease site, lower dosing, and fewer systemic side effects. Quercetin is antioxidant in nature and used to treat colon cancer, but they have poor absorption in the upper part of the gastrointestinal tract (GIT). As a site for drug delivery, the colon offers a near neutral pH, reduced digestive enzymatic activity, a long transit time, and an increased responsiveness to absorption enhancers. By achieving a colon-targeted drug delivery system, the absorption of quercetin may be increased, which leads to better bioactivity in fewer doses.

Singhal, Anil; Jain, H.; Singhal, Vipin; Elias, Edwin J.; Showkat, Ahmad

2011-01-01

217

Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications.  

PubMed

Nanogel synthesis by RAFT polymerization is an emerging field for the control of architectures and functions of polymeric nanomaterials for bioapplications. In this Feature Article, we review the recent development in nanogel synthesis using preformed RAFT polymers and by direct RAFT polymerizations. PMID:21863172

An, Zesheng; Qiu, Qian; Liu, Guangyao

2011-08-24

218

Efficient Management of Fruit Pests by Pheromone Nanogels  

PubMed Central

Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops.

Bhagat, Deepa; Samanta, Suman K.; Bhattacharya, Santanu

2013-01-01

219

Ultrasound-triggered thrombolysis using urokinase-loaded nanogels.  

PubMed

To find a way to modulate the effect of thrombolytic proteins by increasing their specificity, minimizing their adverse effect as well as lengthening their circulation time for the treatment of ischemic vascular disease holds great promise. In this work, urokinase-type plasminogen activator (uPA) was encapsulated into hollow nanogels which are generated by the reaction of glycol chitosan and aldehyde capped poly(ethylene glycol) (OHC-PEG-CHO) through a one-step approach of ultrasonic spray. The uPA-loaded nanogels, with size of 200-300 nm, have longer circulation time than that of the nude urokinase in vivo, besides the protein can be triggered to release in faster rate under diagnostic ultrasonic condition of 2 MHz, which significantly enhanced the thrombolysis of clots. The results are promising for increasing the specificity and positive effects of thrombolytic agents like recombinant tissue plasminogen activator (rt-PA) for the current treatment of ischemic vascular disease. PMID:22683455

Jin, Haiqiang; Tan, Hui; Zhao, Lingling; Sun, Weiping; Zhu, Lijun; Sun, Yongan; Hao, Hongjun; Xing, Haiying; Liu, Linlin; Qu, Xiaozhong; Huang, Yining; Yang, Zhenzhong

2012-06-07

220

Self-healing in dually crosslinked nanogels: Computational modeling  

NASA Astrophysics Data System (ADS)

We report the results of computational modeling of materials composed of dually crosslinked nanogels. In such materials, permanently crosslinked nanogel particles are bound together through two kinds of crosslinks, namely, the stable and labile ones. Under sufficiently high stress, the strong, stable bonds undergo irreversible rupture, whereas the weak, labile bonds can reform after breakage. We demonstrate that presence of the labile interparticle bonds makes possible the structural rearrangements inside the deformed material. As a result, the catastrophic failure of the material is postponed, and the defects (cavities) in the strained material heal themselves when the stress is released. The mathematical model used in the simulations was developed by us through a bottom-up approach, which allows us to capture the viscoelastic and plastic properties of the material under various deformation regimes.

Duki, Solomon; Yashin, Victor; Kolmakov, German; Balazs, Anna

2010-03-01

221

Actively targeting solid tumours with thermoresponsive drug delivery systems that respond to mild hyperthermia.  

PubMed

Abstract A diverse range of drug delivery vehicles have been developed to specifically target chemotherapeutics to solid tumours while avoiding systemic dose-limiting toxicity. Many of these active targeting strategies display limited efficacy because they rely on subtle differences in expression patterns between pathogenic tissue and healthy tissue. In contrast, drug delivery systems that exploit thermoresponsive behaviour allow a clinician to spatially and temporally control the accumulation and/or release of the toxic agents within tumour tissue by simply applying mild hyperthermia (defined as 39-43?°C) to the desired site. Although thermally sensitive materials comprise a significant portion of the literature on novel drug delivery systems, only a few systems have been methodically tuned to respond within this narrowly defined physiological temperature range in an in vivo environment. This review discusses the materials and strategies developed to control the primary tumour through the combined application of hyperthermia and chemotherapy. PMID:23924317

McDaniel, Jonathan R; Dewhirst, Mark W; Chilkoti, Ashutosh

2013-08-07

222

Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells  

PubMed Central

There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review.

Prakash, Satya; Malgorzata Urbanska, Aleksandra

2008-01-01

223

Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides  

Microsoft Academic Search

Novel targeted proapoptotic anticancer drug delivery systems were developed and evaluated. Poly(ethyleneglycol) (PEG) conjugates were used as carriers. Camptothecin (CPT) was used as an anticancer agent–apoptosis inductor. Two types of molecular targets were investigated: (1) an extracellular membrane receptor specific to ovarian cancer and (2) intracellular controlling mechanisms of apoptosis. Synthetic peptides similar to luteinizing hormone-releasing hormone (LHRH) and BCL-2

S. S Dharap; B Qiu; G. C Williams; P Sinko; S Stein; T Minko

2003-01-01

224

Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer  

Microsoft Academic Search

Angiopep targeting to the low-density lipoprotein receptor-related protein-1 (LRP1) was identified to exhibit high transcytosis capacity and parenchymal accumulation. In this study, it was exploited as a ligand for effective brain-targeting gene delivery. Polyamidoamine dendrimers (PAMAM) were modified with angiopep through bifunctional PEG, then complexed with DNA, yielding PAMAM–PEG–Angiopep\\/DNA nanoparticles (NPs). The angiopep-modified NPs were observed to be internalized by

Weilun Ke; Kun Shao; Rongqin Huang; Liang Han; Yang Liu; Jianfeng Li; Yuyang Kuang; Liya Ye; Jinning Lou; Chen Jiang

2009-01-01

225

Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA  

Microsoft Academic Search

A major challenge to the development of therapeutic small interfering RNAs (siRNAs) is specific and efficient in vivo delivery to target cells. Recent studies suggest that cell type-specific gene silencing in vivo can be achieved by combining siRNAs with cell type-specific affinity ligands such as monoclonal antibodies. The antibody-directed siRNA complex enters target cells through receptor endocytosis and is subsequently

Bin Liu

2007-01-01

226

Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide  

Microsoft Academic Search

The central problem in cancer chemotherapy is the severe toxic side effects of anticancer drugs on healthy tissues. Invariably the side effects impose dose reduction, treatment delay, or discontinuance of therapy. To limit the adverse side effects of cancer chemotherapy on healthy organs, we proposed a drug delivery system (DDS) with specific targeting ligands for cancer cells. The proposed DDS

S. S. Dharap; Y. Wang; P. Chandna; J. J. Khandare; B. Qiu; S. Gunaseelan; P. J. Sinko; S. Stein; A. Farmanfarmaian; T. Minko

2005-01-01

227

A multi-scale stochastic drug release model for polymer-coated targeted drug delivery systems  

Microsoft Academic Search

A multi-scale mathematical model for drug release of oral targeted drug delivery systems was developed and applied to a commercially available delayed release tablet (Asacol®) that delivers 5-aminosalicyclic acid (5-ASA) to the colon. Underlying physical and biochemical principles governing the involved processes (diffusion and dissolution) were employed to develop the mathematical description. Finite element formulation was used to numerically solve

Nahor Haddish-Berhane; Chell Nyquist; Kamyar Haghighi; Carlos Corvalan; Ali Keshavarzian; Osvaldo Campanella; Jenna Rickus; Ashkan Farhadi

2006-01-01

228

Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo  

Microsoft Academic Search

Low efficiencies of nonviral gene vectors, the receptor-dependent host tropism of adenoviral or low titers of retroviral vectors limit their utility in gene therapy. To overcome these deficiencies, we associated gene vectors with superparamagnetic nanoparticles and targeted gene delivery by application of a magnetic field. This potentiated the efficacy of any vector up to several hundred-fold, allowed reduction of the

F. Scherer; M. Anton; U. Schillinger; J. Henkel; C. Bergemann; A. Kruger; B. Gansbacher; C. Plank

2002-01-01

229

Feasibility of targeted drug delivery to selective areas of the retina  

Microsoft Academic Search

A new method was developed to deliver locally a bolus dose of a drug to the retinal vasculature. The targeted delivery system was based on encapsulating the drug in heat-sensitive liposomes, which are injected intravenously and lysed in the retinal vessels by a heat pulse generated by a laser. To test if substances delivered in the vessels could also penetrate

Y. Ogura; T. Guran; M. Shahidi; M. T. Mori; R. C. Zeimer

1991-01-01

230

Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration  

Microsoft Academic Search

Gene therapy offers great potential for brain glioma. However, therapeutic genes could not reach glioma spontaneously. A glioma-targeting gene delivery system is highly desired to transfer exogenous genes throughout the tumor focus. In this study, the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), was selected as the main vector. Chlorotoxin (CTX), which has been demonstrated to bind specifically to receptor expressed in

Rongqin Huang; Weilun Ke; Liang Han; Jianfeng Li; Shuhuan Liu; Chen Jiang

2011-01-01

231

In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides  

Microsoft Academic Search

PURPOSE: The objective of the present study is to develop colon targeted drug delivery sys- tems for sennosides using guar gum as a carrier. METHODS: Matrix tablets containing various pro- portions of guar gum were prepared by wet granula- tion technique using starch paste as a binder. The tablets were evaluated for content uniformity and in vitro drug release study

Munira Momin; K. Pundarikakshudu

232

Drug targeting to hypoxic tissue using self-inactivating bioreductive delivery systems  

Microsoft Academic Search

Hypoxia is a characteristic feature of a number of diseases including some cancers, rheumatoid arthritis and diabetes. Hypoxic tissue facilitates the use of bioreductive drug targeting systems as oxygen suppresses the release of the active drug. This review focuses on bioreductive delivery where accompanying intramolecular cyclisation negates adduct formation between the bioreductive and macromolecules such as DNA. To date, three

D. P Naughton

2001-01-01

233

Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges  

NASA Astrophysics Data System (ADS)

One of the big challenges of medicine today is to deliver drugs specifically to defected cells. Nanoparticulate drug carriers have the potential to answer to this call, as nanoparticles can cross physiological barriers and access different tissues, and also be provided in a targetable form aimed at enhancing cell specificity of the carrier. Recent developments within material science and strong collaborative efforts crossing disciplinary borders have highlighted the potential of mesoporous silica nanoparticles (MSNs) for such targeted drug delivery. Here we outline recent advances which in this sense push MSNs to the forefront of drug delivery development. Relatively straightforward inside-out tuning of the vehicles, high flexibility, and potential for sophisticated release mechanisms make these nanostructures promising candidates for targeted drug delivery such as `smart' cancer therapies. Moreover, due to the large surface area and the controllable surface functionality of MSNs, they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting, simultaneously carrying traceable (fluorescent or magnetically active) modalities, also making them highly interesting as theragnostic agents. However, the increased relative surface area and small size, and flexible surface functionalization which is beneficially exploited in nanomedicine, consequently also includes potential risks in their interactions with biological systems. Therefore, we also discuss some safety issues regarding MSNs and highlight how different features of the drug delivery platform influence their behaviour in a biological setting. Addressing these burning questions will facilitate the application of MSNs in nanomedicine.

Rosenholm, Jessica M.; Sahlgren, Cecilia; Lindén, Mika

2010-10-01

234

Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer's disease  

Microsoft Academic Search

Alzheimer's disease (AD) is the most common cause of dementia among the elderly, affecting 5% of Americans over age 65, and 20% over age 80. An excess of senile plaques (?-amyloid protein) and neurofibrillary tangles (tau protein), ventricular enlargement, and cortical atrophy characterizes it. Unfortunately, targeted drug delivery to the central nervous system (CNS), for the therapeutic advancement of neurodegenerative

Celeste Roney; Padmakar Kulkarni; Veera Arora; Peter Antich; Frederick Bonte; Aimei Wu; N. N. Mallikarjuana; Sanjeev Manohar; Hsiang-Fa Liang; Anandrao R. Kulkarni; Hsing-Wen Sung; Malladi Sairam; Tejraj M. Aminabhavi

2005-01-01

235

Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells  

PubMed Central

Synthetic methodologies integrating hydrophobic drug delivery and biomolecular targeting with mesoporous silica nanoparticles are described. Transferrin and cyclic-RGD peptides are covalently attached to the nanoparticles utilizing different techniques and provide selectivity between primary and metastatic cancer cells. The increase in cellular uptake of the targeted particles is examined using fluorescence microscopy and flow cytometry. Transferrin-modified silica nanoparticles display enhancement in particle uptake by Panc-1 cancer cells over that of normal HFF cells. The endocytotic pathway for these particles is further investigated through plasmid transfection of the transferrin receptor into the normal HFF cell line, which results in an increase in particle endocytosis as compared to unmodified HFF cells. By designing and attaching a synthetic cyclic-RGD, selectivity between primary cancer cells (BT-549) and metastatic cancer cells (MDA-MB 435) is achieved with enhanced particle uptake by the metastatic cancer cell line. Incorporation of the hydrophobic drug Camptothecin into these two types of biomolecular-targeted nanoparticles causes an increase in mortality of the targeted cancer cells compared to that caused by both the free drug and nontargeted particles. These results demonstrate successful biomolecular-targeted hydrophobic drug delivery carriers that selectively target specific cancer cells and result in enhanced drug delivery and cell mortality.

Ferris, Daniel P.; Lu, Jie; Gothard, Chris; Yanes, Rolando; Thomas, Courtney R.; Olsen, John-Carl; Stoddart, J. Fraser; Tamanoi, Fuyuhiko; Zink, Jeffrey I.

2011-01-01

236

Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves  

NASA Astrophysics Data System (ADS)

Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

2011-02-01

237

The Effect of Multiple Parallel Bonds on the Self-healing of Labile Crosslinked Nanogel Networks  

NASA Astrophysics Data System (ADS)

We develop a hybrid computational approach to examine the mechanical properties and self-healing behavior of nanogel particles that are crosslinked primarily by highly reactive bonds that can break and readily remake (labile bonds). The individual nanogels are modeled via the lattice spring model (LSM). The crosslinks between the nanogels are simulated via a modified Hierarchical Bell Model (HBM), which allows us to capture both the rupturing and reforming of multiple, parallel bonds due to an applied force. Using our hybrid HBM/LSM, we simulate the behavior of the crosslinked nanogels under a tensile deformation. In these simulations, each labile linkage between the nanogels contains at most N parallel bonds. We reveal that while numerous parallel bonds within a linkage enhance the strength of the material, these bonds diminish the ductility and the ability of the material to undergo the structural rearrangements that are necessary for self-repair.

Salib, Isaac G.; Kolmakov, German V.; Gnegy, Chet N.; Matyjaszewski, Krzysztof; Balazs, Anna C.

2011-03-01

238

Improving self-healing behavior of dually cross linked nanogels that encompass nanoparticles  

NASA Astrophysics Data System (ADS)

Numerical studies of nanogels that are cross-linked by stable and labile bonds have shown that the material can withstand significantly high stresses before it undergoes fracture. The mechanical integrity of such materials is preserved through structural rearrangement of the nanogel particles; this structural rearrangement is facilitated by the making and breaking of the labile bonds. Apart from the bond properties, the stiffness and flexibility of the nanogel is crucial to determine the mechanical properties of these self healing novel materials. Our simulations show that the mechanical property of the entire sample is significantly improved by introducing hard core nanoparticles into the structural units. Through numerical modeling of hard core-soft shell nanogel material we identify the region of parameters (the nanogel size and core/shell ratio) at which the sample demonstrates optimal stability and self-healing behavior.

Duki, Solomon; Kolmakov, German; Matyjaszewski, Krzysztof; Balazs, Anna

2010-03-01

239

Dynamics in thermo-responsive nanogel crystals undergoing melting.  

PubMed

We report here the dynamics in thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanogel crystals undergoing melting?freezing and verify the applicability of the dynamical criterion for melting?freezing proposed by Lo?wen et al. [Phys. Rev. Lett. 70, 1557 (1993)]. According to this criterion the ratio of long time diffusion coefficient (DL) to short time diffusion coefficients (DS) is ?0.1 for colloidal particles in suspension undergoing melting?freezing. Static and dynamic light scattering techniques have been employed to identify the melting?freezing transition of PNIPAM nanogel colloidal crystals of two different volume fractions ? = 0.49 and 0.79 and to measure DL and DS across the melting. In dense PNIPAM nanogel crystals undergoing melting, the ratio DL?DS is found to be less than 0.1 for the first time and this deviation is higher in the suspension with higher ?. We also show that the deviation is genuine by measuring DL?DS on shear melted charged silica colloidal liquid undergoing freezing. The mean square displacement at shorter times, close to the melting, shows subdiffusive behavior. The subdiffusive behavior, arising due to the overlap of the dangling polymer chains between shells of the neighboring particles, is argued to be the reason for the observed deviation. PMID:24089798

Joshi, R G; Tata, B V R; Brijitta, J

2013-09-28

240

Dynamics in thermo-responsive nanogel crystals undergoing melting  

NASA Astrophysics Data System (ADS)

We report here the dynamics in thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanogel crystals undergoing melting/freezing and verify the applicability of the dynamical criterion for melting/freezing proposed by Löwen et al. [Phys. Rev. Lett. 70, 1557 (1993)]. According to this criterion the ratio of long time diffusion coefficient (DL) to short time diffusion coefficients (DS) is ~0.1 for colloidal particles in suspension undergoing melting/freezing. Static and dynamic light scattering techniques have been employed to identify the melting/freezing transition of PNIPAM nanogel colloidal crystals of two different volume fractions ? = 0.49 and 0.79 and to measure DL and DS across the melting. In dense PNIPAM nanogel crystals undergoing melting, the ratio DL/DS is found to be less than 0.1 for the first time and this deviation is higher in the suspension with higher ?. We also show that the deviation is genuine by measuring DL/DS on shear melted charged silica colloidal liquid undergoing freezing. The mean square displacement at shorter times, close to the melting, shows subdiffusive behavior. The subdiffusive behavior, arising due to the overlap of the dangling polymer chains between shells of the neighboring particles, is argued to be the reason for the observed deviation.

Joshi, R. G.; Tata, B. V. R.; Brijitta, J.

2013-09-01

241

Alveolar targeting of aerosol pentamidine. Toward a rational delivery system  

SciTech Connect

Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. (Royal Free Hospital, London (England))

1990-04-01

242

Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors  

PubMed Central

This study explored the possibility of utilizing iron oxide nanoparticles as a drug delivery vehicle for minimally invasive, MRI-monitored magnetic targeting of brain tumors. In vitro determined hydrodynamic diameter of ~100nm, saturation magnetization of 94 emu/g Fe and T2 relaxivity of 43 s?1mM?1 of the nanoparticles suggested their applicability for this purpose. In vivo effect of magnetic targeting on the extent and selectivity of nanoparticle accumulation in tumors of rats harboring orthotopic 9L-gliosarcomas was quantified with MRI. Animals were intravenously injected with nanoparticles (12 mg Fe/kg) under a magnetic field density of 0 T (control) or 0.4 T (experimental) applied for 30 minutes. MR images were acquired prior to administration of nanoparticles and immediately after magnetic targeting at 1 hour intervals for 4 hours. Image analysis revealed that magnetic targeting induced a 5-fold increase in the total glioma exposure to magnetic nanoparticles over non-targeted tumors (p=0.005) and a 3.6-fold enhancement in the target selectivity index of nanoparticle accumulation in glioma over the normal brain (p=0.025). In conclusion, accumulation of iron oxide nanoparticles in gliosarcomas can be significantly enhanced by magnetic targeting and successfully quantified by MR imaging. Hence, these nanoparticles appear to be a promising vehicle for glioma-targeted drug delivery.

Chertok, Beata; Moffat, Bradford A.; David, Allan E.; Yu, Faquan; Bergemann, Christian; Ross, Brian D.; Yang, Victor C.

2009-01-01

243

Cutting-edge technologies in colon-targeted drug delivery systems.  

PubMed

Oral colon-targeted drug delivery systems have gained enormous attention among researchers in the last two decades. The significance of this site-specific drug delivery system can be measured by its usefulness for delivering a variety of therapeutic agents, both for the treatment of local diseases or for systemic therapies. With the arrival of newer innovations, a large number of breakthrough technologies have emerged for targeting a drug molecule to the colon. Researchers have attempted various approaches in the development of these formulation technologies, such as pH-dependent, time-dependent and microflora-activated systems. Recently, a number of approaches have been proposed that utilize a novel concept of di-dependent drug delivery systems, that is, the systems in which the drug release is controlled by two factors: pH and time, and pH and microflora of the colon. This Editorial article is not intended to offer a comprehensive review on drug delivery, but shall familiarize the readers with the formulation technologies that have been developed for attaining colon-specific drug delivery. PMID:21933030

Patel, Mayur M

2011-10-01

244

Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery.  

PubMed

In this paper, we present a facile strategy to synthesize hyaluronic acid (HA) conjugated mesoporous silica nanoparticles (MSP) for targeted enzyme responsive drug delivery, in which the anchored HA polysaccharides not only act as capping agents but also as targeting ligands without the need of additional modification. The nanoconjugates possess many attractive features including chemical simplicity, high colloidal stability, good biocompatibility, cell-targeting ability, and precise cargo release, making them promising agents for biomedical applications. As a proof-of-concept demonstration, the nanoconjugates are shown to release cargoes from the interior pores of MSPs upon HA degradation in response to hyaluronidase-1 (Hyal-1). Moreover, after receptor-mediated endocytosis into cancer cells, the anchored HA was degraded into small fragments, facilitating the release of drugs to kill the cancer cells. Overall, we envision that this system might open the door to a new generation of carrier system for site-selective, controlled-release delivery of anticancer drugs. PMID:23303570

Chen, Zhaowei; Li, Zhenhua; Lin, Youhui; Yin, Meili; Ren, Jinsong; Qu, Xiaogang

2013-01-09

245

Targeted delivery of nano-therapeutics for major disorders of the central nervous system.  

PubMed

Major central nervous system (CNS) disorders, including brain tumors, Alzheimer’s disease, Parkinson’s disease, and stroke, are significant threats to human health. Although impressive advances in the treatment of CNS disorders have been made during the past few decades, the success rates are still moderate if not poor. The blood–brain barrier (BBB) hampers the access of systemically administered drugs to the brain. The development of nanotechnology provides powerful tools to deliver therapeutics to target sites. Anchoring them with specific ligands can endow the nano-therapeutics with the appropriate properties to circumvent the BBB. In this review, the potential nanotechnology-based targeted drug delivery strategies for different CNS disorders are described. The limitations and future directions of brain-targeted delivery systems are also discussed. PMID:23797465

Gao, Huile; Pang, Zhiqing; Jiang, Xinguo

2013-10-01

246

Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation  

PubMed Central

Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

Tan, Jifu; Thomas, Antony; Liu, Yaling

2012-01-01

247

Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.  

PubMed

Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications. PMID:22375153

Tan, Jifu; Thomas, Antony; Liu, Yaling

2011-12-22

248

Targeted Delivery of Nanoparticles to Ischemic Muscle for Imaging and Therapeutic Angiogenesis  

PubMed Central

Targeting of nanoparticles to ischemic tissues was studied in a murine ischemic hindlimb model. Intravenously injected fluorescent nanoparticles allowed ischemia-targeted imaging of ischemic muscles due to increased permeability of blood vessels in hypoxic tissues. Targeting efficiency correlated with blood perfusion after induction of ischemia and was enhanced in early stage of ischemia (<7 days). Therapeutic delivery of vascular endothelial growth factor (VEGF) was achieved by VEGF-conjugated nanoparticles and resulted in a 1.7-fold increase in blood perfusion, as compared to control mice. This work supports the application of nanoparticles as imaging and therapeutic modalities for ischemia treatment.

Kim, Jaeyun; Cao, Lan; Shvartsman, Dmitry; Silva, Eduardo A.; Mooney, David J.

2010-01-01

249

Targeted Delivery of Cisplatin to Lung Cancer Using ScFvEGFR-Heparin-Cisplatin Nanoparticles  

PubMed Central

The clinical application of cis-diamminedichloroplatinum(II) (DDP, cisplatin) for cancer therapy is limited by its non-specific biodistribution and severe side effects. Here, we have developed EGFR-targeted heparin-DDP (EHDDP) nanoparticles for tumor targeted delivery of DDP. This nanoparticle delivery system possesses the following unique properties: i) the succinic anhydride-modified heparin is biocompatible and biodegradable with no anticoagulant activity; ii) the single chain variable fragment anti-EGFR antibody (ScFvEGFR) was conjugated to the nanoparticles as an EGFR-targeting ligand. Our results showed that EHDDP nanoparticles can significantly increase the intracellular concentrations of DDP and Pt-DNA adducts in EGFR-expressing non-small cell lung cancer H292 cells via an EGFR-mediated pathway. Compared to the free DDP, significantly prolonged blood circulation time and improved pharmacokinetics and biodistribution of Pt were observed after systemic delivery of the EHDDP nanoparticles. The new EHDDP nanoparticle delivery system significantly enhanced antitumor activity of DDP without weight loss or damage to the kidney and spleen in nude mice bearing H292 cell tumors.

Peng, Xiang-Hong; Wang, Yiqing; Huang, Donghai; Wang, Yuxiang; Shin, Hyung Juc.; Chen, Zhengjia; Spewak, Micheal B; Mao, Hui; Wang, Xu; Wang, Ying; Chen, Zhuo (Georgia); Nie, Shuming; Shin, Dong M.

2011-01-01

250

MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation.  

PubMed

Mesenchymal stem cells (MSCs) are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the "first-pass" accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC) therapeutic dose. PMID:24000286

Kean, Thomas J; Lin, Paul; Caplan, Arnold I; Dennis, James E

2013-08-13

251

Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review  

PubMed Central

Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.

Liu, Jie; Gray, Warren D.; Davis, Michael E.; Luo, Ying

2012-01-01

252

Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles.  

PubMed

Microbubbles (MB) are routinely used contrast agents for functional and molecular ultrasound (US) imaging. In addition, they have been attracting more and more attention for drug delivery purposes, enabling e.g. US-mediated drug delivery across biological barriers and US-induced triggered drug release from the MB shell. The vast majority of efforts in this regard have thus far focused on phospholipid-based soft-shell MB, which are suboptimal for stably incorporating large amounts of drug molecules because of their relatively thin shell. Using poly(butyl cyanoacrylate) (PBCA)-based hard-shell MB, we show here that both hydrophilic (Rhodamine-B) and hydrophobic (Coumarin-6) model drugs can be efficiently and stably entrapped within the ~50 nm shell of PBCA MB. In addition, we demonstrate that model drug loading does not negatively affect the acoustic properties of the MB, and that functionalizing the surface of fluorophore-loaded MB with anti-VEGFR2 antibodies enables image-guided and targeted model drug delivery to tumor blood vessels. Finally, we show both in vitro and in vivo that disintegrating VEGFR2-targeted MB with high-mechanical index US pulses leads to high levels of model drug release. Consequently, these findings indicate that polymer-based MB are highly suitable systems for image-guided, targeted and triggered drug delivery to tumors and tumor blood vessels. PMID:22580225

Fokong, Stanley; Theek, Benjamin; Wu, Zhuojun; Koczera, Patrick; Appold, Lia; Jorge, Samuel; Resch-Genger, Ute; van Zandvoort, Marc; Storm, Gert; Kiessling, Fabian; Lammers, Twan

2012-05-09

253

Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases  

PubMed Central

Limitations in therapy induced by adverse effects due to unselective drug availability and therefore the use of potentially too high doses are a common problem. One prominent example for this dilemma are inflammatory diseases. Colloidal carriers allow one to improve delivery of drugs to the site of action and appear promising to overcome this general therapeutic drawback. Specific uptake of nanoparticles by immune-related cells in inflamed barriers offers selective drug targeting to the inflamed tissue. Here we focus on nanocarrier-based drug delivery strategies for the treatment of common inflammatory disorders like rheumatoid arthritis, multiple sclerosis, uveitis or inflammatory bowel disease.

Ulbrich, Wiebke; Lamprecht, Alf

2010-01-01

254

Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery.  

PubMed

Background:Osteosarcoma (OS) is the most common bone tumour in children and adolescents. Despite aggressive therapy regimens, treatment outcomes are unsatisfactory. Targeted delivery of drugs can provide higher effective doses at the site of the tumour, ultimately improving the efficacy of existing therapy. Identification of suitable receptors for drug targeting is an essential step in the design of targeted therapy for OS.Methods:We conducted a comparative analysis of the surface proteome of human OS cells and osteoblasts using cell surface biotinylation combined with nano-liquid chromatography - tandem mass spectrometry-based proteomics to identify surface proteins specifically upregulated on OS cells. This approach generated an extensive data set from which we selected a candidate to study for its suitability as receptor for targeted treatment delivery to OS. First, surface expression of the ephrin type-A receptor 2 (EPHA2) receptor was confirmed using FACS analysis. Ephrin type-A receptor 2 expression in human tumour tissue was tested using immunohistochemistry. Receptor targeting and internalisation studies were conducted to assess intracellular uptake of targeted modalities via EPHA2. Finally, tissue micro arrays containing cores of human OS tissue were stained using immunohistochemistry and EPHA2 staining was correlated to clinical outcome measures.Results:Using mass spectrometry, a total of 2841 proteins were identified of which 156 were surface proteins significantly upregulated on OS cells compared with human primary osteoblasts. Ephrin type-A receptor 2 was highly upregulated and the most abundant surface protein on OS cells. In addition, EPHA2 was expressed in a vast majority of human OS samples. Ephrin type-A receptor 2 effectively mediates internalisation of targeted adenoviral vectors into OS cells. Patients with EPHA2-positive tumours showed a trend toward inferior overall survival.Conclusion:The results presented here suggest that the EPHA2 receptor can be considered an attractive candidate receptor for targeted delivery of therapeutics to OS. PMID:24064975

Posthumadeboer, J; Piersma, S R; Pham, T V; van Egmond, P W; Knol, J C; Cleton-Jansen, A M; van Geer, M A; van Beusechem, V W; Kaspers, G J L; van Royen, B J; Jiménez, C R; Helder, M N

2013-09-24

255

Nanoparticles-mediated drug delivery approaches for cancer targeting: a review.  

PubMed

Cancer has become the leading cause of death among different populations of the world. The treatment is limited to chemotherapy, radiation, and surgery. Selective targeting to the tumor cells is possible by nanoparticles-based drug delivery system. It maximizes the drug concentration at the desired target and protects the surrounding healthy tissues at the same time. To improve the targeting potential of the anticancer drugs, nanoparticles were optimized for the size and surface characteristics to enhance their circulation time and targeting efficiency. Passive targeting involves surface modification with polyethylene glycol to avoid its elimination by natural body defense mechanism. Active targeting involves chemical interaction with certain antigen, receptors, and genes which are over expressed during progression of disease. In addition, the article highlights recent developments in "smart"-stimulus-responsive-drug carriers designed to enhance the localization and efficacy of therapeutic payloads as compared with free drug. Enhanced targeting potential, imaging, and controlled release of drugs or therapeutic molecules could be possible through multi-functional nanocarrier. Such multi-faceted, versatile nanocarriers and drug delivery systems promise a substantial increase in the efficacy of diagnostic and therapeutic applications in pharmaceutical sciences. PMID:22873288

Sultana, Shaheen; Khan, Mohd Rashid; Kumar, Mukesh; Kumar, Sokindra; Ali, Mohammed

2012-08-09

256

The influence of natural pulmonary surfactant on the efficacy of siRNA-loaded dextran nanogels.  

PubMed

Aim: Topical administration of siRNA nanocarriers is a promising approach in the treatment of pulmonary disorders. Pulmonary surfactant, covering the entire alveolar surface of mammalian lungs, will be one of the first interfaces that siRNA nanocarriers encounter upon inhalation therapy. Therefore, it is of outstanding importance to evaluate the impact of pulmonary surfactant on the performance of siRNA nanocarriers. Materials & methods: The effect of natural lung-derived surfactants on the siRNA delivery capacity of dextran nanogels (DEX-NGs) was evaluated in vitro using flow cytometry and confocal microscopy. Results: Although the interaction with pulmonary surfactant decreases the cellular internalization of siRNA-loaded DEX-NGs significantly, the gene silencing potential of siRNA-loaded DEX-NGs was maintained. On the other hand, cationic lipid-based siRNA nanocarriers (Lipofectamine™ RNAiMAX) were incompatible with pulmonary surfactants. Conclusion: Our data suggest that pulmonary surfactant can enhance the intracellular siRNA delivery by DEX-NGs, thereby possibly providing new therapeutic opportunities. Original submitted 18 April 2012; Revised submitted 14 September 2012; Published online 18 February 2013. PMID:23418856

De Backer, Lynn; Braeckmans, Kevin; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

2013-02-18

257

Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways  

NASA Astrophysics Data System (ADS)

Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.

Shah, Dhiral Ashwin

258

A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells  

PubMed Central

As conventional cancer therapies struggle with toxicity issues and irregular remedial efficacy, the preparation of novel gene therapy vectors could offer clinicians the tools for addressing the genetic errors of diseased tissue. The transfer of gene therapy to the clinic has proven difficult due to safety, target specificity, and transfection efficiency concerns. Polyethylenimine (PEI) nanoparticles have been identified as promising gene carriers that induce gene transfection with high efficiency. However, the inherent toxicity of the material and non-selective delivery are the major concerns in applying these particles clinically. Here, a non-viral nanovector has been developed by PEGylation of DNA-complexing PEI in nanoparticles functionalized with an Alexa Fluor 647 near infrared fluorophore, and the chlorotoxin (CTX) peptide which binds specifically to many forms of cancer. With this nanovector, the potential toxicity to healthy cells is minimized by both the reduction of the toxicity of PEI with the biocompatible copolymer and the targeted delivery of the nanovector to cancer cells, as evaluated by viability studies. The nanovector demonstrated high levels of targeting specificity and gene transfection efficiency with both C6 glioma and DAOY medulloblastoma tumor cells. Significantly, with the CTX as the targeting ligand, the nanovector may serve as a widely applicable gene delivery system for a broad array of cancer types.

Veiseh, Omid; Kievit, Forrest; Gunn, Jonathan; Ratner, Buddy; Zhang, Miqin

2009-01-01

259

LIPOSOMAL MODULAR COMPLEXES FOR SIMULTANEOUS TARGETED DELIVERY OF BIOACTIVE GASES AND THERAPEUTICS  

PubMed Central

Intrinsically echogenic liposomes (ELIP) can be adapted to encapsulate nitric oxide to facilitate ultrasound-enhanced delivery of therapeutic agents to atherosclerotic plaques. However, the NO loading of targeted ELIP caused a 93% decrease of antibody (Ab) immunoreactivity. The following hypothesis was tested: biotin/avidin-mediated coupling of NO-ELIP and Ab-conjugated ELIP will enable co-delivery of bioactive gases and ELIP that can encapsulate other agents without loss of targeting efficiency. Complex formation was initiated by addition of excess streptavidin to equal proportions of biotinylated Ab-ELIP and NO-ELIP. Fluorescence deconvolution microscopy, Coulter Multisizer 3 analysis and flow cytometry demonstrated that the ELIP coupling procedure formed mixed aggregates of ?10 liposomes within 1 minute. Intravascular ultrasound imaging and ELISA showed that echogenicity and targeting efficiency were completely and 69–99% retained, respectively. When complexed to NO-ELIP, ELIP bifunctionally targeted to both CD34 and ICAM-1 (BF-ELIP) increased human mononuclear cell migration through human coronary artery endothelial cell monolayers in transwell plates 4-fold relative to a nonspecific IgG-ELIP control and 2-fold relative to BF-ELIP alone. It was concluded that this novel multi-functional conjugation methodology provides a platform technology for site-specific co-delivery of bioactive gases and other agents.

Klegerman, Melvin E.; Wassler, Michael; Huang, Shao-Ling; Zou, Yuejiao; Kim, Hyunggun; Shelat, Harnath S.; Holland, Christy K.; Geng, Yong-Jian; McPherson, David D.

2010-01-01

260

Targeted Delivery of VEGF after a Myocardial Infarction Reduces Collagen Deposition and Improves Cardiac Function  

PubMed Central

The development of adjunctive therapies which attenuate adverse remodeling and improve LV function post myocardial infarction (MI) is of significant clinical interest. Previously, we have shown that targeted delivery of therapeutic vascular endothelial growth factor (VEGF) to the infarct border zone significantly increases vascular perfusion and results in improvements in LV function. In this study, we tested the hypothesis that improvements in cardiac function observed with this novel targeted drug delivery system strongly correlate with reductions in collagen deposition in the scar tissue after an MI. Rats received anti-P-selectin conjugated immunoliposomes containing VEGF immediately post-MI. Over 4 weeks, evolutionary changes in LV geometry and function were correlated with collagen deposition and infarct size quantified by Gomori's trichrome and picrosirius red staining. Targeted VEGF treated hearts showed a 37% decrease in collagen deposition in the anterior wall, as well as significant improvements in LV filling pressures. Multi-regression analysis showed that the extent of collagen deposition post MI can be predicted by a linear combination of normalized LV mass and ejection fraction. Targeted delivery of VEGF post-MI results in significant decreases in collagen deposition and adverse remodeling. Improvements in cardiac function in this model are related to degree of collagen deposition and extent of scar formation.

Rosano, Jenna M.; Cheheltani, Rabee; Wang, Bin; Vora, Hardik; Kiani, Mohammad F.; Crabbe, Deborah L.

2012-01-01

261

Targeted drug delivery for cancer therapy: the other side of antibodies  

PubMed Central

Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.

2012-01-01

262

The pH-sensitive polyampholyte nanogels: Inclusion of carbon nanotubes for improved drug loading.  

PubMed

We report a simple and facile method to prepare a novel pH sensitive polyampholyte nanogel by copolymerizing vinylimidazole (VIM) with acrylic acid (AA) using functionalized single-walled carbon nanotubes (f-SWCNTs) (as reinforcing material) and cyanuric chloride via an intermolecular quaternization reaction. The polyampholyte nanogels have been characterized by various microscopic and spectroscopic methods. These studies reveal that incorporation of nanotubes in cross-linked copolymer of poly(vinylimidazole-co-acrylic acid) (PVI-co-AA) form polyampholyte nanogel with enhanced physical properties. The thermal experiments show that the introduction of f-SWCNTs into PVI-co-AA has significant impact on the thermal stability of nanogels. The rheological study showed that the nanogel is more viscoelastic than native gel. MTT assay indicates that the prepared polyampholyte gels possess biocompatibility and cell viability. The nanogel is also useful material to load water-soluble drug such as promethazine hydrochloride. The releasing profile of the drug from the nanogel clearly shows the pH-sensitive property of the material. PMID:23974001

Sankar, Rajavelu Murali; Seeni Meera, Kamal Mohamed; Samanta, Debasis; Jithendra, Panneerselvam; Mandal, Asit Baran; Jaisankar, Sellamuthu N

2013-08-01

263

Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction by Inducing Fibrin Clot Formation  

PubMed Central

Background Administration of a recombinant peptide of Periostin (rPN) has recently been shown to stimulate cardiomyocyte proliferation and angiogensis after myocardial infarction (MI) [1]. However, strategies for targeting the delivery of rPN to the heart are lacking. Intrapericardial administration of drug-eluting hydrogels may provide a clinically viable strategy for increasing myocardial retention, therapeutic efficacy, and bioactivity of rPN and to decrease systemic re-circulation. Methods and Results We investigated the ability of intrapericardial injections of drug-eluting hydrogels to deliver and prolong the release of rPN to the myocardium in a large animal model of myocardial infarction. Gelfoam is an FDA-approved hemostatic material commonly used in surgery, and is known to stimulate fibrin clot formation. We show that Gelfoam disks loaded with rPN, when implanted within the pericardium or peritoneum of mammals becomes encapsulated within a non-fibrotic fibrin-rich hydrogel, prolonging the in vitro and in vivo release of rPN. Administration into the pericardial cavity of pigs, following a complete occlusion of the left anterior descending artery, leads to greater induction of cardiomyocyte mitosis, increased cardiomyocyte cell cycle activity, and enhanced angiogenesis compared to direct injection of rPN alone. Conclusions The results of this study suggest that intrapericardial drug delivery of Gelfoam, enhanced by triggered clot formation, can be used to effectively deliver rPN to the myocardium in a clinically relevant model of myocardial infarction. The work presented here should enhance the translational potential of pharmaceutical-based strategies that must be targeted to the myocardium.

Polizzotti, Brian D.; Arab, Shima; Kuhn, Bernhard

2012-01-01

264

Development of multiple-layer polymeric particles for targeted and controlled drug delivery  

PubMed Central

The purpose of this work was to develop multilayered particles consisting of a magnetic core and two encompassing shells made up of poly (N-isopropylacrylamide) (PNIPAAm) and poly(d,l-lactide-co-glycolide) (PLGA) for targeted and controlled drug delivery. Transmission electron microscopy confirmed that multilayered particles were obtained with PNIPAAm magnetic nanoparticles embedded within the PLGA shell. Factorial analysis studies also showed that the particle size was inversely proportional to the surfactant concentration and sonication power and directly proportional to the PLGA concentration. Drug-release results demonstrated that these multilayer particles produced an initial burst release and a subsequent sustained release of both bovine serum albumin (BSA) and curcumin loaded into the core and shell of the particle, respectively. BSA release was also affected by changes in temperature. In conclusion, our results indicate that the multilayered magnetic particles could be synthesized and used for targeted and controlled delivery of multiple drugs with different release mechanisms.

Koppolu, Bhanuprasanth; Rahimi, Maham; Nattama, Sivaniarvindpriya; Wadajkar, Aniket; Nguyen, Kytai Truong

2010-01-01

265

Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration  

PubMed Central

Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

2013-01-01

266

Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA  

Microsoft Academic Search

A novel target specific small interfering RNA (siRNA) delivery system was successfully developed using polyethyleneimine (PEI)-hyaluronic acid (HA) conjugate. Anti-PGL3-Luc siRNA was used as a model system suppressing the PGL3-Luc gene expression. The siRNA\\/ PEI-HA complex with an average size of ca. 21 nm appeared to be formed by electrostatic interaction between the negatively charged siRNA and the positively charged

Ge Jiang; Jiseok Kim; Ki Su Kim; Eun Ju Oh; Hyungu Kang; Su-Eun Han; Yu-Kyoung Oh; Tae Gwan Park; Sei Kwang Hahn

2008-01-01

267

Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium.  

PubMed

Despite the numerous hurdles that gene therapy has encountered along the way, clinical trials over the last few years are showing promising results in many fields of medicine, including cardiology, where many targets are moving toward clinical development. In this review, the authors discuss the current state of the art in terms of clinical and preclinical development. They also examine vector technology and available vector-delivery strategies. PMID:23984926

Scimia, Maria Cecilia; Cannavo, Alessandro; Koch, Walter J

2013-08-01

268

Attempt for liver-targeted delivery of antisense oligonucleotides by cholesterol modification and oral administration  

Microsoft Academic Search

Antisense oligonucleotides (ODNs) are promising anti-viral and anti-tumor therapeutical agents. Liver-targeted delivery of ODNs was studied by oral administration of cholesterol-modified phosphorothioate ODNs (Chol-S-ODNs). Cholesterol modification predominantly accelerated the uptake of ODNs by the rat intestine epithelial cell line IEC-6 and the human hepatoma cell line PLC\\/PRF\\/5. Pravastatin and chylomicron enhanced the uptake by PLC\\/PRF\\/5 cells. Antisense Chol-S-ODNs complementary to

Yasuyuki Okamoto; Hiroshi Nakano

1999-01-01

269

A novel HBV antisense RNA gene delivery system targeting hepatocellular carcinoma  

Microsoft Academic Search

AIM: To construct a novel HBV antisense RNA delivery system targeting hapatocellular carcinoma and study its inhibitory effect in vitro and in vivo. METHODS: GE7,a 16-peptide specific to EGFR, and HA20, a homologue of N-terminus of haemagglutinin of influenza viral envelope protein, were synthesized and conjugated with polylysin. The above conjugates were organized into the pEBAF-as-preS2, a hepatocarcinoma specific HBV

Chun-Hong Ma; Wen-Sheng Sun; Pei-Kun Tian; Li-Fen Gao; Su-Xia Liu; Xiao-Yan Wang; Li-Ning Zhang; Ying-Lin Cao; Li-Hui Han; Xiao-Hong Liang

270

In Vivo PEG-Modification of Vascular Surfaces for Targeted Delivery  

PubMed Central

Objective Thrombosis and restenosis remain problematic for many intravascular procedures. Previously, it has been demonstrated that modifying an injured vascular surface with a protein-reactive polymer could block undesirable platelet deposition. As an added benefit, it would be advantageous if one could target therapeutics to the injured site. This study investigates a site-specific delivery system to target microspheres to vascular surfaces modified with a reactive polyethylene glycol tagged with biotin. Methods Rabbit femoral arteries were injured with a 2F embolectomy catheter. Modification of the vascular surface was achieved using a channeled balloon catheter or small diameter tube. Microspheres were injected intravenously through catheterization of the ear vein. Polymer modification on the injured surface and delivery of microspheres was quantified using epi-fluorescence microscopy at 0, 24, 48, and 72 h. Results Polymer modification of the vascular surface could be achieved using a channeled drug delivery catheter or small diameter tube with similar results. Maximum polymer coverage occurred at 0 h and decreased to 85% maximal at 24 h, 72% at 48 h, and 67% at 72 h. The initial number of microspheres per mm2 binding to modified, injured arteries was 304 versus 141 for the unmodified, damaged control (P < .01). At subsequent times, the number of adherent microspheres to modified, injured arteries decreased by 50%, 70%, and 84% at 24, 48, and 72 h, respectively; while non-specific binding to unmodified, injured arteries quickly decreased by 93%. Initial microsphere binding to modified, healthy arteries was 153 microspheres/mm2 as opposed to 26 for the unmodified, healthy controls (P < .01). Conclusions Chemical modification of injured vessels following intravascular procedures can be readily accomplished in vivo to create a substrate for targeted delivery systems. As a proof of concept, targeted microspheres preferentially adhered to polymer-modified surfaces as opposed to injured, unmodified or healthy vascular surfaces.

Deglau, Timothy E.; Maul, Timothy M.; Villanueva, Flordeliza S.; Wagner, William R.

2011-01-01

271

Enhanced Prospects for Drug Delivery and Brain Targeting by the Choroid Plexus–CSF Route  

Microsoft Academic Search

The choroid plexus (CP), i.e., the blood–cerebrospinal fluid barrier (BCSFB) interface, is an epithelial boundary exploitable for drug delivery to brain. Agents transported from blood to lateral ventricles are convected by CSF volume transmission (bulk flow) to many periventricular targets. These include the caudate, hippocampus, specialized circumventricular organs, hypothalamus, and the downstream pia–glia and arachnoid membranes. The CSF circulatory system

Conrad E. Johanson; John A. Duncan; Edward G. Stopa; Andrew Baird

2005-01-01

272

Design and development of hydrogel beads for targeted drug delivery to the colon  

Microsoft Academic Search

The purpose of this research was to develop and evaluate a multiparticulate system of chitosan hydrogel beads exploiting pH-sensitive\\u000a property and specific biodegradability for colon-targeted delivery of satranidazole. Chitosan hydrogel beads were prepared\\u000a by the cross-linking method followed by enteric coating with Eudragit S100. All formulations were evaluated for particle size,\\u000a encapsulation efficiency, swellability, and in vitro drug release. The

Sanjay K. Jain; Anekant Jain; Yashwant Gupta; Manisha Ahirwar

2007-01-01

273

Nucleolin Targeting AS1411 Modified Protein Nanoparticle for Antitumor Drugs Delivery.  

PubMed

Over recent years, cell surface nucleolin as an anticancer target has attracted many researchers' attentions. To improve the antitumor efficacy, we developed a nucleolin targeted protein nanoparticle (NTPN) delivery system in which human serum albumin (HSA) was used as drug carrier and a DNA aptamer named AS1411, which had high affinity to nucleolin, was used as a bullet. The HSA nanoparticles (NPs-PTX) were fabricated by a novel self-assembly method and then modified with AS1411 (Apt-NPs-PTX). The resulted Apt-NPs-PTX were spherical. Compared with NPs-PTX, the uptake of Apt-NPs-PTX displayed a significant increase in MCF-7 cells while there was a decrease in nontumor cell lines such as MCF-10A and 3T3 cells. In a cytotoxic study, Apt-NPs-PTX displayed an enhanced cytotoxicity in MCF-7 tumor cells while there was almost no cytotoxicity in MCF-10A cells. Endostatin, a nucleolin inhibitor, could significantly decrease the internalization of Apt-NPs-PTX, suggesting nucleolin mediates the transmembrane process of Apt-NPs-PTX. Therefore, the AS1411 modified NTPN delivery system might be a promising targeted drug delivery system. PMID:23679916

Wu, Jinhui; Song, Chenchen; Jiang, Chenxiao; Shen, Xin; Qiao, Qian; Hu, Yiqiao

2013-08-28

274

N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver.  

PubMed

Due to its efficient and specific gene silencing ability, RNA interference has shown great potential in the treatment of liver diseases. However, achieving in vivo delivery of siRNA to critical liver cells remains the biggest obstacle for this technique to be a real clinic therapeutic modality. Here, we describe a promising liver targeting siRNA delivery system based on N-acetylgalactosamine functionalized mixed micellar nanoparticles (Gal-MNP), which can efficiently deliver siRNA to hepatocytes and silence the target gene expression after systemic administration. The Gal-MNP were assembled in aqueous solution from mixed N-acetylgalactosamine functionalized poly(ethylene glycol)-b-poly(?-caprolactone) and cationic poly(?-caprolactone)-b-poly(2-aminoethyl ethylene phosphate) (PCL-b-PPEEA); the properties of nanoparticles, including particle size, zeta potential and the density of poly(ethylene glycol) could be easily regulated. The hepatocyte-targeting effect of Gal-MNP was demonstrated by significant enriching of fluorescent siRNA in primary hepatocytes in vitro and in vivo. Successful down-regulation of liver-specific apolipoprotein B (apoB) expression was achieved in mouse liver, at both the transcriptional and protein level, following intravenous injection of Gal-MNP/siapoB to BALB/c mice. Systemic delivery of Gal-MNP/siRNA did not induce the innate immune response or positive hepatotoxicity. The results of this study suggested therapeutic potential for the Gal-MNP/siRNA system in liver disease. PMID:23266452

Wang, Hong-Xia; Xiong, Meng-Hua; Wang, Yu-Cai; Zhu, Jing; Wang, Jun

2012-12-20

275

Tumor Delivery of Chemotherapy Combined with Inhibitors of Angiogenesis and Vascular Targeting Agents  

PubMed Central

Numerous angiogenesis-vascular targeting agents have been admitted to the ranks of cancer therapeutics; most are used in polytherapy regimens. This review looks at recent progress and our own preclinical experience in combining angiogenesis inhibitors, mainly acting on VEGF/VEGFR pathways, and vascular targeting agents with conventional chemotherapy, discussing the factors that determine the outcome of these treatments. Molecular and morphological modifications of the tumor microenvironment associated with drug distribution and activity are reviewed. Modalities to improve drug delivery and strategies for optimizing combination therapy are examined.

Cesca, Marta; Bizzaro, Francesca; Zucchetti, Massimo; Giavazzi, Raffaella

2013-01-01

276

Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect  

PubMed Central

Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.

Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

2011-01-01

277

Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides  

PubMed Central

Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals.

Liu, Shuang

2008-01-01

278

AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.  

PubMed

Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110?nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery. PMID:22615073

Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

2012-06-01

279

Pathotropic targeting advances clinical oncology: tumor-targeted localization of therapeutic gene delivery.  

PubMed

The advent of pathotropic (disease-seeking) targeting has transported genetic medicine across the threshold of history with the progressive clinical validation of Rexin-G, a tumor-targeted nanosized anti-cancer agent. Achieving noteworthy single-agent efficacy and survival benefits in otherwise intractable cancers, the molecular biotechnology platform has stimulated intense interest in the underlying mechanisms-of-action. This report exhibits the effective localization of Rexin-G nanoparticles within a metastatic liver lesion, as observed upon its surgical excision. PMID:20811660

Hall, Frederick L; Levy, John P; Reed, Rebecca A; Petchpud, Wasinee N; Chua, Victoria S; Chawla, Sant P; Gordon, Erlinda M

2010-10-01

280

Enhanced Affinity Bifunctional Bisphosphonates for Targeted Delivery of Therapeutic Agents to Bone  

PubMed Central

Skeletal diseases have a major impact on the worldwide population and economy. Although several therapeutic agents and treatments are available for addressing bone diseases, they are not being fully utilized because of their uptake in non-targeted sites and related side effects. Active targeting with controlled delivery is an ideal approach for treatment of such diseases. Because bisphosphonates are known to have high affinity to bone and are being widely used in treatment of osteoporosis, they are well-suited for drug targeting to bone. In this study, a targeted delivery of therapeutic agent to resorption sites and wound healing sites of bone was explored. Towards this goal, bifunctional hydrazine-bisphosphonates (HBPs), with spacers of various lengths, were synthesized and studied for their enhanced affinity to bone. Crystal growth inhibition studies showed that these HBPs have high affinity to hydroxyapatite, and HBPs with shorter spacers bind stronger than alendronate to hydroxyapatite. The HBPs did not affect proliferation of MC3T3-E1 pre-osteoblasts, did not induce apoptosis, and were not cytotoxic at the concentration range tested (10?6 - 10?4 M). Furthermore, drugs can be linked to the HBPs through a hydrazone linkage that is cleavable at the low pH of bone resorption and wound healing sites, leading to release of the drug. This was demonstrated using hydroxyapatite as a model material of bone and 4-nitrobenzaldehyde as a model drug. This study suggests that these HBPs could be used for targeted delivery of therapeutic agents to bone.

Yewle, Jivan N.; Puleo, David A.; Bachas, Leonidas G.

2011-01-01

281

Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to hepatocarcinoma cells.  

PubMed

Targeted drug delivery is a main issue in cancer treatment. Taking advantage of recently developed polyvinyl alcohol (PVA)-based microbubbles, which are characterized by chemical versatility of the polymeric surface thereby allowing coating with different ligands, we set up a strategy for the targeted delivery of the anticancer agent doxorubicin to hepatocarcinoma cells. Such microbubbles are exceptionally efficient ultrasound scatterers and thus represent also an option as potential ultrasound contrast agents. Moreover, the oscillation of microbubbles induced by ultrasound could contribute to favor the release of drugs allocated on shell. Specifically, PVA-based microbubbles were reacted with a galactosylated chitosan complex and loaded with doxorubicin to enable the localization and drug delivery to HepG2 hepatocarcinoma cells overexpressing asialoglycoprotein receptors. We demonstrated selectivity and greater bioadhesive properties of the functionalized microbubbles for tumor cells than to normal fibroblasts, which were influenced by the degree of galactosylation. The presence of galactosylated chitosan did not modify the rate of doxorubicin release from microbubbles, whichwas almost complete within 48h. Cellular uptake of doxorubicin loaded on functionalized microbubbles was higher in HepG2 than in normal fibroblasts, which do not over express the asialoglycoprotein receptors. In addition, doxorubicin loaded onto functionalized microbubbles fully retained its cytotoxic activity. Cells were also irradiated with ultrasound, immediately after exposure to microbubbles. An early enhancement of doxorubicin release and cellular drug uptake associated to a concomitant increase in cytotoxicity was observed in HepG2 cells. Overall, results of the study indicate that galactosylated chitosan microbubbles represent promising devices for the targeted delivery of antitumor agents to liver cancer cells. PMID:23759384

Villa, Raffaella; Cerroni, Barbara; Viganò, Lucia; Margheritelli, Silvia; Abolafio, Gabriella; Oddo, Letizia; Paradossi, Gaio; Zaffaroni, Nadia

2013-05-13

282

Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes  

PubMed Central

Achieving efficient in vivo delivery of siRNA to the appropriate target cell would be a major advance in the use of RNAi in gene function studies and as a therapeutic modality. Hepatocytes, the key parenchymal cells of the liver, are a particularly attractive target cell type for siRNA delivery given their central role in several infectious and metabolic disorders. We have developed a vehicle for the delivery of siRNA to hepatocytes both in vitro and in vivo, which we have named siRNA Dynamic PolyConjugates. Key features of the Dynamic PolyConjugate technology include a membrane-active polymer, the ability to reversibly mask the activity of this polymer until it reaches the acidic environment of endosomes, and the ability to target this modified polymer and its siRNA cargo specifically to hepatocytes in vivo after simple, low-pressure i.v. injection. Using this delivery technology, we demonstrate effective knockdown of two endogenous genes in mouse liver: apolipoprotein B (apoB) and peroxisome proliferator-activated receptor alpha (ppara). Knockdown of apoB resulted in clear phenotypic changes that included a significant reduction in serum cholesterol and increased fat accumulation in the liver, consistent with the known functions of apoB. Knockdown of ppara also resulted in a phenotype consistent with its known function, although with less penetrance than observed in apoB knockdown mice. Analyses of serum liver enzyme and cytokine levels in treated mice indicated that the siRNA Dynamic PolyConjugate was nontoxic and well tolerated.

Rozema, David B.; Lewis, David L.; Wakefield, Darren H.; Wong, So C.; Klein, Jason J.; Roesch, Paula L.; Bertin, Stephanie L.; Reppen, Tom W.; Chu, Qili; Blokhin, Andrei V.; Hagstrom, James E.; Wolff, Jon A.

2007-01-01

283

Real-time PCR targeting the sip gene for detection of group B streptococcus colonization in pregnant women at delivery  

Microsoft Academic Search

Group B streptococcus (GBS) is an important aetiological agent of serious neonatal infections. A rapid and sensitive method for the detection of GBS colonization in pregnant women at delivery could make intrapartum screening for GBS possible. A real-time PCR method targeting the sip gene of GBS in pregnant women at delivery has been evaluated. The performance of the real-time PCR

Hakon Bergseng; Lars Bevanger; Marite Rygg; Kare Bergh

2007-01-01

284

Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery.  

PubMed

We designed an epidermal growth factor (EGF)-containing polyamidoamine (PAMAM) Generation 4 dendrimer vector labeled with quantum dots for targeted imaging and nucleic acid delivery. (1)H NMR, SDS-PAGE, and Western blotting were applied to characterize the synthesized G4.0-GGG-EGF nanoparticles. Targeting efficiency, cell viability, proliferation, and intracellular signal transduction were evaluated using HN12, NIH3T3, and NIH3T3/EGFR cells. We found that EGF-conjugated dendrimers did not stimulate growth of EGFR-expressing cells at the selected concentration. Consistent with this, minimal stimulation of post-receptor signaling pathways was observed. These nanoparticles can localize within cells that express the EGFR in a receptor-dependent manner, whereas uptake into cells lacking the receptor was low. A well characterized vimentin shRNA (shVIM) and yellow fluorescent protein (YFP) siRNA were used to test the delivery and transfection efficiency of the constructed targeted vector. Significant knockdown of expression was observed, indicating that this vector is useful for introduction of nucleic acids or drugs into cells by a receptor-targeted mechanism. PMID:20729136

Yuan, Quan; Lee, Eunmee; Yeudall, W Andrew; Yang, Hu

2010-08-21

285

The Targeted Intracellular Delivery of Cytochrome-C Protein to Tumors Using Lipid-Apolipoprotein Nanoparticles  

PubMed Central

Intracellular-acting therapeutic proteins offer a promising clinical alternative to extracellular-acting agents, but are limited in efficacy by their low permeability into the cell cytoplasm. We have developed a nanoparticle (NP) composed of lipid (DOTAP/DOPE) and apolipoprotein (APO A-I) to mediate the targeted delivery of intracellular-acting protein drugs to non-small cell lung tumors. NPs were produced with either GFP, a fluorescent model protein, or cytochrome C (cytC), an inducer of apoptosis in cancer cells. GFP and cytC were separately conjugated with a membrane permeable sequence (MPS) peptide and were admixed with DOPE/DOTAP nanoparticle formulations (NPs) to enable successful protein loading. Protein-loaded NPs were modified with DSPE-PEG-Anisamide to enable specific NP targeting to the tumor site in a xenograft model. The resulting particle was 20–30 nm in size and exhibited a 64–75% loading efficiency. H460 cells treated with the PEGylated MPS-cytC-NPs exhibited massive apoptosis. When MPS-GFP-NPs or MPS-cytC-NPs were intravenously administered in H460 tumor bearing mice, a specific tumor targeting effect with low NP accumulation in the liver was observed. In addition, MPS-cytC-NP treatment provoked a tumor growth retardation effect in H460 xenograft mice. We conclude that our NP enables targeted, efficacious therapeutic protein delivery for the treatment of lung cancer.

Kim, Sang Kyoon; Foote, Michael B.; Huang, Leaf

2012-01-01

286

Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform.  

PubMed

A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines. PMID:23221098

Li, Yanan; Yang, Yinlong; An, Feifei; Liu, Zhuang; Zhang, Xiujuan; Zhang, Xiaohong

2012-12-05

287

Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles.  

PubMed

Chlamydia trachomatis and Chlamydia pneumoniae are intracellular bacterial pathogens that have been shown to cause, or are strongly associated with, diverse chronic diseases. Persistent infections by both organisms are refractory to antibiotic therapy. The lack of therapeutic efficacy results from the attenuated metabolic rate of persistently infecting chlamydiae in combination with the modest intracellular drug concentrations achievable by normal delivery of antibiotics to the inclusions within which chlamydiae reside in the host cell cytoplasm. In this research, we evaluated whether nanoparticles formulated using the biodegradable poly(d-L-lactide-co-glycolide) (PLGA) polymer can enhance the delivery of antibiotics to the chlamydial inclusion complexes. We initially studied the trafficking of PLGA nanoparticles in Chlamydia-infected cells. We then evaluated nanoparticles for the delivery of antibiotics to the inclusions. Intracellular trafficking studies show that PLGA nanoparticles efficiently concentrate in inclusions in both acutely and persistently infected cells. Further, encapsulation of rifampin and azithromycin antibiotics in PLGA nanoparticles enhanced the effectiveness of the antibiotics in reducing microbial burden. Combination of rifampin and azithromycin was more effective than the individual drugs. Overall, our studies show that PLGA nanoparticles can be effective carriers for targeted delivery of antibiotics to intracellular chlamydial infections. PMID:21652065

Toti, Udaya S; Guru, Bharath R; Hali, Mirabela; McPharlin, Christopher M; Wykes, Susan M; Panyam, Jayanth; Whittum-Hudson, Judith A

2011-06-08

288

Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery.  

PubMed

Fuel-free nanomotors are essential for future in-vivo biomedical transport and drug-delivery applications. Herein, the first example of directed delivery of drug-loaded magnetic polymeric particles using magnetically driven flexible nanoswimmers is described. It is demonstrated that flexible magnetic nickel-silver nanoswimmers (5-6 ?m in length and 200 nm in diameter) are able to transport micrometer particles at high speeds of more than 10 ?m s(-1) (more than 0.2 body lengths per revolution in dimensionless speed). The fundamental mechanism of the cargo-towing ability of these magnetic (fuel-free) nanowire motors is modelled, and the hydrodynamic features of these cargo-loaded motors discussed. The effect of the cargo size on swimming performance is evaluated experimentally and compared to a theoretical model, emphasizing the interplay between hydrodynamic drag forces and boundary actuation. The latter leads to an unusual increase of the propulsion speed at an intermediate particle size. Potential applications of these cargo-towing nanoswimmers are demonstrated by using the directed delivery of drug-loaded microparticles to HeLa cancer cells in biological media. Transport of the drug carriers through a microchannel from the pick-up zone to the release microwell is further illustrated. It is expected that magnetically driven nanoswimmers will provide a new approach for the rapid delivery of target-specific drug carriers to predetermined destinations. PMID:22174121

Gao, Wei; Kagan, Daniel; Pak, On Shun; Clawson, Corbin; Campuzano, Susana; Chuluun-Erdene, Erdembileg; Shipton, Erik; Fullerton, Eric E; Zhang, Liangfang; Lauga, Eric; Wang, Joseph

2011-12-15

289

Targeted Delivery of Antibiotics to Intracellular Chlamydial Infections using PLGA Nanoparticles  

PubMed Central

Chlamydia trachomatis and C pneumoniae are intracellular bacterial pathogens that have been shown to cause, or are strongly associated with, diverse chronic diseases. Persistent infections by both organisms are refractory to antibiotic therapy. The lack of therapeutic efficacy results from the attenuated metabolic rate of persistently infecting chlamydiae in combination with the modest intracellular drug concentrations achievable by normal delivery of antibiotics to the inclusions within which chlamydiae reside in the host cell cytoplasm. In this research, we evaluated whether nanoparticles formulated using the biodegradable poly(d-L-lactide-co-glycolide) (PLGA) polymer can enhance the delivery of antibiotics to the chlamydial inclusion complexes. We initially studied the trafficking of PLGA nanoparticles in Chlamydia-infected cells. We then evaluated nanoparticles for the delivery of antibiotics to the inclusions. Intracellular trafficking studies show that PLGA nanoparticles efficiently concentrate in inclusions in both acutely and persistently infected cells. Further, encapsulation of rifampin and azithromycin antibiotics in PLGA nanoparticles enhanced the effectiveness of the antibiotics in reducing microbial burden. Combination of rifampin and azithromycin was more effective than the individual drugs. Overall, our studies show that PLGA nanoparticles can be effective carriers for targeted delivery of antibiotics to intracellular chlamydial infections.

Toti, Udaya S.; Guru, Bharath R.; Hali, Mirabela; McPharlin, Christopher; Wykes, Susan M.; Panyam, Jayanth; Whittum-Hudson, Judith A.

2011-01-01

290

Colon-targeted quercetin delivery using natural polymer to enhance its bioavailability.  

PubMed

The aim of the present study is to develop a polymer (Guar Gum)-based matrix tablet (using quercetin as a model drug) with sufficient mechanical strength, and promising in vitro mouth-to-colon release profile. By definition, an oral colonic delivery system should retard drug release in the stomach and small intestine, and allow complete release in the colon. By drug delivery to the colon would therefore ensure direct treatment at the disease site, lower dosing, and fewer systemic side effects. Quercetin is antioxidant in nature and used to treat colon cancer, but they have poor absorption in the upper part of the gastrointestinal tract (GIT). As a site for drug delivery, the colon offers a near neutral pH, reduced digestive enzymatic activity, a long transit time, and an increased responsiveness to absorption enhancers. By achieving a colon-targeted drug delivery system, the absorption of quercetin may be increased, which leads to better bioactivity in fewer doses. PMID:21731393

Singhal, Anil; Jain, H; Singhal, Vipin; Elias, Edwin J; Showkat, Ahmad

2011-01-01

291

Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals.  

PubMed

The use of electroporation to facilitate gene transfer is an extremely powerful and useful method for both in vitro and in vivo applications. One of its great strengths is that it induces functional destabilization and permeabilization of cell membranes throughout a tissue leading to widespread gene transfer to multiple cells and cell types within the electric field. While this is a strength, it can also be a limitation in terms of cell-specific gene delivery. The ability to restrict gene delivery and expression to particular cell types is of paramount importance for many types of gene therapy, since ectopic expression of a transgene could lead to deleterious host inflammatory responses or dysregulation of normal cellular functions. At present, there are relatively few ways to obtain cell-specific targeting of nonviral vectors, molecular probes, small molecules, and imaging agents. We have developed a novel means of restricting gene delivery to desired cell types based on the ability to control the transport of plasmids into the nuclei of desired cell types. In this article, we discuss the mechanisms of this approach and several applications in living animals to demonstrate the benefits of the combination of electroporation and selective nuclear import of plasmids for cell-specific gene delivery. PMID:23525583

Dean, David A

2013-03-24

292

Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model  

PubMed Central

The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1 MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n = 8) and wild-type (n = 8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and subendothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery.

Hitchcock, Kathryn E.; Caudell, Danielle N.; Sutton, Jonathan T.; Klegerman, Melvin E.; Vela, Deborah; Pyne-Geithman, Gail J.; Abruzzo, Todd; Cyr, Peppar E. P.; Geng, Yong-Jian; McPherson, David D.; Holland, Christy K.

2010-01-01

293

Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells.  

PubMed

In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors. PMID:23076766

Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

2012-10-18

294

Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy.  

PubMed

Tumor-associated macrophages (TAMs) have been proven to be a driving force in the initiation, proliferation, metastasis and angiogenesis of various tumors. Specifically, alterations in the functions of TAMs exhibited inhibitory effects on tumor growth. However, there is currently no research being conducted on the targeting delivery of drugs into TAMs for cell-specific tumor immunotherapy. In the present study, we developed a TAMs targeted delivery system that is triggered by the acidic microenvironment in the tumor to release a TAMs-recognizing nano-complex loaded with oligonucleotides. By using this system, we demonstrated a significant anti-tumor effect of an oligonucleotide combination of CpG oligonucleotide, anti-IL-10 and anti-IL-10 receptor oligonucleotides. These nucleic acid drugs delivered by the delivery system accumulated in the TAMs of an allograft hepatoma murine model by intravenous injection, suppressed the pro-tumor functions and stimulated the anti-tumor activities of TAMs. More importantly, the nucleic acid drug-based immune-regulation was restricted to the tumor microenvironment and did not cause an upregulation of serum inflammatory cytokines. Our present study provides an effective therapeutic strategy for regulating cell-specific functions using nucleic acid drugs. PMID:22119956

Huang, Zhen; Zhang, Zhengping; Jiang, Yucui; Zhang, Dachuan; Chen, Jiangning; Dong, Lei; Zhang, Junfeng

2011-11-18

295

Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent.  

PubMed

IR-780 iodide, a near-infrared fluorescent heptamethine dye, has been recently characterized to exhibit preferential accumulation property in the mitochondria of tumor cells. In this study, we investigated the possible mechanisms for its tumor selective activity and its potential as a drug delivery carrier. Results showed that the energy-dependent uptake of IR-780 iodide into the mitochondria of tumor cells was affected by glycolysis and plasma membrane potential. Moreover, OATP1B3 subtype of organic anion transporter peptides (OATPs) may play a dominant role in the transportation of IR-780 iodide into tumor cells, while cellular endocytosis, mitochondrial membrane potential and the ATP-binding cassette transporters did not show significant influence to its accumulation. We further evaluated the potential of IR-780 iodide as a drug delivery carrier by covalent conjugation of IR-780 with nitrogen mustard (IR-780NM). In vivo imaging showed that IR-780NM remained the tumor targeting property, indicating that IR-780 iodide could be potentially applied as a drug delivery agent for cancer targeted imaging and therapy. PMID:24148240

Zhang, Erlong; Luo, Shenglin; Tan, Xu; Shi, Chunmeng

2013-10-20

296

Amphiphilic polysaccharide nanoballs: a new building block for nanogel biomedical engineering and artificial chaperones.  

PubMed

Enzymatically synthesized glycogen (ESG), a highly branched (1?4)(1?6)-linked ?-glucan, is a new monodisperse spherical hyperbranched nanoparticle (molecular weight, 10(6)-10(7); diameter, 20-30 nm), polysaccharide nanoball. Amphiphilic ESG nanoballs were synthesized by introducing a cholesterol group to enzymatically synthesized glycogen (CHESG). CHESG assembled into a structure containing a few molecules to form cluster nanogels (approximately 35 nm in diameter) in water. The cluster nanogels were dissociated by the addition of cyclodextrin (CD) to form a supramolecular CHESG-CD nanocomplex due to complexation with the cholesterol group and CD. The CHESG nanogel showed high capacity for complexation with proteins, and the CHESG-CD nanocomplex showed high chaperone-like activity for thermal stabilization of enzymes. CHESG has great potential to become a new building block for nanogel biomedical engineering and to act as an artificial chaperone for protein engineering. PMID:21138322

Takahashi, Haruko; Sawada, Shin-Ichi; Akiyoshi, Kazunari

2010-12-07

297

Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels  

NASA Astrophysics Data System (ADS)

A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

2012-08-01

298

Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors.  

PubMed

The purpose of this work was to evaluate the potential of HAIYPRH (T7) peptide as a ligand for constructing tumor-targeting drug delivery systems. T7 could target to transferrin-receptor (TfR) through a cavity on the surface of TfR and then transport into cells via endocytosis with the help of transferrin (Tf). In this study, T7-conjugated poly(ethylene glycol) (PEG)-modified polyamidoamine dendrimer (PAMAM) (PAMAM-PEG-T7) was successfully synthesized and further loaded with doxorubicin (DOX), formulating PAMAM-PEG-T7/DOX nanoparticles (NPs). In vitro, almost 100% of DOX was released during 2 h in pH 5.5, while only 55% of DOX was released over 48 h in pH 7.4. The cellular uptake of DOX could be significantly enhanced when treated with T7-modified NPs in the presence of Tf. Also, the in vitro antitumor effect was enhanced markedly. The IC(50) of PAMAM-PEG-T7/DOX NPs with Tf was 231.5 nM, while that of NPs without Tf was 676.7 nM. T7-modified NPs could significantly enhance DOX accumulation in the tumor by approximately 1.7-fold compared to that of unmodified ones and by approximately 5.3-fold compared to that of free DOX. For in vivo antitumor studies, tumor growth of mice treated with PAMAM-PEG-T7/DOX NPs was significantly inhibited compared to that of mice treated with PAMAM-PEG/DOX NPs and saline. The study provides evidence that PAMAM-PEG-T7 can be applied as a potential tumor-targeting drug delivery system. T7 may be a promising ligand for targeted drug delivery to the tumor. PMID:20857964

Han, Liang; Huang, Rongqin; Liu, Shuhuan; Huang, Shixian; Jiang, Chen

2010-10-14

299

Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging  

PubMed Central

Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties.

Veiseh, Omid; Gunn, Jonathan; Zhang, Miqin

2009-01-01

300

Improving oncology outcomes through targeted therapeutics will require electronic delivery systems.  

PubMed

Typically, chemotherapy selection takes into account patient demographic data, including disease symptoms, family history, environmental factors and concurrent medications. Although validated and approved genomics tests are available for targeted therapeutics, a major challenge facing healthcare is the ability to process the genomic data in the patient's context and to return clinically interpretable dosing guidance to the physician in a realistic time frame. Delivery of these targeted therapeutics, made possible by clinical decision support systems connected to an electronic health record may help drive both the acceptance and adaptation of an electronic health record system, as well as provide personalized information at point-of-care, as part of the routine workflow. The realization of targeted therapeutics will depend on the concerted efforts of stakeholder groups as they address political, ethical, socioeconomical and technical challenges to achieve personalized medicine adoption through real-world implementation. PMID:21568680

van Rooij, Tibor; Marsh, Sharon

2011-05-01

301

Comparison of two kinds of nanomedicine for targeted gene therapy: premodified or postmodified gene delivery systems  

PubMed Central

Background The applications of ligand-polyethylene glycol (PEG)-modified nanocarriers have now emerged, as well as recognized strategies to provide the vectors with active targeting properties. In this research, premodification and postmodification were compared using the same ligand, ie, a novel conjugated mannan-containing PEG and L-?-phosphatidylethanolamine (PE). Methods Premodified and postmodified solid lipid nanoparticles were prepared and the characteristics of the two kinds of vehicles were evaluated. The modified vectors were then administered intravenously to rats and the in vivo targeting behavior of the complexes was investigated in liver macrophages. Results By carefully formulating the carriers with an optimal ratio of mannan-containing PEG-PE, postmodified vehicles displayed more efficient gene expression in rat Kupffer cells both in vitro and in vivo. Conclusion Postmodified gene carriers are superior to premodified gene vectors, although the latter is also promising for targeted gene delivery. This discovery could guide our future research.

Jiang, Zhaoshun; Sun, Cong; Yin, Zhaohui; Zhou, Fang; Ge, Linfu; Liu, Ximin; Kong, Fansheng

2012-01-01

302

A peptide-mediated targeting gene delivery system for malignant glioma cells  

PubMed Central

Glioblastoma multiforme (GBM) is the most common and malignant glioma. Although there has been considerable progress in treatment strategies, the prognosis of many patients with GBM remains poor. In this work, polyethylenimine (PEI) and the VTWTPQAWFQWV (VTW) peptide were modified and synthesized into GBM-targeting nanoparticles. The transfection efficiency of U-87 (human glioblastoma) cells was evaluated using fluorescence microscopy and flow cytometry. Cell internalization was investigated to verify the nanoparticle delivery into the cytoplasm. Results showed that the methods of polymer conjugation and the amount of VTW peptide were important factors to polymer synthesis and transfection. The PEI-VTW20 nanoparticles increased the transfection efficiency significantly. This report describes the use of VTW peptide-based PEI nanoparticles for intracellular gene delivery in a GBM cell-specific manner.

Wang, Chuanwei; Ning, Liping; Wang, Hongwei; Lu, Zaijun; Li, Xingang; Fan, Xiaoyong; Wang, Xuping; Liu, Yuguang

2013-01-01

303

Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery.  

PubMed

We fabricated self-powered colloidal Janus motors combining catalytic and magnetic cap structures, and demonstrated their performance for manipulation (uploading, transportation, delivery) and sorting of microobjects on microfluidic chips. The specific magnetic properties of the Janus motors are provided by ultrathin multilayer films that are designed to align the magnetic moment along the main symmetry axis of the cap. This unique property allows a deterministic motion of the Janus particles at a large scale when guided in an external magnetic field. The observed directional control of the motion combined with extensive functionality of the colloidal Janus motors conceptually opens a straightforward route for targeted delivery of species, which are relevant in the field of chemistry, biology, and medicine. PMID:22424213

Baraban, Larysa; Makarov, Denys; Streubel, Robert; Mönch, Ingolf; Grimm, Daniel; Sanchez, Samuel; Schmidt, Oliver G

2012-03-22

304

Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide  

PubMed Central

Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endothelial cells of tumor lymphatics in certain tumors), was structurally modified by replacement of the original intramolecular disulfide bond with a diseleno bond. The produced analog Syp-1 (seleno derivative of Lyp-1) maintained specific binding ability to the target protein p32 (Kd = 18.54 nM), which is similar to that of Lyp-1 (Kd = 10.59 nM), indicated by surface plasmon resonance assay. Compared with Lyp-1, Syp-1 showed significantly improved stability against serum. After the peptide attached onto the surface of fluorophore-encapsulating liposomes, the more efficient tumor uptake of liposomal fluorophore mediated by Syp-1 was observed. Furthermore, Syp-1 modified liposomal doxorubicin presented the most potent tumor growth inhibitory ability among all the therapeutic groups, with a low half maximal inhibitory concentration of 588 nM against MDA-MB-435 cells in vitro and a high tumor inhibition rate of 73.5% in vivo. These findings clearly indicated that Syp-1 was a stable and effective tumor targeting ligand and suggest that the sulfur-to-selenium replacement strategy may help stabilize the phage-displayed cyclic peptide containing disulfide-bond under physiological conditions and strongly support the validity of peptide-mediated drug targeting.

Li, Chong; Wang, Yixin; Zhang, Xiaolin; Deng, Li; Zhang, Yan; Chen, Zhangbao

2013-01-01

305

Non-Ionic, Thermo-Responsive DEA/DMA Nanogels: Synthesis, Characterization, and Use for DNA Separations by Microchip Electrophoresis  

PubMed Central

Thermo-responsive polymer “nanogels” (crosslinked hydrogel particles with sub-100 nm diameters) are intriguing for many potential applications in biotechnology and medicine. There have been relatively few reports of electrostatically neutral, thermosensitive nanogels comprising a high fraction of hydrophilic co-monomer. Here we demonstrate the syntheses and characterization of novel, nonionic nanogels based on random N,N-diethylacrylamide (DEA) / N,N-dimethylacrylamide (DMA) copolymers, made by free-radical, surfactant-free dispersion polymerization. The volume phase transition temperatures of these DEA/DMA nanogels are strongly affected by co-monomer composition, providing a way to “tune” the phase transition temperature of these non-ionic nanogels. While DEA nanogels (comprising no DMA) can be obtained at 70°C by standard emulsion precipitation, DEA/DMA random copolymer nanogels can be obtained only in a particular range of temperatures, above the initial phase transition temperature and below the critical precipitation temperature of the DEA/DMA copolymer, controlled by co-monomer composition. Increasing percentages of DMA in the nanogels raises the phase transition temperature, and attenuates and broadens it as well. We find that concentrated DEA/DMA nanogel dispersions are optically clear at room temperature. This good optical clarity was exploited for their use in a novel DNA sieving matrix for microfluidic chip electrophoresis. An ultrafast, high-efficiency dsDNA separation was achieved in less than 120 seconds for dsDNA ranging from 75 bp-15000 bp.

Lu, Xihua; Sun, Mingyun; Barron, Annelise E.

2011-01-01

306

Poly (vinyl alcohol) hydrogels for pH dependent colon targeted drug delivery.  

PubMed

Oral drug administration is convenient with pH dependent drug delivery system since the drug has to pass through different pH environments in gastro intestinal (GI) tract. The pH dependent swelling/shrinking behavior of hydrogel drug carrier controls the drug release without affecting the function of drug. pH dependent hydrogels of poly (vinyl alcohol) (PVA) were prepared by cross linking with maleic acid (MA). The hydrogels were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, DSC, porosimetry, SEM, TEM, biocompatibility study and by measuring their swelling behavior in water, simulated gastric fluid (SGF) and intestinal fluid (SIF). Swelling of the hydrogels was found to be highest in SIF (pH: 7.5) and lowest in SGF (pH: 1.2) resembling that required in colon targeted drug delivery systems. Since the swelling behavior of the gel is pH dependent, these hydrogels were studied for colon targeted drug delivery in an in-vitro set-up resembling the condition of GI tract. The ratio of PVA and MA in the hydrogel was varied to study the effect on the drug diffusion rate. For drug delivery study, vitamin B12 and salicylic acid were used as model drugs. The hydrogel, loaded with model drugs vitamin B12 and salicylic acid also demonstrated colon specific drug release with a relatively higher drug release in SIF (pH: 7.5) than that in SGF (pH: 1.2). PMID:18592350

Basak, Piyali; Adhikari, Basudam

2008-07-01

307

A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery.  

PubMed

A double-targeted magnetic nanocarrier based with potential applications in the delivery of hydrophobic drugs has been developed. It consists of magnetite (Fe(3)O(4)) nanoparticles encapsulated in self-assembled micelles of the amphiphilic copolymer MPEG-PLGA [methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide)], and was fabricated using the solvent-evaporation technique. The magnetic nanocarrier has a very stable core-shell structure and is superparamagnetic. Its cytotoxicity was evaluated using the MTT assay with three cell lines-HeLa, MCF-7, and HT1080; it exhibited no cytotoxicity against any tested line at concentrations of up to 400 ?g/mL after incubation for 24 h. Its cellular uptake was studied by Prussian blue staining and by fluorescence microscopy after encapsulating a fluorescent probe (hydrophobic quantum dots) into the nanocarrier. Finally, the magnetic targeting property of the magnetic nanocarrier was confirmed by an in vitro test. Overall, the results obtained demonstrate the potential of the double-targeted nanocarrier for the intracellular delivery of hydrophobic drugs. PMID:22088760

Ding, Guobin; Guo, Yi; Lv, Yanyun; Liu, Xiaofeng; Xu, Li; Zhang, Xuezhong

2011-10-25

308

A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery.  

PubMed

Galactosylated chitosan-hydroxypropyltrimethylammonium (gal-HTCC) was synthesized by galactosylating and quaternizing chitosan to endue chitosan with targeting specificity for potential applications as gene vectors. The composition and physicochemical properties of gal-HTCC were characterized by FT-IR, (1) H NMR, elemental analysis, X-ray diffraction, and turbidity measurement. It was found that water-soluble gal-HTCC showed a more amorphous structure than chitosan, and it also had a much better plasmid condensation capability than galactosylated chitosan. Cytotoxicity measurements revealed that gal-HTCC showed significantly lower cytotoxicity in HepG2 and HeLa cell lines compared to branched polyethylenimine (bPEI, 25 kDa) which was used as a positive control. The nanoparticles (NPs) consisted of gal-HTCC and plasmid DNA had desirable particle size (around 250 nm) with a narrow size distribution. Confocal laser scanning microscopy confirmed that NPs could be internalized and transported to the nucleus efficiently within 6 h. In vitro gene transfection results indicated that gal-HTCC had significantly higher transfection efficiency (7- to 32-fold) compared to chitosan and gal-chitosan for targetable delivery of pGL3 luciferase plasmid to HepG2, and its transfection efficiency was highly inhibited in the presence of galactose (20 mM). All these results suggest that gal-HTCC can function as a promising nonviral gene vector for efficient liver-targeted gene delivery. PMID:23203540

Xiao, Bo; Wang, Xiaoyu; Qiu, Zhiye; Ma, Jun; Zhou, Lei; Wan, Ying; Zhang, Shengmin

2012-12-03

309

Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations.  

PubMed

This paper describes a platform to achieve targeted drug delivery in the next-generation wireless capsule endoscopy. The platform consists of two highly novel subsystems: one is a micropositioning mechanism which can deliver 1 ml of targeted medication and the other is a holding mechanism, which gives the functionality of resisting peristalsis. The micropositioning mechanism allows a needle to be positioned within a 22.5 ° segment of a cylindrical capsule and be extendible by up to 1.5 mm outside the capsule body. The mechanism achieves both these functions using only a single micromotor and occupying a total volume of just 200 mm (3). The holding mechanism can be deployed diametrically opposite the needle in 1.8 s and occupies a volume of just 270 mm (3). An in-depth analysis of the mechanics is presented and an overview of the requirements necessary to realize a total system integration is discussed. It is envisaged that the targeted drug delivery platform will empower a new breed of capsule microrobots for therapy in addition to diagnostics for pathologies such as ulcerative colitis and small intestinal Crohn's disease. PMID:23192476

Woods, Stephen P; Constandinou, Timothy G

2012-11-21

310

Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery.  

PubMed

PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ~100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery. PMID:23623086

Li, Yong-Yong; Li, Lan; Dong, Hai-Qing; Cai, Xiao-Jun; Ren, Tian-Bin

2013-02-27

311

Control of Endothelial Targeting and Intracellular Delivery of Therapeutic Enzymes by Modulating the Size and Shape of ICAM-1-targeted Carriers  

Microsoft Academic Search

Endocytosis in endothelial cells (ECs) is important for many biomedical applications, including drug delivery by nano- and microscale carriers. However, little is known about how carrier geometry influences endothelial drug targeting, intracellular trafficking, and effects. We studied this using prototype polymer carriers of various sizes (0.1–10 ?m) and shapes (spheres versus elliptical disks). Carriers were targeted to intercellular adhesion molecule

Silvia Muro; Carmen Garnacho; Julie A Champion; John Leferovich; Christine Gajewski; Edward H Schuchman; Samir Mitragotri; Vladimir R Muzykantov

2008-01-01

312

Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme  

SciTech Connect

This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

2006-06-14

313

Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery  

PubMed Central

We demonstrate an integrated FPGA solution to project highly stabilized, aberration-corrected stimuli directly onto the retina by means of real-time retinal image motion signals in combination with high speed modulation of a scanning laser. By reducing the latency between target location prediction and stimulus delivery, the stimulus location accuracy, in a subject with good fixation, is improved to 0.15 arcminutes from 0.26 arcminutes in our earlier solution. We also demonstrate the new FPGA solution is capable of delivering stabilized large stimulus pattern (up to 256x256 pixels) to the retina.

Yang, Qiang; Arathorn, David W.; Tiruveedhula, Pavan; Vogel, Curtis R.; Roorda, Austin

2010-01-01

314

A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers  

Microsoft Academic Search

Lactose-based placebo tablets were coated using various combinations of two methacrylic acid copolymers, Eudragit® L100-55 and Eudragit® S100, by spraying from aqueous systems. The Eudragit® L100-55–Eudragit® S100 combinations (w\\/w) studied were 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 1:5 and 0:1. The coated tablets were tested in vitro for their suitability for pH dependent colon targeted oral drug delivery. The same

M. Zahirul I Khan; Željko Prebeg; Nevenka Kurjakovi?

1999-01-01

315

Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide  

PubMed Central

Objectives The synovial endothelium targeting peptide (SyETP) CKSTHDRLC has been identified previously and was shown to preferentially localise to synovial xenografts in the human/severe combined immunodeficient (SCID) mouse chimera model of rheumatoid arthritis (RA). The objective of the current work was to generate SyETP-anti-inflammatory-cytokine fusion proteins that would deliver bioactive cytokines specifically to human synovial tissue. Methods Fusion proteins consisting of human interleukin (IL)-4 linked via a matrix metalloproteinase (MMP)-cleavable sequence to multiple copies of either SyETP or scrambled control peptide were expressed in insect cells, purified by Ni-chelate chromatography and bioactivity tested in vitro. The ability of SyETP to retain bioactive cytokine in synovial but not control skin xenografts in SCID mice was determined by in vivo imaging using nano-single-photon emission computed tomography-computed tomography (nano-SPECT-CT) and measuring signal transducer and activator of transcription 6 (STAT6) phosphorylation in synovial grafts following intravenous administration of the fusion protein. Results In vitro assays confirmed that IL-4 and the MMP-cleavable sequence were functional. IL-4-SyETP augmented production of IL-1 receptor antagonist (IL-1ra) by fibroblast-like synoviocytes (FLS) stimulated with IL-1?  in a dose-dependent manner. In vivo imaging showed that IL-4-SyETP was retained in synovial but not in skin tissue grafts and the period of retention was significantly enhanced through increasing the number of SyETP copies from one to three. Finally, retention correlated with increased bioactivity of the cytokine as quantified by STAT6 phosphorylation in synovial grafts. Conclusions The present work demonstrates that SyETP specifically delivers fused IL-4 to human rheumatoid synovium transplanted into SCID mice, thus providing a proof of concept for peptide-targeted tissue-specific immunotherapy in RA. This technology is potentially applicable to other biological treatments providing enhanced potency to inflammatory sites and reducing systemic toxicity.

Wythe, Sarah E; DiCara, Danielle; Taher, Taher E I; Finucane, Ciara M; Jones, Rita; Bombardieri, Michele; Man, Y K Stella; Nissim, Ahuva; Mather, Stephen J; Chernajovsky, Yuti; Pitzalis, Costantino

2013-01-01

316

Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells.  

PubMed

The potential use of many promising novel drugs is limited by their inability to specifically reach their site of action after intravenous administration, without secondary effects on healthy tissues. In order to remediate this problem, the protein transferrin (Tf) has been extensively studied as a targeting molecule for the transport of drug and gene delivery systems to the brain and cancer cells. A wide range of delivery approaches have been developed to target the Tf receptor and they have already improved the specific delivery of Tf-bearing therapeutic agents to their site of action. This review provides a summary of the numerous delivery strategies used to target the Tf receptor and focuses on recent therapeutic advances. PMID:23647279

Dufès, Christine; Al Robaian, Majed; Somani, Sukrut

2013-05-01

317

Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration.  

PubMed

The aim of this study is to evaluate oral administration of poly (butylcyanoacrylate) nanoparticulate delivery systems (PBCA-NDSs), double-coated with Tween 80 and poly (ethylene) glycol (PEG) 20000 for brain delivery of hexapeptide dalargin, an anti-nociceptive peptide that does not cross blood-brain barrier (BBB) by itself. Studies have proven the brain uptake of Tween 80 overcoated nanoparticles after intravenous administration, but studies for brain delivery of nanoparticles after oral administration had been limited due to reduced bioavailability of nanoparticles and extensive degradation of the peptide and/or nanoparticles by gastrointestinal enzymes. To address this problem, dalargin-loaded PBCA-NDS were successively double-coated with Tween 80 and PEG 20000 in varied concentrations of up to 2% each. Measurement of in vivo central anti-nociceptive effect of dalargin along with a dose response curve was obtained by the tail flick test following the oral administration of PBCA-NDSs to mice. Results from the tail flick test indicated that significant dalargin-induced analgesia was observed from PBCA-NDSs with double-coating of Tween and PEG in comparison with single-coating of either Tween or PEG. Hence, it could be concluded that surface coated PBCA-NDS can be used successfully for brain targeting of dalargin or other peptides administered orally. However, further studies are required to elucidate the exact transport mechanism of PBCA-NDSs from gastrointestinal tract to brain. PMID:15858853

Das, Debanjan; Lin, Senshang

2005-06-01

318

Targeted Delivery of GDNF through the Blood-Brain Barrier by MRI-Guided Focused Ultrasound  

PubMed Central

Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood–brain barrier (BBB) prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS). Focused ultrasound combined with microbubbles (MBs) using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI)-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin–avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases.

Lu, Lin; Liu, Li; Cai, Youli; Zheng, Hairong; Liu, Xin; Yan, Fei; Zou, Chao; Sun, Chengyu; Shi, Jie; Lu, Shukun; Chen, Yun

2012-01-01

319

Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery  

PubMed Central

The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD) to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV) into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM) revealed that UTMD stimulated formation of clathrin-coated pits (CPs) and uncoated pits (nCPs). Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

Jin, Li-Fang; Li, Fan; Wang, Hui-Ping; Wei, Fang; Qin, Peng; Du, Lian-Fang

2013-01-01

320

Targeted drug delivery to the peripheral nervous system using gene therapy.  

PubMed

Gene transfer to target delivery of neurotrophic factors to the primary sensory afferent for treatment of polyneuropathy, or of inhibitory neurotransmitters for relief of chronic pain, offers the possibility of a highly selective targeted release of bioactive molecules within the nervous system. Preclinical studies with non-replicating herpes simplex virus (HSV)-based vectors injected into the skin to transduce neurons in the dorsal root ganglion have demonstrated efficacy in reducing-pain related behaviors in animal models of inflammatory pain, neuropathic pain, and pain caused by cancer, and in preventing progression of sensory neuropathy caused by toxins, chemotherapeutic drugs or resulting from diabetes. Successful completion of the first phase 1 clinical trial of HSV-mediated gene transfer in patients with intractable pain from cancer has set the stage for further clinical trials of this approach. PMID:22565023

Wolfe, Darren; Mata, Marina; Fink, David J

2012-04-27

321

A combinatorial approach for targeted delivery using small molecules and reversible masking to bypass nonspecific uptake in vivo.  

PubMed

We have developed a multi-disciplinary approach combining molecular biology, delivery technology, combinatorial chemistry and reversible masking to create improved systemic, targeted delivery of plasmid DNA while avoiding nonspecific uptake in vivo. We initially used a well-characterized model targeting the asialolglycoprotein receptor in the liver. Using our bilamellar invaginated vesicle (BIV) liposomal delivery system with reversible masking, we increased expression in the liver by 76-fold, nearly equaling expression in first-pass organs using non-targeted complexes, with no expression in other organs. The same technology was then applied to efficiently target delivery to a human tumor microenvironment model. We achieved efficient, targeted delivery by attachment of specific targeting ligands to the surface of our BIV complexes in conjunction with reversible masking to bypass nonspecific tissues and organs. We identified ligands that target a human tumor microenvironment created in vitro by co-culturing primary human endothelial cells with human lung or pancreatic cancer cells. The model was confirmed by increased expression of tumor endothelial phenotypes including CD31 and vascular endothelial growth factor-A, and prolonged survival of endothelial capillary-like structures. The co-cultures were used for high-throughput screening of a specialized small molecule library to identify ligands specific for human tumor-associated endothelial cells in vitro. We identified small molecules that enhanced the transfection efficiency of tumor-associated endothelial cells, but not normal human endothelial cells or cancer cells. Intravenous (i.v.) injection of our targeted, reversibly masked complexes into mice, bearing human pancreatic tumor and endothelial cells, specifically increased transfection to this tumor microenvironment approximately 200-fold. Efficacy studies using our optimized targeted delivery of a plasmid encoding thrombospondin-1 eliminated tumors completely after five i.v. injections administered once every week. PMID:20463761

Shi, Q; Nguyen, A T; Angell, Y; Deng, D; Na, C-R; Burgess, K; Roberts, D D; Brunicardi, F C; Templeton, N S

2010-05-13

322

Mammaglobin as a potential molecular target for breast cancer drug delivery  

PubMed Central

Background Mammaglobin (MAM) has been used as a specific molecular marker for breast cancer diagnosis. Recently, several groups of researchers proposed a number of therapeutic strategies targeting this molecule. Some of the strategies are based upon an essential but not demonstrated hypothesis – mammaglobin is associated with the surface of breast cancer cells, which strongly disputes the therapeutic strategies. Results We conducted a computer-based predictive analysis and identified a small fragment at the N-end of MAM as a potential transmembrane domain. We provided several evidences to demonstrate the presence of the membrane-associated MAM. We isolated the membrane protein components from known MAM positive breast cancer cells (MDA-MB361 and MDA-MB415). We showed that about 22–64% of MAM proteins, depending upon the types of the cancer cells, directly attached on the membrane of breast cancer cells, by Western blotting assays. To directly visualize the presence of the membrane-bound MAM protein, we incubated the MAM positive cancer cells with FITC labeled anti-MAM antibody, and observed clear fluorescent signals on the surface of the cells. In studying the MAM protein distribution in human breast cancer tissues, we first identified two immunostain patterns that are associated with the membrane-bound MAM: the membrane stain pattern and luminary surface stain pattern. To test whether the membrane-associated MAM can serve as a molecular target for drug delivery, we conjugated anti-MAM antibody to human low-density lipoprotein (LDL) and loaded doxorubicin (Dox) in the core of LDL. Specific binding and cytotoxicity of the MAM targeted and Dox loaded LDL was tested in the MAM positive breast cancer cells in vitro. Conclusion We first showed that some of MAM protein directly associated with the surface of breast cancer cells. The membrane-associated MAM protein may be utilized as a useful molecular marker for breast cancer targeted drug delivery.

Zuo, Lian; Li, Ly; Wang, Qian; Fleming, Timothy P; You, Shaojin

2009-01-01

323

Intranasal delivery of human beta-amyloid peptide in rats: effective brain targeting.  

PubMed

(1) Intranasal administration is a non-invasive and effective way for the delivery of drugs to brain that circumvents the blood-brain barrier. The aims of the study were to test a nasal delivery system for human beta-amyloid (A beta) peptides, to measure the delivery of the peptides to brain regions, and to test their biological activity in rats. (2) A beta(1-42), in the form of a mixture of oligomers, protofibrils, and fibrils was dissolved in a nasal formulation containing hydrophobic, hydrophylic, and mucoadhesive components. The peptide solution was administered intranasally to rats as a single dose or in repeated doses. (3) Nasally injected A beta labeled with the blue fluorescent dye amino-methyl coumarinyl acetic acid (AMCA) could be detected by fluorescent microscopy in the olfactory bulb and frontal cortex. The concentration of the peptide was quantified by fluorescent spectroscopy, and a significant amount of AMCA-A beta peptide could be detected in the olfactory bulb. Unlabeled A beta also reached the olfactory bulb and frontal cortex of rats as evidenced by intense immunostaining. (4) In behavioral experiments, nasal A beta treatment did not affect anxiety levels (open-field test) and short-term memory (Y-maze test), but significantly impaired long-term spatial memory in the Morris water maze. The treatments did not result in A beta immunization. (5) The tested intranasal delivery system could successfully target a bioactive peptide into the central nervous system and provides a basis for developing a non-invasive and cost effective, new model to study amyloid-induced dysfunctions in the brain. PMID:19806448

Sipos, Eszter; Kurunczi, Anita; Fehér, András; Penke, Zsuzsa; Fülöp, Lívia; Kasza, Agnes; Horváth, János; Horvát, Sándor; Veszelka, Szilvia; Balogh, Gábor; Kürti, Levente; Eros, István; Szabó-Révész, Piroska; Párducz, Arpád; Penke, Botond; Deli, Mária A

2009-10-06

324

Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain.  

PubMed

Glioblastoma multiforme, because of its invasive nature, can be considered a disease of the entire brain. Despite recent advances in surgery, radiotherapy and chemotherapy, current treatment regimens have only a marginal impact on patient survival. A crucial challenge is to deliver drugs effectively to invasive glioma cells residing in a sanctuary within the central nervous system. The blood-brain barrier (BBB) restricts the delivery of many small and large molecules into the brain. Drug delivery to the brain is further restricted by active efflux transporters present at the BBB. Current clinical assessment of drug delivery and hence efficacy is based on the measured drug levels in the bulk tumour mass that is usually removed by surgery. Mounting evidence suggests that the inevitable relapse and lethality of glioblastoma multiforme is due to a failure to effectively treat invasive glioma cells. These invasive cells hide in areas of the brain that are shielded by an intact BBB, where they continue to grow and give rise to the recurrent tumour. Effective delivery of chemotherapeutics to the invasive glioma cells is therefore critical, and long-term efficacy will depend on the ability of a molecularly targeted agent to penetrate an intact and functional BBB throughout the entire brain. This review highlights the various aspects of the BBB, and also the brain-tumour-cell barrier (a barrier due to expression of efflux transporters in tumour cells), that together can significantly influence drug response. It then discusses the challenge of glioma as a disease of the whole brain, which lends emphasis to the need to deliver drugs effectively across the BBB to reach both the central tumour and the invasive glioma cells. PMID:21676290

Agarwal, Sagar; Sane, Ramola; Oberoi, Rajneet; Ohlfest, John R; Elmquist, William F

2011-05-13

325

Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck.  

PubMed

Human squamous cell carcinoma of the head and neck (SCCHN) is characterized by over expression of a tumor cell surface-specific receptor namely Hsp47/CBP2 that makes it a favorable candidate for targeted delivery of anticancer drugs. Several synthetic peptides have been identified as effective ligands for binding to CBP2. The purpose of this study is to investigate the potential of water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates containing a Hsp47/CBP2 binding peptide sequence, namely WHYPWFQNWAMA for targeted delivery to SCCHN. An HPMA copolymer containing Dox and CBP2 targeting peptide conjugated via lysosomally degradable glycylphenylalanylleucylglycine (GFLG) spacer was synthesized by free radical precipitation copolymerization. A control polymer without targeting moiety was also synthesized. The conjugates were characterized for drug content, peptide content, molecular weight and molecular weight distribution. The uptake of polymeric conjugates by both drug resistant and drug sensitive SCCHN cells were determined in vitro by flow cytometry using FACS scan analysis. Cytotoxicity of the conjugates towards drug sensitive as well as multidrug resistant SCCHN cells were evaluated by a clonal survival assay and compared to free Dox. The cytotoxicity of the free peptide was similarly evaluated. The internalization and subcellular fate of the conjugates in drug sensitive SCCHN cells was monitored using confocal microscopy. The new targetable copolymer contained 0.16 mmole peptide/g polymer. Studies on drug sensitive SCCHN cells demonstrated lesser uptake of both targeted and non-targeted conjugates compared to free Dox suggesting a slower endocytic mechanism of uptake for the conjugates as opposed to rapid diffusion of free Dox. At higher Dox equivalent concentrations (>20 microM) the targeted conjugate showed significantly higher uptake (p < or = 0.028) than the non-targeted conjugate. The uptake of the targeted conjugate was inhibited in the presence of an anti Hsp47 antibody suggesting the involvement of active receptor mediated endocytosis in cell entry of the conjugate. Compared to free Dox, the targeted and non-targeted conjugates caused marginally lower inhibition (p < or = 0.01) of the drug sensitive SCCHN cells. In contrast, the same conjugates showed significantly higher uptake (p < or = 0.004) by drug resistant SCCHN cells and caused significantly higher inhibition (p < or = 0.02) of drug resistant SCCHN cells when compared to free Dox. Results suggest that the polymeric conjugates were able to overcome drug resistance. Confocal microscopy studies demonstrated the uptake of the polymeric conjugates, followed by internalization, intralysosomal localization and subsequent release of Dox. HPMA copolymer-Dox-peptide conjugates targeted to SCCHN cells were able to overcome drug resistance and increase efficacy in vitro. The results suggest that targetable polymeric conjugates have potential to improve systemic head and neck cancer chemotherapy by increasing tumor localization and reducing dose-limiting toxicity. PMID:16036307

Nan, Anjan; Ghandehari, Hamidreza; Hebert, Carla; Siavash, Hessam; Nikitakis, Nikolaos; Reynolds, Mark; Sauk, John J

2005-04-01

326

Benzamide analogue-conjugated polyethylenimine for brain-targeting and gene delivery.  

PubMed

In this study, a small molecule, benzamide analogue, p-hydroxybenzoic acid (p-HA), was used as a novel ligand for brain-targeting gene delivery. p-HA was conjugated to polyethylenimine and further labeled with a near infrared dye, IR820, for in vivo and ex vivo imaging study. Significant fluorescent signal was detected in brain from 0.5 to 24 h after injection compared with unmodified PEI. Then nanoparticles were prepared with p-HA-PEI to encapsulate pEGFP and pGL2 as reporter genes and characterized on the cell level. In 5 y cells green fluorescent protein expression could be observed by fluorescent microscopy and significant higher expression of firefly luciferase was detected in p-HA-PEI/pGL2 group than in PEI/pGL2 group. For in vivo gene expression study, comparable high expression of green fluorescent protein in brain sections was confirmed using both confocal fluorescent microscopy and in vivo fluorescent imaging. All these results suggested that p-HA-PEI could be potentially used for brain targeted gene delivery. PMID:21999822

Li, Jin; Meng, Qinggang; Lei, Yang; Gu, Bing; Liu, Yu; Lu, Weiyue

2011-11-01

327

Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts.  

PubMed

The cystic fibrosis (CF) lung is uniquely susceptible to Pseudomonas aeruginosa, and infection with this organism incites an intense, compartmentalized inflammatory response that leads to chronic airway obstruction and bronchiectasis. Neutrophils migrate into the airway, and released neutrophil elastase contributes to the progression of the lung disease characteristic of CF. We have developed a strategy that permits the delivery of antiproteases to the inaccessible CF airways by targeting the respiratory epithelium via the human polymeric immunoglobulin receptor (hpIgR). A fusion protein consisting of a single-chain Fv directed against secretory component, the extracellular portion of the pIgR, linked to human alpha1-antitrypsin is effectively ferried across human tracheal xenografts and delivers the antiprotease to the apical surface to a much greater extent than occurs by passive diffusion of human alpha1-antitrypsin alone. Targeted antiprotease delivery paralleled hpIgR expression in the respiratory epithelium in vivo and was not increased by escalating dose, so airway penetration was receptor-dependent, not dose-dependent. Thus, this approach provides us with the ability to deliver therapeutics, like antiproteases, specifically to the lumenal surface of the respiratory epithelium, within the airway surface fluid, where it will be in highest concentration at this site. PMID:12615618

Ferkol, Thomas; Cohn, Leah A; Phillips, Thomas E; Smith, Arnold; Davis, Pamela B

2003-02-25

328

Use of Microsphere Technology for Targeted Delivery of Rifampin to Mycobacterium tuberculosis-Infected Macrophages  

PubMed Central

Microsphere technology was used to develop formulations of rifampin for targeted delivery to host macrophages. These formulations were prepared by using biocompatible polymeric excipients of lactide and glycolide copolymers. Release characteristics were examined in vitro and also in two monocytic cell lines, the murine J774 and the human Mono Mac 6 cell lines. Bioassay assessment of cell culture supernatants from monocyte cell lines showed release of bioactive rifampin during a 7-day experimental period. Treatment of Mycobacterium tuberculosis H37Rv-infected monocyte cell lines with rifampin-loaded microspheres resulted in a significant decrease in numbers of CFU at 7 days following initial infection, even though only 8% of the microsphere-loaded rifampin was released. The levels of rifampin released from microsphere formulations within monocytes were more effective at reducing M. tuberculosis intracellular growth than equivalent doses of rifampin given as a free drug. These results demonstrate that rifampin-loaded microspheres can be formulated for effective sustained and targeted delivery to host macrophages.

Barrow, Esther L. W.; Winchester, Gary A.; Staas, Jay K.; Quenelle, Debra C.; Barrow, William W.

1998-01-01

329

Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: new vehicles for magnetically targeted drug delivery.  

PubMed

Bolaamphiphiles - amphiphilic molecules consisting of two hydrophilic headgroups linked by a hydrophobic chain - form highly stable vesicles consisting of a monolayer membrane that can be used as vehicles to deliver drugs across biological membranes, particularly the blood-brain barrier (BBB). We prepared new vesicles comprising bolaamphiphiles (bolavesicles) that encapsulate iron oxide nanoparticles (IONPs) and investigated their suitability for targeted drug delivery. Bolavesicles displaying different headgroups were studied, and the effect of IONP encapsulation upon membrane interactions and cell uptake were examined. Experiments revealed more pronounced membrane interactions of the bolavesicles assembled with IONPs. Furthermore, enhanced internalization and stability of the IONP-bolavesicles were observed in b.End3 brain microvessel endothelial cells - an in vitro model of the blood-brain barrier. Our findings indicate that embedded IONPs modulate bolavesicles' physicochemical properties, endow higher vesicle stability, and enhance their membrane permeability and cellular uptake. IONP-bolavesicles thus constitute a promising drug delivery platform, potentially targeted to the desired location using external magnetic field. PMID:23623794

Philosof-Mazor, Liron; Dakwar, George R; Popov, Mary; Kolusheva, Sofiya; Shames, Alexander; Linder, Charles; Greenberg, Sarina; Heldman, Eliahu; Stepensky, David; Jelinek, Raz

2013-04-24

330

Effect of Glycocalyx on Drug Delivery Carriers Targeted to Endothelial Cells  

PubMed Central

Animal models have shown that coupling ligands, targeted to endothelium surface receptors, with drug delivery carriers (DDC) can optimize the treatment of diseases by specific vascular delivery. The endothelium is exposed to hydrodynamic forces that modulate the expression of these cellular adhesion molecules (CAMs) and affect the structural and biological activity of endothelial cells (ECs). In order to investigate how delivery of targeted DDC can be optimized, we investigated carriers binding to flow adapted ECs under flow conditions. Comparison of live ECs to fixed cells from our previous experiments give insight into the effect of receptor motility on the cell surface as well as the effect of other factors such as glycocalyx (a protective layer of carbohydrates on the surface of cells) and actin remodeling. A flow chamber model is used to investigate how DDC size variation alters binding under flow conditions. Binding experiments were done with and without glycocalyx in order to elucidate its protective effect. Using fluorescence microscopy we determined the real time binding and rolling speeds of DDC under flow conditions. We also demonstrate the presence of glycocalyx and image actin filament remodeling. The binding of 1 µm carriers to ECs decreased after flow adaptation, in both non-activated and TNF-? activated ECs compared to non-flow adapted live cells. After removal of the glycocalyx by degrading enzymes binding increased in quiescent ECs, but only increased in activated cells after 2 hr of perfusion with particles. The binding with 100 nm carriers also decreased after flow adaptation but to a lesser extent and partially increased after enzyme degradation. These experiments give insight as to how tunable affinity parameters can be optimized to enhance therapeutic capabilities.

Calderon, Andres J.; Baig, Madiha; Pichette, Ben; Muzykantov, Vladimir; Muro, Silvia; Eckmann, David M.

2010-01-01

331

Self-assembly of morphology-tunable architectures from tetraarylmethane derivatives for targeted drug delivery.  

PubMed

Tetraarylmethane compounds consisting of two pyrogallol and two aniline units, namely, Ar2CAr'2 {Ar = 3,4,5-C6H2(OH)3 and Ar' = 3,5-R2-4-C6H2NH2 [R = Me (1), iPr (2)]} exhibit excellent self-assembly behavior. Compound 1 yields size-tunable hollow nanospheres (HNSs) with a narrow size distribution, and 2 yields various morphologies ranging from microtubules to microrods via self-assembly induced by hydrogen bonding and ?-? stacking interactions. On the basis of the experimental results, a plausible mechanism for morphology tunability was proposed. As a means of utilizing the self-assembled HNSs for targeting controlled drug delivery, folic acid (FA) and rhodamine 6G (Rh6G) were grafted onto compound 1 to yield the FA-Rh6G-1 complex. The HNSs fabricated with FA-Rh6G-1 showed low cytotoxicity against human embryonic kidney 293T cells and CT26 colon carcinoma cells and good doxorubicin (DOX) loading capacity (9.6 wt %). The FA receptor-mediated endocytosis of FA-Rh6G-1 HNSs examined by using a confocal laser scanning microscope and a flow cytometer revealed that the uptake of FA-Rh6G-1 HNSs into CT26 cells was induced by FA receptor-mediated endocytosis. In vitro drug delivery tests showed that the DOX molecules were released from the resulting HNSs in a sustainable and pH-dependent manner, demonstrating a potential application for HNSs in targeted drug delivery for cancer therapy. PMID:23425332

Huang, Xinhua; Jeong, Young-Il; Moon, Byeong Kyu; Zhang, Lidong; Kang, Dae Hwan; Kim, Il

2013-03-01

332

A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting  

PubMed Central

Background The objective of this study was to prepare, characterize, and evaluate a folate-modified self-microemulsifying drug delivery system (FSMEDDS) with the aim to improve the solubility of curcumin and its delivery to the colon, facilitating endocytosis of FSMEDDS mediated by folate receptors on colon cancer cells. Methods Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. Then, three lipophilic folate derivatives (folate-polyethylene glycol-distearoylphosphatidylethanolamine, folate-polyethylene glycol-cholesteryl hemisuccinate, and folate-polyethylene glycol-cholesterol) used as a surfactant were added to curcumin-loaded SMEDDS formulations. An in situ colon perfusion method in rats was used to optimize the formulation of FSMEDDS. Curcumin-loaded FSMEDDS was then filled into colon-targeted capsules and the in vitro release was investigated. Cytotoxicity studies and cellular uptake studies was used in this research. Results The optimal formulation of FSMEDDS obtained with the established in situ colon perfusion method in rats was comprised of 57.5% Cremophor® EL, 32.5% Transcutol® HP, 10% Capryol™ 90, and a small amount of folate-polyethylene glycol-cholesteryl hemisuccinate (the weight ratio of folate materials to Cremophor EL was 1:100). The in vitro release results indicated that the obtained formulation of curcumin could reach the colon efficiently and release the drug immediately. Cellular uptake studies analyzed with fluorescence microscopy and flow cytometry indicated that the FSMEDDS formulation could efficiently bind with the folate receptors on the surface of positive folate receptors cell lines. In addition, FSMEDDS showed greater cytotoxicity than SMEDDS in the above two cells. Conclusion FSMEDDS-filled colon-targeted capsules are a potential carrier for colon delivery of curcumin.

Zhang, Lin; Zhu, Weiwei; Yang, Chunfen; Guo, Hongxia; Yu, Aihua; Ji, Jianbo; Gao, Yan; Sun, Min; Zhai, Guangxi

2012-01-01

333

Feasibility of targeted drug delivery to selective areas of the retina  

SciTech Connect

A new method was developed to deliver locally a bolus dose of a drug to the retinal vasculature. The targeted delivery system was based on encapsulating the drug in heat-sensitive liposomes, which are injected intravenously and lysed in the retinal vessels by a heat pulse generated by a laser. To test if substances delivered in the vessels could also penetrate into the surrounding tissue, 6-carboxyfluorescein was encapsulated in liposomes and used as a marker for drug penetration. Moderate argon laser pulses were applied to the retinal vessels of Dutch pigmented rabbits to induce breakdown of the blood-retinal barrier (BRB). A suspension of liposomes at a dose of 2 ml/kg body weight, corresponding to a carboxyfluorescein dose of 12 mg/kg, was injected into the ear vein. The dye was released from the liposomes proximal to the damaged portion of the vessel. Fundus fluorescein angiograms were recorded with a video camera and digitized for subsequent image analysis. The penetration of carboxyfluorescein into the retinal tissue was evaluated by comparing the fluorescence intensity of the area around the damaged vessel with that of an adjacent control area. The dye penetration increased with the numbers of laser applications (P less than 0.001). The leakage was localized distally to the released site and was restricted to areas with a disrupted BRB. The mass of carboxyfluorescein that penetrated gradually spread with time. Both veins and arteries could be used for the targeted delivery. These results indicated that this delivery system, which is fully controllable by laser through the pupil, can deliver drugs inside the vasculature and into the retinal tissue wherever the BRB is disrupted.

Ogura, Y.; Guran, T.; Shahidi, M.; Mori, M.T.; Zeimer, R.C. (Department of Ophthalmology, UIC Eye Center, University of Illinois, College of Medicine, Chicago (USA))

1991-07-01

334

Targeting the neonatal Fc receptor for antigen delivery using engineered Fc fragments1  

PubMed Central

The development of approaches for antigen delivery to the appropriate subcellular compartments of APCs and the optimization of antigen persistence are both of central relevance for the induction of protective immunity or tolerance. The expression of the Fc receptor, FcRn, in APCs and its localization to the endosomal system suggest that it might serve as a target for antigen delivery using engineered Fc fragment-epitope fusions. The impact of FcRn binding characteristics of an Fc fragment on in vivo persistence allows this property to also be modulated. We have therefore generated recombinant Fc (mouse IgG1-derived) fusions containing the N-terminal epitope of myelin basic protein that is associated with EAE in H-2u mice. The Fc fragments have distinct binding properties for FcRn that result in differences in intracellular trafficking and in vivo half-lives, allowing the impact of these characteristics on CD4+ T cell responses to be evaluated. To dissect the relative roles of FcRn and the ‘classical’ Fc?Rs in antigen delivery, analogous aglycosylated Fc-MBP fusions have been generated. We show that engineered Fc fragments with increased affinities for FcRn at pH 6.0–7.4 are more effective in delivering antigen to FcRn-expressing APCs in vitro relative to their lower affinity counterparts. However, higher affinity of the FcRn-Fc interaction at near neutral pH results in decreased in vivo persistence. The trade-off between improved FcRn targeting efficiency and lower half-life becomes apparent during analyses of T cell proliferative responses in mice, particularly when Fc-MBP fusions with both FcRn and Fc?R binding activity are used.

Mi, Wentao; Wanjie, Sylvia; Lo, Su-Tang; Gan, Zhuo; Pickl-Herk, Beatrix; Ober, Raimund J.; Ward, E. Sally

2009-01-01

335

Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer.  

PubMed

A combination cancer therapy was investigated via co-delivery of therapeutic gene encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL) and doxorubicin (DOX) using a tumor-targeting carrier, peptide HAIYPRH (T7)-conjugated polyethylene glycol-modified polyamidoamine dendrimer (PAMAM-PEG-T7). T7, a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. The result of fluorescence scanning showed that about 375 DOX molecules were bound to one pORF-hTRAIL molecule. The co-delivery system was constructed based on the electrostatic interactions between pORF-hTRAIL-DOX complex and cationic PAMAM-PEG-T7. T7-modified co-delivery system showed higher efficiency in cellular uptake and gene expression than unmodified co-delivery system in human liver cancer Bel-7402 cells, and accumulated in tumor more efficiently in vivo. In comparison with single DOX or pORF-hTRAIL delivery system, co-delivery system induced apoptosis of tumor cells in vitro and inhibited tumor growth in vivo more efficiently. In mice bearing Bel-7402 xenografts, lower doses of co-delivery system (4 ?g DOX/mouse, about 0.16 mg/kg) effectively inhibited tumor growth comparable to high doses (5 mg/kg) of free doxorubicin (77% versus 69%). These results suggested that T7-mediated co-delivery system of DOX and pORF-hTRAIL was a simply prepared, combined delivery platform which can significantly improve the anti-tumor effect. This co-delivery system might widen the therapeutic window and allow for the selective destruction of cancer cells. PMID:20971503

Han, Liang; Huang, Rongqin; Li, Jianfeng; Liu, Shuhuan; Huang, Shixian; Jiang, Chen

2010-10-23

336

Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide.  

PubMed

Although numerous carbohydrates play significant roles in mammalian cells, carbohydrate-based drug discovery has not been explored due to the technical difficulty of chemically synthesizing complex carbohydrate structures. Previously, we identified a series of carbohydrate mimetic peptides and found that a 7-mer peptide, designated I-peptide, inhibits hematogenous carbohydrate-dependent cancer cell colonization. During analysis of the endothelial surface receptor for I-peptide, we found that I-peptide bound to annexin 1 (Anxa1). Because Anxa1 is a highly specific tumor vasculature surface marker, we hypothesized that an I-peptide-like peptide could target anticancer drugs to the tumor vasculature. This study identifies IFLLWQR peptide, designated IF7, as homing to tumors. When synthetic IF7 peptide was conjugated to fluorescent Alexa 488 (A488) and injected intravenously into tumor-bearing mice, IF7-A488 targeted tumors within minutes. IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying human colon HCT116 tumors efficiently suppressed tumor growth at low dosages with no apparent side effects. These results suggest that IF7 serves as an efficient drug delivery vehicle by targeting Anxa1 expressed on the surface of tumor vasculature. Given its extremely specific tumor-targeting activity, IF7 may represent a clinically relevant vehicle for anticancer drugs. PMID:22114188

Hatakeyama, Shingo; Sugihara, Kazuhiro; Shibata, Toshiaki K; Nakayama, Jun; Akama, Tomoya O; Tamura, Naoaki; Wong, Shuk-Man; Bobkov, Andrey A; Takano, Yutaka; Ohyama, Chikara; Fukuda, Minoru; Fukuda, Michiko N

2011-11-23

337

The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers  

NASA Astrophysics Data System (ADS)

Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 106-fold improvement over comparable liposomes.

Ashley, Carlee E.; Carnes, Eric C.; Phillips, Genevieve K.; Padilla, David; Durfee, Paul N.; Brown, Page A.; Hanna, Tracey N.; Liu, Juewen; Phillips, Brandy; Carter, Mark B.; Carroll, Nick J.; Jiang, Xingmao; Dunphy, Darren R.; Willman, Cheryl L.; Petsev, Dimiter N.; Evans, Deborah G.; Parikh, Atul N.; Chackerian, Bryce; Wharton, Walker; Peabody, David S.; Brinker, C. Jeffrey

2011-05-01

338

In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles.  

PubMed

Since the first use of biocompatible mesoporous silica (mSiO2) nanoparticles as drug delivery vehicles, in vivo tumor targeted imaging and enhanced anticancer drug delivery has remained a major challenge. In this work, we describe the development of functionalized mSiO2 nanoparticles for actively targeted positron emission tomography (PET) imaging and drug delivery in 4T1 murine breast tumor-bearing mice. Our structural design involves the synthesis, surface functionalization with thiol groups, PEGylation, TRC105 antibody (specific for CD105/endoglin) conjugation, and (64)Cu-labeling of uniform 80 nm sized mSiO2 nanoparticles. Systematic in vivo tumor targeting studies clearly demonstrated that (64)Cu-NOTA-mSiO2-PEG-TRC105 could accumulate prominently at the 4T1 tumor site via both the enhanced permeability and retention effect and TRC105-mediated binding to tumor vasculature CD105. As a proof-of-concept, we also demonstrated successful enhanced tumor targeted delivery of doxorubicin (DOX) in 4T1 tumor-bearing mice after intravenous injection of DOX-loaded NOTA-mSiO2-PEG-TRC105, which holds great potential for future image-guided drug delivery and targeted cancer therapy. PMID:24083623

Chen, Feng; Hong, Hao; Zhang, Yin; Valdovinos, Hector F; Shi, Sixiang; Kwon, Glen S; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

2013-10-01

339

Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration.  

PubMed

Gene therapy offers great potential for brain glioma. However, therapeutic genes could not reach glioma spontaneously. A glioma-targeting gene delivery system is highly desired to transfer exogenous genes throughout the tumor focus. In this study, the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), was selected as the main vector. Chlorotoxin (CTX), which has been demonstrated to bind specifically to receptor expressed in glioma, was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethyleneglycol (PEG), yielding PAMAM-PEG-CTX. The cellular uptake of CTX itself was observed apparently in C6 glioma cells, almost not in 293 cells. The modification of CTX could significantly increase the cellular uptake of vectors and the DNA-loaded nanoparticles (NPs) in C6 cells. The in vivo distribution of PAMAM-PEG-CTX/DNA NPs in the brain was higher than that of PAMAM/DNA NPs and PAMAM-PEG/DNA NPs. Furthermore, the gene expression of PAMAM-PEG-CTX/DNA NPs was higher and broader in glioma than that of unmodified and PEG-modified counterparts. The TUNEL analysis showed a more wide-extended apoptosis in the CTX-modified group, compared to other groups including commercial temozolomide group. The median survival time of CTX-modified group and temozolomide group was 59.5 and 49 days, respectively, significantly longer than that of other groups. The results suggested that CTX could be exploited as a special glioma-targeting ligand, and PAMAM-PEG-CTX/DNA NPs is a potential non-viral delivery system for gene therapy of glioma via intravenous administration. PMID:21185076

Huang, Rongqin; Ke, Weilun; Han, Liang; Li, Jianfeng; Liu, Shuhuan; Jiang, Chen

2010-12-24

340

An in vitro assay to measure targeted drug delivery to bone mineral.  

PubMed

Targeted delivery of drugs to their site of action is a promising strategy to decrease adverse effects and enhance efficacy, but successful applications of this strategy have been scarce. Human bone is a tissue with unique properties due to its high hydroxyapatite mineral content. However, with the exception of bisphosphonates, bone mineral has not been targeted in a successful clinical application of drugs that act on bone, such as anti-resorptive or bone anabolic agents. Herein we present an NMR-based in vitro assay to measure binding affinities of small molecules to hydroxyapatite (HAP) or bone powder. Binding was shown to be specific and competitive, and the assay can be carried out in a direct binding format or in competition mode. A selection of clinically relevant bisphosphonates was ranked by their binding affinity for HAP. The binding affinity decreases in the order: pamidronate > alendronate > zoledronate > risedronate > ibandronate. The differences in binding affinities span a factor of 2.1 between pamidronate and ibandronate, consistent with previous studies. The rank order is very similar with bone powder, although the binding capacity of bone powder is smaller and binding kinetics are slower. A zoledronate derivative that lacks the central hydroxy group binds to HAP with 2.3-fold weaker affinity than zoledronate itself. Any small molecule can be analyzed for its binding to HAP or bone powder, and the binding of common bone-staining agents such as alizarin and its derivatives was confirmed in the new assay. This assay supports a strategy for targeted delivery of drugs to bone by attaching a bone-affinity tag to the active drug substance. PMID:20209564

Jahnke, Wolfgang; Henry, Chrystèle

2010-05-01

341

Anti-JL1 antibody-conjugated poly ( l-lysine) for targeted gene delivery to leukemia T cells  

Microsoft Academic Search

We have designed the gene delivery carrier targeted to Molt 4 cells, human leukemia T cells, using monoclonal antibody against leukemia-specific JL1 antigen, anti-JL1 antibody, as a targeting moiety. Anti-JL1 antibody has been proven to bind to JL1 antigen and subsequently be internalized into Molt 4 cells, demonstrating that anti-JL1 antibody has the potential as a targeting ligand for leukemia-specific

Wonhee Suh; June-Key Chung; Seong-Hoe Park; Sung Wan Kim

2001-01-01

342

Targeted delivery of a peripheral benzodiazepine receptor ligand-gemcitabine conjugate to brain tumors in a xenograft model  

Microsoft Academic Search

Purpose: Peripheral benzodiazepine receptors (PBRs) are overexpressed in brain tumors compared to normal brain, and could serve as a target to selectively increase anticancer drug delivery through a PBR ligand-drug conjugate system. We have previously synthesized PBR ligand-gemcitabine conjugates based on the model PBR ligand, PK11195. The goal of the current study was to examine this new drug delivery strategy

Ping Guo; Jianguo Ma; Shaolan Li; Zhiwei Guo; Andrea L. Adams; James M. Gallo

2001-01-01

343

Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery  

Microsoft Academic Search

Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on\\/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to

Ronni Nielsen; L. Grontved; Hendrik G. Stunnenberg; Susanne Mandrup

2006-01-01

344

Beam controlled arc therapy-a delivery concept for stationary targets  

NASA Astrophysics Data System (ADS)

Volumetric modulated arc therapy (VMAT) presupposes that it is beneficial to deliver radiation from all beam angles as the gantry rotates, requiring the multi-leaf collimator to maintain continuity in shape from one angle to another. In turn, radiation from undesirable beam angles could compromise the dose distribution. In this work, we challenge the notion that the radiation beam must be held on as the gantry rotates around the patient. We propose a new approach for delivering intensity-modulated arc therapy, beam-controlled arc therapy (BCAT), during which the radiation beam is controlled on or off and the dose rate is modulated while the gantry rotates around the patient. We employ linear-programming-based dose optimization to each aperture weight, resulting in some zero weight apertures. During delivery, the radiation beam is held off at control points with zero weights as the MLC shape transits to the next non-zero weight shape. This was tested on ten head and neck cases. Plan quality and delivery efficiency were compared with VMAT. Improvements of up to 17% (p-value 0.001) and 57% (p-value 0.018) in organ-at-risk sparing and target dose uniformity, respectively, were achieved. Compared to the fixed number of apertures used in single-arc and double-arc VMAT, the BCAT used 109 and 175 apertures on average, respectively. The difference in total MUs for VMAT and BCAT plans was less than 4%. Plan quality improvement was confirmed after delivery with ? analysis resulting in over 99% agreement, or 4 in 1099 points that failed.

Zhang, H. H.; Betzel, G. T.; Yi, B. Y.; D'Souza, W. D.

2013-10-01

345

Natural products to improve quality of life targeting for colon drug delivery.  

PubMed

The colon is largely being investigated as a site for administration of protein and peptides, which are degraded by digestive enzymes in the upper GIT. Also for local diseases of the colon such as inflammatory bowel disease, colorectal cancer and ameobiasis, drug administration to the site of action can not only reduce the dose to be administered, but also decrease the side effects. Inflammatory Bowel Disease (IBD) such as Ulcerative colitis and Crohn's disease are characterized by chronic intestinal inflammation. Intestinal bacteria initiate the activation of intestinal inflammatory processes, which are mediated by pro-inflammatory cytokines and chemokine. Increased chemokine expression has also been observed in epithelial cells, endothelial cells, and smooth muscle cells. Future trials of specific agents capable of inhibiting chemokine synthesis and secretion or blocking chemokine-chemokine receptor interaction will be important to study in patients with ulcerative colitis and Crohn's disease. Many important bioactive compounds have been discovered from natural sources using bioactivity directed fractionation and isolation (BDFl) Continuing discovery has also been facilitated by the recent development of new bioassay methods. These bioactive compounds are mostly plant secondary metabolites, and many naturally occurring pure compounds have become medicines, dietary supplements, and other useful commercial products. The present review includes various approaches investigated for colon drug delivery and their site specificity. To achieve successful colonic delivery, a drug needs to be protected from absorption and the environment of the upper gastrointestinal tract and then be abruptly released into the proximal colon, which is considered the optimum site for colon targeted delivery of drugs. PMID:22283651

Kim, Hyunjo

2012-03-01

346

Colon targeted delivery systems of metronidazole based on osmotic technology: development and evaluation.  

PubMed

Colon targeted delivery systems of metronidazole (MTZ) based on osmotic technology were developed. The developed systems consisted of osmotic core (drug, osmotic agent and wicking agent), coated with semipermeable membrane (SPM) containing guar gum as pore former, coated core were then further coated with enteric coating to protect the system from acidic environment of stomach. The effect of various formulation variables namely the level of wicking agent (sodium lauryl sulphate), osmotic agent in the osmotic core, the level of pore former (guar gum) in SPM, and the thickness of SPM, were studied on physical parameters and drug release characteristics of developed formulations. MTZ release was inversely proportional to SPM thickness, but directly related to the level of pore former, wicking agent and osmotic agent. On the other hand burst strength of the exhausted shells was decreased with the increase in level of pore former in the membrane but increased with the increase in the thickness of SPM. The drug release from the developed formulations was independent of pH, and agitation intensity, but dependent on the osmotic pressure of the release media. The thickness of enteric coating could prevent formation of delivery pores before contact with simulated colonic fluid, but had no effect on drug release. Result of SEM studies showed the formation of in-situ delivery pores in the membrane from where the drug release occurred, and the number of pores formed were directly related to the initial level of pore former (guar gum) in SPM. The manufacturing procedure was found to be reproducible and formulations were found to be stable during 3 months of accelerated stability studies. PMID:18758093

Kumar, Pramod; Singh, Sanjay; Mishra, Brahmeshwar

2008-09-01

347

Beam controlled arc therapy-a delivery concept for stationary targets.  

PubMed

Volumetric modulated arc therapy (VMAT) presupposes that it is beneficial to deliver radiation from all beam angles as the gantry rotates, requiring the multi-leaf collimator to maintain continuity in shape from one angle to another. In turn, radiation from undesirable beam angles could compromise the dose distribution. In this work, we challenge the notion that the radiation beam must be held on as the gantry rotates around the patient. We propose a new approach for delivering intensity-modulated arc therapy, beam-controlled arc therapy (BCAT), during which the radiation beam is controlled on or off and the dose rate is modulated while the gantry rotates around the patient. We employ linear-programming-based dose optimization to each aperture weight, resulting in some zero weight apertures. During delivery, the radiation beam is held off at control points with zero weights as the MLC shape transits to the next non-zero weight shape. This was tested on ten head and neck cases. Plan quality and delivery efficiency were compared with VMAT. Improvements of up to 17% (p-value 0.001) and 57% (p-value 0.018) in organ-at-risk sparing and target dose uniformity, respectively, were achieved. Compared to the fixed number of apertures used in single-arc and double-arc VMAT, the BCAT used 109 and 175 apertures on average, respectively. The difference in total MUs for VMAT and BCAT plans was less than 4%. Plan quality improvement was confirmed after delivery with ? analysis resulting in over 99% agreement, or 4 in 1099 points that failed. PMID:24052088

Zhang, H H; Betzel, G T; Yi, B Y; D'Souza, W D

2013-09-20

348

Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer.  

PubMed

Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC. PMID:22681390

Krishnaiah, Yellela S R; Khan, Mansoor A

2012-06-08

349

Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery".  

PubMed

The endogenous transport mechanisms which occur in living organisms have evolved to allow selective transport and processing operate on a scale of tens of nanometers. This presents the possibility of unprecedented access for engineered nanoscale materials to organs and sub-cellular locations, materials which may in principle be targeted to precise locations for diagnostic or therapeutic gain. For this reason, nano-architectures could represent a truly radical departure as delivery agents for drugs, genes and therapies to treat a host of diseases. Thus, for active targeting, unlike the case of small molecular drugs where molecular structure has evolved to promote higher physiochemical affinity to specific sites, one aims to exploit these energy dependant endogenous processes. Many active targeting strategies have been developed, but despite this truly remarkable potential, in applications they have met with mixed success to date. This situation may have more to do with our current understanding and integration of knowledge across disciplines, than any intrinsic limitation on the vision itself. In this review article we suggest that much more fundamental and detailed control of the nanoparticle-biomolecule interface is required for sustained and general success in this field. In the simplest manifestation, pristine nanoparticles in biological fluids act as a scaffold for biomolecules, which adsorb rapidly to the nanoparticles' surface, conferring a new biological identity to the nanoparticles. It is this nanoparticle-biomolecule interface that is 'read' and acted upon by the cellular machinery. Moreover, where targeting moieties are grafted onto nanoparticles, they may not retain their function as a result of poor orientation, and structural or conformational disruption. Further surface adsorption of biomolecules from the surrounding environment i.e. the formation of a biomolecule corona may also obscure specific surface recognition. To transfer the remarkable possibilities of nanoscale interactions in biology into therapeutics one may need a more focused and dedicated approach to the understanding of the in situ (in vivo) interface between engineered nanomaedicines and their targets. PMID:22516097

Mahon, Eugene; Salvati, Anna; Baldelli Bombelli, Francesca; Lynch, Iseult; Dawson, Kenneth A

2012-04-10

350

Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery  

PubMed Central

Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations.

Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.

2011-01-01

351

Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery.  

PubMed

The natural anionic polysaccharide hyaluronic acid (HA) was modified by introducing reduction-sensitive disulfide bond between the carboxyl groups and the backbone of HA (HA-SS-COOH). HA-SS-COOH and its corresponding unmodified stable analog HA were used to shield DNA/PEI polyplexes (DP) to form ternary complexes (DPS and DPH complexes). The shielding/deshielding effect was tested along with size, zeta potential, cell viability and transfection. Both DPS and DPH complexes showed increase in size, decrease in zeta potential and low cytotoxicity in physiological conditions due to the anionic shielding. In the reductive environment, only HA-SS-COOH coated ternary complexes (DPS) demonstrated the size increase and recovered high positive zeta potential. DPS complexes showed an up to 14-fold higher transfection than the stable coated one, indicating the efficiency of the reduction-responsive deshielding design. Moreover, the presence of extra free HA inhibited the transfection of DPS on HepG2 and B16F10 cells with HA receptor expression, while displaying no effect on non-targeted NIH3T3 cells. More rapid cellular association of DPS with HepG2 was observed, thus confirming the targeting reservation of disulfide bond modified HA. Intratumoral injection of DPS complexes resulted in much higher accumulation and luciferase expression in the tumor bearing C57BL/6 mice. Both in vitro and in vivo results demonstrated the successful combination of deshielding and target functions in HA derivatives for gene delivery. PMID:23127334

He, Yiyan; Cheng, Gang; Xie, Li; Nie, Yu; He, Bin; Gu, Zhongwei

2012-11-03

352

Target delivery and cell imaging using hyaluronic Acid-functionalized graphene quantum dots.  

PubMed

This work demonstrates the way to achieve efficient and target specific delivery of a graphene quantum dot (GQD) using hyaluronic acid (HA) (GQD-HA) as a targeting agent. HA has been anchored to a GQD that accepts the fascinating adhesive properties of the catechol moiety, dopamine hydrochloride, conjugated to HA, which was confirmed by X-ray photoelectron spectroscopy. Transmission electron microscopy revealed a particle size of ?20 nm, and the fluorescence spectra revealed significant fluorescence intensity even after the anchoring of HA. The prepared GQD-HA was applied to CD44 receptor overexpressed tumor-bearing balb/c female mice, and the in vivo biodistribution investigation demonstrated more bright fluorescence from the tumor tissue. In vitro cellular imaging, via a confocal laser scanning microscope, exhibited strong fluorescence from CD44 overexpressed A549 cells. Both in vivo and in vitro results showed the effectiveness of using HA as targeting molecule. The loading and release kinetics of the hydrophobic drug doxorubicin from a GQD under mildly acidic conditions showed that a GQD can be considered as a novel drug carrier, while the nontoxic behavior from the MTT assay strongly supports the identification of GQD-HA as a biocompatible material. PMID:24007260

Abdullah-Al-Nahain; Lee, Jung-Eun; In, Insik; Lee, Haeshin; Lee, Kang Dae; Jeong, Ji Hoon; Park, Sung Young

2013-09-19

353

A cell-based drug delivery system for lung targeting: I. Preparation and pharmacokinetics.  

PubMed

A drug-loaded tumor cell (DLTC) system has been developed for lung metastasis-targeting drug delivery. Doxorubicin was loaded into B16-F10 murine melanoma cells (96 microg/10(6) cells). The loading process led to the death of all the carrier cells. The diameter of DLTC was 15.03+/-2.36 microm (mean +/- SD). The amount and rate of doxorubicin being released from the DLTC mainly depended on the drug loading and carrier cell concentration. Over a 6-month storage in phosphate buffered saline (PBS) at 4 degrees C, the decrease in intracellular drug concentration and the carrier cell number were less than 25% and 5%, respectively. After a bolus injection of 30 microg doxorubicin in either DLTC form or free solution into the mice tail veins, drug deposit in the lung from DLTC was 3.6-fold of that achieved by free drug solution. The latter resulted in higher drug content in liver and spleen. Extensive trypsinization of DLTC reduced its lung targeting effect by 30%, and the density of surface adhesion molecule GM3 on DLTC surface by 25%. In conclusion, this DLTC system demonstrated a lung-targeting activity that may be partially attributed to its specific surface characteristics. PMID:11400864

Shao, J; DeHaven, J; Lamm, D; Weissman, D N; Runyan, K; Malanga, C J; Rojanasakul, Y; Ma, J K

354

Effects of mycophenolic acid-glucosamine conjugates on the base of kidney targeted drug delivery.  

PubMed

Mycophenolic acid has played an important role in treating immunosuppression and autoimmune diseases. Nevertheless, the agent needs a high dosage in treatment, following some side effects. To tackle this problem, in this study, mycophenolic acid-glucosamine conjugate (MGC), modified by 2-glucosamine, was synthesized to achieve kidney targeting and improved drug efficacy with a lower dosage. (1)H NMR, (13)C NMR and HRMS spectroscopy were used to verify the conjugate whose stability was good in vitro. The transport of MGC by human proximal renal tubular epithelial HK-2 cells was temperature-, time-, concentration-dependent and saturable, suggesting the involvement of carrier-mediated uptake. In addition, the cellular uptake of MGC dropped substantially with the inhibition of megalin receptor. The specific tissue distribution indicated the commendable renal-targeting capability of MGC. The concentration of MGC was improved in the kidney except for other tissues, about 6.76 times higher than that of MPA. Further, the bioavailability of MGC in plasma decreased as compared with mycophenolic acid. Moreover, therapeutic effect of MGC was enhanced significantly compared with MPA in the acute kidney injury model. All the findings suggested the potential of mycophenolic acid-glucosamine conjugate in kidney targeted drug delivery. PMID:23973508

Wang, Xiaohong; Lin, Yan; Zeng, Yingchun; Sun, Xun; Gong, Tao; Zhang, Zhirong

2013-08-21

355

Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells.  

PubMed

TGX-221 is a potent, selective, and cell membrane permeable inhibitor of the PI3K p110? catalytic subunit. Recent studies showed that TGX-221 has antiproliferative activity against PTEN-deficient tumor cell lines including prostate cancers. The objective of this study was to develop an encapsulation system for parenterally delivering TGX-221 to the target tissue through a prostate-specific membrane aptamer (PSMAa10) with little or no side effects. In this study, PEG-PCL micelles were formulated to encapsulate the drug, and a prodrug strategy was pursued to improve the stability of the carrier system. Fluorescence imaging studies demonstrated that the cellular uptake of both drug and nanoparticles was significantly improved by targeted micelles in a PSMA positive cell line. The area under the plasma concentration time curve of the micelle formulation in nude mice was 2.27-fold greater than that of the naked drug, and the drug clearance rate was 6.16-fold slower. These findings suggest a novel formulation approach for improving site-specific drug delivery of a molecular-targeted prostate cancer treatment. PMID:22494444

Zhao, Yunqi; Duan, Shaofeng; Zeng, Xing; Liu, Chunjing; Davies, Neal M; Li, Benyi; Forrest, M Laird

2012-05-01

356

Multifunctional Envelope-Type Mesoporous Silica Nanoparticles for Tumor-Triggered Targeting Drug Delivery.  

PubMed

A novel type of cellular-uptake-shielding multifunctional envelope-type mesoporous silica nanoparticle (MEMSN) was designed for tumor-triggered targeting drug delivery to cancerous cells. ?-Cyclodextrin (?-CD) was anchored on the surface of mesoporous silica nanoparticles via disulfide linking for glutathione-induced intracellular drug release. Then a peptide sequence containing Arg-Gly-Asp (RGD) motif and matrix metalloproteinase (MMP) substrate peptide Pro-Leu-Gly-Val-Arg (PLGVR) was introduced onto the surface of the nanoparticles via host-guest interaction. To protect the targeting ligand and prevent the nanoparticles from being uptaken by normal cells, the nanoparticles were further decorated with poly(aspartic acid) (PASP) to obtain MEMSN. In vitro study demonstrated that MEMSN was shielded against normal cells. After reaching the tumor cells, the targeting property could be switched on by removing the PASP protection layer via hydrolyzation of PLGVR at the MMP-rich tumor cells, which enabled the easy uptake of drug-loaded nanoparticles by tumor cells and subsequent glutathione-induced drug release intracellularly. PMID:23464924

Zhang, Jing; Yuan, Zhe-Fan; Wang, Ya; Chen, Wei-Hai; Luo, Guo-Feng; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng

2013-03-19

357

Chitosan nanogels by template chemical cross-linking in polyion complex micelle nanoreactors.  

PubMed

Chitosan covalent nanogels cross-linked with genipin were prepared by template chemical cross-linking of chitosan in polyion complex micelle (PIC) nanoreactors. By using this method, we were able to prepare chitosan nanogels using only biocompatible materials without organic solvents. PIC were prepared by interaction between chitosan (X(n) = 23, 44, and 130) and block copolymer poly(ethylene oxide)-block-poly[sodium 2-(acrylamido)-2-methylpropanesulfonate] (PEO-b-PAMPS) synthesized by single-electron transfer-living radical polymerization (SET-LRP). PIC with small size (diameter about 50 nm) and low polydispersity were obtained up to 5 mg/mL. After cross-linking of chitosan with genipin, the nanoreactors were dissociated by adding NaCl. The dissociation of the nanoreactors and the formation of the nanogels were confirmed by (1)H NMR, DLS, and TEM. The size of the smallest nanogels was about 50 nm in the swollen state and 20 nm in the dry state. The amount of genipin used during reticulation was an important parameter to modulate the size of the nanogels in solution. PMID:21866922

Maggi, Flavia; Ciccarelli, Serena; Diociaiuti, Marco; Casciardi, Stefano; Masci, Giancarlo

2011-08-31

358

Strengthening the stability of a tunnel-shaped homotetramer protein with nanogels.  

PubMed

Urate oxidase (UOX, EC 1.7.3.3) is effective for the treatment of gout and hyperuricaemia associated with tumor lysis syndrome. The inherent poor stability of UOX to temperature, proteolysis, and acidic environments is known to limit its efficacy. Herein, we encapsulated UOX into spherical and porous nanogels with diameters of 20-40 nm via a two-step in situ polymerization in the presence of oxonic acid potassium salt, an inhibitor of UOX. The UOX nanogel retained 70% of the initial activity but showed an expanded pH spectrum from pH 6-10 to 3-10 and an extended half-life at 37 °C from 5 min to 3 h. The enhanced pH stability, thermal stability, and enzyme resistance of the UOX nanogels were also confirmed by using fluorescence spectroscopy and enzymatic digestion. A molecular dynamics simulation was performed as a way to probe the mechanism underlying the formation of UOX nanogels as well as the strengthened stability against harsh conditions. It was shown that the encapsulation into the polyacrylamide network reinforced the intersubunit hydrogen bonding, shielded the hydrolytic reaction site, and thus protected the tertiary and quaternary structure of UOX. The UOX nanogel with enhanced stability provided a stable enzyme model that enables the exploration of UOX in the diagnosis and therapy of disorders associated with altered purine metabolism. PMID:21699160

Liu, Zhixia; Lu, Diannan; Yin, Ling; Li, Jianmin; Cui, Yuanchen; Chen, Wei; Liu, Zheng

2011-06-23

359

Influence of Nanogels on Mechanical, Dynamic Mechanical, and Thermal Properties of Elastomers.  

PubMed

Use of sulfur crosslinked nanogels to improve various properties of virgin elastomers was investigated for the first time. Natural rubber (NR) and styrene butadiene rubber (SBR) nanogels were prepared by prevulcanization of the respective rubber lattices. These nanogels were characterized by dynamic light scattering, atomic force microscopy (AFM), solvent swelling, mechanical, and dynamic mechanical property measurements. Intermixing of gel and matrix at various ratios was carried out. Addition of NR gels greatly improved the green strength of SBR, whereas presence of SBR nanogels induced greater thermal stability in NR. For example, addition of 16 phr of NR gel increased the maximum tensile stress value of neat SBR by more than 48%. Noticeable increase in glass transition temperature of the gel filled systems was also observed. Morphology of these gel filled elastomers was studied by a combination of energy dispersive X-ray mapping, transmission electron microscopy, and AFM techniques. Particulate filler composite reinforcement models were used to understand the reinforcement mechanism of these nanogels. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11671-009-9262-5) contains supplementary material, which is available to authorized users. PMID:20596396

Mitra, Suman; Chattopadhyay, Santanu; Bhowmick, Anil K

2009-02-13

360

Influence of Nanogels on Mechanical, Dynamic Mechanical, and Thermal Properties of Elastomers  

PubMed Central

Use of sulfur crosslinked nanogels to improve various properties of virgin elastomers was investigated for the first time. Natural rubber (NR) and styrene butadiene rubber (SBR) nanogels were prepared by prevulcanization of the respective rubber lattices. These nanogels were characterized by dynamic light scattering, atomic force microscopy (AFM), solvent swelling, mechanical, and dynamic mechanical property measurements. Intermixing of gel and matrix at various ratios was carried out. Addition of NR gels greatly improved the green strength of SBR, whereas presence of SBR nanogels induced greater thermal stability in NR. For example, addition of 16 phr of NR gel increased the maximum tensile stress value of neat SBR by more than 48%. Noticeable increase in glass transition temperature of the gel filled systems was also observed. Morphology of these gel filled elastomers was studied by a combination of energy dispersive X-ray mapping, transmission electron microscopy, and AFM techniques. Particulate filler composite reinforcement models were used to understand the reinforcement mechanism of these nanogels.

2009-01-01

361

PMMA/Polysaccharides Nanofilm Loaded with Adenosine Deaminase Inhibitor for Targeted Anti-inflammatory Drug Delivery.  

PubMed

A novel drug delivery vector, a free-standing polymeric ultrathin film (nanofilm) composed of PMMA and a polysaccharides multilayer, is presented. Chitosan and sodium alginate are alternatively deposited by spin-assisted LbL assembly onto a plasma-treated PMMA thin film. Hydrophobic anti-inflammatory drugs, an adenosine deaminase inhibitor (APP) and its fluorescent dansyl derivate (APP-Dns), are encapsulated inside the LbL multilayer using a simple casting deposition procedure. The resulting drug loaded nanofilm can be suspended in water upon dissolution of a PVA sacrificial layer. Morphological characterization of the nanofilm shows that PMMA/LbL nanofilms possess nanometric thickness (<200 nm) and very low surface roughness (1-2 nm for drug loaded nanofilms and <1 nm for blank nanofilm). Drug loaded films exhibit a diffusion controlled release mechanism following the Korsmayer-Peppas release model, confirmed by the fit of release data with a characteristic power law. Drug release is impaired through the PMMA layer, which acts effectively as a barrier for drug transport. This ultrathin polymer film can find application as a nanopatch for targeted inflammatory drug delivery to treat localized pathologies as inflammatory bowel disease. PMID:24073802

Redolfi Riva, Eugenio; Desii, Andrea; Sartini, Stefania; La Motta, Concettina; Mazzolai, Barbara; Mattoli, Virgilio

2013-10-14

362

Galactosylated Chitosan Oligosaccharide Nanoparticles for Hepatocellular Carcinoma Cell-Targeted Delivery of Adenosine Triphosphate  

PubMed Central

Nanoparticles composed of galactosylated chitosan oligosaccharide (Gal-CSO) and adenosine triphosphate (ATP) were prepared for hepatocellular carcinoma cell-specific uptake, and the characteristics of Gal-CSO/ATP nanoparticles were evaluated. CSO/ATP nanoparticles were prepared as a control. The average diameter and zeta potential of Gal-CSO/ATP nanoparticles were 51.03 ± 3.26 nm and 30.50 ± 1.25 mV, respectively, suggesting suitable properties for a drug delivery system. Subsequently, the cytotoxicity of Gal-CSO/ATP nanoparticles were examined by the methyl tetrazolium (MTT) assay, and the half maximal inhibitory concentration (IC50) values were calculated with HepG2 (human hepatocellular carcinoma cell line) cells. The results showed that the cytotoxic effect of nanoparticles on HepG2 cells was low. In the meantime, it was also found that the Gal-CSO/ATP nanoparticles could be uptaken by HepG2 cells, due to expression of the asialoglycoprotein receptor (ASGP-R) on their surfaces. The presented results indicate that the Gal-CSO nanoparticles might be very attractive to be used as an intracellular drug delivery carrier for hepatocellular carcinoma cell targeting, thus warranting further in vivo or clinical investigations.

Zhu, Xiu Liang; Du, Yong Zhong; Yu, Ri Sheng; Liu, Ping; Shi, Dan; Chen, Ying; Wang, Ying; Huang, Fang Fang

2013-01-01

363

Acidic domain in dentin phosphophoryn facilitates cellular uptake: implications in targeted protein delivery.  

PubMed

Dentin phosphophoryn is nature's most acidic protein found predominantly in the dentin extracellular matrix. Its unique amino acid composition containing Asp-Ser (DS)-rich repeats makes it highly anionic. It has a low isoelectric point (pI 1.1) and, therefore, tends to be negatively charged at physiological pH. Phosphophoryn is normally associated with matrix mineralization as it can bind avidly to Ca(2+). It is well known that several macromolecules present in the extracellular matrix can be internalized and localized to specific intracellular compartments. In this study we demonstrate that dentin phosphophoryn (DPP) is internalized by several cell types via a non-conventional endocytic process. Utilizing a DSS polypeptide derived from DPP, we demonstrate the repetitive DSS-rich domain facilitates that endocytosis. As a proof-of-concept, we further demonstrate the use of this polypeptide as a protein delivery vehicle by delivering the osteoblast transcription factor Runx2 to the nucleus of mesenchymal cells. The functionality of the endocytosed Runx2 protein was demonstrated by performing gene expression analysis of Runx2 target genes. Nuclear localization was also demonstrated with the fusion protein DSS-Runx2 conjugated to quantum dots in two- and three-dimensional culture models in vitro and in vivo. Overall, we demonstrate that the DSS domain of DPP functions as a novel cell-penetrating peptide, and these findings demonstrate new opportunities for intracellular delivery of therapeutic proteins and cell tracking in vivo. PMID:23589294

Ravindran, Sriram; Snee, Preston T; Ramachandran, Amsaveni; George, Anne

2013-04-15

364

1081. Targeted Nanocapsules for Liver Cell-Type Delivery of Plasmids In Vivo  

Microsoft Academic Search

In contrast to the efficient delivery afforded by viral vectors, the use of nonviral vectors for gene therapy has been hindered by the lack of adequate in vivo delivery systems. Although hydrodynamic push has been used extensively for hepatic plasmid delivery, this method delivers DNA nonselectively to liver cell types. One approach for increasing delivery to a specific cell type

Betsy T. Kren; Gretchen M. Unger; Mark T. Reding; Clifford J. Steer

2006-01-01

365

Contrast Ultrasound Targeted Treatment of Gliomas in Mice via Drug-Bearing Nanoparticle Delivery and Microvascular Ablation  

PubMed Central

We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas.

Burke, Caitlin W.; Price, Richard J.

2010-01-01

366

Targeted drug delivery across the blood-brain barrier using ultrasound technique  

PubMed Central

Effective delivery of therapeutic agents into the brain can greatly improve the treatments of neurological and neurodegenerative diseases. Application of focused ultrasound facilitated by microbubbles has shown the potential to deliver drugs across the blood–brain barrier into targeted sites within the brain noninvasively. This review provides a summary of the technological background and principle, highlights of recent significant developments and research progress, as well as a critical commentary on the challenges and future directions in the field. This review also outlines and discusses the tasks that researchers face in order to successfully translate the technology into a clinical reality, including obtaining improved understanding of the mechanisms, demonstration of therapeutic efficacy and safety for specific applications, and development of methodology for rational design to achieve optimized and consistent outcome.

Deng, Cheri X

2011-01-01

367

Targeted Delivery of Magnetic Cobalt Nanoparticles to the Eye Following Systemic Administration  

NASA Astrophysics Data System (ADS)

The eye offers a unique environment in the body to study progression and response to treatment of various ocular, vascular, and neurologic diseases as they occur in vivo. Due to its clear optical media, we can directly view blood vessels and nerve tissue, which often reflect the health of these tissues in the rest of the body. There are limitations to topical, periocular, or intraocular drug delivery that include access of the drug to the posterior segment of the eye and complications such as local scarring, hemorrhage, retinal detachment, cataract formation, or infection. The aim of this proof-of-concept study was to determine if systemically delivered magnetic cobalt nanoparticles (Co-MNP) could be directed to the eye of C57Bl mice via a unidirectional magnetic field. Both radioactive biodistribution studies and confocal imaging confirmed the increased presence of magnetic particles in the eye following magnetic targeting.

Dengler, Mirko; Saatchi, Katayoun; Dailey, James P.; Matsubara, Joanne; Mikelberg, Frederick S.; Häfeli, Urs O.; Yeung, Sonia N.

2010-12-01

368

Recombinant alpha-fetoprotein C-terminal fragment: the new recombinant vector for targeted delivery.  

PubMed

The specific receptor of alpha-fetoprotein (AFP) is a universal tumor marker, being expressed on the surface of many tumor cells, but not in normal human tissues. AFP enters the cell by receptor-mediated endocytosis; its receptor-binding site is hypothetically localized in the third domain of AFP. A recombinant C-terminal AFP fragment, which contains all the third and a part of the second domains of hAFP, was produced. This AFP fragment was bound specifically to the AFP receptor on the surface of tumor cells and was accumulated by them with the same efficiency as the full-size hAFP. Similar to hAFP, the recombinant C-terminal fragment inhibited the estradiol-induced growth of hormone-dependent MCF-7 cells in vitro. Hence, the recombinant C-terminal AFP fragment can be used as a protein vector for the targeted delivery of cytostatic drugs to tumor cells. PMID:18446611

Posypanova, Galina A; Gorokhovets, Neonila V; Makarov, Vladimir A; Savvateeva, Ludmila V; Kireeva, Natalya N; Severin, Sergey E; Severin, Evgeny S

2008-05-01

369

Nano-technology for targeted drug delivery to combat antibiotic resistance.  

PubMed

Several microbes have evolved clinically significant resistance against almost every available antibiotic. Yet the development of new classes of antibiotics has lagged far behind our growing need. Frequent and suboptimal use of antibiotics particularly in developing countries aggravated the problem by increasing the rate of resistance. Therefore, developing new and multidimensional strategies to combat microbial infections is warranted. These include i) modification of existing antibiotics, ii) searching new and novel antibiotics, iii) development and improvement of antibiotics carrier system to reduce amount and frequency of antibiotic doses, iv) development of targeted antibiotic delivery systems. Here, the authors discuss trends and development of nano-materials and alternative antimicrobials to solve the problem of antibiotic resistance. PMID:22924701

Sharma, Abhinay; Kumar Arya, Deepak; Dua, Meenakshi; Chhatwal, Gursharan Singh; Johri, Atul Kumar

2012-08-28

370

A photochemical approach for controlled drug release in targeted drug delivery  

PubMed Central

Photochemistry provides a unique mechanism that enables the active control of drug release in cancer-targeting drug delivery. This study investigates the light-mediated release of methotrexate, an anticancer drug, using a photocleavable linker strategy based on o-nitrobenzyl protection. We evaluated two types of the o-nitrobenzyl-linked methotrexate for the drug release study and further extended the study to a fifth-generation poly(amidoamine) dendrimer carrier covalently conjugated with methotrexate via the o-nitrobenzyl linker. We performed the drug release studies by using a combination of three standard analytical methods that include UV/vis spectrometry, 1H NMR spectroscopy, and anal. HPLC. This article reports that methotrexate is released by the photochemical mechanism in an actively controlled manner. The rate of the drug release varies in response to multiple control parameters, including linker design, light wavelength, exposure time, and the pH of the medium where the drug release occurs.

Choi, Seok Ki; Verma, Manisha; Silpe, Justin; Moody, Ryan E.; Tang, Kenny; Hanson, Jeffrey J.; Baker, James R.

2012-01-01

371

Targeted Drug Delivery to the Brain by MRI-guided Focused Ultrasound  

NASA Astrophysics Data System (ADS)

The effect of focused ultrasound on the absorption of liposome-encapsulated doxorubicin in the brain was investigated. By applying focused ultrasound in the presence of microbubble ultrasound contrast agent, we achieved targeted drug delivery to the brain in vivo. Tissue drug concentrations in sonicated brain corresponded with cytotoxic levels measured in various human tumors and were significantly different from those measured in unexposed contralateral control samples (p <= 0.02). In addition, increased MR signal enhancement at the focal location on contrast-enhanced T1-weighted fast spin echo images correlated with increased penetration of doxorubicin into brain tissue (r = 0.85), indicating the potential of MRI to be used as an indicator of blood-brain barrier permeability during treatment. Further investigation is required to evaluate the efficacy of this technique and to optimize its parameters for clinical application.

Treat, Lisa Hsu; McDannold, Nathan; Vykhodtseva, Natalia; Zhang, Yongzhi; Tam, Karen; Hynynen, Kullervo

2006-05-01

372

Magnetic Microbubbles: Magnetically Targeted and Ultrasound-Triggered Vectors for Gene Delivery in Vitro  

NASA Astrophysics Data System (ADS)

Based on the concept of magnetofection, we prepared lipid shell microbubbles loaded with highly positively charged iron oxide magnetic nanoparticles through electrostatic and matrix affinity interactions. These magnetic microbubbles showed strong ultrasound contrast. When the magnetic microbubbles were mixed with plasmid DNA encoding a reporter gene, gene delivery to HeLa cells was achieved only when ultrasound was applied. Gene transfer efficiency strongly depended on the application of a gradient magnetic field. Treatment of HeLa cells with the microbubbles and ultrasound resulted in strong concentration-dependent cytotoxic effects, whereas ultrasound alone, lipid microbubbles alone, magnetic nanoparticles or magnetic microbubbles alone did not significantly affect cell viability. These magnetic microbubbles could be used as magnetically targeted diagnostic agents for real-time ultrasound imaging or for cancer therapy, therapy of vascular thrombosis and gene therapy.

Vlaskou, Dialechti; Pradhan, Pallab; Bergemann, Christian; Klibanov, Alexander L.; Hensel, Karin; Schmitz, Georg; Plank, Christian; Mykhaylyk, Olga

2010-12-01

373

Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall  

NASA Astrophysics Data System (ADS)

Pathological conditions like coronary artery disease, acute myocardial infarction, stroke, and peripheral artery diseases as well as cardiovascular interventions used in the treatment of coronary artery diseases such as angioplasty and stenting damage/injure the blood vessel wall, leading to inflamed or activated endothelial cells that have been implicated in events leading to thrombosis, inflammation, and restenosis. Oral administration of anti-coagulant and anti-inflammatory drugs causes systemic toxicity, bleeding, patient incompliance, and inadequate amounts of drugs at the injured area. Though drug-eluting stents have shown therapeutic benefits, complications such as in-stent restenosis and late thrombosis still remain and are a cause for concern. Rapid growth in the field of nanotechnology and nanoscience in recent years has paved the way for new targeted and controlled drug delivery strategies. In this perspective, the development of biodegradable nanoparticles for targeted intracellular drug delivery to the inflamed endothelial cells may offer an improved avenue for treatment of cardiovascular diseases. The major objective of this research was to develop "novel multi-ligand nanoparticles," as drug carriers that can efficiently target and deliver therapeutic agents to the injured/inflamed vascular cells under dynamic flow conditions. Our approach mimics the natural binding ability of platelets to injured/activated endothelial cells through glycoprotein Ib (GPIb) bound to P-selectin expressed on inflamed endothelial cells and to the subendothelium through GPIb binding to von Willebrand factor (vWF) deposited onto the injured vascular wall. Our design also exploits the natural cell membrane translocation ability of the internalizing cell peptide - trans-activating transcriptor (TAT) to enhance the nanoparticle uptake by the targeted cells. Our hypothesis is that these multi-ligand nanoparticles would show an increased accumulation at the injury site since GPIb specially binds to both P-selectin expressed on damaged endothelial cells and vWF deposited on injured subendothelium while the cell penetrating peptide -- TAT would facilitate enhanced uptake of these nanoparticles by the damaged vascular cells. To test this hypothesis, fluorescent drug loaded poly (D, L-lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanoparticles (PLGA-PEG NPs) were formulated using a standard double emulsion method. We further conjugated GPIb and TAT via carbodiimide and avidin-biotin chemistry to the PLGA-PEG nanoparticles. Characterization of these nanoparticles indicated the average size to be about 200nm. Endothelial cell uptake studies indicated an optimal nanoparticle incubation time of one hour and optimal dose of 400 mug/ml. Biocompatibility results showed these particles to be non-toxic to endothelial cells. Moreover, dexamethasone release profiles from the nanoparticles demonstrated their ability to provide a sustained drug release over four weeks. Static and dynamic uptake studies of control, GPIb-conjugated, and GPIb-TAT-conjugated PLGA-PEG nanoparticles on activated endothelial cells exhibited an increased adhesion and uptake of GPIb-TAT conjugated PLGA-PEG nanoparticles compared to control nanoparticles. A similar trend of significantly higher adhesion of GPIb-TAT conjugated PLGA-PEG nanoparticles to the injured vessel wall was also observed in preliminary ex-vivo studies using the rat carotid injury model. These results suggest that "our novel multi-ligand NPs" would provide a unique active targeting strategy. This system would rapidly target and deliver therapeutic agents to the injured vascular wall under flow conditions. It could also serve as an effective therapeutic delivery system to treat the complications associated with cardiovascular diseases.

Kona, Soujanya

374

Peptide-Drug Conjugate Linked via a Disulfide Bond for Kidney Targeted Drug Delivery.  

PubMed

Chronic kidney disease (CKD) is a worldwide public health problem, and unfortunately, the therapeutic index of clinically available drugs is limited. Thus, there is a great need to exploit effective treatment strategies, and the carrier-drug approach is an attractive method to improve the kidney specificity of the therapeutic agents. The aim of this present study is to develop a peptide-drug conjugate for the kidney targeted delivery of angiotensin-converting enzyme (ACE) inhibitor captopril (CAP), since G3-C12 peptide (ANTPCGPYTHDCPVKR) could specifically accumulate in the kidney after intravenous injection. Therefore, FITC labeled G3-C12 peptide (G3-C12-FITC) and peptide-drug conjugate (G3-C12-CAP) with a disulfide bond which can be cleaved by reduced glutathione in the kidney were prepared by solid-phase peptide synthesis. The fluorescence imaging of G3-C12-FITC revealed that the labeled peptide specifically accumulated in the kidney soon after i.v. injection to mice, and the accumulation is due largely to the reabsorption of the peptide by the proximal renal tubule cells. Furthermore, in comparison with the corresponding nonconjugated form, a 2.7-fold increase in renal area under concentration-time curve produced by the conjugate was observed in mice. Interestingly, the CAP entirely released in the kidney even at 0.05 h postinjection through disulfide reduction. As a consequence, the in vivo renal ACE inhibition was significantly increased. In conclusion, these findings suggest the potential of G3-C12 peptide serving as a suitable candidate carrier for kidney-targeted drug delivery. PMID:22663297

Geng, Qian; Sun, Xun; Gong, Tao; Zhang, Zhi-Rong

2012-06-12

375

Aptamer-based tumor-targeted drug delivery for photodynamic therapy.  

PubMed

A specialized G-rich DNA structure, G-quadruplex, has been studied for its special physical characteristics and biological effects. Herein we report a novel strategy of using G-quadruplex as a drug carrier to target cancer cells for photodynamic therapy (PDT). A G-quadruplex forming AS1411 aptamer could be physically conjugated with six molecules of porphyrin derivative, 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP4), to fabricate the apt-TMP complex. The TMPyP4 molecules in the complex were identified to bind tightly to the aptamer by intercalation and outside binding. Because the G-quadruplex structure is known to target the overexpressed nucleolin in cancer cells, in this study, the effect of the G-quadruplex structure as a carrier for the delivery of TMPyP4 into cancer cells by nucleolin-mediated internalization was investigated. The results showed that the apt-TMP complex exhibited a higher TMPyP4 accumulation in MCF7 breast cancer cells than in M10 normal epithelium cells. After treated with light for 180 s, the photodamage in MCF7 cells was larger than in M10 cells. These results indicated that the TMPyP4 delivery and uptake were mediated by the specific interaction of the apt-TMP complex with nucleolin on the cellular surface and that the use of the AS1411 aptamer as a drug carrier may be a potential tactic in cancer therapy. PMID:20166743

Shieh, Yen-An; Yang, Shu-Jyuan; Wei, Ming-Feng; Shieh, Ming-Jium

2010-03-23

376

Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer  

Microsoft Academic Search

A combination cancer therapy was investigated via co-delivery of therapeutic gene encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL) and doxorubicin (DOX) using a tumor-targeting carrier, peptide HAIYPRH (T7)-conjugated polyethylene glycol-modified polyamidoamine dendrimer (PAMAM-PEG-T7). T7, a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. The result of fluorescence

Liang Han; Rongqin Huang; Jianfeng Li; Shuhuan Liu; Shixian Huang; Chen Jiang

2011-01-01

377

pH-sensitive polydopamine nanocapsules for cell imaging and drug delivery based on folate receptor targeting.  

PubMed

A pH-triggered drug delivery system that can specially target to folate-receptors-overexpressing cancer cells was designed based on newly developed polydopamine capsules and folic acid. The polycapsules bioconjugates possess capabilities of high drug loading, enhanced folate-receptor-mediated cell uptake, and sustained drug release by intracellular pH changes. It was also found that the sustained release of drugs significantly increased reactive oxygen species (ROS) level in targeted cells. The efficient cell-specific endocytosis and intracellular pH-responsive controlled drug delivery of the capsules is promising for future in vivo therapeutic applications. PMID:23909129

Cheng, Fang-Fang; Zhang, Jing-Jing; Xu, Fang; Hu, Li-Hui; Abdel-Halim, E S; Zhu, Jun-Jie

2013-07-01

378

Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors  

PubMed Central

Development of viral vectors capable of transducing photoreceptors by less invasive methods than subretinal injection would provide a major advancement in retinal gene therapy. We sought to develop novel AAV vectors optimized for photoreceptor transduction following intravitreal delivery and to develop methodology for quantifying this transduction in vivo. Surface exposed tyrosine (Y) and threonine (T) residues on the capsids of AAV2, AAV5 and AAV8 were changed to phenylalanine (F) and valine (V), respectively. Transduction efficiencies of self-complimentary, capsid-mutant and unmodified AAV vectors containing the smCBA promoter and mCherry cDNA were initially scored in vitro using a cone photoreceptor cell line. Capsid mutants exhibiting the highest transduction efficiencies relative to unmodified vectors were then injected intravitreally into transgenic mice constitutively expressing a Rhodopsin-GFP fusion protein in rod photoreceptors (Rho-GFP mice). Photoreceptor transduction was quantified by fluorescent activated cell sorting (FACS) by counting cells positive for both GFP and mCherry. To explore the utility of the capsid mutants, standard, (non-self-complementary) AAV vectors containing the human rhodopsin kinase promoter (hGRK1) were made. Vectors were intravitreally injected in wildtype mice to assess whether efficient expression exclusive to photoreceptors was achievable. To restrict off-target expression in cells of the inner and middle retina, subsequent vectors incorporated multiple target sequences for miR181, an miRNA endogenously expressed in the inner and middle retina. Results showed that AAV2 containing four Y to F mutations combined with a single T to V mutation (quadY?F+T?V) transduced photoreceptors most efficiently. Robust photoreceptor expression was mediated by AAV2(quadY?F+T?V) ?hGRK1?GFP. Observed off-target expression was reduced by incorporating target sequence for a miRNA highly expressed in inner/middle retina, miR181c. Thus we have identified a novel AAV vector capable of transducing photoreceptors following intravitreal delivery to mouse. Furthermore, we describe a robust methodology for quantifying photoreceptor transduction from intravitreally delivered AAV vectors.

Aslanidi, George V.; Min, Seok Hong; Ruan, Qing; Sun, Jingfen; Dyka, Frank M.; Kasuga, Daniel; Ayala, Andrea E.; Van Vliet, Kim; Agbandje-McKenna, Mavis; Hauswirth, William W.; Boye, Sanford L.; Boye, Shannon E.

2013-01-01

379

Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system  

PubMed Central

Purpose Therapy for central nervous system disease is mainly restricted by the blood–brain barrier. A drug-delivery system is an effective approach to overcome this barrier. In this research, the potential of polymeric micelles for brain-targeting drug delivery was studied. Methods Stearic acid–grafted chitosan (CS-SA) was synthesized by hydrophobic modification of chitosan with stearic acid. The physicochemical characteristics of CS-SA micelles were investigated. bEnd.3 cells were chosen as model cells to evaluate the internalization ability and cytotoxicity of CS-SA micelles in vitro. Doxorubicin (DOX), as a model drug, was physically encapsulated in CS-SA micelles. The in vivo brain-targeting ability of CS-SA micelles was qualitatively and quantitatively studied by in vivo imaging and high-performance liquid chromatography analysis, respectively. The therapeutic effect of DOX-loaded micelles in vitro was performed on glioma C6 cells. Results The critical micelle concentration of CS-SA micelles with 26.9% ± 1.08% amino substitute degree was 65 ?g/mL. The diameter and surface potential of synthesized CS-SA micelles in aqueous solution was 22 ± 0.98 nm and 36.4 ± 0.71 mV, respectively. CS-SA micelles presented excellent cellular uptake ability on bEnd.3 cells, the IC50 of which was 237.6 ± 6.61 ?g/mL. DOX-loaded micelles exhibited slow drug-release behavior, with a cumulative release up to 72% within 48 hours in vitro. The cytotoxicity of DOX-loaded CS-SA micelles against C6 was 2.664 ± 0.036 ?g/mL, compared with 0.181 ± 0.066 ?g/mL of DOX · HCl. In vivo imaging results indicated that CS-SA was able to transport rapidly across the blood–brain barrier and into the brain. A maximum DOX distribution in brain of 1.01%/g was observed 15 minutes after administration and maintained above 0.45%/g within 1 hour. Meanwhile, free DOX · HCl was not detected in brain. In other major tissues, DOX-loaded micelles were mainly distributed into lung, liver, and spleen, with a reduction of DOX accumulation in heart. Conclusion The CS-SA micelles were able to be used as a promising carrier for a braintargeting drug delivery system.

Xie, Yi-Ting; Du, Yong-Zhong; Yuan, Hong; Hu, Fu-Qiang

2012-01-01

380

Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium  

PubMed Central

The objective of this study was to determine whether surface-modified nanoparticles enhance permeability across nasal mucosa, while retaining the effectiveness of the payload. The uptake and permeability of polystyrene nanoparticles (PS-NPs; FluoSpheres) was evaluated across the various regions of the bovine nasal epithelia following conjugation with deslorelin and transferrin. Uptake and transport of PS-NPs, deslorelin-PS-NPs, and transferrin-PS-NPs exhibited regional differences in the order: inferior turbinate posterior (ITP) > medium turbinate posterior (MTP) > medium turbinate anterior (MTA). Uptake and transport also exhibited directionality and temperature dependence in these tissues. Further, uptake as well as transport of functionalized nanoparticles could be inhibited by excess free functionalizing ligand. Confocal microscopy indicated the presence of functionalized nanoparticles in respiratory epithelial cells, as well as other cell types of the nasal tissue. We chose the ITP region for further studies with deslorelin or transferrin-conjugated poly-l-lactide-co-glycolide nanoparticles (PLGA-NPs) encapsulating an anti-VEGF intraceptor (Flt23k) plasmid. Transport of the nanoparticles, as well as the plasmid from the nanoparticles, exhibited the following order: transferrin-PLGA-NPs > deslorelin-PLGA-NPs > PLGA-NPs ? plasmid. The ability of the nanoparticles transported across the nasal tissue to retain the effectiveness of the Flt23k plasmid was evaluated by measuring transfection efficiency (percentage of cells expressing GFP) and VEGF inhibition in LNCaP and PC-3 prostate cancer cells. Transfection efficiencies and VEGF inhibition in LNCaP and PC-3 cells exhibited the following trend: transferrin-PLGA-NPs ? deslorelin-PLGA-NPs > PLGA-NPs ? plasmid. Further, functionalized nanoparticles exhibited transfection efficiencies and VEGF inhibition significantly superior compared with the routinely used transfecting agent, lipofectamine. Formulating plasmids into nanoparticulate delivery systems enhances the transnasal delivery and gene therapy at remote target cancer cells, which can be further enhanced by nanoparticle functionalization with deslorelin or transferrin.—Sundaram, S., Roy, S. K., Ambati, B. K., Kompella, U. B. Surface functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium.

Sundaram, Sneha; Roy, Shyamal K.; Ambati, Balamurali K.; Kompella, Uday B.

2009-01-01

381

Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery  

PubMed Central

Background Modular nanotransporters (MNT) are recombinant multifunctional polypeptides created to exploit a cascade of cellular processes, initiated with membrane receptor recognition to deliver selective short-range and highly cytotoxic therapeutics to the cell nucleus. This research was designed for in vivo concept testing for this drug delivery platform using two modular nanotransporters, one targeted to the ?-melanocyte-stimulating hormone (?MSH) receptor overexpressed on melanoma cells and the other to the epidermal growth factor (EGF) receptor overexpressed on several cancers, including glioblastoma, and head-and-neck and breast carcinoma cells. Methods In vivo targeting of the modular nanotransporter was determined by immuno-fluorescence confocal laser scanning microscopy and by accumulation of 125I-labeled modular nanotransporters. The in vivo therapeutic effects of the modular nanotransporters were assessed by photodynamic therapy studies, given that the cytotoxicity of photosensitizers is critically dependent on their delivery to the cell nucleus. Results Immunohistochemical analyses of tumor and neighboring normal tissues of mice injected with multifunctional nanotransporters demonstrated preferential uptake in tumor tissue, particularly in cell nuclei. With 125I-labeled MNT{?MSH}, optimal tumor:muscle and tumor:skin ratios of 8:1 and 9.8:1, respectively, were observed 3 hours after injection in B16-F1 melanoma-bearing mice. Treatment with bacteriochlorin p-MNT{?MSH} yielded 89%–98% tumor growth inhibition and a two-fold increase in survival for mice with B16-F1 and Cloudman S91 melanomas. Likewise, treatment of A431 human epidermoid carcinoma-bearing mice with chlorin e6- MNT{EGF} resulted in 94% tumor growth inhibition compared with free chlorin e6, with 75% of animals surviving at 3 months compared with 0% and 20% for untreated and free chlorin e6-treated groups, respectively. Conclusion The multifunctional nanotransporter approach provides a new in vivo functional platform for drug development that could, in principle, be applicable to any combination of cell surface receptor and agent (photosensitizers, oligonucleotides, radionuclides) requiring nuclear delivery to achieve maximum effectiveness.

Slastnikova, Tatiana A; Rosenkranz, Andrey A; Gulak, Pavel V; Schiffelers, Raymond M; Lupanova, Tatiana N; Khramtsov, Yuri V; Zalutsky, Michael R; Sobolev, Alexander S

2012-01-01

382

Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors  

NASA Astrophysics Data System (ADS)

Gene transfer or gene delivery is described as the process in which foreign DNA is introduced into cells. Over the years, gene delivery has gained the attention of many researchers and has been developed as powerful tools for use in biotechnology and medicine. With the completion of the Human Genome Project, such advances in technology allowed for the identification of diseases ranging from hereditary disorders to acquired ones (cancer) which were thought to be incurable. Gene therapy provides the means necessary to treat or eliminate genetic diseases from its origin, unlike traditional medicine which only treat symptoms. With ongoing clinical trials for gene therapy increasing, the greatest difficulty still lies in developing safe systems which can target cells of interest to provide efficient delivery. Nature, over millions of years of evolution, has provided an example of one of the most efficient delivery systems: viruses. Although the use of viruses for gene delivery has been well studied, the safety issues involving immunogenicity, insertional mutagenesis, high cost, and poor reproducibility has provided problems for their clinical application. From understanding viruses, we gain insight to designing new systems for non-viral gene delivery. One of these techniques utilized by adenoviruses is the clustering of ligands on its surface through the use of a protein called a penton base. Through the use of nanotechnology we can mimic this basic concept in non-viral gene delivery systems. This dissertation research is focused on developing and applying a novel system for displaying the integrin binding ligand (RGD) in a constrained manner to form a clustered integrin ligand binding platform to be used to enhance the targeting and efficiency of non-viral gene delivery vectors. Peptide mixed monolayer protected gold nanoparticles provides a suitable surface for ligand clustering. A relationship between the peptide ratios in the reaction solution used to form these ligand clusters compared to the reacted amounts on the surface of the particle was studied. This provided us the ability to control the size of the clusters formed and the spacing between the integrins for gold nanoparticles of various sizes. We then applied the clustered ligand binding system for targeting of DNA/PEI polyplexes and demonstrated that the use of RGD nanoclusters enhances gene transfer up to 35-fold which was dependent on the density of alphavbeta3 integrins on the cell surface. Cell integrin sensitivity was shown in which cells with higher alpha vbeta3 densities resulting in higher luciferase transgene expression. The targeting of RGD nanoclusters for DNA/PEI polyplexes was further shown in vivo using PET/CT technology which displayed improved targeting towards high level alphavbeta3 integrin expression (U87MG) tumors over medium level alphavbeta 3 integrin expression (HeLa). In addition to studying the clustered integrin binding system, the current non-viral vectors used suffer from stability and toxicity issues in vitro and in vivo. We have applied a new chemistry for synthesizing nanogels utilizing a Traut's reagent initiated Michael addition reaction for modification of diamine containing crosslikers which will allow for the development of stable and cell demanded release of oligonucleotides. We have shown bulk gels made were capable of encapsulating and holding DNA within the gel and were able to synthesize them into nanogels. The combined research shown here using clustered integrin ligands and a new type of nanogel synthesis provides an ideal system for gene delivery in the future.

Ng, Quinn Kwan Tai

383

Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes  

PubMed Central

Coupling drug carriers to antibodies for targeting endothelial cells (ECs) may improve treatment of vascular and pulmonary diseases. Selecting antibodies that deliver carriers to the cell surface or intracellularly may further optimize specifcity of interventions. We studied antibody-directed targeting of nanocarriers to platelet–endothelial cell adhesion molecule (PECAM)-1, an endothelial glycoprotein containing 6 Ig-like extracellular domains. PECAM-1 antibodies bind to ECs without internalization, but ECs internalize by endocytosis nanocarriers carrying multiple copies of anti-PECAM (anti-PECAM/NCs). To determine whether binding and intracellular transport of anti-PECAM/NCs depend on the epitope engaged, we targeted five PECAM-1 epitopes: mAb35, mAb37 and mAb62 (membrane-distal Ig domain 1), mAbGi34 (Ig domains 2/3), and mAb4G6 (membrane-proximal Ig domain 6). The antibodies bound to ECs regardless of the epitope proximity to the plasmalemma, whereas 130 nm diameter nanocarriers only targeted effectively distal domains (mAb4G6/NCs did not bind to ECs). ECs internalized mAb35, mAb62, and mAbGi34 carriers regardless of their size (0.13 to 5 µm diameter), yet they did not internalize mAb37/NCs. After internalization, mAb62/NCs trafficked to lysosomes within 2–3 h, whereas mAb35/NCs had prolonged residence in pre-lysosomal vesicles. Therefore, endothelial binding, endocytosis, and intracellular transport of anti-PECAM/NCs are epitope-specific. This paradigm will guide the design of endothelial drug delivery systems providing specific cellular localizations.

Garnacho, Carmen; Albelda, Steven M.; Muzykantov, Vladimir R.; Muro, Silvia

2008-01-01

384

Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.  

PubMed

Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin ?L?2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.Gene Therapy advance online publication, 13 June 2013; doi:10.1038/gt.2013.29. PMID:23759703

Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

2013-06-13

385

Tuberculosis therapeutics: Engineering of nanomedicinal systems for local delivery of targeted drug cocktails  

NASA Astrophysics Data System (ADS)

In this thesis, a multifunctional nanocarrier drug delivery system was investigated and optimized to improve tuberculosis therapy by promoting the intracellular delivery of high payloads of antibiotics. To meet the needs of a patient population which continues to grow by close to 10 million people a year, innovative therapeutics must be formulated by robust and scalable processes. We use Flash NanoPrecipitation for the continuous precipitation of nanocarriers by block copolymer directed assembly, which enables the development of nanocarriers with tunable properties. Stable nanocarriers of Rifampicin and a hydrophobic Rifampicin prodrug have efficacy against tuberculosis in vitro that is equivalent to the soluble Rifampicin. To overcome poor in vivo efficacy of the recently discovered antitubercular drug SQ641, we co-encapsulate SQ641 and Cyclosporine A in a stable aqueous nanocarrier suspension, which enables drug administration and also enhances intracellular accumulation and antitubercular efficacy relative to SQ641 in solution. Since the mannose receptor is involved in the phagocytosis of tuberculosis bacilli, we modify the surface of nanocarriers with mannoside residues to target specific intracellular accumulation in macrophages. The surface density of mannoside terminated polyethylene glycol chains was controlled between 0 and 75% and in vitro cellular association reveals a 9% surface density is optimal for internalization mediated by the mannose receptor. We explore the preparation of large, porous aerosol carrier particles of with tunable deposition characteristics by spray freeze drying with ultrasonic atomization for direct dosing to the lungs. Nanocarriers are loaded at 3 - 50 wt% in mannitol particles with constant size, limited nanocarrier aggregation, and 63% dose delivered to the lungs, as determined by in vitro cascade impaction. There has been a lag in the development of new technologies to facilitate development and commercialization of therapeutic nanocarrier formulations. We present three translational technologies. (1) The intrinsic dissolution rates of drug nanocarriers are determined using a novel assay, based on high surface area lipid sink particles and magnetic separations, to improve in vitro/in vivo correlations. (2) The nanocarrier interaction with whole serum and the polymer surface conformation are correlated to in vivo clearance and general rules are proposed for the design of nanocarriers produced by Flash NanoPrecipitation with extended circulation times for targeted delivery. (3) In Hydrogen Bonding Coacervate Precipitation, polyethylene glycol coated nanocarriers are controllably flocculated with the addition of polyacids to enable rapid filtration and drying. In summary, this research outlines approaches to the customization of nanocarrier drug delivery systems to specifically improve outcomes in tuberculosis therapy. New assays and processing techniques for transitioning formulations from bench research to the clinic are developed. The methods are flexible and can be applied to target various diseases, coupled with rational design of nanocarrier payloads, surface functionality, and dosing route.

D'Addio, Suzanne M.

386

Mild oxidation of thiofunctional polymers to cytocompatible and stimuli-sensitive hydrogels and nanogels.  

PubMed

Nanogels consist of three dimensionally cross-linked hydrophilic polymer chains and can thus be easily modified through functionalization of the polymeric building blocks, for example to yield stimuli-sensitive materials. For drug transport and intracellular release, redox-sensitive systems are especially of interest, as the intracellular space is reductive. In this study, parameters that allow preparation of nanogels with tunable size between 150 and 350?nm are systematically evaluated and identified. Most importantly, a new and mild oxidation catalyst, alloxan, is introduced for the preparation of the nanogels. This broadens the range of possible payloads to more-sensitive molecules. Particle stability, degradation in cytosolic conditions, and cytocompatibility in concentrations up to 10?mg?·?mL(-1) are demonstrated. PMID:23401217

Singh, Smriti; Zilkowski, Ilona; Ewald, Andrea; Maurell-Lopez, Tobias; Albrecht, Krystyna; Möller, Martin; Groll, Jürgen

2013-02-07