Note: This page contains sample records for the topic targeted nanogel delivery from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Targeted Nanogels: A Versatile Platform for Drug Delivery to Tumors  

PubMed Central

While nanoparticle-based drug delivery formulations can improve the effectiveness and safety of certain anti-cancer drugs, many drugs, due to their chemical composition, are unsuitable for nanoparticle loading. Here, we describe a targeted nanogel drug delivery platform that can 1) encapsulate a wide range of drug chemotypes including: biological, small molecule, and cytotoxic agents 2) display targeting ligands and polymeric coatings on the surface, 3) enhance drug retention within the nanogel core after photo-crosslinking, and 4) retain therapeutic activity after lyophilization allowing for long term storage. For therapeutic studies, we utilized integrin ?v?3-targeted lipid-coated nanogels with crosslinked human serum albumin in the core for carrying therapeutic cargoes. These particles exhibited potent activity in tumor cell viability assays with drugs of distinct chemotype including: paclitaxel, docetaxel, bortezomib, 17-AAG, sorafenib, sunitinib, bosutinib, and dasatinib. Treatment of orthotopic breast and pancreas tumors in mice with taxane-loaded nanogels produced a 15-fold improvement in anti-tumor activity relative to Abraxane by blocking both primary tumor growth and spontaneous metastasis. With a modifiable surface and core, the lipid-coated nanogel represents a platform technology that can be easily adapted for specific drug delivery applications to treat a wide range of malignant diseases.

Murphy, Eric A.; Majeti, Bharat K.; Mukthavaram, Rajesh; Acevedo, Lisette M.; Barnes, Leo A.; Cheresh, David A.

2011-01-01

2

Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin.  

PubMed

Nanogels based on the polymers of galactosylated chitosan-graft-poly (N-isopropylacrylamide) (Gal-CS-g-PNIPAm) were used as carriers of oridonin (ORI) for tumor targeting. Three ORI-loaded nanogels with various degrees of galactose substitution were prepared, and their characteristics were evaluated. The release behavior of ORI from these nanogels was pH-dependent, and the release could be accelerated under mildly acidic conditions. The cytotoxicity of ORI-loaded nanogels was pH-sensitive. ORI-loaded nanogels exhibited a higher antitumor activity than drug-loaded nanogels without galactosylation, and the anticancer activity increased in relation to increases in the number of galactose moieties of the nanogels in HepG2 cells. In contrast, the cytotoxicity of ORI-loaded nanogels against MCF-7 cells decreased compared with that of drug-loaded nanogels without galactosylation. Results demonstrated that these nanogels could enhance the uptake of ORI into HepG2 cells via asialoglycoprotein receptor-mediated endocytosis. These galactose-decorated pH-responsive nanogels were well-suited for targeted drug delivery to liver cancer cells. PMID:22077387

Duan, Cunxian; Gao, Jian; Zhang, Dianrui; Jia, Lejiao; Liu, Yue; Zheng, Dandan; Liu, Guangpu; Tian, Xiaona; Wang, Fengshan; Zhang, Qiang

2011-12-12

3

LHRH-targeted nanogels as a delivery system for cisplatin to ovarian cancer.  

PubMed

Targeted drug delivery using multifunctional polymeric nanocarriers is a modern approach for cancer therapy. Our purpose was to prepare targeted nanogels for selective delivery of chemotherapeutic agent cisplatin to luteinizing hormone-releasing hormone (LHRH) receptor overexpressing tumor in vivo. Building blocks of such delivery systems consisted of innovative soft block copolymer nanogels with ionic cores serving as a reservoir for cisplatin (loading 35%) and a synthetic analogue of LHRH conjugated to the nanogels via poly(ethylene glycol) spacer. Covalent attachment of (D-Lys6)-LHRH to nanogels was shown to be possible without loss in either the ligand binding affinity or the nanogel drug incorporation ability. LHRH-nanogel accumulation was specific to the LHRH-receptor positive A2780 ovarian cancer cells and not toward LHRH-receptor negative SKOV-3 cells. The LHRH-nanogel cisplatin formulation was more effective and less toxic than equimolar doses of free cisplatin or untargeted nanogels in the treatment of receptor-positive ovarian cancer xenografts in mice. Collectively, the study indicates that LHRH mediated nanogel-cisplatin delivery is a promising formulation strategy for therapy of tumors that express the LHRH receptor. PMID:23957812

Nukolova, Natalia V; Oberoi, Hardeep S; Zhao, Yi; Chekhonin, Vladimir P; Kabanov, Alexander V; Bronich, Tatiana K

2013-10-01

4

Thermosensitive P(NIPAAm-co-PAAc-co-HEMA) nanogels conjugated with transferrin for tumor cell targeting delivery  

NASA Astrophysics Data System (ADS)

Multifunctional and thermosensitive poly(N-isopropylacrylamide-co-propyl acrylic acid-co-hydroxyethyl methacrylate) (P(NIPAAm-co-PAAc-co-HEMA)) nanogels were prepared by miniemulsion polymerization. The mean sizes of the nanogels measured by dynamic light scattering (DLS) varied from 120 to 400 nm with an increase in temperature. Transmission electron microscopy (TEM) showed that the nanogels displayed well-dispersed spherical morphology. The nanogels were conjugated by human transferrin (Tf) and the coupling of transferrin molecules with nanogels was verified by UV-vis spectroscopy. The cytotoxicity study indicated that the nanogels did not exhibit apparent cytotoxicity. Fluorescence spectroscopy analysis as well as confocal laser scanning microscopy (CLSM) was used to confirm that the Tf-conjugated nanogels could specifically bind to A549 tumor cells. In addition, the Tf-conjugated nanogels loaded with Doxorubicin (Dox) could efficiently release the drug inside the cell, suggesting that the Tf-conjugated nanogels are useful drug carriers for tumor cell targeting.

Quan, Chang-Yun; Sun, Yun-Xia; Cheng, Han; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

2008-07-01

5

Nanogels for Oligonucleotide Delivery to the Brain  

PubMed Central

Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the blood–brain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine (“nanogel”). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain.

Vinogradov, Serguei V.; Batrakova, Elena V.; Kabanov, Alexander V.

2009-01-01

6

Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels  

Microsoft Academic Search

Novel hyaluronic acid (HA) nanogels physically encapsulating small interfering RNA (siRNA) were fabricated by an inverse water-in-oil emulsion method. Thiol-conjugated HA dissolved in aqueous emulsion droplets was ultrasonically crosslinked via the formation of disulfide linkages to produce HA nanogels with a size distribution from 200 to 500 nm. Green fluorescence protein (GFP) siRNA was physically entrapped within the HA nanogels during

Hyukjin Lee; Hyejung Mok; Soohyeon Lee; Yu-Kyoung Oh; Tae Gwan Park

2007-01-01

7

Polymer nanogels: a versatile nanoscopic drug delivery platform  

PubMed Central

In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed.

Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

2012-01-01

8

Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels.  

PubMed

Random copolymeric micelles composed of N-isopropylacrylamide (NIPAAM) and N-vinylpyrrolidone (VP) cross-linked with N,N'-methylenebisacrylamide (MBA) have been used as nanogel carriers to encapsulate N-hexylcarbamoyl-5-fluorouracil (HCFU), a prodrug of 5-FU, and have been targeted to brain tissue across blood-brain barrier (BBB) after coating with polysorbate 80. Accumulation of nanogel particles in the brain and other tissues of "strain A" mice had been monitored by radiolabeling of nanogels with (99m)Tc. Gamma Scintigraphic technique was also performed to see the distribution of (99m)Tc labeled nanogels in the brain. The retention time in blood appeared to be slightly longer for coated nanogels than that of uncoated nanogels though the accumulation of coated nanogels in the RES was more or less same as that of uncoated nanogels. The blood however had almost double accumulation of polysorbate 80 coated nanogels in the initial 5 min compared to that shown by uncoated nanogels. We speculate that coating of nanogels with polysorbate 80 alters the surface properties of nanogels, which results in relatively higher uptake in the brain tissue. The studies revealed that a large portion of (99m)Tc labeled HCFU loaded nanogels are accumulated in the RES (lung, liver and spleen). The accumulation of the labeled nanogels in the brain, however, is much less compared to RES and it has been found that while an amount of uncoated labeled nanogels was found to be 0.18% of the injected dose, it increased to 0.52% on coating with polysorbate 80. The optimal amount of polysorbate 80 added to nanogels for the maximum delivery of particles to brain was found to be 1% w/w. These results were further supported by the gamma scintigrams of New Zealand rabbits. Thus, the present nanogel system has opened a new avenue for poorly soluble drugs to be targeted to brain by coating the particles with polysorbate 80. PMID:16608735

Soni, Sheetal; Babbar, Anil K; Sharma, Rakesh K; Maitra, Amarnath

2006-02-01

9

Chemosensitization of cancer cells by siRNA using targeted nanogel delivery  

Microsoft Academic Search

BACKGROUND: Chemoresistance is a major obstacle in cancer treatment. Targeted therapies that enhance cancer cell sensitivity to chemotherapeutic agents have the potential to increase drug efficacy while reducing toxic effects on untargeted cells. Targeted cancer therapy by RNA interference (RNAi) is a relatively new approach that can be used to reversibly silence genes in vivo by selectively targeting genes such

Erin B Dickerson; William H Blackburn; Michael H Smith; Laura B Kapa; L Andrew Lyon; John F McDonald

2010-01-01

10

Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting.  

PubMed

The principle objective of this research was to develop and characterize pH-responsive and biocompatible nanogels as a tumor-targeting drug delivery system. The nanogels were self-assembled from chitosan-based copolymers, chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAm). The copolymers were synthesized via free radical copolymerization and characterized for their chemical structure by FT-IR and (1)H NMR. These copolymers could be efficiently loaded with oridonin (ORI) and the characteristics of ORI-loaded nanogels were evaluated. Drug release researches indicated that the ORI-loaded nanogels displayed pH-dependent release behaviors. Based on MTT assay and cellular morphological analysis, the anti-tumor activity of ORI-loaded nanogels was higher at pH 6.5 than at pH 7.4. In conclusion, the obtained nanogels appeared to be of great promise in tumor extracellular pH targeting for ORI. PMID:21356283

Duan, Cunxian; Zhang, Dianrui; Wang, Feihu; Zheng, Dandan; Jia, Lejiao; Feng, Feifei; Liu, Yue; Wang, Yancai; Tian, Keli; Wang, Fengshan; Zhang, Qiang

2011-05-16

11

Glycol chitosan-based nanogel as a potential targetable carrier for siRNA.  

PubMed

A self-assembled glycol chitosan nanogel (GC) is synthesized by chemically grafting hydrophobic chains onto a polysaccharide, which is comprehensively characterized. The obtained macromolecular micelle is decorated with folate-conjugated poly(ethylene glycol) (PEG) (GCFA). An average size distribution of 250 and 200?nm is observed, respectively for the GC and GCFA nanogels. Differential cell localization is observed on incubating the materials with HeLa cells. Whereas the GC nanogel is detected on the cell surface, GCFA is localized in the cytoplasm. The cell viability is not compromised by the nanogels. Interestingly, GC nanogel is poorly internalized by bone marrow derived macrophages (BMDMs), and GCFA is not phagocytosed. Given its ability to complex siRNA, the targetable GC nanogel can be a promising vehicle for siRNA delivery. PMID:23996912

Pereira, Paula; Morgado, Daniela; Crepet, Agnès; David, Laurent; Gama, Francisco M

2013-10-01

12

Surface-Modified P(HEMA-co-MAA) Nanogel Carriers for Oral Vaccine Delivery: Design, Characterization, and In Vitro Targeting Evaluation.  

PubMed

Oral drug delivery is a route of choice for vaccine administration because of its noninvasive nature and thus efforts have focused on efficient delivery of vaccine antigens to mucosal sites. An effective oral vaccine delivery system must protect the antigen from degradation upon mucosal delivery, penetrate mucosal barriers, and control the release of the antigen and costimulatory and immunomodulatory agents to specific immune cells (i.e., APCs). In this paper, mannan-modified pH-responsive P(HEMA-co-MAA) nanogels were synthesized and assessed as carriers for oral vaccination. The nanogels showed pH-sensitive properties, entrapping and protecting the loaded cargo at low pH values, and triggered protein release after switching to intestinal pH values. Surface decoration with mannan as carbohydrate moieties resulted in enhanced internalization by macrophages as well as increasing the expression of relevant costimulatory molecules. These findings indicate that mannan-modified P(HEMA-co-MAA) nanogels are a promising approach to a more efficacious oral vaccination regimen. PMID:24955658

Durán-Lobato, Matilde; Carrillo-Conde, Brenda; Khairandish, Yasmine; Peppas, Nicholas A

2014-07-14

13

A new multiresponsive drug delivery system using smart nanogels.  

PubMed

This paper addresses the synthesis and characterization of a novel temperature- and pH-responsive nanogel system based on poly(vinylcaprolactam-co-2-dimethylaminoethyl methacrylate) [P(VCL-co-DMAEMA)] by using a surfactant-free emulsion polymerization procedure for the multiresponsive drug delivery of hydrophobic drugs. The effects of solvent, monomer, pH, and temperature were studied to tailor the average particle hydrodynamic diameters and the polydispersity index of the final particles. According to dynamic light-scattering measurements, the obtained nanogels show a narrow particle-size distribution and their hydrodynamic diameters can be varied from 81 to 368 nm. The nanogels display a re-entrant phase-transition state, and the equilibrium volume swelling ratio of the nanogels decreases drastically down to 47 °C and then increases up to 65 °C. In addition, the nanogels show pH-dependent behavior. They exhibit a maximum size at pH 5.0. Rhodamine B (RhB) was chosen as a model compound for drug loading and release studies from P(VCL-co-DMAEMA) on the basis of particles in different phosphate buffer solutions at different temperatures. The temperature/pH-dependent cumulative release and ultrasound-enhanced pulsatile release properties were investigated for RhB-loaded nanogels for long-term and one-shot delivery. The nanogels display efficient delivery for both long-term and one-shot delivery systems. We provide here a proof of concept for the novel use of multiresponsive nanogels having an overall size below 200 nm as a cargo system for hydrophobic drugs and for controlled release mediated by temperature/pH and ultrasound. PMID:23794381

Demirel, Gökçen Birlik; von Klitzing, Regine

2013-08-26

14

Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs  

Microsoft Academic Search

Hydrophilic nanosized particles consisting of the cross-linked cationic polymer network (Nanogels) are suggested as a drug delivery system for nucleoside analog 5?-triphosphates, an active form of cytotoxic anticancer drugs. Preparation, properties, and cellular effects of several polyplex Nanogel formulations with the 5?-triphosphate of cytotoxic 5-fluoroadenine arabinoside (fludarabine) (FATP) were examined and discussed here. The polyplexes have formed spontaneously by mixing

Serguei V. Vinogradov; Arin D. Zeman; Elena V. Batrakova; Alexander V. Kabanov

2005-01-01

15

Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice  

PubMed Central

The ability to selectively inactivate immune cells with immunosuppressants is a much sought-after modality for the treatment of systemic lupus erythematosus and autoimmunity in general. Here, we designed and tested a novel nanogel drug delivery vehicle for the immunosuppressant mycophenolic acid (MPA). Treatment with MPA-loaded nanogels increased the median survival time (MST) of lupus-prone NZB/W F1 mice by 3 months with prophylactic use (MST was 50 weeks versus 38 weeks without treatment), and by 2 months when administered after the development of severe renal damage (MST after proteinuria onset was 12.5 weeks versus 4 weeks without treatment). Equivalent and greater doses of MPA administered in buffer were not efficacious. Nanogels had enhanced biodistribution to organs and association with immune cells. CD4-targeted nanogels yielded similar therapeutic results compared with nontargeted formulations, with protection from glomerulonephritis and decreases in IFN-?–positive CD4 T cells. DCs that internalized nanogels helped mediate immunosuppression, as they had reduced production of inflammatory cytokines such as IFN-? and IL-12. Our results demonstrate efficacy of nanogel-based lupus therapy and implicate a mechanism by which immunosuppression is enhanced, in part, by the targeting of antigen-presenting cells.

Look, Michael; Stern, Eric; Wang, Qin A.; DiPlacido, Leah D.; Kashgarian, Michael; Craft, Joe; Fahmy, Tarek M.

2013-01-01

16

Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.  

PubMed

Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed. PMID:24674460

Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

2014-06-01

17

The development of microgels\\/nanogels for drug delivery applications  

Microsoft Academic Search

Microgels\\/nanogels are crosslinked polymeric particles, which can be considered as hydrogels if they are composed of water soluble\\/swellable polymer chains. They possess high water content, biocompatibility, and desirable mechanical properties. They offer unique advantages for polymer-based drug delivery systems (DDS): a tunable size from nanometers to micrometers, a large surface area for multivalent bioconjugation, and an interior network for the

Jung Kwon Oh; Ray Drumright; Daniel J. Siegwart; Krzysztof Matyjaszewski

2008-01-01

18

Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation.  

PubMed

Dendritic cells (DCs) play crucial roles in initiating and promoting immune defences, providing a pivotal target for vaccines. Although nanoparticle/nanogel-based delivery vehicles are showing potential for delivering vaccines to the immune system, there is little information on their characteristics of interaction with DCs. While particle uptake by DCs has been shown, the mechanism of cell targeting has not been studied. Moreover, it is still unclear how particle surface decoration influences the handling of such vaccines by DCs. Accordingly, chitosan nanogels carrying a model antigen, ovalbumin (ova), were analysed for interaction with and processing by DCs. Nanogel surfaces decorated with alginate (alg) or mannosylated alginate (alg-man), were used for targeting particular DC receptors. DC uptake of particles was observed, being dependent on endosomal-based processes. Inhibiting PI3-kinase or lipid raft activities impaired the uptake, which was only reduced, indicating the involvement of more than one endocytic pathway; notably, this was observed with both nanogel-delivered or free ova. Importantly, surface decoration of particles was less influential on particle uptake, contrasting with the ova cargo which played the major role. Such influence of the vaccine cargo has to date been largely ignored. When receptors interacting directly with ova were blocked, this altered the uptake of alg-nanogels and alg-man-nanogels carrying ova. The nanogels did have an influential role, in that modulation of DC functional activity owed more to the nanogel structure. Using an in vitro restimulation assay with ova-specific lymphocytes, nanogel-delivered and free ova were similarly effective at inducing specific antibody. Nanogel-delivered ova with mannose surface decoration was superior to free ova for inducing interferon-? production by T-lymphocytes. Together, the data demonstrates that particle-based vaccine delivery should consider the influences of both the surface decoration and the vaccine cargo; each can influence different aspects of the interaction with DCs. Such combined influences are likely to impinge on the characteristics of the immune response induced. PMID:23220107

Thomann-Harwood, L J; Kaeuper, P; Rossi, N; Milona, P; Herrmann, B; McCullough, K C

2013-03-10

19

Polymeric nanogel formulations of nucleoside analogs  

PubMed Central

Nanogels are colloidal microgel carriers that have been introduced recently as a prospective drug delivery system for nucleotide therapeutics. The crosslinked protonated polymer network of nanogels binds oppositely charged drug molecules, encapsulating them into submicron particles with a core-shell structure. The nanogel network also provides a suitable template for chemical engineering, surface modification and vectorisation. This review reveals recent attempts to develop novel drug formulations of nanogels with antiviral and antiproliferative nucleoside analogs in the active form of 5?-triphosphates; discusses structural approaches to the optimisation of nanogel properties, and; discusses the development of targeted nanogel drug formulations for systemic administration. Notably, nanogels can improve the CNS penetration of nucleoside analogs that are otherwise restricted from passing across the blood–brain barrier. The latest findings reviewed here demonstrate an efficient intracellular release of nucleoside analogs, encouraging further applications of nanogel carriers for targeted drug delivery.

Vinogradov, Serguei V

2008-01-01

20

Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements.  

PubMed

In this work, the chitosan-based luminescent/magnetic (CLM) nanomaterials were synthesized by direct gelation of chitosan, CdTe and superparamagnetic iron oxide into the hybrid nanogels. The morphology, sizes and properties of the nanogels prepared with different chitosan/QD/MNP ratios and under different processing parameters were researched. Fluorescence microscopy, FTIR spectra and TEM images confirmed the success of the preparation of the CLM hybrid nanogels. Spherical CLM hybrid nanogels with appropriate average sizes (<160 nm) were used for insulin loading. The actual loading amount of insulin was approximately 40.1mg/g. Human normal hepatocytes L02 cell line was used to explore the effects of additives, such as mangiferin (MF), (-)-epigallocatechin gallate (EGCG), and (-)-epicatechin gallate (ECG) on the insulin-receptor-mediated cellular uptake using insulin-loaded CLM (ICLM) hybrid nanogels. Above 80% of viability of L02 cells were watched at a nanogels concentration of 500 ?g/mL whatever the additives existed or not. The study discovered that the fluorescent signals of the ICLM hybrid nanogels in L02 cells were more intense in the presence of MF, EGCG and ECG in medium than in the absence of these components, respectively. These results demonstrate that MF, EGCG and ECG are potentially able to enhance targeting combination of insulin with L02 cells and improve insulin sensitivity in L02 cells. The hybrid nanogels designed as a targeting carrier can potentially offer an approach for integration of insulin delivery, cell imaging, and antidiabetic investigation of dietary supplements. PMID:22342466

Shen, Jian-Min; Xu, Luan; Lu, Yan; Cao, Hui-Ming; Xu, Zhi-Gang; Chen, Tong; Zhang, Hai-Xia

2012-05-10

21

ICAM-1 Targeted Nanogels Loaded with Dexamethasone Alleviate Pulmonary Inflammation  

PubMed Central

Lysozyme dextran nanogels (NG) have great potential in vitro as a drug delivery platform, combining simple chemistry with rapid uptake and cargo release in target cells with “stealth” properties and low toxicity. In this work, we study for the first time the potential of targeted NG as a drug delivery platform in vivo to alleviate acute pulmonary inflammation in animal model of LPS-induced lung injury. NG are targeted to the endothelium via conjugation with an antibody (Ab) directed to Intercellular Adhesion Molecule-1(ICAM-NG), whereas IgG conjugated NG (IgG-NG) are used for control formulations. The amount of Ab conjugated to the NG and distribution in the body after intravenous (IV) injection have been quantitatively analyzed using a tracer isotope-labeled [125I]IgG. As a proof of concept, Ab-NG are loaded with dexamethasone, an anti-inflammatory therapeutic, and the drug uptake and release kinetics are measured by HPLC. In vivo studies in mice showed that: i) ICAM-NG accumulates in mouse lungs (?120% ID/g vs ?15% ID/g of IgG-NG); and, ii) DEX encapsulated in ICAM-NG, but not in IgG-NG practically blocks LPS-induced overexpression of pro-inflammatory cell adhesion molecules including ICAM-1 in the pulmonary inflammation.

Coll Ferrer, M. Carme; Shuvaev, Vladimir V.; Zern, Blaine J.; Composto, Russell J.; Muzykantov, Vladimir R.; Eckmann, David M.

2014-01-01

22

Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging.  

PubMed

Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging. PMID:24432789

Gonçalves, Mara; Maciel, Dina; Capelo, Débora; Xiao, Shili; Sun, Wenjie; Shi, Xiangyang; Rodrigues, João; Tomás, Helena; Li, Yulin

2014-02-10

23

Biodegradable nanogels for oral delivery of interferon for norovirus infection  

PubMed Central

Norwalk virus (NV) replicon-harboring cells have provided an excellent tool to the development of antivirals. Previously we demonstrated that the expression levels of replicon RNA and proteins were significantly reduced in the presence of various interferons (IFNs) including IFN-? and IFN-? in a dose-dependent manner in the NV replicon-harboring cells, and suggested that IFNs could be therapeutic options for norovirus infection. It was also demonstrated that innate immunity including IFNs is crucial in the replication and pathogenicity of murine norovirus (MNV) in vitro (RAW267.4 cells) and in vivo. IFNs have a short half-life in vitro and in vivo due to low stability. Thus it is important to have a good delivery system to improve the stability of IFNs. Nanogels are nanosized networks of chemically cross-linked polymers that swell in physiologic solutions and provide improved stability and bioavailability to drugs. We have synthesized nanogels based on cross-linked polyethyleneimine (PEI)-polyethylenglycol (PEG). The PEI/PEG nanogels were further acetylated (AcNg) to reduce cellular penetration and cytotoxicity. The IFN-AcNg complex was prepared by incubating two components together at 4 °C and lyophilization. The IFN activity of IFN-AcNg was evaluated in the NV- and HCV-replicon-harboring cells and against MNV-1 in RAW267.4 cells in comparison to IFN without AcNg. The AcNg improved the stability of IFN stored at 4 °C, and was well tolerated in the cells. Furthermore, the activity of IFN was significantly higher when combined with AcNg in the replicon-harboring cells and against MNV-1 in RAW267.4 cells. We concluded that AcNg may be pursued further as a vehicle for oral delivery of IFNs in norovirus infection.

Kim, Yunjeong; Thapa, Mahendra; Hua, Duy H; Chang, Kyeong-Ok

2010-01-01

24

Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery.  

PubMed

Abstract In this article, we prepared a dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery by using a degradable pH-responsive ketal derivative, mPEG2000-Isopropylideneglycerol (mPEG-IS, PI) polymer. The purpose of this study is to develop an injectable dual-responsive micellar nanogel system which has a sol-gel phase transition by the stimulation of body temperature with improved stability and biocompatibility as a controlled drug delivery carrier for cancer therapy. The pH-responsive PI was designed with pH-responsive ketal group as hydrophobic moieties and PEG group as hydrophilic moieties. The PI micelles encapsulated paclitaxel (PTX) was fabricated. Then, the PI micelles were formed in a thermo-nanogel. The micellar nanogel could improve the solubility and stability of PTX. The physiochemical properties of PI micelles and micellar nanogel were characterized. The results showed that dual-responsive micellar nanogel could carry out sol-gel transition at 37?°C. The PI polymer can spontaneously self-assemble into micellar structure with size of 100-200?nm. The dual-responsive micellar nanogel could be degraded under lower pH condition. The test in vitro PTX release showed that dual-responsive micellar nanogel could release about 70% for 70?h under pH 5.0 while about 10% release at pH 7.4 and pH 9.0. The dual-responsive micellar nanogel was of lower cytotoxicity and suppressed tumor growth most efficiently. The micellar nanogel will be a new potential dual-responsive drug delivery system for cancer therapy. PMID:24102086

Chen, Daquan; Yu, Hongyun; Sun, Kaoxiang; Liu, Wanhui; Wang, Hongbo

2014-06-01

25

Methacrylic-based nanogels for the pH-sensitive delivery of 5-fluorouracil in the colon.  

PubMed

Methacrylic-based copolymers in drug-delivery systems demonstrate a pH-sensitive drug-releasing behavior in the colon. In this study, copolymers of methacrylic acid and 2-ethyl hexyl acrylate were prepared using a microemulsion polymerization technique. The purified copolymer was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. 5-Fluorouracil (5-FU) was entrapped within methacrylic-based copolymers by a solvent evaporation method. The size of the nanogels formed was characterized by transmission electron microscopy and atomic force microscopy. In vitro drug-release studies using phosphate-buffered saline at different pH levels demonstrated the sustained release of 5-FU and its pH dependence. Cell proliferation assay of a human colon tumor colon cancer cell line (HCT-116) was performed and showed that the nanogels containing 5-FU exhibited considerable cytotoxicity in comparison with free 5-FU. Cell uptake of the nanogels was also monitored using confocal microscopy. Western blot analysis and flow cytometry studies confirmed that the nanogels could be successfully used as an efficient vector for pH-sensitive and controlled delivery of drugs specifically targeted to the colon. PMID:23172988

Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, Gs Vinod

2012-01-01

26

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon  

PubMed Central

Methacrylic-based copolymers in drug-delivery systems demonstrate a pH-sensitive drug-releasing behavior in the colon. In this study, copolymers of methacrylic acid and 2-ethyl hexyl acrylate were prepared using a microemulsion polymerization technique. The purified copolymer was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. 5-Fluorouracil (5-FU) was entrapped within methacrylic-based copolymers by a solvent evaporation method. The size of the nanogels formed was characterized by transmission electron microscopy and atomic force microscopy. In vitro drug-release studies using phosphate-buffered saline at different pH levels demonstrated the sustained release of 5-FU and its pH dependence. Cell proliferation assay of a human colon tumor colon cancer cell line (HCT-116) was performed and showed that the nanogels containing 5-FU exhibited considerable cytotoxicity in comparison with free 5-FU. Cell uptake of the nanogels was also monitored using confocal microscopy. Western blot analysis and flow cytometry studies confirmed that the nanogels could be successfully used as an efficient vector for pH-sensitive and controlled delivery of drugs specifically targeted to the colon.

Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, GS Vinod

2012-01-01

27

Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell.  

PubMed

Self-assembling complexes from nucleic acids and synthetic polymers are evaluated for plasmid and oligonucleotide (oligo) delivery. Polycations having linear, branched, dendritic. block- or graft copolymer architectures are used in these studies. All these molecules bind to nucleic acids due to formation of cooperative systems of salt bonds between the cationic groups of the polycation and phosphate groups of the DNA. To improve solubility of the DNA/polycation complexes, cationic block and graft copolymers containing segments from polycations and non-ionic soluble polymers, for example, poly(ethylene oxide) (PEO) were developed. Binding of these copolymers with short DNA chains, such as oligos, results in formation of species containing hydrophobic sites from neutralized DNA polycation complex and hydrophilic sites from PEO. These species spontaneously associate into polyion complex micelles with a hydrophobic core from neutralized polyions and a hydrophilic shell from PEO. Such complexes are very small (10-40 nm) and stable in solution despite complete neutralization of charge. They reveal significant activity with oligos in vitro and in vivo. Binding of cationic copolymers to plasmid DNA forms larger (70-200 nm) complexes. which are practically inactive in cell transfection studies. It is likely that PEO prevents binding of these complexes with the cell membranes ("stealth effect"). However attaching specific ligands to the PEO-corona can produce complexes, which are both stable in solution and bind to target cells. The most efficient complexes were obtained when PEO in the cationic copolymer was replaced with membrane-active PEO-b-poly(propylene oxide)-b-PEO molecules (Pluronic 123). Such complexes exhibited elevated levels of transgene expression in liver following systemic administration in mice. To increase stability of the complexes, NanoGel carriers were developed that represent small hydrogel particles synthesized by cross-linking of PEI with double end activated PEO using an emulsification/solvent evaporation technique. Oligos are immobilized by mixing with NanoGel suspension, which results in the formation of small particles (80 nm). Oligos incorporated in NanoGel are able to reach targets within the cell and suppress gene expression in a sequence-specific fashion. Further. loaded NanoGel particles cross-polarized monolayers of intestinal cells (Caco-2) suggesting potential usefulness of these systems for oral administration of oligos. In conclusion the approaches using polycations for gene delivery for the design of gene transfer complexes that exhibit a very broad range of physicochemical and biological properties, which is essential for design of a new generation of more effective non-viral gene delivery systems. PMID:10852341

Lemieux, P; Vinogradov, S V; Gebhart, C L; Guérin, N; Paradis, G; Nguyen, H K; Ochietti, B; Suzdaltseva, Y G; Bartakova, E V; Bronich, T K; St-Pierre, Y; Alakhov, V Y; Kabanov, A V

2000-01-01

28

Bio-derived poly(gamma-glutamic acid) nanogels as controlled anticancer drug delivery carriers.  

PubMed

We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(gamma- glutamic acid) (gamma-PGA). gamma-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated gamma-PGA was synthesized by covalent coupling between the carboxyl groups of gamma-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded gamma-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated gamma-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated gamma-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked gamma-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked gamma-PGA nanogels in aqueous solution were 136.3 +/- 37.6 nm and -32.5 +/- 5.3 mV, respectively. The loading amount of Dox was approximately 38.7 microgram per mg of gamma-PGA nanogel. The Dox-loaded disulfide cross-linked gamma-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1- 10 mM). Through fluorescence microscopy and FACS, the cellular uptake of gamma-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of gamma-PGA nanogels. The bio-derived gamma-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications. PMID:23221543

Bae, Hee Ho; Cho, Mi Young; Hong, Ji Hyeon; Poo, Haryoung; Sung, Moon-Hee; Lim, Yong Taik

2012-12-01

29

Naphthalene-hydrophobized ?-1,3-glucan nanogel for doxorubicin delivery to immunocytes.  

PubMed

A water soluble ?-1,3-glucan schizophyllan (SPG) can be recognized by an immunocyte receptor called dectin-1. When we introduced naphthalene into the side chain of SPG (nSPG), it formed nanogel by physical cross-link and gained capability to ingest hydrophobic compounds such as doxorubicin. Our in vitro assay revealed that this nanogel can be used as specific delivery of anti-cancer drugs to immunocytes. PMID:24684841

Maeda, Kazuya; Mochizuki, Shinichi; Sanada, Yusuke; Sakurai, Kazuo

2014-04-15

30

Soy protein/soy polysaccharide complex nanogels: folic acid loading, protection, and controlled delivery.  

PubMed

In this study, we developed a facile approach to produce nanogels via self-assembly of folic acid, soy protein, and soy polysaccharide. High-pressure homogenization was introduced to break down the original aggregates of soy protein, which benefits the binding of soy protein with soy polysaccharide and folic acid at pH 4.0. After a heat treatment that causes the soy protein denaturation and gelation, folic acid-loaded soy protein/soy polysaccharide complex nanogels were fabricated. The nanogels have a polysaccharide surface that makes the nanogels dispersible in acidic conditions where folic acid is insoluble and soy protein forms precipitates after heating. More importantly, the protein and polysaccharide can inhibit the reactions between dissolved oxygen and folic acid during UV irradiation. After the preparation and storage of the nanogels in the presence of heat, oxygen, and light in acidic conditions, most of the folic acid molecules in the nanogels remain in their natural structure and can be released rapidly at neutral pH, that is, in the intestine. Because most food and beverages are acidic, the nanogels are a suitable delivery system of folic acid in food and beverages. PMID:23758109

Ding, Xuzhe; Yao, Ping

2013-07-01

31

Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities  

PubMed Central

Nanogels are swollen nano-sized networks composed of hydrophilic or amphiphilic polymer chains, which can be non-ionic or ionic. They are developed as carriers for drug delivery and can be designed to spontaneously absorb biologically active molecules through formation of salt bonds, hydrogen bonds, or hydrophobic interactions. Polyelectrolyte nanogels can readily incorporate oppositely charged low molecular mass drugs or biomacromolecules such as oligonucleotides, siRNA, DNA and proteins, which bind with the nanogel ionic chains and phase separate within the finite nanogel volume. As a result, the loading capacity of such nanogels is superior to most other drug carriers. Binding of the drugs induces collapse of nanogel, which usually decreases the volume by at least one order of magnitude. However, the drug-nanogel particles remain dispersed due to the lyophilizing effect of nanogel’s hydrophilic polymer chains, such as poly(ethylene glycol) exposed at the particle surface. Multiple chemical functionalities of nanogels can be employed for introduction of imaging labels, targeting molecules and triggered drug release capabilities such as stimuli-responsive and degradable cross-links. Recent studies suggested several promising biomedical applications of nanogels, including drug delivery of phosphorylated nucleoside analogs, oligonucleotides or siRNA for anticancer or antiviral treatment, encapsulation of bioactive proteins, fabrication of nanometallic or nanoceramic composites, imaging agents, oral and CNS drug delivery. The research of different functional nanogels as novel pharmaceutical carriers for diagnosis and therapy shows promise and is rapidly developing.

Kabanov, Alexander V.; Vinogradov, Serguei V.

2010-01-01

32

Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery.  

PubMed

A novel pH-sensitive nanogel based on pectin cross-linked with glutaraldehyde (PT-GA) was designed and synthesized for drug delivery. Transmission electron microscope observation shows that the nano-sized gel particles exhibit a spherical morphology. The optical absorbance study of nanogel suspension reveals its pH sensitivity. Cytotoxicity study shows that the nanogel has no apparent inhibitory effect on cells. The in vitro drug-release behavior of the drug-loaded nanogel particles in three kinds of media, i.e., simulated gastric fluid, simulated intestine fluid and simulated colon fluid, was studied. PT-GA nanogel exhibits a faster release at a high pH, and the release could be further accelerated in the presence of pectinolytic enzyme, indicating that the nanogel may be used for colon-specific drug delivery. PMID:17988522

Chang, Cong; Wang, Zong-Chun; Quan, Chang-Yun; Cheng, Han; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

2007-01-01

33

In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery  

NASA Astrophysics Data System (ADS)

An effective, green, and facile approach to synthesize gold nanoparticle-loaded protein-polysaccharide nanogels was developed in this study. Biocompatible gold nanoparticle-loaded lysozyme-dextran (Au@Lys-Dex) nanogels were produced using lysozyme-dextran nanogels as reducing and stabilizing agents. Lysozyme-dextran nanogels have a size of about 200 nm and a structure of lysozyme core and dextran shell. At pH around 4, AuCl4- ions are attracted and locally enriched by lysozyme due to the electrostatic and coordination interactions. When the solution is under UV irradiation, the AuCl4- ions are reduced to gold nanoparticles in situ by solvated electrons and reactive radicals produced from aromatic amino acid residues in the lysozyme. The produced gold nanoparticles with a size of about 8 nm are trapped inside the nanogels and the Au@Lys-Dex nanogels are well dispersible by virtue of the dextran shell. Antitumor drug, doxorubicin, can be loaded effectively inside Au@Lys-Dex nanogels via diffusion. In vitro study demonstrates the doxorubicin loaded Au@Lys-Dex nanogels have the same antitumor activity as free doxorubicin. The nanogels can be used as a contrasting agent in optical cell imaging, in which direct visual images of the subcellular distributions of the gold nanoparticles and the released doxorubicin are presented synchronously. The dual functional drug loaded Au@Lys-Dex nanogels are a promising system for simultaneous drug delivery and biomedical imaging.

Cai, Huanxin; Yao, Ping

2013-03-01

34

Dual pH-triggered multistage drug delivery systems based on host-guest interaction-associated polymeric nanogels.  

PubMed

The polymeric nanogels were constructed via host-guest interactions for dual pH-triggered multistage drug delivery, which showed tumor acidity-triggered nanogel reorganization into smaller nanoparticles for deep tissue penetration, high-efficiency cellular uptake, and intracellular endo-lysosomal pH-responsive drug release. PMID:24909859

Zan, Minghui; Li, Junjie; Luo, Shizhong; Ge, Zhishen

2014-06-24

35

Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery.  

PubMed

Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

Kim, Jong Oh; Oberoi, Hardeep S; Desale, Swapnil; Kabanov, Alexander V; Bronich, Tatiana K

2013-12-01

36

Modular 'Click-in-Emulsion' Bone-Targeted Nanogels  

PubMed Central

A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, 67 nm in diameter and synthesized via an astoichiometric click-chemistry-inemulsion method, controllably display residual, free click-able functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.

Heller, Daniel A.; Levi, Yair; Pelet, Jeisa M.; Doloff, Joshua C.; Wallas, Jasmine; Pratt, George W.; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E.; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S.; Langer, Robert; Anderson, Daniel G.

2013-01-01

37

Dual responsive supramolecular nanogels for intracellular drug delivery.  

PubMed

Supramolecular nanogels cross-linked by host-guest interaction between dextran grafted benzimidazole (Dex-g-BM) and thiol-?-cyclodextrin were designed. Their special supramolecular pH-sensitivity under acidic conditions (pH < 6, within the range of malignant cellular endosomes) and reduction sensitivity in response to biologically relevant stimuli will be of great advantage to the future of cancer chemotherapeutics. PMID:24519486

Chen, Xiaofei; Chen, Li; Yao, Xuemei; Zhang, Zhe; He, Chaoliang; Zhang, Jingping; Chen, Xuesi

2014-04-14

38

Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines  

Microsoft Academic Search

Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment

Tomonori Nochi; Yoshikazu Yuki; Haruko Takahashi; Shin-Ichi Sawada; Mio Mejima; Tomoko Kohda; Norihiro Harada; Il Gyu Kong; Ayuko Sato; Nobuhiro Kataoka; Daisuke Tokuhara; Shiho Kurokawa; Yuko Takahashi; Hideo Tsukada; Shunji Kozaki; Kazunari Akiyoshi; Hiroshi Kiyono

2010-01-01

39

Silica nanogelling of environment-responsive PEGylated polyplexes for enhanced stability and intracellular delivery of siRNA.  

PubMed

In this study, poly(ethylene glycol) (PEG)-block-polycation/siRNA complexes (PEGylated polyplexes) were wrapped with a hydrated silica, termed "silica nanogelling", in order to enhance their stability and functionality. Silica nanogelling was achieved by polycondensation of soluble silicates onto the surface of PEGylated polyplexes comprising a disulfide cross-linked core. Formation of silica nanogel layer on the PEGylated cross-linked polyplexes was confirmed by particle size increase, surface charge reduction, and elemental analysis of transmission electron micrographs. Silica nanogelling substantially improved polyplex stability against counter polyanion-induced dissociation under non-reductive condition, without compromising the reductive environment-responsive siRNA release triggered by disulfide cleavage. Silica nanogelling significantly enhanced the sequence-specific gene silencing activity of the polyplexes in HeLa cells without associated cytotoxicity, probably due lower endosomal entrapment (or lysosomal degradation) of delivered siRNA. The lower endosomal entrapment of the silica nanogel system could be explained by an accelerated endosomal escape triggered by deprotonated silanol groups in the silica (the proton sponge hypothesis) and/or a modulated intracellular trafficking, possibly via macropinocytosis, as evidenced by the cellular uptake inhibition assay. Henceforth, silica nanogelling of PEGylated siRNA polyplexes is a promising strategy for preparation of stable and functional siRNA delivery vehicles. PMID:23083934

Gouda, Noha; Miyata, Kanjiro; Christie, R James; Suma, Tomoya; Kishimura, Akihiro; Fukushima, Shigeto; Nomoto, Takahiro; Liu, Xueying; Nishiyama, Nobuhiro; Kataoka, Kazunori

2013-01-01

40

Design and engineering of nanogels for cancer treatment  

PubMed Central

Here, we provide a comprehensive insight into current advances in the use of nanogel-mediated chemotherapy for cancer treatment. Nanogels are composed of cross-linked three-dimensional polymer chain networks that are formed via covalent linkages or self-assembly processes. The porosity between the cross-linked networks of nanogels not only provides an ideal reservoir for loading drugs, oligonucleotides and imaging agents, but also protects them from environmental degradation and hazards. Here, we focus mainly on novel synthetic strategies and key considerations in the design of nanogel-based drug delivery systems for controlled and targeted cancer therapeutic applications.

Yallapu, Murali Mohan; Jaggi, Meena; Chauhan, Subhash

2011-01-01

41

Biodistribution and renal clearance of biocompatible lung targeted poly(ethylene glycol) (PEG) nanogel aggregates.  

PubMed

A novel stabilized aggregated nanogel particle (SANP) drug delivery system was prepared for injectable passive lung targeting. Gel nanoparticles (GNPs) were synthesized by irreversibly cross-linking 8 Arm PEG thiol with 1,6-hexane-bis-vinylsulfone (HBVS) in phosphate buffer (PB, pH 7.4) containing 0.1% v/v Tween™ 80. Aggregated nanogel particles (ANPs) were generated by aggregating GNPs to micron-size, which were then stabilized (i.e., SANPs) using a PEG thiol polymer to prevent further growth-aggregation. The size of SANPs, ANPs and GNPs was analyzed using a Coulter counter and transmission electron microscopy (TEM). Stability studies of SANPs were performed at 37°C in rat plasma, phosphate buffered saline (PBS, pH 7.4) and PB (pH 7.4). SANPs were stable in rat plasma, PBS and PB over 7 days. SANPs were covalently labeled with HiLyte Fluor™ 750 (DYE-SANPs) to facilitate ex vivo imaging. Biodistribution of intravenous DYE-SANPs (30 ?m, 4 mg in 500 ?L PBS) in male Sprague-Dawley rats was compared to free HiLyte Fluor™ 750 DYE alone (1mg in 500 ?L PBS) and determined using a Xenogen IVIS® 100 Imaging System. Biodistribution studies demonstrated that free DYE was rapidly eliminated from the body by renal filtration, whereas DYE-SANPs accumulated in the lung within 30 min and persisted for 48 h. DYE-SANPs were enzymatically degraded to their original principle components (i.e., DYE-PEG-thiol and PEG-VS polymer) and were then eliminated from the body by renal filtration. Histological evaluation using H & E staining and broncho alveolar lavage (BAL) confirmed that these flexible SANPs were not toxic. This suggests that because of their flexible and non-toxic nature, SANPs may be a useful alternative for treating pulmonary diseases such as asthma, pneumonia, tuberculosis and disseminated lung cancer. PMID:23041417

Deshmukh, Manjeet; Kutscher, Hilliard L; Gao, Dayuan; Sunil, Vasanthi R; Malaviya, Rama; Vayas, Kinal; Stein, Stanley; Laskin, Jeffrey D; Laskin, Debra L; Sinko, Patrick J

2012-11-28

42

Differential anticancer drug delivery with a nanogel sensitive to bacteria-accumulated tumor artificial environment.  

PubMed

Differential anticancer drug delivery that selectively releases a drug within a tumor represents an ideal cancer therapy strategy. Herein, we report differential drug delivery to the tumor through the fabrication of a special bacteria-accumulated tumor environment that responds to bacteria-sensitive triple-layered nanogel (TLN). We demonstrate that the attenuated bacteria SBY1 selectively accumulated in tumors and were rapidly cleared from normal tissues after intravenous administration, leading to a unique bacteria-accumulated tumor environment. Subsequent administrated doxorubicin-loaded TLN (TLND) was thus selectively degraded in the bacteria-accumulated tumor environment after its accumulation in tumors, triggering differential doxorubicin release and selectively killing tumor cells. This concept can be extended and improved by using other factors secreted by bacteria or materials to fabricate a unique tumor environment for differential drug delivery, showing potential applications in drug delivery. PMID:24200225

Xiong, Meng-Hua; Bao, Yan; Du, Xiao-Jiao; Tan, Zi-Bin; Jiang, Qiu; Wang, Hong-Xia; Zhu, Yan-Hua; Wang, Jun

2013-12-23

43

Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs  

PubMed Central

The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP). To achieve this primary goal we have developed a skin permeating nanogel system (SPN) containing surface modified polymeric bilayered nanoparticles along with a gelling agent. Poly-(lactide-co-glycolic acid) and chitosan were used to prepare bilayered nanoparticles (NPS) and the surface was modified with oleic acid (NPSO). Hydroxypropyl methyl cellulose (HPMC) and Carbopol with the desired viscosity were utilized to prepare the nanogels. The nanogel system was further investigated for in vitro skin permeation, drug release and stability studies. Allergic contact dermatitis (ACD) and psoriatic plaque like model were used to assess the effectiveness of SPN. Dispersion of NPSO in HPMC (SPN) produced a stable and uniform dispersion. In vitro permeation studies revealed increase in deposition of SP for the SP-SPN or SP+KP-SPN in the epidermis and dermis by 8.5 and 9.5 folds, respectively than SP-gel. Further, the deposition of KP for KP-SPN or SP+KP-SPN in epidermis and dermis was 9.75 and 11.55 folds higher, respectively than KP-gel. Similarly the amount of KP permeated for KP-SPN or SP+KP-SPN was increased by 9.92 folds than KP-gel. The ear thickness in ACD model and the expression of IL-17 and IL-23; PASI score and TEWL values in psoriatic plaque like model were significantly less (p<0.001) for SPN compared to control gel. Our results suggest that SP+KP-SPN have significant potential for the percutaneous delivery of SP and KP to the deeper skin layers for treatment of various skin inflammatory disorders.

Shah, Punit; Desai, Pinaki; Patel, Apurva; Singh, Mandip

2011-01-01

44

Nanogels as Pharmaceutical Carriers  

Microsoft Academic Search

Nanogels are nanosized networks of chemically or physically cross-linked polymers that swell in a good solvent. The term “nanogel”\\u000a (NanoGel™) was first introduced by us to define cross-linked bifunctional networks of a polyion and a nonionic polymer for\\u000a delivery of polynucleotides (cross-linked polyethyleneimine (PEI) and poly(ethylene glycol) (PEG) or PEG-cl-PEI) (Lemieux et al., 2000; Vinogradov et al., 1999). However, some

Alexander V. Kabanov; Serguei V. Vinogradov

45

A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release.  

PubMed

This paper studied the synthesis, characterization and use of the magnetic chitosan nanogel for carrying meleimidic compounds. The hydrogel polymer was prepared using O-carboxymethylchitosan, which was crosslinked with epichlorohydrin for subsequent incorporation of iron oxide magnetic nanoparticles. The characterization revealed that the magnetic material comprises about 10% of the hydrogel. This material is comprised of magnetite and maghemite and exhibits ferro-ferrimagnetic behavior. The average particle size is 4.2 nm. There was high incorporation efficiency of maleimides in the magnetic nanogel. The release was of sustained character and there was a greater release when an external magnetic field was applied. The mathematical model that best explained the process of drug release by the magnetic hydrogel was that of Peppas-Sahlin. The magnetic nanogel proved to be an excellent candidate for use in drug-delivery systems. PMID:24647530

Demarchi, Carla Albetina; Debrassi, Aline; Buzzi, Fátima de Campos; Corrêa, Rogério; Filho, Valdir Cechinel; Rodrigues, Clovis Antonio; Nedelko, Nataliya; Demchenko, Pavlo; ?lawska-Waniewska, Anna; D?u?ewski, Piotr; Greneche, Jean-Marc

2014-05-21

46

Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death  

Microsoft Academic Search

Reducible heparin nanogels cross-linked with disulfide linkages were developed for efficient cellular uptake of therapeutic heparin to induce apoptotic cell death. The heparin nanogels were synthesized by forming nanocomplexes between thiolated heparin and poly(ethylene glycol) in a selected organic solvent, and subsequently producing intermolecular disulfide bonds between thiolated heparin molecules by ultrasonication. The resultant heparin nanogels had a stable structure

Ki Hyun Bae; Hyejung Mok; Tae Gwan Park

2008-01-01

47

Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight.  

PubMed

In order to develop a novel self-assembly as a means of cancer cell targeting, self-organized nanogels were prepared from acetylated hyaluronic acid with low molecular weight (AC-HA(LM)). Three samples were obtained (AC-HA(LM)1, 2 and 3) with degrees of acetylation, 0.8, 2.1, or 2.6 acetyl groups per unit (2 glucose rings) of HA(LM) to control their hydrophobicity. The mean diameters of AC-HA(LM)2 and 3 were less than 300 nm with unimodal size distribution, while that of AC-HA(LM)1 was above 400 nm. The critical aggregation concentrations (CAC) of the nanogels in distilled water were < 1 x 10(-1) mg/mL. The doxorubicine (DOX) loading efficiencies and loading contents of AC-HA(LM) increased as the degree of acetylation increased, in particular, the loading efficiency of AC-HA(LM)3 reached above 90%. AC-HA(LM)3 nanogels showed IC(50) at 1300 ng/mL of the DOX concentration against HeLa cells (with HA-binding receptors) similar to free DOX. For monitoring of specific interaction with a carcinoma cell line (HeLa cells with HA-binding receptors), AC-HA(LM)3 was labeled with FITC and observed with a confocal microscope. HeLa cells were strongly luminated by interactions with fluorescence-labeled AC-HA(LM)3 nanogels; however, this luminance was significantly decreased by competition inhibition of free HA. This result indicates that modified HA maintains the ability to interact with HA-binding receptors. The selective cytotoxicity and interaction of AC-HA(LM) nanogels may help reduce side effects of anti-cancer drugs in clinical use. PMID:20417709

Park, Wooram; Kim, Kyoung Sub; Bae, Byoung-Chan; Kim, Young-Heui; Na, Kun

2010-07-11

48

Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam.  

PubMed

The aim of the current investigation was to prepare and investigate the potential of solid lipid nanoparticles based gel (SLN-gel) for the dermal delivery of meloxicam (MLX). The meloxicam loaded SLN (MLX-SLN) gel was developed and characterized by means of photon correlation spectroscopy, rheometry, and differential scanning calorimetry to determine the physicochemical properties. The behavior of SLN gel on rat skin was evaluated in vitro using Franz diffusion cells to determine the skin permeation and penetration characteristics, in vivo on mice to determine the skin tolerance by histopathological examinations. The anti-inflammatory potential of SLN gel was assessed by carrageenan induced rat paw edema test. Biophysical studies including differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were undertaken to study the interaction between the SLN gel and skin. MLX-SLN gel with nanometric particle size exhibited the controlled release abilities and simultaneously the potential to transport the drug to various skin layers. SLN gel displayed viscoelastic properties with predominantly elastic behavior and exhibited plastic flow. Biophysical studies elucidated the interaction between the SLN gel and stratum corneum (SC) lipids, and proposed the lipid bilayer fluidization as the possible mechanism for the increased penetration of meloxicam into skin. The nano-gel system showed marked anti-inflammatory activity and excellent skin tolerability. It can be concluded that SLN gel may be a promising delivery system for MLX in the treatment of inflammatory disorders. PMID:23994283

Khurana, S; Bedi, P M S; Jain, N K

2013-01-01

49

Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.  

PubMed

Dextrin, a glucose polymer with low molecular weight, was used to develop a fully resorbable hydrogel, without using chemical initiators. Dextrin was first oxidized (oDex) with sodium periodate and then cross-linked with adipic acid dihidrazide, a nontoxic cross-linking molecule. Furthermore, a new bidimensional composite hydrogel, made of oxidized dextrin incorporating dextrin nanogels (oDex-nanogel), was also developed. The oDex hydrogels showed good mechanical properties and biocompatibility, allowing the proliferation of mouse embryo fibroblasts 3T3 cultured on top of the gel. The gelation time may be controlled selecting the concentrations of the polymer and reticulating agent. Both the oDex and oDex-nanogel hydrogels are biodegradable and present a 3-D network with a continuous porous structure. The obtained hybrid hydrogel enables the release of the dextrin nanogel over an extended period of time, paralleling the mass loss curve due to the degradation of the material. The dextrin nanogel allowed the efficient incorporation of interleukin-10 and insulin in the oDex hydrogel, providing a sophisticated system of controlled release. The new hydrogels present promising properties as an injectable carrier of bioactive molecules. Both proteins and poorly water-soluble low-molecular-weight drugs are efficiently encapsulated in the nanogel, which performs as a controlled release system entrapped in the hydrogel matrix. PMID:22288730

Molinos, Maria; Carvalho, Vera; Silva, Dina M; Gama, Francisco M

2012-02-13

50

Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment  

Microsoft Academic Search

We report a class of core–shell structured hybrid nanogels to demonstrate the conception of integrating the functional building blocks into a single nanoparticle system for simultaneously optical temperature-sensing, cancer cell targeting, fluorescence imaging, and combined chemo-photothermal treatment. The hybrid nanogels were constructed by coating the Ag–Au bimetallic NP core with a thermo-responsive nonlinear poly(ethylene glycol) (PEG)-based hydrogel as shell, and

Weitai Wu; Jing Shen; Probal Banerjee; Shuiqin Zhou

2010-01-01

51

188 Re-labeled MPEG-modified superparamagnetic nanogels: preparation and targeting application in rabbits  

Microsoft Academic Search

Polyacrylamide-coated magnetic nanogels were synthesized via photochemical method in surfactants and initiators free aqueous system at room temperature. After Hoffmann elimination of\\u000a carbonyl and further modification with methoxy poly(ethylene glycol) (MPEG), the MPEG-modified superparamagnetic nanogels\\u000a (MSN) with better hydrophilicity and biocompatibility were obtained. The MSN were characterized by FTIR, XRD, SEM and PCS.\\u000a Covalently linked with 188Re complex, the 188Re-labeled

Hanwen Sun; Lianying Zhang; Xiuling Zhang; Cunlan Zhang; Zhenlin Wei; Side Yao

2008-01-01

52

Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc).  

PubMed

Temperature- and pH-responsive poly(N-isopropylacrylamide) (polyNIPAM) copolymerised with 5% (w/v) of acrylic acid (AAc), termed as poly(NIPAM-co-AAc) nanogel was investigated as a novel multi-responsive topical drug delivery carrier, using caffeine as a model permeant. The role of a pH modulator (citric acid) on the nanogel system was also studied. The loading was carried out in deionised water at two different temperatures, which were 2-4°C and 25°C (room temperature, RT) over 3 days. The loading of caffeine into the poly(NIPAM-co-AAc) nanogel was found to be significantly higher at 2-4°C than at RT (p=0.0072). As for the control nanogel (polyNIPAM), a similar pattern of loading level can be observed (p=0.0005). This enhanced loading at low temperatures could be attributed to the hydrophilic behaviour of the polyNIPAM network in response to temperatures lower than its lower critical solution temperature (LCST). In vitro diffusion studies across epidermis porcine skin were carried out at 32°C for the saturated solution of caffeine as well as caffeine-loaded poly(NIPAM-co-AAc) and polyNIPAM nanogels. The in vitro permeation data of caffeine-loaded poly(NIPAM-co-AAc) at 2-4°C were shown to enhance the delivery of the loaded caffeine across the epidermis in comparison to the saturated solution of caffeine, by 3.5 orders of magnitude. Additionally, the study demonstrated that the effect of pH modulator on the release of loaded permeant was insignificant. PMID:23727139

Abu Samah, Nor H; Heard, Charles M

2013-09-10

53

Gadolinium-coordinated elastic nanogels for in vivo tumor targeting and imaging.  

PubMed

Coordination polymer gels have been recognized as promising hybrid nanoplatforms for imaging and therapeutic applications. Here we report functional metal-organic coordinated nanogels (GdNGs) for in vivo tumor imaging, whose non-crystalline and elastic nature allows for long blood circulation, as opposed to the rapid systemic clearance of common nanohybrids with rigid/crystalline frameworks. The deformable structure of GdNGs was constructed by random crosslinking of highly flexible polyethyleneimines (PEI) with gadolinium (Gd(3+)) coordination. The in vitro characterization revealed that GdNGs have elasticity with an apparent Young's modulus of 3.0 MPa as well as minimal cytotoxicity owing to the tight chelation of Gd(3+) ions. In contrast to common T1-enhancing gadolinium complexes, GdNGs showed the capability of enhancing negative T2 contrast (r2 = 82.6 mm(-1)s(-1)) due to the Gd(3+)-concentrated nanostructure. Systemic administration of fluorescently labeled GdNGs with core and overall hydrodynamic sizes of ~65 and ~160 nm manifested efficient targeting and dual-modality (magnetic resonance/fluorescence) imaging of tumor in a mouse model. The minimal filtration by the reticuloendothelial system (RES) suggests that the structural deformability helps the large colloids circulate in the blood stream for tumor accumulation. The unusual performance of a large Gd(3+)-complexed colloid (minimal RES sequestration and high T2 contrast enhancement) represents the versatile nature of nanoscopic organic-inorganic hybridization for biomedical applications. PMID:23777911

Lim, Chang-Keun; Singh, Ajay; Heo, Jeongyun; Kim, Daehong; Lee, Kyung Eun; Jeon, Hyesung; Koh, Joonseok; Kwon, Ick-Chan; Kim, Sehoon

2013-09-01

54

Therapeutic Effect of Nanogel-Based Delivery of Soluble FGFR2 with S252W Mutation on Craniosynostosis  

PubMed Central

Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.

Yokota, Masako; Kobayashi, Yukiho; Morita, Jumpei; Suzuki, Hiroyuki; Hashimoto, Yoshihide; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Moriyama, Keiji

2014-01-01

55

Development of a Thermally Responsive Nanogel Based on Chitosan-Poly(N-Isopropylacrylamide-co-Acrylamide) for Paclitaxel Delivery.  

PubMed

A thermally responsive nanogel was developed through the radical polymerization based on chitosan (CTS) and N-isopropylacrylamide (NIPAAm) with acrylamide (AAm) blended to explore the possibility of increasing the volume phase transition temperature (VPTT). The thermally sensitive features of resultant nanogels were studied by determining variance of transmittance and changeable size. The VPTT of the CTS-poly(NIPAAm-co-AAm5.5) nanogel, coplymerized with 5.5% wt. AAm /wt. NIPAAm, was 38°C in contrast to 32°C of the CTS-poly(NIPAAm) polymer and the former was studied thereafter. The critical aggregation concentration of CTS-poly(NIPAAm-co-AAm5.5) nanogels was 1.11 ?g/mL, much smaller than CTS-poly(NIPAAm) nanogels (5.00 ?g/mL). Paclitaxel (PTX) was encapsulated in CTS-poly(NIPAAm-co-AAm5.5) nanogels with loading efficiency of about 9.06 ± 0.195% (n = 3). Thermally responsive PTX in vitro release fromPTX-loaded nanogels was verified. Coumarin-6-loaded nanogels showed thermally responsive cellular uptake because of electrostatic absorptive endocytosis. Furthermore, the half maximal inhibitory concentration of PTX-loaded nanogels was about 2.025 nmol/L, 10-fold improved relative to PTX solutions against SMMC 7721 cells. In vivo, PTX-loaded nanogels presented remarkably higher antitumor efficacy against human colon carcinoma cells HT-29 xenograft nude mice model after intravenous administration. Accordingly, our results reinforced the potential means of CTS-poly(NIPAAm-co-AAm5.5) nanogels for the combination of thermal therapy and chemotherapy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2012-2021, 2014. PMID:24823900

Wang, Yajing; Xu, Hongjiang; Wang, Jiu; Ge, Liang; Zhu, Jiabi

2014-07-01

56

Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core.  

PubMed

For the development of an siRNA delivery system using polyion complexes (PICs) based on PEGylated nanogel consisting of a cross-linked poly[2-(N,N-diethylaminoethyl) methacrylate] (PEAMA) gel core and tethered poly(ethylene glycol) (PEG) chains, quaternary ammonium groups were introduced in the polyamine gel core to enhance the binding ability with siRNA and the stability of the PICs. Consequently, the quaternization of the polyamine core of the nanogel facilitated the binding ability with siRNA at a low N/P ratio, and the stability against polyanion displacement was enhanced as the degree of quaternization (DQ) of the nanogel increased. Although the installation of the positively charged quaternary ammonium moieties in the core of the nanogel resulted in the increment of the xi-potential of the PICs (e.g. + 23 mV for DQ=100%), the cytotoxicity was reduced with the increase of DQ presumably due to the hydrophilic character of the quaternary ammonium groups. The installation of quaternary ammonium groups in the core of the nanogel enhanced the endogenous gene silencing activity against the survivin gene in human hepatocarcinoma (HuH-7 cells), especially, the partly quaternized polyamine nanogel (DQ=10%) showed the highest gene silencing ability among the quaternized polyamine nanogels, including the tertiary amine nanogel. The cellular uptake analysis of the Rhodamine B-labeled Q-nanogel/fluorescein-labeled siRNA complex revealed that the quaternization of PEAMA moieties enhanced the cellular uptake level of fluorescein-labeled siRNA with the increase in DQ, whereas the cellular uptake of the Rhodamine B-labeled Q-nanogels was almost of the same level regardless of the DQ value, indicating that significant cellular uptake of the fluorescein-labeled siRNA is most likely due to the enhancement of the binding ability with siRNA in the serum-containing medium. Note that the endosomal escape efficiency was reduced with increase in the DQ value due to the decrease in the buffering capacity (tertiary amino groups) of the PEAMA core. On the basis of these results, the ratio of quaternary ammonium groups to tertiary amino groups in the core of the nanogel plays a pivotal role in the achievement of significant gene silencing through enhanced cellular uptake (quaternary ammonium groups) and subsequent endosomal escape (tertiary amino groups). PMID:20621664

Tamura, Atsushi; Oishi, Motoi; Nagasaki, Yukio

2010-09-15

57

Water soluble folate-chitosan nanogels crosslinked by genipin.  

PubMed

Folate-chitosan conjugates were prepared by a concurrent functionalization and crosslinking reaction with the natural crosslinker genipin. Genipin molecule was employed simultaneously as crosslinker agent and spacer molecule in order to allow the functionalization with folic acid for active tumor targeting. The reaction was carried out in reverse microemulsion which provided colloidal size and monodisperse particle size distribution. The water solubility of the obtained folate-genipin-chitosan nanogels was studied as function of the pH of the medium and all nanoparticles were totally dispersible at physiological pH. The enzymatic degradability of the nanogels in a lysozyme solution was evaluated at acidic and physiological pH. QELS analyses of the swelling behavior of the nanogels with the pH did not show a clear pH-sensitivity. However, the study on the loading and release capacity of 5-fluorouracil revealed an interesting pH-responsive behavior of the nanogels that makes them promising as nanodevices for targeted anticancer drug delivery. PMID:24299756

Pujana, Maite Arteche; Pérez-Álvarez, Leyre; Iturbe, L Carlos Cesteros; Katime, Issa

2014-01-30

58

COLON TARGETED DRUG DELIVERY SYSTEMS  

Microsoft Academic Search

Colon targeted drug delivery systems have the potential to deliver drugs for the treatment of a variety of colonic diseases and to deliver proteins and peptides to the colon for their systemic absorption. In recent years, various pharmaceutical approaches have been developed for targeting the drugs to the colon include, formation of prodrugs, coating of pH-sensitive polymers, use of colon

Ceyda Tuba

59

TARGETED DELIVERY OF INHALED PROTEINS  

EPA Science Inventory

ETD-02-047 (Martonen) GPRA # 10108 TARGETED DELIVERY OF INHALED PROTEINS T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5 1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

60

Liposomes interiorly thickened with thermosensitive nanogels as novel drug delivery systems.  

PubMed

The fundamental structure of liposomes suffers from drawbacks of physical instability. To overcome this problem, the hypothesis of this study was to thicken the liposomal interior by incorporating thermosensitive in situ gel. The so called gelliposomes (GLs) were prepared by a thin-film method using poloxamer solutions as interior aqueous phase. Interior thermosensitive gelation was proved by observation of sustained dissolving of the poloxamer gel after destroying the lipid bilayers with Triton X-100; structural transformation as observed under optical microscopy in a heating-cooling circle also proved the fact of interior gelling. The sol-gel transition temperatures of GLs were in good correlation with those of the bulk poloxamer solution counterparts, which could be easily tailored by adjusting the concentration and ratio of poloxamer 407 (P407) to poloxamer 188 (P188). Membrane anisotropy measurement indicated increased membrane rigidity. In vitro release of the model drug cytosine arabinoside from GLs showed sustained release characteristics for at least one week with typical biphasic kinetics. Study on storage stability and protection against the destroying effect by membrane destroyers indicated improved physical stability in comparison with conventional liposomes. In situ evading of phagocytic uptake by macrophages was observed for GLs, which however should be attributed to the effect of exteriorly adsorbed poloxamers. In conclusion, GLs present distinct characteristics to be used as potential drug delivery systems. PMID:23872301

Zhang, Bei; Chen, Jian; Lu, Yi; Qi, Jianping; Wu, Wei

2013-10-15

61

Aptamers for Targeted Drug Delivery  

PubMed Central

Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

Ray, Partha; White, Rebekah R.

2010-01-01

62

Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery.  

PubMed

A novel glucose-sensitive nanogel was conveniently prepared through one-pot thiol-ene copolymerization of pentaerythritol tetra(3-mercaptopropionate), poly(ethylene glycol) diacrylate, methoxyl poly(ethylene glycol) acrylate and N-acryloyl-3-aminophenylboronic acid. The formation of core-shell nanogel was verified by proton nuclear magnetic resonance, dynamic laser scattering (DLS) and transmission electron microscopy. The successful incorporation of phenylboronic acid (PBA) in the nanogel was confirmed through Fourier transform infrared spectroscopy, inductively coupled plasma mass spectrometry and fluorescence technology. Owing to the presence of PBA, the nanogel exhibited high glucose sensitivity in phosphate-buffered saline determined by DLS and fluorescence technology. The increased amount of glucose causes an increase in the hydrodrodynamic radius and a decrease in the fluorescence intensity of PBA-alizarin red S (ARS) complex in the nanogel at pH 7.4 because of the competitive substitution of ARS to form the hydrophilic PBA-glucose complex. ARS and insulin were loaded into this glucose-sensitive nanogel. In vitro release profiles revealed that the drug release from the nanogel could be triggered by the presence of glucose. The more glucose in the release medium, the more drug was released and the faster the release rate. Furthermore, in vitro methyl thiazolyl tetrazolium assay, lactate dehydrogenase assay and hemolysis test suggested that the nanogel was biocompatible. Therefore, the PBA-incorporated nanogel with high glucose-sensitivity and good biocompatibility may have great potential for self-regulated drug release. PMID:23403168

Zhao, Li; Xiao, Chunsheng; Ding, Jianxun; He, Pan; Tang, Zhaohui; Pang, Xuan; Zhuang, Xiuli; Chen, Xuesi

2013-05-01

63

Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: Enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core  

Microsoft Academic Search

For the development of an siRNA delivery system using polyion complexes (PICs) based on PEGylated nanogel consisting of a cross-linked poly[2-(N,N-diethylaminoethyl) methacrylate] (PEAMA) gel core and tethered poly(ethylene glycol) (PEG) chains, quaternary ammonium groups were introduced in the polyamine gel core to enhance the binding ability with siRNA and the stability of the PICs. Consequently, the quaternization of the polyamine

Atsushi Tamura; Motoi Oishi; Yukio Nagasaki

2010-01-01

64

Novel core–shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications  

Microsoft Academic Search

Novel core–shell poly(acrylamide) magnetic nanogels with controllable particle size produced via a photochemical method in an emulsion-free aqueous system at room temperature have been developed for the first time. After Hoffmann elimination of carbonyl, nanogels with amino groups, or poly(acrylamide-vinyl amine) magnetic nanogels, were also obtained. Particle size, size distributions and zeta potential of the magnetic nanogels before and after

Hanwen Sun; Jiahui Yu; Peijun Gong; Dongmei Xu; Chunfu Zhang; Side Yao

2005-01-01

65

Aptamer-targeted Antigen Delivery  

PubMed Central

Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8?+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-? and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines.

Wengerter, Brian C; Katakowski, Joseph A; Rosenberg, Jacob M; Park, Chae Gyu; Almo, Steven C; Palliser, Deborah; Levy, Matthew

2014-01-01

66

Nonviral approach for targeted nucleic acid delivery.  

PubMed

Despite their relatively lower efficiency, nonviral approaches are emerging as safer alternatives in gene therapy to viral vectors. Delivery of nucleic acids to the target site is an important factor for effective gene expression (plasmid DNA) or knockdown (siRNA) with minimal side effects. Direct deposition at the target site by physical methods, including ultrasound, electroporation and gene gun, is one approach for local delivery. For less accessible sites, the development of carriers that can home into the target tissue is required. Cationic peptides, lipoplexes, polyplexes and nanoplexes have been used as carriers for delivery of nucleic acids. Targeting ligands, such as cell targeting peptides, have also been applied to decorate delivery vehicles in order to enhance their efficacy. This review focuses on delivery strategies and recent progress in non-viral carriers and their modifications to improve their performance in targeting and transfection. PMID:22320298

Jafari, M; Soltani, M; Naahidi, S; Karunaratne, D N; Chen, P

2012-01-01

67

Membranes and Barriers: Targeted Drug Delivery.  

National Technical Information Service (NTIS)

Contents: Retrometabolic Approaches to Drug Targeting; Vector-Mediated Delivery of Opioid Peptides to the Brain; Conformationally Constrained Peptide Drugs Targeted at the Blood-Brain Barrier; Passive and Facilitative Transport of Nucleobases, Nucleosides...

R. S. Rapaka

1995-01-01

68

The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo.  

PubMed

Stimulus-responsive nanogels have potential as carriers for drugs targeting the skin. It is important to estimate the biocompatibility of such materials with the skin since they are directly in contact upon application and may induce irritation or inflammation. In the current work, blank (drug-free) polyN-isopropylacrylamide (polyNIPAM), poly(NIPAM copolymerized butyl acrylate) [poly(NIPAM-co-BA)], and poly(NIPAM copolymerized with 5% w/v acrylic acid) [poly(NIPAM-co-AAc)(5%)] nanogels were dosed onto freshly excised full-thickness porcine ear skin and the effects on the expression of cyclooxygenase-2 (COX-2) determined ex vivo by Western blotting. Modulated COX-2 expression was indicative that the material had penetrated the skin and keratinocytes of the viable epidermis. The poly(NIPAM-co-BA) nanogel was found to exert a proinflammatory response when applied topically, as reflected by 67% higher COX-2 expression relative to the control treatment (p = 0.0035). The data obtained for the poly(NIPAM-co-AAc)(5%) nanogel, on the other hand, indicated no significant modulation in the expression of COX-2 (p = 0.1578), suggesting the particles are compatible with skin. This was even the case in the presence of co-administered aqueous citric acid solution. Overall the data support the use of the multi-responsive poly(NIPAM-co-AAc)(5%) nanogel for triggered or controlled topical drug delivery applications. PMID:23194376

Abu Samah, Nor H; Heard, Charles M

2014-02-01

69

In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery  

Microsoft Academic Search

We report a class of polysaccharide-based hybrid nanogels that can integrate the functional building blocks for optical pH-sensing, cancer cell imaging, and controlled drug release into a single nanoparticle system, which can offer broad opportunities for combined diagnosis and therapy. The hybrid nanogels were prepared by in-situ immobilization of CdSe quantum dots (QDs) in the interior of the pH and

Weitai Wu; Michael Aiello; Ting Zhou; Alexandra Berliner; Probal Banerjee; Shuiqin Zhou

2010-01-01

70

Polymers for colon targeted drug delivery.  

PubMed

The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems. PMID:21969739

Rajpurohit, H; Sharma, P; Sharma, S; Bhandari, A

2010-11-01

71

Polymers for Colon Targeted Drug Delivery  

PubMed Central

The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems.

Rajpurohit, H.; Sharma, P.; Sharma, S.; Bhandari, A.

2010-01-01

72

Surfactant-free synthesis of biodegradable, biocompatible, and stimuli-responsive cationic nanogel particles.  

PubMed

Nanogels have attracted much attention lately because of their many potential applications, including as nanocarriers for drug and gene delivery. Most nanogels reported previously, however, are not biodegradable, and their synthesis often requires the use of surfactants. Herein we report a surfactant-free method for the preparation of biodegradable, biocompatible, and stimuli-responsive cationic nanogels. The nanogels were synthesized by simply coaservating linear polymer precursors in mixed solvents followed by in situ cross-linking with homobifunctional cross-linkers. The versatility of this approach has been demonstrated by employing two different polymers and various cross-linkers to prepare nanogel particles with diameters ranging from 170 to 220 nm. Specifically, disulfide-containing tetralysine (TetK)- and oligoethylenimine (OEI)-based prepolymers were prepared and the subsequent nanogels were formed by covalently cross-linking the polymer coacervate phase. Nanogel particles are responsive to pH changes, increasing in size and zeta-potential with concomitant lowering of solution pH. Furthermore, as revealed by AFM imaging, nanogel particles were degradable in the presence of glutathione at concentrations similar to those in intracellular environment (10 mM). Both the nanogel and the polymer precursors were determined to exhibit minimal cytotoxicity against fibroblast 3T3 cells by flow cytometric analyses and fluorescent imaging. This study demonstrates a new surfactant-free method for preparing biodegradable, biocompatible, and stimuli-responsive nanogels as potential nanocarriers for the delivery of drugs and genes. PMID:24047127

Urakami, Hiromitsu; Hentschel, Jens; Seetho, Kellie; Zeng, Hanxiang; Chawla, Kanika; Guan, Zhibin

2013-10-14

73

Synthesis and characterization of NIR-responsive Aurod@pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents  

NASA Astrophysics Data System (ADS)

A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV-vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.

Shang, Ting; Wang, Cai-ding; Ren, Lei; Tian, Xin-hua; Li, Dong-hui; Ke, Xue-bin; Chen, Min; Yang, An-qi

2013-01-01

74

Synthesis and characterization of NIR-responsive Aurod@pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents  

PubMed Central

A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV–vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.

2013-01-01

75

ENDOCYTIC MECHANISMS FOR TARGETED DRUG DELIVERY  

PubMed Central

Advances in the delivery of targeted drug systems have evolved to enable highly regulated site specific localization to subcellular organelles. Targeting therapeutics to individual intracellular compartments has resulted in benefits to therapies associated with these unique organelles. Endocytosis, a mechanism common to all cells in the body, internalizes macromolecules and retains them in transport vesicles which traffic along the endolysosomal scaffold. An array of vesicular internalization mechanisms exist, therefore understanding the key players specific to each pathway has allowed researchers to bioengineer macromolecular complexes for highly specialized delivery. Membrane specific receptors most frequently enter the cell through endocytosis following the binding of a high affinity ligand. High affinity ligands interact with membrane receptors, internalize in membrane bound vesicles, and traffic through cells in different manners to allow for accumulation in early endosomal fractions or lysosomally associated fractions. Although most drug delivery complexes aim to avoid lysosomal degradation, more recent studies have shown the clinical utility in directed protein delivery to this environment for the enzymatic release of therapeutics. Targeting nanomedicine complexes to the endolysosomal pathway have serious potential for improving drug delivery for the treatment of lysosomal storage diseases, cancer, and Alzheimer’s disease. Although several issues remain for receptor specific targeting, current work is investigating a synthetic receptor approach for high affinity binding of targeted macromolecules.

Bareford, Lisa M.; Swaan, Peter W.

2007-01-01

76

Nanoparticles for intracellular-targeted drug delivery  

NASA Astrophysics Data System (ADS)

Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

2011-12-01

77

Application of activated nucleoside analogs for the treatment of drug-resistant tumors by oral delivery of nanogel-drug conjugates  

PubMed Central

A majority of nanoencapsulated drugs that have shown promise in cancer chemotherapy are administered intravenously. Development of effective oral nanoformulations presents a very challenging medical goal. Here, we describe successful applications of innovative polymeric nanogels in the form of conjugates with activated nucleoside analogs for oral administration in cancer chemotherapy. Previously, we reported the synthesis of amphiphilic polyvinyl alcohol and dextrin-based nanogel conjugates with the phosphorylated 5-FU nucleoside Floxuridine and demonstrated their enhanced activity against regular and drug-resistant cancers[1]. In this study, we synthesized and evaluated oral applications of nanogel conjugates of a protected Gemcitabine, the drug never used in oral therapies. These conjugates were able to quickly release an active form of the drug (Gemcitabine 5?-mono-, di- and triphosphates) by specific enzymatic activities, or slowly during hydrolysis. Gemcitabine conjugates demonstrated up to 127 times higher in vitro efficacy than the free drug against various cancer cells, including the lines resistant to nucleoside analogs. Surprisingly, these nanogel-drug conjugates were relatively stable in gastric conditions and able to actively penetrate through the gastrointestinal barrier based on permeability studies in Caco-2 cell model. In tumor xenograft models of several drug-resistant human cancers, we observed an efficient inhibition of tumor growth and extended the life-span of the animals by 4 times that of the control with orally treated Gemcitabine- or Floxuridine-nanogel conjugates. Thus, we have demonstrated a potential of therapeutic nanogel conjugates with the activated and stabilized Gemcitabine as a successful oral drug form against Gemcitabine-resistant and other drug-resistant tumors.

Senanayake, Thulani H.; Warren, Galya; Wei, Xin; Vinogradov, Serguei V.

2013-01-01

78

Application of activated nucleoside analogs for the treatment of drug-resistant tumors by oral delivery of nanogel-drug conjugates.  

PubMed

A majority of nanoencapsulated drugs that have shown promise in cancer chemotherapy are administered intravenously. Development of effective oral nanoformulations presents a very challenging medical goal. Here, we describe successful applications of innovative polymeric nanogels in the form of conjugates with activated nucleoside analogs for oral administration in cancer chemotherapy. Previously, we reported the synthesis of amphiphilic polyvinyl alcohol and dextrin-based nanogel conjugates with the phosphorylated 5-FU nucleoside Floxuridine and demonstrated their enhanced activity against regular and drug-resistant cancers (T.H. Senanayake, G. Warren, S.V. Vinogradov, Novel anticancer polymeric conjugates of activated nucleoside analogs, Bioconjug. Chem. 22 (2011) 1983-1993). In this study, we synthesized and evaluated oral applications of nanogel conjugates of a protected Gemcitabine, the drug never used in oral therapies. These conjugates were able to quickly release an active form of the drug (Gemcitabine 5'-mono-, di- and triphosphates) by specific enzymatic activities, or slowly during hydrolysis. Gemcitabine conjugates demonstrated up to 127 times higher in vitro efficacy than the free drug against various cancer cells, including the lines resistant to nucleoside analogs. Surprisingly, these nanogel-drug conjugates were relatively stable in gastric conditions and able to actively penetrate through the gastrointestinal barrier based on permeability studies in Caco-2 cell model. In tumor xenograft models of several drug-resistant human cancers, we observed an efficient inhibition of tumor growth and extended the life-span of the animals by 3 times that of the control with orally treated Gemcitabine- or Floxuridine-nanogel conjugates. Thus, we have demonstrated a potential of therapeutic nanogel conjugates with the activated and stabilized Gemcitabine as a successful oral drug form against Gemcitabine-resistant and other drug-resistant tumors. PMID:23385032

Senanayake, Thulani H; Warren, Galya; Wei, Xin; Vinogradov, Serguei V

2013-04-28

79

Targeted prodrug design to optimize drug delivery  

Microsoft Academic Search

Classical prodrug design often represents a nonspecific chemical approach to mask undesirable drug properties such as limited\\u000a bioavailability, lack of site specificity, and chemical instability. On the other hand, targeted prodrug design represents\\u000a a new strategy for directed and efficient drug delivery. Particularly, targeting the prodrugs to a specific enzyme or a specific\\u000a membrane transporter, or both, has potential as

Hyo-Kyung Han; Gordon L. Amidon

2000-01-01

80

Controlled release of cisplatin from pH-thermal dual responsive nanogels.  

PubMed

In this study, a pH-thermal dual responsive nanogel was applied for cisplatin (CDDP) delivery. CDDP was loaded into the nanogels via conjugation with the carboxyl groups in the nanogels. The conjugation was confirmed by FTIR and XPS. The bonding between CDDP and COOH can be broken by the H(+) or Cl(-). We found that the CDDP released much faster at more acidic environment. The Cl(-) concentration in the human body is about 95-105 mm. The conjugated bond could be easily attacked by Cl(-) while the nanosystem is injected into the body. In order to diminish the Cl(-) triggering release of CDDP from the nanogels, we introduced a thermal-responsive units-NIPAm into the nanogel structure. After NIPAm introduced, the CDDP released much slower from the nanogels at 37 °C in pH = 7.38 buffer in the present of Cl(-) (150 mm) than that without NIPAm. And the CDDP also released slower from the nanogels at 37 °C than at 25 °C. By in vitro release behavior studying, we found that CDDP release from the NIPAm containing nanogels can be accelerated by H(+) attacking and reduced by temperature arising. By cellular uptake observation, we found that the nanogels were mainly localized in the cytoplasm of the cancer cells. The CDDP-loaded nanogels exhibited longer circulation time in vivo while compared to free CDDP. And it has better anti-cancer performance than free CDDP in vivo therapy of breast cancer in mice model. Furthermore, some side effects of CDDP, such as renal toxicity, phlebitis, bone marrow suppression etc. have also been reduced by nanogels loading. The in vitro and in vivo results demonstrated that the dual responsible nanogel is a suitable CDDP delivery candidate. PMID:23948167

Peng, Jinrong; Qi, Tingting; Liao, Jinfeng; Chu, Bingyang; Yang, Qian; Li, Wenting; Qu, Ying; Luo, Feng; Qian, Zhiyong

2013-11-01

81

Targeted gene delivery to dendritic cells  

US Patent & Trademark Office Database

Methods and compositions are provided for delivery of a polynucleotide encoding a gene of interest, typically an antigen, to a dendritic cell (DC). The virus envelope comprises a DC-SIGN specific targeting molecule. The methods and related compositions can be used to treat patients suffering from a wide range of conditions, including infection, such as HIV/AIDS, and various types of cancers.

2012-09-25

82

Targeted drug delivery via the folate receptor  

Microsoft Academic Search

The folate receptor is a highly selective tumor marker overexpressed in greater than 90% of ovarian carcinomas. Two general strategies have been developed for the targeted delivery of drugs to folate receptor-positive tumor cells: by coupling to a monoclonal antibody against the receptor and by coupling to a high affinity ligand, folic acid. First, antibodies against the folate receptor, including

Jennifer Sudimack; Robert J Lee

2000-01-01

83

Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT.  

PubMed

A dual-function nano-system for synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) was constructed. Gold nanorods (GNRs) as a PTT agent and chlorin e6 (Ce6) as a photosensitizer (PS) for PDT were loaded into a chitosan-functionalized, Pluronic-based nanogel that was proven to be an efficient delivery vehicle to the tumor site in vivo. Previously reported combined therapy systems relied on quenching and de-quenching of PS for PDT upon thermo-impact of PTT, thus only PTT followed by PDT procedure was possible. In contrast, the present dual-acting system has no quenching between PS and GNRs by preventing direct contact and self-aggregation of photo-sensitizers, allowing independent PDT or PTT procedure. In both in vitro cell culture and in vivo tumor-bearing mice experiments, a remarkably enhanced tumor ablation compared to the treatment of PDT or PTT only was observed by the treatment of PDT followed by PTT, but not significantly by the treatment of PTT followed by PDT. Thus, the present study demonstrated the synergistic effect of PDT and PTT in a sequence-dependent manner, and our system is a promising dual function nano system to achieve the enhanced phototherapy in vivo. PMID:23860187

Kim, Ja-Young; Choi, Won Il; Kim, Manse; Tae, Giyoong

2013-10-28

84

Comparison of Nanogel Drug Carriers and Their Formulations with Nucleoside 5?-Triphosphates  

PubMed Central

Purpose To synthesize and characterize nanogel carriers composed of amphiphilic polymers and cationic polyethylenimine for encapsulation and delivery of cytotoxic nucleoside analogs 5?-triphosphates (NTP) into cancer cells. Methods Nanogels were synthesized by a novel micellar approach and compared with carriers prepared by the emulsification/evaporation method. Complexes of nanogels with NTP were prepared; particle size and in vitro drug release were characterized. Resistance of the nanogel-encapsulated NTP to enzymatic hydrolysis was analyzed by ion-pair HPLC. Binding to isolated cellular membranes, cellular accumulation and cytotoxicity were compared using breast carcinoma cell lines CL-66, MCF-7 and MDA-MB-231. In vivo biodistribution of the 3H-labeled NTP encapsulated in different types of nanogels was evaluated in comparison to the injected NTP alone. Results Nanogels with a particle size of 100–300 nm in the unloaded form and less than 140 nm in the NTP-loaded form were prepared. An in vitro release of NTP was ?50% during the first 24 h. Nanogel formulations ensured increased NTP drug stability against enzymatic hydrolysis as compared to the drug alone. Pluronic®-based nanogels NG(F68), NG(F127), NG(P85) and NGM(P123) demonstrated 2–2.5 times enhanced interaction with cellular membranes and association with various cancer cells compared to NG(PEG). Among them NG(F68) and NG(F127) exhibited the lowest cytotoxicity. Injection of nanogel-formulated NTP significantly modulated the drug accumulation in different mouse organs. Conclusions Nanogels composed of Pluronic® F68 and P123 were shown to display certain advanced properties compared to NG(PEG) as a drug delivery system for NTP analogs. Formulations of nucleoside analogs in active NTP form with these nanogels will improve the delivery of these cytotoxic drugs to cancer cells and the therapeutic potential of this anti-cancer chemotherapy.

Vinogradov, Serguei V.; Kohli, Ekta; Zeman, Arin D.

2006-01-01

85

Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy.  

National Technical Information Service (NTIS)

This Synergistic IDEA project seeks to develop a novel strategy to effectively target ErbB2-overexpressing breast cancer with anti-ErbB2 antibody coated nanogels carrying potent chemotherapeutics in combination with HSP90 inhibitors to enhance the endocyt...

T. Bronich

2012-01-01

86

Integrin Targeted Delivery of Gene Therapeutics  

PubMed Central

Integrins have become key targets for molecular imaging and for selective delivery of anti-cancer agents. Here we review recent work concerning the targeted delivery of antisense and siRNA oligonucleotides via integrins. A variety of approaches have been used to link oligonucleotides to ligands capable of binding integrins with high specificity and affinity. This includes direct chemical conjugation, incorporating oligonucleotides into lipoplexes, and use of various polymeric nanocarriers including dendrimers. The ligand-oligonucleotide conjugate or complex associates selectively with the integrin, followed by internalization into endosomes and trafficking through subcellular compartments. Escape of antisense or siRNA from the endosome to the cytosol and nucleus may come about through endogenous trafficking mechanisms, or because of membrane disrupting capabilities built into the conjugate or complex. Thus a variety of useful strategies are available for using integrins to enhance the pharmacological efficacy of therapeutic oligonucleotides.

Juliano, Rudy L; Ming, Xin; Nakagawa, Osamu; Xu, Rongzuo; Yoo, Hoon

2011-01-01

87

Functionalized nanospheres for targeted delivery of paclitaxel.  

PubMed

Targeted delivery of anti-cancer agents to cancer cells is a mature line of investigation that has yet to realize its full potential. In this study we report on the development of a delivery platform with the future goal of merging two thus far parallel methods for selective elimination of cancer cells: targeted nanospheres and pretargeted radioimmunotherapy. Several clinical trials have shown the promise of pretargeted radioimmunotherapy, which leverages the specificity of antibodies for targeted cell populations and delivers a localized dose of a biotinylated radionuclide that is most often administered following binding of a biotinylated antibody and streptavidin (StA) to the target cells. The work presented here describes the development of biotinylated nanospheres based on an ABA-type copolymer comprised of a tyrosine-derived oligomer as the B-block and poly(ethylene glycol) (PEG) A-blocks. The biotinylated nanospheres encapsulate paclitaxel (PTX) to the same extent as unbiotinylated nanospheres. Efficacy of targeting was shown on CD44 positive cells in the SUM159 breast cancer cell line by incubating the cells sequentially with a biotinylated anti-CD44 antibody, StA and the biotinylated nanospheres encapsulating PTX. Targeted nanospheres achieved the half maximal inhibitory concentration of PTX on SUM159 cells at a 5-10 fold lower concentration than that of PTX applied in either non-targeted nanospheres or free drug approaches. Moreover, targeted nanospheres selectively eliminated CD44 positive SUM159 cells compared to free PTX and untargeted nanospheres. This new generation of nano-sized carrier offers a versatile platform that can be adopted for a wide variety of drug and target specific applications and has the potential to be combined with the clinically emerging method of pretargeted radioimmunotherapy. PMID:23792807

Bushman, Jared; Vaughan, Asa; Sheihet, Larisa; Zhang, Zheng; Costache, Marius; Kohn, Joachim

2013-11-10

88

Influence of Charge and Network Inhomogeneities on the Swollen-Collapsed Transition in Polyelectrolyte Nanogels  

NASA Astrophysics Data System (ADS)

Polyelectrolyte nanogels are sub-microscopic networks of solvent-permeated polyelectrolyte chains that undergo large reversible volume changes for a range of environmental stimuli. This volume phase transition behavior finds use in targeted drug delivery, optical switching in photonic crystals, and many other applications that require controlled tunability. Although the strength of electrostatic interactions have a strong influence on the nanogel response, these interactions are not well captured by the classical mean-field theories of macroscopic gels. We develop a simplified Poisson-Boltzmann model of spherical gels, that highlights the importance of charge inhomogeneities and the associated Coulomb interactions in determining the response of gels. Our analysis reveals that nanometer-sized gels, collapsed gels, and gels in media with low salinity or high dielectric constant, have large regions of excess charge, and show clear deviations from the classical Donnan picture of polyelectrolyte gels. The detailed swelling-collapse behavior is obtained using the theoretically-informed coarse-grained simulations, which includes the effects of network imperfections and thermal fluctuations. The simulations capture the universal features of volume phase transition in nanogels.

Jha, Prateek; Zwanikken, Jos; Detcheverry, François; de Pablo, Juan; Olvera de La Cruz, Monica

2012-02-01

89

Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics.  

PubMed

Hollow hybrid nanogels were prepared first by the coassembly of the citric acid-coated superparamagnetic iron oxide nanoparticles (SPIONs, 44 wt %) with the graft copolymer (56 wt %) comprising acrylic acid and 2-methacryloylethyl acrylate units as the backbone and poly(ethylene glycol) and poly(N-isopropylacrylamide) as the grafts in the aqueous phase of pH 3.0 in the hybrid vesicle structure, followed by in situ covalent stabilization via the photoinitiated polymerization of MEA residues within vesicles. The resultant hollow nanogels, though slightly swollen, satisfactorily retain their structural integrity while the medium pH is adjusted to 7.4. Confining SPION clusters to such a high level (44 wt %) within the pH-responsive thin gel layer remarkably enhances the transverse relaxivity (r2) and renders the MR imaging highly pH-tunable. For example, with the pH being adjusted from 4.0 to 7.4, the r2 value can be dramatically increased from 138.5 to 265.5 mM(-1) s(-1). The DOX-loaded hybrid nanogels also exhibit accelerated drug release in response to both pH reduction and temperature increase as a result of the substantial disruption of the interactions between drug molecules and copolymer components. With magnetic transport guidance toward the target and subsequent exposure to an alternating magnetic field, this DOX-loaded nanogel system possessing combined capabilities of hyperthermia and stimuli-triggered drug release showed superior in vitro cytotoxicity against HeLa cells as compared to the case with only free drug or hyperthermia alone. This work demonstrates that the hollow inorganic/organic hybrid nanogels hold great potential to serve as a multimodal theranostic vehicle functionalized with such desirable features as the guidable delivery of stimuli-mediated diagnostic imaging and hyperthermia/chemotherapies. PMID:23627806

Chiang, Wen-Hsuan; Ho, Viet Thang; Chen, Hsin-Hung; Huang, Wen-Chia; Huang, Yi-Fong; Lin, Sung-Chyr; Chern, Chorng-Shyan; Chiu, Hsin-Cheng

2013-05-28

90

Natural polypeptide-based supramolecular nanogels for stable noncovalent encapsulation.  

PubMed

Supramolecular nanogel, a physically cross-linked nanosize hydrogel, spontaneously self-assembles in aqueous solution via secondary interactions and is thus of great interest in nanomedicine as a drug carrier. We developed a versatile method for supramolecular nanogel self-assembled by electrostatic interaction between positive surfactant micelles and negative polypeptides. Core-shell-like structures of supramolecular nanogels provide stable hydrophobic pockets that prevent simple diffusion of hydrophobic guest molecules, resulting in high encapsulation stability. The size of the supramolecular nanogels can be systematically controlled by varying the size of the surfactant micelles. Furthermore, noncovalently encapsulated dye molecules can be released in response to matrix metalloproteinases highly overexpressed in tumor tissues, potentially providing tumor-triggered targeting. PMID:23962280

Kim, Keunsuk; Bae, Boram; Kang, Young Ji; Nam, Jwa-Min; Kang, Sebyung; Ryu, Ja-Hyoung

2013-10-14

91

Hollow core-porous shell structure poly(acrylic acid) nanogels with a superhigh capacity of drug loading.  

PubMed

Poly(acrylic acid) (PAA) nanogels with a hollow core-porous shell structure were prepared by the direct polymerization of an acrylic acid monomer in the presence of hydroxypropylcellulose (HPC) and a cross-linking agent, N,N-methylenebisacrylamide, followed by removal of HPC from the generated HPC-PAA nanoparticles in a basic environment. The properties of PAA nanogel were characterized by dynamic light scattering, FT-IR, transmission electron microscopy, and atomic force microscopy. It is found that the nanogels have a hollow core-porous shell structure. Protein, bovine serum albumin (BSA), and an antitumor agent, doxorubicin hydrochloride, were used as model drugs to investigate their loading abilities as versatile drug-delivery vehicles. The nanogel exhibits surprisingly high loading ability to both protein and small molecular drugs. For example, the maximum BSA loading capacity of PAA nanogel can reach as high as 800% (i.e., 1 mg of nanogel can load about 8.0 mg of BSA). This high loading capacity may be related with the hollow core-porous shell structure of PAA nanogels. PAA nanogels have also shown sustained drug release properties and can cross biological barriers to deliver loaded cargo inside cells. Considering the high stability of the materials, simple and mild preparation procedure, high loading capacity, sustained-release property, and ability to protect biological agents from denaturation, PAA nanogels should be promising drug-delivery carriers for drug-delivery systems. PMID:21080640

Chen, Ying; Zheng, Xianchuang; Qian, Hanqing; Mao, Zhiqing; Ding, Dan; Jiang, Xiqun

2010-12-01

92

Nanogel scavengers for drugs: Local anesthetic uptake by thermoresponsive nanogels  

PubMed Central

The use of functional nanogels based on poly(N-isopropylacrylamide) for effectively scavenging compounds (here, the model drug bupivacaine) is demonstrated using an in vitro cell-based assay. Nanogels containing higher loadings of acidic functional groups or more core-localized functional group distributions bound more bupivacaine, while nanogel size had no significant effect on drug binding. Increasing the dose of nanogel applied also facilitated more bupivacaine binding for all nanogel compositions tested. Binding was driven predominantly by acid-base interactions between the nanogels (anionic) and bupivacaine (cationic) at physiological pH, although both non-specific absorption and hydrophobic partitioning also contributed to drug scavenging. Nanogels exhibited minimal cytotoxicity to multiple cell types and were well-tolerated in vivo via peritoneal injections, although larger nanogels caused limited splenic toxicity at higher concentrations. The cell-based assay described herein is found to facilitate more robust drug uptake measurements for nanogels than conventional centrifugation-based assays, in which nanogels can be compressed (and thus drug released) during the measurement.

Hoare, Todd; Sivakumaran, Daryl; Stefanescu, Cristina; Lawlor, Michael W.; Kohane, Daniel S.

2012-01-01

93

New Approaches to Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

For targeted drug delivery, one of the primary drawbacks lies with the inability to design a delivery system that can be loaded with a variety of drugs and biomolecules. Motivated by this challenge, we will present data showing 400 nm liposomes loaded via the novel method of lysenin pores. These pores are approximately 3 nm in diameter and can be closed with divalent and trivalent ions in addition to charged polymers. This new method allows for the controllable passage of large biomolecules such as DNA and protein without the inherent problems common to active and passive loading methods. We will show proof-of-concept results of this method using fluorescent calcein as a drug simulator. Furthermore, data demonstrating current attempts at loading DNA will also be presented.

Cooper, James; Oliver, William; Fologea, Daniel

2013-03-01

94

Targeted delivery of colloids by swimming bacteria  

PubMed Central

The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems.

Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

2014-01-01

95

Targeted delivery of colloids by swimming bacteria  

NASA Astrophysics Data System (ADS)

The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems.

Koumakis, N.; Lepore, A.; Maggi, C.; di Leonardo, R.

2013-10-01

96

Thermoresponsive nanogels for prolonged duration local anesthesia  

PubMed Central

Nanogels based on poly(N-isopropylacrylamide) are attractive vehicles for prolonged duration local anesthesia because of their tunable size, number of functional groups, thermoresponsiveness, and their anionic charge. Nerve block durations of up to nine hours were achieved using acrylic acid-loaded nanogels loaded with bupivacaine. Increasing the anionic charge density of the nanogels or (for more highly acid-functionalized nanogels) decreasing the nanogel size facilitated longer duration anesthetic release. Small (<300 nm diameter) nanogels formed dense aggregates upon injection in vivo and induced only mild inflammatory responses, while large (>500 nm diameter) nanogels typically remained as liquid-like residues in vivo and induced more severe inflammatory reactions.

Hoare, Todd; Young, Stuart; Lawlor, Michael W.; Kohane, Daniel S.

2012-01-01

97

Stimuli-responsive smart nanogels for cancer diagnostics and therapy.  

PubMed

This article discusses stimuli-responsive poly(ethylene glycol) (PEG)-coated (PEGylated) nanogels and their biomedical applications. Preparation and characterization of stimuli-responsive PEGylated nanogels composed of a crosslinked poly(2-[N,N-diethylamino]ethyl methacrylate) (PEAMA) core and PEG tethered chains are initially described. Stimuli-responsive PEGylated nanogels show unique properties and functions in synchronizing with the reversible volume phase transition of the PEAMA core in response to the extracellular pH (7-6.5) of a tumor environment as well as endosomal/lysosomal pH (6.5-5.0) and temperature. We list several biomedical applications of stimuli-responsive PEGylated nanogels, including (19)F magnetic resonance spectroscopic imaging (MRS/I) probe to visualize acidosis (tumor tissue), intracellular drug and siRNA delivery, antennas for cancer photothermal therapy and apoptosis probe for monitoring response to cancer therapy. Thus, stimuli-responsive PEGylated nanogels can be utilized as smart nanomedicines for cancer diagnostics and therapy. PMID:20394537

Oishi, Motoi; Nagasaki, Yukio

2010-04-01

98

Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy  

NASA Astrophysics Data System (ADS)

Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy.Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. Electronic supplementary information (ESI) available: Synthesis and characterization of compounds, dynamic time sweep, H&E result and body weight change of mice. See DOI: 10.1039/c3nr02937a

Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

2013-09-01

99

Comparison of Nanogel Drug Carriers and their Formulations with Nucleoside 5?-Triphosphates  

Microsoft Academic Search

\\u000a Purpose  The aim of the study is to synthesize and characterize nanogel carriers composed of amphiphilic polymers and cationic polyethylenimine\\u000a for encapsulation and delivery of cytotoxic nucleoside analogs 5?-triphosphates (NTPs) into cancer cells.\\u000a \\u000a \\u000a \\u000a Methods  Nanogels were synthesized by a novel micellar approach and compared with carriers prepared by the emulsification\\/evaporation\\u000a method. Complexes of nanogels with NTP were prepared; particle size and in

Serguei V. Vinogradov; Ekta Kohli; Arin D. Zeman

2006-01-01

100

Progress in Aptamer-Mediated Drug Delivery Vehicles for Cancer Targeting and Its Implications in Addressing Chemotherapeutic Challenges  

PubMed Central

Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics.

Zhu, Jie; Huang, He; Dong, Shiwu; Ge, Liang; Zhang, Yuan

2014-01-01

101

Nanogel DDS enables sustained release of IL12 for tumor immunotherapy  

Microsoft Academic Search

For a valid cytokine immunotherapy of malignancies, a suitable delivery system that ensures slow-release of cytokines is required, because short half-life in vivo of the molecules ruins therapeutic efficacy while causing severe systemic toxic effects. We previously showed that the cholesterol-bearing pullulan (CHP)-based hydrogel nanoparticles, or nanogel, encapsulates, stabilizes and releases various molecules. Here we applied this nanogel to administration

Takeshi Shimizu; Tsunao Kishida; Urara Hasegawa; Yuji Ueda; Jiro Imanishi; Hisakazu Yamagishi; Kazunari Akiyoshi; Eigo Otsuji; Osam Mazda

2008-01-01

102

Giant Fullerenes for Target Specific Drug Delivery  

NASA Astrophysics Data System (ADS)

Carbon nano-structures, such as giant fullerenes, have a great potential for biological and medical applications. Most of the previous research is dedicated to investigate the use of fullerenes as vehicles for carrying medication which is chemisorbed on the outside surface of the fullerenes. In contrast, using fullerenes as an enclosure was largely abandoned due to the high strength of the carbon-carbon bonds which has been perceived to prevent the rupturing of the fullerene to release their cargo. We performed atomistic computations based on classical force fields that will address this perception. Specifically we explore the physics and chemistry of OH functionalized carbon based giant fullerenes with diameters from 0.72 nm (60 atoms) to 5.7 nm (3840 atoms). The preliminary results show that OH functionalization on these fullerenes is not only viable but also provides a pH sensitive release mechanism. Furthermore our current results show that carbon-carbon bonds can be broken in low energy biological environments in the presence of a flow induced strain field. These insights may have implications for target specific drug delivery in general and cancer treatment in particular.

Courtney, Robert; Kiefer, Boris

2013-03-01

103

Radiolabeled nanogels for nuclear molecular imaging.  

PubMed

An efficient and simple synthesis approach to form stable (68) Ga-labeled nanogels is reported and their fundamental properties investigated. Nanogels are obtained by self-assembly of amphiphilic statistical prepolymers derivatised with chelating groups for radiometals. The resulting nanogels exhibit a well-defined spherical shape with a diameter of 290 ± 50 nm. The radionuclide (68) Ga is chelated in high radiochemical yields in an aqueous medium at room temperature. The phagocytosis assay demonstrates a highly increased internalization of nanogels by activated macrophages. Access to these (68) Ga-nanogels will allow the investigation of general behavior and clearance pathways of nanogels in vivo by nuclear molecular imaging. PMID:23423755

Singh, Smriti; Bingöl, Bahar; Morgenroth, Agnieszka; Mottaghy, Felix M; Möller, Martin; Schmaljohann, Jörn

2013-04-12

104

Strategies for combination of aptamer and targeted drug delivery.  

PubMed

Cell-specific delivery of active agents for treatment of human disease is a long cherished object for scientific researchers. Nanoscience generated nanosized carriers, such as liposome, micelle and nanoparticle, provides potential to realize such purpose based on the nanometer size effect (< 1000 nm), however, the sole nanocarrier with no specific ligands are not sufficient to deliver drugs to target sites. Aptamers are single-stranded oligonucleotides which can specifically recognize and bind to target cells by distinct secondary and tertiary structures even without knowledge of characteristic protein profiles on cell surface. Thus, aptamer, as a target moiety, provides a potential approach to realize pathological site-specific delivery of active agents. This review highlighted the strategies for combination of aptamer and targeted drug delivery, further summarized their preparation methods, strengths and weaknesses to facilitate the development of targeted drug delivery system. PMID:24730278

Wang, Cheng; Liu, Biao; Lu, Jun; Zhang, Ge; Lu, Aiping

2014-01-01

105

Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy.  

PubMed

Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. PMID:23982346

Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

2013-10-21

106

Formulations of biodegradable Nanogel carriers with 5?-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity  

PubMed Central

Therapies including nucleoside analogs are associated with severe toxic side effects and acquirement of drug resistance. We have previously reported the drug delivery in the form of 5?-triphosphates (NTP) encapsulated in cross-linked cationic networks of polyethylenimine (PEI) and PEG/Pluronic® polymers (Nanogels). In this study, Nanogels, containing biodegradable PEI that could easily dissociate in reducing cytosolic environment and form products with minimal toxicity, were synthesized and displayed low cytotoxicity. Toxicity of Nanogels was clearly dependent on the total positive charge of carriers and was 5–6-fold lower for carriers loaded with NTP. Though intracellular ATP level was immediately reduced by ca. 50% following the treatment with Nanogels, it was largely restored 24 h later. Effect of Nanogels on various respiratory components of cells was reversible too, and, therefore, resulted in low immediate cell death. Nanogel alone and formulations with AZT-TP demonstrated a much lower mitochondrial toxicity than AZT. As an example of potential antiviral applications of low-toxic Nanogel carriers, a 5?-triphosphorylated Ribavirin-Nanogel formulation was prepared that demonstrated a 30-fold decrease in effective drug concentration (EC90) and, totally, a 10-fold increase in selectivity index compared to the drug alone in MDCK cells infected with influenza A virus.

Kohli, Ekta; Han, Huai-Yun; Zeman, Arin D.; Vinogradov, Serguei V.

2007-01-01

107

Synthesis of Nanogel-Protein Conjugates  

PubMed Central

The covalent conjugation of bovine serum albumin (BSA) to disulfide cross-linked polymeric nanogels is reported. Polymeric nanogel precursors were synthesized via a reversible addition-fragmentation chain transfer (RAFT) random copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and pyridyl disulfide methacrylate (PDSMA). Reaction of the p(PEGMA-co-PDSMA) with dithiothreitol resulted in the formation of nanogels. PDSMA serves as both a crosslinking agent and a reactive handle for the surface modification of the nanogels. Lipophilic dye, DiI, was sequestered within the nanogels by performing the crosslinking reaction in the presence of the hydrophobic molecule. Thiol-enriched BSA was conjugated to nanogels loaded with DiI via a disulfide reaction between the BSA and the surface exposed nanogel pyridyl disulfides. Conjugation was confirmed by fast protein liquid chromatography, dynamic light scattering, and agarose and polyacrylamide gel electrophoresis. We expect that this methodology is generally applicable to the preparation of nanogel-protein therapeutics.

Chacko, Reuben T.; Maynard, Heather D.; Thayumanavan, S.

2014-01-01

108

pH-Responsive PEGylated nanogels as targetable and low invasive endosomolytic agents to induce the enhanced transfection efficiency of nonviral gene vectors  

Microsoft Academic Search

A pH-responsive PEGylated nanogel was successfully prepared by means of emulsion copolymerization of 2-(N,N-diethylamino)ethyl methacrylate (AMA) with heterobifunctional poly(ethylene glycol) (PEG) bearing a 4-vinylbenzyl group at\\u000a the ?-end and a lactose moiety at the ?-end in the presence of potassium persulfate and ethyleneglycol dimethacrylate as a\\u000a cross-linker. Polyplex micelle composed of PEG-block-poly(l-lysine) copolymer and plasmid DNA (PEG-b-PLL\\/pDNA) exhibited a far

Motoi Oishi; Hisato Hayashi; Keiji Itaka; Kazunori Kataoka; Yukio Nagasaki

2007-01-01

109

Nanocarriers targeting dendritic cells for pulmonary vaccine delivery.  

PubMed

Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most 'professional' antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation. PMID:23054093

Kunda, Nitesh K; Somavarapu, Satyanarayana; Gordon, Stephen B; Hutcheon, Gillian A; Saleem, Imran Y

2013-02-01

110

Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging.  

PubMed

Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications. PMID:24881520

Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin

2014-06-12

111

Targeted drug delivery by thermally responsive polymers  

Microsoft Academic Search

This review article summarizes recent results on the development of macromolecular carriers for thermal targeting of therapeutics to solid tumors. This approach employs thermally responsive polymers in conjunction with targeted heating of the tumor. The two thermally responsive polymers that are discussed in this article, poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAAm)) and an artificial elastin-like polypeptide (ELP), were designed to exhibit a soluble–insoluble lower

Ashutosh Chilkoti; Matthew R Dreher; Dan E Meyer; Drazen Raucher

2002-01-01

112

Formulations of biodegradable Nanogel carriers with 5?-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity  

Microsoft Academic Search

Therapies including nucleoside analogs are associated with severe toxic side effects and acquirement of drug resistance. We have previously reported the drug delivery in the form of 5?-triphosphates (NTP) encapsulated in cross-linked cationic networks of polyethylenimine (PEI) and PEG\\/Pluronic® polymers (Nanogels). In this study, Nanogels, containing biodegradable PEI that could easily dissociate in reducing cytosolic environment and form products with

Ekta Kohli; Huai-Yun Han; Arin D. Zeman; Serguei V. Vinogradov

2007-01-01

113

Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery  

PubMed Central

As the field of biotechnology has advanced, oral protein delivery has also made significant progress. Oral delivery is the most common method of drug administration with high levels of patient acceptance. Despite the preference of oral delivery, administration of therapeutic proteins has been extremely difficult. Increasing the bioavailability of oral protein drugs to the therapeutically acceptable level is still a challenging goal. Poor membrane permeability, high molecular weight, and enzymatic degradation of protein drugs have remained unsolved issues. Among diverse strategies, nanotechnology has provided a glimpse of hope in oral delivery of protein drugs. Nanoparticles have advantages, such as small size, high surface area, and modification using functional groups for high capacity or selectivity. Nanoparticles with peptidic ligands are especially worthy of notice because they can be used for specific targeting in the gastrointestinal (GI) tract. This article reviews the transport mechanism of the GI tract, barriers to protein absorption, current status and limitations of nanotechnology for oral protein delivery system.

Yun, Yeonhee; Cho, Yong Woo; Park, Kinam

2012-01-01

114

[Hyaluronic acid-based carriers for tumor targeted delivery system].  

PubMed

Hyaluronic acid (HA) as anticancer drug carrier has become the new hot point in the field of tumor-targeted drugs delivery system in recent years. Tumor therapeutic agents could be transmitted into cells because of hyaluronic acid innate ability to recognize specific cellular receptors that overexpressed on tumor cells surface. This review introduces the basic properties and physiology foundation of hyaluronic acid. Recent research developments based on different forms of HA tumor-targeted drugs delivery systems are reviewed in particular. PMID:24358769

Qiu, Li-peng; Long, Miao-miao; Chen, Da-wei

2013-09-01

115

Cell-Specific Aptamer-Mediated Targeted Drug Delivery  

PubMed Central

Nucleic acid aptamers are in vitro-selected small, single-stranded DNA or RNA oligonucleotides that can specifically recognize their target on the basis of their unique 3-dimensional structures. Recent advances in the development of escort aptamers to deliver and enhance the efficacy of other therapeutic agents have drawn enthusiasm in exploiting cell-type-specific aptamers as drug delivery vehicles. This review mainly focuses on the recent developments of aptamer-mediated targeted delivery systems. We also place particular emphasis on aptamers evolved against cell membrane receptors and possibilities for translation to clinical applications.

Zhou, Jiehua

2011-01-01

116

Colon Targeted Delivery Systems: Review of Polysaccharides for Encapsulation and Delivery  

Microsoft Academic Search

Colon-targeted delivery of bioactives has recently gained importance in addressing specific needs in the therapy of colon-based diseases. Many approaches have been attempted for the development of colon-specific delivery systems, with not much success in the past. Recent research into the utilization of the metabolic activity and the colonic microenvironment in the lower gastrointestinal tract has attained great value in

Shantha L. Kosaraju

2005-01-01

117

Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy.  

PubMed

Glycol chitosan (GC) grafted with 2,3-dimethylmaleic acid (DMA) and fullerene (C60) conjugates (GC-g-DMA-g-C60) were developed for use in a photosensitizer prodrug. GC-g-DMA-g-C60 was prepared via the simple two-step chemical grafting reactions of (i) DMA to free amine groups of GC and (ii) hydroxyl groups of GC-g-DMA to ?? carbon bonds of C60. This conjugate was self-assembled to form polysaccharidic nanogels consisting of a hydrophilic block (GC and DMA) and a hydrophobic block (C60). Here, GC-g-DMA-g-C60 nanogels also formed multi-nanogel aggregates due to the electrostatic interaction between the pendant carboxylic acid group (due to the DMA) and residual free amine group of GC at pH 7.4. Interestingly, the nanogel aggregates can be disintegrated at pH 5.0 due to the reduction of electrostatic interaction resulting from the cleavage of the DMA blocks at pH 5.0. Upon 670nm light illumination, photo-responsive properties of the nanogel aggregates allowed different singlet oxygen generation according to the pH condition: the reduced singlet oxygen generation (due to increased photo-interference effect between C60 molecules close-packed in nanogel aggregates) at pH 7.4, but the elevated singlet oxygen generation (due to the disintegration of nanogel aggregates) at pH 5.0. GC-g-DMA-g-C60 nanogel aggregates responds to pH 5.0 (approximately endosomal pH) can be a good candidate for endosomal pH targeting and in vivo photodynamic therapy in various malignant tumor cells. PMID:24299827

Kim, Sol; Lee, Dong Jin; Kwag, Dong Sup; Lee, Ung Yeol; Youn, Yu Seok; Lee, Eun Seong

2014-01-30

118

Targeted Delivery of Drugs to Brain Tumors  

SciTech Connect

Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs. Her talk was presented June 27, 2007.

Trudy Forte

2008-03-03

119

Targeted Delivery of Drugs to Brain Tumors  

SciTech Connect

Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering... Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs. Her talk was presented June 27, 2007.

LBNL

2008-03-03

120

Targeted Delivery of Drugs to Brain Tumors  

ScienceCinema

Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering... Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs. Her talk was presented June 27, 2007.

LBNL

2009-09-01

121

Targeted Delivery of Drugs to Brain Tumors  

ScienceCinema

Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs. Her talk was presented June 27, 2007.

Trudy Forte

2013-06-10

122

Development of colon targeted drug delivery systems for mebendazole  

Microsoft Academic Search

The objective of the present study is to develop colon targeted drug delivery systems for mebendazole using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for drug content uniformity, and were subjected to in vitro drug release studies. The

Y. S. R Krishnaiah; P Veer Raju; B Dinesh Kumar; P Bhaskar; V Satyanarayana

2001-01-01

123

Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty, targeted PA nanofibers showed enhanced binding by fluorescence relative to spherical micelles with the same targeting sequence, demonstrating the importance of nanostructure shape for vascular binding. Nitric oxide was functionalized onto the PA nanostructure through the S-nitrosylation (SNO) of a cysteine residue. Two weeks after vascular injury, the SNO-functionalized, targeted nanofibers showed significantly decreased levels of restenosis. In all treatment methods described, the control of multivalency through the tuning of supramolecular structure was essential to achieve optimal binding. Understanding the role of dynamic, supramolecular structures for the systemic delivery of peptide therapeutics should be an important focus of future work.

Moyer, Tyson

124

Radiation formation of polymeric nanogels  

Microsoft Academic Search

An alternative method of synthesis of polymeric nanogels is proposed, based not on polymerization, but on intramolecular crosslinking of polymer chains, initiated by pulse irradiation in dilute aqueous solutions. Kinetic data show that for many water-soluble polymers irradiation under these conditions result in intramolecular crosslinking. Preliminary product studies on poly(vinyl alcohol) indicate that in fact internally crosslinked macromolecules can be

P. Ulanski; I. Janik; J. M. Rosiak

1998-01-01

125

Clinical implementation of target tracking by breathing synchronized delivery  

SciTech Connect

Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of target tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.

Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang; Paliwal, Bhudatt; Metha, Minesh [Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53705 (United States); Department of Radiation Oncology, William Beaumant Hospital, Royal Oak, Michigan 48073 (United States); Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53705 (United States)

2006-11-15

126

Tetraspecific ligand for tumor-targeted delivery of nanomaterials.  

PubMed

The polygenetic nature of most cancers emphasizes the necessity of cancer therapies that target multiple essential signaling pathways. However, there is a significant paucity of targeting ligands with multi-specificities for targeted delivery of biomaterials. To address this unmet need, we generated a tetraspecific targeting ligand that recognizes four different cancer biomarkers, including VEGFR2, ?v?3 integrin, EGFR, and HER2 receptors, which have been implicated in numerous malignant tumors. The tetraspecific targeting ligand was constructed by sequentially connecting four targeting ligand subunits via flexible linkers, yielding a fusion protein that can be highly expressed in Escherichia coli and readily purified to near homogeneity. Surface Plasmon Resonance (SPR), Bio-Layer Interferometry (BLI) studies and extensive cellular binding analyses indicated that all the targeting ligand subunits in the tetraspecific fusion protein recognized their target receptors proximately to the corresponding monospecific ligands. The resulting tetraspecific targeting ligand was applied for the delivery of nanomaterials such as gold nanoparticles (AuNPs) for targeted hyperthermic killing of various cancer cell lines with biomarkers of interest expressed. We demonstrate that the tetraspecific ligand can be facilely introduced on the surface of AuNPs and efficient target-dependent killing of cancer cells can be achieved only when the AuNPs are conjugated with the tetraspecific ligand. Significantly, the tetraspecific ligand simultaneously interacts with more than one receptors, such as EGFR and HER2 receptors, when they are expressed on the surface of the same cell, as demonstrated by in vitro binding assays and cell binding analyses. Our results demonstrate that the tetraspecific ligand, through multivalency and synergistic binding, can be readily used to generate various 'smart' biomaterials with greatly broadened tumor targeting range for simultaneous targeting of multiple signaling pathways on many different cancer types. PMID:24786763

Kim, Dongwook; Friedman, Adam D; Liu, Rihe

2014-07-01

127

Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces  

Microsoft Academic Search

The study of nanogel (hydrogel nanoparticle) has intensified in the last decade due to the enormous potential applications in biomimetics, biosensors, artificial muscles and drug delivery (or release) systems. Cholesterol-bearing pullulan (CHP) is composed of hydrophilic pullulan backbone and partly substituted hydrophobic cholesterol, and is capable of forming a stable hydrogel nanoparticle in aqueous solution due to the self-assembly of

ImShik Lee; K. Akiyoshi

2004-01-01

128

Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent  

Microsoft Academic Search

One of the key challenges in anticancer therapy is the toxicity and poor bioavailability of the anticancer drugs. Nanotech- nology can play a pivotal role by delivering drugs in a targeted fashion to the malignant cells that will reduce the systemic toxicity of the anticancer drug. In this report, we show a stepwise development of a nanoparticle-based targeted delivery system

Chitta Ranjan Patra; Resham Bhattacharya; Enfeng Wang; Julie S. Lau; Shamit Dutta; Michael Muders; Shanfeng Wang; Sarah A. Buhrow; Stephanie L. Safgren; Michael J. Yaszemski; Joel M. Reid; Matthew M. Ames; Priyabrata Mukherjee; Debabrata Mukhopadhyay

129

Diphtheria toxin receptor-targeted brain drug delivery  

Microsoft Academic Search

Brain drug delivery is limited by the blood–brain barrier (BBB). We have newly identified the membrane-bound precursor of heparin-binding epidermal growth factor (HB-EGF), which is also known as the diphtheria toxin receptor (DTR), as a well characterized internalizing transport receptor on the BBB for the targeting of drugs to the brain. This transport receptor has several unique advantages. It makes

Pieter J. Gaillard; Arjen Brink; Albertus G. de Boer

2005-01-01

130

New targets and delivery systems for antifungal therapy.  

PubMed

Development of new approaches for treatment of invasive fungal infections encompasses new delivery systems for approved and investigational compounds, as well as exploiting the cell membrane, cell wall and virulence factors as putative antifungal targets. Novel delivery systems consisting of cyclodextrins, cochleates, nanoparticles/nanospheres and long circulating ('stealth') liposomes, substantially modulate the pharmacokinetics of existing compounds, and may also be useful to enhance the delivery of antifungal agents to sites of infection. Further insights into the structure-activity relationship of the antifungal triazoles that target the biosynthesis of ergosterol in the fungal cell membrane have led to the development of highly potent broad spectrum agents, including posaconazole, ravuconazole and voriconazole. Similarly, a novel generation of cell-wall active semisynthetic echinocandin 1,3 beta-glucan inhibitors (caspofungin, FK463, and VER-002) has entered clinical development. These agents have potent and broad-spectrum activity against Candida spp, and potentially useful activity against Aspergillus spp. and Pneumocystis carinii. The ongoing convergence of the fields of molecular pathogenesis, antifungal pharmacology and vaccine development will afford the opportunity to develop novel targets to complement the existing antifungal armamentarium. PMID:11204162

Walsh, T J; Viviani, M A; Arathoon, E; Chiou, C; Ghannoum, M; Groll, A H; Odds, F C

2000-01-01

131

Nanofluids, nanogels and nanopastes for electronic packaging  

Microsoft Academic Search

This paper discusses polymer based nanogels, nanofluids and nanopastes for thermal interface material (TIM) applications. Nanopaste and nanogel formulated using controlled-sized particles to fill small bond lines is highlighted. A variety of nanopaste with particle sizes ranging from 5 nm to 15 µm was bonded between metal plates. SEM and optical microscopy were used to investigate the micro-structures, conducting mechanism

Rabindra N. Das; Varaprasad Calmidi; Mark D. Poliks; Voya R. Markovich

2010-01-01

132

Antiproliferative Activity of Fucan Nanogel  

PubMed Central

Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of ?38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%–43.7% at nanogel concentrations of 0.05–0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%–22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.

Dantas-Santos, Nednaldo; Almeida-Lima, Jailma; Vidal, Arthur Anthunes Jacome; Gomes, Dayanne Lopes; Oliveira, Ruth Medeiros; Santos Pedrosa, Silvia; Pereira, Paula; Gama, Francisco Miguel; Oliveira Rocha, Hugo Alexandre

2012-01-01

133

Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation  

PubMed Central

We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs.

Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew

2009-01-01

134

Advances in polymeric micelles for drug delivery and tumor targeting.  

PubMed

A plethora of formulation techniques have been reported in the literature for targeting drugs to specific sites. Polymeric micelles (PMs) can be targeted to tumor sites by passive as well as active mechanisms. Some inherent properties of PMs, including size in the nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor allow PMs to be targeted to the tumor site by a passive mechanism called the enhanced permeability and retention effect. PMs formed from an amphiphilic block copolymer are suitable for encapsulation of poorly water-soluble, hydrophobic anticancer drugs. Other characteristics of PMs such as separate functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. PMs can be conjugated with many ligands such as antibody fragments, epidermal growth factors, ?(2)-glycoprotein, transferrin, and folate to target micelles to cancer cells. Application of heat or ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be directed toward tumor angiogenesis, which is a potentially promising target for anticancer drugs. PMs have been used for the delivery of many anticancer agents in preclinical and clinical studies. This review summarizes recently available information regarding targeting of anticancer drugs to the tumor site using PMs. PMID:20542144

Kedar, Uttam; Phutane, Prasanna; Shidhaye, Supriya; Kadam, Vilasrao

2010-12-01

135

Magnetic nanoparticles as targeted delivery systems in oncology  

PubMed Central

Background Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer.

Prijic, Sara; Sersa, Gregor

2011-01-01

136

Microfluidics: a focus on improved cancer targeted drug delivery systems.  

PubMed

Pharmaceutical science aims to localize the pharmacological activity of the drug at the site of action. Targeted drug delivery systems can directly deliver the payload to the desired site of action without undesired interaction with normal cells. This is especially important for anticancer drugs to avoid side effects and improve therapeutic response and patient compliance. Number of targeted drug delivery systems for anticancer drugs are in market and many more are in research phase. Most of the methods so far used suffer from poor drug loading, variation in composition, attachment of targeting ligands to carriers, and in vivo and in vitro cellular uptake in cancer cell. Recently microfluidic techniques are gaining attention from researchers and formulation scientists due to the ability of having a better control over the above said parameters not to mention saving cost, material, time and the possibility offered to synthesize different system morphologies from nano to microscale. This article reviews the recent advances in the design of various targeted systems obtained through microfluidics and to some extent addresses challenges and hurdles faced during cancer cell treatment. PMID:23933524

Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Vandamme, Thierry

2013-12-28

137

Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma  

PubMed Central

Glioma accounts for 80% of brain tumors, and currently remains one of the most lethal forms of cancers. Gene therapy could potentially improve the dismal prognosis of patients with glioma, but this treatment modality has not yet reached the bedside from the laboratory due to the lack of safe and effective gene delivery vehicles. In this study we investigate targeted gene delivery to C6 glioma cells in a xenograft mouse model using chlorotoxin (CTX) labeled nanoparticles. The developed nanovector consists of an iron oxide nanoparticle core, coated with a copolymer of chitosan, polyethylene glycol (PEG) and polyethylenimine (PEI). Green fluorescent protein (GFP) encoding DNA was bound to these nanoparticles, and CTX was then attached using a short PEG linker. Nanoparticles without CTX were also prepared as a control. Mice bearing C6 xenograft tumors were injected intravenously with the DNA bound nanoparticles. Nanoparticle accumulation in the tumor site was monitored using magnetic resonance imaging and analyzed by histology, and GFP gene expression was monitored through Xenogen IVIS fluorescence imaging and confocal fluorescence microscopy. Interestingly, the CTX did not affect the accumulation of nanoparticles at the tumor site, but specifically enhanced their uptake into cancer cells as evidenced by higher gene expression. These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers.

Kievit, Forrest M.; Veiseh, Omid; Fang, Chen; Bhattarai, Narayan; Lee, Donghoon; Ellenbogen, Richard G.; Zhang, Miqin

2010-01-01

138

Delivery of substances and their target-specific topical activation.  

PubMed

Goal in pharmaceutical research is achievement of necessary drug concentrations in the target organ, effective treatment with safe delivery of genetic agents, while sparing normal tissue and minimizing side effects. A new "BioShuttle"-delivery system harbouring a cathepsin B cutting site, a nuclear address sequence and a functional peptide was developed and tumor cells were treated. Transport and subcellular activation were determined by confocal laser scanning microscopy permitting the conclusion: BioShuttle-conjugates prove as efficient tools for genetic interventions by selective and topical activation of therapeutic peptide precursors by enzymatic cleavage. As shown here for glioma cells and the cathepsin B cleavable site, living cells can be treated with high specificity and selectivity for diagnostic and therapeutic purposes. PMID:16730647

Pipkorn, Rüdiger; Waldeck, Waldemar; Spring, Herbert; Jenne, Jürgen W; Braun, Klaus

2006-05-01

139

Multifunctional Particles for Melanoma-Targeted Drug Delivery  

PubMed Central

New magnetic-based core-shell particles (MBCSP) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSP consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSP were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the ?5?3+ receptor of melanoma cell. MBCSP consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSP has an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 ?g ml?1. Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSP were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in presence of a magnet. Results indicate great potential of MBCSP as a platform technology to target, treat, and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents.

Wadajkar, Aniket S.; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T.

2012-01-01

140

Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery.  

PubMed

Environmentally sensitive hydrogels have gained considerable attention in recent years as one of the most promising drug delivery systems. In the present study, two new formulations of pH and temperature stimuli-responsive nanogels (NGs) based on poly-N-isopropylacrylamide (NIPA), N-hydroxyethyl acrylamide (HEAA) and tert-butyl 2-acrylamidoethyl carbamate (2AAECM) were synthesized and evaluated for passive targeting of paclitaxel (PTX). Nanogels were prepared by microemulsion polymerization method using N-methylenebis(acrylamide) (NMBA) as crosslinking agent. TEM images and DLS results showed nanosized spherical hydrogels. FTIR spectra confirmed the synthesis of nanogels by radical polymerization among vinyl groups of monomers. The PTX loading capacity, encapsulation efficiency and in vitro release were analyzed by HPLC. The cumulative release profile of the PTX-loaded nanohydrogels within 144h showed a faster drug release at acid pH (pH 5), similar to those observed at lysosome compartment, whereas a fewer PTX amount was released from NGs at pH similar to plasma levels. Cellular uptake assays revealed rapid penetration and intracellular accumulation of those nanogels in MCF7, HeLa and T47D cells after 48h incubation. MTT assays showed cell viability dependence on concentration and time incubation. Finally, the PTX effect on cell viability showed a G2/M cell arrest after using PTX-loaded NGs and pure PTX. PMID:24813784

Pérez, Elena; Martínez, Ana; Teijón, César; Teijón, Jose M; Blanco, M Dolores

2014-08-15

141

Differentiation of endothelial progenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes.  

PubMed

Specific genes and growth factors are involved in stem cell differentiation. In this study, we fabricated a delivery carrier for both protein and gene delivery that was introduced into human endothelial progenitor cells (EPCs). The highly negative charge carried by the heparin-modified pluronic nanogels allowed for binding to growth factors and localization in the core of nanogels. The residues of negatively charged heparin can complex with positively charged cationic materials, making it suitable for gene delivery. Supramolecular nanogels can be easily encapsulated the hydrophilic drugs and highly positive surfaces can be complexed with negative charge carrying plasmid DNA (pDNA). The size distribution, gel retardation, and denaturation of encapsulated growth factors and supramolecular nanogels modified with heparin were evaluated. The supramolecular nanogels containing basic fibroblast growth factors and complexing VEGF165 pDNA internalized into EPCs have been well formed vascular formation in matrigel gels. Proteins and genes introduced into EPCs using nanogels promoted neovascularization in an animal model of limb ischemia. EPCs that differentiated into endothelial cells both in vitro and in vivo were tested. PMID:24630837

Yang, Han Na; Choi, Jong Hoon; Park, Ji Sun; Jeon, Su Yeon; Park, Ki Dong; Park, Keun-Hong

2014-05-01

142

"Nanotheranostics" for tumor imaging and targeted drug delivery  

NASA Astrophysics Data System (ADS)

The magnetic resonance imaging (MRI) technique is a promising tool that improves cancer detection, facilitates diagnosis and monitors therapeutic effects. Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as MRI contrast agents for tumor imaging and as potential vectors for targeted anti-cancer drug delivery; nevertheless, the application of SPIOs has been hampered due to a lack of specificity to tumor tissues and premature drug release. This project aims at developing multifunctional SPIOs for both cancer imaging and targeted drug delivery via conjugation of tumor specific antibodies with SPIOs. The application of anti-TAG-72 antibodies as tumor targeting modalities was evaluated in cultured colorectal cancer cells and in xenograft models by using fluorescent imaging and positron emission tomography (PET) imaging. It was demonstrated that antibody-labeled SPIOs were superior imaging agents and drug carriers for increased tumor specificity. The regulation and kinetics of intracellular drug release from SPIOs were explored by means of fluorescence imaging. In vitro and in vivo fluorescence resonance energy transfer (FRET) imaging was employed to investigate the mechanisms of premature drug release from nanocarriers. The large volume and high hydrophobicity of cell membranes were found to play an important role in premature drug release. The encapsulation of SPIOs into nanocarriers decreased drug release in a dose-dependent mode. This study provided future opportunities to improve the efficiency of nanocarriers by exploring the mechanism of drug release and disassembly of SPIO-loaded polymeric nanoparticles.

Zou, Peng

143

Shell-crosslinked hyaluronic Acid nanogels for live monitoring of hyaluronidase activity in vivo.  

PubMed

A hyaluronidase (HAdase) has been noticed as a potential drug target as well as prognostic marker because of its close associations with tumor invasion, metastasis, and angiogenesis. Accordingly, precise monitoring of HAdase activity in vivo seems to be crucial not only for the evaluation of HAdase activity but also for non-invasive molecular imaging. In our study, we propose a new organic, near-infrared fluorescence imaging probe, indocyanine green (ICG)-based stimuli-responsive fluorescence probe for selective imaging of HAdases with appreciable signal-to-noise (S/N) ratios in serum and in vivo. Shell-crosslinked hyaluronic acid (HA) nanogels (sc-nanogels) are generated via a reducible covalent linkage which incorporate ICG derivatives. The ICG-embeded HA nanogels via shell-crosslinking have preferable properties for ideal selective imaging and detection of HAdase activity in vivo. The sc-nanogels exhibit prominent chemical stability against external light, greatly control background signals in serum, and small size compared to use of self-assembled ICG-based carriers. Collapsed ICG in the hydrogel core is selectively disentangled by HAdase treatment for selective near-infrared imaging without unwanted background signal. The newly designed sc-nanogels may have great potential to serve as probes for improved selective imaging of HAdase-associated diseases in clinics as well as HAdase-activity screening in vivo. PMID:24505028

Kim, Jihyun; Chong, Youhoon; Mok, Hyejung

2014-06-01

144

Improved Biochemical Strategies for Targeted Delivery of Taxoids  

PubMed Central

Paclitaxel (Taxol ®) and docetaxel (Taxotere ®) are very important anti-tumor drugs in clinical use for cancer. However, their clinical utility is limited due to systemic toxicity, low solubility and inactivity against drug resistant tumors. To improve chemotherapeutic levels of these drugs, it would be highly desirable to design strategies which bypass the above limitations. In this respect various prodrug and drug targeting strategies have been envisioned either to improve oral bioavailability or tumor specific delivery of taxoids. Abnormal properties of cancer cells with respect to normal cells have guided in designing of these protocols. This review article records the designed biochemical strategies and their biological efficacies as potential taxoid chemotherapeutics.

Ganesh, Thota

2008-01-01

145

Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes  

NASA Astrophysics Data System (ADS)

Performances of the biosensors are often limited by the depletion zones created around the sensing area which impede the effective analyte transport. To overcome this limitation, we propose and demonstrate a nanoplasmonic-nanofluidic sensor enabling targeted delivery of analytes to the sensor surface with dramatic improvements in mass transport efficiency. Our sensing platform is based on extraordinary light transmission effect in suspended plasmonic nanoholes. This scheme allows three-dimensional control of the fluidic flow by connecting separate layers of microfluidic channels through plasmonic/nanofluidic holes. To implement the proposed sensor platform, we also introduce a lift-off free nanofabrication method.

Yanik, Ahmet Ali; Huang, Min; Artar, Alp; Chang, Tsung-Yao; Altug, Hatice

2010-01-01

146

Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging  

NASA Astrophysics Data System (ADS)

Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr01030b

Wang, Hui; Ke, Fuyou; Mararenko, Anton; Wei, Zengyan; Banerjee, Probal; Zhou, Shuiqin

2014-06-01

147

Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across skin.  

PubMed

Despite growing evidence in support of nanogels as carriers in topical drug delivery, no empirical evidence has been forthcoming regarding a mechanism. Poly(N-isopropylacrylamide-copolymerized-acrylic acid) referred to as poly(NIPAM-co-AAc) and poly(N-isopropylacrylamide) known as (polyNIPAM) nanogels were synthesized by a surfactant-free emulsion polymerisation method and applied to porcine ear skin mounted in Franz diffusion cells. After 24h the receptor phases were retrieved and scrutinized by transmission electron microscopy (TEM). The skin membranes were also recovered and re-used to determine the permeation of a model permeant, methotrexate (MTX). TEM images confirmed the presence of nanoparticulates in the receptor phases, and the relative quantities varied on the nature of the nanogel. Comparative MTX skin permeation data demonstrated the integrity of the membranes, and that delivery of nanogel or MTX was not due to defects in the membranes. In summary, the first direct evidence is presented demonstrating that nanogels are taken up by and migrate across the skin. PMID:20817080

Samah, Nor Abu; Williams, Nicholas; Heard, Charles M

2010-11-30

148

Pharmaceutical approaches to colon targeted drug delivery systems  

Microsoft Academic Search

Purpose. Although oral delivery has become a widely accepted route of administration of therapeutic drugs, the gastrointestinal tract presents several formidable barriers to drug delivery. Colonic drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon but also for its potential for the delivery of proteins

M. K. Chourasia; S. K. Jain

149

Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems  

NASA Astrophysics Data System (ADS)

Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro.

Hwang, Tae Heon; Kim, Jin Bum; Som Yang, Da; Park, Yong-il; Ryu, WonHyoung

2013-03-01

150

In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins.  

PubMed

In situ forming reduction-sensitive degradable nanogels were designed and developed based on poly(ethylene glycol)-b-poly(2-(hydroxyethyl) methacrylate-co-acryloyl carbonate) (PEG-P(HEMA-co-AC)) block copolymers for efficient loading as well as triggered intracellular release of proteins. PEG-P(HEMA-co-AC) copolymers were prepared with controlled Mn of 9.1, 9.5, and 9.9 kg/mol and varying numbers of AC units per molecule of 7, 9 and 11, respectively (denoted as copolymer 1, 2, and 3) by reversible addition-fragmentation chain transfer copolymerization. These copolymers were freely soluble in phosphate buffer but formed disulfide-cross-linked nanogels with defined sizes ranging from 72.5 to 124.1 nm in the presence of cystamine via ring-opening reaction with cyclic carbonate groups. The sizes of nanogels decreased with increasing AC units as a result of increased cross-linking density. Dynamic light scattering studies showed that these nanogels though stable at physiological conditions were rapidly dissociated in response to 10 mM dithiothreitol (DTT). Interestingly, FITC-labeled cytochrome C (FITC-CC) could be readily loaded into nanogels with remarkable loading efficiencies (up to 98.2%) and loading contents (up to 48.2 wt.%). The in vitro release studies showed that release of FITC-CC was minimal under physiological conditions but significantly enhanced under reductive conditions in the presence of 10 mM DTT with about 96.8% of FITC-CC released in 22 h from nanogel 1. In contrast, protein release from 1,4-butanediamine cross-linked nanogels (reduction-insensitive control) remained low under otherwise the same conditions. MTT assays showed that these nanogels were nontoxic to HeLa cells up to a tested concentration of 2 mg/mL. Confocal microscopy results showed that nanogel 1 delivered and released FITC-CC into the perinuclei region of HeLa cells following 8 h incubation. CC-loaded reductively degradable nanogels demonstrated apparently better apoptotic activity than free CC as well as reduction-insensitive controls. These in situ forming, surfactant and oil-free, and reduction-sensitive degradable nanogels are highly promising for targeted protein therapy. PMID:23477570

Chen, Wei; Zheng, Meng; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

2013-04-01

151

Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy.  

National Technical Information Service (NTIS)

The endocytic trafficking pathway is the site of action for receptor- targeted drug-delivery strategies, including Antibody-Drug- Conjugates (ADCs) and nanoparticle drug-delivery systems. Effective drug-release requires trafficking of the endocytosed rece...

H. Band S. Raja T. Bronich

2013-01-01

152

Potential of magnetic nanoparticles for targeted drug delivery  

PubMed Central

Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications.

Yang, Hung-Wei; Hua, Mu-Yi; Liu, Hao-Li; Huang, Chiung-Yin; Wei, Kuo-Chen

2012-01-01

153

Targeted drug delivery and enhanced intracellular release using functionalized liposomes  

NASA Astrophysics Data System (ADS)

The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the ability to target the integrin alpha 5beta1 using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth and reducing tumor metastasis. The work in this thesis focuses on designing and optimizing, functionalized stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that specifically target the integrin alpha5beta1. The PEG provides a steric barrier allowing the liposomes to circulate in the blood for longer duration and the functionalizing moiety, PR_b peptide specifically recognizes and binds to integrin alpha5beta1 expressing cells. The work demonstrates that by optimizing the amount of PEG and PR_b on the liposomal interface, nano-vectors can be engineered that bind to CT26.WT colon cancer cells in a specific manner and internalize through alpha 5beta1-mediated endocytosis. To further improve the efficacy of the system, PR_b functionalized pH-sensitive stealth liposomes that exhibit triggered release under mild acidic conditions present in endocytotic vesicles were designed. The study showed that PR_b functionalized pH-sensitive stealth liposomes, undergo destabilization under mildly acidic conditions and incorporation of the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b functionalized pH-sensitive stealth liposomes bind to CT26.WT colon carcinoma cells that express integrin alpha5beta 1, undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. PR_b-targeted pH-sensitive stealth liposomes encapsulating 5-fluorouracil (5-FU) show significantly higher cytotoxicity than the PR_b-targeted inert stealth liposomes and the non-targeted stealth liposomes (both pH-sensitive and inert). The studies demonstrated that optimized PR_b functionalized pH sensitive liposomes have the potential to deliver a payload, such as chemotherapeutic agents, directly to colon cancer cells in an efficient and specific manner.

Garg, Ashish

154

Cationic Nanogels Based On Diethylaminoethyl Methacrylate  

PubMed Central

The effect of polymer composition and polymerization parameters such as comonomers, crosslinking ratio, and polymerization method, on the surface characteristics, surface chemistry, and swelling response of crosslinked 2-(diethylaminoethyl methacrylate) (DEAEM) and polyethylene glycol monoethyl ether monomethacrylate (PEGMMA) nanogels was studied. A novel inverse-emulsion polymerization method was developed, which formed latex nanoparticles on the order of 100–400 nm. The properties of these nanogels were compared to microparticles synthesized via solution polymerization. The new polymerization method allowed the incorporation of PEG surface tethers of lengths 400 Da up to 2000 Da. Surface tethers successfully decreased the ?-potential of these nanogels from 70 mV to 30 mV in acidic conditions and from ?60 mV to 2 mV in basic media. Nanogels swelled from 100 nm in basic media to 800 nm in acidic media due to the protonation of the tertiary amine on DEAEM.

Marek, Steve R.; Conn, Charles A.; Peppas, Nicholas A.

2010-01-01

155

Nanogel Nanosecond Photonic Crystal Optical Switching  

Microsoft Academic Search

We developed a robust nanosecond photonic crystal switching material by using poly(N- isopropylacrylamide) (PNIPAM) nanogel colloidal particles that self-assemble into crystalline colloidal arrays (CCAs). The CCA was polymerized into a loose-knit hydrogel which permits the individual embedded nanogel PNIPAM particles to coherently and synchronously undergo their thermally induced volume phase transitions. A laser T-jump from 30 to 35 °C actuates

Chad E. Reese; Alexander V. Mikhonin; Marta Kamenjicki; Alexander Tikhonov; Sanford A. Asher

2004-01-01

156

Polypropylene nanogel: “Myth or reality”  

NASA Astrophysics Data System (ADS)

The objective of this work is the investigation of the nanogel and microgel formation in modified PP. The modified PP in pellets was synthesized by gamma irradiation of pristine PP under a crosslinking atmosphere of acetylene in dose of 5, 12.5 and 20 kGy, followed by thermal treatment for radical recombination and annihilation of the remaining radicals. The thin film gel of the polypropylenes was obtained by extraction in boiling xylene for period of 12 h at 138 °C, followed by decantation in beaker at room temperature of 25 °C with the total volatilization of the xylene and deposition of dried material film on glass substrate under agitation by Settling process. The thin film gel formed of pristine PP and modified PP (i.e., irradiated) was characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and differential scanning calorimetry (DSC). The PP morphology indicated the nanogels and microgel formation with increase of spherulitic concentration and crystallinity at dose of 12.5 kGy.

Oliani, W. L.; Parra, D. F.; Riella, H. G.; Lima, L. F. C. P.; Lugao, A. B.

2012-09-01

157

Zein-based oral drug delivery system targeting activated macrophages.  

PubMed

Reactive oxygen species (ROS) play an important role in the pathogenesis of rheumatoid arthritis (RA). ROS such as hydrogen peroxide and superoxide are overproduced by activated macrophages in RA. As scavengers of ROS, enzymatic proteins such as catalase and superoxide dismutase (SOD) have a great therapeutic potential; however, in vivo application is limited especially when they are orally administered. Although, the oral route is the most convenient for drug administration, therapeutic proteins are easily degraded in vivo by the harsh conditions of gastrointestinal (GI) tract. Here, we introduce a novel drug delivery system composed of zein, a plant storage protein derived from maize. We demonstrate that zein nanoparticles can protect therapeutic proteins, catalase and SOD, from the harsh conditions of GI tract. Folate-conjugated catalase or SOD in zein nanoparticles can target the activated macrophages and scavenge the ROS generated by macrophages in vitro. This novel drug delivery system will be applicable to other orally administered treatments based on the protective property in the harsh conditions of GI tract. PMID:23876501

Lee, Sungmun; Alwahab, Noaf Salah Ali; Moazzam, Zainab Muhammad

2013-09-15

158

Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma  

PubMed Central

Background N-lactosyl-dioleoylphosphatidylethanolamine (Lac-DOPE) was synthesized and evaluated as a liver-specific targeting ligand via asialoglycoprotein receptors for liposomal delivery of doxorubicin. Methods Lactosylated liposomes encapsulating calcein (Lac-L-calcein) or doxorubicin (Lac-L-DOX) composed of egg phosphatidylcholine, cholesterol, monomethoxy polyethylene glycol 2000-distearoyl phosphatidylethanolamine, and Lac-DOPE at 50:35:5:10 (mol/mol) were prepared by polycarbonate membrane extrusion and evaluated in human hepatocellular carcinoma HepG2 cells. Cellular uptake of Lac-L-calcein was monitored by confocal microscopy and by flow cytometry. The cytotoxicity of Lac-L-DOX was evaluated by MTT assay. The pharmacokinetic properties of Lac-L-DOX were studied in normal mice, and its biodistribution and antitumor activity were studied in nude mice with HepG2 xenografts. Results The size of Lac-L-DOX was less than 100 nm and the liposomes demonstrated excellent colloidal stability. In vitro uptake of Lac-L-calcein by HepG2 cells was four times greater than that of non-targeted L-calcein. In the presence of 20 mM lactose, the uptake of Lac-L-calcein was inhibited, suggesting that asialoglycoprotein receptors mediated the observed cellular uptake. Lac-L-DOX exhibited enhanced in vivo cytotoxicity compared with the nontargeted liposomal doxorubicin (L-DOX), and its pharmacokinetic parameters indicate that Lac-L-DOX has a long blood circulation time (t1/2 8.73 hours). Tissue distribution and therapeutic efficacy studies in nude mice bearing HepG2 xenografts show that Lac-L-DOX had significantly stronger tumor inhibitory activity compared with L-DOX and free doxorubicin, along with a higher accumulation of drug within the tumor site and greater cellular uptake by tumor cells. Conclusion These data suggest that lactosylated liposomes are promising drug delivery vehicles for hepatocellular carcinoma.

Zhou, Xiaoju; Zhang, Mengzi; Yung, Bryant; Li, Hong; Zhou, Chenguang; Lee, L James; Lee, Robert J

2012-01-01

159

Physical blends of starch graft copolymers as matrices for colon targeting drug delivery systems  

Microsoft Academic Search

Colon targeting drug delivery systems have attracted many researchers due to the distinct advantages they present such as near neutral pH, longer transit time and reduced enzymatic activity. Moreover, in recent studies, colon specific drug delivery systems are gaining importance for use in the treatment of local pathologies of the colon and also for the systemic delivery of protein and

I. Silva; M. Gurruchaga; I. Goñi

2009-01-01

160

Targeted Spinal Cord Therapeutics Delivery: Stabilized Platform and Microelectrode Recording Guidance Validation  

Microsoft Academic Search

Background\\/Aims: No validated delivery technique exists for accurate, reproducible delivery of biological therapies to discrete spinal cord targets. To address this unmet need, we have constructed a stabilized platform capable of supporting physiologic mapping, through microelectrode recording, and cellular or viral payload delivery to the ventral horn. Methods: A porcine animal model (n = 7) has been chosen based upon

Jonathan Riley; John Butler; Kenneth B. Baker; Shearwood McClelland III; Qingshan Teng; Jun Yang; Mary Garrity-Moses; Thais Federici; Nicholas M. Boulis

2008-01-01

161

Transcranial Route of Brain Targeted Delivery of Methadone in Oil  

PubMed Central

The unique anatomical arrangement of blood vessels and sinuses in the human skull and the brain, the prevalence of a high density of skin appendages in the scalp, extracranial vessels of the scalp communicating with the brain via emissary veins and most importantly, the way that the scalp is used in Ayurvedic medical system in treating diseases associated with the brain show that a drug could be transcranially delivered and targeted to the brain through the scalp. The present study was to investigate by measuring the antinociceptive effect on rats whether the opioid analgesic methadone could be delivered and targeted to the brain by transcranial delivery route. A non aqueous solution of methadone base in sesame oil was used for the application on the scalp. Animal studies were carried out using six groups of male rats consisting of group 1, the oral control treated with distilled water 1 ml; group 2, the oral positive control treated with methadone hydrochloride solution 316.5 ?g/ml; group 3, the negative control treated transcranially with the blank sesame oil 0.2 ml and three test groups 4, 5 and 6 treated with three different dose levels of the transcranial oil formulation of methadone base, 41.6 ?g/0.2 ml, 104 ?g/0.2 ml and 208 ?g/0.2 ml, respectively. The antinociceptive effects were examined by subjecting the rats to the hot plate and tail flick tests. The two higher concentrations of the three transcranial methadone formulations yielded response vs time curves showing nearly equal maximum antinociceptive effects similar to that of the oral positive control. Maximum analgesic effect after transcranial administration was observed between 1st and 2nd h and declined up to 6th hour. The results indicate that the transcranial brain targeted delivery of methadone base in the form of an oil based non aqueous solution results in statistically significant antinociceptive effects under experimental conditions. Therefore, it is possible to deliver central nervous system drugs through the proposed transcranial route when suitably formulated.

Pathirana, W.; Abhayawardhana, P.; Kariyawasam, H.; Ratnasooriya, W. D.

2009-01-01

162

Magnetically responsive microparticles for targeted drug and radionuclide delivery.  

SciTech Connect

We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial system (RES) prefer to associate with hydrophobic surfaces. Accordingly, we will tackle this challenge by modifying the particles with hydrophilic coatings such as PEG or poloxamer (co-polymers containing hydrophobic polyoxypropylene segments and repetitive polyoxyethylene hydrophilic groups), which have a proven ability to mask recognition by the RES. Modeling is needed to help optimize the performance of targeted magnetic-particle delivery, enhance its medicinal value, and expedite its medical application. To this end, scientists at Argonne National Laboratory, working with The University of Chicago and Cleveland Clinic Hospital, are working on an effective magnetic drug targeting system based on custom magnetic field designs coupled to a three-dimensional imaging platform that addresses all associated physical and theoretical problems. Furthermore, while our clinical trial results are encouraging with regard to the tolerance and applicability of the system, more improvements must be made with respect to future study designs and systems being used. Given the technical hurdles in developing this potentially important technology, we believe we have made great progress and that we have a strong developmental plan.

Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

2004-02-16

163

Novel bioactive scaffolds incorporating nanogels as potential drug eluting devices.  

PubMed

Big advances are being achieved in the design of new implantable devices with enhanced properties. For example, synthetic porous three-dimensional structures can mimic the architecture of the tissues, and serve as templates for cell seeding. In addition, polymeric nanoparticles are able to provide a programmable and sustained local delivery of different types of biomolecules. In this study novel alternative scaffolds with controlled bioactive properties and architectures are presented. Two complementary approaches are described. Firstly, scaffolds with nanogels as active controlled release devices incorporated inside the three-dimensional structure are obtained using the thermally induced phase separation (TIPS) method. Secondly, a novel coating method using the spraying technique to load these nanometric crosslinked hydrogels on the surface of two-dimensional (2D) and three-dimensional (3D) biodegradable scaffolds is described. The scanning electron microscopy (SEM) images show the distribution of the nanogels on the surface of different substrates and also inside the porous structure of poly-alpha-hydroxy ester derivative foams. Both of them are compared in terms of manufacturability, dispersion and other processing variables. PMID:20355508

Saez-Martinez, Virginia; Olalde, Beatriz; Juan, Maria Jesus; Jurado, Maria Jesus; Garagorri, Nerea; Obieta, Isabel

2010-04-01

164

Chimeric aptamers in cancer cell-targeted drug delivery.  

PubMed

Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities. PMID:21955150

Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

2011-12-01

165

Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells.  

PubMed

Drugs, proteins, and cells can be macro- and micro-encapsulated by unique materials that respond to specific stimuli. The phases and hydrophobic interactions of these materials are reversibly altered by environmental stimuli such as pH and temperature. These changes can lead to self-assembly of the materials, which enables controlled drug release and safe gene delivery into cells and tissues. The fate of stem cells delivered by such methods is of great interest. The formation of transgenic tissues requires genes to be delivered safely into stem cells. A cell tracing vehicle and a gene delivery carrier were simultaneously introduced into human mesenchymal stem cells (hMSCs). A thermo-sensitive hydrogel, poly(N-isopropylacrylamide-co-acrylic acid) (p(NiPAAm-co-AAc)), was created to generate self-assembled nanoparticles with nanogel characteristics. Hydrophobic interactions mediated the binding of the carboxyl group on the outside of p(NiPAAm-co-AAc) with the amine group of iron oxide. Nanogels carrying iron oxide and a fluorescent dye were complexed with specific genes. These nanogels could be internalized by hMSCs, and the transplantation of these cells into mice was monitored by in vivo imaging. Self-assembled p(NiPAAm-co-dAAc) nanogels complexed with green fluorescent protein were highly expressed in hMSCs and are a potential material for gene delivery. PMID:23937912

Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Jeon, Su Yeon; Park, Keun-Hong

2013-11-01

166

Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and without any attached support. As composites of aligned nanofibers, yarns potentially combine the inherent advantages of nanofibers with the strength and pliability of larger sized fibers. As such, we became interested in exploring the potential of nanofiber yarns as drug carriers. Our study evolved to accommodate comparative studies between the behavior of traditional nonwoven mats and nanofiber yarns. Throughout the process, we sought to answer the bigger question: Can guar galactomannan nanofibers be used as a new biodegradable platform for drug delivery?

Chu, Hsiao Mei Annie

167

Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents?  

Microsoft Academic Search

Injectable nanosized carriers (5–250nm) are actively studied as anticancer drug delivery agents for targeted drug delivery to the brain. Among these, polymeric nanoparticles have been studied since 1995, but only five of them recently started Phase I clinical trials, and none of these targets brain pathologies. To date, clinical trials for brain drug delivery have started for macromolecular- and nanocarrier-based

Luca Costantino; Diana Boraschi

168

pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats.  

PubMed

Glioma is the most common primary brain tumor and causes a disproportionate level of morbidity and mortality across a wide range of individuals. From previous clinical practices, definition of glioma margin is the key point for surgical resection. In order to outline the exact margin of glioma and provide a guide effect for the physicians both at pre-surgical planning stage and surgical resection stage, pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin (Cy5.5-Lf-MPNA nanogels) were developed as a promising contrast agent. Due to its pH/te mperature sensitivity, Cy5.5-Lf-MPNA nanogels could change in its hydrophilic/hydrophobic properties and size at different pH and temperatures. Under physiological conditions (pH 7.4, 37 °C), Cy5.5-Lf-MPNA nanogels were hydrophilic and swollen, which could prolong the blood circulation time. In the acidic environment of tumor tissues (pH 6.8, 37 °C), Cy5.5-Lf-MPNA nanogels became hydrophobic and shrunken, which could be more easily accumulated in tumor tissue and internalized by tumor cells. In addition, lactoferrin, an effective targeting ligand for glioma, provides active tumor targeting ability. In vivo studies on rats bearing in situ glioma indicated that the MR/fluorescence imaging with high sensitivity and specificity could be acquired using Cy5.5-Lf-MPNA nanogels due to active targeting function of the Lf and enhancement of cellular uptake by tailoring the hydrophilic/hydrophobic properties of the nanogels. With good biocompatibility shown by cytotoxicity assay and histopathological analysis, Cy5.5-Lf-MPNA nanogels are hopeful to be developed as a specific and high-sensitive contrast agent for preoperative MRI and intraoperative fluorescence imaging of glioma. PMID:23810255

Jiang, Lingyu; Zhou, Qing; Mu, Ketao; Xie, Hui; Zhu, Yanhong; Zhu, Wenzhen; Zhao, Yanbing; Xu, Huibi; Yang, Xiangliang

2013-10-01

169

Targeted gene delivery of BMPR2 attenuates pulmonary hypertension.  

PubMed

Pulmonary arterial hypertension (PAH) remains a fatal disease despite modern pharmacotherapy. Mutations in the gene for bone morphogenetic protein receptor type II (BMPR2) lead to reduced BMPR2 expression, which is causally linked to PAH. BMPR2 is predominantly expressed on pulmonary endothelium and has complex interactions with transforming growth factor (TGF)-? signalling mechanisms. Our objectives were to assess the effect on PAH of upregulating BMPR2 by targeted adenoviral BMPR2 gene delivery to the pulmonary vascular endothelium. We used two established rat models of PAH: chronic hypoxia and monocrotaline (MCT). In both hypertensive models, those receiving BMPR2 had less right ventricular hypertrophy, less pulmonary vascular resistance, improved cardiac function and reduced vascular remodelling. In the MCT model, there was an increase in TGF-?, which was prevented by BMPR2 treatment. In vitro, TGF-?1-induced endothelial-mesenchymal transition (EndMT) in human pulmonary microvascular endothelial cells, which was associated with reduced BMPR2 expression. EndMT was partially ameliorated by stimulating BMPR2 signalling with appropriate ligands even in the ongoing presence of TGF-?1. Collectively, these results indicate therapeutic potential for upregulation of the BMPR2 axis in PAH, which may be, in part, mediated by countering the remodelling effects of TGF-?. PMID:21737550

Reynolds, A M; Holmes, M D; Danilov, S M; Reynolds, P N

2012-02-01

170

Galactosylated chitosan nanoparticles for hepatocyte-targeted delivery of oridonin.  

PubMed

In this study, oridonin-loaded nanoparticles coated with galactosylated chitosan (ORI-GC-NP) were prepared for tumor targeting and their characteristics were evaluated for the morphologies, particle size and zeta potential. Oridonin-loaded nanoparticles (ORI-NP) without galactosylated chitosan were prepared as a control. The entrapment efficiency of ORI-GC-NP and ORI-NP were 72.15% and 85.31%, respectively. The in vitro drug release behavior from nanoparticles displayed biphasic drug release pattern with initial burst release and consequently sustained release. Next, the pharmacokinetics and tissue distribution of ORI-GC-NP, ORI-NP and ORI solution were carried out. Pharmacokinetic analysis showed that ORI-GC-NP and ORI-NP could prolong the drug plasma levels compared with ORI solution. Meanwhile, the distribution of ORI-GC-NP to liver was higher than that of ORI-NP and free drug. In conclusion, ORI-GC-NP, as a promising intravenous drug delivery system for ORI, could be developed as an alternative to the conventional ORI preparations. PMID:22732673

Zheng, Dandan; Duan, Cunxian; Zhang, Dianrui; Jia, Lejiao; Liu, Guangpu; Liu, Yue; Wang, Feihu; Li, Caiyun; Guo, Hejian; Zhang, Qiang

2012-10-15

171

Exploring targeted pulmonary delivery for treatment of lung cancer  

PubMed Central

Lung cancer is the most malignant cancer today. The treatment of lung cancer continues to be a challenge for oncologists. The direct delivery of chemotherapeutic agents to the lungs could represent a novel therapeutic approach for patients with pulmonary metastases. The large alveolar surface area, the low thickness of the epithelial barrier, and an extensive vascularization make the pulmonary route an ideal route for administration of oncolytics. This paper reviews the research performed over the last and current decades on the delivery of various oncolytics for pulmonary delivery for the treatment of lung cancer. Inhaled drug delivery devices in cancer therapy are also discussed in the present manuscript.

Goel, Amit; Baboota, Sanjula; Sahni, Jasjeet K; Ali, Javed

2013-01-01

172

Biodegradable chitosan nanogels crosslinked with genipin.  

PubMed

Chitosan nanoparticles crosslinked with genipin were prepared by reverse microemulsion that allowed to obtain highly monodisperse (3-20 nm by TEM) nanogels. The incorporation of genipin into chitosan was confirmed and quantitatively evaluated by UV-vis and (1)H NMR. Loosely crosslinked chitosan networks showed higher water solubility at neutral pHs than pure chitosan. The hydrodynamic diameter of the genipin-chitosan nanogels ranged from 270 to 390 nm and no remarkable differences were found when the crosslinking degree was varied. The hydrodynamic diameters of the nanoparticles increased slightly at acidic pH and the protonation of ionizable amino groups with the pH was confirmed by the zeta potential measurements. The biocompatible and biodegradable nature, as well as the colloidal and monodisperse particle size of the prepared nanogels, make them attractive candidates for a large variety of biomedical applications. PMID:23544640

Arteche Pujana, Maite; Pérez-Álvarez, Leyre; Cesteros Iturbe, Luis Carlos; Katime, Issa

2013-05-15

173

Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches  

PubMed Central

The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery) namely prodrugs, pH and time dependent systems, and microbially triggered systems, which achieved limited success and had limitations as compared with newer CDDS namely pressure controlled colonic delivery capsules, CODESTM, and osmotic controlled drug delivery which are unique in terms of achieving in vivo site specificity, and feasibility of manufacturing process.

Philip, Anil K.; Philip, Betty

2010-01-01

174

Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae.  

PubMed

To establish a safer and more effective vaccine against pneumococcal respiratory infections, current knowledge regarding the antigens common among pneumococcal strains and improvements to the system for delivering these antigens across the mucosal barrier must be integrated. We developed a pneumococcal vaccine that combines the advantages of pneumococcal surface protein A (PspA) with a nontoxic intranasal vaccine delivery system based on a nanometer-sized hydrogel (nanogel) consisting of a cationic cholesteryl group-bearing pullulan (cCHP). The efficacy of the nanogel-based PspA nasal vaccine (cCHP-PspA) was tested in murine pneumococcal airway infection models. Intranasal vaccination with cCHP-PspA provided protective immunity against lethal challenge with Streptococcus pneumoniae Xen10, reduced colonization and invasion by bacteria in the upper and lower respiratory tracts, and induced systemic and nasal mucosal Th17 responses, high levels of PspA-specific serum immunoglobulin G (IgG), and nasal and bronchial IgA antibody responses. Moreover, there was no sign of PspA delivery by nanogel to either the olfactory bulbs or the central nervous system after intranasal administration. These results demonstrate the effectiveness and safety of the nanogel-based PspA nasal vaccine system as a universal mucosal vaccine against pneumococcal respiratory infection. PMID:23460513

Kong, Il Gyu; Sato, Ayuko; Yuki, Yoshikazu; Nochi, Tomonori; Takahashi, Haruko; Sawada, Shinichi; Mejima, Mio; Kurokawa, Shiho; Okada, Kazunari; Sato, Shintaro; Briles, David E; Kunisawa, Jun; Inoue, Yusuke; Yamamoto, Masafumi; Akiyoshi, Kazunari; Kiyono, Hiroshi

2013-05-01

175

The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.  

PubMed

The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH?=?7.4 at 20?°C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (? and ?) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations. PMID:24160773

Keshavarz, M; Kaffashi, B

2014-12-01

176

Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging.  

PubMed

A novel tumor-targeting polymersome carrier system capable of delivering magnetic resonance imaging (MRI) and chemotherapy is presented in this study. The doxorubicin (DOX)-loaded magnetic polymersomes were first attained by the self-assembly of lipid-containing copolymer, poly(acrylic acid-co-distearin acrylate), in aqueous solution containing citric acid-coated superparamagnetic iron oxide nanoparticles (SPIONs), and followed by DOX loading via electrostatic attraction. To further functionalize these artificial vesicles with superior in vivo colloidal stability, pH-tunable drug release and active tumor-targeting, chitosan and poly(?-glutamic acid-co-?-glutamyl oxysuccinimide)-g-poly(ethyleneglycol)-folate (FA) were deposited in sequence onto the assembly outer surfaces. The interfacial nanogel layers via complementary electrostatic interactions and in-situ covalent cross-linking were thus produced. These nanogel-caged polymersomes (NCPs) show excellent anti-dilution and serum proteins-repellent behaviors. Triggerable release of the encapsulated DOX was governed by dual external stimuli, pH and temperature. When these theranostic NCPs were effectively internalized by HeLa cells via FA receptor-mediated endocytosis and then exposed to high frequency magnetic fields (HFMF), the combined effects of both pH and magnetic hyperthermia-triggered drug release and thermo-therapy resulted in greater cytotoxicity than the treatment by DOX alone. By virtue of the SPION clustering effect in the assembly inner aqueous compartments, the SPION/DOX-loaded NCPs displayed an r? relaxivity value (255.2 F emM?¹ S?¹) higher than Resovist (183.4 F emM?¹ S?¹), a commercial SPION-based T? contrast agent. The high magnetic relaxivity of the tumor-targeting NCPs coupled with their enhanced cellular uptake considerably promoted the MRI contrast of targeted cancer cells. These results demonstrate the great potential of the FA-decorated SPION/DOX-loaded NCPs as an advanced cancer theranostic nanodevice. PMID:23562635

Chiang, Wen-Hsuan; Huang, Wen-Chia; Chang, Chien-Wen; Shen, Ming-Yin; Shih, Zong-Fu; Huang, Yi-Fong; Lin, Sung-Chyr; Chiu, Hsin-Cheng

2013-06-28

177

Delivery and application of dietary polyphenols to target organs, tissues and intracellular organelles.  

PubMed

At present, dietary polyphenols are popular with consumers because regular consumption of polyphenol-rich foods is likely to be beneficial for human health. However, administrated polyphenols are extensively metabolized in the digestive tract or some other parts before reaching the target organs. Additionally, some of the polyphenols are photosensitive, easily oxidized and are in unfavorable forms. Therefore, a lot of work has been performed to ensure delivery of intact polyphenols to the target organs. We here summarize recent progress in polyphenol-delivery to individual organs, tissues, and cells, in regard to relatively new delivery systems. Polyphenol-delivery systems can be divided into three categories: (i) before delivery into the blood stream (skin, mouth, gastrointestine), (ii) in the blood stream (plasma), and (iii) after the blood stream (brain, spleen, bone marrow, kidney). Polyphenols before the delivery into blood stream must overcome several obstacles to avoid converting into inactive forms by commensal microorganisms, environmental pH, and some others. In the blood, plasma-polyphenol interactions and modifications are very effective for the bioavailability of polyphenols with numerous enzymes. Native forms of polyphenols, successfully out of the blood stream, further go through obstacles such as the blood brain barrier to reach target organs. Recent progress in delivering polyphenols is here discussed on 3 main delivery systems, nanoparticle, liposome, and microemulsion. Moreover, we also focused on delivery systems to intracellular organelles (cell surface, lysosome, mitochondria, nucleus), which are the final targets of polyphenols to perform their beneficial reactions. PMID:24328691

Ohara, Masaru; Ohyama, Yoshihiko

2014-01-01

178

Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery  

Microsoft Academic Search

Skin is an attractive target for delivery of genetic therapies and vaccines. However, new approaches are needed to access this tissue more effectively. Here, we describe a new delivery technology based on arrays of structurally precise, micron-scale silicon projections, which we term microenhancer arrays (MEAs). In a human clinical study, these devices effectively breached the skin barrier, allowing direct access

Jason B. Alarcon; John M. Brittingham; Diane E. Sutter; Ronald J. Pettis; Noel G. Harvey; John A. Mikszta

2002-01-01

179

Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery.  

PubMed

In this paper, we present polyaspartic acid, a biodegradable polymer as a reducing and functionalizing agent for the synthesis of doxorubicin loaded gold nanoparticles by a green process. Gold nanoparticles were stable to electrolytes and pH. Secondary amino groups of polyaspartic acid enabled reduction of gold chloride to form gold nanoparticles of size 55 +/-10 nm, with face centered cubic crystalline structure as confirmed by UV, TEM, SAED and XRD studies. Cationic doxorubicin was readily loaded onto anionic polyaspartic acid gold nanoparticles by ionic complexation. Fluorescence studies confirmed doxorubicin loading while FTIR spectra confirmed ionic complexation. Doxorubicin loading onto polyaspartic acid gold nanoparticles was studied at doxorubicin/polyaspartic acid molar ratios 1:10 to 1:1. As the molar ratio tended to unity, although loading up to 60% was achieved, colloidal instability resulted and is attributed to effective covering of negative charges of polyaspartic acid. Stable doxorubicin loaded polyaspartic acid gold nanoparticles of 105 +/- 15.1 nm with doxorubicin loading of 23.85% w/w and zeta potential value of -28 +/- 0.77 mV were obtained at doxorubicin/polyaspartic acid molar ratio 1:10. Higher doxorubicin release rate from the doxorubicin loaded polyaspartic acid gold nanoparticles in an acid medium (i.e., pH 5.5) as compared to that in pH 7.4 and deionized water is a desirable characteristic for tumor targeted delivery. Enhanced cytotoxicity and 3 fold higher uptake of doxorubicin loaded polyaspartic acid gold nanoparticles as compared to doxorubicin solution were seen in MCF-7 breast cancer cells while polyaspartic acid gold nanoparticles revealed no cytotoxicity confirming safety. Prominent regression in tumor size in-vivo in fibrosarcoma tumor induced mouse model was observed upto 59 days with doxorubicin loaded polyaspartic acid gold nanoparticles while doxorubicin solution treated mice showed regrowth beyond 23rd day. Moreover, a decrease of body weight of 35% indicating severe toxicity with doxorubicin solution as compared to only 20% with gradual recovery after day 30 in case of doxorubicin loaded polyaspartic acid gold nanoparticles confirmed their lower toxicity and enhanced efficacy. PMID:24724506

Khandekar, Sameera V; Kulkarni, M G; Devarajan, Padma V

2014-01-01

180

Microgels and nanogels with catalytic activity.  

PubMed

Molecular imprinting has grown considerably over the last decade with more and more applications being developed. The use of this approach for the generation of enzyme-mimics is here reviewed with a particular focus on the most recent achievements using different polymer formats such as microgels and nanogels, beads, membranes and also silica nanoparticles. PMID:22415417

Resmini, M; Flavin, K; Carboni, D

2012-01-01

181

Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer.  

National Technical Information Service (NTIS)

Mesenchymal stem cells (MSCs) have been proposed to be cellular vehicles for the targeted delivery and local production of biological agents in tumors. In this proposal we will stably transfect mesenchymal stem cells with a lentiviral vector containing a ...

Z. Cheng

2010-01-01

182

Breast Cancer-Targeted Nuclear Drug Delivery Overcoming Drug Resistance for Breast Cancer Chemotherapy.  

National Technical Information Service (NTIS)

Breast cancer cells drug resistance mechanisms are the major factors to reduce the cytotoxic effects and even the chemotherapeutic efficacy of anti- cancer drugs. Nanocarriers for drug delivery based on the EPR effect targeted to cell cytosol subject to v...

M. Radosz W. J. Murdoch Y. Shen

2013-01-01

183

Cell-mediated Delivery and Targeted Erosion of Noncovalently Crosslinked Hydrogels  

NASA Technical Reports Server (NTRS)

A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin.

Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

2013-01-01

184

Targeted drug delivery and penetration into solid tumors.  

PubMed

Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-? fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. PMID:21287572

Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

2012-09-01

185

Oligoperoxide Based Physically Detectable Nanocomposites for Cell Targeting, Visualization and Treatment  

NASA Astrophysics Data System (ADS)

Novel promising routes for the obtaining luminescent, magnetic, plasmon resonance capable nanocomposites as well as drug delivery systems are proposed and studied. These routes are based on the synthesis and application of original type of functional oligoperoxides, their coordinating complexes of transition including rare earth metal cations for controlled synthesis of block, comb-like or nanogel oligoelectrolytes as well as for template synthesis of functional polymer and polymer-mineral nanoparticles. Developed nanoscale delivery systems were tested as medicines for cancer administration in vitro and in vivo. Physically detectable lectin-conjugated nanocomposites were studied as biomarkers for pathological cell targeting and visualization.

Zaichenko, A.; Mitina, N.; Shevchuk, O.; Shapoval, O.; Boiko, N.; Bilyy, R.; Stoika, R.; Voloshinovskii, A.; Horak, D.

2010-10-01

186

Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery  

PubMed Central

Prediction of nanoparticle (NP) distribution in a vasculature involves transport phenomena at various scales and is crucial for the evaluation of NP delivery efficiency. A combined particulate and continuum model is developed to model NP transport and delivery processes. In the particulate model ligand-receptor binding kinetics is coupled with Brownian dynamics to study NP binding on a microscale. An analytical formula is derived to link molecular level binding parameters to particulate level adhesion and detachment rates. The obtained NP adhesion rates are then coupled with a convection-diffusion-reaction model to study NP transport and delivery at macroscale. The binding results of the continuum model agree well with those from the particulate model. The effects of shear rate, particle size and vascular geometry on NP adhesion are investigated. Attachment rates predicted by the analytical formula also agree reasonably well with the experimental data reported in literature. The developed coupled model that links ligand-receptor binding dynamics to NP adhesion rate along with macroscale transport and delivery processes may serve as a faster evaluation and prediction tool to determine NP distribution in complex vascular networks.

Tan, Jifu; Wang, Shunqiang; Yang, Jie; Liu, Yaling

2013-01-01

187

Solid lipid nanoparticles for targeted brain drug delivery  

Microsoft Academic Search

The present review discusses the potential use of solid lipid nanoparticles for brain drug targeting purposes. The state of the art on surfactant-coated poly(alkylcyanoacrylate) nanoparticles specifically designed for brain targeting is given by emphasizing the transfer of this technology to solid lipid matrices. The available literature on solid lipid nanoparticles and related carriers for brain drug targeting is revised as

Paolo Blasi; Stefano Giovagnoli; Aurélie Schoubben; Maurizio Ricci; Carlo Rossi

2007-01-01

188

[Research progress of gene recombinant mesenchymal stem cells as tumor targeting delivery vehicles].  

PubMed

The applications of targeting gene delivery systems in tumor therapy have attracted extensive attention of researchers in recent years, as they can selectively deliver the therapeutic gene to tumor sites, improve the success rate of gene therapy and reduce the side effects. Therefore, design and development of novel gene delivery vehicles have been a hot area of current research. Recent studies have shown that mesenchymal stem cells (MSCs) have the ability to migrate towards and engraft into the tumor sites. Therefore, these properties make them a great hope for efficient targeted-delivery vehicles in cancer gene therapy. In this review, we examine the promising of utilization of MSCs as a targeted-delivery vehicle for cancer gene therapy, and summarize various challenges and concerns regarding this therapy. PMID:24187826

Zhang, Tian-Yuan; Hu, Yu-Lan; Liang, Wen-Quan; Gao, Jian-Qing

2013-08-01

189

A two-component drug delivery system using Her-2-targeting thermosensitive liposomes.  

PubMed

We report on a new method for enhancing the specificity of drug delivery for tumor cells, using thermosensitive immunoliposomes. The liposomes are conjugated to the antibody trastuzumab (Herceptin), which targets the human epidermal growth factor receptor 2 (Her-2), a cell membrane receptor overexpressed in many human cancers. Being thermosensitive, the liposomes only release their contents when heated slightly above body temperature, allowing for the possibility of tissue targeting through localized hyperthermia. Using self-quenching calcein, we demonstrate the release of liposome contents into cell endosomes after brief heating to 42 degrees C. To further increase targeting specificity, we incorporate the concept of a two-component delivery system that requires the interaction of two different liposomes within the same endosome for cytoplasmic delivery. Experimental evaluation of the technique using fluorescently labeled liposomes shows that a two-component delivery system, combined with intracellular disruption of liposomes by hyperthermia, significantly increases specificity for Her-2-overexpressing tumor cells. PMID:19089689

Kullberg, Max; Mann, Kristine; Owens, Jesse Lee

2009-02-01

190

Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues  

PubMed Central

Non-invasive treatment of injuries and disorders affecting bones and connective tissue is a significant challenge facing the medical community. A treatment route that has recently been proposed is nitric oxide (NO) therapy. Nitric oxide plays several roles in physiology with many conditions lacking adequate levels of NO. As NO is a radical, localized delivery via NO donors is essential to promoting biological activity. Herein, we review current literature related to therapeutic NO delivery in the treatment of bone, skin and tendon repair.

Nichols, Scott P.; Storm, Wesley L.; Koh, Ahyeon; Schoenfisch, Mark H.

2012-01-01

191

Efficacy of decitabine-loaded nanogels in overcoming cancer drug resistance is mediated via sustained DNA methyltransferase 1 (DNMT1) depletion.  

PubMed

DNA methyltransferase 1 (DNMT1) promotes DNA methylation to maintain cancer drug resistance. The epigenetic drug, decitabine (DAC) is a potent hypomethylating agent, but its effect is transient because of its instability. We tested the efficacy of DAC-loaded nanogels in doxorubicin-resistant breast cancer cells, DAC-resistant melanoma cells, and leukemia cells. DAC in nanogel sustained DNMT1 depletion, prolonged cell arrest in the G2/M cell-cycle phase, and significantly enhanced antiproliferative effect of DAC. The efficacy of DAC-loaded nanogels was more significant in resistant than sensitive cells. Our data suggest that effective delivery of DAC and prolonged DNMT1 depletion are critical to overcoming drug resistance. PMID:23305699

Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

2013-04-30

192

Efficacy of decitabine-loaded nanogels in overcoming cancer drug resistance is mediated via sustained DNA methyl transferase 1 (DNMT1) depletion  

PubMed Central

DNA Methyltransferase 1 (DNMT1) promotes DNA methylation to maintain cancer drug resistance. The epigenetic drug, decitabine (DAC) is a potent hypomethylating agent, but its effect is transient because of its instability. We tested the efficacy of DAC-loaded nanogels in doxorubicin-resistant breast cancer cells, DAC-resistant melanoma cells, and leukemia cells. DAC in nanogel sustained DNMT1 depletion, prolonged cell arrest in the G2/M cell-cycle phase, and significantly enhanced antiproliferative effect of DAC. The efficacy of DAC-loaded nanogels was more significant in resistant than sensitive cells. Our data suggest that effective delivery of DAC and prolonged DNMT1 depletion are critical to overcoming drug resistance.

Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

2013-01-01

193

Size matters: gold nanoparticles in targeted cancer drug delivery  

PubMed Central

Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward.

Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

2013-01-01

194

Magnetic nanoparticle drug delivery systems for targeting tumor  

NASA Astrophysics Data System (ADS)

Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

2014-04-01

195

The use of microbubbles to target drug delivery  

PubMed Central

Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed.

Tsutsui, Jeane M; Xie, Feng; Porter, Richard Thomas

2004-01-01

196

Self-organized pullulan\\/deoxycholic acid nanogels: Physicochemical characterization and anti-cancer drug-releasing behavior  

Microsoft Academic Search

The objective of this study was to develop new self-organized nanogels as a means of drug delivery in patients with cancer.\\u000a Pullulan (PUL) and deoxycholic acid (DOCA) were conjugated through an ester linkage between the hydroxyl group in PUL and\\u000a the carboxyl group in DOCA. Three types of PUL\\/DOCA conjugates were obtained, differing in the number of DOCA substitutions\\u000a (DS;

Kun Na; Kyong Mi Park; Eun Ae Jo; Kwan Shik Lee

2006-01-01

197

Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves  

Microsoft Academic Search

Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of

Takuya Akiyama; Shunichi Sato; Hiroshi Ashida; Mitsuhiro Terakawa

2011-01-01

198

DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target  

SciTech Connect

In dynamic multileaf collimation (DMLC), pairs of servo-controlled leaves sweep across the target to deliver the modulated radiation intensity map while the beam is on continuously. The mathematical model for dynamic, optimal control of a single leaf pair has been developed for the case of a rigid target, translating parallel to the leaf trajectories. This mathematical model ensures delivery of the modulated intensity map while minimizing beam-on time. Numerical solutions of the model are presented here for optimal IMRT delivery for stationary and oscillating targets, together with a discussion of the results. Comparisons between solutions for stationary and mobile targets, as well as comparisons between optimal and suboptimal algorithms, are provided. These comparisons allow us to estimate potential gains in the effectiveness of DMLC IMRT delivery when it is based on optimal algorithms.

Papiez, Lech [Department of Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, Indianapolis, Indiana 46202 (United States)

2004-10-01

199

Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber.  

PubMed

Targeted drug delivery and controllable release are particularly beneficial in medical therapy. This work provides a demonstration of nanoparticles targeted delivery and controllable release using a defect-decorated optical nanofiber (NF). By using the NF, polystyrene particles (PSs) (713-nm diameter) suspended in water were successfully trapped, then delivered along the NF at an average velocity of 4.8 µm/s with the assistance of a laser beam of 980-nm wavelength at an optical power of 39 mW, and finally, assembled at the defect. Subsequently, by turning off the optical power, 90% of the assembled PSs can be released in 30 s. This method would be useful in targeted drug delivery and controllable release, and provide potential applications in targeted therapy. PMID:21747483

Xin, Hongbao; Li, Baojun

2011-07-01

200

Targeted Delivery of siRNA-Generating DNA Nanocassettes Using Multifunctional Nanoparticles  

PubMed Central

Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double-stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor-targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double-stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor-mediated internalization should enhance the therapeutic effect of the siRNA-mediated cancer therapy.

Cho, Y.-S.; Lee, G. Y.; Sajja, H. K.; Qian, W.; Cao, Z.; He, W.; Karna, P.; Chen, X.; Mao, H.; Wang, Y. A.; Yang, L.

2013-01-01

201

Cancer cell-targeted drug delivery utilizing oligopeptide transport activity.  

PubMed

To study the drug delivery to tumor by utilization of an oligopeptide transport activity, we examined the accumulation of dipeptides and the peptide-mimetic anti-cancer drug, bestatin, a substrate of oligopeptide transporter PepT1. Firstly, we established HeLa cells stably expressing human peptide transporter (hPepT1) (HeLa-hPepT1). Secondly, we constructed an experimental model by inoculation of HeLa-hPepT1 cells subcutaneously into Balb/c nu/nu mice to demonstrate the contribution of PepT1 to the tissue-selective drug delivery. The accumulations of a hydrolysis-resistant dipeptide [(3)H]carnosine and bestatin in solid tumors formed by HeLa-hPepT1 or HeLa-pcDNA3, which are transfected with vector DNA (pcDNA3) were measured. After I.V. administration, tissue-to-plasma concentration ratios (K(p)) of both compounds, in HeLa-hPepT1 tumor was significantly greater than that of [(14)C]inulin, a marker for extracellular fluid space, those of dipeptides in muscle, or those in HeLa-pcDNA3 tumor. Furthermore, bestatin exhibited growth inhibition of HeLa-hPepT1 in vitro. In vivo, repeated oral administration of bestatin for 28 days suppressed the growth of HeLa-hPepT1 tumor specifically. When HT-1080 cells, which may naturally express oligopeptide transport activity, were transplanted, K(p) of [(3)H]carnosine was significantly increased in comparison with that in muscle. In addition, oligopeptide transport activities among various human cell lines were examined. These results provide the first demonstration for the selective delivery of oligopeptides to tumors by specific oligopeptide transport activity. PMID:11004680

Nakanishi, T; Tamai, I; Takaki, A; Tsuji, A

2000-10-15

202

Polymeric micelles: nanocarriers for cancer-targeted drug delivery.  

PubMed

Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10-100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity. PMID:24700296

Zhang, Yifei; Huang, Yixian; Li, Song

2014-08-01

203

Aptamer-targeted DNA nanostructures for therapeutic delivery.  

PubMed

DNA-based nanostructures have been widely used in various applications due to their structural diversity, programmability, and uniform structures. Their intrinsic biocompatibility and biodegradability further motivates the investigation of DNA-based nanostructures as delivery vehicles. Incorporating AS1411 aptamers into DNA pyramids leads to enhanced intracellular uptake and selectively inhibits the growth of cancer cells, achieved without the use of transfection reagents. Furthermore, aptamer-displaying pyramids are found to be substantially more resistant to nuclease degradation than single-stranded aptamers. These findings, along with their modularity, reinforce the potential of DNA-based nanostructures for therapeutic applications. PMID:24739136

Charoenphol, Phapanin; Bermudez, Harry

2014-05-01

204

Lipid-Coated Nanoscale Coordination Polymers for Targeted Delivery of Antifolates to Cancer Cells  

PubMed Central

Nanoscale coordination polymers (NCPs) have been demonstrated as an interesting platform for drug delivery, as they possess many advantages over small-molecule chemotherapeutics, such as high payloads, lower systemic toxicity, tunability, and enhanced tumor uptake. Existing formulations for the delivery of methotrexate (MTX), an antifolate cancer drug, have very low drug loadings. Herein, we report the incorporation of MTX as a building block in an NCP formulation with exceptionally high drug loadings (up to 79.1 wt%) and the selective delivery of the NCP to cancer cells. Encapsulation of the NCP in a functionalized lipid bilayer allows for targeted delivery and controlled release to cancer cells. A phosphor can be doped into the NCPs for monitoring particle uptake by optical imaging. The lipid-coated and anisamide-targeted NCPs have superior in vitro efficacy against acute lymphoblastic leukemia cells when compared to free drug.

Huxford, Rachel C.; deKrafft, Kathryn E.; Boyle, William S.; Liu, Demin

2013-01-01

205

Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic mesalamine forms for colon delivery.  

PubMed

For drugs expected to act locally in the colon, and for successful treatment, a delivery device is necessary, in order to limit the systemic absorption which decreases effectiveness and causes important side effects. Various delayed release systems are currently commercialized; most of them based on pH-dependent release which is sensitive to gastrointestinal pH variation. This study proposes a novel excipient for colon delivery. This new preparation consists in the complexation between carboxymethyl starch (CMS) and Lecithin (L). As opposed to existing excipients, the new complex is pH-independent, inexpensive, and easy to manufacture and allows a high drug loading. FTIR, X-ray, and SEM structural analysis all support the hypothesis of the formation of a complex. By minor variation of the excipient content within the tablet, it is possible to modulate the release time and delivery at specific sites of the gastrointestinal tract. This study opens the door to a new pH-independent delivery system for mesalamine targeted administration. Our novel formulation fits well with the posology of mesalamine, used in the treatment of Inflammatory Bowel Disease (IBD), which requires repeated administrations (1g orally four times a day) to maintain a good quality of life. PMID:23562535

Mihaela Friciu, Maria; Canh Le, Tien; Ispas-Szabo, Pompilia; Mateescu, Mircea Alexandru

2013-11-01

206

In vivo drug release behavior in dogs from a new colon-targeted delivery system  

Microsoft Academic Search

The colon-targeted delivery capsule (CTDC), a new capsule-type dosage form for colonic delivery of drugs, was investigated for the in vivo drug release behavior in dogs. A CTDC formulation with prednisolone as a model drug and theophylline as a marker substance for gastric emptying was prepared for this study. The enteric-coated capsule (ECC) formulation with a similar composition was also

Takashi Ishibashi; Harumi Hatano; Masao Kobayashi; Masakazu Mizobe; Hiroyuki Yoshino

1999-01-01

207

Choline transporter-targeting and co-delivery system for glioma therapy.  

PubMed

Combination of gene therapy and chemotherapy is a promising approach for glioma therapy. In this study, a co-delivery system of plasmid encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL, Trail) and doxorubicin (DOX) has been simply constructed in two steps. Firstly, DOX was intercalated into Trail to form a stable complex. Secondly, DOX-Trail complex was condensed by Dendrigraft poly-L-lysine (DGL) to form a nanoscaled co-delivery system. Choline transporters are both expressed on blood-brain barrier (BBB) and glioma, Herein, a choline derivate with high choline transporter affinity was chosen as BBB and glioma dual targeting ligand. Choline-derivate modified co-delivery system showed higher cellular uptake efficiency and cytotoxicity than unmodified co-delivery system in U87 MG cells. In comparison with single medication or unmodified delivery system, Choline-derivate modified co-delivery system induced more apoptosis both in vitro and in vivo. The therapeutic efficacy on U87 MG bearing xenografts further confirmed the predominance of this dual targeting and co-delivery system. PMID:23993342

Li, Jianfeng; Guo, Yubo; Kuang, Yuyang; An, Sai; Ma, Haojun; Jiang, Chen

2013-12-01

208

New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.  

PubMed

Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches. PMID:23721204

Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

2013-08-01

209

Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles.  

PubMed

Delivery of nanoparticle drugs to tumors relies heavily on the enhanced permeability and retention (EPR) effect. While many consider the effect to be equally effective on all tumors, it varies drastically among the tumors' origins, stages, and organs, owing much to differences in vessel leakiness. Suboptimal EPR effect represents a major problem in the translation of nanomedicine to the clinic. In the present study, we introduce a photodynamic therapy (PDT)-based EPR enhancement technology. The method uses RGD-modified ferritin (RFRT) as "smart" carriers that site-specifically deliver (1)O2 to the tumor endothelium. The photodynamic stimulus can cause permeabilized tumor vessels that facilitate extravasation of nanoparticles at the sites. The method has proven to be safe, selective, and effective. Increased tumor uptake was observed with a wide range of nanoparticles by as much as 20.08-fold. It is expected that the methodology can find wide applications in the area of nanomedicine. PMID:24806291

Zhen, Zipeng; Tang, Wei; Chuang, Yen-Jun; Todd, Trever; Zhang, Weizhong; Lin, Xin; Niu, Gang; Liu, Gang; Wang, Lianchun; Pan, Zhengwei; Chen, Xiaoyuan; Xie, Jin

2014-06-24

210

A polyvalent aptamer system for targeted drug delivery.  

PubMed

Poor efficacy and off-target systemic toxicity are major problems associated with current chemotherapeutic approaches to treat cancer. We developed a new form of polyvalent therapeutics that is composed of multiple aptamer units synthesized by rolling circle amplification and physically intercalated chemotherapy agents (termed as "Poly-Aptamer-Drug"). Using a leukemia cell-binding aptamer and doxorubicin as a model system, we have successfully constructed Poly-Aptamer-Drug systems and demonstrated that the Poly-Aptamer-Drug is significantly more effective than its monovalent counterpart in targeting and killing leukemia cells due to enhanced binding affinity (? 40 fold greater) and cell internalization via multivalent effects. We anticipate that our Poly-Aptamer-Drug approach will yield new classes of tunable therapeutics that can be utilized to effectively target and treat cancers while minimizing the side effects of chemotherapy. PMID:24044994

Zhang, Zhiqing; Ali, M Monsur; Eckert, Mark A; Kang, Dong-Ku; Chen, Yih Yang; Sender, Leonard S; Fruman, David A; Zhao, Weian

2013-12-01

211

Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve  

PubMed Central

Polymersomes are nanosized vesicles formed from amphiphilic block copolymers, and have been identified as potential drug delivery vehicles to the inner ear. The aim of this study was to provide targeting to specific cells within the inner ear by functionalizing the polymersome surface with Tet1 peptide sequence. Tet1 peptide specifically binds to the trisialoganglioside clostridial toxin receptor on neurons and was expected to target the polymersomes toward the cochlear nerve. The Tet1 functionalized PEG-b-PCL polymersomes were administered using routine drug delivery routes: transtympanic injection and cochleostomy. Delivery via cochleostomy of Tet1 functionalized polymersomes resulted in cochlear nerve targeting; in contrast this was not seen after transtympanic injection.

Zhang, Ya; Zhang, Weikai; Johnston, Alexander H; Newman, Tracey A; Pyykko, Ilmari; Zou, Jing

2012-01-01

212

Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics  

PubMed Central

Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100?nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.

Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

2014-01-01

213

Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors  

PubMed Central

Introduction Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics). Conclusion The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.

Omidi, Yadollah; Barar, Jaleh

2012-01-01

214

Azo polymeric hydrogels for colon targeted drug delivery  

Microsoft Academic Search

Azo polymeric hydrogels were developed for colon specific targeting. Methacryloyloxy azobenzene was synthesized and hydrogels were prepared by copolymerizing with hydroxyethyl methacrylate. These hydrogels were characterized by various spectral techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Equilibrium swelling measurements of the hydrogels were carried out in distilled water and also in simulated gastric and

K. L. Shantha; P. Ravichandran; K. Panduranga Rao

1995-01-01

215

Method for Targeted Therapeutic Delivery of Proteins into Cells  

Cancer.gov

Current methods to deliver proteins into cells (e.g., using retrovirus, DNA transfection, protein transduction, microinjection, complexing the protein with lipids, etc.) have many shortcomings, such as lack of target specificity toxicity, or unwanted random integration into the host chromosome.

216

Advances in lipid nanodispersions for parenteral drug delivery and targeting  

Microsoft Academic Search

Parenteral formulations, particularly intravascular ones, offer a unique opportunity for direct access to the bloodstream and rapid onset of drug action as well as targeting to specific organ and tissue sites. Triglyceride emulsions, liposomes and micellar solutions have been traditionally used to accomplish these tasks and there are several products on the market using these lipid formulations. The broader application

Panayiotis P. Constantinides; Mahesh V. Chaubal; Robert Shorr

2008-01-01

217

Tuning Pharmacokinetics and Biodistribution of a Targeted Drug Delivery System Through Incorporation of a Passive Targeting Component  

PubMed Central

Major challenges in the development of drug delivery systems (DDSs) have been the short half-life, poor bioavailability, insufficient accumulation and penetration of the DDSs into the tumor tissue. Understanding the pharmacokinetic (PK) parameters of the DDS is essential to overcome these challenges. Herein we investigate how surface chemistry affects the PK profile and organ distribution of a gold nanoparticle-based DDS containing both a passive and active targeting moiety via two common routes of administration: intravenous and intraperitoneal injections. Using LC/MS/MS, ELISA and INAA we report the half-life, peak plasma concentrations, area under the curve, ability to cross the peritoneal barrier and biodistribution of the nanoconjugates. The results highlight the design criteria for fine-tuning the PK parameters of a targeted drug delivery system that exploits the benefits of both active and passive targeting.

Kudgus, Rachel A.; Walden, Chad A.; McGovern, Renee M.; Reid, Joel M.; Robertson, J. David; Mukherjee, Priyabrata

2014-01-01

218

Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform  

PubMed Central

This paper provides a synopsis of the advancements made in advancing a dendrimer-based nanomedicine towards human clinical trials by the Michigan Nanotechnology Institute for Medicine and Biological Sciences. A brief description of the synthesis and characterization of a targeted multifunctional therapeutic will demonstrate the simple yet delicate task of producing novel chemotherapeutic agents. The results obtained from in vitro and in vivo studies not only authenticate the potential of using nanoparticles to target therapeutics but also provide valuable insight towards the future directions of this technology. A fundamental, cross-disciplinary collaboration was necessary to achieve the synthesis and testing of this technology, and was the keystone to establishing this innovative invention. Throughout this paper, we will stress that the unique collaboration that facilitated the evolution of this technology is vital to the success of future developments in nanomedicine.

Majoros, Istvan J.; Williams, Christopher R.; Becker, Andrew; Baker, James R.

2010-01-01

219

Fingerloop activates cargo delivery and unloading during cotranslational protein targeting  

PubMed Central

During cotranslational protein targeting by the signal recognition particle (SRP), information about signal sequence binding in the SRP's M domain must be effectively communicated to its GTPase domain to turn on its interaction with the SRP receptor (SR) and thus deliver the cargo proteins to the membrane. A universally conserved “fingerloop” lines the signal sequence–binding groove of SRP; the precise role of this fingerloop in protein targeting has remained elusive. In this study, we show that the fingerloop plays important roles in SRP function by helping to induce the SRP into a more active conformation that facilitates multiple steps in the pathway, including efficient recruitment of SR, GTPase activation in the SRP•SR complex, and most significantly, the unloading of cargo onto the target membrane. On the basis of these results and recent structural work, we propose that the fingerloop is the first structural element to detect signal sequence binding; this information is relayed to the linker connecting the SRP's M and G domains and thus activates the SRP and SR for carrying out downstream steps in the pathway.

Ariosa, Aileen R.; Duncan, Stacy S.; Saraogi, Ishu; Lu, Xiaodong; Brown, April; Phillips, Gregory J.; Shan, Shu-Ou

2013-01-01

220

A Nonpolycationic Fully Proteinaceous Multiagent System for Potent Targeted Delivery of siRNA.  

PubMed

Protein-based methods of targeted short-interfering RNA (siRNA) delivery have the potential to solve some of the problems faced by nanoparticle-based methods, such as poor pharmacokinetics and biodistribution, low tumor penetration, and polydispersity. However, protein-based targeted delivery has been limited to fusion proteins with polycationic peptides as siRNA carriers, whose high charge density in some cases results in undesirable biophysical and in vivo properties. Here, we present a fully proteinaceous, multiagent approach for targeted siRNA delivery to epidermal growth factor receptor (EGFR), using a nonpolycationic carrier for siRNA. Each agent contributes a fundamentally different mechanism of action that work together for potent targeted RNA interference. The first agent is an EGFR-targeted fusion protein that uses a double-stranded RNA-binding domain as a nonpolycationic siRNA carrier. This double-stranded RNA-binding domain fusion protein can deliver siRNA to the endosomes of an EGFR-expressing cell line. A second agent delivers the cholesterol-dependent cytolysin, perfringolysin O, in a targeted manner, which enhances the endosomal escape of siRNA and induces gene silencing. A third agent that clusters EGFR increases gene-silencing potency and decreases cytolysin toxicity. Altogether, this system is potent, with only 16 nmol/l siRNA required for gene silencing and a therapeutic window that spans two orders of magnitude of targeted cytolysin concentrations. PMID:24825362

Liu, David V; Yang, Nicole J; Wittrup, K Dane

2014-01-01

221

A Nonpolycationic Fully Proteinaceous Multiagent System for Potent Targeted Delivery of siRNA  

PubMed Central

Protein-based methods of targeted short-interfering RNA (siRNA) delivery have the potential to solve some of the problems faced by nanoparticle-based methods, such as poor pharmacokinetics and biodistribution, low tumor penetration, and polydispersity. However, protein-based targeted delivery has been limited to fusion proteins with polycationic peptides as siRNA carriers, whose high charge density in some cases results in undesirable biophysical and in vivo properties. Here, we present a fully proteinaceous, multiagent approach for targeted siRNA delivery to epidermal growth factor receptor (EGFR), using a nonpolycationic carrier for siRNA. Each agent contributes a fundamentally different mechanism of action that work together for potent targeted RNA interference. The first agent is an EGFR-targeted fusion protein that uses a double-stranded RNA-binding domain as a nonpolycationic siRNA carrier. This double-stranded RNA-binding domain fusion protein can deliver siRNA to the endosomes of an EGFR-expressing cell line. A second agent delivers the cholesterol-dependent cytolysin, perfringolysin O, in a targeted manner, which enhances the endosomal escape of siRNA and induces gene silencing. A third agent that clusters EGFR increases gene-silencing potency and decreases cytolysin toxicity. Altogether, this system is potent, with only 16 nmol/l siRNA required for gene silencing and a therapeutic window that spans two orders of magnitude of targeted cytolysin concentrations.

Liu, David V; Yang, Nicole J; Wittrup, K Dane

2014-01-01

222

Ligand-functionalized nanoliposomes for targeted delivery of galantamine.  

PubMed

The purpose of this study was to design ligand-functionalized nanoliposomes that are proficient in providing effective intracellular delivery of an alkaloid drug (galantamine) into PC12 neuronal cells in response to managing Alzheimer's disease (AD). Ligand-functionalized nanoliposomes were produced and validated for their physicochemical properties, in silico molecular mechanics energy relationships, ex vivo cytotoxicity, peptide coupling efficiency (PCE), drug entrapment efficiency (DEE), drug release, fluorometry and confocal microscopy. Particle sizes of the nanoliposomes ranged from 127 nm to 165 nm (PdI=0.39-0.03), zeta potential values of -18 mV to -36 mV, PCE from 40% to 78% while DEE ranged from 42% to 79%. The surface morphology of the nanoliposomes was stable, spherically and uniform in shape. Thermal behavior and Fourier transform infrared (FTIR) analyses confirmed that galantamine and the peptide-ligand were incorporated into the inner core and surface of the nanoliposomes, respectively. The optimized formulation showed sustained drug release (30% of drug released within 48 h). Fluorometry and confocal microscopy revealed that the ligand-functionalized nanoliposomes facilitated galantamine uptake into PC12 neuronal cells via the Serpin Enzyme Complex Receptor in a mediated manner. CytoTox-Glo™ cytotoxicity assay established the low cytotoxicity on PC12 neuronal cells when exposed to native nanoliposomes and the ligand-functionalized nanoliposomes. Response surface analysis demonstrated there was a high degree of correlation between the experimental and fitted values. Furthermore, ex vivo studies showed that the high galantamine accumulation into PC12 neuronal cells was influenced by the post-engineering of peptides on the surface of the galantamine-loaded nanoliposomes. MMER analysis aptly corroborated the experimental findings. PMID:23535346

Mufamadi, Maluta S; Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; van Vuuren, Sandy; Ndesendo, Valence M K; Toit, Lisa C du; Iyuke, Sunny E; Pillay, Viness

2013-05-01

223

Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy.  

PubMed

Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near-infrared (NIR)-regulated hydrophobic drug-delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin-loaded AuMP-polyethylene glycol-folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote-controlled hydrophobic drug-delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR-controlled, targeted drug-delivery method would promote the development of high-performance hydrophobic anticancer drug-delivery system in future clinical applications. PMID:23765904

Yang, Xinjian; Liu, Zhen; Li, Zhenhua; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

2013-07-29

224

Laser-induced disruption of systemically administered liposomes for targeted drug delivery  

NASA Astrophysics Data System (ADS)

Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

2009-07-01

225

Novel chitosan coated magnetic nanocarriers for the targeted Diclofenac delivery.  

PubMed

New magnetic devices consisting of magnetite functionalized with oleic acid and chitosan have been synthesized and employed to the loading of Diclofenac as potential tool for treatment of targeted inflammatory diseases. Magnetic loaded and un-loaded nanoparticles have been thoroughly characterized by infrared spectroscopy, transmission electron microscopy, determination of hydrodynamic diameter by Dynamic light scattering and zeta potential measurements at different pH conditions. A study of the release of Diclofenac has been performed in vitro and available mathematical models have been used to determine the release kinetic. Both properties and release data reveal that this nanomagnetic platform would be suitable for in vivo assays. PMID:24734550

Agotegaray, Mariela; Palma, Santiago; Lassalle, Verónica

2014-05-01

226

Preparation and characterisation of thermoresponsive nanogels for smart antibacterial fabrics.  

PubMed

The present investigation involves the preparation and characterisation of silver containing nanogels and their incorporation onto the surface of woven fabrics so that they can be potentially used in biomedical applications such as wound dressings. These silver nanoparticles were mixed with N-isopropylacrylamide (NIPAM) based nanogels during and at the end of polymerisation process prior to their application onto the fabrics. NIPAM based nanogels were found to have a peak of lower critical solution temperature (LCST) that is close to the human body temperature. These nanogels were applied on cotton fabrics and cured for 15h at 30°C. Silver based nanogels were padded onto the fabrics followed by drying at 30°C overnight. Scanning electron microscopy images have shown excellent distribution of silver nanoparticles on the fabric surface. EDX analysis was also conducted to confirm the presence of silver particles on the fabric surface. The results showed that a cotton fabric treated with silver based nanogels prevented the growth of bacteria, i.e. Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli), on whereas the control cotton fabric samples exhibited considerable level of bacterial growth. Specifically, the nanogels in which the silver particles were added during the polymerisation process were observed to have higher antibacterial efficacy towards both types of bacteria. PMID:24857475

Zafar, Muhammad; Shah, Tahir; Rawal, Amit; Siores, Elias

2014-07-01

227

Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems.  

PubMed

Four polymeric bone-targeting conjugates were synthesized based on poly(ethylene glycol) (PEG, two conjugates) and poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA, two conjugates). The well-known bone-targeting compounds, alendronate and aspartic acid peptide, were used as bone-targeting moieties. Fluorescein isothiocyanate (FITC) was attached to the conjugates as a model drug for detection purposes. The bone-targeting potential of these conjugates was tested in vitro with hydroxyapatite (HA) and in mice. The data obtained indicated that these novel delivery systems could specifically accumulate in the bone tissue. PMID:13129387

Wang, Dong; Miller, Scott; Sima, Monika; Kopecková, Pavla; Kopecek, Jindrich

2003-01-01

228

Targeted Drug Delivery Systems Mediated by a Novel Peptide in Breast Cancer Therapy and Imaging  

PubMed Central

Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer.

Chiu, Chien-Yu; Lin, Wei-Chuan; Yan, Shin-Long; Wang, Yi-Ping; Kuo, Yuan-Sung; Yeh, Chen-Yun; Lo, Albert; Wu, Han-Chung

2013-01-01

229

Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors.  

PubMed

Delivery of macromolecules to pancreatic cancer is inhibited by a dense extracellular matrix composed of hyaluronic acid, smooth muscle actin and collagen fibers. Hyaluronic acid causes a high intratumoral fluidic pressure which prevents diffusion and penetration into the pancreatic tumor. This study involves the breaking down of hyaluronic acid by treating CAPAN-1 xenograft tumors in athymic nu/nu mice with targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers radiolabeled with (111)In for single photon emission computerized tomography (SPECT) imaging. Two targeting strategies were investigated including ?v?3 integrin and HER2 receptors. HPMA copolymers were targeted to these receptors by conjugating short peptide ligands cRGDfK and KCCYSL to the side chains of the copolymer. Results demonstrate that tumor targeting can be achieved in vivo after treatment with hyaluronidase. This approach shows promise for enhanced delivery of polymer-peptide conjugates to solid tumors. PMID:23933441

Buckway, Brandon; Wang, Yongjian; Ray, Abhijit; Ghandehari, Hamidreza

2013-11-01

230

Enhancement of the efficiency of magnetic targeting for drug delivery: Development and evaluation of magnet system  

NASA Astrophysics Data System (ADS)

Deep magnetic capture and clinical application are the current trends for magnetic targeted drug delivery system. More promising and possible strategies are needed to overcome the current limitations and further improve the magnetic targeting technique. Recent advances in the development of targeting magnet system show promise in progressing this technology from the laboratory to the clinic. Starting from well-known basic concepts, current limitations of magnetic targeted drug delivery system are analyzed. Meanwhile, the design concepts and evaluations of some effective improvements in magnet system are discussed and reviewed with reference to (i) reasonable design of magnet system; (ii) control modes of magnet system used to generate dynamical magnetic fields; and (iii) magnetic field driving types.

Cao, Quanliang; Han, Xiaotao; Li, Liang

2011-08-01

231

Actively targeting solid tumours with thermoresponsive drug delivery systems that respond to mild hyperthermia.  

PubMed

A diverse range of drug delivery vehicles have been developed to specifically target chemotherapeutics to solid tumours while avoiding systemic dose-limiting toxicity. Many of these active targeting strategies display limited efficacy because they rely on subtle differences in expression patterns between pathogenic tissue and healthy tissue. In contrast, drug delivery systems that exploit thermoresponsive behaviour allow a clinician to spatially and temporally control the accumulation and/or release of the toxic agents within tumour tissue by simply applying mild hyperthermia (defined as 39-43?°C) to the desired site. Although thermally sensitive materials comprise a significant portion of the literature on novel drug delivery systems, only a few systems have been methodically tuned to respond within this narrowly defined physiological temperature range in an in vivo environment. This review discusses the materials and strategies developed to control the primary tumour through the combined application of hyperthermia and chemotherapy. PMID:23924317

McDaniel, Jonathan R; Dewhirst, Mark W; Chilkoti, Ashutosh

2013-09-01

232

Targeted delivery of Epirubicin to cancer cells by PEGylated A10 aptamer.  

PubMed

Clinical administrations of anthracyclines are limited by cardiotoxicity and myelosuppression. Targeted delivery of anticancer agents is especially important in reducing their side effects. In this work, A10 (Apt), an aptamer for prostate-specific membrane anytigen (PSMA), was applied for targeted delivery of Epirubicin (Epi) to LNCaP cells (PSMA(+)). Flow cytometry analysis showed that PEG-Apt-Epi complex was internalized effectively to LNCaP cells (PSMA(+)), but not to PC3 cells (PSMA(-)). This fact was confirmed by less cytotoxicity of PEG-Apt-Epi complex in PC3 cells in comparison with Epi alone. No significant change in viability between Epi- and complex-treated LNCaP cells was observed. In conclusion, PEG-Apt-Epi complex is an efficient and simple system for specific delivery of drug to PSMA-expressing cell lines. PMID:23815443

Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Sarreshtehdar Emrani, Ahmad; Tabrizian, Kaveh; Zandkarimi, Majid; Ramezani, Mohammad; Abnous, Khalil

2013-09-01

233

Catching target receptors for drug and vaccine delivery using TOGA gene expression profiling.  

PubMed

Drug delivery technologies are commonly directed towards formulations to control the delivery of therapeutic compounds. However, many processes in the human body have evolved to regulate the transport of various molecules, cells, or particles across epithelial barriers. To take advantage of this biology, we used TOGA gene expression profiling to identify receptor or transporter molecules to target delivery vehicles for transport across an epithelial barrier. In the case of intestinal epithelium, we sought molecules associated with the transport of particles by Peyer's patch M cells. We have identified genes specific to Peyer's patch epithelium, some of which appear to be M cell specific. Discoveries made by this process will provide targets for development of new vaccines, but also provide new insights into the biology of transepithelial transport. The power of this gene profiling approach also suggests application to other systems, such as the response to metabolic changes or drug treatments. PMID:12393302

Lo, David; Hilbush, Brian; Mah, Steven; Brayden, David; Byrne, Daragh; Higgins, Lisa; O'Mahony, Daniel J

2002-11-01

234

Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles  

Microsoft Academic Search

Angiogenesis is an attractive target for cancer therapy, due to its central position in tumor growth and development. Vascular Endothelial Growth Factor (VEGF) and its receptors (VEGFRs) play a key role in the angiogenic process. A promising strategy for targeting VEGF-mediated angiogenesis is RNA interference (RNAi) using short interfering RNA (siRNA). However, for efficacious RNAi a well-designed siRNA delivery system

P. Vader; B. J. Crielaard; S. M. van Dommelen; R. van der Meel; G. Storm; R. M. Schiffelers

235

In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery  

Microsoft Academic Search

RNA interference (RNAi)-mediated gene silencing approaches appear very promising for therapies based on the targeted inhibition of disease-relevant genes. The major hurdle to the therapeutic development of RNAi strategies remains, however, the efficient delivery of the RNAi-inducing molecules, the short interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), to the target tissue. With respect to cancer treatment the development of

M Golzio; L Mazzolini; A Ledoux; A Paganin; M Izard; L Hellaudais; A Bieth; M J Pillaire; C Cazaux; J S Hoffmann; B Couderc; J Teissié

2007-01-01

236

Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice  

Microsoft Academic Search

Background:An effective cancer therapeutic must selectively target tumours with minimal systemic toxicity. Expression of a cytotoxic protein using Salmonella typhimurium would enable spatial and temporal control of delivery because these bacteria preferentially target tumours over normal tissue.Methods:We engineered non-pathogenic S. typhimurium to secrete murine TNF-related apoptosis-inducing ligand (TRAIL) under the control of the prokaryotic radiation-inducible RecA promoter. The response of

S Ganai; R B Arenas; N S Forbes

2009-01-01

237

In Vivo PEG-Modification of Vascular Surfaces for Targeted Delivery  

Microsoft Academic Search

ObjectiveThrombosis and restenosis remain problematic for many intravascular procedures. Previously, it has been demonstrated that modifying an injured vascular surface with a protein-reactive polymer could block undesirable platelet deposition. As an added benefit, it would be advantageous if one could target therapeutics to the injured site. This study investigates a site-specific delivery system to target microspheres to vascular surfaces modified

Timothy E. Deglau; Timothy M. Maul; Flordeliza S. Villanueva; William R. Wagner

238

Doxorubicin loaded magneto-niosomes for targeted drug delivery.  

PubMed

In chemotherapy the magnetic drug targeting to a specific organ or tissue is proposed on the assumption that magnetic fields are harmless to biological systems. In this light we have vehiculated doxorubicin as model drug by novel magneto-niosomes in order to evaluate the physico-chemical properties of the obtained formulations and the in vitro release profile. Tween 60 and Pluronic L64 have been used as surfactants and the formulation cytotoxicity has been performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolum bromide and trypan blue dye esclusion tests. Results show that niosome dimensions and doxorubicin entrapment efficiencies are influenced by bilayer composition. In addition, formulations are able to control the deliver and release of the drug active form in a retarded manner. No additional toxicity, due to the encapsulation of ferrofluid into niosomes core, has been detected. PMID:23107959

Tavano, Lorena; Vivacqua, Marco; Carito, Valentina; Muzzalupo, Rita; Caroleo, Maria Cristina; Nicoletta, Fiore

2013-02-01

239

Development and characterization of drug delivery systems for targeting mammalian cells and tissues: a review.  

PubMed

Recent advances in the development of diagnostics and therapeutics in the fields of recombinant biochemistry, solid phase peptide synthesis as well as in galenical research have resulted in highly specific and efficient components. Presently, millions of patients can profit from these new therapeutic modalities. The application of an effective anti-tumor dose of drugs can lead to marked toxicity in patients. Therefore, safe and efficient possibilities to transport these compounds to the target are of outmost importance. The importance of drug delivery is pivotal in the wide area of pharmacological research. However, until now, this issue is still to be solved. The main goal of every drug delivery system is the delivery of a precise amount of a drug at a pre-programmed rate to the desired location in order to achieve the necessary drug concentration in the targeted organ for effective treatment. The key problem still remains the achievement of curative doses in a pharmacologically active state in the desired target while avoiding side effects. Although respectable advances can be recognized in this field, the currently applied mechanisms for the transport of therapeutic molecules across biological membranes still remain far from being efficient. Helper molecules could improve delivery to desired target sites. Presently, a number of efforts are made and a huge spectrum of biochemical, biological, medical, pharmaceutical and physical possibilities are arising. However, the design and development of successful therapies based on this technology still remains a great challenge. PMID:16101505

Braun, K; Pipkorn, R; Waldeck, W

2005-01-01

240

Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges  

NASA Astrophysics Data System (ADS)

One of the big challenges of medicine today is to deliver drugs specifically to defected cells. Nanoparticulate drug carriers have the potential to answer to this call, as nanoparticles can cross physiological barriers and access different tissues, and also be provided in a targetable form aimed at enhancing cell specificity of the carrier. Recent developments within material science and strong collaborative efforts crossing disciplinary borders have highlighted the potential of mesoporous silica nanoparticles (MSNs) for such targeted drug delivery. Here we outline recent advances which in this sense push MSNs to the forefront of drug delivery development. Relatively straightforward inside-out tuning of the vehicles, high flexibility, and potential for sophisticated release mechanisms make these nanostructures promising candidates for targeted drug delivery such as `smart' cancer therapies. Moreover, due to the large surface area and the controllable surface functionality of MSNs, they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting, simultaneously carrying traceable (fluorescent or magnetically active) modalities, also making them highly interesting as theragnostic agents. However, the increased relative surface area and small size, and flexible surface functionalization which is beneficially exploited in nanomedicine, consequently also includes potential risks in their interactions with biological systems. Therefore, we also discuss some safety issues regarding MSNs and highlight how different features of the drug delivery platform influence their behaviour in a biological setting. Addressing these burning questions will facilitate the application of MSNs in nanomedicine.

Rosenholm, Jessica M.; Sahlgren, Cecilia; Lindén, Mika

2010-10-01

241

In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides  

Microsoft Academic Search

PURPOSE: The objective of the present study is to develop colon targeted drug delivery sys- tems for sennosides using guar gum as a carrier. METHODS: Matrix tablets containing various pro- portions of guar gum were prepared by wet granula- tion technique using starch paste as a binder. The tablets were evaluated for content uniformity and in vitro drug release study

Munira Momin; K. Pundarikakshudu

242

Feasibility of targeted drug delivery to selective areas of the retina  

Microsoft Academic Search

A new method was developed to deliver locally a bolus dose of a drug to the retinal vasculature. The targeted delivery system was based on encapsulating the drug in heat-sensitive liposomes, which are injected intravenously and lysed in the retinal vessels by a heat pulse generated by a laser. To test if substances delivered in the vessels could also penetrate

Y. Ogura; T. Guran; M. Shahidi; M. T. Mori; R. C. Zeimer

1991-01-01

243

Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.  

PubMed

Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems. PMID:22420308

Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

2012-06-01

244

A novel mitotropic oligolysine nanocarrier: Targeted delivery of covalently bound D-Luciferin to cell mitochondria  

Microsoft Academic Search

New and emerging therapeutic approaches focus on the targeted delivery of therapeutic agents to cell mitochondria with high specificity. Herein we present a novel mitotropic nanocarrier based on an oligolysine scaffold by addition of two triphenylphosphonium cations per oligomer. Although the parent oligolysine failed to enter healthy cells, the triphenylphosphonium modified carrier, with or without d-Luciferin, attached as cargo molecule,

Theodossis A. Theodossiou; Zili Sideratou; Dimitris Tsiourvas; Constantinos M. Paleos

2011-01-01

245

Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer's disease  

Microsoft Academic Search

Alzheimer's disease (AD) is the most common cause of dementia among the elderly, affecting 5% of Americans over age 65, and 20% over age 80. An excess of senile plaques (?-amyloid protein) and neurofibrillary tangles (tau protein), ventricular enlargement, and cortical atrophy characterizes it. Unfortunately, targeted drug delivery to the central nervous system (CNS), for the therapeutic advancement of neurodegenerative

Celeste Roney; Padmakar Kulkarni; Veera Arora; Peter Antich; Frederick Bonte; Aimei Wu; N. N. Mallikarjuana; Sanjeev Manohar; Hsiang-Fa Liang; Anandrao R. Kulkarni; Hsing-Wen Sung; Malladi Sairam; Tejraj M. Aminabhavi

2005-01-01

246

Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer  

PubMed Central

Notch signaling, a key regulator of stem cells, is frequently overactivated in cancer. It is often linked to aggressive forms of cancer, evading standard treatment highlighting Notch as an exciting therapeutic target. Notch is in principle “druggable” by ?-secretase inhibitors (GSIs), inhibitory peptides and antibodies, but clinical use of Notch inhibitors is restricted by severe side effects and there is a demand for alternative cancer-targeted therapy. Here, we present a novel approach, using imagable mesoporous silica nanoparticles (MSNPs) as vehicles for targeted delivery of GSIs to block Notch signaling. Drug-loaded particles conjugated to targeting ligands induced cell-specific inhibition of Notch activity in vitro and exhibited enhanced tumor retainment with significantly improved Notch inhibition and therapeutic outcome in vivo. Oral administration of GSI-MSNPs controlled Notch activity in intestinal stem cells further supporting the in vivo applicability of MSNPs for GSI delivery. MSNPs showed tumor accumulation and targeting after systemic administration. MSNPs were biocompatible, and particles not retained within the tumors, were degraded and eliminated mainly by renal excretion. The data highlights MSNPs as an attractive platform for targeted drug delivery of anticancer drugs with otherwise restricted clinical application, and as interesting constituents in the quest for more refined Notch therapies.

Mamaeva, Veronika; Rosenholm, Jessica M; Bate-Eya, Laurel Tabe; Bergman, Lotta; Peuhu, Emilia; Duchanoy, Alain; Fortelius, Lina E; Landor, Sebastian; Toivola, Diana M; Linden, Mika; Sahlgren, Cecilia

2011-01-01

247

Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells  

PubMed Central

Synthetic methodologies integrating hydrophobic drug delivery and biomolecular targeting with mesoporous silica nanoparticles are described. Transferrin and cyclic-RGD peptides are covalently attached to the nanoparticles utilizing different techniques and provide selectivity between primary and metastatic cancer cells. The increase in cellular uptake of the targeted particles is examined using fluorescence microscopy and flow cytometry. Transferrin-modified silica nanoparticles display enhancement in particle uptake by Panc-1 cancer cells over that of normal HFF cells. The endocytotic pathway for these particles is further investigated through plasmid transfection of the transferrin receptor into the normal HFF cell line, which results in an increase in particle endocytosis as compared to unmodified HFF cells. By designing and attaching a synthetic cyclic-RGD, selectivity between primary cancer cells (BT-549) and metastatic cancer cells (MDA-MB 435) is achieved with enhanced particle uptake by the metastatic cancer cell line. Incorporation of the hydrophobic drug Camptothecin into these two types of biomolecular-targeted nanoparticles causes an increase in mortality of the targeted cancer cells compared to that caused by both the free drug and nontargeted particles. These results demonstrate successful biomolecular-targeted hydrophobic drug delivery carriers that selectively target specific cancer cells and result in enhanced drug delivery and cell mortality.

Ferris, Daniel P.; Lu, Jie; Gothard, Chris; Yanes, Rolando; Thomas, Courtney R.; Olsen, John-Carl; Stoddart, J. Fraser; Tamanoi, Fuyuhiko; Zink, Jeffrey I.

2011-01-01

248

Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves  

NASA Astrophysics Data System (ADS)

Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

2011-02-01

249

Intramural Delivery of Rapamycin With ?v?3-Targeted Paramagnetic Nanoparticles Inhibits Stenosis After Balloon Injury  

PubMed Central

Background Drug eluting stents prevent vascular restenosis but can delay endothelial healing. A rabbit femoral artery model of stenosis formation after vascular injury was used to study the effect of intramural delivery of ?v?3-integrin–targeted rapamycin nanoparticles on vascular stenosis and endothelial healing responses. Methods and Results Femoral arteries of 48 atherosclerotic rabbits underwent balloon stretch injury and were locally treated with either (1) ?v?3-targeted rapamycin nanoparticles, (2) ?v?3-targeted nanoparticles without rapamycin, (3) nontargeted rapamycin nanoparticles, or (4) saline. Intramural binding of integrin-targeted paramagnetic nanoparticles was confirmed with MR molecular imaging (1.5 T). MR angiograms were indistinguishable between targeted and control arteries at baseline, but 2 weeks later they showed qualitatively less luminal plaque in the targeted rapamycin treated segments compared with contralateral control vessels. In a first cohort of 19 animals (38 vessel segments), microscopic morphometric analysis of the rapamycin-treated segments revealed a 52% decrease in the neointima/media ratio (P<0.05) compared to control. No differences (P>0.05) were observed among balloon injured vessel segments treated with ?v?3-targeted nanoparticles without rapamycin, nontargeted nanoparticles with rapamycin, or saline. In a second cohort of 29 animals, endothelial healing followed a parallel pattern over 4 weeks in the vessels treated with ?v?3-targeted rapamycin nanoparticles and the 3 control groups. Conclusions Local intramural delivery of ?v?3-targeted rapamycin nanoparticles inhibited stenosis without delaying endothelial healing after balloon injury.

Cyrus, Tillmann; Zhang, Huiying; Allen, John S.; Williams, Todd A.; Hu, Grace; Caruthers, Shelton D.; Wickline, Samuel A.; Lanza, Gregory M.

2009-01-01

250

A facile route to synthesize nanogels doped with silver nanoparticles  

PubMed Central

In this work, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, ~160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, ~5nm) are synthesized in situ in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical and therapeutic applications.

Ferrer, M. Carme Coll; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

2012-01-01

251

Naltrexone: a review of existing sustained drug delivery systems and emerging nano-based systems.  

PubMed

Narcotic antagonists such as naltrexone (NTX) have shown some efficiency in the treatment of both opiate addiction and alcohol dependence. A few review articles have focused on clinical findings and pharmacogenetics of NTX, advantages and limitations of sustained release systems as well as pharmacological studies of NTX depot formulations for the treatment of alcohol and opioid dependency. To date, three NTX implant systems have been developed and tested in humans. In this review, we summarize the latest clinical data on commercially available injectable and implantable NTX-sustained release systems and discuss their safety and tolerability aspects. Emphasis is also laid on recent developments in the area of nanodrug delivery such as NTX-loaded micelles and nanogels as well as related research avenues. Due to their ability to increase the therapeutic index and to improve the selectivity of drugs (targeted delivery), nanodrug delivery systems are considered as promising sustainable drug carriers for NTX in addressing opiate and alcohol dependence. PMID:24704710

Goonoo, Nowsheen; Bhaw-Luximon, Archana; Ujoodha, Reetesh; Jhugroo, Anil; Hulse, Gary K; Jhurry, Dhanjay

2014-06-10

252

Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery.  

PubMed

Targeted drug delivery is a promising alternative to overcome the limitations of classical chemotherapy. In an ideal targeted drug delivery system carrier nanoparticles would be directed to the tumor tissue and selectively release therapeutic molecules. As a novel approach, chitosan coated magnetic nanoparticles (CS MNPs) maintain a pH dependent drug delivery which provides targeting of drugs to the tumor site under a magnetic field. Among various materials, chitosan has a great importance as a pH sensitive, natural, biodegradable, biocompatible and bioadhesive polymer. The aim of this study was to obtain an effective targeted delivery system for Doxorubicin, using chitosan coated MNPs. Different sized CS MNPs were produced by in situ synthesis method. The anti-cancer agent Doxorubicin was loaded onto CS MNPs which were characterized previously. Doxorubicin loading was confirmed by FTIR. Drug loading and release characteristics, and stability of the nanoparticles were investigated. Our results showed that the CS MNPs have pH responsive release characteristics. The cellular internalization of Doxorubicin loaded CS MNPs were visualized by fluorescent microscopy. Doxorubicin loaded CS MNPs are efficiently taken up by MCF-7 (MCF-7/S) and Doxorubicin resistant MCF-7 (MCF-7/1?M) breast cancer cells, which increases the efficacy of drug and also maintains overcoming the resistance of Doxorubicin in MCF-7/Dox cells. Consequently, CS MNPs synthesized at various sizes can be effectively used for the pH dependent release of Doxorubicin in cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy. PMID:24931189

Unsoy, Gozde; Khodadust, Rouhollah; Yalcin, Serap; Mutlu, Pelin; Gunduz, Ufuk

2014-10-01

253

Alveolar targeting of aerosol pentamidine. Toward a rational delivery system  

SciTech Connect

Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. (Royal Free Hospital, London (England))

1990-04-01

254

Targeted delivery of curcumin for treating type 2 diabetes.  

PubMed

Type 2 diabetes is a chronic condition in which cells have reduced insulin signalling, leading to hyperglycemia and long-term complications, including heart, kidney and liver disease. Macrophages activated by dying or stressed cells, induce the transcription factor nuclear factor kappa-B leading to the production of pro-inflammatory cytokines including TNF and IL-6. These inflammatory macrophages in liver and adipose tissue promote insulin resistance, and medications which reduce inflammation and enhance insulin signalling improve glucose control. Curcumin is an anti-oxidant and nuclear factor kappa-B inhibitor derived from turmeric. A number of studies have shown that dietary curcumin reduces inflammation and delays or prevents obesity-induced insulin resistance and associated complications, including atherosclerosis and immune mediate liver disease. Unfortunately dietary curcumin is poorly absorbed by the digestive system and undergoes glucuronidation and excretion rather than being released into the serum and systemically distributed. This confounds understanding of how dietary curcumin exerts its beneficial effects in type 2 diabetes and associated diseases. New improved methods of delivering curcumin are being developed including nanoparticles and lipid/liposome formulations that increase absorption and bioavailability of curcumin. Development and refinement of these technologies will enable cell-directed targeting of curcumin and improved therapeutic outcome. PMID:23495213

Maradana, Muralidhara Rao; Thomas, Ranjeny; O'Sullivan, Brendan J

2013-09-01

255

Nanomaterials for targeted drug delivery to cancer stem cells.  

PubMed

Recent developments in cancer biology have identified the existence of a sub-poplulation of cells - cancer stem cells (CSC) that are resistant to most traditional therapies (e.g. chemotherapy and radiotherapy) and have the ability to repair their damaged DNA. These findings have necessitated a break with traditional oncology management and encouraged new perspectives concerning cancer treatment. Understanding the functional biology of CSCs - especially the signaling pathways that are involved in their self-renewal mechanisms - is crucial for discovering new forms of treatment. In this review, we highlight current and future prospects for potential cancer therapies based on the use of nano-sized materials. Nanomaterials could revolutionize cancer management because of their distinctive features - unique surface chemistry, strong electronic, optic, and magnetic properties - that are found neither in bulk materials nor in single molecules. Based on these distinct properties, we believe that nanomaterials could be excellent candidates for use in CSC research in order to optimize cancer therapeutics. Moreover, we propose these nanomaterials for the inhibition of the self-renewal pathways of CSCs by focusing on the Hedgehog, Notch, and Wnt/?-catenin self-renewal mechanisms. By introducing these methods for the detection, targeting, and destruction of CSCs, an efficient alternative treatment for the incurable disease of cancer could be provided. PMID:24697156

Orza, Anamaria; Casciano, Daniel; Biris, Alexandru

2014-05-01

256

Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors  

PubMed Central

This study explored the possibility of utilizing iron oxide nanoparticles as a drug delivery vehicle for minimally invasive, MRI-monitored magnetic targeting of brain tumors. In vitro determined hydrodynamic diameter of ~100nm, saturation magnetization of 94 emu/g Fe and T2 relaxivity of 43 s?1mM?1 of the nanoparticles suggested their applicability for this purpose. In vivo effect of magnetic targeting on the extent and selectivity of nanoparticle accumulation in tumors of rats harboring orthotopic 9L-gliosarcomas was quantified with MRI. Animals were intravenously injected with nanoparticles (12 mg Fe/kg) under a magnetic field density of 0 T (control) or 0.4 T (experimental) applied for 30 minutes. MR images were acquired prior to administration of nanoparticles and immediately after magnetic targeting at 1 hour intervals for 4 hours. Image analysis revealed that magnetic targeting induced a 5-fold increase in the total glioma exposure to magnetic nanoparticles over non-targeted tumors (p=0.005) and a 3.6-fold enhancement in the target selectivity index of nanoparticle accumulation in glioma over the normal brain (p=0.025). In conclusion, accumulation of iron oxide nanoparticles in gliosarcomas can be significantly enhanced by magnetic targeting and successfully quantified by MR imaging. Hence, these nanoparticles appear to be a promising vehicle for glioma-targeted drug delivery.

Chertok, Beata; Moffat, Bradford A.; David, Allan E.; Yu, Faquan; Bergemann, Christian; Ross, Brian D.; Yang, Victor C.

2009-01-01

257

Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery.  

PubMed

Arguably targeting is one of the biggest problems for controlled drug delivery. In the case that drugs can be directed with high efficiency to the target tissue, side effects of medication are drastically reduced. Colloidal inorganic nanoparticles (NPs) have been proposed and described in the last 10years as new platforms for in vivo delivery. However, though NPs can introduce plentiful functional properties (such as controlled destruction of tissue by local heating or local generation of free radicals), targeting remains an issue of intense research efforts. While passive targeting of NPs has been reported (the so-called enhanced permeation and retention, EPR effect), still improved active targeting would be highly desirable. One classical approach for active targeting is mediated by molecular recognition via capture molecules, i.e. antibodies (Abs) specific for the target. In order to apply this strategy for NPs, they need to be conjugated with Abs against specific biomarkers. Though many approaches have been reported in this direction, the controlled bioconjugation of NPs is still a challenge. In this article the strategies of controlled bioconjugation of NPs will be reviewed giving particular emphasis to the following questions: 1) how can the number of capture molecules per NP be precisely adjusted, and 2) how can the Abs be attached to NP surfaces in an oriented way. Solution of both questions is a cornerstone in controlled targeting of the inorganic NPs bioconjugates. PMID:23280372

Montenegro, Jose-Maria; Grazu, Valeria; Sukhanova, Alyona; Agarwal, Seema; de la Fuente, Jesus M; Nabiev, Igor; Greiner, Andreas; Parak, Wolfgang J

2013-05-01

258

Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.  

PubMed

Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications. PMID:22375153

Tan, Jifu; Thomas, Antony; Liu, Yaling

2011-12-22

259

Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation  

PubMed Central

Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

Tan, Jifu; Thomas, Antony; Liu, Yaling

2012-01-01

260

DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics.  

PubMed

Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. PMID:24882040

Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Alvaro

2014-06-12

261

Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles.  

PubMed

Intracellular-acting peptide drugs are effective for inhibiting cytoplasmic protein targets, yet face challenges with penetrating the cancer cell membrane. We have developed a lipid nanoparticle formulation that utilizes a pH-sensitive calcium carbonate complexation mechanism to enable the targeted delivery of the intracellular-acting therapeutic peptide EEEEpYFELV (EV) into lung cancer cells. Lipid-calcium-carbonate (LCC) nanoparticles were conjugated with anisamide, a targeting ligand for the sigma receptor which is expressed on lung cancer cells. LCC EV nanoparticle treatment provoked severe apoptotic effects in H460 non-small cell lung cancer cells in vitro. LCC NPs also mediated the specific delivery of Alexa-488-EV peptide to tumor tissue in vivo, provoking a high tumor growth retardation effect with minimal uptake by external organs and no toxic effects. PMID:22796364

Kim, Sang Kyoon; Foote, Michael B; Huang, Leaf

2013-07-01

262

MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation  

PubMed Central

Mesenchymal stem cells (MSCs) are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC) therapeutic dose.

Kean, Thomas J.; Caplan, Arnold I.; Dennis, James E.

2013-01-01

263

Dual-Modality Monitoring of Targeted Intraarterial Delivery of Mesenchymal Stem Cells After Transient Ischemia  

PubMed Central

Background and Purpose In animal models of stroke, functional improvement has been obtained after stem cell transplantation. Successful therapy depends largely on achieving a robust and targeted cell engraftment, with intraarterial (IA) injection being a potentially attractive route of administration. We assessed the suitability of laser Doppler flow (LDF) signal measurements and magnetic resonance (MR) imaging for noninvasive dual monitoring of targeted IA cell delivery. Methods Transient cerebral ischemia was induced in adult Wistar rats (n = 25) followed by IA or intravenous (IV) injection of mesenchymal stem cells (MSCs) labeled with superparamagnetic iron oxide. Cell infusion was monitored in real time with transcranial laser Doppler flowmetry while cellular delivery was assessed with MRI in vivo (4.7T) and ex vivo (9.4T). Results Successful delivery of magnetically labeled MSCs could be readily visualized with MRI after IA but not IV injection. IA stem cell injection during acute stroke resulted in a high variability of cerebral engraftment. The amount of LDF reduction during cell infusion (up to 80%) was found to correlate well with the degree of intracerebral engraftment, with low LDF values being associated with significant morbidity. Conclusions High cerebral engraftment rates are associated with impeded cerebral blood flow. Noninvasive dual-modality imaging enables monitoring of targeted cell delivery, and through interactive adjustment may improve the safety and efficacy of stem cell therapy.

Walczak, Piotr; Zhang, Jian; Gilad, Assaf A.; Kedziorek, Dorota A.; Ruiz-Cabello, Jesus; Young, Randell G.; Pittenger, Mark F.; van Zijl, Peter C.M.; Huang, Judy; Bulte, Jeff W.M.

2010-01-01

264

DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics  

NASA Astrophysics Data System (ADS)

Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00019f

Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

2014-06-01

265

Lysozyme-dextran core-shell nanogels prepared via a green process.  

PubMed

A novel method has been developed for preparing nanogels with a lysozyme core and dextran shell. The method involves the Maillard dry-heat process and heat-gelation process. First, lysozyme-dextran conjugates were produced through the Maillard reaction. Then, the conjugate solution was heated above the denaturation temperature of lysozyme to produce nanogels. The nanogels are of spherical shape having a hydrodynamic diameter of about 200 nm and swelling ratio of about 30. The nanogel solutions are stable against long-term storage as well as changes in pH and ionic strength. Ibuprofen has been used as a drug model to study the electrostatic and hydrophobic interactions with these nanogels at different pH values. The study reveals that the nanogels are more suitable for loading protonated ibuprofen. We have verified that the knowledge of the formation mechanism of lysozyme-dextran nanogels can be applied to prepare other globular protein-dextran nanogels. PMID:18302424

Li, Juan; Yu, Shaoyong; Yao, Ping; Jiang, Ming

2008-04-01

266

Hybrid Nanogels for Sustainable Positive Thermosensitive Drug Release  

SciTech Connect

A hybrid nanogel is developed based on interpenetrating networks of thermosensitive PNIPAAm gels and tailored nanoporous silica. Sustainable positive thermo-responsive drug release profile is obtained. When the temperature rises, the polymer gel shrinks, squeezing the drug into the porous channels, and at the same time, opening the pore to the outside media. The drug slowly diffuses out of the porous channels. The overall release rate can be adjusted by changing the composition of the nanogel.

Shin, Yongsoon (BATTELLE (PACIFIC NW LAB)); Chang, Jeong H. (ASSOC WESTERN UNIVERSITY); Liu, Jun (Lucent Bell Laboratories); Williford, Rick E. (BATTELLE (PACIFIC NW LAB)); Shin, Young-Kook (Chungbuk National University); Exarhos, Gregory J. (BATTELLE (PACIFIC NW LAB))

2001-05-18

267

Size-controlled synthesis of monodisperse core\\/shell nanogels  

Microsoft Academic Search

Small, monodisperse nanogels (?50-nm radius) were synthesized by free-radical precipitation polymerization and were characterized\\u000a using a suite of light scattering and chromatography methods. Nanogels were synthesized with either N-isopropylacrylamide or N-isopropylmethacrylamide as the main monomer, with acrylic acid or 4-acrylamidofluorescein as a comonomer and N,N?-methylenebis(acrylamide) as a cross-linker. By varying the surfactant and initiator concentrations, particle size was controlled\\u000a while

William H. Blackburn; L. Andrew Lyon

2008-01-01

268

Thermoreversible nanogel shuttle between ionic liquid and aqueous phases.  

PubMed

We describe a nanogel that can reversibly shuttle between a hydrophobic ionic liquid (IL) phase and an aqueous phase in response to temperature changes. A thermosensitive diblock copolymer, consisting of poly(ethylene oxide) (PEO) as the first segment and a random copolymer of N-isopropylacrylamide (NIPAm) and N-acryloyloxysuccinimide (NAS) as the second segment, was prepared as a nanogel precursor using anionic ring-opening polymerization of EO followed by reversible addition-fragmentation chain-transfer (RAFT) polymerization of NIPAm and NAS. After the micellization of the diblock copolymer in an aqueous solution upon heating to temperatures higher than the lower critical solution temperature (LCST) of the second segment, a coupling reaction of the NAS group of the P(NIPAm-r-NAS) core with ethylenediamine gave a nanogel with a well-solvated PEO corona. The nanogel exhibited contrasting thermosensitivities in the aqueous and IL phases. Dynamic light scattering measurements revealed that the nanogel exhibited LCST phase behavior (low-temperature-swollen/high-temperature-shrunken) in the aqueous phase and the opposite upper critical solution temperature (UCST) phase behavior (high-temperature-swollen/low-temperature-shrunken) in hydrophobic ILs. The nanogel favored the aqueous phase at low temperatures and the IL phase at high temperatures because of the solubility changes in the PEO corona. Upon increasing the temperature, the nanogel underwent a swollen-to-shrunken phase change in the aqueous phase, a transfer from the aqueous phase to the IL phase, and a shrunken-to-swollen phase change in the IL phase. These processes were thermally reversible, which made the round-trip shuttling of the nanogel between the aqueous and IL phases possible. PMID:24168637

Ueki, Takeshi; Sawamura, Shota; Nakamura, Yutaro; Kitazawa, Yuzo; Kokubo, Hisashi; Watanabe, Masayoshi

2013-11-12

269

Preparation of thermosensitive nanogels by photo-cross-linking  

Microsoft Academic Search

A novel method to prepare thermosensitive nanogels from photocross-linkable copolymers of N-isopropylacrylamide and dimethyl maleinimido acrylamide (DMIAAm) was developed. The colloidal nanogels were formed by UV\\u000a irradiation of solutions of thermosensitive polymers in water at 45 °C. The compositions of the photopolymer solutions were\\u000a varied by changing the amount of DMIAAm in the photopolymer chains (2–10 mol%) or by varying

C. Duan Vo; D. Kuckling; H.-J. P. Adler; M. Schönhoff

2002-01-01

270

Stimuli responsive magnetic nanogels for biomedical application  

NASA Astrophysics Data System (ADS)

We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the FeO magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.

Craciunescu, I.; Petran, A.; Daia, C.; Marinica, O.; Vekas, L.; Turcu, R.

2013-11-01

271

Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways  

NASA Astrophysics Data System (ADS)

Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.

Shah, Dhiral Ashwin

272

Targeted drug delivery for cancer therapy: the other side of antibodies  

PubMed Central

Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.

2012-01-01

273

Folate-polyethylene glycol conjugated carboxymethyl chitosan for tumor-targeted delivery of 5-fluorouracil.  

PubMed

Targeted drug delivery has been evolving at an increasing rate due to its potential to reduce the minimum effective dose of a drug and its accompanying side effects. It has shown improved therapeutic efficacy at equivalent plasma concentrations; however, the development of effective targeted delivery systems has remained a major task. In this study, a drug carrier was designed and synthesized by conjugation of folate acid (FA) to carboxymethyl chitosan (CMCS) through a polyethylene glycol (PEG) spacer. The resulting conjugates were confirmed by 1H nuclear magnetic resonance and infrared spectroscopy. The cytotoxicity of CMCS and CMCS?5?fluorouracil (5?FU) was determined by a crystal violet stain assay. The potential of CMCS?PEG?FA for use in the targeted delivery of 5?FU was investigated using 3?(4,5?dimethylthiazol?2?yl)?2,5?diphenyltetrazolium bromide analysis in two cell lines, HeLa and A549, which contain different numbers of folate receptors on their surfaces. The MTT results revealed that in HeLa cells, the cytotoxicity of (CMCS?5?FU)?PEG?FU cells is greater compared with CMCS?5?FU, suggesting that folate receptor?mediated endocytosis may affect the cellular uptake efficiency of 5?FU?loaded CMCS?PEG?FA. The CMCS?PEG?FA conjugates presented in this study show promise as carriers for chemotherapeutic agents due to their solubility at physiological pH, efficiency in carrying chemotherapeutic agents, low cytotoxicity and targeting ability. PMID:24469407

Li, Hai-Lang; He, Ya-Xing; Gao, Qian-Hong; Wu, Guo-Zhong

2014-03-01

274

Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery.  

PubMed

Introduction: Cancer cells acclimatize to the harsh tumor microenvironment by altering cellular metabolism in favor of aerobic glycolysis. This process provides a source of energy and also generates essential components for macromolecular biosynthesis, which enables cellular survival. As the dependence of cancer cells on glycolysis affects tumorigenesis, it has become an attractive target for therapeutic intervention. Several preclinical studies have shown the effectiveness of using biological targets from the glycolytic pathway for anticancer therapy. Areas covered: This review provides an insight into the glycolytic pathway, highlighting potential targets for glycolytic inhibition. We then discuss recent advancement in delivery strategies that have the potential to circumvent some of the problems posed by current glycolytic inhibitors, enabling resurrection of abandoned therapeutic agents. Expert opinion: Targeting the glycolysis pathway is a tactical approach for cancer therapy. However, the current nonspecific therapeutic strategies have several drawbacks such as poor bioavailability, unfavorable pharmacokinetic profile and associated nonspecific toxicity, thereby limiting preclinical investigation. In recent years, nanoparticle systems have received recognition for the delivery of therapeutic agents directly to the tumor tissue. Thus, it is envisaged that this strategy can be expanded for the delivery of current glycolytic inhibitors specifically to tumor tissues providing improved anticancer activity. PMID:24762115

Talekar, Meghna; Boreddy, Srinivas Reddy; Singh, Amit; Amiji, Mansoor

2014-08-01

275

Hybrid micro-/nanogels for optical sensing and intracellular imaging  

PubMed Central

Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications.

Wu, Weitai; Zhou, Shuiqin

2010-01-01

276

Improved Dental Adhesive Formulations Based on Reactive Nanogel Additives  

PubMed Central

Current challenges in adhesive dentistry include over-hydrophilic bonding formulations, which facilitate water percolation through the hybrid layer and result in unreliable bonded interfaces. This study introduces nanogel-modified adhesives as a way to control the material’s hydrophobic character without changing the basic monomer formulation (keeping water-chasing capacity and operatory techniques unaltered). Nanogel additives of varied hydrophobicity were synthesized in solution, rendering 10- to 100-nm-sized particles. A model BisGMA/HEMA solvated adhesive was prepared (control), to which reactive nanogels were added. The increase in adhesive viscosity did not impair solvent removal by air-thinning. The degree of conversion in the adhesive was similar between control and nanogel-modified materials, while the bulk dry and, particularly, the wet mechanical properties were significantly improved through nanogel-based network reinforcement and reduced water solubility. As preliminary validation of this approach, short-term micro-tensile bond strengths to acid-etched and primed dentin were significantly enhanced by nanogel inclusion in the adhesive resins.

Moraes, R.R.; Garcia, J.W.; Wilson, N.D.; Lewis, S.H.; Barros, M.D.; Yang, B.; Pfeifer, C.S.; Stansbury, J.W.

2012-01-01

277

Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles.  

PubMed

Angiogenesis is an attractive target for cancer therapy, due to its central position in tumor growth and development. Vascular Endothelial Growth Factor (VEGF) and its receptors (VEGFRs) play a key role in the angiogenic process. A promising strategy for targeting VEGF-mediated angiogenesis is RNA interference (RNAi) using short interfering RNA (siRNA). However, for efficacious RNAi a well-designed siRNA delivery system is crucial. Liposome-Polycation-DNA (LPD) particles form a promising system for siRNA delivery to tumors. In order to target angiogenic endothelial cells, LPD particles may be modified with a targeting ligand, such as a cyclic Arg-Gly-Asp (RGD) peptide that specifically binds to integrins expressed on tumor-associated endothelial cells. In the current study, RGD-targeted PEGylated LPD particles containing VEGFR-2 siRNA were prepared and optimized with respect to their size and charge by varying protamine content, carrier DNA content for stronger complexation, and PEGylation density. The size of the optimized particles was around 200 nm and the ?-potential was approximately +20 mV. The uptake and silencing efficacy of the RGD-targeted PEGylated LPD particles were evaluated in H5V cells (murine endothelial cells) and Human Umbilical Vein Endothelial cells (HUVECs). When compared to non-targeted LPD particles, enhanced uptake and silencing of VEGFR-2 expression was observed for RGD-targeted PEGylated LPD particles. In conclusion, the RGD-targeted PEGylated LPD particles containing VEGFR-2 siRNA presented here may be a promising approach for targeting VEGF-mediated angiogenesis in cancer therapy. PMID:21983283

Vader, P; Crielaard, B J; van Dommelen, S M; van der Meel, R; Storm, G; Schiffelers, R M

2012-06-10

278

Surface-Engineered Targeted PPI Dendrimer for Efficient Intracellular and Intratumoral siRNA Delivery  

PubMed Central

Low penetration ability of Small Interfering RNA (siRNA) through the cellular plasma membrane combined with its limited stability in blood, limits the effectiveness of the systemic delivery of siRNA. In order to overcome such difficulties, we constructed a nanocarrier-based delivery system by taking advantage of the lessons learned from the problems in the delivery of DNA. In the present study, siRNA nanoparticles were first formulated with Poly(Propyleneimine) (PPI) dendrimers. To provide lateral and steric stability to withstand the aggressive environment in the blood stream, the formed siRNA nanoparticles were caged with a dithiol containing cross-linker molecules followed by coating them with Poly(Ethylene Glycol) (PEG) polymer. A synthetic analog of Luteinizing Hormone-Releasing Hormone (LHRH) peptide was conjugated to the distal end of PEG polymer to direct the siRNA nanoparticles specifically to the cancer cells. Our results demonstrated that this layer-by-layer modification and targeting approach confers the siRNA nanoparticles stability in plasma and intracellular bioavailability, provides for their specific uptake by tumor cells, accumulation of siRNA in the cytoplasm of cancer cells, and efficient gene silencing. In addition, in vivo body distribution data confirmed high specificity of the proposed targeting delivery approach which created the basis for the prevention of adverse side effects of the treatment on healthy organs.

Taratula, Oleh; Garbuzenko, Olga B.; Kirkpatrick, Paul; Pandya, Ipsit; Savla, Ronak; Pozharov, Vitaly P.; He, Huixin; Minko, Tamara

2009-01-01

279

Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds  

PubMed Central

Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy.

Taranta, Monia; Naldi, Ilaria

2011-01-01

280

Synthesis and evaluation of folate-based chlorambucil delivery systems for tumor-targeted chemotherapy.  

PubMed

The development of tumor-targeting drug delivery systems, able to selectively transport cytotoxic agents into the tumor site by exploiting subtle morphological and physiological differences between healthy and malignant cells, currently stands as one of the most attractive anticancer strategies used to overcome the selectivity problems of conventional chemotherapy. Owing to frequent overexpression of folate receptors (FRs) on the surface of malignant cells, conjugation of cytotoxic agents to folic acid (FA) via suitable linkers have demonstrated to enhance selective drug delivery to the tumor site. Herein, the chemical synthesis and biological evaluation of two novel folate-conjugates bearing the anticancer agent chlorambucil (CLB) tethered to either an aminoether (4,7,10-trioxa-1,13-tridecanediamine) or a pseudo-?-dipeptide (?-Ala-ED-?-Ala) linker is reported. The two drug delivery systems have been prepared in high overall yields (54% and 34%) through straightforward and versatile synthetic routes. Evaluation of cell specificity was examined using three leukemic cell lines, undifferentiated U937 (not overexpressing FRs, FR(-)), TPA-differentiated U937 (overexpressing FRs, FR(+)), and TK6 (FR(+)) cells. Both conjugates exhibited high specificity only to FR(+) cells (particularly TK6), demonstrating comparable antitumor activity to CLB in its free form. These data confirm the reliability of folate-based drug delivery systems for targeted antitumor therapy; likewise, they lay the foundations for the development of other folate-conjugates with antitumor potential. PMID:22121907

Guaragna, Annalisa; Chiaviello, Angela; Paolella, Concetta; D'Alonzo, Daniele; Palumbo, Giuseppe; Palumbo, Giovanni

2012-01-18

281

DMLC IMRT delivery to targets moving in 2D in Beam's eye view.  

PubMed

The goal of this article is to present the algorithm for DMLC leaf control capable of delivering IMRT to tumors that experience motion in two dimensions in the beams eye view (BEV) plane. The generic, two-dimensional (2D) motion of the projection of the rigid target on BEV plane can be divided into two components. The first component describes the motion of the projection of the target along the x axis (parallel to the MLC leaf motions) and the other describes the motion of the target projection on the y axis (perpendicular to the leaf motion direction). First, time optimal leaf trajectories are calculated independently for each leaf pair of the MLC assembly to compensate the x-axis component of the 2D motion of the target on the BEV. These leaf trajectories are then synchronized following the mid time (MT) synchronization procedure. To compensate for the y-axis component of the motion of the target projection on the BEV plane, the procedure of "switching" leaf pair trajectories in the upward (or downward) direction is executed when the target's BEV projection moves upward (or downward) from its equilibrium position along the y axis. When the intensity function is a 2D histogram, the error between the intended and delivered intensity in 2D DMLC IMRT delivery will depend on the shape of the intensity map and on the MLC physical constraint (leaf width and maximum admissible leaf speed). The MT synchronization of leaf trajectories decreases the impact of above constraints on the error in 2D DMLC IMRT intensity map delivery. The proof is provided, that if hardware constraints in the 2D DMLC IMRT delivery strategy are removed, the errors between planned and delivered 2D intensity maps are entirely eliminated. Examples of 2D DMLC IMRT delivery to rigid targets moving along elliptical orbits on BEV planes are calculated and analyzed for 20 clinical fluence maps. The comparisons between the intensity delivered without motion correction, with motion correction along x axis only, and with motion correction for full 2D motion of the target are calculated and quantitatively evaluated. The fluence maps were normalized to 100 MU and the rms difference between the desired and delivered fluence was 12 MU for no motion compensation, 11.18 MU for 1D compensation, and 4.73 MU for 2D motion compensations. The advantage of correcting for full 2D motion of target projected on the BEV plane is demonstrated. PMID:18777936

Rangaraj, Dharanipathy; Palaniswaamy, Geethpriya; Papiez, Lech

2008-08-01

282

Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles  

Microsoft Academic Search

Cross-linking all caseins within the casein micelles with the enzyme transglutaminase creates nanogel particles consisting of a covalently linked casein network from which micellar calcium phosphate (MCP) can be removed without compromising structural integrity. These casein nanogel particles show similar light, neutron and X-ray scattering behaviour to native casein micelles, indicating similarity in size and substructure. Casein nanogel particles are

Thom Huppertz; Cornelis G. de Kruif

2008-01-01

283

Targetable micelleplex hydrogel for long-term, effective, and systemic siRNA delivery.  

PubMed

We developed a targetable micelleplex hydrogel as a new efficient systemic siRNA delivery material that functions as a targetable gene carrier, and a hydrogel capable of controlled release to overcome drawbacks of multiple administrations of systemic siRNA carriers due to decreased fluctuation of them in the serum. The micelleplexes, complexes between polymeric micelles and siRNAs could turn into gel after subcutaneous injection and be slowly released from the gel. The released micelleplexes selectively accumulated in the tumor and showed anti-tumor effect due to gene silencing for an extended period of time with only one injection in anywhere in vivo model. Moreover, the duration of therapy can be controlled by adjusting the amount and properties of the hydrogel. Therefore, this micelleplex hydrogel is expected to be a new effective siRNA delivery material for systemic long-term gene silencing. PMID:24951047

Kim, Young-Min; Song, Soo-Chang

2014-09-01

284

Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.  

PubMed

Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy. PMID:24895056

Kwekkeboom, Rick F J; Lei, Zhiyong; Doevendans, Pieter A; Musters, René J P; Sluijter, Joost P G

2014-09-01

285

Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration  

PubMed Central

Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

2013-01-01

286

Occlusion of retinal vessels using targeted delivery of a platelet aggregating agent.  

PubMed Central

Local laser targeted delivery of a platelet aggregating agent to occlude retinal and choroidal vessels was evaluated in rabbits and rats. Liposomes containing adenosine diphosphate (ADP) were administered intravenously and an argon laser was used to lyse the liposomes in main retinal arteries. Control vessels were treated with the same energy of laser without administering ADP. Fluorescein angiography performed 2 weeks later showed that all the control vessels were perfused. Ninety percent of the ADP-treated arteries showed complete or partial occlusion. Successful occlusion increased with the laser energy and decreased with increasing vessel diameter. Histopathology showed that occlusion was achieved in retinal as well as choroidal vessels. The inner retina remained relatively unaffected at the treatment site but the outer retina was thermally damaged. These preliminary results suggest that targeted delivery of a platelet aggregating agent holds promise for occluding vessels in the fundus. Images

Ogura, Y; Guran, T; Takahashi, K; Zeimer, R

1993-01-01

287

DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery.  

PubMed

We present a facile approach to make aptamer-conjugated FRET (fluorescent resonance energy transfer) nanoflowers (NFs) through rolling circle replication for multiplexed cellular imaging and traceable targeted drug delivery. The NFs can exhibit multi-fluorescence emissions by a single-wavelength excitation as a result of the DNA matrix covalently incorporated with three dye molecules able to perform FRET. Compared with the conventional DNA nanostructure assembly, NF assembly is independent of template sequences, avoiding the otherwise complicated design of DNA building blocks assembled into nanostructures by base-pairing. The NFs were uniform and exhibited high fluorescence intensity and excellent photostability. Combined with the ability of traceable targeted drug delivery, these colorful DNA NFs provide a novel system for applications in multiplex fluorescent cellular imaging, effective screening of drugs, and therapeutic protocol development. PMID:24753303

Hu, Rong; Zhang, Xiaobing; Zhao, Zilong; Zhu, Guizhi; Chen, Tao; Fu, Ting; Tan, Weihong

2014-06-01

288

In Vivo PEG-Modification of Vascular Surfaces for Targeted Delivery  

PubMed Central

Objective Thrombosis and restenosis remain problematic for many intravascular procedures. Previously, it has been demonstrated that modifying an injured vascular surface with a protein-reactive polymer could block undesirable platelet deposition. As an added benefit, it would be advantageous if one could target therapeutics to the injured site. This study investigates a site-specific delivery system to target microspheres to vascular surfaces modified with a reactive polyethylene glycol tagged with biotin. Methods Rabbit femoral arteries were injured with a 2F embolectomy catheter. Modification of the vascular surface was achieved using a channeled balloon catheter or small diameter tube. Microspheres were injected intravenously through catheterization of the ear vein. Polymer modification on the injured surface and delivery of microspheres was quantified using epi-fluorescence microscopy at 0, 24, 48, and 72 h. Results Polymer modification of the vascular surface could be achieved using a channeled drug delivery catheter or small diameter tube with similar results. Maximum polymer coverage occurred at 0 h and decreased to 85% maximal at 24 h, 72% at 48 h, and 67% at 72 h. The initial number of microspheres per mm2 binding to modified, injured arteries was 304 versus 141 for the unmodified, damaged control (P < .01). At subsequent times, the number of adherent microspheres to modified, injured arteries decreased by 50%, 70%, and 84% at 24, 48, and 72 h, respectively; while non-specific binding to unmodified, injured arteries quickly decreased by 93%. Initial microsphere binding to modified, healthy arteries was 153 microspheres/mm2 as opposed to 26 for the unmodified, healthy controls (P < .01). Conclusions Chemical modification of injured vessels following intravascular procedures can be readily accomplished in vivo to create a substrate for targeted delivery systems. As a proof of concept, targeted microspheres preferentially adhered to polymer-modified surfaces as opposed to injured, unmodified or healthy vascular surfaces.

Deglau, Timothy E.; Maul, Timothy M.; Villanueva, Flordeliza S.; Wagner, William R.

2011-01-01

289

Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms  

Microsoft Academic Search

Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand

Akin Akinc; William Querbes; Soma De; June Qin; Maria Frank-Kamenetsky; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Kallanthottathil G Rajeev; William L Cantley; J Robert Dorkin; James S Butler; LiuLiang Qin; Timothy Racie; Andrew Sprague; Eugenio Fava; Anja Zeigerer; Michael J Hope; Marino Zerial; Dinah WY Sah; Kevin Fitzgerald; Mark A Tracy; Muthiah Manoharan; Victor Koteliansky; Antonin de Fougerolles; Martin A Maier

2010-01-01

290

Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery  

Microsoft Academic Search

Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(gamma-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 °C) and that used in local hyperthermia (about 43 °C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR),

Yuanpei Li; Shirong Pan; Wei Zhang; Zhuo Du

2009-01-01

291

A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release  

NASA Astrophysics Data System (ADS)

A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m2 g - 1, a pore size of 1.91 nm and a saturation magnetization of 32 emu g - 1. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

Wang, Chan; Lv, Piping; Wei, Wei; Tao, Shengyang; Hu, Tao; Yang, Jingbang; Meng, Changgong

2011-10-01

292

Formulation design for target delivery of iron nanoparticles to TCE zones  

NASA Astrophysics Data System (ADS)

Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy.

Wang, Ziheng; Acosta, Edgar

2013-12-01

293

Magnetic Nanoparticles as Intraocular Drug Delivery System to Target Retinal Pigmented Epithelium (RPE)  

PubMed Central

One of the most challenging efforts in drug delivery is the targeting of the eye. The eye structure and barriers render this organ poorly permeable to drugs. Quite recently the entrance of nanoscience in ocular drug delivery has improved the penetration and half-life of drugs, especially in the anterior eye chamber, while targeting the posterior chamber is still an open issue. The retina and the retinal pigment epithelium/choroid tissues, located in the posterior eye chamber, are responsible for the majority of blindness both in childhood and adulthood. In the present study, we used magnetic nanoparticles (MNPs) as a nanotool for ocular drug delivery that is capable of specific localization in the retinal pigmented epithelium (RPE) layer. We demonstrate that, following intraocular injection in Xenopus embryos, MNPs localize specifically in RPE where they are retained for several days. The specificity of the localization did not depend on particle size and surface properties of the MNPs used in this work. Moreover, through similar experiments in zebrafish, we demonstrated that the targeting of RPE by the nanoparticles is not specific for the Xenopus species.

Giannaccini, Martina; Giannini, Marianna; Calatayud, M. Pilar; Goya, Gerardo F.; Cuschieri, Alfred; Dente, Luciana; Raffa, Vittoria

2014-01-01

294

Formulation design for target delivery of iron nanoparticles to TCE zones.  

PubMed

Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. PMID:24096200

Wang, Ziheng; Acosta, Edgar

2013-12-01

295

Realizing the Clinical Potential of Cancer Nanotechnology by Minimizing Toxicological and Targeted Delivery Concerns  

PubMed Central

Nanotechnology has the potential to make smart drugs that would be capable of targeting cancer but not normal cells and loading combinations of cooperating agents into a single nano-sized particle to more effectively treat this disease. However, to realize the full potential of this technology the negative aspects associated with these nanoparticles needs to be overcome. This review discusses concerns in the field limiting realization of the full clinical potential of this technology, which are toxicity and targeted delivery. Strategies to overcome these hurdles are also reviewed which could lead to attainment of the full clinical potential of this exciting technology.

Singh, Sanjay; Sharma, Arati; Robertson, Gavin P.

2013-01-01

296

Tumor Delivery of Chemotherapy Combined with Inhibitors of Angiogenesis and Vascular Targeting Agents  

PubMed Central

Numerous angiogenesis-vascular targeting agents have been admitted to the ranks of cancer therapeutics; most are used in polytherapy regimens. This review looks at recent progress and our own preclinical experience in combining angiogenesis inhibitors, mainly acting on VEGF/VEGFR pathways, and vascular targeting agents with conventional chemotherapy, discussing the factors that determine the outcome of these treatments. Molecular and morphological modifications of the tumor microenvironment associated with drug distribution and activity are reviewed. Modalities to improve drug delivery and strategies for optimizing combination therapy are examined.

Cesca, Marta; Bizzaro, Francesca; Zucchetti, Massimo; Giavazzi, Raffaella

2013-01-01

297

Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect  

PubMed Central

Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.

Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

2011-01-01

298

Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides  

PubMed Central

Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals.

Liu, Shuang

2008-01-01

299

Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy.  

PubMed

Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 microM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated. PMID:19420486

Sun, Yun; Chen, Zhi-Long; Yang, Xiao-Xia; Huang, Peng; Zhou, Xin-Ping; Du, Xiao-Xia

2009-04-01

300

Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy  

NASA Astrophysics Data System (ADS)

Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 µM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

Sun, Yun; Chen, Zhi-long; Yang, Xiao-xia; Huang, Peng; Zhou, Xin-ping; Du, Xiao-xia

2009-04-01

301

‘One-pot’ synthesis of multifunctional GSH–CdTe quantum dots for targeted drug delivery  

NASA Astrophysics Data System (ADS)

A novel quantum dots-based multifunctional nanovehicle (DOX-QD-PEG-FA) was designed for targeted drug delivery, fluorescent imaging, tracking, and cancer therapy, in which the GSH–CdTe quantum dots play a key role in imaging and drug delivery. To exert curative effects, the antineoplastic drug doxorubicin hydrochloride (DOX) was loaded on the GSH–CdTe quantum dots through a condensation reaction. Meanwhile, a polyethylene glycol (PEG) shell was introduced to wrap the DOX-QD, thus stabilizing the structure and preventing clearance and drug release during systemic circulation. To actively target cancer cells and prevent the nanovehicles from being absorbed by normal cells, the nanoparticles were further decorated with folic acid (FA), allowing them to target HeLa cells that express the FA receptor. The multifunctional DOX-QD-PEG-FA conjugates were simply prepared using the ‘one pot’ method. In vitro study demonstrated that this simple, multifunctional nanovehicle can deliver DOX to the targeted cancer cells and localize the nanoparticles. After reaching the tumor cells, the FA on the DOX-QD-PEG surface allowed folate receptor recognition and increased the drug concentration to realize a higher curative effect. This novel, multifunctional DOX-QD-PEG-FA system shows great potential for tumor imaging, targeting, and therapy.

Chen, Xiaoqin; Tang, Yajun; Cai, Bing; Fan, Hongsong

2014-06-01

302

Transferrin Receptor-Targeted Lipid Nanoparticles for Delivery of an Antisense Oligodeoxyribonucleotide against Bcl-2  

PubMed Central

Antisense oligonucleotide G3139-mediated down-regulation of Bcl-2 is a potential strategy for overcoming chemoresistance in leukemia. However, the limited efficacy shown in recent clinical trials calls attention to the need for further development of novel and more efficient delivery systems. In order to address this issue, transferrin receptor (TfR)-targeted, protamine-containing lipid nanoparticles (Tf-LNs) were synthesized as delivery vehicles for G3139. The LNs were produced by an ethanol dilution method and lipid-conjugated Tf ligand was then incorporated by a post-insertion method. The resulting Tf-LNs had a mean particle diameter of ~ 90 nm and G3139 loading efficiency of 90.4%. Antisense delivery efficiency of Tf-LNs was evaluated in K562, MV4-11 and Raji leukemia cell lines. The results showed that Tf-LNs were more effective than non-targeted LNs and free G3139 (p <0.05) in decreasing Bcl-2 expression (by up to 62% at the mRNA level in K562 cells) and in inducing caspase-dependent apoptosis. In addition, Bcl-2 down-regulation and apoptosis induced by Tf-LN G3139 were shown to be blocked by excess free Tf and thus were TfR-dependent. Cell lines with higher TfR expression also showed greater Bcl-2 down-regulation. Furthermore, upregulation of TfR expression in leukemia cells by iron chelator deferoxamine resulted in a further increase in antisense effect (up to 79% Bcl-2 reduction in K562 at the mRNA level) and in caspase-dependent apoptosis (by ~ 3-fold) by Tf-LN. Tf-LN mediated delivery combined with TfR up-regulation by deferoxamine appears to be a potentially promising strategy for enhancing the delivery efficiency and therapeutic efficacy of antisense oligonucleotides.

Yang, Xiaojuan; Koh, Chee Guan; Liu, Shujun; Pan, Xiaogang; Santhanam, Ramasamy; Yu, Bo; Peng, Yong; Pang, Jiuxia; Golan, Sharon; Talmon, Yeshayahu; Jin, Yan; Muthusamy, Natarajan; Byrd, John C.; Chan, Kenneth K.; Lee, L. James; Marcucci, Guido; Lee, Robert J.

2013-01-01

303

Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes.  

PubMed

The sentinel or tumor-draining lymph node (tdLN) serves as a metastatic niche for many solid tumors and is altered via tumor-derived factors that support tumor progression and metastasis. tdLNs are often removed surgically, and therapeutic vaccines against tumor antigens are typically administered systemically or in non-tumor-associated sites. Although the tdLN is immune-suppressed, it is also antigen experienced through drainage of tumor-associated antigens (TAA), so we asked whether therapeutic vaccines targeting the tdLN would be more or less effective than those targeting the non-tdLN. Using LN-targeting nanoparticle (NP)-conjugate vaccines consisting of TAA-NP and CpG-NP, we compared delivery to the tdLN versus non-tdLN in two different cancer models, E.G7-OVA lymphoma (expressing the nonendogenous TAA ovalbumin) and B16-F10 melanoma. Surprisingly, despite the immune-suppressed state of the tdLN, tdLN-targeting vaccination induced substantially stronger cytotoxic CD8(+) T-cell responses, both locally and systemically, than non-tdLN-targeting vaccination, leading to enhanced tumor regression and host survival. This improved tumor regression correlated with a shift in the tumor-infiltrating leukocyte repertoire toward a less suppressive and more immunogenic balance. Nanoparticle coupling of adjuvant and antigen was required for effective tdLN targeting, as nanoparticle coupling dramatically increased the delivery of antigen and adjuvant to LN-resident antigen-presenting cells, thereby increasing therapeutic efficacy. This work highlights the tdLN as a target for cancer immunotherapy and shows how its antigen-experienced but immune-suppressed state can be reprogrammed with a targeted vaccine yielding antitumor immunity. Cancer Immunol Res; 2(5); 436-47. ©2014 AACR. PMID:24795356

Jeanbart, Laura; Ballester, Marie; de Titta, Alexandre; Corthésy, Patricia; Romero, Pedro; Hubbell, Jeffrey A; Swartz, Melody A

2014-05-01

304

Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo.  

PubMed

To further increase the therapeutic activity of drugs known to act on intracellular target sites, in vivo drug delivery approaches must actively mediate the specific delivery of drug molecules to the subcellular site of action. We show here that surface modification of nanocarriers with mitochondriotropic triphenylphosphonium cations facilitates the efficient subcellular delivery of a model drug to mitochondria of mammalian cells and improves its activity in vitro and in vivo. PMID:18611058

Boddapati, Sarathi V; D'Souza, Gerard G M; Erdogan, Suna; Torchilin, Vladimir P; Weissig, Volkmar

2008-08-01

305

Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery.  

PubMed

Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind ?v?3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG, 1 kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RAD in ?v?3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy. PMID:24894645

Kim, Hyun Ah; Nam, Kihoon; Kim, Sung Wan

2014-08-01

306

Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery  

PubMed Central

One of the main goals of nanomedicine is to develop a nanocarrier that can selectively deliver anti-cancer drugs to the targeted tumors. Extensive efforts have resulted in several tumor-targeted nanocarriers, some of which are approved for clinical use. Most nanocarriers achieve tumor-selective accumulation through the enhanced permeability and retention effect. Targeting molecules such as antibodies, peptides, ligands, or nucleic acids attached to the nanocarriers further enhance their recognition and internalization by the target tissues. While both the stealth and targeting features are important for effective and selective drug delivery to the tumors, achieving both features simultaneously is often found to be difficult. Some of the recent targeting strategies have the potential to overcome this challenge. These strategies utilize the unique extracellular environment of tumors to change the long-circulating nanocarriers to release the drug or interact with cells in a tumor-specific manner. This review discusses the new targeting strategies with recent examples, which utilize the environmental stimuli to activate the nanocarriers. Traditional strategies for tumor-targeted nanocarriers are briefly discussed with an emphasis on their achievements and challenges.

Gullotti, Emily; Yeo, Yoon

2009-01-01

307

To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery  

Microsoft Academic Search

Because of the particular characteristics of the tumor microenvironment and tumor angiogenesis, it is possible to design drug delivery systems that specifically target anti-cancer drugs to tumors. Most of the conventional chemotherapeutic agents have poor pharmacokinetics profiles and are distributed non-specifically in the body leading to systemic toxicity associated with serious side effects. Therefore, the development of drug delivery systems

Fabienne Danhier; Olivier Feron; Véronique Préat

2010-01-01

308

Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles.  

PubMed

Chlamydia trachomatis and Chlamydia pneumoniae are intracellular bacterial pathogens that have been shown to cause, or are strongly associated with, diverse chronic diseases. Persistent infections by both organisms are refractory to antibiotic therapy. The lack of therapeutic efficacy results from the attenuated metabolic rate of persistently infecting chlamydiae in combination with the modest intracellular drug concentrations achievable by normal delivery of antibiotics to the inclusions within which chlamydiae reside in the host cell cytoplasm. In this research, we evaluated whether nanoparticles formulated using the biodegradable poly(d-L-lactide-co-glycolide) (PLGA) polymer can enhance the delivery of antibiotics to the chlamydial inclusion complexes. We initially studied the trafficking of PLGA nanoparticles in Chlamydia-infected cells. We then evaluated nanoparticles for the delivery of antibiotics to the inclusions. Intracellular trafficking studies show that PLGA nanoparticles efficiently concentrate in inclusions in both acutely and persistently infected cells. Further, encapsulation of rifampin and azithromycin antibiotics in PLGA nanoparticles enhanced the effectiveness of the antibiotics in reducing microbial burden. Combination of rifampin and azithromycin was more effective than the individual drugs. Overall, our studies show that PLGA nanoparticles can be effective carriers for targeted delivery of antibiotics to intracellular chlamydial infections. PMID:21652065

Toti, Udaya S; Guru, Bharath R; Hali, Mirabela; McPharlin, Christopher M; Wykes, Susan M; Panyam, Jayanth; Whittum-Hudson, Judith A

2011-09-01

309

Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model  

PubMed Central

The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1 MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n = 8) and wild-type (n = 8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and subendothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery.

Hitchcock, Kathryn E.; Caudell, Danielle N.; Sutton, Jonathan T.; Klegerman, Melvin E.; Vela, Deborah; Pyne-Geithman, Gail J.; Abruzzo, Todd; Cyr, Peppar E. P.; Geng, Yong-Jian; McPherson, David D.; Holland, Christy K.

2010-01-01

310

Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues  

PubMed Central

Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

2014-01-01

311

Non-Condensing Polymeric Nanoparticles for Targeted Gene and siRNA Delivery  

PubMed Central

Gene therapy has shown a tremendous potential to benefit patients in a variety of disease conditions. However, finding a safe and effective systemic delivery system is the major obstacle in this area. Although viral vectors showed promise for high transfection rate, the immunogenicity associated with these systems has hindered further development. As an alternative to viral gene delivery, this review focuses on application of novel safe and effective non-condensing polymeric systems that have shown high transgene expression when administered systemically or by the oral route. Type B gelatin-based engineered nanocarriers were evaluated for passive and active tumor-targeted delivery and transfection using both reporter and therapeutic plasmid DNA. Additionally, we have shown that nanoparticles-in-microsphere oral system (NiMOS) can efficiently deliver reporter and therapeutic gene constructs in the gastrointestinal tract. Additionally, there has been a significant recent interest in the use small interfering RNA (siRNA) as a therapeutic system for gene silencing. Both gelatin nanoparticles and NiMOS have shown activity in systemic and oral delivery of siRNA, respectively.

Xu, Jing; Ganesh, Shanthi; Amiji, Mansoor

2011-01-01

312

Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues.  

PubMed

Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

2014-07-01

313

Formulation of Functionalized PLGA-PEG Nanoparticles for In Vivo Targeted Drug Delivery  

PubMed Central

Nanoparticle (NP) size has been shown to significantly effect the biodistribution of targeted and non-targeted NPs in an organ specific manner. Herein we have developed NPs from carboxy-terminated poly (d,l-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) polymer and studied the effects of altering the following formulation parameters on the size of NPs, including: 1) polymer concentration, 2) drug loading, 3) water miscibility of solvent, and 4) the ratio of water to solvent. We found that NP mean volumetric size correlates linearly with polymer concentration for NPs between 70 and 250 nm in diameter (linear coefficient = 0.99 for NPs formulated with solvents studied). NPs with desirable size, drug loading, and polydispersity were conjugated to the A10 RNA aptamer (Apt) that binds to the Prostate Specific Membrane Antigen (PSMA), and NP and NP-Apt biodistribution was evaluated in a LNCaP (PSMA+) xenograft mouse model of PCa. The surface functionalization of NPs with the A10 PSMA aptamer significantly enhanced delivery of NPs to tumors vs. equivalent NPs lacking the A10 PSMA aptamer (a 3.77-fold increase at 24 hrs; NP-Apt 0.83% ± 0.21% vs. NP 0.22% ± 0.07% of injected dose per gram of tissue; mean ± s.d., n = 4, p = 0.002). The ability to control NP size together with targeted delivery may result in favorable biodistribution and development of clinically relevant targeted therapies.

Cheng, Jianjun; Teply, Benjamin A.; Sherifi, Ines; Sung, Josephine; Luther, Gaurav; Gu, Frank X.; Levy-Nissenbaum, Etgar; Radovic-Moreno, Aleksandar F.; Langer, Robert; Farokhzad, Omid C.

2009-01-01

314

Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery  

PubMed Central

We designed an epidermal growth factor (EGF)-containing polyamidoamine (PAMAM) Generation 4 dendrimer vector labeled with quantum dots for targeted imaging and nucleic acid delivery. 1H-NMR, SDS-PAGE, and western blotting were applied to characterize the synthesized G4.0-GGG-EGF nanoparticles. Targeting efficiency, cell viability, proliferation, and intracellular signal transduction were evaluated using HN12, NIH3T3, and NIH3T3/EGFR cells. We found that EGF-conjugated dendrimers did not stimulate growth of EGFR-expressing cells at the selected concentration. Consistent with this, minimal stimulation of post-receptor signaling pathways was observed. These nanoparticles can localize within cells that express the EGFR in a receptor-dependent manner, whereas uptake into cells lacking the receptor was low. A well characterized vimentin shRNA (shVIM) and siRNA YFP were used to test the delivery and transfection efficiency of the constructed targeted vector. Significant knockdown of expression was observed, indicating that this vector is useful for introduction of nucleic acids or drugs into cells by a receptor-targeted mechanism.

Yuan, Quan; Lee, Eunmee; Yeudall, W. Andrew; Yang, Hu

2010-01-01

315

Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.  

PubMed

Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t(1/2) ? 24.2 min) than the parent siRNA (t(1/2) ? 6 min). PMID:22659608

Lee, Hyukjin; Lytton-Jean, Abigail K R; Chen, Yi; Love, Kevin T; Park, Angela I; Karagiannis, Emmanouil D; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S; Jayaraman, Muthusamy; Peng, Chang G; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G

2012-06-01

316

Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery  

PubMed Central

Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ? 24.2 min) than the parent siRNA (t1/2 ? 6 min).

Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

2013-01-01

317

Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform  

NASA Astrophysics Data System (ADS)

A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines.

Li, Yanan; Yang, Yinlong; An, Feifei; Liu, Zhuang; Zhang, Xiujuan; Zhang, Xiaohong

2013-01-01

318

Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells  

NASA Astrophysics Data System (ADS)

In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

2012-12-01

319

Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery.  

PubMed

Surface functionalization is one of the key steps toward the utilization of mesoporous materials in drug delivery system. Here, the folic acid (FA) ligands are conjugated onto poly(ethylene imine) (PEI) modified SBA-15 particles (PEI/SBA-15) via amide reaction, which results in the FA/PEI/SBA-15 particles. Doxorubicin hydrochloride (DOX), an anticancer drug, is successfully loaded into these particles. The in vitro cytotoxicity and cellular uptake of the empty FA/PEI/SBA-15 particles and the DOX-loaded ones are evaluated on two kinds of cancer cells (HeLa cells and A549 cells). Specifically, an excellent cellular uptake using the current anticancer drug delivery vehicles (DOX-loaded FA/PEI/SBA-15 particles) mediated by the FA receptor is demonstrated by fluorescence microscope and flow cytometry. The FA/PEI/SBA-15 particles demonstrate a lower cytotoxicity comparing with the PEI/SBA-15 particles, while the DOX-loaded FA/PEI/SBA-15 particles exhibit much greater inhibition to the studied cancer cells. Furthermore, the in vitro release study shows that the targeted FA/PEI/SBA-15 particles have a typical sustained release behavior. This work therefore demonstrates that drug-loaded FA/PEI/SBA-15 particles have great potential application in targeted anticancer drug delivery for cancer therapy. PMID:23312579

Pang, Jianmei; Zhao, Lanxia; Zhang, Longlong; Li, Zhonghao; Luan, Yuxia

2013-04-01

320

Chlorotoxin Bound Magnetic Nanovector Tailored for Cancer Cell Targeting, Imaging, and siRNA Delivery  

PubMed Central

Ribonucleic acid interference (RNAi) is a powerful molecular tool that has potential to revolutionize the treatment of cancer. One major challenge of applying this technology for clinical application is the lack of site-specific carriers that can effectively deliver short interfering RNA (siRNA) to cancer cells. Here we report the development and assessment of a cancer-cell specific magnetic nanovector construct for efficient siRNA delivery and non-invasive monitoring through magnetic resonance imaging (MRI). The base of the nanovector construct is comprised of a superparamagnetic iron oxide nanoparticle core coated with polyethylene glycol (PEG)-grafted chitosan, and polyethylenimine (PEI). The construct was then further functionalized with siRNA and a tumor-targeting peptide, chlorotoxin (CTX), to improve tumor specificity and potency. Flow cytometry, quantitative RT-PCR, and fluorescence microscopy analyses confirmed receptor-mediated cellular internalization of nanovectors and enhanced gene knockdown through targeted siRNA delivery. The ability of this nanovector construct to generate specific contrast enhancement of brain tumor cells was demonstrated through MR imaging. These findings suggest that this CTX enabled nanoparticle carrier may be well suited for delivery of RNAi therapeutics to cancer cells.

Veiseh, Omid; Kievit, Forrest M.; Fang, Chen; Mu, Ni; Jana, Soumen; Leung, Matthew; Mok, Hyejung; Ellenbogen, Richard G.; Park, James O.; Zhang, Miqin

2010-01-01

321

Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent.  

PubMed

IR-780 iodide, a near-infrared fluorescent heptamethine dye, has been recently characterized to exhibit preferential accumulation property in the mitochondria of tumor cells. In this study, we investigated the possible mechanisms for its tumor selective activity and its potential as a drug delivery carrier. Results showed that the energy-dependent uptake of IR-780 iodide into the mitochondria of tumor cells was affected by glycolysis and plasma membrane potential. Moreover, OATP1B3 subtype of organic anion transporter peptides (OATPs) may play a dominant role in the transportation of IR-780 iodide into tumor cells, while cellular endocytosis, mitochondrial membrane potential and the ATP-binding cassette transporters did not show significant influence to its accumulation. We further evaluated the potential of IR-780 iodide as a drug delivery carrier by covalent conjugation of IR-780 with nitrogen mustard (IR-780NM). In vivo imaging showed that IR-780NM remained the tumor targeting property, indicating that IR-780 iodide could be potentially applied as a drug delivery agent for cancer targeted imaging and therapy. PMID:24148240

Zhang, Erlong; Luo, Shenglin; Tan, Xu; Shi, Chunmeng

2014-01-01

322

Focusing of photomechanical waves with an optical lens for depth-targeted molecular delivery  

NASA Astrophysics Data System (ADS)

We have been developing molecular delivery systems based on photomechanical waves (PMWs), which are generated by the irradiation of a laser absorbing material with nanosecond laser pulses. This method enables highly site-specific delivery in the horizontal plane of the tissue. However, targeting in the vertical direction is a remaining challenge. In this study, we developed a novel PMW focusing device for deeper tissue targeting. A commercial optical concave lens and black natural rubber sheet (laser absorber) were attached to the top and bottom end of a cylindrical spacer, respectively, which was filled with water. A laser pulse was transmitted through the lens and water and hit the rubber sheet to induce a plasma, generating a PMW. The PMW was propagated both downward and upward. The downward wave (1st wave) was diffused, while the upward (2nd wave) wave was reflected with the concave surface of the lens and focused at a depth determined by the geometrical parameters. To attenuate the 1st wave, a small-diameter silicon sponge rubber disk was adhered just under the rubber sheet concentrically with the laser axis. With the lens of f = -40 mm, the 2nd wave was focused to a diameter of 5.7 mm at a targeted depth of 20 mm, which was well agreed with the result of calculation by ray tracing. At a laser fluence of 5.1 J/cm2, peak pressure of the PMW reached ~40 MPa at the depth of 20 mm. Under this condition, we examined depth-targeted gene delivery to the rat skin.

Shimada, Takuichirou; Sato, Shunichi; Kawauchi, Satoko; Ashida, Hiroshi; Terakawa, Mitsuhiro

2014-02-01

323

Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials  

PubMed Central

Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced.

Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.

2011-01-01

324

Synthesis and Characterization of Polymer Nanocarriers for the Targeted Delivery of Therapeutic Enzymes  

PubMed Central

Protein drugs, such as recombinant enzymes useful for detoxification and replacement therapies, have extraordinary specificity and potency. However, inherently inadequate delivery to target sites and rapid inactivation limit their medical utility. Using chaperone polymeric particles designed within an injectible size range (sub-micron) may help solve these shortcomings. Such nanocarriers would (i) prevent premature inactivation of encapsulated therapeutic protein cargoes, (ii) provide a carrier that can be surface decorated by targeting ligands, and (iii) optimize sub-cellular localization of the drug. This chapter describes the techniques successfully employed for the preparation of polymer nanocarriers (PNC) loaded with the antioxidant enzyme, catalase, and targeted to endothelial cells. Methods of PNC synthesis, loading with catalase, characterization, coupling of a targeting moiety, and in vitro testing of the enzymatic and targeting activities are provided here. Advantages and disadvantages of specific designs are discussed. Due to the modular nature of the targeting methodology employed, it is believed that these protocols will provide a solid foundation for the formulation of a wide variety of enzymatic drug targeting strategies.

Simone, Eric; Dziubla, Thomas; Shuvaev, Vladimir; Muzykantov, Vladimir R.

2011-01-01

325

Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery  

NASA Astrophysics Data System (ADS)

Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly( d, l-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

Gu, Frank; Langer, Robert; Farokhzad, Omid C.

326

Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery  

PubMed Central

Summary Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

Gu, Frank; Langer, Robert; Farokhzad, Omid C.

2014-01-01

327

Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging  

PubMed Central

Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties.

Veiseh, Omid; Gunn, Jonathan; Zhang, Miqin

2009-01-01

328

Gene Delivery System Targets Tumor Blood Vessels in Dogs with Cancer  

Cancer.gov

In a preliminary study of pet dogs with naturally occurring cancer, researchers have developed a way to target delivery of a gene to tumor blood vessels, where the gene product damages the vessels, disrupting blood flow to the tumors but not to the surrounding tissue. The delivery method was well tolerated, and in some dogs, the size of tumors decreased or remained stable. This study provides valuable information that may aid in the design of future clinical trials. These are the first results of the Comparative Oncology Trials Consortium, a novel multicenter network sponsored by NCI to integrate cancers that naturally develop in dogs into the developmental path of new therapies for cancers in humans.

329

Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells.  

PubMed

Ideal "smart" nanoparticles for drug delivery should enhance therapeutic efficacy without introducing side effects. To achieve that, we developed a drug delivery system (HCN) based on a polymer-drug conjugate of poly[2-(pyridin-2-yldisulfanyl)]-graft-poly(ethylene glycol) and camptothecin with an intracellularly cleavable linker and human epidermal growth factor receptor 2 (HER2) targeting ligands. An in vitro drug release study found that HCN was stable in the physiological environment and supersensitive to the stimulus of elevated intracellular redox potential, releasing all payloads in less than 30 min. Furthermore, confocal microscopy revealed that HCN could specifically enter HER2-positive cancer cells. As a consequence, HCN could effectively kill HER2-positive cancer cells while not affecting HER2-negative cells. PMID:24779647

Remant, Bahadur K C; Chandrashekaran, Varun; Cheng, Bei; Chen, Hexin; Peña, Maria Marjorette O; Zhang, Jiajia; Montgomery, Janis; Xu, Peisheng

2014-06-01

330

Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors.  

PubMed

Single walled carbon nanotubes (SWNTs) are emerging as promising delivery vehicles for cancer diagnostics and chemotherapies due to their unique properties, including, remarkable cell membrane penetrability, high drug-carrying capacities, pH-dependent therapeutic unloading, prolonged circulating times and intrinsic fluorescent, photothermal, photoacoustic and Raman properties. In this leading opinion paper, we systemically discuss and evaluate the relationship of the biological safety of SWNTs with their physicochemical properties such as their length, purity, agglomeration state, concentration and surface functionalization. Other relevant issues, including the cellular uptake mechanism, biodistribution and metabolism of SWNTs are also reviewed. The design and preparation of SWNT-based drug delivery systems (DDSs) and their pharmacokinetic, cancer targeting and therapeutic properties both in vitro and in vivo are highlighted. Future opportunities and challenges of SWNT-based DDSs are also discussed. PMID:22137127

Meng, Lingjie; Zhang, Xiaoke; Lu, Qinghua; Fei, Zhaofu; Dyson, Paul J

2012-02-01

331

Nanostructured materials for applications in drug delivery and tissue engineering*  

PubMed Central

Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering.

GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

2010-01-01

332

Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide  

PubMed Central

Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endothelial cells of tumor lymphatics in certain tumors), was structurally modified by replacement of the original intramolecular disulfide bond with a diseleno bond. The produced analog Syp-1 (seleno derivative of Lyp-1) maintained specific binding ability to the target protein p32 (Kd = 18.54 nM), which is similar to that of Lyp-1 (Kd = 10.59 nM), indicated by surface plasmon resonance assay. Compared with Lyp-1, Syp-1 showed significantly improved stability against serum. After the peptide attached onto the surface of fluorophore-encapsulating liposomes, the more efficient tumor uptake of liposomal fluorophore mediated by Syp-1 was observed. Furthermore, Syp-1 modified liposomal doxorubicin presented the most potent tumor growth inhibitory ability among all the therapeutic groups, with a low half maximal inhibitory concentration of 588 nM against MDA-MB-435 cells in vitro and a high tumor inhibition rate of 73.5% in vivo. These findings clearly indicated that Syp-1 was a stable and effective tumor targeting ligand and suggest that the sulfur-to-selenium replacement strategy may help stabilize the phage-displayed cyclic peptide containing disulfide-bond under physiological conditions and strongly support the validity of peptide-mediated drug targeting.

Li, Chong; Wang, Yixin; Zhang, Xiaolin; Deng, Li; Zhang, Yan; Chen, Zhangbao

2013-01-01

333

Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide.  

PubMed

Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endothelial cells of tumor lymphatics in certain tumors), was structurally modified by replacement of the original intramolecular disulfide bond with a diseleno bond. The produced analog Syp-1 (seleno derivative of Lyp-1) maintained specific binding ability to the target protein p32 (Kd = 18.54 nM), which is similar to that of Lyp-1 (Kd = 10.59 nM), indicated by surface plasmon resonance assay. Compared with Lyp-1, Syp-1 showed significantly improved stability against serum. After the peptide attached onto the surface of fluorophore-encapsulating liposomes, the more efficient tumor uptake of liposomal fluorophore mediated by Syp-1 was observed. Furthermore, Syp-1 modified liposomal doxorubicin presented the most potent tumor growth inhibitory ability among all the therapeutic groups, with a low half maximal inhibitory concentration of 588 nM against MDA-MB-435 cells in vitro and a high tumor inhibition rate of 73.5% in vivo. These findings clearly indicated that Syp-1 was a stable and effective tumor targeting ligand and suggest that the sulfur-to-selenium replacement strategy may help stabilize the phage-displayed cyclic peptide containing disulfide-bond under physiological conditions and strongly support the validity of peptide-mediated drug targeting. PMID:23515368

Li, Chong; Wang, Yixin; Zhang, Xiaolin; Deng, Li; Zhang, Yan; Chen, Zhangbao

2013-01-01

334

Drug-loaded nano-microcapsules delivery system mediated by ultrasound-targeted microbubble destruction: A promising therapy method  

PubMed Central

The nano-microcapsules drug delivery system is currently a promising method for the treatment of many types of diseases, particularly tumors. However, the drug delivery efficiency does not reach a satisfactory level to meet treatment demands. Therefore, the effectiveness of delivery needs to be improved. Based on the alterations in the structure and modification of nano-microcapsules, ultrasound-targeted microbubble destruction (UTMD), a safe physical targeted method, may increase tissue penetration and cell membrane permeability, aiding the drug-loaded nano-microcapsules ingress the interior of targeted tissues and cells. The effectiveness and exact mechanism of action of the drug-loaded nano-microcapsules delivery system mediated by UTMD have yet to be fully elucidated. In this study, the latest advancement in UTMD-mediated drug loaded nano-microcapsules system technology was reviewed and the hindrances of UTMD-mediated drug delivery were assessed, in combination with a prospective study. The findings suggested that the drug delivery efficiency of nano-microcapsules mediated by UTMD was distinctly improved. Thus, the UTMD-mediated drug-loaded nano-microcapsules delivery system may significantly improve the efficiency of drug delivery, which may be a promising new therapeutic method.

MA, JING; DU, LIAN FANG; CHEN, MING; WANG, HANG HUI; XING, LING XI; JING, LI FANG; LI, YUN HUA

2013-01-01

335

Polymeric nanocarriers for magnetic targeted drug delivery: preparation, characterization, and in vitro and in vivo evaluation.  

PubMed

In this paper the preparation of magnetic nanocarriers (MNCs), containing superparamagnetic domains, is reported, useful as potential magnetically targeted drug delivery systems. The preparation of MNCs was performed by using the PHEA-IB-p(BMA) graft copolymer as coating material through the homogenization-solvent evaporation method. Magnetic and nonmagnetic nanocarriers containing flutamide (FLU-MNCs) were prepared. The prepared nanocarriers have been exhaustively characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and magnetic measurements. Biological evaluation was performed by in vitro cytotoxicity and cell uptake tests and in vivo biodistribution studies. Magnetic nanocarriers showed dimensions of about 300 nm with a narrow size distribution, an amount of loaded FLU of 20% (w/w), and a superparamagnetic behavior. Cell culture experiments performed on prostate cancer cell line LNCaP demonstrated the cytotoxic effect of FLU-MNCs. In vivo biodistribution studies carried out by the application of an external magnetic field in rats demonstrated the effect of the external magnet on modifying the biodistribution of FLU-MNCs. FLU-MNCs resulted efficiently internalized by tumor cells and susceptible to magnetic targeting by application of an external magnetic field. The proposed nanocarriers can represent a very promising approach to obtain an efficient magnetically targeted anticancer drug delivery system. PMID:24168360

Licciardi, Mariano; Scialabba, Cinzia; Fiorica, Calogero; Cavallaro, Gennara; Cassata, Giovanni; Giammona, Gaetano

2013-12-01

336

Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery  

SciTech Connect

A novel single-walled carbon nanotube (SWNT)-based tumor-targeted drug delivery system (DDS) has been developed, which consists of a functionalized SWNT linked to tumor-targeting modules as well as prodrug modules. There are three key features of this nanoscale DDS: (a) use of functionalized SWNTs as a biocompatible platform for the delivery of therapeutic drugs or diagnostics, (b) conjugation of prodrug modules of an anticancer agent (taxoid with a cleavable linker) that is activated to its cytotoxic form inside the tumor cells upon internalization and in situ drug release, and (c) attachment of tumor-recognition modules (biotin and a spacer) to the nanotube surface. To prove the efficacy of this DDS, three fluorescent and fluorogenic molecular probes were designed, synthesized, characterized, and subjected to the analysis of the receptor-mediated endocytosis and drug release inside the cancer cells (L1210FR leukemia cell line) by means of confocal fluorescence microscopy. The specificity and cytotoxicity of the conjugate have also been assessed and compared with L1210 and human noncancerous cell lines. Then, it has unambiguously been proven that this tumor-targeting DDS works exactly as designed and shows high potency toward specific cancer cell lines, thereby forming a solid foundation for further development.

Chen,J.; Wong,S.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; and Ojima, I.

2008-11-14

337

New tumor-targeted nanosized delivery carrier for oligonucleotides: characteristics in vitro and in vivo  

PubMed Central

Background The purpose of this study was to investigate the in vitro and in vivo characteristics of a new tumor-targeted nanosized delivery carrier for antisense oligonucleotide (ASON). Methods Polyethylenimine (PEI) was used to condense ASON to form nanosized complexes (PEI/ASON), which were then modified using asparagine-glycine-arginine (NGR) peptide to obtain a tumor-targeted nanosized delivery carrier (NGR/PEI/ASON). The conditions required to form PEI/ASON were investigated. Results A linear correlation between the natural logarithm of the N/P ratio (PEI to ASON) and the zeta potential of the PEI/ASON complexes was found, ranging from 1.5 to 5.0. The pH of the solution strongly influenced the zeta potential of the PEI/ASON complexes. PEI/ASON and NGR/PEI/ASON were stable in RPMI-1640 culture medium in the presence of Dextran 70. Incorporation of ASON into PEI/ASON and NGR/PEI/ASON complexes prevented degradation of ASON by DNase I. Conclusion Both ASON/PEI and NGR/PEI/ASON complexes enhanced the uptake of ASON by EC9706 cells in vitro. In vivo, NGR/PEI/ASON complexes had the ability to target tumor tissues effectively.

Zhou, Tianyang; Jia, Xin; Li, Huixiang; Wang, Jin; Zhang, Hongling; A, Youmei; Zhang, Zhenzhong

2011-01-01

338

Enhanced Endothelial Delivery and Biochemical Effects of ?-Galactosidase by ICAM-1-Targeted Nanocarriers for Fabry Disease  

PubMed Central

Fabry disease due to deficiency of ?-galactosidase A (?-Gal) causes lysosomal accumulation of globotriaosylceramide (Gb3) in multiple tissues and prominently in the vascular endothelium. Although enzyme replacement therapy (ERT) by injection of recombinant ?-Gal improves the disease outcome, effects on the vasculopathy associated to life-threatening cerebrovascular, cardiac and renal complications are still limited. We designed a strategy to enhance delivery of ?-Gal to organs and endothelial cells (ECs). We targeted ?-Gal to intercellular adhesion molecule 1 (ICAM-1), a protein expressed on ECs throughout the vasculature, by loading this enzyme on nanocarriers coated with anti-ICAM (anti-ICAM/?-Gal NCs). In vitro radioisotope tracing showed efficient loading of ?-Gal on anti-ICAM NCs, stability of this formulation under storage and in model physiological fluids, and enzyme release in response to lysosome environmental conditions. In mice, delivery of 125I-?-Gal was markedly enhanced by anti-ICAM/125I-?-Gal NCs in brain, kidney, heart, liver, lung, and spleen, and transmission electron microscopy showed anti-ICAM/?-Gal NCs attached to and internalized into the vascular endothelium. Fluorescence microscopy proved targeting, endocytosis and lysosomal transport of anti-ICAM/?-Gal NCs in macro- and micro-vascular ECs, and a marked enhancement of Gb3 degradation. Therefore, ICAM-1-targeting strategy may help improve the efficacy of therapeutic enzymes for Fabry disease.

Hsu, Janet; Serrano, Daniel; Bhowmick, Tridib; Kumar, Kishan; Shen, Yang; Kuo, Yuan Chia; Garnacho, Carmen; Muro, Silvia

2010-01-01

339

Targeted liposomal drug delivery systems for the treatment of B cell malignancies.  

PubMed

Abstract Nanoparticulate systems have demonstrated significant potential for overcoming the limitations of non-specific adverse effects related to chemotherapy. The treatment of blood malignancies employing targeted particulate drug delivery systems presents unique challenges and considerable research has been focused towards the development of targeted liposomal formulations for B cell malignancies. These formulations are aimed at achieving selectivity towards the malignant cells by targeting several cell surface markers which are over-expressed in that specific malignancy. CD19, CD20, CD22 and CD74 are few of such markers of which CD19, CD22 and CD74 are internalizing and CD20 is non-internalizing. Systems which have been developed to target both types of these cell surface markers are discussed. Specifically, the efficacy and development of targeted liposomes is considered. A number of studies have demonstrated the advantages of targeted liposomal systems encapsulating doxorubicin or vincristine. However, liposomal encapsulation of newer anti-neoplastic agents such as AD 198 which are superior to doxorubicin should be considered. PMID:24433007

Mittal, Nivesh K; Bhattacharjee, Himanshu; Mandal, Bivash; Balabathula, Pavan; Thoma, Laura A; Wood, George C

2014-06-01

340

Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells.  

PubMed

Our previous studies have demonstrated the applicability of poly(amidoamine) (PAMAM) dendrimers as a platform for the targeted delivery of chemotherapeutic drugs both in vitro and in vivo. To monitor the rate and extent of cell-killing caused by the delivered chemotherapeutic drug, we wished to analyze the degree of apoptosis in targeted cells on a real-time basis. As the apoptosis-regulating caspases are activated during the apoptotic process, several caspase-hydrolyzable, fluorescence resonance energy transfer (FRET)-based substrates have been marketed for the detection of apoptosis. However, the applicability of these agents is limited because of their nonspecificity and the consequent high background fluorescence in tissues. Here we show the synthesis, characterization, and in vitro targeting of an engineered PAMAM nanodevice in which folic acid (FA) is conjugated as the targeting molecule and a caspase-specific FRET-based agent (PhiPhiLux G1D2) is conjugated as the apoptosis-detecting agent. This conjugate specifically targets FA-receptor-positive, KB cells. In these cells, the apoptosis-inducing agent staurosporine caused a 5-fold increase in the cellular fluorescence. These results show, for the first time, the potential applicability of a targeted apoptosis-measuring nanodevice, which could be used for simultaneously monitoring the apoptotic potential of a delivered drug. PMID:17206782

Myc, Andrzej; Majoros, István J; Thomas, Thommey P; Baker, James R

2007-01-01

341

Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy.  

PubMed

Aptamers are a class of oligonucleotides that can specifically bind to different targets with high affinity. Since their discovery in 1980s, aptamers have attracted considerable interests in medical applications. So far, initial research using aptamers as delivery systems has produced exciting results. In this review, we summarize recent progress in aptamer-mediated chemotherapeutic drug and siRNA delivery systems in tumor treatment. With regard to chemotherapeutic drugs, the 2 main methods for targeted delivery using aptamers are as follows: aptamer-drug systems (in which aptamers directly deliver the drug both as a carrier and as a ligand) and aptamer-nanoparticles systems (in which nanoparticles function together with aptamers for targeted delivery of drugs). For delivery of siRNA, aptamers can be utilized by the following ways to facilitate targeting: (1) linked by a connector; (2) form a chimera; and (3) combined with nanoparticles. In co-delivery system, the advantages associated with the use of aptamers are beginning to become apparent also. Here, the challenges and new perspectives in the field of aptamer-mediated delivery have been discussed. PMID:23777885

Li, Xin; Zhao, Qinghe; Qiu, Liyan

2013-10-28

342

Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.  

PubMed

The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

2013-01-01

343

Urokinase Plasminogen Activator System Targeted Delivery of Nanobins as a Novel Ovarian Cancer Therapeutics  

PubMed Central

The urokinase system is overexpressed in epithelial ovarian cancer (OvCa) cells and is expressed at low levels in normal cells. To develop a platform for intracellular and targeted delivery of therapeutics in OvCa, we conjugated urokinase plasminogen activator (uPA) antibodies to liposomal nanobins. The arsenic trioxide loaded nanobins had favorable physicochemical properties and the ability to bind specifically to uPA. Confocal microscopy showed that the uPA targeted nanobins were internalized by OvCa cells, while both ICP-MS and FACS analyses confirmed >4-fold higher uptake of targeted nanobins when compared to untargeted nanobins. In a co-culture assay, the targeted nanobins showed efficient uptake in OvCa cells but not in the normal primary omental mesothelial cells. Moreover, this uptake could be blocked by either down-regulating uPA receptor expression in the OvCa cells using shRNA or by competition with free uPA or uPA antibody. In proof-of-concept experiments, mice bearing orthotopic ovarian tumors showed a greater reduction in tumor burden when treated with targeted nanobins than with untargeted nanobins (47% versus 27%; p<0.001). The targeted nanobins more effectively inhibited tumor cell growth both in vitro and in vivo compared to untargeted nanobins, inducing caspase-mediated apoptosis and impairing stem cell marker, ALDH1A1, expression. Ex vivo fluorescence imaging of tumors and organs corroborated these results, showing preferential localization of the targeted nanobins to the tumor. These findings suggest that uPA targeted nanobins capable of specifically and efficiently delivering payloads to cancer cells could serve as the foundation for a new targeted cancer therapy utilizing protease receptors.

Zhang, Yilin; Kenny, Hilary A.; Swindell, Elden P.; Mitra, Anirban K.; Hankins, Patrick L.; Ahn, Richard W.; Gwin, Katja; Mazar, Andrew P.; O'Halloran, Thomas V.; Lengyel, Ernst

2013-01-01

344

A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers  

Microsoft Academic Search

Lactose-based placebo tablets were coated using various combinations of two methacrylic acid copolymers, Eudragit® L100-55 and Eudragit® S100, by spraying from aqueous systems. The Eudragit® L100-55–Eudragit® S100 combinations (w\\/w) studied were 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 1:5 and 0:1. The coated tablets were tested in vitro for their suitability for pH dependent colon targeted oral drug delivery. The same

M. Zahirul I Khan; Željko Prebeg; Nevenka Kurjakovi?

1999-01-01

345

A novel mitotropic oligolysine nanocarrier: Targeted delivery of covalently bound D-Luciferin to cell mitochondria.  

PubMed

New and emerging therapeutic approaches focus on the targeted delivery of therapeutic agents to cell mitochondria with high specificity. Herein we present a novel mitotropic nanocarrier based on an oligolysine scaffold by addition of two triphenylphosphonium cations per oligomer. Although the parent oligolysine failed to enter healthy cells, the triphenylphosphonium modified carrier, with or without D-Luciferin, attached as cargo molecule, demonstrated striking mitochondrial specificity. Furthermore, the oligolysine bound d-Luciferin exhibited chemiluminescence, of lower intensity than free d-Luciferin, yet of remarkably longer steady-state temporal profile. PMID:21856448

Theodossiou, Theodossis A; Sideratou, Zili; Tsiourvas, Dimitris; Paleos, Constantinos M

2011-11-01

346

NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA  

Microsoft Academic Search

Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles\\u000a were synthesized and used for imaging and targeted delivery of small\\u000a interfering RNA (siRNA) to cancer cells. Silica-coated NaYF(4)\\u000a upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb\\/Er)\\u000a were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were\\u000a used to fluorescently label the folate receptors of HT-29 cells and Her2\\u000a receptors of SK-BR-3 cells, respectively. The

Shan Jiang; Yong Zhang; Kian Meng Lim; Eugene K. W. Sim; Lei Ye

2009-01-01

347

Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound  

PubMed Central

Brain diseases are notoriously difficult to treat due to the presence of the blood-brain barrier (BBB). Here, we review the development of focused ultrasound (FUS) as a noninvasive method for BBB disruption, aiding in drug delivery to the brain. FUS can be applied through the skull to a targeted region in the brain. When combined with microbubbles, FUS causes localized and reversible disruption of the BBB. The cellular mechanisms of BBB disruption are presented. Several therapeutic agents have been delivered to the brain resulting in significant improvements in pathology in models of glioblastoma and Alzheimer’s disease. The requirements for clinical translation of FUS will be discussed.

2013-01-01

348

Noninvasive and Targeted Gene Delivery into the Brain Using Microbubble-Facilitated Focused Ultrasound  

PubMed Central

Recombinant adeno-associated viral (rAAV) vectors are potentially powerful tools for gene therapy of CNS diseases, but their penetration into brain parenchyma is severely limited by the blood-brain barrier (BBB) and current delivery relies on invasive stereotactic injection. Here we evaluate the local, targeted delivery of rAAV vectors into the brains of mice by noninvasive, reversible, microbubble-facilitated focused ultrasound (FUS), resulting in BBB opening that can be monitored and controlled by magnetic resonance imaging (MRI). Using this method, we found that IV-administered AAV2-GFP (green fluorescence protein) with a low viral vector titer (1×109 vg/g) can successfully penetrate the BBB-opened brain regions to express GFP. We show that MRI monitoring of BBB-opening could serve as an indicator of the scale and distribution of AAV transduction. Transduction peaked at 3 weeks and neurons and astrocytes were affected. This novel, noninvasive delivery approach could significantly broaden the application of AAV-viral-vector-based genes for treatment of CNS diseases.

Hsu, Po-Hung; Wei, Kuo-Chen; Huang, Chiung-Yin; Wen, Chih-Jen; Yen, Tzu-Chen; Liu, Chao-Lin; Lin, Ya-Tin; Chen, Jin-Chung; Shen, Chia-Rui; Liu, Hao-Li

2013-01-01

349

PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor.  

PubMed

Fullerene (C60) has shown great potential in drug delivery. In this study, firstly, amine-functionalized C60 (C60-NH(2)) was achieved by introducing ethylenediamine onto the surface of C60, and then PEI-derivatized C60 (C60-PEI) was performed via a cationic polymerization of aziridine on the surface of C60-NH(2); FT-IR and TGA results verified the structure of water-soluble C60-PEI. C60-PEI was encapsulated with folic acid (FA) through an amide linker, and then docetaxel (DTX) was conjugated to C60-PEI-FA and obtained a drug delivery system, C60-PEI-FA/DTX. Compared with free DTX, the tumor targeting drug delivery could efficiently cross cell membranes, lead to more apoptosis and afford higher antitumor efficacy in a cultured PC3 cells in vitro. Furthermore, compared with free DTX in an in vivo murine tumor model, C60-PEI-FA/DTX afforded higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 7.5-fold higher DTX uptake of tumor, demonstrating that C60-PEI-FA/DTX may be promising for high treatment efficacy with minimal side effects in future therapy. PMID:23069706

Shi, Jinjin; Zhang, Hongling; Wang, Lei; Li, Lulu; Wang, Honghong; Wang, Zhenzhen; Li, Zhi; Chen, Chengqun; Hou, Lin; Zhang, Chaofeng; Zhang, Zhenzhong

2013-01-01

350

Synthesis of Bisethylnorspermine Lipid Prodrug as Gene Delivery Vector Targeting Polyamine Metabolism in Breast Cancer  

PubMed Central

Progress in the development of nonviral gene delivery vectors continues to be hampered by low transfection activity and toxicity. Here we proposed to develop a lipid prodrug based on a polyamine analogue bisethylnorspermine (BSP) that can function dually as gene delivery vector and, after intracellular degradation, as active anticancer agent targeting dysregulated polyamine metabolism. We synthesized a prodrug of BSP (LS-BSP) capable of intracellular release of BSP using thiolytically sensitive dithiobenzyl carbamate linker. Biodegradability of LS-BSP contributed to decreased toxicity compared with nondegradable control L-BSP. BSP showed a strong synergistic enhancement of cytotoxic activity of TNF-related apoptosis-inducing ligand (TRAIL) in human breast cancer cells. Decreased enhancement of TRAIL activity was observed for LS-BSP when compared with BSP. LS-BSP formed complexes with plasmid DNA and mediated transfection activity comparable to DOTAP and L-BSP. Our results show that BSP-based vectors are promising candidates for combination drug/gene delivery.

Dong, Yanmei; Zhu, Yu; Li, Jing; Zhou, Qing-Hui; Wu, Chao; Oupicky, David

2013-01-01

351

AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication  

PubMed Central

Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

Weber, Nicholas D.; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Schiffer, Joshua T.; Aubert, Martine; Jerome, Keith R.

2014-01-01

352

Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells  

PubMed Central

A novel cell-targeting, pH-sensitive polymeric carrier was employed in this study for delivery of the anticancer drug bortezomib (BTZ) to cancer cells. Our strategy is based on facile conjugation of BTZ to catechol-containing polymeric carriers that are designed to be taken up selectively by cancer cells through cell surface receptor-mediated mechanisms. The polymer used as a building block in this study was poly(ethylene glycol), which was chosen for its ability to reduce nonspecific interactions with proteins and cells. The catechol moiety was exploited for its ability to bind and release borate-containing therapeutics such as BTZ in a pH-dependent manner. In acidic environments, such as in cancer tissue or the subcellular endosome, BTZ dissociates from the polymer-bound catechol groups to liberate the free drug, which inhibits proteasome function. A cancer-cell-targeting ligand, biotin, was presented on the polymer carriers to facilitate targeted entry of drug-loaded polymer carriers into cancer cells. Our study demonstrated that the cancer-targeting drug–polymer conjugates dramatically enhanced cellular uptake, proteasome inhibition, and cytotoxicity toward breast carcinoma cells in comparison with nontargeting drug–polymer conjugates. The pH-sensitive catechol–boronate binding mechanism provides a chemoselective approach for controlling the release of BTZ in targeted cancer cells, establishing a concept that may be applied in the future toward other boronic acid-containing therapeutics to treat a broad range of diseases.

2011-01-01

353

Mito-DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate.  

PubMed

Tumor growth is fueled by the use of glycolysis, which normal cells use only in the scarcity of oxygen. Glycolysis makes tumor cells resistant to normal death processes. Targeting this unique tumor metabolism can provide an alternative strategy to selectively destroy the tumor, leaving normal tissue unharmed. The orphan drug dichloroacetate (DCA) is a mitochondrial kinase inhibitor that has the ability to show such characteristics. However, its molecular form shows poor uptake and bioavailability and limited ability to reach its target mitochondria. Here, we describe a targeted molecular scaffold for construction of a multiple DCA loaded compound, Mito-DCA, with three orders of magnitude enhanced potency and cancer cell specificity compared to DCA. Incorporation of a lipophilic triphenylphosphonium cation through a biodegradable linker in Mito-DCA allowed for mitochondria targeting. Mito-DCA did not show any significant metabolic effects toward normal cells but tumor cells with dysfunctional mitochondria were affected by Mito-DCA, which caused a switch from glycolysis to glucose oxidation and subsequent cell death via apoptosis. Effective delivery of DCA to the mitochondria resulted in significant reduction in lactate levels and played important roles in modulating dendritic cell (DC) phenotype evidenced by secretion of interleukin-12 from DCs upon activation with tumor antigens from Mito-DCA treated cancer cells. Targeting mitochondrial metabolic inhibitors to the mitochondria could lead to induction of an efficient antitumor immune response, thus introducing the concept of combining glycolysis inhibition with immune system to destroy tumor. PMID:24617941

Pathak, Rakesh K; Marrache, Sean; Harn, Donald A; Dhar, Shanta

2014-05-16

354

Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors.  

PubMed

Cancer gene therapy represents one of the most rapidly evolving areas in pre-clinical and clinical cancer research. Application of gene transfer techniques in clinical trials has made increasingly obvious that several issues will need to be addressed prior to meaningful incorporation of gene therapy in the care of cancer patients. Two of the most important problems to overcome are lack of selectivity of the existing vectors and low efficiency of gene transfer. This review focuses on use of targeting and replication competent vectors in order to overcome these obstacles. Targeted gene therapy of malignancies can be achieved through vector targeting or transcriptional targeting and can improve the therapeutic index of gene transfer by preventing damage of normal tissues, an important requirement if systemic gene delivery is contemplated. Replication competent viral vectors can improve the efficiency of gene transfer. Provisionally replicating viruses can also improve the therapeutic index by targeting toxicity to tumor cells. A variety of provisionally replicating viruses, such as the attenuated adenovirus ONYX-015, the adenovirus CN706 that selectively replicates in prostate cancer cells, the double mutant herpes simplex virus G207, the human reovirus, and the Newcastle disease virus are currently in clinical trials. Early clinical results and limitations in the application of these vectors are discussed. PMID:11369253

Galanis, E; Vile, R; Russell, S J

2001-06-01

355

Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery  

PubMed Central

The poor aqueous solubility and low bioavailability of curcumin restrict its clinical application for cancer treatment. In this study, a novel tumor-targeting nanofiber carrier was developed to improve the solubility and tumor-targeting ability of curcumin using a self-assembled Nap-GFFYG-RGD peptide. The morphologies of the peptide nanofiber and the curcumin-encapsulated nanofiber were visualized by transmission electron microscopy. The tumor-targeting activity of the curcumin-encapsulated Nap-GFFYG-RGD peptide nanofiber (f-RGD-Cur) was studied in vitro and in vivo, using Nap-GFFYG-RGE peptide nanofiber (f-RGE-Cur) as the control. Curcumin was encapsulated into the peptide nanofiber, which had a diameter of approximately 10–20 nm. Curcumin showed sustained-release behavior from the nanofibers in vitro. f-RGD-Cur showed much higher cellular uptake in ?v?3 integrin-positive HepG2 liver carcinoma cells than did non-targeted f-RGE-Cur, thereby leading to significantly higher cytotoxicity. Ex vivo studies further demonstrated that curcumin could accumulate markedly in mouse tumors after administration of f-RGD-Cur via the tail vein. These results indicate that Nap-GFFYG-RGD peptide self-assembled nanofibers are a promising hydrophobic drug delivery system for targeted treatment of cancer.

Liu, Jianfeng; Liu, Jinjian; Xu, Hongyan; Zhang, Yumin; Chu, Liping; Liu, Qingfen; Song, Naling; Yang, Cuihong

2014-01-01

356

Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery.  

PubMed

Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications. PMID:23046982

Li, Zhi Jie; Cho, Chi Hin

2012-09-19

357

Targeting of Deep Brain Structures with Microinjections for Delivery of Drugs, Viral Vectors, or Cell Transplants  

PubMed Central

Microinjections into the brain parenchyma are important procedures to deliver drugs, viral vectors or cell transplants. The brain lesion that an injecting needle produces during its trajectory is a major concern especially in the mouse brain for not only the brain is small but also sometimes multiple injections are needed. We show here a method to produce glass capillary needles with a 50-?m lumen which significantly reduces the brain damage and allows a precise targeting into the rodent brain. This method allows a delivery of small volumes (from 20 to 100 nl), reduces bleeding risks, and minimizes passive diffusion of drugs into the brain parenchyma. By using different size of capillary glass tubes, or changing the needle lumen, several types of substances and cells can be injected. Microinjections with a glass capillary tube represent a significant improvement in injection techniques and deep brain targeting with minimal collateral damage in small rodents.

Gonzalez-Perez, Oscar; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo

2010-01-01

358

Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery  

PubMed Central

Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications.

2012-01-01

359

Targeted Drug Delivery to the Peripheral Nervous System using Gene Therapy  

PubMed Central

Gene transfer to target delivery of neurotrophic factors to the primary sensory afferent for treatment of polyneuropathy, or of inhibitory neurotransmitters for relief of chronic pain, offers the possibility of a highly selective targeted release of bioactive molecules within the nervous system. Preclinical studies with non-replicating herpes simplex virus (HSV)-based vectors injected into the skin to transduce neurons in the dorsal root ganglion have demonstrated efficacy in reducing-pain related behaviors in animal models of inflammatory pain, neuropathic pain, and pain caused by cancer, and in preventing progression of sensory neuropathy caused by toxins, chemotherapeutic drugs or resulting from diabetes. Successful completion of the first phase 1 clinical trial of HSV-mediated gene transfer in patients with intractable pain from cancer has set the stage for further clinical trials of this approach.

Wolfe, Darren; Mata, Marina; Fink, David J.

2012-01-01

360

A Combinatorial Approach for Targeted Delivery using Small Molecules and Reversible Masking to Bypass Non-Specific Uptake In Vivo  

PubMed Central

We have developed a multi-disciplinary approach combining molecular biology, delivery technology, combinatorial chemistry, and reversible masking to create improved systemic, targeted delivery of plasmid DNA while avoiding non-specific uptake in vivo. We initially used a well characterized model targeting the asialolglycoprotein receptor in the liver. Using our bilamellar invaginated vesicle (BIV) liposomal delivery system with reversible masking, we increased expression in the liver by 76-fold, nearly equaling expression in first-pass organs using non-targeted complexes, with no expression in other organs. The same technology was then applied to efficiently target delivery to a human tumor microenvironment model. We achieved efficient, targeted delivery by attachment of specific targeting ligands to the surface of our BIV complexes in conjunction with reversible masking to bypass non-specific tissues and organs. We identified ligands that target a human tumor microenvironment created in vitro by co-culturing primary human endothelial cells with human lung or pancreatic cancer cells. The model was confirmed by increased expression of tumor endothelial phenotypes including CD31 and VEGF-A, and prolonged survival of endothelial capillary-like structures. The co-cultures were used for high-throughput screening of a specialized small-molecule library to identify ligands specific for human tumor-associated endothelial cells in vitro. We identified small molecules that enhanced the transfection efficiency of tumor-associated endothelial cells, but not normal human endothelial cells or cancer cells. Intravenous injection of our targeted, reversibly masked complexes into mice, bearing human pancreatic tumor and endothelial cells, specifically increased transfection to this tumor microenvironment about 200-fold. Efficacy studies using our optimized targeted delivery of a plasmid encoding thrombospondin-1 eliminated tumors completely after five intravenous injections administered once every week.

Shi, Qiaoyun; Nguyen, Andrew T.; Angell, Yu; Deng, Defeng; Na, Chang-Rim; Burgess, Kevin; Roberts, David D.; Brunicardi, F. Charles; Templeton, Nancy Smyth

2010-01-01

361

MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells  

PubMed Central

Polymeric micelles are emerging as a highly integrated nanoplatform for cancer targeting, drug delivery and tumor imaging applications. In this study, we describe a multifunctional micelle (MFM) system that is encoded with a lung cancer-targeting peptide (LCP), and encapsulated with superparamagnetic iron oxide (SPIO) and doxorubicin (Doxo) for MR imaging and therapeutic delivery, respectively. The LCP-encoded MFM showed significantly increased ?v?6-dependent cell targeting in H2009 lung cancer cells over a scrambled peptide (SP)-encoded MFM control as well as in an ?v?6-negative H460 cell control. 3H-Labeled MFM nanoparticles were used to quantify the time- and dose-dependent cell uptake of MFM nanoparticles with different peptide encoding (LCP vs SP) and surface densities (20% and 40%) in H2009 cells. LCP functionalization of the micelle surface increased uptake of the MFM by more than 3-fold compared to the SP control. These results were confirmed by confocal laser scanning microscopy, which further demonstrated the successful Doxo release from MFM and accumulation in the nucleus. SPIO clustering inside the micelle core resulted in high T2 relaxivity (>400 Fe mM?1 s?1) of the resulting MFM nanoparticles. T2-weighted MRI images showed clear contrast differences between H2009 cells incubated with LCP-encoded MFM over the SP-encoded MFM control. An ATP activity assay showed increased cytotoxicity of LCP-encoded MFM over SP-encoded MFM in H2009 cells (IC50 values were 28.3 ± 6.4 nM and 73.6 ± 6.3 nM, respectively; p < 0.005). The integrated diagnostic and therapeutic design of MFM nanomedicine potentially allows for image-guided, target-specific treatment of lung cancer.

Guthi, Jagadeesh Setti; Yang, Su-Geun; Huang, Gang; Li, Shunzi; Khemtong, Chalermchai; Kessinger, Chase W.; Peyton, Michael; Minna, John D.; Brown, Kathlynn C.; Gao, Jinming

2010-01-01

362

Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation.  

PubMed

Dispersions of poly(N-isopropylacrylamide-co-butyl methacrylate) (PNB) nanogels are known to exhibit reversible thermosensitive sol-gel phase behavior and can consequently be used in a wide range of biomedical applications. However, some dissatisfactory mechanical properties of PNB nanogels can limit their applications. In this paper, bacterial cellulose (BC) whiskers were first prepared by sulfuric acid hydrolysis and then nanosized by high-pressure homogenization for subsequent use in the preparation of BC whisker/PNB nanogel complexes (designated as BC/PNB). The mechanical properties of PNB was successfully enhanced, resulting in good biosafety. The BC/PNB nanogel dispersions exhibited phase transitions from swollen gel to shrunken gel with increasing temperature. In addition, differential scanning calorimetry (DSC) data showed that the thermosensitivity of PNB nanogels was retained. Rheological tests also indicated that BC/PNB nanogel complexes had stronger gel strengths when compared with PNB nanogels. The concentrated dispersions showed shear thinning behavior and improved toughness, both of which can play a key role in the medical applications of nanogel complexes. Furthermore, the BC/PNB nanogel complexes were noncytotoxic according to cytotoxicity and hemolysis tests. Concentrated BC/PNB nanogel dispersion displayed gel a forming capacity in situ by catheter injection, which indicates potential for a wide range of medical applications. PMID:23458422

Wu, Lei; Zhou, Hui; Sun, Hao-Jan; Zhao, Yanbing; Yang, Xiangliang; Cheng, Stephen Z D; Yang, Guang

2013-04-01

363

Feasibility of targeted drug delivery to selective areas of the retina  

SciTech Connect

A new method was developed to deliver locally a bolus dose of a drug to the retinal vasculature. The targeted delivery system was based on encapsulating the drug in heat-sensitive liposomes, which are injected intravenously and lysed in the retinal vessels by a heat pulse generated by a laser. To test if substances delivered in the vessels could also penetrate into the surrounding tissue, 6-carboxyfluorescein was encapsulated in liposomes and used as a marker for drug penetration. Moderate argon laser pulses were applied to the retinal vessels of Dutch pigmented rabbits to induce breakdown of the blood-retinal barrier (BRB). A suspension of liposomes at a dose of 2 ml/kg body weight, corresponding to a carboxyfluorescein dose of 12 mg/kg, was injected into the ear vein. The dye was released from the liposomes proximal to the damaged portion of the vessel. Fundus fluorescein angiograms were recorded with a video camera and digitized for subsequent image analysis. The penetration of carboxyfluorescein into the retinal tissue was evaluated by comparing the fluorescence intensity of the area around the damaged vessel with that of an adjacent control area. The dye penetration increased with the numbers of laser applications (P less than 0.001). The leakage was localized distally to the released site and was restricted to areas with a disrupted BRB. The mass of carboxyfluorescein that penetrated gradually spread with time. Both veins and arteries could be used for the targeted delivery. These results indicated that this delivery system, which is fully controllable by laser through the pupil, can deliver drugs inside the vasculature and into the retinal tissue wherever the BRB is disrupted.

Ogura, Y.; Guran, T.; Shahidi, M.; Mori, M.T.; Zeimer, R.C. (Department of Ophthalmology, UIC Eye Center, University of Illinois, College of Medicine, Chicago (USA))

1991-07-01

364

A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting  

PubMed Central

Background The objective of this study was to prepare, characterize, and evaluate a folate-modified self-microemulsifying drug delivery system (FSMEDDS) with the aim to improve the solubility of curcumin and its delivery to the colon, facilitating endocytosis of FSMEDDS mediated by folate receptors on colon cancer cells. Methods Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. Then, three lipophilic folate derivatives (folate-polyethylene glycol-distearoylphosphatidylethanolamine, folate-polyethylene glycol-cholesteryl hemisuccinate, and folate-polyethylene glycol-cholesterol) used as a surfactant were added to curcumin-loaded SMEDDS formulations. An in situ colon perfusion method in rats was used to optimize the formulation of FSMEDDS. Curcumin-loaded FSMEDDS was then filled into colon-targeted capsules and the in vitro release was investigated. Cytotoxicity studies and cellular uptake studies was used in this research. Results The optimal formulation of FSMEDDS obtained with the established in situ colon perfusion method in rats was comprised of 57.5% Cremophor® EL, 32.5% Transcutol® HP, 10% Capryol™ 90, and a small amount of folate-polyethylene glycol-cholesteryl hemisuccinate (the weight ratio of folate materials to Cremophor EL was 1:100). The in vitro release results indicated that the obtained formulation of curcumin could reach the colon efficiently and release the drug immediately. Cellular uptake studies analyzed with fluorescence microscopy and flow cytometry indicated that the FSMEDDS formulation could efficiently bind with the folate receptors on the surface of positive folate receptors cell lines. In addition, FSMEDDS showed greater cytotoxicity than SMEDDS in the above two cells. Conclusion FSMEDDS-filled colon-targeted capsules are a potential carrier for colon delivery of curcumin.

Zhang, Lin; Zhu, Weiwei; Yang, Chunfen; Guo, Hongxia; Yu, Aihua; Ji, Jianbo; Gao, Yan; Sun, Min; Zhai, Guangxi

2012-01-01

365

Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery  

NASA Astrophysics Data System (ADS)

The aim of this study was to synthesize green chemistry based gold nanoparticles using liver specific biopolymer and to develop a liver cancer targeted drug delivery system with enhanced efficacy and minimal side effects. Pullulan stabilized gold nanoparticles (PAuNPs) were coupled with 5-Fluorouracil (5-Fu) and folic acid (Fa) which could be used as a tool for targeted drug delivery and imaging of cancer. The toxicity of 5-Fu, 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs), Fa-coupled 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs-Fa), was studied using zebrafish embryo as an in vivo model. The in vitro cytotoxicity of free 5-Fu, 5-Fu@AuNPs, 5-Fu@AuNPs-Fa against HepG2 cells was studied and found that the amount of 5-Fu required to achieve 50% of growth of inhibition (Ic50) was much lower in 5-Fu@AuNP-Fa than in free 5-Fu, 5-Fu@AuNPs. The in vivo biodistribution of PAuNPs showed that higher amount of gold had been accumulated in liver (54.42 ± 5.96 ?g) than in other organs.

Ganeshkumar, Moorthy; Ponrasu, Thangavel; Raja, Modhugoor Devendiran; Subamekala, Muthaiya Kannappan; Suguna, Lonchin

2014-09-01

366

Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy.  

PubMed

Many solute carrier transporters that interact with anticancer agents and contribute to their pharmacokinetics have been shown to be differentially upregulated in cancer cells as a result of adaptive response to altered nutritional requirements. This review focuses on pathophysiological function of membrane transporters responsible for the influx of physiological substances including oligopeptides, amino acids, and organic cations and anions, and summarizes the recent knowledge regarding mechanisms in their gene expressions. Broad substrate specificity of enhanced oligopeptide H(+) /peptide cotransporter 1 activity in cancer cells is useful for tumor tissue-specific delivery of chemotherapeutic agents and positron emission tomography diagnostic probes. Amino acid transporters such as LAT1 and ASCT2 are upregulated in human cancer cells and are thought to stimulate tumor growth by regulating mammalian target of rapamycin through nutrient pathway. Especially, LAT1 could be a molecular target to deprive cancer cells of amino acids in combination with aminopeptidase inhibitors. As organic anion transporting polypeptides carry estrone-3-sulfate that is intracellularly hydrolyzed to estrone, their overexpression may provide a pharmacological merit to treat hormone-responsive breast tumors. Therefore, it is important to understand the pathophysiological significance and gene expression in cancer to develop new rationales for drug delivery and pharmacological interventions for chemotherapy. PMID:21630275

Nakanishi, Takeo; Tamai, Ikumi

2011-09-01

367

Reduction/pH dual-sensitive PEGylated hyaluronan nanoparticles for targeted doxorubicin delivery.  

PubMed

To minimize the side effect of chemotherapy, a novel reduction/pH dual-sensitive drug nanocarrier, based on PEGylated dithiodipropionate dihydrazide (TPH)-modified hyaluronic acid (PEG-SS-HA copolymer), was developed for targeted delivery of doxorubicin (DOX) to hepatocellular carcinoma. The copolymer was synthesized by reductive amination via Schiff's base formation between TPH-modified HA and galactosamine-conjugated poly(ethylene glycol) aldehyde/methoxy poly(ethylene glycol) aldehyde. Conjugation of DOX to PEG-SS-HA copolymer was accomplished through the hydrazone linkage formed between DOX and PEG-SS-HA, and confirmed by FTIR and (1)H NMR spectra. The polymer-DOX conjugate could self-assemble into spherical nanoparticles (~150 nm), as indicated by TEM and DLS. In vitro release studies showed that the DOX-loaded nanoparticles could release DOX rapidly under the intracellular levels of pH and glutathiose. Cellular uptake experiments demonstrated that the nanoparticles could be efficiently internalized by HepG2 cells. These results indicate that the PEG-SS-HA copolymer holds great potential for targeted intracellular delivery of DOX. PMID:23987334

Xu, Minghui; Qian, Junmin; Suo, Aili; Wang, Hongjie; Yong, Xueqing; Liu, Xuefeng; Liu, Rongrong

2013-10-15

368

Intraneural convection enhanced delivery of AAVrh20 for targeting primary sensory neurons.  

PubMed

Gene therapy using adeno-associated virus (AAV) is an attractive strategy to treat disorders of the peripheral nervous system (PNS), such as chronic pain or peripheral neuropathies. Although intrathecal (IT) administration of AAV has been the standard in the field for targeting the PNS, it lacks anatomical specificity and results in wide rostro-caudal distribution of the vector. An alternative approach is to deliver AAV directly to the peripheral nerve axon. The present study employed convection-enhanced delivery (CED) of a novel AAV serotype, AAVrh20, expressing enhanced green fluorescent protein (EGFP) into rat sciatic nerve investigating its efficacy, anatomical selectivity, and safety, compared to the IT route. Intraneural CED resulted in transduction confined to the ipsilateral L4 and L5 DRG while IT administration led to promiscuous DRG transduction encompassing the entire lumbar region bilaterally. The transduction rate for intraneural AAV administration was similar to IT delivery (24% for L4 and 31.5% for L5 DRG versus 50% for L4 and 19.5% for L5 DRG). The use of hyperosmotic diluent did not further improve the transduction efficiency. AAVrh20 was superior to reference serotypes previously described to be most active for each route. Intraneural CED of AAV was associated with transient allodynia that resolved spontaneously. These findings establish intraneural CED as an alternative to IT administration for AAV mediated gene transfer to the PNS and, based on a reference rodent model, suggest AAVrh20 as a superior serotype for targeting the PNS. PMID:24769104

Pleticha, Josef; Jeng-Singh, Christian; Rezek, Rahaf; Zaibak, Manal; Beutler, Andreas S

2014-05-01

369

Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations.  

PubMed

Transferrin (Tf), an iron-transporting serum glycoprotein that binds to receptors overexpressed at the surface of glioma cells, was chosen as the ligand to develop Tf-conjugated PEGylated nanoscaled graphene oxide (GO) for loading and glioma targeting delivery of anticancer drug doxorubicin (Dox) (Tf-PEG-GO-Dox). Tf-GO with lateral dimensions of 100-400 nm exhibited a Dox loading ratio up to 115.4%. Compared with Dox-loaded PEGylated GO (PEG-GO-Dox) and free Dox, Tf-PEG-GO-Dox displayed greater intracellular delivery efficiency and stronger cytotoxicity against C6 glioma cells. A competition test showed that Tf was essential to glioma targeting in vitro. The HPLC assay for Dox concentration in tumor tissue and contrapart tissue of the brain demonstrated that Tf-PEG-GO-Dox could deliver more Dox into tumor in vivo. The life span of tumor bearing rats after the administration of Tf-PEG-GO-Dox was extended significantly compared to the rats treated with saline, Dox, and PEG-GO-Dox. In conclusion, we developed Tf-PEG-GO-Dox which exhibited significantly improved therapeutic efficacy for glioma both in vitro and in vivo. PMID:23883622

Liu, Guodong; Shen, He; Mao, Jinning; Zhang, Liming; Jiang, Zhen; Sun, Tao; Lan, Qing; Zhang, Zhijun

2013-08-14

370

Hyaluronan microspheres for sustained gene delivery and site-specific targeting.  

PubMed

Hyaluronan is a naturally occurring polymer that has enjoyed wide successes in biomedical and cosmetic applications as coatings, matrices, and hydrogels. For controlled delivery applications, formulating native hyaluronan into microspheres could be advantageous but has been difficult to process unless organic solvents are used or hyaluronan has been modified by etherification. Therefore, we present a novel method of preparing hyaluronan microspheres using adipic dihydrazide mediated crosslinking chemistry. To evaluate their potential for medical applications, hyaluronan microspheres are incorporated with DNA for gene delivery or conjugated with an antigen for cell-specific targeting. The results show that our method, originally developed for preparing hyaluronan hydrogels, generates robust microspheres with a size distribution of 5-20mum. The release of the encapsulated plasmid DNA can be sustained for months and is capable of transfection in vitro and in vivo. Hyaluronan microspheres, conjugated with monoclonal antibodies to E- and P-selectin, demonstrate selective binding to cells expressing these receptors. In conclusion, we have developed a novel microsphere preparation using native hyaluronan that delivers DNA at a controlled rate and adaptable for site-specific targeting. PMID:14580918

Yun, Yang H; Goetz, Douglas J; Yellen, Paige; Chen, Weiliam

2004-01-01

371

Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles.  

PubMed

Targeted delivery of serratiopeptidase enzyme immobilized on magnetic nanoparticles (MNPs) of Fe3O4 has been reported for the treatment using this enzyme. The enzyme was immobilized by covalent bonding through glutaraldehyde after amino functionalization of MNPs and parameters was studied. The enzyme bound MNPs (EMNPs) were characterized for size, crystallographic identity, phase purity, zeta potential and magnetic properties along with elemental and thermal analysis. The binding of enzyme had little effect on sizes (~10-17 nm) and on magnetic properties, but the zeta potential increased from -25 mV to +14.5 mV with surface amino groups up to 350 ?moles g(-1) MNPs, to stabilize its suspensions. In the molecular level, maximum of 17 molecules of enzyme could bind to each particle of MNPs that showed residual activity 67%, decreased KM and Vmax, good storage stability. Magnetic targeting of EMNPs increased the delivery (permeation) of drug through the membrane in in vitro study and enhanced the anti-inflammatory effect on carrageenan induced paw oedema in rats in in vivo study at much lower doses of enzyme than the doses required for treatment with free enzyme. PMID:23851102

Kumar, Sandeep; Jana, Asim K; Dhamija, Isha; Singla, Yashpaul; Maiti, Mithu

2013-11-01

372

Benzamide analogue-conjugated polyethylenimine for brain-targeting and gene delivery.  

PubMed

In this study, a small molecule, benzamide analogue, p-hydroxybenzoic acid (p-HA), was used as a novel ligand for brain-targeting gene delivery. p-HA was conjugated to polyethylenimine and further labeled with a near infrared dye, IR820, for in vivo and ex vivo imaging study. Significant fluorescent signal was detected in brain from 0.5 to 24 h after injection compared with unmodified PEI. Then nanoparticles were prepared with p-HA-PEI to encapsulate pEGFP and pGL2 as reporter genes and characterized on the cell level. In 5 y cells green fluorescent protein expression could be observed by fluorescent microscopy and significant higher expression of firefly luciferase was detected in p-HA-PEI/pGL2 group than in PEI/pGL2 group. For in vivo gene expression study, comparable high expression of green fluorescent protein in brain sections was confirmed using both confocal fluorescent microscopy and in vivo fluorescent imaging. All these results suggested that p-HA-PEI could be potentially used for brain targeted gene delivery. PMID:21999822

Li, Jin; Meng, Qinggang; Lei, Yang; Gu, Bing; Liu, Yu; Lu, Weiyue

2011-11-01

373

Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery.  

PubMed

The aim of this study was to synthesize green chemistry based gold nanoparticles using liver specific biopolymer and to develop a liver cancer targeted drug delivery system with enhanced efficacy and minimal side effects. Pullulan stabilized gold nanoparticles (PAuNPs) were coupled with 5-Fluorouracil (5-Fu) and folic acid (Fa) which could be used as a tool for targeted drug delivery and imaging of cancer. The toxicity of 5-Fu, 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs), Fa-coupled 5-Fu adsorbed gold nanoparticles (5-Fu@AuNPs-Fa), was studied using zebrafish embryo as an in vivo model. The in vitro cytotoxicity of free 5-Fu, 5-Fu@AuNPs, 5-Fu@AuNPs-Fa against HepG2 cells was studied and found that the amount of 5-Fu required to achieve 50% of growth of inhibition (Ic50) was much lower in 5-Fu@AuNP-Fa than in free 5-Fu, 5-Fu@AuNPs. The in vivo biodistribution of PAuNPs showed that higher amount of gold had been accumulated in liver (54.42±5.96?g) than in other organs. PMID:24762575

Ganeshkumar, Moorthy; Ponrasu, Thangavel; Raja, Modhugoor Devendiran; Subamekala, Muthaiya Kannappan; Suguna, Lonchin

2014-09-15

374

Immuno-LipoTRAIL: Targeted Delivery of TRAIL-Functionalized Liposomal Nanoparticles.  

PubMed

The TNF-related apoptosis-inducing ligand (TRAIL) is a powerful inducer of apoptosis in tumor cells; however, clinical studies with recombinant soluble TRAIL were rather disappointing. Here, we developed TRAIL-functionalized liposomes (LipoTRAIL, LT) to mimic membrane-displayed TRAIL for efficient activation of death receptors DR4 and DR5 and enhanced induction of apoptosis, which were combined with an anti-EGFR single-chain Fv fragment (scFv) for targeted delivery to EGFR-positive tumor cells. These immuno-LipoTRAILs (ILTs) bound specifically to EGFR-expressing cells (Colo205) and exhibited increased cytotoxicity compared with that of nontargeted LTs. Compared to that of the soluble TRAIL, the plasma half-life of the functionalized liposomes was strongly extended, and increased antitumor activity of LT and ILT was demonstrated in a xenograft tumor model. Thus, we established a multifunctional liposomal TRAIL formulation (ILT) with improved pharmacokinetic and pharmacodynamic behavior, characterized by targeted delivery and increased induction of apoptosis due to multivalent TRAIL presentation. PMID:24766622

Seifert, Oliver; Pollak, Nadine; Nusser, Anja; Steiniger, Frank; Rüger, Ronny; Pfizenmaier, Klaus; Kontermann, Roland E

2014-05-21

375

Targeted Gene Delivery to Vascular Tissue In Vivo by Tropism-Modified Adeno-Associated Virus Vectors  

Microsoft Academic Search

Background—Gene therapy offers an unprecedented opportunity to treat diverse pathologies. Adeno-associated virus (AAV) is a promising gene delivery vector for cardiovascular disease. However, AAV transduces the liver after systemic administration, reducing its usefulness for therapies targeted at other sites. Because vascular endothelial cells (ECs) are in contact with the bloodstream and are heterogeneous between organs, they represent an ideal target

Stephen J. White; Stuart A. Nicklin; Hildegard Büning; M. Julia Brosnan; Kristen Leike; Emmanuel D. Papadakis; Michael Hallek; Andrew H. Baker

2009-01-01

376

Peptides for Specific Intracellular Delivery and Targeting of Nanoparticles: Implications for Developing Nanoparticle-Mediated Drug Delivery.  

National Technical Information Service (NTIS)

The use of peptides to mediate the delivery and uptake of nanoparticle (NP) materials by mammalian cells has grown significantly over the past 10 years. This area of research has important implications for the development of new therapeutic materials and ...

C. E. Bradburne J. B. Delehanty J. E. Bongard K. Boeneman K. Robertson

2010-01-01

377

Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide  

PubMed Central

Although numerous carbohydrates play significant roles in mammalian cells, carbohydrate-based drug discovery has not been explored due to the technical difficulty of chemically synthesizing complex carbohydrate structures. Previously, we identified a series of carbohydrate mimetic peptides and found that a 7-mer peptide, designated I-peptide, inhibits hematogenous carbohydrate-dependent cancer cell colonization. During analysis of the endothelial surface receptor for I-peptide, we found that I-peptide bound to annexin 1 (Anxa1). Because Anxa1 is a highly specific tumor vasculature surface marker, we hypothesized that an I-peptide-like peptide could target anticancer drugs to the tumor vasculature. This study identifies IFLLWQR peptide, designated IF7, as homing to tumors. When synthetic IF7 peptide was conjugated to fluorescent Alexa 488 (A488) and injected intravenously into tumor-bearing mice, IF7-A488 targeted tumors within minutes. IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying human colon HCT116 tumors efficiently suppressed tumor growth at low dosages with no apparent side effects. These results suggest that IF7 serves as an efficient drug delivery vehicle by targeting Anxa1 expressed on the surface of tumor vasculature. Given its extremely specific tumor-targeting activity, IF7 may represent a clinically relevant vehicle for anticancer drugs.

Hatakeyama, Shingo; Sugihara, Kazuhiro; Shibata, Toshiaki K.; Nakayama, Jun; Akama, Tomoya O.; Tamura, Naoaki; Wong, Shuk-Man; Bobkov, Andrey A.; Takano, Yutaka; Ohyama, Chikara; Fukuda, Minoru; Fukuda, Michiko N.

2011-01-01

378

Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs.  

PubMed

It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pluronic(®) polymers have been herein explored. Four different dendritic derivatives have been tested for their capacity to encapsulate the antimalarial drugs chloroquine (CQ) and primaquine (PQ), their specific targeting to Plasmodium-infected red blood cells (pRBCs), and their antimalarial activity in vitro against the human pathogen Plasmodium falciparum and in vivo against the rodent malaria species Plasmodium yoelii. The results obtained have allowed the identification of two dendritic derivatives exhibiting specific targeting to pRBCs vs. non-infected RBCs, which reduce the in vitro IC50 of CQ and PQ by ca. 3- and 4-fold down to 4.0 nm and 1.1 ?m, respectively. This work on the application of dendritic derivatives to antimalarial targeted drug delivery opens the way for the use of this new type of chemicals in future malaria eradication programs. PMID:24930847

Movellan, Julie; Urbán, Patricia; Moles, Ernest; de la Fuente, Jesús M; Sierra, Teresa; Serrano, José Luis; Fernàndez-Busquets, Xavier

2014-09-01

379

A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery.  

PubMed

A novel pH- and redox- dual-responsive tumor-triggered targeting mesoporous silica nanoparticle (TTTMSN) is designed as a drug carrier. The peptide RGDFFFFC is anchored on the surface of mesoporous silica nanoparticles via disulfide bonds, which are redox-responsive, as a gatekeeper as well as a tumor-targeting ligand. PEGylated technology is employed to protect the anchored peptide ligands. The peptide and monomethoxypolyethylene glycol (MPEG) with benzoic-imine bond, which is pH-sensitive, are then connected via "click" chemistry to obtain TTTMSN. In vitro cell research demonstrates that the targeting property of TTTMSN is switched off in normal tissues with neutral pH condition, and switched on in tumor tissues with acidic pH condition after removing the MPEG segment by hydrolysis of benzoic-imine bond under acidic conditions. After deshielding of the MPEG segment, the drug-loaded nanoparticles are easily taken up by tumor cells due to the exposed peptide targeting ligand, and subsequently the redox signal glutathione in tumor cells induces rapid drug release intracellularly after the cleavage of disulfide bond. This novel intelligent TTTMSN drug delivery system has great potential for cancer therapy. PMID:24106109

Xiao, Dong; Jia, Hui-Zhen; Zhang, Jing; Liu, Chen-Wei; Zhuo, Ren-Xi; Zhang, Xian-Zheng

2014-02-12

380

Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system  

PubMed Central

Background Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. Methods A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. Results Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependant binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. Conclusion These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.

2011-01-01