Science.gov

Sample records for targeted paclitaxel delivery

  1. Functionalized nanospheres for targeted delivery of paclitaxel.

    PubMed

    Bushman, Jared; Vaughan, Asa; Sheihet, Larisa; Zhang, Zheng; Costache, Marius; Kohn, Joachim

    2013-11-10

    Targeted delivery of anti-cancer agents to cancer cells is a mature line of investigation that has yet to realize its full potential. In this study we report on the development of a delivery platform with the future goal of merging two thus far parallel methods for selective elimination of cancer cells: targeted nanospheres and pretargeted radioimmunotherapy. Several clinical trials have shown the promise of pretargeted radioimmunotherapy, which leverages the specificity of antibodies for targeted cell populations and delivers a localized dose of a biotinylated radionuclide that is most often administered following binding of a biotinylated antibody and streptavidin (StA) to the target cells. The work presented here describes the development of biotinylated nanospheres based on an ABA-type copolymer comprised of a tyrosine-derived oligomer as the B-block and poly(ethylene glycol) (PEG) A-blocks. The biotinylated nanospheres encapsulate paclitaxel (PTX) to the same extent as unbiotinylated nanospheres. Efficacy of targeting was shown on CD44 positive cells in the SUM159 breast cancer cell line by incubating the cells sequentially with a biotinylated anti-CD44 antibody, StA and the biotinylated nanospheres encapsulating PTX. Targeted nanospheres achieved the half maximal inhibitory concentration of PTX on SUM159 cells at a 5-10 fold lower concentration than that of PTX applied in either non-targeted nanospheres or free drug approaches. Moreover, targeted nanospheres selectively eliminated CD44 positive SUM159 cells compared to free PTX and untargeted nanospheres. This new generation of nano-sized carrier offers a versatile platform that can be adopted for a wide variety of drug and target specific applications and has the potential to be combined with the clinically emerging method of pretargeted radioimmunotherapy. PMID:23792807

  2. Targeted Delivery of Paclitaxel to EphA2-Expressing Cancer Cells

    PubMed Central

    Wang, Si; Noberini, Roberta; Stebbins, John L.; Das, Swadesh; Zhang, Ziming; Wu, Bainan; Mitra, Sayantan; Billet, Sandrine; Fernandez, Ana; Bhowmick, Neil A.; Kitada, Shinichi; Pasquale, Elena B.; Fisher, Paul B.; Pellecchia, Maurizio

    2012-01-01

    Purpose YSA is an EphA2-targeting peptide that effectively delivers anti-cancer agents to prostate cancer tumors (1). Here, we report on how we increased the drug-like properties of this delivery system. Experimental Design By introducing non-natural amino acids, we have designed two new EphA2 targeting peptides: YNH, where norleucine and homoserine replace the two methionine residues of YSA, and dYNH, where a D-tyrosine replaces the L-tyrosine at the first position of the YNH peptide. We describe the details of the synthesis of YNH and dYNH paclitaxel conjugates (YNH-PTX and dYNH-PTX) and their characterization in cells and in vivo. Results dYNH-PTX showed improved stability in mouse serum and significantly reduced tumor size in a prostate cancer xenograft model and also reduced tumor vasculature in a syngeneic orthotopic allograft mouse model of renal cancer compared to vehicle or paclitaxel treatments. Conclusion This study reveals that targeting EphA2 with dYNH drug conjugates could represent an effective way to deliver anti-cancer agents to a variety of tumor types. Translational Relevance Overexpression of the EphA2 positively correlates with tumor malignancy and poor prognosis. For this reason, EphA2 is an attractive target for cancer cell specific drug delivery. In this study, we report on the development of dYNH, an EphA2 targeting peptide that when coupled to paclitaxel (PTX) has favorable pharmacological properties and possesses powerful anti-tumor activity in vivo. dYNH-PTX may allow for an expanded therapeutic index of paclitaxel as well as precluding the need for complex formulations and long infusion times. PMID:23155185

  3. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors.

    PubMed

    Wang, Xu; Li, Jun; Wang, Yiqing; Cho, Kwang Jae; Kim, Gloria; Gjyrezi, Ada; Koenig, Lydia; Giannakakou, Paraskevi; Shin, Hyung Ju C; Tighiouart, Mourad; Nie, Shuming; Chen, Zhuo Georgia; Shin, Dong M

    2009-10-27

    Nonspecific distribution of chemotherapeutic drugs (such as paclitaxel) is a major factor contributing to side effects and poor clinical outcomes in the treatment of human head and neck cancer. To develop novel drug delivery systems with enhanced efficacy and minimized adverse effects, we synthesized a ternary conjugate heparin-folic acid-paclitaxel (HFT), loaded with additional paclitaxel (T). The resulting nanoparticle, HFT-T, is expected to retain the antitumor activity of paclitaxel and specifically target folate receptor (FR)-expressing tumors, thereby increasing the bioavailability and efficacy of paclitaxel. In vitro experiments found that HFT-T selectively recognizes FR-positive human head and neck cancer cell line KB-3-1, displaying higher cytotoxicity compared to the free form of paclitaxel. In a subcutaneous KB-3-1 xenograft model, HFT-T administration enhanced the specific delivery of paclitaxel into tumor tissues and remarkably improved antitumor efficacy of paclitaxel. The average tumor volume in the HFT-T treatment group was 92.9 +/- 78.2 mm(3) vs 1670.3 +/- 286.1 mm(3) in the mice treated with free paclitaxel. Furthermore, paclitaxel tumors showed a resurgence of growth after several weeks of treatment, but this was not observed with HFT-T. This indicates that HFT-T could be more effective in preventing tumors from developing drug resistance. No significant acute in vivo toxicity was observed. These results indicate that specific delivery of paclitaxel with a ternary structured nanoparticle (HFT-T) targeting FR-positive tumor is a promising strategy to enhance chemotherapy efficacy and minimize adverse effects. PMID:19761191

  4. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    NASA Astrophysics Data System (ADS)

    Li, Yuanpei; Pan, Shirong; Zhang, Wei; Du, Zhuo

    2009-02-01

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(γ-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 °C) and that used in local hyperthermia (about 43 °C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 °C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  5. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.

    PubMed

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6±0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC50) of 4.9±0.9, 7.4±0.5 and 32.8±3.8nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. PMID:26952466

  6. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    PubMed Central

    Zhang, Linhua; Zhu, Dunwan; Dong, Xia; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2015-01-01

    The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy. PMID:25844039

  7. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.

    PubMed

    Zhang, Linhua; Zhu, Dunwan; Dong, Xia; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2015-01-01

    The purpose of this study was to develop a novel lipid-polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol(®), but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol(®). More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy. PMID:25844039

  8. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells.

    PubMed

    Mu, Qingxin; Kievit, Forrest M; Kant, Rajeev J; Lin, Guanyou; Jeon, Mike; Zhang, Miqin

    2015-11-21

    Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (∼30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular targeting and selective killing in human HER2/neu-positive breast cancer cells. PMID:26469772

  9. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mu, Qingxin; Kievit, Forrest M.; Kant, Rajeev J.; Lin, Guanyou; Jeon, Mike; Zhang, Miqin

    2015-10-01

    Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular targeting and selective killing in human HER2/neu-positive breast cancer cells.Nanoparticles (NPs) for targeted therapy are required to have appropriate size, stability, drug loading and release profiles, and efficient targeting ligands. However, many of the existing NPs such as albumin, liposomes, polymers, gold NPs, etc. encounter size limit, toxicity and stability issues when loaded with drugs, fluorophores, and targeting ligands. Furthermore, antibodies are bulky and this can greatly affect the physicochemical properties of the NPs, whereas many small molecule-based targeting ligands lack specificity. Here, we report the utilization of biocompatible, biodegradable, small (~30 nm) and stable iron oxide NPs (IONPs) for targeted delivery of paclitaxel (PTX) to HER2/neu positive breast cancer cells using an anti-HER2/neu peptide (AHNP) targeting ligand. We demonstrate the uniform size and high stability of these NPs in biological medium, their effective tumour targeting in live mice, as well as their efficient cellular targeting and selective killing in human HER2/neu-positive breast cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04867b

  10. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  11. Colocalized Delivery of Rapamycin and Paclitaxel to Tumors Enhances Synergistic Targeting of the PI3K/Akt/mTOR Pathway

    PubMed Central

    Blanco, Elvin; Sangai, Takafumi; Wu, Suhong; Hsiao, Angela; Ruiz-Esparza, Guillermo U; Gonzalez-Delgado, Carlos A; Cara, Francisca E; Granados-Principal, Sergio; Evans, Kurt W; Akcakanat, Argun; Wang, Ying; Do, Kim-Anh; Meric-Bernstam, Funda; Ferrari, Mauro

    2014-01-01

    Ongoing clinical trials target the aberrant PI3K/Akt/mammalian target of rapamycin (mTOR) pathway in breast cancer through administration of rapamycin, an allosteric mTOR inhibitor, in combination with paclitaxel. However, synergy may not be fully exploited clinically because of distinct pharmacokinetic parameters of drugs. This study explores the synergistic potential of site-specific, colocalized delivery of rapamycin and paclitaxel through nanoparticle incorporation. Nanoparticle drug loading was accurately controlled, and synergistic drug ratios established in vitro. Precise drug ratios were maintained in tumors 48 hours after nanoparticle administration to mice, at levels twofold greater than liver and spleen, yielding superior antitumor activity compared to controls. Simultaneous and preferential in vivo delivery of rapamycin and paclitaxel to tumors yielded mechanistic insights into synergy involving suppression of feedback loop Akt phosphorylation and its downstream targets. Findings demonstrate that a same time, same place, and specific amount approach to combination chemotherapy by means of nanoparticle delivery has the potential to successfully translate in vitro synergistic findings in vivo. Predictive in vitro models can be used to determine optimum drug ratios for antitumor efficacy, while nanoparticle delivery of combination chemotherapies in preclinical animal models may lead to enhanced understanding of mechanisms of synergy, ultimately opening several avenues for personalized therapy. PMID:24569835

  12. Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel

    PubMed Central

    Naderi, Naghmeh; Madani, Seyed Y.; Mosahebi, Afshin; Seifalian, Alexander M.

    2015-01-01

    Background Carbon nanotubes (CNTs) have unique physical and chemical properties. Furthermore, novel properties can be developed by attachment or encapsulation of functional groups. These unique properties facilitate the use of CNTs in drug delivery. We developed a new nanomedicine consisting of a nanocarrier, cell-targeting molecule, and chemotherapeutic drug and assessed its efficacy in vitro. Methods The efficacy of a single-walled carbon nanotubes (SWCNTs)-based nanoconjugate system is assessed in the targeted delivery of paclitaxel (PTX) to cancer cells. SWCNTs were oxidized and reacted with octa-ammonium polyhedral oligomeric silsesquioxanes (octa-ammonium POSS) to render them biocompatible and water dispersable. The functionalized SWCNTs were loaded with PTX, a chemotherapeutic agent toxic to cancer cells, and Tn218 antibodies for cancer cell targeting. The nanohybrid composites were characterized with transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and ultraviolet–visible–near-infrared (UV–Vis–NIR). Additionally, their cytotoxic effects on Colon cancer cell (HT-29) and Breast cancer cell (MCF-7) lines were assessed in vitro. Results TEM, FTIR, and UV–Vis–NIR studies confirmed side-wall functionalization of SWCNT with COOH-groups, PTX, POSS, and antibodies. Increased cell death was observed with PTX–POSS–SWCNT, PTX–POSS–Ab–SWCNT, and free PTX compared to functionalized-SWCNT (f-SWCNT), POSS–SWCNT, and cell-only controls at 48 and 72 h time intervals in both cell lines. At all time intervals, there was no significant cell death in the POSS–SWCNT samples compared to cell-only controls. Conclusion The PTX-based nanocomposites were shown to be as cytotoxic as free PTX. This important finding indicates successful release of PTX from the nanocomposites and further reiterates the potential of SWCNTs to deliver drugs directly to targeted cells and tissues. PMID:26356347

  13. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Gholami, Mehdi; Dehghankelishadi, Pouya; Mahdavi, Mehdi; Azami, Samira; Dorkoosh, Farid A

    2016-05-10

    Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy. PMID:26968799

  14. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel

    PubMed Central

    Harisa, Gamaleldin I.; Ibrahim, Mohamed F.; Alanazi, Fars; Shazly, Gamal A.

    2013-01-01

    Paclitaxel (PTX) is formulated in a mixture of Cremophor EL and dehydrated alcohol. The intravenous administration of this formula is associated with a risk of infection and hypersensitivity reactions. The presence of Cremophor EL as a pharmaceutical vehicle contributes to these effects. Therefore, in this study, we used human erythrocytes, instead of Cremophor, as a pharmaceutical vehicle. PTX was loaded into erythrocytes using the preswelling method. Analysis of the obtained data indicates that 148.8?g of PTX was loaded/mL erythrocytes, with an entrapment efficiency of 46.36% and a cell recovery of 75.94%. Furthermore, we observed a significant increase in the mean cell volume values of the erythrocytes, whereas both the mean cell hemoglobin and the mean cell hemoglobin concentration decreased following the loading of PTX. The turbulence fragility index values for unloaded, sham-loaded and PTX-loaded erythrocytes were 3, 2, and 1h, respectively. Additionally, the erythrocyte glutathione level decreased after PTX loading, whereas lipid peroxidation and protein oxidation increased. The release of PTX from loaded erythrocytes followed first-order kinetics, and about 81% of the loaded drug was released into the plasma after 48h. The results of the present study revealed that PTX was loaded successfully into human erythrocytes with acceptable loading parameters and with some oxidative modification to the erythrocytes. PMID:25061408

  15. Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes

    PubMed Central

    Gross, Nikolai; Ranjbar, Mahdy; Evers, Charlotte; Hua, Jing; Martin, Gottfried; Schulze, Brita; Michaelis, Uwe; Hansen, Lutz L.

    2013-01-01

    Purpose Intravitreal antivascular endothelial growth factor (anti-VEGF) application has revolutionized the treatment of choroidal neovascularization (CNV), a hallmark of wet age-related macular degeneration. However, additional treatment options are desirable as not all CNV lesions respond to anti-VEGF injections. Here, we assessed the feasibility of targeted delivery of cationic liposome-encapsulated paclitaxel (EndoTAG-1) in treating CNV. Furthermore, we investigated whether a new formulation of verteporfin encapsulated in cationic liposomes (CL-VTP) enhances the effect of photodynamic therapy (PDT). Methods EndoTAG-1, LipoSPA, and CL-VTP were produced by encapsulating paclitaxel, succinyl-paclitaxel, or verteporfin in cationic liposomes (CL). Mice underwent argon laser coagulations at day 0 (D0) to induce CNV. EndoTAG-1 and LipoSPA were injected into the tail vein at D1, D3, D5, D7, and D9. Taxol, CL, or trehalose buffer alone was injected in control animals. At D10, all animals were perfused with fluorescein isothiocyanate (FITC)-dextran. Flatmounts comprising the retinal pigment epithelium, choroid, and sclera were prepared for quantifying the CNV by measuring the area of lesions perfused with FITC-dextran. For PDT, mice received an injection with CL-VTP or Visudyne at D10. One eye was treated with PDT while the other served as a control. Evaluation of RPE-choroid-scleral and retinal flatmounts was performed at D12, D14, or D17. Perfusion with FITC-dextran and tetramethylrhodamine-5-(and 6)-isothiocyanate-lectin staining was used to distinguish between perfused and non-perfused choroidal vessels. Results EndoTAG-1 or LipoSPA significantly reduced CNV size to 15% compared to trehalose controls. The mean CNV area of mice treated with CL was reduced (though not significantly) to about one-half of the value of the trehalose control group. The same was observed for paclitaxel. Thus, the reduction in the CNV size between treatment with CL and treatment with EndoTAG-1 or LipoSPA was 40%, which was not significant. PDT using either CL-VTP or Visudyne reduced CNV size to 65% (D17) of trehalose control size. CNV size was further diminished to 56% with Visudyne and 53% with CL-VTP when PDT was repeated twice. Most importantly, PDT-associated retinal damage was less pronounced using CL-VTP compared to Visudyne. Conclusions Systemic intravenous injection of paclitaxel (EndoTAG-1)- or succinyl-paclitaxel (LipoSPA)-loaded CL had a significant antiangiogenic effect in a CNV mouse model. PDT with CL-VTP was as effective as Visudyne in neovascular obliteration but induced less tissue damage. Our data suggest that systemic application of cationic liposome formulations may serve to treat ocular neovascular diseases. This approach may reduce the need for intraocular injections and may benefit patients with neovascular lesions irresponsive to anti-VEGF treatment. PMID:23335851

  16. Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel

    PubMed Central

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  17. Enabling anticancer therapeutics by nanoparticle carriers: the delivery of Paclitaxel.

    PubMed

    Liu, Yongjin; Zhang, Bin; Yan, Bing

    2011-01-01

    Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional therapeutic and imaging functions. This review takes paclitaxel as an example and compares different nanoparticle-based delivery systems for their effectiveness in cancer chemotherapy. PMID:21845085

  18. Stabilized micelles as delivery vehicles for paclitaxel.

    PubMed

    Yoncheva, Krassimira; Calleja, Patricia; Agüeros, Maite; Petrov, Petar; Miladinova, Ivanka; Tsvetanov, Christo; Irache, Juan M

    2012-10-15

    Paclitaxel is an antineoplastic drug used against a variety of tumors, but its low aqueous solubility and active removal caused by P-glycoprotein in the intestinal cells hinder its oral administration. In our study, new type of stabilized Pluronic micelles were developed and evaluated as carriers for paclitaxel delivery via oral or intravenous route. The pre-stabilized micelles were loaded with paclitaxel by simple solvent/evaporation technique achieving high encapsulation efficiency of approximately 70%. Gastrointestinal transit of the developed micelles was evaluated by oral administration of rhodamine-labeled micelles in rats. Our results showed prolonged gastrointestinal residence of the marker encapsulated into micelles, compared to a solution containing free marker. Further, the oral administration of micelles in mice showed high area under curve of micellar paclitaxel (similar to the area of i.v. Taxol(®)), longer mean residence time (9-times longer than i.v. Taxol(®)) and high distribution volume (2-fold higher than i.v. Taxol(®)) indicating an efficient oral absorption of paclitaxel delivered by micelles. Intravenous administration of micelles also showed a significant improvement of pharmacokinetic parameters of micellar paclitaxel vs. Taxol(®), in particular higher area under curve (1.2-fold), 5-times longer mean residence time and lower clearance, indicating longer systemic circulation of the micelles. PMID:22721848

  19. Paclitaxel Nano-Delivery Systems: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  20. The use of α-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to α7 nAChR-overexpressing breast cancer.

    PubMed

    Mei, Dong; Lin, Zhiqiang; Fu, Jijun; He, Bing; Gao, Wei; Ma, Ling; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Lu, Wanliang; Zhou, Demin; Zhang, Qiang

    2015-02-01

    Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a ligand-gated ion channel, is increasingly emerging as a new tumor target owing to its expression specificity and significancy for cancer. In an attempt to increase the targeted drug delivery to the α7 nAChR-overexpressing tumors, herein, α-conotoxin ImI, a disulfide-rich toxin with highly affinity for α7 nAChR, was modified on the PEG-DSPE micelles (ImI-PMs) for the first time. The DLS, TEM and HPLC detections showed the spherical nanoparticle morphology about 20 nm with negative charge and high drug encapsulation. The ligand modification did not induce significant differences. The immunofluorescence assay confirmed the expression level of α7 nAChR in MCF-7 cells. In vitro and in vivo experiments demonstrated that the α7 nAChR-targeted nanomedicines could deliver more specifically and faster into α7 nAChR-overexpressing MCF-7 cells. Furthermore, fluo-3/AM fluorescence imaging technique indicated that the increased specificity was attributed to the ligand-receptor interaction, and the inducitivity for intracellular Ca(2+) transient by ImI was still remained after modification. Moreover, paclitaxel, a clinical frequently-used anti-tumor drug for breast cancer, was loaded in ImI-modified nanomedicines to evaluate the targeting efficacy. Besides of exhibiting greater cytotoxicity and inducing more cell apoptosis in vitro, paclitaxel-loaded ImI-PMs displayed stronger anti-tumor efficacy in MCF-7 tumor-bearing nu/nu mice. Finally, the active targeting system showed low systemic toxicity and myelosuppression evidenced by less changes in body weight, white blood cells, neutrophilic granulocyte and platelet counts. In conclusion, α7 nAChR is also a promising target for anti-tumor drug delivery and in this case, α-conotoxin ImI-modified nanocarrier is a potential delivery system for targeting α7 nAChR-overexpressing tumors. PMID:25542793

  1. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel.

    PubMed

    Yin, Tingjie; Cai, Han; Liu, Jiyong; Cui, Bei; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2016-02-15

    Since its approval by the FDA, Abraxane™ has been established as a clinical standard of paclitaxel (PTX)-based therapy against a variety of cancers. Despite success, Abraxane™ is still limited by suboptimal biodistribution, unfavorable pharmacokinetics and chronic toxicities from chloroform used during preparation. Accordingly, a PTX-loaded nanosuspension based on human serum albumin (HSA) with PEG modifiers (PTX-PEG-HSA) has been developed to optimize the in-vivo biodistribution, pharmacokinetics and safety of PTX over traditional PTX-HSA nanosuspensions prepared using the accepted method for Abraxane™. Results of in-vivo pharmacokinetic (PK) studies indicated PTX-PEG-HSA achieved prolonged blood circulation, illustrated by an 8.8-fold and 4.8-fold increase in area-under-the-curve (AUC) of PTX over Taxol® and PTX-HSA, while the mean residence time (MRT) of PTX in PTX-PEG-HSA was increased by 3.2-fold and 1.5-fold, respectively. HSA mediated active targeting further suppressed non-specific distribution of PTX to normal tissues, which permitted enhanced antitumor efficacy in S180 mice over Taxol® and PTX-HSA. Safety of intravenously administered PTX-PEG-HSA was confirmed through lower hemolytic activity, a 2.2-fold and 1.2-fold increase in LD50 (113.4mg/kg) over Taxol® and PTX-HSA alongside the absence of local venous irritation. Studies herein suggest the therapeutic and clinical applicability of PTX-PEG-HSA for tumor specific therapy. PMID:26699227

  2. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan–folic acid micelles

    PubMed Central

    Wang, Feihu; Chen, Yuxuan; Zhang, Dianrui; Zhang, Qiang; Zheng, Dandan; Hao, Leilei; Liu, Yue; Duan, Cunxian; Jia, Lejiao; Liu, Guangpu

    2012-01-01

    Background A critical disadvantage for successful chemotherapy with paclitaxel (PTX) is its nontargeting nature to cancer cells. Folic acid has been employed as a targeting ligand of various anticancer agents to increase their cellular uptake within target cells since the folate receptor is overexpressed on the surface of such tumor cells. In this study, a novel biodegradable deoxycholic acid-O-carboxymethylated chitosan–folic acid conjugate (DOMC-FA) was used to form micelles for encapsulating the anticancer drug PTX. Methods and results The drug-loading efficiency, encapsulation efficiency, in vitro drug release and physicochemical properties of PTX-loaded micelles were investigated in detail. In vitro cell culture studies were carried out in MCF-7 cells, a human breast carcinoma cell line, with folate receptor overexpressed on its surface. An increased level of uptake of folate-conjugated micelles compared to plain micelles in MCF-7 cells was observed, and the enhanced uptake of folate-micelles mainly on account of the effective process of folate receptor-mediated endocytosis. The MTT assay, morphological changes, and apoptosis test implied that the folate-conjugated micelles enhanced the cell death by folate-mediated active internalization, and the cytotoxicity of the FA-micellar PTX (DOMC-FA/PTX) to cancer cells was much higher than micelles without folate (DOMC/PTX) or the commercially available injectable preparation of PTX (Taxol). Conclusion Results indicate that the PTX-loaded DOMC-FA micelle is a successful anticancertargeted drug-delivery system for effective cancer chemotherapy. PMID:22287842

  3. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system.

    PubMed

    Jeon, Hyeonjeong; Kim, Jihoon; Lee, Yeong Mi; Kim, Jinhwan; Choi, Hyung Woo; Lee, Junseok; Park, Hyeongmok; Kang, Youngnam; Kim, In-San; Lee, Byung-Heon; Hoffman, Allan S; Kim, Won Jong

    2016-06-10

    This work demonstrates the development of magnetically guided drug delivery systems and its potential on efficient anticancer therapy. The magnetically guided drug delivery system was successfully developed by utilizing superparamagnetic iron oxide nanoparticle, β-cyclodextrin, and polymerized paclitaxel. Multivalent host-guest interactions between β-cyclodextrin-conjugated superparamagnetic iron oxide nanoparticle and polymerized paclitaxel allowed to load the paclitaxel and the nanoparticle into the nano-assembly. Clusterized superparamagnetic iron oxide nanoparticles in the nano-assembly permitted the rapid and efficient targeted drug delivery. Compared to the control groups, the developed nano-assembly showed the enhanced anticancer effects in vivo as well as in vitro. Consequently, the strategy of the use of superparamagnetic nanoparticles and multivalent host-guest interactions has a promising potential for developing the efficient drug delivery systems. PMID:26780174

  4. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery

    PubMed Central

    Cochran, Michael C.; Eisenbrey, John; Ouma, Richard O.; Soulen, Michael; Wheatley, Margaret A.

    2011-01-01

    A polymer ultrasound contrast agent (UCA) developed in our lab has been shown to greatly reduce in size when exposed to ultrasound, resulting in nanoparticles less than 400 nm in diameter capable of escaping the leaky vasculature of a tumor to provide a sustained release of drug. Previous studies with the hydrophilic drug doxorubicin (DOX) demonstrated enhanced drug delivery to tumors when triggered with ultrasound. However the therapeutic potential has been limited due to the relatively low payload of DOX. This study compares the effects of loading the hydrophobic drug paclitaxel (PTX) on the agent’s acoustic properties, drug payload, tumoricidal activity, and the ability to deliver drugs through 400 nm pores. A maximum payload of 129.46 ± 1.80 μg PTX/mg UCA (encapsulation efficiency 71.92 ± 0.99 %) was achieved, 20 times greater than the maximum payload of DOX (6.2 μg/mg), while maintaining the acoustic properties. In vitro, the tumoricidal activity of paclitaxel loaded UCA exposed to ultrasound was significantly greater than controls not exposed to ultrasound (p<0.0016). This study has shown that PTX loaded UCA triggered with focused ultrasound have the potential to provide a targeted and sustained delivery of drug to tumors. PMID:21609756

  5. A mucoadhesive in situ gel delivery system for paclitaxel.

    PubMed

    Jauhari, Saurabh; Dash, Alekha K

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell. PMID:16796370

  6. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    PubMed

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p<0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. PMID:26272765

  7. Paclitaxel delivery to brain tumors from hydrogels: a computational study.

    PubMed

    Torres, Alexis J; Zhu, Charles; Shuler, Michael L; Pannullo, Susan

    2011-01-01

    Malignant gliomas are aggressive forms of primary brain tumors characterized by a poor prognosis. The most successful treatment so far is the local implantation of polymer carriers (Gliadel® wafers) for the sustained release of carmustine. To improve the effectiveness of local drug treatment, new polymer carriers and pharmacological agents are currently being investigated. Of particular interest is a set of novel thermo-gelling polymers for the controlled release of hydrophobic drugs such as paclitaxel (e.g., OncoGel™). Herein, we use computational mass transport simulations to investigate the effectiveness of paclitaxel delivery from hydrogel-forming polymer carriers. We found similar (within 1-2 mm) therapeutic penetration distances of paclitaxel when released from these hydrogels as compared with carmustine released from Gliadel® wafers. Effective therapeutic concentrations were maintained for >30 days for paclitaxel when released from the hydrogel as compared with 4 days for carmustine released from Gliadel® wafers. Convection in brain tissue prevented the formation of a uniform drug concentration gradient around the implant. In addition, the surface area to volume ratio of the gel is an important factor that should be considered to maintain a controlled release of paclitaxel within the degradation lifetime of the polymer matrix. PMID:21786432

  8. Targeted chemotherapy with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) in metastatic breast cancer: which benefit for which patients?

    PubMed Central

    Palumbo, Raffaella; Sottotetti, Federico; Bernardo, Antonio

    2016-01-01

    The therapeutic goals in metastatic breast cancer (MBC) remain palliative in nature, aimed at controlling symptoms, improving or maintaining quality of life and prolonging survival. The advent of new drugs and new formulations of standard agents has led to better outcomes in patients with advanced or metastatic disease. These developments have also allowed a tailored therapeutic approach, in which the molecular biology of the tumour, the treatment history, and patient attitudes are taken into account in the decision-making process. Targeting drug delivery to the tumour is a promising mean of increasing the therapeutic index of highly active agents such as the taxanes, and nanoparticle albumin-bound paclitaxel (nab-paclitaxel), the first nanotechnology-based drug developed in cancer treatment, is one such advance. Data from randomized trials support the efficacy of single-agent nab-paclitaxel as first-line and further treatment lines in MBC at the registered 3-weekly schedule of 260 mg/m2, but emerging evidence suggests its activity as a weekly regimen or combined with other agents in various clinical scenarios. Thus, nab-paclitaxel seems to offer flexibility in terms of dosing schedules, allowing physicians to tailor the dose according to different clinical situations. This paper reviews the clinical trial background for nab-paclitaxel in MBC, focusing on specific ‘difficult-to-treat’ patient populations, such as taxane-pretreated or elderly women, as well as those with triple-negative, HER2-positive and poor-prognostic-factors disease. Moving beyond evidence-based information, ‘real life’ available experiences are also discussed with the aim of providing an update for daily clinical practice.

  9. Designing Paclitaxel Drug Delivery Systems Aimed at Improved Patient Outcomes: Current Status and Challenges

    PubMed Central

    Surapaneni, Madhu S.; Das, Sudip K.; Das, Nandita G.

    2012-01-01

    Paclitaxel is one of the most widely used and effective antineoplastic agents derived from natural sources. It has a wide spectrum of antitumor activity, particularly against ovarian cancer, breast cancer, nonsmall cell lung cancer, head and neck tumors, Kaposi's sarcoma, and urologic malignancies. It is a highly lipophilic compound with a log P value of 3.96 and very poor aqueous solubility of less than 0.01 mg/mL. In addition, the compound lacks functional groups that are ionizable which could potentially lead to an increase in its solubility with the alteration in pH. Therefore, the delivery of paclitaxel is associated with substantial challenges. Until the introduction of Abraxane, only commercial formulation was solution of paclitaxel in cremophor, which caused severe side effects. However, in recent years, a number of approaches have been reported to solubilize paclitaxel using cosolvents and inclusion complexes. In addition, innovative approaches have been reported for passive targeting of tumors using nanoparticles, nanosuspensions, liposomes, emulsions, micelles, implants, pastes and gels. All approaches for delivery of improved therapeutic outcome have been discussed in this paper. PMID:22934190

  10. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer.

    PubMed

    Kala, Shashwati; Mak, Abby Sin Chi; Liu, Xiaoxuan; Posocco, Paola; Pricl, Sabrina; Peng, Ling; Wong, Alice Sze Tsai

    2014-03-27

    The recently discovered small interfering RNA (siRNA) holds great promise in cancer therapy. However, efficient and safe delivery systems are required for the development of new therapeutic paradigms. Ovarian cancer has the highest mortality of all gynecologic tumors, and there is an urgent need for specific and effective therapies. The phosphatidylinositol 3-kinase/Akt pathway, which is strongly implicated in the biology of ovarian cancer, constitutes an attractive therapeutic target. In this study, we describe a triethanolamine-core poly(amidoamine) dendrimer which forms stable nanoparticles with the Akt siRNA, protects siRNA against RNase digestion, and is highly effective for initiating Akt target-gene silencing both in vitro and in vivo, while being minimally toxic. Most importantly, it could potentiate the antitumor effect of the anticancer drug paclitaxel. These results represent the proof-of-concept, demonstrating that dendrimer-mediated Akt siRNA delivery, in combination with a chemotherapeutic regimen, may constitute a promising nanomedicine approach in cancer therapy. PMID:24592939

  11. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    NASA Astrophysics Data System (ADS)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to migrate up to 40 cm through lymphatic channels to local lymph nodes was demonstrated using near infrared imaging in a large animal model. Continued investigation of functional nanoparticles, like the system described here for lung and breast cancer, will facilitate the development of new materials that meet the varied and demanding needs in chemotherapy, and may afford new treatment options for the local and metastatic control of many forms of cancer.

  12. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma.

    PubMed

    Huang, YuKun; Liu, Wenchao; Gao, Feng; Fang, Xiaoling; Chen, Yanzuo

    2016-01-01

    Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood-brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood-brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood-brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma. PMID:27143884

  13. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma

    PubMed Central

    Huang, YuKun; Liu, Wenchao; Gao, Feng; Fang, Xiaoling; Chen, Yanzuo

    2016-01-01

    Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood–brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood–brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood–brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma. PMID:27143884

  14. Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel

    PubMed Central

    Hanaoka, Hirofumi; Nakajima, Takahito; Sato, Kazuhide; Watanabe, Rira; Phung, Yen; Gao, Wei; Harada, Toshiko; Kim, Insook; Paik, Chang H; Choyke, Peter L; Ho, Mitchell; Kobayashi, Hisataka

    2015-01-01

    Aim Effectiveness of Glypican-3 (GPC3)-targeted photoimmunotherapy (PIT) combined with the nanoparticle albumin-bound paclitaxel (nab-paclitaxel) for hepatocellular carcinoma was evaluated. Materials & methods GPC3 expressing A431/G1 cells were incubated with a phthalocyanine-derivative, IRDye700DX (IR700), conjugated to an anti-GPC3 antibody, IR700-YP7 and exposed to near-infrared light. Therapeutic experiments combining GPC3-targeted PIT with nab-paclitaxel were performed in A431/G1 tumor-bearing mice. Results IR700-YP7 bound to A431/G1 cells and induced rapid target-specific necrotic cell death by near-infrared light exposure in vitro. IR700-YP7 accumulated in A431/G1 tumors. Tumor growth was inhibited by PIT compared with nontreated control. Additionally, PIT dramatically increased nabpaclitaxel delivery and enhanced the therapeutic effect. Conclusion PIT targeting GPC3 combined with nab-paclitaxel is a promising method for treating hepatocellular carcinoma. PMID:25929570

  15. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Kai; Zheng, Wen-Wei; Wang, Chi-Ching; Chiu, Yu-Chung; Cheng, Chia-Liang; Lo, Yu-Shiu; Chen, Chinpiao; Chao, Jui-I.

    2010-08-01

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 µg ml - 1 ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  16. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    PubMed Central

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery. PMID:26759029

  17. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol.

    PubMed

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery. PMID:26759029

  18. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: Formulation development and in vitro anticancer activity.

    PubMed

    Pulkkinen, Mika; Pikkarainen, Jere; Wirth, Thomas; Tarvainen, Tommy; Haapa-aho, Vesa; Korhonen, Harri; Seppälä, Jukka; Järvinen, Kristiina

    2008-09-01

    Despite recent advances in cancer therapy, many malignant tumors still lack effective treatment and the prognosis is very poor. Paclitaxel is a potential anticancer drug, but its use is limited by the facts that paclitaxel is a P-gp substrate and its aqueous solubility is poor. In this study, three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology was evaluated in vitro as a way of enhancing delivery of paclitaxel. Paclitaxel was incorporated both in biotinylated (BP) and non-biotinylated (LP) PEG-PLA nanoparticles by the interfacial deposition method. Small (mean size approximately 110 nm), spherical and slightly negatively charged (-10 mV) BP and LP nanoparticles achieving over 90% paclitaxel incorporation were obtained. The successful biotinylation of nanoparticles was confirmed in a novel streptavidin assay. BP nanoparticles were targeted in vitro to brain tumor (glioma) cells (BT4C) by three-step avidin-biotin technology using transferrin as the targeting ligand. The three-step targeting procedure increased the anti-tumoral activity of paclitaxel when compared to the commercial paclitaxel formulation Taxol and non-targeted BP and LP nanoparticles. These results indicate that the efficacy of paclitaxel against tumor cells can be increased by this three-step targeting method. PMID:18555675

  19. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2

    PubMed Central

    Régina, A; Demeule, M; Ché, C; Lavallée, I; Poirier, J; Gabathuler, R; Béliveau, R; Castaigne, J-P

    2008-01-01

    Background and purpose: Paclitaxel is highly efficacious in the treatment of breast, head and neck, non-small cell lung cancers and ovarian carcinoma. For malignant gliomas, paclitaxel is prevented from reaching its target by the presence of the efflux pump P-glycoprotein (P-gp) at the blood–brain barrier. We investigated the utilization of a new drug delivery system to increase brain delivery of paclitaxel. Experimental approach: Paclitaxel molecules were conjugated to a brain peptide vector, Angiopep-2, to provide a paclitaxel–Angiopep-2 conjugate named ANG1005. We determined the brain uptake capacity, intracellular effects and antitumour properties of ANG1005 in vitro against human tumour cell lines and in vivo in human xenografts. We then determined ANG1005 activity on brain tumours with intracerebral human tumour models in nude mice. Key results: We show by in situ brain perfusion that ANG1005 enters the brain to a greater extent than paclitaxel and bypasses the P-gp. ANG1005 has an antineoplastic potency similar to that of paclitaxel against human cancer cell lines. We also demonstrate that ANG1005 caused a more potent inhibition of human tumour xenografts than paclitaxel. Finally, ANG1005 administration led to a significant increase in the survival of mice with intracerebral implantation of U87 MG glioblastoma cells or NCI-H460 lung carcinoma cells. Conclusions and implications: These results demonstrate the antitumour potential of a new drug, ANG1005, and establish that conjugation of anticancer agents with the Angiopep-2 peptide vector could increase their efficacy in the treatment of brain cancer. PMID:18574456

  20. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice

    PubMed Central

    Neesse, Albrecht; Frese, Kristopher K; Chan, Derek S; Bapiro, Tashinga E; Howat, William J; Richards, Frances M; Ellenrieder, Volker; Jodrell, Duncan I; Tuveson, David A

    2014-01-01

    Design Pharmacokinetic and pharmacodynamic parameters of cremophor-paclitaxel, nab-paclitaxel (human-albumin-bound paclitaxel, Abraxane) and a novel mouse-albumin-bound paclitaxel (m-nab-paclitaxel) were evaluated in genetically engineered mouse models (GEMMs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), histological and biochemical analysis. Preclinical evaluation of m-nab-paclitaxel included assessment by three-dimensional high-resolution ultrasound and molecular analysis in a novel secreted protein acidic and rich in cysteine (SPARC)-deficient GEMM of pancreatic ductal adenocarcinoma (PDA). Results nab-Paclitaxel exerted its antitumoural effects in a dose-dependent manner and was associated with less toxicity compared with cremophor-paclitaxel. SPARC nullizygosity in a GEMM of PDA, KrasG12D;p53flox/−;p48Cre (KPfC), resulted in desmoplastic ductal pancreas tumours with impaired collagen maturation. Paclitaxel concentrations were significantly decreased in SPARC null plasma samples and tissues when administered as low-dose m-nab-paclitaxel. At the maximally tolerated dose, SPARC deficiency did not affect the intratumoural paclitaxel concentration, stromal deposition and the immediate therapeutic response. Conclusions nab-Paclitaxel accumulates and acts in a dose-dependent manner. The interaction of plasma SPARC and albumin-bound drugs is observed at low doses of nab-paclitaxel but is saturated at therapeutic doses in murine tumours. Thus, this study provides important information for future preclinical and clinical trials in PDA using nab-paclitaxel in combination with novel experimental and targeted agents. PMID:24067278

  1. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier.

    PubMed

    Xu, Zhiyuan; Zhu, Shaojia; Wang, Mingwei; Li, Yongjun; Shi, Ping; Huang, Xiaoyu

    2015-01-21

    Paclitaxel (PTX) is an extensively used potent chemotherapy drug; however, low water solubility, poor bioavailability, and emergence of drug resistance in patients limited its biological application. In this report, we proposed a new drug delivery system for cancer therapy based on graphene oxide (GO), a novel 2D nanomaterial obtained from the oxidation of natural graphite, to improve the utilization rate of PTX. PTX was first connected to biocompatible 6-armed poly(ethylene glycol), followed by covalent introduction into the surface of GO sheets via a facile amidation process under mild conditions, affording the drug delivery system, GO-PEG-PTX (size 50-200 nm). GO-PEG nanosized carrier could quickly enter into human lung cancer A549 and human breast cancer MCF-7 cells verified by inverted fluorescence microscope using fluorescein isothiocyanate as probe. This nanocarrier was nontoxic to A549 and MCF-7 cells without linking with PTX. Nevertheless, GO-PEG-PTX showed remarkably high cytotoxicity to A549 and MCF-7 cells in a broad range of concentration of PTX and time compared to free PTX. This kind of nanoscale drug delivery system based on PEGylated GO may find widespread application in biomedicine. PMID:25546399

  2. Polyelectrolyte multilayer nanoshells with hydrophobic nanodomains for delivery of Paclitaxel

    PubMed Central

    Jing, Jing; Guillot, Raphael; Paintrand, Isabelle; Auzely-Velty, Rachel; Picart, Catherine

    2014-01-01

    Efficient and effective delivery of poorly water-soluble drug molecules, which constitute a large part of commercially available drugs, is a major challenge in the field of drug delivery. Several drugs including paclitaxel (PTX) which are used for cancer treatment are hydrophobic, exhibit poor aqueous solubility and need to be delivered using an appropriate carrier. In the present work, we engineered Taxol-loaded polyelectrolyte films and microcapsules by pre-complexing PTX with chemically modified derivative of hyaluronic acid (alkylamino hydrazide) containing hydrophobic nanocavities, and subsequent assembly with either poly(L-lysine) (PLL) or quaternized chitosan (QCHI) as polycations. The PTX loading capacity of the films was found to be dependent on number of layers in the films as well as on the initial concentration of PTX pre-complexed to hydrophobic HA, with a loading capacity up to 5000-fold the initial PTX concentration. The films were stable in physiological medium and were degraded in the presence of hyaluronidase. The PTX-loaded microcapsules were found to decrease the viability and proliferation of MDA MB 231 breast cancer cells, while unloaded microcapsules did not impact cell viability. All together, our results highlight the potential of hyaluronan-based assemblies containing hydrophobic nanodomains for hydrophobic drug delivery. PMID:22300622

  3. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    PubMed

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37±10.45nm with excellent drug encapsulation efficiency (95.66±2.25%) and loading (8.69±0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. PMID:26792170

  4. Archaeosome: as new drug carrier for delivery of Paclitaxel to breast cancer.

    PubMed

    Alavi, Seyed Ebrahim; Mansouri, Hamidreza; Esfahani, Maedeh Koohi Moftakhari; Movahedi, Fatemeh; Akbarzadeh, Azim; Chiani, Mohsen

    2014-04-01

    In the present study, paclitaxel was archaeosomed to reduce side effects and improve its therapeutic index. Carriers have made a big evolution in treatment of many diseases in recent years. Lipid carriers are of special importance among carriers. Archaeosome is one of the lipid carriers. Paclitaxel is one of the drugs used to treat breast cancer which has some unwanted side effects despite its therapeutic effects. Archaeosomes were extracted from methanogenic archi bacteria and synthesized with a certain ratio of paclitaxel in PBS. The mean diameter of archaeosomal paclitaxel was measured by Zeta sizer instrument, Drug releasing of archaeosomal paclitaxel was examined within 26 h which results showed that the most drug releasing occurs during first 3 h. The cytotoxicity effect of archaeosomal paclitaxel on breast cancer's cell line was evaluated by MTT assay which results showed that the cytotoxicity effect of archaeosomal paclitaxel on breast cancer's cell line is more than that of the standard paclitaxel formulation. The results indicated that new drug delivery of paclitaxel using archaeosome, increases the therapeutic index of the drug. PMID:24757295

  5. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance.

    PubMed

    Khongkow, P; Gomes, A R; Gong, C; Man, E P S; Tsang, J W-H; Zhao, F; Monteiro, L J; Coombes, R C; Medema, R H; Khoo, U S; Lam, E W-F

    2016-02-25

    FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance. PMID:25961928

  6. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours.

    PubMed

    Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei

    2016-08-01

    It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors. PMID:26878228

  7. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    PubMed Central

    Mo, Jingxin; Eggers, Paul K.; Yuan, Zhi-xiang; Raston, Colin L.; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  8. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform.

    PubMed

    Mo, Jingxin; Eggers, Paul K; Yuan, Zhi-Xiang; Raston, Colin L; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  9. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors.

    PubMed

    Jiang, Xinyi; Sha, Xianyi; Xin, Hongliang; Chen, Liangcen; Gao, Xihui; Wang, Xiao; Law, Kitki; Gu, Jijin; Chen, Yanzuo; Jiang, Ye; Ren, Xiaoqing; Ren, Qiuyue; Fang, Xiaoling

    2011-12-01

    Cyclic RGD peptide-decorated polymeric micellar-like nanoparticles (MNP) based on PEGylated poly (trimethylene carbonate) (PEG-PTMC) were prepared for active targeting to integrin-rich cancer cells. An amphiphilic diblock copolymer, α-carboxyl poly (ethylene glycol)-poly (trimethylene carbonate) (HOOC-PEG-PTMC), was synthesized by ring-opening polymerization. The c(RGDyK) ligand, a cyclic RGD peptide that can bind to the integrin proteins predominantly expressed on the surface of tumor cells with high affinity and specificity, was conjugated to the NHS-Activated PEG terminus of the copolymer. The c(RGDyK)-functionalized PEG-PTMC micellar nanoparticles encapsulating PTX (c(RGDyK)-MNP/PTX) was fabricated by the emulsion/solvent evaporation technique and characterized in terms of morphology, size and zeta potential. Cellular uptake of c(RGDyK)-MNP/PTX was found to be higher than that of MNP/PTX due to the integrin protein-mediated endocytosis effect. In vitro cytotoxicity, cell apoptosis and cell cycle arrest studies also revealed that c(RGDyK)-MNP/PTX was more potent than those of MNP/PTX and Taxol. Pharmacokinetic study in rats demonstrated that the polymeric micellar nanoparticles significantly enhanced the bioavailability of PTX than Taxol. In vivo multispectral fluorescent imaging indicated that c(RGDyK)-MNP/PTX had high specificity and efficiency in tumor active targeting. Therefore, the results demonstrated that c(RGDyK)-decorated PEG-PTMC MNP developed in this study could be a potential vehicle for delivering hydrophobic chemotherapeutic agents to integrin-rich tumors. PMID:21911250

  10. Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug

    PubMed Central

    Brunetti, Jlenia; Pillozzi, Serena; Falciani, Chiara; Depau, Lorenzo; Tenori, Eleonora; Scali, Silvia; Lozzi, Luisa; Pini, Alessandro; Arcangeli, Annarosa; Menichetti, Stefano; Bracci, Luisa

    2015-01-01

    Taxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4). NT4 selectively targets tumor cells by binding to membrane sulfated glycosaminoglycans (GAG) and to endocytic receptors, like LRP1 and LRP6, which are established tumor markers. Biological activity of NT4-paclitaxel was tested in vitro on MDA-MB 231 and SKOV-3 cell lines, representing breast and ovarian cancer, respectively, and in vivo in an orthotopic mouse model of human breast cancer. Using in vivo bioluminescence imaging, we found that conjugation of paclitaxel with the NT4 peptide led to increased therapeutic activity of the drug in vivo. NT4-paclitaxel induced tumor regression, whereas treatment with unconjugated paclitaxel only produced a reduction in tumor growth. Moreover, unlike paclitaxel, NT4-paclitaxel is very hydrophilic, which may improve its pharmacokinetic profile and allow the use of less toxic dilution buffers, further decreasing its general chemotherapic toxicity. PMID:26626158

  11. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting.

    PubMed

    Szczepanowicz, Krzysztof; Bzowska, Monika; Kruk, Tomasz; Karabasz, Alicja; Bereta, Joanna; Warszynski, Piotr

    2016-07-01

    Targeted drug delivery systems are of special importance in cancer therapies, since serious side effects resulting from unspecific accumulation of highly toxic chemotherapeutics in healthy tissues can restrict effectiveness of the therapy. In this work we present the method of preparing biocompatible, polyelectrolyte nanoparticles containing the anticancer drug that may serve as a vehicle for passive tumor targeting. The nanoparticles were prepared via direct encapsulation of emulsion droplets in a polyelectrolyte multilayer shell. The oil cores that contained paclitaxel were stabilized by docusate sodium salt/poly-l-lysine surface complex (AOT/PLL) and were encapsulated in shells formed by the LbL adsorption of biocompatible polyelectrolytes, poly-L-glutamic acid (PGA) and PLL up to 5 or 6 layers. The surface of the nanoparticles was pegylated through the adsorption of the pegylated polyelectrolyte (PGA-g-PEG) as the outer layer to prolong the persistence of the nanocarriers in the circulation. The synthesized nanoparticles were stable in cell culture medium containing serum and their average size was 100nm, which makes them promising candidates for passive targeted drug delivery. This notion was further confirmed by the results of studying the biological effects of nanoformulations on two tumor cell lines: mouse colon carcinoma cell line CT26-CEA and the mouse mammary carcinoma cell line 4T1. The empty polyelectrolyte nanoparticles did not affect the viability of the tested cells, whereas encapsulated paclitaxel retained its strong cytotoxic/cytostatic activity. PMID:27037784

  12. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-10-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.

  13. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    PubMed Central

    2014-01-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery. PMID:24685243

  14. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth

    PubMed Central

    Yang, Ming; Yu, Tao; Wang, Ying-Ying; Lai, Samuel K.; Zeng, Qi; Miao, Bolong; Tang, Benjamin C.; Simons, Brian W.; Ensign, Laura; Liu, Guanshu; Chan, Kannie W. Y.; Juang, Chih-Yin; Mert, Olcay; Wood, Joseph; Fu, Jie; McMahon, Michael T.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early stage cervical cancer. We hypothesize drug-loaded nanoparticles must rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract to effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner. We develop paclitaxel-loaded nanoparticles, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. We further employ a mouse model with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles , or CP) and similar particles coated with Pluronic F127 (mucus-penetrating particles , or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared to free paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate for the first time the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface. PMID:24339398

  15. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery.

    PubMed

    Chu, Bingyang; Qu, Ying; Huang, Yixing; Zhang, Lan; Chen, Xiaoxin; Long, Chaofeng; He, Yunqi; Ou, Caiwen; Qian, Zhiyong

    2016-03-16

    In this study, PEG-derivatized octacosanol copolymer was successfully developed to improve the anti-tumor activity and eliminate toxicity of the commercial formulation of paclitaxel (PTX). MPEG2K-C28, the conjugation of monomethoxy Poly(ethylene glycol) 2000 and octacosanol, was readily soluble in aqueous solution and self-assembled to form micelles with small sizes (<20nm) that are efficient in encapsulating PTX with a drug loading of 9.38±0.18% and an encapsulation efficiency of 93.90±2.12%. Meanwhile, octacosanol is very safe for humans and amazingly exhibits antitumor activity through inhibition activity of matrix metalloproteinases (MMPs) and translocation of the transcription factor (nuclear factor-kappa B, NF-κB) to the nucleus, which may be able to promote synergistic effects with PTX. A sustained and slower in vitro release behavior was observed in the (PTX micelles) than that of Taxol. PTX micelles exhibited more potent cytotoxicity than Taxol in the 4T1 breast cancer cell line. More interestingly, MPEG2K-C28 selectively inhibited the growth of 4T1 cells rather than the normal cells (HEK293 and L929 cell lines), indicating the antitumor activity of octacosanol remained after conjugation with MPEG. Acute toxicity evaluations indicated that MPEG2K-C28 was a safe drug carrier. Pharmacokinetic study revealed that PTX micelles improved the T1/2 and AUC of PTX (compared with Taxol) from 1.910±0.139h and 13.999±1.109mg/l×h to 2.876±0.532h and 76.462±8.619mg/l×h in vivo, respectively. The maximal tolerated dose (MTD) for PTX micelles (ca. 120mg PTX/kg) in mice was significantly higher than that for Taxol (ca. 20mg PTX/kg). PTX micelles exhibited slightly better antitumor activity than Taxol but safer in 4T1 breast cancer model in vivo. The cell apoptosis in the immunofluorescent studies and the cell proliferation in the immunohistochemical studies also proved the results. In conclusion, MPEG2K-C28 is a simple, safe and effective drug delivery carrier for PTX, and has some therapeutic effects in 4T1 cells in vitro. PTX micelles showed significant antitumor activity in vivo with low systemic toxicity in 4T1 breast cancer. MPEG2K-C28 micelles entrapping PTX deserve more studies in the future. PMID:26794876

  16. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles.

    PubMed

    Thu, Ha Phuong; Nam, Nguyen Hoai; Quang, Bui Thuc; Son, Ho Anh; Toan, Nguyen Linh; Quang, Duong Tuan

    2015-11-01

    Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLA-TPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50 nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo. PMID:26702264

  17. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles. PMID:26695149

  18. Effect of integrin receptor-targeted liposomal paclitaxel for hepatocellular carcinoma targeting and therapy

    PubMed Central

    CHEN, LIYU; LIU, YANBIN; WANG, WEIYA; LIU, KAI

    2015-01-01

    The major aim of the present study was to develop an integrin receptor-targeted liposomal paclitaxel (PTX) to enhance the targeting specificity and therapeutic effect of PTX on hepatocellular carcinoma (HCC) cells. The specific Arg-Gly-Asp (RGD) ligand was conjugated to 1,2-distearoylphosphatidylethanolamine-polyethylene glycol 2000 to prepare the RGD-modified liposomes (RGD-LP). Furthermore, physicochemical characteristics of RGD-LP, including particle size, ζ potential, encapsulation efficiency and in vitro PTX release, were evaluated. RGD-modified liposomes were selected as the carrier for the present study, as they exhibit good biocompatibility and are easy to modify using RGD. The cellular uptake efficacy of RGD-LP by HepG2 cells was 3.3-fold higher than that of liposomes without RGD, indicating that RGD-LP may specifically target HepG2 cells by overexpressing integrin αvβ3 receptors. The RGD modification appeared to enhance the anti-proliferative activity of LP-PTX against HepG2 cells, with the extent of anti-proliferative activity dependent on the concentration of PTX and the incubation time. Additionally, evaluation of the homing specificity and anticancer efficacy of RGD-LP on the tumor spheroids indicated that solid tumor penetration was enhanced by the modification of RGD. In agreement with these in vitro findings, in vivo investigations demonstrated that RGD-LP-PTX exhibited a greater inhibitory effect on tumor growth in HepG2-bearing mice than LP-PTX or free PTX. Thus, RGD-LPs may represent an efficient targeted PTX delivery system for the treatment of patients with HCC. PMID:26170980

  19. Targeting of albumin-embedded paclitaxel nanoparticles to tumors

    PubMed Central

    Karmali, Priya Prakash; Kotamraju, Venkata Ramana; Kastantin, Mark; Black, Matthew; Missirlis, Dimitris; Tirrell, Matthew; Ruoslahti, Erkki

    2010-01-01

    We have used tumor-homing peptides to target abraxane, a clinically approved paclitaxel-albumin nanoparticle, to tumors in mice. The targeting was accomplished with two peptides, CREKA, and LyP-1 (CGQKRTRGC). Fluorescein (FAM)-labeled CREKA-abraxane, when injected intravenously into mice bearing MDA-MB-435 human cancer xenografts, accumulated in tumor blood vessels, forming aggregates that contained red blood cells and fibrin. FAM-LyP-1-abraxane co-localized with extravascular islands expressing its receptor, p32. Self-assembled mixed micelles carrying the homing peptide and the label on different subunits accumulated in the same areas of tumors as LyP-1-abraxane, showing that Lyp-1 can deliver intact nanoparticles into extravascular sites. Untargeted, FAM-abraxane was detected in the form of a faint meshwork in tumor interstitium. LyP-1-abraxane produced a statistically highly significant inhibition of tumor growth compared to untargeted abraxane. These results show that nanoparticles can be effectively targeted into extravascular tumor tissue and that targeting can enhance the activity of a therapeutic nanoparticle. PMID:18829396

  20. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers.

    PubMed

    Yan, Fei; Li, Lu; Deng, Zhiting; Jin, Qiaofeng; Chen, Juanjuan; Yang, Wei; Yeh, Chih-Kuang; Wu, Junru; Shandas, Robin; Liu, Xin; Zheng, Hairong

    2013-03-28

    Liposome-microbubble complexes (LMC) have become a promising therapeutic carrier for ultrasound-triggered drug delivery to treat malignant tumors. However, the efficacy for ultrasound-assisted chemotherapy in vivo and the underlying mechanisms remain to be elucidated. Here, we investigated the feasibility of using paclitaxel-liposome-microbubble complexes (PLMC) as possible ultrasound (US)-triggered targeted chemotherapy against breast cancer. PTX-liposomes (PL) were conjugated to the microbubble (MB) surface through biotin-avidin linkage, increasing the drug-loading efficiency of MBs. The significant increased release of payloads from liposome-microbubble complexes was achieved upon US exposure. We used fluorescent quantum dots (QDs) as a model drug to show that released QDs were taken up by 4T1 breast cancer cells treated with QD-liposome-microbubble complexes (QLMC) and US, and uptake depended on the exposure time and intensity of insonication. We found that PLMC plus US inhibited tumor growth more effectively than PL plus US or PLMC without US, not only in vitro, but also in vivo. Histologically, the inhibition of tumor growth appeared to result from increased apoptosis and reduced angiogenesis in tumor xenografts. In addition, a significant increase of drug concentration in tumors was observed in comparison to treatment with non-conjugated PL or PLMC without US. The significant increase in an antitumor efficacy of PLMC plus US suggests their potential use as a new targeted US chemotherapeutic approach to inhibit breast cancer growth. PMID:23306023

  1. Paclitaxel Loaded Nanoliposomes in Thermosensitive Hydrogel: A Dual Approach for Sustained and Localized Delivery.

    PubMed

    Mahajan, Mohit; Utreja, Puneet; Jain, Subheet Kumar

    2016-01-01

    In an attempt to improve the localized paclitaxel delivery, carrier based thermoresponsive chitosan hydrogel was exploited in the present study. Nanoliposomes as carrier for paclitaxel were prepared and optimized in strength of 6 mg/ml similar to marketed paclitaxel formulation. The chitosan solution (2% w/v) mixed with different concentrations of dibasic sodium phosphate (DSP) was evaluated as thermoresponsive systems in terms of gelling temperature and time. Finally, the drug loaded nanoliposomes were incorporated in optimized chitosan- DSP hydrogel base to form nanoliposomal in situ thermosensitive hydrogel formulations having dual mechanism of protection and release. The optimal formulation containing DSP was selected on the basis of minimal gelation temperature (37±0.8 ºC) and time (6.7±0.3 min). In vitro drug release experiment illustrated that developed formulation manifested sustained release action in which drug release was extended for more than 72 h compared to marketed formulation. In addition, optimized nanoliposomal hydrogel demonstrated enhanced biological half-life of 15.7±1.5h, depicting maintenance of constant plasma concentration in contrast to marketed formulation that showed the half-life (t1/2) of 3.6±0.4h. The in vivo anti tumor activity tested using EAC model also corroborated the above findings that developed formulation was having significant higher anti-tumor activity and reduced toxicity than the marketed formulation. Tumor volume was found to reduce upto 89.1±3.5% by treatment with in situ hydrogel formulation. The histopathological study of tumor also demonstrated the better safety and efficacy of developed formulation in comparison to marketed paclitaxel formulation. Our results suggest that carrier based chitosan hydrogel could be an efficacious vehicle for sustained and localized delivery of paclitaxel. PMID:26255673

  2. Targeted delivery of nanomedicines.

    PubMed

    Kumar Khanna, Vinod

    2012-01-01

    The role of targeting of the diseased region by a drug is emphasized. The rationale for resorting to nanomaterials as drug carriers is explained. A clear understanding of the biological environment, its degradation in diseased condition, and the interaction of the drug with it in normal condition and during illness lie at the core of successful drug delivery. Passive and active drug targeting approaches are differentiated. Commonly used drug targets, targeting ligands, and nanoscale systems are elaborated. Mechanisms of internalization of nanomedicines and circumventing P-glycoprotein mediated resistance are outlined. The paper presents an overview of the current scenario of targeted transportation of nanomedicines to the affected organ and suggests future research directions. PMID:22577576

  3. Preparation and characterization of amphiphilic calixarene nanoparticles as delivery carriers for paclitaxel.

    PubMed

    Zhao, Zi-Ming; Wang, Yu; Han, Jin; Zhu, Hui-Dong; An, Lin

    2015-01-01

    Two types of amphoteric calix[n]arene carboxylic acid (CnCA) derivative, i.e., calix[6]arene hexa-carboxylic acid (C6HCA) and calix[8]arene octo-carboxylic acid (C8OCA), were synthesized by introducing acetoxyls into the hydroxyls of calix[n]arene (n=6, 8). C6HCA and C8OCA nanoparticles (NPs) were prepared successfully using the dialysis method. CnCA NPs had regular spherical shapes with an average diameter of 180-220 nm and possessed negative charges of greater than -30 mV. C6HCA and C8OCA NPs were stable in 4.5% bovine serum albumin solutions and buffers (pH 5-9), with a low critical aggregation concentration value of 5.7 mg·L(-1) and 4.0 mg·L(-1), respectively. C6HCA and C8OCA NPs exhibited good paclitaxel (PTX) loading capacity, with drug loading contents of 7.5% and 8.3%, respectively. The overall in vitro release behavior of PTX from the CnCA NPs was sustained, and C8OCA NPs had a slower release rate compared with C6HCA NPs. These favorable properties of CnCA NPs make them promising nanocarriers for tumor-targeted drug delivery. PMID:25757488

  4. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel.

    PubMed

    Luan, Xin; Guan, Ying-Yun; Lovell, Jonathan F; Zhao, Mei; Lu, Qin; Liu, Ya-Rong; Liu, Hai-Jun; Gao, Yun-Ge; Dong, Xiao; Yang, Si-Cong; Zheng, Lin; Sun, Peng; Fang, Chao; Chen, Hong-Zhuan

    2016-07-01

    Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor neovasculature. F56 peptide-conjugated paclitaxel-loaded nanoparticles (F56-PTX-NP) were formulated from PEGylated polylactide using an oil in water emulsion approach. Metronomic F56-PTX-NP specifically targeted tumor vascular endothelial cells (ECs), pruned vessels with strong antiangiogenic activity and induced thrombospondin-1 (TSP-1) secretion from ECs. The treatment induced tumor vasculature normalization as evidenced by significantly increased coverage of basement membrane and pericytes. The tumor microenvironment was altered with enhanced pO2, lower interstitial fluid pressure, and enhanced vascular perfusion and doxorubicin delivery. A "normalization window" of at least 9 days was induced, which was longer than other approaches using antiangiogenic agents. Together, these results show that metronomic, actively-targeted nanomedicine can induce tumor vascular normalization and modulate the tumor microenvironment, opening a window of opportunity for effective combination chemotherapies. PMID:27130953

  5. Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery

    PubMed Central

    Kang, Bong-Seok; Ng, Choon Lian; Davaa, Enkhzaya; Park, Jeong-Sook

    2014-01-01

    The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel. PMID:25275485

  6. Bioresorbable copolymer of L-lactide and ε-caprolactone for controlled paclitaxel delivery.

    PubMed

    Musiał-Kulik, Monika; Gębarowska, Katarzyna; Kasperczyk, Janusz; Pastusiak, Małgorzata; Janeczek, Henryk; Dobrzyński, Piotr

    2014-01-01

    Bioresorbable, aliphatic polyesters are known in medicine where serve as orthopedic devices (e.g., rods, pins and screws) or sutures and staples in wound closure. Moreover, such materials are extensively stud- ied as scaffolds--three-dimensional structures for tissue engineering but also drug delivery systems (DDS). The aim of this study was to determine the release profile of paclitaxel, one of the anti-inflammatory, antiprolifera- tive and anti-restenotic agent, from biocompatible copolymer of L-lactide and ε-caprolactone that seems to be very attractive especially for minimally invasive surgery due to its potential shape-memory property. The influ- ence of drug on copolymer hydrolytic degradation was also analyzed. Three types of matrices (3%, 5% of PTX and without drug) were prepared by solvent-casting method and degraded in vitro. The physicochemical changes of copolymer were analyzed by means of nuclear magnetic resonance spectroscopy (NMR), gel per- meation chromatography (GPC) and differential scanning calorimetry (DSC). The amount of drug released into media was monitored with the use of high-pressure liquid chromatography (HPLC). Similar drug release pro- files were obtained for matrices with paclitaxel. The drug-containing matrices degraded slightly slower than drug free matrices, regardless PTX content. Results of this work may be helpful in designing new bioresorbable paclitaxel delivery system applied in anti-cancer therapy or drug-eluting stents technology. PMID:25745774

  7. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles

    PubMed Central

    Chan, Juliana M.; Drum, Chester L.; Bronson, Roderick T.; Golomb, Gershon; Langer, Robert; Farokhzad, Omid C.

    2011-01-01

    Following recent successes with percutaneous coronary intervention (PCI) for treating coronary artery disease (CAD), many challenges remain. In particular, mechanical injury from the procedure results in extensive endothelial denudation, exposing the underlying collagen IV-rich basal lamina, which promotes both intravascular thrombosis and smooth muscle proliferation. Previously, we reported the engineering of collagen IV-targeting nanoparticles (NPs) and demonstrated their preferential localization to sites of arterial injury. Here, we develop a systemically administered, targeted NP system to deliver an antiproliferative agent to injured vasculature. Approximately 60-nm lipid–polymeric NPs were surface functionalized with collagen IV-targeting peptides and loaded with paclitaxel. In safety studies, the targeted NPs showed no signs of toxicity and a ≥3.5-fold improved maximum tolerated dose versus paclitaxel. In efficacy studies using a rat carotid injury model, paclitaxel (0.3 mg/kg or 1 mg/kg) was i.v. administered postprocedure on days 0 and 5. The targeted NP group resulted in lower neointima-to-media (N/M) scores at 2 wk versus control groups of saline, paclitaxel, or nontargeted NPs. Compared with sham-injury groups, an ∼50% reduction in arterial stenosis was observed with targeted NP treatment. The combination of improved tolerability, sustained release, and vascular targeting could potentially provide a safe and efficacious option in the management of CAD. PMID:22087004

  8. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles

    PubMed Central

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  9. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles.

    PubMed

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  10. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.

  11. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles.

    PubMed

    Colby, Aaron H; Liu, Rong; Schulz, Morgan D; Padera, Robert F; Colson, Yolonda L; Grinstaff, Mark W

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a "two-step" nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional "drug-alone" administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues. PMID:26740245

  12. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    PubMed Central

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues. PMID:26740245

  13. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel

    PubMed Central

    Wee, Zhen Ning; Yatim, Siti Maryam J. M.; Kohlbauer, Vera K; Feng, Min; Goh, Jian Yuan; Yi, Bao; Lee, Puay Leng; Zhang, Songjing; Wang, Pan Pan; Lim, Elgene; Tam, Wai Leong; Cai, Yu; Ditzel, Henrik J; Hoon, Dave S. B.; Tan, Ern Yu; Yu, Qiang

    2015-01-01

    Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance. PMID:26503059

  14. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms

    PubMed Central

    Wang, L; Li, H; Ren, Y; Zou, S; Fang, W; Jiang, X; Jia, L; Li, M; Liu, X; Yuan, X; Chen, G; Yang, J; Wu, C

    2016-01-01

    Chemotherapy paclitaxel yields significant reductions in tumor burden in the majority of advanced non-small cell lung cancer (NSCLC) patients. However, acquired resistance limits its clinical use. Here we demonstrated that the histone deacetylase (HDAC) was activated in paclitaxel-resistant NSCLC cells, and its activation promoted proliferation and tumorigenesis of paclitaxel-resistant NSCLC cells in vitro and in vivo. By contrast, knockdown of HDAC1, a primary isoform of HDAC, sensitized resistant cells to paclitaxel in vitro. Furthermore, we observed that overexpression of HDAC1 was associated with the downregulation of p21, a known HDAC target, in advanced NSCLC patients with paclitaxel treatment, and predicted chemotherapy resistance and bad outcome. In addition, we also identified a novel HDACs inhibitor, SNOH-3, which inhibited HDAC expression and activity, induced cell apoptosis, and suppressed cell migration, invasion and angiogenesis. Notably, co-treatment with SNOH-3 and paclitaxel overcome paclitaxel resistance through inhibiting HDAC activity, leading to the induction of apoptosis and suppression of angiogenesis in vitro and in preclinical model. In summary, our data demonstrate a role of HDAC in paclitaxel-resistant NSCLC and provide a promising therapeutic strategy to overcome paclitaxel-acquired resistance. PMID:26794658

  15. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo

    PubMed Central

    Wang, Wei; Xi, Mei; Duan, Xuezhong; Wang, Yong; Kong, Fansheng

    2015-01-01

    Purpose Combination anticancer therapy is promising to generate synergistic anticancer effects to maximize the treatment effect and overcome multidrug resistance. The aim of the study reported here was to develop multifunctional, dual-ligand, modified, self-assembled nanoparticles (NPs) for the combination delivery of baicalein (BCL) and paclitaxel (PTX) prodrugs. Methods Prodrug of PTX and prodrug of BCL, containing dual-targeted ligands of folate (FA) and hyaluronic acid (HA), were synthesized. Multifunctional self-assembled NPs for combination delivery of PTX prodrug and BCL prodrug (PTX-BCL) were prepared and the synergistic antitumor effect was evaluated in vitro and in vivo. The in vitro transfection efficiency of the novel modified vectors was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/PTX cells. The in vivo antitumor efficiency and systemic toxicity of different formulations were further investigated in mice bearing A549/PTX drug-resistant human lung cancer xenografts. Results The size of the PTX-BCL NPs was approximately 90 nm, with a positive zeta potential of +3.3. The PTX-BCL NPs displayed remarkably better antitumor activity over a wide range of drug concentrations, and showed an obvious synergism effect with CI50 values of 0.707 and 0.513, indicating that double-ligand modification and the co-delivery of PTX and BCL prodrugs with self-assembled NPs had remarkable superiority over other formulations. Conclusion The prepared PTX-BCL NP drug-delivery system was proven efficient by its targeting of drug-resistant human lung cancer cells and delivering of BCL and PTX prodrugs. Enhanced synergistic anticancer effects were achieved by PTX-BCL NPs, and multidrug resistance of PTX was overcome by this promising targeted nanomedicine. PMID:26045664

  16. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery.

    PubMed

    Réti-Nagy, Katalin; Malanga, Milo; Fenyvesi, Éva; Szente, Lajos; Vámosi, György; Váradi, Judit; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Róka, Eszter; Vecsernyés, Miklós; Balogh, György; Vasvári, Gábor; Fenyvesi, Ferenc

    2015-12-30

    Cyclodextrins are widely used excipients in pharmaceutical formulations. They are mainly utilized as solubilizers and absorption enhancers, but recent results revealed their effects on cell membranes and pharmacological barriers. In addition to the growing knowledge on their interaction with plasma membranes, it was confirmed that cyclodextrins are able to enter cells by endocytosis. The number of the tested cyclodextrins was limited, and the role of this mechanism in drug absorption and delivery is not known. Our aim was to examine the endocytosis of fluorescently labeled hydroxypropyl-β-cyclodextrin, random methyl-β-cyclodextrin and soluble β-cyclodextrin polymer, and the cellular uptake of the fluorescent paclitaxel derivative-random methyl-β-cyclodextrin complex. The studied cyclodextrin derivatives were able to enter Caco-2 intestinal cells and localized in vesicles in the cytoplasm, while their permeability was very limited through Caco-2 monolayers. We demonstrated for the first time that the fluorescent paclitaxel derivative and rhodamine-labeled random methyl-β-cyclodextrin were detected in the same intracellular vesicles after treating cells with their inclusion complex. These results indicate that the endocytosis of cyclodextrin complexes can contribute to drug absorption processes. PMID:26498369

  17. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes

    PubMed Central

    Gao, Menghua; Xu, Yuzhen; Qiu, Liyan

    2015-01-01

    A novel composite liposomal system co-encapsulating paclitaxel (PTX) with chloroquine phosphate (CQ) was designed for treating PTX-resistant carcinoma. It was confirmed that liposomal CQ can sensitize PTX by means of autophagy inhibition and competitively binding with multidrug-resistance transporters. Furthermore, according to the in vitro cytotoxicity and apoptosis assay, real-time observation of cellular uptake, and in vivo tissue distribution study, co-encapsulation of PTX and CQ in liposomes was validated as superior to the mixture of PTX liposome plus CQ liposome due to the simultaneous delivery and synergetic effect of the two drugs. Consequently, this composite liposome achieved significantly stronger anticancer efficacy in vivo than the PTX liposome plus CQ liposome mixture. This study helps to guide and enlighten ongoing and future clinical trials about the optimal administration modes for drug combination therapy. PMID:26543365

  18. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment

    PubMed Central

    Shi, Changying; Guo, Dandan; Wang, Xu; Luo, Juntao

    2014-01-01

    Cisplatin (CDDP) and paclitaxel (PTX) are two established chemotherapeutic drugs used in combination for the treatment of many cancers, including ovarian cancer. We have recently developed a three-layered linear-dendritic telodendrimer micelles (TM) by introducing carboxylic acid groups in the adjacent layer via “thio-ene” click chemistry for CDDP complexation and conjugating cholic acids via peptide chemistry in the interior layer of telodendrimer for PTX encapsulation. We hypothesize that the co-delivery of low dosage PTX with CDDP could act synergistically to increase the treatment efficacy and reduce their toxic side effects. This design allowed us to co-deliver PTX and CDDP at various drug ratios to ovarian cancer cells. The in vitro cellular assays revealed strongest synergism in anti-tumor effects when delivered at a 1:2 PTX/CDDP loading ratio. Using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrate that our co-encapsulation approach resulted in an efficient tumor-targeted drug delivery, decreased cytotoxic effects and stronger anti-tumor effect, when compared with free drug combination or the single loading TM formulations. PMID:25453973

  19. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Lv, Piping; Chen, Zhongke; Ni, Dezhi; Zhang, Lijun; Yue, Hua; Yue, Zhanguo; Wei, Wei; Ma, Guanghui

    2015-02-01

    Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations.Combination chemotherapy has been proven promising for cancer treatment, but unsatisfactory therapeutic data and increased side effects slow down the development in the clinic. In this study, we develop an effective approach to co-encapsulate a hydrophilic-hydrophobic chemotherapeutic drug pair (paclitaxel and doxorubicin) into magnetic O-carboxymethyl-chitosan nanoparticles. To endow them with the ability of programmed delivery, these carriers are further camouflaged with an Arg-Gly-Asp anchored erythrocyte membrane. Compared with the traditional polyethylene glycol coating method, this biomimetic decoration strategy is demonstrated to be superior in prolonging circulation time, improving tumor accumulation, facilitating tumor uptake, and tuning intracellular fate. These outstanding properties enable the as-designed nanodevice to exhibit greater tumor growth inhibition ability and much lower side effects than the combined use of commercial formulations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07027e

  20. Cysteine modified and bile salt based micelles: preparation and application as an oral delivery system for paclitaxel.

    PubMed

    Xu, Wei; Fan, Xiaohui; Zhao, Yanli; Li, Lingbing

    2015-04-01

    The aim of the present study is to construct a cysteine modified polyion complex micelles made of Pluronic F127-chitosan (PF127-CS), Pluronic F127-cysteine (PF127-cysteine) and sodium cholate (NaC) and to evaluate the potential of the micelles as an oral drug delivery system for paclitaxel. Systematic studies on physicochemical properties including size distribution, zeta-potential and morphology were conducted to validate the formation of micelle structure. Compared with Pluronic micelles, drug-loading capacity of PF127-CS/PF127-cysteine/NaC micelles was increased from 3.35% to 12.77%. Both the critical micelle concentration and the stability test confirmed that the PF127-CS/PF127-cysteine/NaC micelles were more stable in aqueous solution than sodium cholate micelles. Pharmacokinetic study demonstrated that when oral administration the area under the plasma concentration-time curve (AUC0-∞) and the absolute bioavailability of paclitaxel-loaded micelles were five times greater than that of the paclitaxel solution. In general, PF127-CS/PF127-cysteine/NaC micelles were proven to be a potential oral drug delivery system for paclitaxel. PMID:25747310

  1. Radiosensitization of malignant gliomas following intracranial delivery of paclitaxel biodegradable polymer microspheres

    PubMed Central

    Gabikian, Patrik; Tyler, Betty M.; Zhang, Irma; Li, Khan W.; Brem, Henry; Walter, Kevin A.

    2015-01-01

    Object The aim of this study was to demonstrate that paclitaxel could function as a radiosensitizer for malignant glioma in vitro and in vivo. Methods The radiosensitizing effect of paclitaxel was tested in vitro using the human U373MG and rat 9L glioma cell lines. Cell cycle arrest in response to paclitaxel exposure was quantified by flow cytometry. Cells were subsequently irradiated, and toxicity was measured using the clonogenic assay. In vivo studies were performed in Fischer 344 rats implanted with intracranial 9L gliosarcoma. Rats were treated with control polymer implants, paclitaxel controlled-release polymers, radiotherapy, or a combination of the 2 treatments. The study end point was survival. Results Flow cytometry demonstrated G2-M arrest in both U373MG and 9L cells following 6–12 hours of paclitaxel exposure. The order in which the combination treatment was administered was significant. Exposure to radiation treatment (XRT) during the 6–12 hours after paclitaxel treatment resulted in a synergistic reduction in colony formation. This effect was greater than the effect from either treatment alone and was also greater than the effect of radiation exposure followed by paclitaxel. Rats bearing 9L gliosarcoma tumors treated with paclitaxel polymer administration followed by single-fraction radiotherapy demonstrated a synergistic improvement in survival compared with any other treatment, including radiotherapy followed by paclitaxel treatment. Median survival for control animals was 13 days; for those treated with paclitaxel alone, 21 days; for those treated with XRT alone, 21 days; for those treated with XRT followed by paclitaxel, 45 days; and for those treated with paclitaxel followed by XRT, more than 150 days (p < 0.0001). Conclusions These results indicate that paclitaxel is an effective radiosensitizer for malignant gliomas because it renders glioma cells more sensitive to ionizing radiation by causing G2-M arrest, and induces a synergistic response to chemoradiotherapy. PMID:24605841

  2. Effective Drug Delivery, in vitro and in vivo, By Carbon-Based Nanovectors Non-Covalently Loaded With Unmodified Paclitaxel

    PubMed Central

    Berlin, Jacob M.; Leonard, Ashley D.; Pham, Tam T.; Sano, Daisuke; Marcano, Daniela C.; Yan, Shayou; Fiorentino, Stefania; Milas, Zvonimir L.; Kosynkin, Dmitry V.; Katherine Price, B.; Lucente-Schultz, Rebecca M.; Wen, XiaoXia; Gabriela Raso, M.; Craig, Suzanne L.; Tran, Hai T.; Myers, Jeffrey N.; Tour, James M.

    2010-01-01

    Many new drugs have low aqueous solubility and high therapeutic efficacy. Paclitaxel (PTX) is a classic example of this type of compound. Here we show that extremely small (<40 nm) hydrophilic carbon clusters (HCCs) that are PEGylated (PEG-HCCs) are effective drug delivery vehicles when simply mixed with paclitaxel. This formulation of PTX sequestered in PEG-HCCs (PTX/PEG-HCCs) is stable for at least twenty weeks. The PTX/PEG-HCCs formulation was as effective as PTX in a clinical formulation in reducing tumor volumes in an orthotopic murine model of oral squamous cell carcinoma. Preliminary toxicity and biodistribution studies suggest that the PEG-HCCs are not acutely toxic and, like many other nanomaterials, are primarily accumulated in the liver and spleen. This work demonstrates that carbon nanomaterials are effective drug delivery vehicles in vivo when non-covalently loaded with an unmodified drug. PMID:20681596

  3. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone.

    PubMed

    Lopez-Heredia, Marco A; Kamphuis, G J Bernard; Thne, Peter C; ner, F Cumhur; Jansen, John A; Walboomers, X Frank

    2011-08-01

    Bone metastases are usually treated by surgical removal, fixation and chemotherapeutic treatment. Bone cement is used to fill the resection voids. The aim of this study was to develop a local drug delivery system using a calcium phosphate cement (CPC) as carrier for chemotherapeutic agents. CPC consisted of alpha-tricalcium phosphate, calcium phosphate dibasic and precipitated hydroxyapatite powders and a 2% Na(2)HPO(4) hardening solution. Scanning electron microscopy (SEM) was used to observe CPC morphology. X-ray diffraction (XRD) was used to follow CPC transformation. The loading/release capacity of the CPC was studied by a bovine serum albumin-loading model. Release/retention was measured by high performance liquid chromatography and X-ray photoelectron spectrometry. For chemotherapeutic loading, paclitaxel (PX) was loaded onto the CPC discs by absorption. Viability of osteosarcoma U2OS and metastatic breast cancer MDA-MB-231 cells was measured by an AlamarBlue assay. Results of SEM and XRD showed changes in CPC due to its transformation. The loading model indicated a high retention behavior by the CPC composition. Cell viability tests indicated a PX minimal lethal dose of 90?g/ml. PX released from CPC remained active to influence cell viability. In conclusion, this study demonstrated that CPC is a feasible delivery vector for chemotherapeutic agents. PMID:21529931

  4. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel.

    PubMed

    Xu, Zhiyuan; Wang, Song; Li, Yongjun; Wang, Mingwei; Shi, Ping; Huang, Xiaoyu

    2014-10-01

    Graphene oxide (GO), a novel 2D nanomaterial prepared by the oxidation of natural graphite, has been paid much attention in the area of drug delivery due to good biocompatibility and low toxicity. In the present work, 6-armed poly(ethylene glycol) was covalently introduced into the surface of GO sheets via a facile amidation process under mild conditions, making the modified GO, GO-PEG (PEG: 65 wt %, size: 50-200 nm), stable and biocompatible in physiological solution. This nanosized GO-PEG was found to be nontoxic to human lung cancer A549 and human breast cancer MCF-7 cells via cell viability assay. Furthermore, paclitaxel (PTX), a widely used cancer chemotherapy drug, was conjugated onto GO-PEG via π-π stacking and hydrophobic interactions to afford a nanocomplex of GO-PEG/PTX with a relatively high loading capacity for PTX (11.2 wt %). This complex could quickly enter into A549 and MCF-7 cells evidenced by inverted fluorescence microscopy using Fluorescein isothiocyanate as a probe, and it also showed remarkably high cytotoxicity to A549 and MCF-7 cells in a broad range of concentration of PTX and time compared to free PTX. This kind of nanoscale drug delivery system on the basis of PEGylated GO may find potential application in biomedicine. PMID:25216036

  5. Local Intracerebral Administration of Paclitaxel with the Paclimer® Delivery System: Toxicity Study in a Canine Model

    PubMed Central

    Pradilla, Gustavo; Wang, Paul P.; Gabikian, Patrik; Li, Khan; Magee, Carolyn A.; Walter, Kevin A.; Brem, Henry

    2006-01-01

    Introduction: Paclitaxel, a microtubule binding agent with potent anti-glioma activity in vitro, exhibits poor penetrance to the CNS when delivered systemically. To minimize toxicity and reach therapeutic concentrations in the CNS, paclitaxel was previously incorporated into biodegradable microspheres (Paclimer®), and the efficacy of Paclimer® was determined in a rat model of malignant glioma. In this study we report the safety of intracranial Paclimer® in a canine dose escalation toxicity study to prepare its translation into clinical scenarios. Methods: Twelve normal beagle dogs underwent a right parieto-occipital craniectomy and were randomized to receive either Paclimer® at 2-mg/kg (n=5), empty microspheres at 2-mg/kg (n=1), Paclimer® at 20-mg/kg (n=5), or empty microspheres at 20-mg/kg (n=1). Post-operatively, dogs were observed daily for signs of neurotoxicity. Complete blood counts and plasma levels of paclitaxel were obtained weekly. CSF levels and MRI scans were obtained on days14-120. Paclitaxel concentrations were quantified by LC-MS. Results: Animals treated with 20-mg/kg Paclimer® had minimal paclitaxel levels in plasma (range 0-7.84 ng/ml) and CSF (range 0-1.16 ng/ml). Animals treated with 2mg/kg Paclimer® had undetectable levels of paclitaxel in plasma, CSF was not obtained to minimize animal suffering. All animals exhibited normal behavior and weight gain, and were alive post-operatively through the last day of the study (day 60-120) without signs of neurological toxicity. There was no evidence of systemic toxicity or myelosuppression. MR imaging was comparable between Paclimer® animals and controls. Adverse effects included wound infections and a brain abscess, all of which responded to antibiotic therapy, and one ventriculomegaly due to communicating hydrocephalus. Conclusions: Paclimer®-based delivery of paclitaxel is safe for intraparenchymal delivery at the tested doses in normal dogs. PMID:16284923

  6. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage

    NASA Astrophysics Data System (ADS)

    Sousa-Herves, Ana; Würfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Calderón, Marcelo

    2015-02-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes. Electronic supplementary information (ESI) available: 1H NMR spectra of the conjugates, HPLC chromatograms, internalization images of dPGS-PTX-ICC (5), elimination kinetics of dPGS-PTX-ICC (5) and dPGS-ICC (7), comparison of IC50 values of PTX and dPGS-PTX (3) in A431 and A549 cell lines and cell viability of dPGS amine (1). See DOI: 10.1039/c4nr04428b

  7. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  8. Paclitaxel-loaded polymeric micelles modified with MCF-7 cell-specific phage protein: enhanced binding to target cancer cells and increased cytotoxicity.

    PubMed

    Wang, Tao; Petrenko, Valery A; Torchilin, Vladimir P

    2010-08-01

    Polymeric micelles are used as pharmaceutical carriers to increase solubility and bioavailability of poorly water-soluble drugs. Different ligands are used to prepare targeted polymeric micelles. Earlier, we developed the method for use of specific landscape phage fusion coat proteins as targeted delivery ligands and demonstrated the efficiency of this approach with doxorubicin-loaded PEGylated liposomes. Here, we describe a MCF-7 cell-specific micellar formulation self-assembled from the mixture of the micelle-forming amphiphilic polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate, MCF-7-specific landscape phage fusion coat protein, and the hydrophobic drug paclitaxel. These micelles demonstrated a very low cmc value and specific binding to target cells. Using an in vitro coculture model, FACS analysis, and fluorescence microscopy we showed that MCF-7 targeted phage-micelles preferentially bound to target cells compared to nontarget cells. As a result, targeted paclitaxel-loaded phage-micelles demonstrated a significantly higher cytotoxicity toward target MCF-7 cells than free drug or nontargeted micelle formulations, but failed to show such a differential toxicity toward nontarget C166 cells. Overall, cancer cell-specific phage proteins identified from phage display peptide libraries can serve as targeting ligands ("substitute antibody") for polymeric micelle-based pharmaceutical preparations. PMID:20518562

  9. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel.

    PubMed

    Shikanov, Ariella; Vaisman, Boris; Shikanov, Sergey; Domb, Abraham J

    2010-03-15

    The effectiveness of an injectable polymeric formulation, based on poly(sebacic acid-co-ricinoleic acid) and paclitaxel against a heterotopic tumor model was studied. An injectable pasty polymer that releases an incorporated drug over a period of weeks was used. The degradation rate of formulations with paclitaxel was examined in vitro and in vivo. The effectiveness of the polymeric carrier of paclitaxel was investigated using a melanoma heterotopic model in C57BL/6 mice. Tumor bearing animals were injected intratumorally with 0.1 ml of formulations containing 5%, 10%, 15%, and 20% paclitaxel. Formulations with 5% and 10% paclitaxel content degraded faster in vivo then in vitro. Changes in tumor progression, survival time, and body weight were observed over a period of 77 days. The highest tumor size was reported for the control groups that did not receive paclitaxel in their treatment regiment: 3.6 g on day 20, while in all groups treated with polymer loaded with paclitaxel the tumor size was much smaller than that in the blank polymer or non treatment groups and ranged from 1.3 g to 0.3 g. Intratumoral injection of paclitaxel loaded in the polymer was found to be an effective treatment for localized tumors. PMID:19343769

  10. Liposomal formulation for co-delivery of paclitaxel and lapatinib, preparation, characterization and optimization.

    PubMed

    Ravar, Fatemeh; Saadat, Ebrahim; Kelishadi, Pouya Dehghan; Dorkoosh, Farid A

    2016-09-01

    Paclitaxel (PTX) is one of the most promising natural anticancer agents with a wide therapeutic range which is limited by its hydrophobic nature, low therapeutic index and more importantly, the emergence of multidrug resistance (MDR). Lapatinib (LPT) is a dual tyrosine kinase inhibitor with a significant potential to inhibit p-glycoproteins which form one of the main groups of proteins responsible for efflux pump mediated MDR. To overcome the PTX related MDR, a novel liposomal formulation was optimized for co-delivery of PTX and LPT by applying the D-optimal response surface methodology. The encapsulation efficiency (EE%) of the optimized formulation for LPT and PTX was 52 ± 3% and 68 ± 5, respectively. The optimized formulation showed a narrow size distribution with the average of 235 ± 12 nm. The transmission electron microscopy image showed that liposomes were round in shape and discrete. The release profile exhibited 93% and 71% drug release for PTX and LPT after 40 h in the sink condition. The differential scanning calorimetry analysis indicated the conversion of both drugs from crystalline state to molecular state in the optimized lyophilized formulation. The cytotoxicity of the prepared formulation was studied against 4T1 murine mammary cells. The liposomal formulation showed better cytotoxicity in comparison to the binary mixture of free drugs. PMID:26266828

  11. Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts.

    PubMed

    Kim, Jung Ho; Lee, Joo-Ho; Kim, Kwang-Suck; Na, Kun; Song, Soo-Chang; Lee, Jaehwi; Kuh, Hyo-Jeong

    2013-01-01

    Poly(organophosphazene), a novel thermosensitive hydrogel, is an injectable drug delivery system (DDS) that transforms from sol to gel at body temperature. Paclitaxel (PTX) is a mitotic inhibitor used in the treatment of various solid tumors. Due to its poor solubility in water and efflux systems in the gastrointestinal tract, PTX is a good candidate for local DDS. Here, we evaluated the penetration kinetics of PTX released from the PTX-poly(organophosphazene) hydrogel mixture in multicellular layers (MCLs) of human cancer cells. We also investigated the tumor pharmacokinetics of PTX (60 mg/kg) when administered as an intratumoral injection using poly(organophosphazene) in mice with human tumor xenografts. When PTX was formulated at 0.6 % w/w into a 10 % w/w hydrogel, the in vitro and in vivo release were found to be 40 and 90 % of the dose, respectively, in a sustained manner over 4 weeks. Exposure of MCLs to PTX-hydrogel showed time-dependent drug penetration and accumulation. In mice, the hydrogel mass was well retained over 6 weeks, and the PTX concentration in the tumor tissue was maximal at 14 days, which rapidly decreased and coincided with rebound tumor growth after 14 days of suppression. These data indicate that PTX-hydrogel should be intratumorally injected every 14 days, or drug release duration should be prolonged in order to achieve a long-term antitumor effect. Overall, poly(organophosphazene) represents a novel thermosensitive DDS for intratumoral delivery of PTX, which can accommodate a large dose of the drug in addition to reducing its systemic exposure by restricting biodistribution to tumor tissue alone. PMID:23371803

  12. A First-Time-In-Human Phase I Clinical Trial of Bispecific Antibody-Targeted, Paclitaxel-Packaged Bacterial Minicells

    PubMed Central

    Rosenthal, Mark; McArthur, Grant A.; Pattison, Scott T.; Pattison, Stacey L.; MacDiarmid, Jennifer; Brahmbhatt, Himanshu; Scott, Andrew M.

    2015-01-01

    Background We have harnessed a novel biological system, the bacterial minicell, to deliver cancer therapeutics to cancer cells. Preclinical studies showed that epidermal growth factor receptor (EGFR)-targeted, paclitaxel-loaded minicells (EGFRminicellsPac) have antitumor effects in xenograft models. To examine the safety of the minicell delivery system, we initiated a first-time-in-human, open-label, phase I clinical study of EGFRminicellsPac in patients with advanced solid tumors. Methodology Patients received 5 weekly infusions followed by a treatment free week. Seven dose levels (1x108, 1x109, 3x109, 1x1010, 1.5x1010, 2x1010, 5x1010) were evaluated using a 3+3 dose-escalation design. Primary objectives were safety, tolerability and determination of the maximum tolerated dose. Secondary objectives were assessment of immune/inflammatory responses and antitumor activity. Principal Findings Twenty eight patients were enrolled, 22 patients completed at least one cycle of EGFRminicellsPac; 6 patients did not complete a cycle due to rapidly progressive disease. A total of 236 doses was delivered over 42 cycles, with a maximum of 45 doses administered to a single patient. Most common treatment-related adverse events were rigors and pyrexia. No deaths resulted from treatment-related adverse events and the maximum tolerated dose was defined as 1x1010 EGFRminicellsPac. Surprisingly, only a mild self-limiting elevation in the inflammatory cytokines IL-6, IL-8 and TNFα and anti-inflammatory IL-10 was observed. Anti-LPS antibody titers peaked by dose 3 and were maintained at that level despite repeat dosing with the bacterially derived minicells. Ten patients (45%; n = 22) achieved stable disease as their best response. Conclusions/Significance This is the first study in humans of a novel biological system that can provide targeted delivery of a range of chemotherapeutic drugs to solid tumor cells. Bispecific antibody-targeted minicells, packaged with the chemotherapeutic paclitaxel, were shown to be safe in patients with advanced solid tumors with modest clinical efficacy observed. Further study in Phase II trials is planned. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12609000672257 PMID:26659127

  13. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    PubMed Central

    Shan, Lingling; Liu, Ming; Wu, Chao; Zhao, Liang; Li, Siwen; Xu, Lisheng; Cao, Wengen; Gao, Guizhen; Gu, Yueqing

    2015-01-01

    In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX) as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6)-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX) and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX), composed of folic acid (FA, target), amino acids (Arg or Glu, linker), and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo) in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. PMID:26366078

  14. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells.

    PubMed

    Yu, Kongtong; Zhao, Jinlong; Zhang, Zunkai; Gao, Yin; Zhou, Yulin; Teng, Lesheng; Li, Youxin

    2016-01-30

    We have developed a novel nanoparticle delivery system fabricated from polyethylenimine (PEI) and poly(d,l-lactide-co-glycolide) (PLGA), which were able to deliver the chemotherapeutic agent Paclitaxel, while the biomacromolecule Herceptin acted as a targeting ligand that was conjugated onto the surfaces of the nanoparticles via electrostatic interactions. In this study, these electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles (eHER-PPNs) were optimized and employed as vectors to target HER2-positive breast cancer cells. The eHER-PPNs had an average diameter of ∼280nm and a neutral surface charge (1.00±0.73mV), which remained stable under physiological conditions. The anticancer effects of eHER-PPNs were investigated in HER2-positive BT474 cells and HER2-negative MCF7 cells. The eHER-PPNs showed enhanced cytotoxicity that was dependent on the receptor expression levels and the incubation time. These conjugated nanoparticles deliver Paclitaxel more efficiently (p<0.001) than unmodified PPNs, Herceptin and the combined effects of these two monotherapies. Furthermore, the chemically-conjugated Herceptin-bearing PEI/PLGA nanoparticles (cHER-PPNs) were fabricated as a comparison. The eHER-PPNs exhibited lower cell viability (46.7%) than that of cHER-PPNs (65.1%). The targeting ability of eHER-PPNs was demonstrated through confocal microscopy images and flow cytometry, which showed that eHER-PPNs displayed higher cellular uptake efficiency (p<0.001) in comparison with cHER-PPNs. Therefore, eHER-PPNs could provide promising platforms for the delivery of therapeutic drugs against HER2-positive breast cancers. PMID:26617314

  15. Aptamers for Targeted Drug Delivery

    PubMed Central

    Ray, Partha; White, Rebekah R.

    2010-01-01

    Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  16. Self-assembly PEGylation assists SLN-paclitaxel delivery inducing cancer cell apoptosis upon internalization.

    PubMed

    Arranja, Alexandra; Gouveia, Luís F; Gener, Petra; Rafael, Diana F; Pereira, Carolina; Schwartz, Simó; Videira, Mafalda A

    2016-03-30

    In past years, a considerable progress has been made in the conversion of conventional chemotherapy into potent and safe nanomedicines. The ultimate goal is to improve the therapeutic window of current chemotherapeutics by reducing systemic toxicities and to deliver higher concentrations of the chemotherapeutic agents to malignant cells. In this work, we report that PEGylation of the nanocarriers increases drug intracellular bioavailability leading therefore to higher therapeutic efficacy. The surface of the already patented solid lipid nanoparticles (SLN) loaded with paclitaxel (SLN-PTX) was coated with a PEG layer (SLN-PTX_PEG) through an innovative process to provide stable and highly effective nanoparticles complying with the predefined pharmaceutical quality target product profile. We observed that PEGylation not only stabilizes the SLN, but also modulates their cellular uptake kinetics. As a consequence, the intracellular concentration of chemotherapeutics delivered by SLN-PTX_PEG increases. This leads to the increase of efficacy and thus it is expected to significantly circumvent cancer cell resistance and increase patient survival and cure. PMID:26853316

  17. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers.

    PubMed

    Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F; Li, Richen; Gonzalez, Amelia M; Fan, Jingwei; Zou, Jiong; Leininger, Sarah E; Pavía-Sanders, Adriana; Johnson, Rachel; Nelson, Laura D; Raymond, Jeffery E; Elsabahy, Mahmoud; Hughes, Dennis M P; Lenox, Mark W; Gustafson, Tiffany P; Wooley, Karen L

    2015-02-11

    Nanomaterials have great potential to offer effective treatment against devastating diseases by providing sustained release of high concentrations of therapeutic agents locally, especially when the route of administration allows for direct access to the diseased tissues. Biodegradable polyphosphoester-based polymeric micelles and shell cross-linked knedel-like nanoparticles (SCKs) have been designed from amphiphilic block-graft terpolymers, PEBP-b-PBYP-g-PEG, which effectively incorporate high concentrations of paclitaxel (PTX). Well-dispersed nanoparticles physically loaded with PTX were prepared, exhibiting desirable physiochemical characteristics. Encapsulation of 10 wt% PTX, into either micelles or SCKs, allowed for aqueous suspension of PTX at concentrations up to 4.8 mg/mL, as compared to <2.0 μg/mL for the aqueous solubility of the drug alone. Drug release studies indicated that PTX released from these nanostructures was defined through a structure-function relationship, whereby the half-life of sustained PTX release was doubled through cross-linking of the micellar structure to form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related biodistribution and pharmacokinetics. Overall, we have demonstrated the potential of these novel nanotherapeutics toward future sustained release treatments via administration directly to the sites of lung metastases of osteosarcoma. PMID:25629952

  18. Multifunctional hierarchically assembled nanostructures as complex stage-wise dual-delivery systems for coincidental yet differential trafficking of siRNA and paclitaxel.

    PubMed

    Elsabahy, Mahmoud; Shrestha, Ritu; Clark, Corrie; Taylor, Sara; Leonard, Jeffrey; Wooley, Karen L

    2013-05-01

    Development of multifunctional nanostructures that can be tuned to codeliver multiple drugs and diagnostic agents to diseased tissues is of great importance. Hierarchically assembled theranostic (HAT) nanostructures based on anionic cylindrical shell cross-linked nanoparticles and cationic shell cross-linked knedel-like nanoparticles (cSCKs) have recently been developed by our group to deliver siRNA intracellularly and to undergo radiolabeling. In the current study, paclitaxel, a hydrophobic anticancer drug, and siRNA have been successfully loaded into the cylindrical and spherical components of the hierarchical assemblies, respectively. Cytotoxicity, immunotoxicity, and intracellular delivery mechanism of the HAT nanostructures and their individual components have been investigated. Decoration of nanoparticles with F3-tumor homing peptide was shown to enhance the selective cellular uptake of the spherical particles, whereas the HAT nanoassemblies underwent an interesting disassembly process in contact with either OVCAR-3 or RAW 264.7 cell lines. The HAT nanostructures were found to "stick" to the cell membrane and "trigger" the release of spherical cSCKs templated onto their surfaces intracellularly, while retaining the cylindrical part on the cell surface. Combination of paclitaxel and cell-death siRNA (siRNA that induces cell death) into the HAT nanostructures resulted in greater reduction in cell viability than siRNA complexed with Lipofectamine and the assemblies loaded with the individual drugs. In addition, a shape-dependent immunotoxicity was observed for both spherical and cylindrical nanoparticles with the latter being highly immunotoxic. Supramolecular assembly of the two nanoparticles into the HAT nanostructures significantly reduced the immunotoxicity of both cSCKs and cylinders. HAT nanostructures decorated with targeting moieties, loaded with nucleic acids, hydrophobic drugs, radiolabels, and fluorophores, with control over their toxicity, immunotoxicity, and intracellular delivery might have great potential for biomedical delivery applications. PMID:23574430

  19. Multifunctional hierarchically-assembled nanostructures as complex stage-wise dual-delivery systems for coincidental yet differential trafficking of siRNA and paclitaxel

    PubMed Central

    Elsabahy, Mahmoud; Shrestha, Ritu; Clark, Corrie; Taylor, Sara; Leonard, Jeffrey; Wooley, Karen L.

    2013-01-01

    Development of multifunctional nanostructures that can be tuned to co-deliver multiple drugs and diagnostic agents to diseased tissues is of great importance. Hierarchically-assembled theranostic (HAT) nanostructures based on anionic cylindrical shell crosslinked nanoparticles and cationic shell crosslinked knedel-like nanoparticles (cSCKs) have recently been developed by our group to deliver siRNA intracellularly, and to undergo radiolabeling. In the current study, paclitaxel, a hydrophobic anticancer drug, and siRNA have been successfully loaded into the cylindrical and spherical components of the hierarchical assemblies, respectively. Cytotoxicity, immunotoxicity and intracellular delivery mechanism of the HAT nanostructures and their individual components have been investigated. Decoration of nanoparticles with F3-tumor homing peptide was shown to enhance the selective cellular uptake of the spherical particles, whereas the HAT nanoassemblies underwent an interesting disassembly process in contact with either OVCAR-3 or RAW 264.7 cell lines. The HAT nanostructures were found to “stick” to the cell membrane and “trigger” the release of spherical cSCKs templated onto their surfaces intracellularly, while retaining the cylindrical part on the cell surface. Combination of paclitaxel and cell-death siRNA (siRNA that induces cell death) into the HAT nanostructures resulted in greater reduction in cell viability than siRNA complexed with Lipofectamine and the assemblies loaded with the individual drugs. In addition, a shape-dependent immunotoxicity was observed for both spherical and cylindrical nanoparticles, with the latter being highly immunotoxic. Supramolecular assembly of the two nanoparticles into the HAT nanostructures significantly reduced the immunotoxicity of both cSCKs and cylinders. HAT nanostructures decorated with targeting moieties, loaded with nucleic acids, hydrophobic drugs, radiolabels, fluorophores, with control over their toxicity, immunotoxicity and intracellular delivery might have great potential for biomedical delivery applications. PMID:23574430

  20. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel Conjugates with Acid-labile Linkages as a pH-Sensitive and Functional Nanoscopic Platform for Paclitaxel Delivery

    PubMed Central

    Zou, Jiong; Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F.; Elsabahy, Mahmoud; Fan, Jingwei; Wooley, Karen L.

    2013-01-01

    There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile, polyphosphoester-based degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading has been improved significantly, in this second generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The results for this system indicate that it has great potential as an effective anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) was synthesized by organocatalyst-promoted ring-opening polymerization of 2-(but-3-en-1-yloxy)-1,3,2-dioxaphospholane-2-oxide from a PEO macroinitiator, followed by thermo-promoted thiolene click conjugation of a thiol-functionalized PTX prodrug to the pendant alkene groups of the block copolymer. The PEO-b-PPE-g-PTX G2 formed well-defined nanoparticles in aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm. The conjugate had PTX loading capacity as high as 53 wt%, and a maximum PTX concentration of 0.68 mg/mL in water (vs. 1.7 μg/mL for free PTX). Although the PTX concentration is ca. 10× less than for our first generation material, its accelerated release allowed for similar free PTX concentrations vs. time. The PEO-b-PPE-g-PTX G2 exhibited accelerated drug release under acidic conditions (~50 wt% PTX released in 8 d) compared to neutral conditions (~20 wt% PTX released in 8 d) and compared to the first generation analog that contained ester linkages between PTX and the polymer backbone (<5 wt% PTX released in 4 d), due to their acid-sensitive hydrolytically-labile β-thiopropionate linkages between PTX molecules and the polymer backbone. The positive cell-killing activity of PEO-b-PPE-g-PTX G2 against two cancer cell lines was demonstrated, and the presence of pendant reactive functionality provides a powerful platform for future work to involve conjugation of multiple numbers and/or types of targeting ligands, other drugs and imaging agents to achieve chemotherapy and bioimaging. Compared to our previously reported polyphosphoester-based PTX drug conjugates, PEO-b-PPE-g-PTX G1 without the β-thiopropionate linker, the PEO-b-PPE-g-PTX G2 showed pH-triggered drug release property and 5-to-8-fold enhanced in vitro cytotoxcity against two cancer cell lines. PMID:23997013

  1. Aptamers and aptamer targeted delivery

    PubMed Central

    Yan, Amy C.; Levy, Matthew

    2014-01-01

    When aptamers first emerged almost two decades ago, most were RNA species that bound and tagged or inhibited simple target ligands. Very soon after, the ‘selectionologists’ developing aptamer technology quickly realized more potential for the aptamer. In recent years, advances in aptamer techniques have enabled the use of aptamers as small molecule inhibitors, diagnostic tools and even therapeutics. Aptamers are now being employed in novel applications. We review, herein, some of the recent and exciting applications of aptamers in cell-specific recognition and delivery. PMID:19458497

  2. Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery

    PubMed Central

    Groo, Anne-Claire; Saulnier, Patrick; Gimel, Jean-Christophe; Gravier, Julien; Ailhas, Caroline; Benoit, Jean-Pierre; Lagarce, Frederic

    2013-01-01

    The bioavailability of paclitaxel (Ptx) has previously been improved via its encapsulation in lipid nanocapsules (LNCs). In this work, the interactions between LNCs and intestinal mucus are studied because they are viewed as an important barrier to successful oral delivery. The rheological properties of different batches of pig intestinal mucus were studied under different conditions (the effect of hydration and the presence of LNCs). Fluorescence resonance energy transfer (FRET) was used to study the stability of LNCs in mucus at 37°C for at least 3 hours. Diffusion through 223, 446, and 893 μm mucus layers of 8.4, 16.8, and 42 μg/mL Ptx formulated as Taxol® (Bristol-Myers Squibb, Rueil-Malmaison, France) or encapsulated in LNCs (Ptx-LNCs) were investigated. The effect of the size of the LNCs on their diffusion was also investigated (range, 25–110 nm in diameter). Mucus behaves as a non-Newtonian gel with rheofluidifying properties and a flow threshold. The viscous (G″) and elastic (G′) moduli and flow threshold of the two mucus batches varied with water content, but G′ remained below G″. LNCs had no effect on mucus viscosity and flow threshold. The FRET efficiency remained at 78% after 3 hours. Because the destruction of the LNCs would lead to a FRET efficiency below 25%, these results suggest only a slight modification of LNCs after their contact with mucus. The diffusion of Taxol® and Ptx-LNCs in mucus decreases if the mucus layer is thicker. Interestingly, the apparent permeability across mucus is higher for Ptx-LNCs than for Taxol® for drug concentrations of 16.8 and 42 μg/mL Ptx (P<0.05). The diffusion of Ptx-LNCs through mucus is not size-dependent. This study shows that LNCs are stable in mucus, do not change mucus rheological properties, and improve Ptx diffusion at low concentrations, thus making these systems good candidates for Ptx oral delivery. The study of the physicochemical interaction between the LNC surface and its diffusion in mucus is now envisioned. PMID:24235827

  3. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  4. Improved Biochemical Strategies for Targeted Delivery of Taxoids

    PubMed Central

    Ganesh, Thota

    2008-01-01

    Paclitaxel (Taxol ®) and docetaxel (Taxotere ®) are very important anti-tumor drugs in clinical use for cancer. However, their clinical utility is limited due to systemic toxicity, low solubility and inactivity against drug resistant tumors. To improve chemotherapeutic levels of these drugs, it would be highly desirable to design strategies which bypass the above limitations. In this respect various prodrug and drug targeting strategies have been envisioned either to improve oral bioavailability or tumor specific delivery of taxoids. Abnormal properties of cancer cells with respect to normal cells have guided in designing of these protocols. This review article records the designed biochemical strategies and their biological efficacies as potential taxoid chemotherapeutics. PMID:17419065

  5. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy

    NASA Astrophysics Data System (ADS)

    Namgung, Ran; Mi Lee, Yeong; Kim, Jihoon; Jang, Yuna; Lee, Byung-Heon; Kim, In-San; Sokkar, Pandian; Rhee, Young Min; Hoffman, Allan S.; Kim, Won Jong

    2014-05-01

    Effective anticancer therapy can be achieved by designing a targeted drug-delivery system with high stability during circulation and efficient uptake by the target tumour cancer cells. We report here a novel nano-assembled drug-delivery system, formed by multivalent host-guest interactions between a polymer-cyclodextrin conjugate and a polymer-paclitaxel conjugate. The multivalent inclusion complexes confer high stability to the nano-assembly, which efficiently delivers paclitaxel into the targeted cancer cells via both passive and active targeting mechanisms. The ester linkages between paclitaxel and the polymer backbone permit efficient release of paclitaxel within the cell by degradation. This novel targeted nano-assembly exhibits significant antitumour activity in a mouse tumour model. The strategy established in this study also provides knowledge for the development of advanced anticancer drug delivery.

  6. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  7. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  8. Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models

    PubMed Central

    Zhang, Yan; Zhang, Hui; Wu, Wenbin; Zhang, Fuhong; Liu, Shi; Wang, Rui; Sun, Yingchun; Tong, Ti; Jing, Xiabin

    2014-01-01

    Hepatocellular carcinoma shows low response to most conventional chemotherapies; additionally, extrahepatic metastasis from hepatoma is considered refractory to conventional systemic chemotherapy. Target therapy is a promising strategy for advanced hepatoma; however, targeted accumulation and controlled release of therapeutic agents into the metastatic site is still a great challenge. Folic acid (FA) and paclitaxel (PTX) containing composite micelles (FA-M[PTX]) were prepared by coassembling the FA polymer conjugate and PTX polymer conjugate. The main purpose of this study is to investigate the inhibitory efficacy of FA-M(PTX) on the pulmonary metastasis of intravenously injected murine hepatoma 22 (H22) on BALB/c mice models. The lung metastatic burden of H22 were measured and tissues were analyzed by immunohistochemistry and histology (hematoxylin and eosin stain), followed by survival analysis. The results indicated that FA-M(PTX) prevented pulmonary metastasis of H22, and the efficacy was stronger than pure PTX and simple PTX-conjugated micelles. In particular, the formation of lung metastasis colonies in mice was evidently inhibited, which was paralleled with the downregulated expression of matrix metalloproteinase-2 and matrix metalloproteinase-9. Furthermore, the mice bearing pulmonary metastatic hepatoma in the FA-M(PTX) group gained significantly prolonged survival time when compared with others given equivalent doses of PTX of 30 mg/kg. The enhanced efficacy of FA-M(PTX) is theoretically ascribed to the target effect of FA; moreover, the extensive pulmonary capillary networks may play a role. In conclusion, FA-M(PTX) displayed great potential as a promising antimetastatic agent, and the FA-conjugated micelles is a preferential targeted delivery system when compared to micelles without FA. PMID:24790440

  9. Aptamer-targeted Antigen Delivery

    PubMed Central

    Wengerter, Brian C; Katakowski, Joseph A; Rosenberg, Jacob M; Park, Chae Gyu; Almo, Steven C; Palliser, Deborah; Levy, Matthew

    2014-01-01

    Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines. PMID:24682172

  10. The Effect of Short-term Intra-arterial Delivery of Paclitaxel on Neointimal Hyperplasia and the Local Thrombotic Environment after Angioplasty

    SciTech Connect

    Yajun, E; He Nengshu Fan Hailun

    2013-08-01

    PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15 and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.

  11. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery.

    PubMed

    Zou, Jiong; Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F; Elsabahy, Mahmoud; Fan, Jingwei; Wooley, Karen L

    2014-03-01

    There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading is improved significantly, in this second-generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The PEO-b-PPE-g-PTX G2 forms well-defined nanoparticles in an aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm, and exhibits a PTX loading capacity as high as 53 wt%, with a maximum PTX concentration of 0.68 mg mL(-1) in water (vs 1.7 μg mL(-1) for free PTX). The PEO-b-PPE-g-PTX G2 shows accelerated drug release under acidic conditions (≈50 wt% PTX released in 8 d) compared with neutral conditions (≈20 wt% PTX released in 8 d). Compared to previously reported polyphosphoester-based PTX drug conjugates, PEO-b-PPE-g-PTX G1 without the β-thiopropionate linker, the PEO-b-PPE-g-PTX G2 shows pH-triggered drug release property and 5- to 8-fold enhanced in vitro cytotoxicity against two cancer cell lines. PMID:23997013

  12. Gonadotropin-releasing hormone receptor-targeted paclitaxel-degarelix conjugate: synthesis and in vitro evaluation.

    PubMed

    Wang, Chenhong; Ma, Yongtao; Feng, Siliang; Liu, Keliang; Zhou, Ning

    2015-07-01

    To increase the selectivity of chemotherapeutic agents, receptor-mediated tumor-targeting approaches have been developed. Here, degarelix [Ac-D-Nal-D-Cpa-D-Pal-Ser-Aph(L-Hor)-D-Aph(Cbm)-Leu-ILys-Pro-D-Ala-NH2], a gonadotropin-releasing hormone antagonist, was employed as a targeting moiety for paclitaxel (PTX). Five PTX-degarelix conjugates were synthesized, in which PTX was attached via disulfide bond to the different position in the degarelix sequence. All of the PTX-degarelix conjugates exhibited a half-life greater than 10 h determined in human serum. A fluorometric imaging plate reader assay showed that the conjugates LK-MY-9 and LK-MY-10 had an antagonism efficacy similar to that of degarelix. The in vitro cytostatic effects of the conjugates were determined by a (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, and the 50% inhibitory concentration value of the conjugates on 3T3 mouse embryonic fibroblast cells were one order of magnitude higher than the 50% inhibitory concentration values of the conjugates on MCF-7 human breast cancer cells and HT-29 human colon cancer cells. Receptor saturation tests further demonstrated that pre-incubation of the cells with degarelix reduced the efficacy of LK-MY-10 in a concentration-dependent manner. In conclusion, degarelix is a valid and stable moiety that has great potential for targeting chemotherapy drugs. PMID:25851250

  13. Heart-targeted nanoscale drug delivery systems.

    PubMed

    Liu, Meifang; Li, Minghui; Wang, Guangtian; Liu, Xiaoying; Liu, Daming; Peng, Haisheng; Wang, Qun

    2014-09-01

    The efficacious delivery of drugs to the heart is an important treatment strategy for various heart diseases. Nanocarriers have shown increasing promise in targeted drug delivery systems. The success of nanocarriers for delivering drugs to therapeutic sites in the heart mainly depends on specific target sites, appropriate drug delivery carriers and effective targeting ligands. Successful targeted drug delivery suggests the specific deposition of a drug in the heart with minimal effects on other organs after administration. This review discusses the pathological manifestations, pathogenesis, therapeutic limitations and new therapeutic advances in various heart diseases. In particular, we summarize the recent advances in heart-targeted nanoscale drug delivery systems, including dendrimers, liposomes, polymer-drug conjugates, microparticles, nanostents, nanoparticles, micelles and microbubbles. Current clinical trials, the commercial market and future perspective are further discussed in the conclusions. PMID:25992448

  14. Ultrasound-Targeted Retroviral Gene Delivery

    NASA Astrophysics Data System (ADS)

    Taylor, Sarah L.; Rahim, Ahad A.; Bush, Nigel L.; Bamber, Jeffrey C.; Porter, Colin D.

    2007-05-01

    This study demonstrates the ability of focused ultrasound to target retroviral gene delivery. Key to our experiments was the use of non-infectious virus particles lacking the envelope protein required for receptor-mediated entry. The novelty of our approach is that spatial control at a distance is exerted upon viral delivery by subsequent exposure to ultrasound, leading to stable gene delivery. The technology is ideally suited to controlling gene delivery in vivo following systemic vector administration. Our data provide a solution to the critical issue of obtaining tissue specificity with retroviral vectors and impart stability of expression to ultrasound-mediated gene delivery.

  15. Brain tumor-targeted drug delivery strategies

    PubMed Central

    Wei, Xiaoli; Chen, Xishan; Ying, Man; Lu, Weiyue

    2014-01-01

    Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges. PMID:26579383

  16. The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells.

    PubMed

    Tong, Rong; Yala, Linda; Fan, Timothy M; Cheng, Jianjun

    2010-04-01

    Paclitaxel-polylactide (Ptxl-PLA) conjugate nanoparticles, termed as nanoconjugates (NCs), were prepared through Ptxl/(BDI)ZnN(TMS)(2) (BDI = 2-((2,6-diisopropylphenyl)-amido)-4-((2,6-diisopropylphenyl)-imino)-2-pentene)-mediated controlled polymerization of lactide (LA) followed by nanoprecipitation. Nanoprecipitation of Ptxl-PLA resulted in sub-100 nm NCs with monomodal particle distributions and low polydispersities. The sizes of Ptxl-PLA NCs could be precisely controlled by using appropriate water-miscible solvents and by controlling the concentration of Ptxl-PLA during nanoprecipitation. Co-precipitation of a mixture of PLA-PEG-PLA (PLA = 14 kDa; PEG = 5 kDa) and Ptxl-PLA in PBS resulted in NCs that could stay non-aggregated in PBS for an extended period of time. To develop solid formulations of NCs, we evaluated a series of lyoprotectants, aiming to identify candidates that could effectively reduce or eliminate NC aggregation during lyophilization. Albumin was found to be an excellent lyoprotectant for the preparation of NCs in solid form, allowing lyophilized NCs to be readily dispersed in PBS without noticeable aggregates. Aptamer-NCs bioconjugates were prepared and found to be able to effectively target prostate-specific membrane antigen in a cell-specific manner. PMID:20122727

  17. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies

    NASA Astrophysics Data System (ADS)

    Ren, Lili; Chen, Shizhen; Li, Haidong; Zhang, Zhiying; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-07-01

    Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-approved formulation of PTX-Cre (Taxol®) and improved drug delivery efficiency to the tumor. c(RGDyk) modification greatly enhanced the cytotoxicity of the drug in tumor cells A549. The T1 relaxivity in tumor cells treated with the targeted liposome formulation was increased 16-fold when compared with the non-targeted group. In vivo, the tumors in mice were visualized using T1-weighted imaging after administration of the liposome. Also the tumor growth could be inhibited well after the treatment. Fluorescence images in vitro and ex vivo also showed the targeting effect of this liposome in tumor cells, indicating that this nanovehicle could limit the off-target side effects of anticancer drugs and contrast agents. These findings lay the foundation for further tumor inhibition study and application of this delivery vehicle in cancer therapy settings.

  18. Targeted Drug Delivery in Pancreatic Cancer

    PubMed Central

    Yu, Xianjun; Zhang, Yuqing; Chen, Changyi; Yao, Qizhi; Li, Min

    2009-01-01

    Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor and antibody has been a success in recent pre-clinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer, and provides important information on potential therapeutic targets for pancreatic cancer treatment. PMID:19853645

  19. Polymers for Colon Targeted Drug Delivery

    PubMed Central

    Rajpurohit, H.; Sharma, P.; Sharma, S.; Bhandari, A.

    2010-01-01

    The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems. PMID:21969739

  20. Trastuzumab-cisplatin conjugates for targeted delivery of cisplatin to HER2-overexpressing cancer cells.

    PubMed

    Huang, Rong; Wang, Qiucui; Zhang, Xiangyang; Zhu, Jin; Sun, Baiwang

    2015-05-01

    Cisplatin is widely used for the treatment of numerous types of cancer, while its application is limited by the adverse side effects for its poor selectivity. Trastuzumab is a highly targeting protein to HER2 protein, and it is usually combined with paclitaxel or cisplatin for the treatment of HER2-overexpressing breast cancer. In the present work, we used trastuzumab as a targeting carrier for platinum drug delivery. In ELISA assays and immunofluorescence study, Tmab-1 exhibited high and specific binding affinity to HER2 protein and HER2-overexpressing SK-BR-3 cells. In cytotoxicity test, Tmab-1 showed promising antiproliferative activity to SK-BR-3 cells, while it hardly inhibited the growth of MCF-7 cells and MDA-MB-231 cells. The cell cycle arrest study showed Tmab-1 induced the cell cycle arrest mainly at G2/M phase. This work indicates that trastuzumab is an effective and potential targeting carrier for drug delivery. PMID:26054670

  1. Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel.

    PubMed

    Zhang, Jing; Han, Jian; Zhang, Xiuli; Jiang, Jing; Xu, Maolei; Zhang, Daolai; Han, Jingtian

    2015-09-20

    An amphiphilic all-trans-retinoic acid (ATRA)-chitooligosaccharide (RCOS) conjugate was synthesized to form self-assembled polymeric nanoparticles to facilitate the co-delivery of ATRA and paclitaxel (PTX). The blank RCOS nanoparticles possessed low hemolytic activity and cytotoxicity, and could efficiently load PTX with a drug loading of 22.2% and a high encapsulation efficiency of 71.3%. PTX-loaded RCOS nanoparticles displayed a higher cytotoxicity to HepG2 cells compared to PTX plus ATRA solution when corrected by the accumulated drug release. Cellular uptake profiles of RCOS nanoparticles were evaluated via confocal laser scanning microscope and flow cytometry with FITC as a fluorescent mark. The RCOS nanoparticles could be rapidly and continuously taken up by HepG2 cells via endocytosis and transported into the nucleus, and the uptake rates increased with particle concentration. These results revealed the promising potential of RCOS nanoparticles as drug carriers for co-delivery of ATRA and PTX or other hydrophobic therapeutic agents. PMID:26050884

  2. Delivery of paclitaxel from cobalt–chromium alloy surfaces without polymeric carriers

    PubMed Central

    Mani, Gopinath; Macias, Celia E.; Feldman, Marc D.; Marton, Denes; Oh, Sunho; Agrawal, C. Mauli

    2014-01-01

    Polymer-based carriers are commonly used to deliver drugs from stents. However, adverse responses to polymer coatings have raised serious concerns. This research is focused on delivering drugs from stents without using polymers or any carriers. Paclitaxel (PAT), an anti-restenotic drug, has strong adhesion towards a variety of material surfaces. In this study, we have utilized such natural adhesion property of PAT to attach these molecules directly to cobalt–chromium (Co–Cr) alloy, an ultra-thin stent strut material. Four different groups of drug coated specimens were prepared by directly adding PAT to Co–Cr alloy surfaces: Group-A (PAT coated, unheated, and ethanol cleaned); Group-B (PAT coated, heat treated, and ethanol cleaned); Group-C (PAT coated, unheated, and not ethanol cleaned); and Group-D (PAT coated, heat treated and not ethanol cleaned). In vitro drug release of these specimens was investigated using high performance liquid chromatography. Groups A and B showed sustained PAT release for up to 56 days. A simple ethanol cleaning procedure after PAT deposition can remove the loosely bound drug crystals from the alloy surfaces and thereby allowing the remaining strongly bound drug molecules to be released at a sustained rate. The heat treatment after PAT coating further improved the stability of PAT on Co–Cr alloy and allowed the drug to be delivered at a much slower rate, especially during the initial 7 days. The specimens which were not cleaned in ethanol, Groups C and D, showed burst release. PAT coated Co–Cr alloy specimens were thoroughly characterized using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. These techniques were collectively useful in studying the morphology, distribution, and attachment of PAT molecules on Co–Cr alloy surfaces. Thus, this study suggests the potential for delivering paclitaxel from Co–Cr alloy surfaces without using any carriers. PMID:20398928

  3. Targeted delivery of therapeutics to endothelium

    PubMed Central

    Simone, Eric; Ding, Bi-Sen

    2009-01-01

    The endothelium is a target for therapeutic and diagnostic interventions in a plethora of human disease conditions including ischemia, inflammation, edema, oxidative stress, thrombosis and hemorrhage, and metabolic and oncological diseases. Unfortunately, drugs have no affinity to the endothelium, thereby limiting the localization, timing, specificity, safety, and effectiveness of therapeutic interventions. Molecular determinants on the surface of resting and pathologically altered endothelial cells, including cell adhesion molecules, peptidases, and receptors involved in endocytosis, can be used for drug delivery to the endothelial surface and into intracellular compartments. Drug delivery platforms such as protein conjugates, recombinant fusion constructs, targeted liposomes, and stealth polymer carriers have been designed to target drugs and imaging agents to these determinants. We review endothelial target determinants and drug delivery systems, describe parameters that control the binding of drug carriers to the endothelium, and provide examples of the endothelial targeting of therapeutic enzymes designed for the treatment of acute vascular disorders including ischemia, oxidative stress, inflammation, and thrombosis. PMID:18815813

  4. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-03-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed. PMID:26061298

  5. Paclitaxel Injection

    MedlinePlus

    ... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  6. Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells.

    PubMed

    Ramadass, Satiesh Kumar; Anantharaman, Niranjana Vaighya; Subramanian, Saravanan; Sivasubramanian, Srinivasan; Madhan, Balaraman

    2015-01-01

    Matrix metalloproteinases (MMPs) have been investigated as a potential target for treating invasive breast cancers. The chemotherapy for breast cancer is often prescribed as a combination of drugs. The present study investigates a novel strategy of combining a MMP inhibitor, Epigallocatechin gallate (EGCG), along with an anticancer drug, Paclitaxel (PTX), in the form of a liposomal co-delivery system. The developed PTX/EGCG co-loaded liposomes showed an entrapment of 77.11±2.30% and 59.11±3.51% for PTX and EGCG, respectively. The in vitro efficacy of the liposomes was assessed by their ability to promote apoptosis and curtail cell invasion. On all parameters, namely cytotoxicity and caspase-3 activity that are indicators of apoptosis, and MMP-2 and - 9 inhibition and invasion assays that are indicators of cell invasion, the PTX/EGCG co-loaded liposomes showed better results than each of the individual drug loaded liposomes. These findings demonstrate the synergistic outcome of PTX/EGCG combination and indicate the suitability of PTX/EGCG co-loaded liposomes for the treatment of invasive breast cancer. PMID:25437065

  7. Tumor-Targeted Drug Delivery with Aptamers

    PubMed Central

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2011-01-01

    Cancer is one of the leading causes of death around the world. Tumor-targeted drug delivery is one of the major areas in cancer research. Aptamers exhibit many desirable properties for tumor-targeted drug delivery, such as ease of selection and synthesis, high binding affinity and specificity, low immunogenicity, and versatile synthetic accessibility. Over the last several years, aptamers have quickly become a new class of targeting ligands for drug delivery applications. In this review, we will discuss in detail about aptamer-based delivery of chemotherapy drugs (e.g. doxorubicin, docetaxel, daunorubicin, and cisplatin), toxins (e.g. gelonin and various photodynamic therapy agents), and a variety of small interfering RNAs. Although the results are promising which warrants enthusiasm for aptamer-based drug delivery, tumor homing of aptamer-based conjugates after systemic injection has only been achieved in one report. Much remains to be done before aptamer-based drug delivery can reach clinical trials and eventually the day-to-day management of cancer patients. Therefore, future directions and challenges in aptamer-based drug delivery are also discussed. PMID:21838687

  8. Anti-HIF-1alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy.

    PubMed

    Song, Hua; He, Rong; Wang, Kan; Ruan, Jing; Bao, Chenchen; Li, Na; Ji, Jiajia; Cui, Daxiang

    2010-03-01

    Targeted uptake of nanoscale controlled release polymer micelles encapsulated with drugs represents a potential powerful therapeutic technology. Herein we reported the development of anti-HIF-1alpha antibody-conjugated unimolecular polymer nano micelles filled with Paclitaxel for cancer targeting therapy. Pluronic triblock copolymers(Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), PEO-block-PPO-block-PEO) P123 were functionalized with terminal carboxylic groups, and were characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), and differential scanning calorimetric (DSC). The amphiphilic copolymer nano micelles encapsulated with Paclitaxel were fabricated by self-assembly means, and then were conjugated with anti-HIF-1alpha antibody, the resultant anti-HIF-1alpha conjugated nano micelles filled with PTX (anti-HIF-1alpha-NMs-PTX nanocomposites) were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and incubated with stomach cancer MGC-803 cells and HDF fibroblast cells, these treated cells were analyzed by MTT and cell-ELISA. The nanocomposites composed of anti-HIF-1alpha conjugated nano micelles filled with CdTe quantum dots were also prepared, and incubated with stomach cancer MGC-803 cells and HDF fibroblast cells for 24 h, then were observed by fluorescent microscope. Results showed that the anti-HIF-1alpha-NMs-PTX nanocomposites were successfully prepared, bound with stomach cancer MGC-803 cells specifically, were internalized, and released PTX inside cancer cells, and selectively killed cancer cells. In conclusion, unique anti-HIF-1alpha antibody-conjugated nano micelles filled with Paclitaxel can target and selectively kill cancer cells with over-expression of HIF-1alpha, and has great potential in clinical tumor targeting imaging and therapy. PMID:20004970

  9. Prodrug Strategies for Paclitaxel

    PubMed Central

    Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective. PMID:27223283

  10. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery

    PubMed Central

    Wu, Yupei; Chu, Qian; Tan, Songwei; Zhuang, Xiangting; Bao, Yuling; Wu, Tingting; Zhang, Zhiping

    2015-01-01

    Paclitaxel (PTX) is one of the most effective antineoplastic drugs. Its current clinical administration Taxol® is formulated in Cremophor EL, which causes serious side effects. Nanoparticles (NP) with lower systemic toxicity and enhanced therapeutic efficiency may be an alternative formulation of the Cremophor EL-based vehicle for PTX delivery. In this study, novel amphipathic 4-arm-PEG-TPGS derivatives, the conjugation of D-α-tocopherol polyethylene glycol succinate (TPGS) and 4-arm-polyethylene glycol (4-arm-PEG) with different molecular weights, have been successfully synthesized and used as carriers for the delivery of PTX. These 4-arm-PEG-TPGS derivatives were able to self-assemble to form uniform NP with PTX encapsulation. Among them, 4-arm-PEG5K-TPGS NP exhibited the smallest particle size, highest drug-loading efficiency, negligible hemolysis rate, and high physiologic stability. Therefore, it was chosen for further in vitro and in vivo investigations. Facilitated by the effective uptake of the NP, the PTX-loaded 4-arm-PEG5K-TPGS NP showed greater cytotoxicity compared with free PTX against human ovarian cancer (A2780), non-small cell lung cancer (A549), and breast adenocarcinoma cancer (MCF-7) cells, as well as a higher apoptotic rate and a more significant cell cycle arrest effect at the G2/M phase in A2780 cells. More importantly, PTX-loaded 4-arm-PEG5K-TPGS NP resulted in a significantly improved tumor growth inhibitory effect in comparison to Taxol® in S180 sarcoma-bearing mice models. This study suggested that 4-arm-PEG5K-TPGS NP may have the potential as an anticancer drug delivery system. PMID:26316751

  11. Design and Characterization of PEG-Derivatized Vitamin E as a Nanomicellar Formulation for Delivery of Paclitaxel

    PubMed Central

    Lu, Jianqin; Huang, Yixian; Zhao, Wenchen; Chen, Yichao; Li, Jiang; Gao, Xiang; Venkataramanan, Raman; Li, Song

    2013-01-01

    Various PEG-Vitamin E conjugates including D-alpha-tocopheryl polyethylene glycol succinate 1000 (TPGS) have been extensively studied as a nonionic surfactant in various drug delivery systems. However, limited information is available about the structure-activity relationship of PEG-Vitamin E conjugates as a micellar formulation for paclitaxel (PTX). In this study, four PEG-Vitamin E conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates. These conjugates were systematically characterized with respect to CMC, PTX loading efficiency, stability, and their efficiency in delivery of PTX to tumor cells in vitro and in vivo. Our data show that PEG5K-conjugates have lower CMC values and are more effective in PTX loading with respect to both loading capacity and stability. The conjugates with two Vitamin E molecules also worked better than the conjugates with one molecule of Vitamin E, particularly for PEG2K-system. Furthermore, all of the PEG-Vitamin E conjugates can inhibit P-gp function with their activity being comparable to that of TPGS. More importantly, PTX-loaded PEG5K-VE2 resulted in significantly improved tumor growth inhibitory effect in comparison to PTX formulated in PEG2K-VE or PEG2K-VE2, as well as Cremophor EL (Taxol) in a syngeneic mouse model of breast cancer (4T1.2). Our study suggests that PEG5K-Vitmin E2 may hold promise as an improved micellar formulation for in vivo delivery of anticancer agents such as PTX. PMID:23768151

  12. Endocytic mechanisms for targeted drug delivery.

    PubMed

    Bareford, Lisa M; Swaan, Peter W

    2007-08-10

    Advances in the delivery of targeted drug systems have evolved to enable highly regulated site specific localization to subcellular organelles. Targeting therapeutics to individual intracellular compartments has resulted in benefits to therapies associated with these unique organelles. Endocytosis, a mechanism common to all cells in the body, internalizes macromolecules and retains them in transport vesicles which traffic along the endolysosomal scaffold. An array of vesicular internalization mechanisms exist, therefore understanding the key players specific to each pathway has allowed researchers to bioengineer macromolecular complexes for highly specialized delivery. Membrane specific receptors most frequently enter the cell through endocytosis following the binding of a high affinity ligand. High affinity ligands interact with membrane receptors, internalize in membrane bound vesicles, and traffic through cells in different manners to allow for accumulation in early endosomal fractions or lysosomally associated fractions. Although most drug delivery complexes aim to avoid lysosomal degradation, more recent studies have shown the clinical utility in directed protein delivery to this environment for the enzymatic release of therapeutics. Targeting nanomedicine complexes to the endolysosomal pathway has serious potential for improving drug delivery for the treatment of lysosomal storage diseases, cancer, and Alzheimer's disease. Although several issues remain for receptor specific targeting, current work is investigating a synthetic receptor approach for high affinity binding of targeted macromolecules. PMID:17659804

  13. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  14. Solid-nanoemulsion preconcentrate for oral delivery of paclitaxel: formulation design, biodistribution, and γ scintigraphy imaging.

    PubMed

    Ahmad, Javed; Mir, Showkat R; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K; Panda, A K; Amin, Saima

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4:1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1:1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1:1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  15. Solid-Nanoemulsion Preconcentrate for Oral Delivery of Paclitaxel: Formulation Design, Biodistribution, and γ Scintigraphy Imaging

    PubMed Central

    Ahmad, Javed; Mir, Showkat R.; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K.; Panda, A. K.

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4 : 1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1 : 1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1 : 1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  16. Targeted Delivery of Immunomodulators to Lymph Nodes.

    PubMed

    Azzi, Jamil; Yin, Qian; Uehara, Mayuko; Ohori, Shunsuke; Tang, Li; Cai, Kaimin; Ichimura, Takaharu; McGrath, Martina; Maarouf, Omar; Kefaloyianni, Eirini; Loughhead, Scott; Petr, Jarolim; Sun, Qidi; Kwon, Mincheol; Tullius, Stefan; von Andrian, Ulrich H; Cheng, Jianjun; Abdi, Reza

    2016-05-10

    Active-targeted delivery to lymph nodes represents a major advance toward more effective treatment of immune-mediated disease. The MECA79 antibody recognizes peripheral node addressin molecules expressed by high endothelial venules of lymph nodes. By mimicking lymphocyte trafficking to the lymph nodes, we have engineered MECA79-coated microparticles containing an immunosuppressive medication, tacrolimus. Following intravenous administration, MECA79-bearing particles showed marked accumulation in the draining lymph nodes of transplanted animals. Using an allograft heart transplant model, we show that targeted lymph node delivery of microparticles containing tacrolimus can prolong heart allograft survival with negligible changes in tacrolimus serum level. Using MECA79 conjugation, we have demonstrated targeted delivery of tacrolimus to the lymph nodes following systemic administration, with the capacity for immune modulation in vivo. PMID:27134176

  17. Poly-α,β-Polyasparthydrazide-Based Nanogels for Potential Oral Delivery of Paclitaxel: In Vitro and In Vivo Properties.

    PubMed

    Guo, Jingwen; Ma, Mingxin; Chang, Di; Zhang, Qiang; Zhang, Chen; Yue, Yang; Liu, Jia; Wang, Siling; Jiang, Tongying

    2015-12-01

    A family of nanogel drug carriers has been designed to enhance the oral absorption of paclitaxel (PTX). The PAHy-based nanogels were prepared by the interpenetration of poly-α,β-polyasparthydrazide (PAHy) chains and dicarboxyl-poly (ethylene glycol) (CPEG), forming a smart chain network. The PAHy-based nanogels were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC). The adhesion and retention properties of fluorescein isothiocyanate (FITC)-nanogels in vivo were investigated using an in vivo imaging system and confocal laser scanning microscopy (CLSM). The smart nanogels had a particle size of -200 nm, increased the degree and rate of release, and spent over 12 h in the gastrointestinal tract. They also produced excellent adhesion, permeability and retention (APR) effects and increased oral absorption, confirming their use as potential sustained-release carriers for the oral delivery of the hydrophobic anticancer agent PTX. PMID:26510316

  18. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel

    PubMed Central

    Abouelmagd, Sara A.; Ku, Youn Jin; Yeo, Yoon

    2015-01-01

    Low molecular weight chitosan (LMWC) is a promising polymer for surface modification of nanoparticles (NPs), which can impart both stealth effect and electrostatic interaction with cells at mildly acidic pH of tumors. We previously produced LMWC-coated NPs via covalent conjugation to poly(lactic-co-glycolic) acid (PLGA-LMWC NPs). However, this method had several weaknesses including inefficiency and complexity of the production as well as increased hydrophilicity of the polymer matrix, which led to poor drug release control. Here, we used the dopamine polymerization method to produce LMWC-coated NPs (PLGA-pD-LMWC NPs), where the core NPs were prepared with PLGA that served best to load and retain drugs and then functionalized with LMWC via polydopamine layer. The PLGA-pD-LMWC NPs overcame the limitations of PLGA-LMWC NPs while maintaining their advantages. First of all, PLGA-pD-LMWC NPs attenuated the release of paclitaxel to a greater extent than PLGA-LMWC NPs. Moreover, PLGA-pD-LMWC NPs had a pH-dependent surface charge profile and cellular interactions similar to PLGA-LMWC NPs, enabling acid-specific NP-cell interaction and enhanced drug delivery to cells in weakly acidic environment. Although the LMWC layer did not completely prevent protein binding in serum solution, PLGA-pD-LMWC NPs showed less phagocytic uptake than bare PLGA NPs. PMID:26453168

  19. In vivo pharmacokinetics, biodistribution and anti-tumor effect of paclitaxel-loaded targeted chitosan-based polymeric micelle.

    PubMed

    Rezazadeh, Mahboubeh; Emami, Jaber; Hasanzadeh, Farshid; Sadeghi, Hojjat; Minaiyan, Mohsen; Mostafavi, Abolfazl; Rostami, Mahboubeh; Lavasanifar, Afsaneh

    2016-06-01

    A water-insoluble anti-tumor agent, paclitaxel (PTX) was successfully incorporated into novel-targeted polymeric micelles based on tocopherol succinate-chitosan-polyethylene glycol-folic acid (PTX/TS-CS-PEG-FA). The aim of the present study was to evaluate the pharmacokinetics, tissue distribution and efficacy of PTX/TS-CS-PEG-FA in comparison to Anzatax® in tumor bearing mice. The micellar formulation showed higher in vitro cytotoxicity against mice breast cancer cell line, 4T1, due to the folate receptor-mediated endocytosis. The IC50 value of PTX, a concentration at which 50% cells are killed, was 1.17 and 0.93 µM for Anzatax® and PTX/TS-CS-PEG-FA micelles, respectively. The in vivo anti-tumor efficacy of PTX/TS-CS-PEG-FA, as measured by reduction in tumor volume of 4T1 mouse breast cancer injected in Balb/c mice was significantly greater than that of Anzatax®. Pharmacokinetic study in tumor bearing mice revealed that the micellar formulation prolonged the systemic circulation time of PTX and the AUC of PTX/TS-CS-PEG-FA was obtained 0.83-fold lower than Anzatax®. Compared with Anzatax®, the Vd, T1/2ß and MRT of PTX/TS-CS-PEG-FA was increased by 2.76, 2.05 and 1.68-fold, respectively. As demonstrated by tissue distribution, the PTX/TS-CS-PEG-FA micelles increased accumulation of PTX in tumor, therefore, resulted in anti-tumor effects enhancement and drug concentration in the normal tissues reduction. Taken together, our evaluations show that PTX/TS-CS-PEG-FA micelle is a potential drug delivery system of PTX for the effective treatment of the tumor and systematic toxicity reduction, thus, the micellar formulation can provide a useful alternative dosage form for intravenous administration of PTX. PMID:25188785

  20. Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles for the treatment of intraperitoneal ovarian cancer xenografts.

    PubMed

    Pu, Caixiu; Chang, Shufang; Sun, Jiangchuan; Zhu, Shenyin; Liu, Hongxia; Zhu, Yi; Wang, Zhigang; Xu, Ronald X

    2014-01-01

    Ultrasound-targeted microbubble destruction (UTMD) is a promising technique to facilitate the delivery of chemotherapy in cancer treatment. However, the process typically uses nonspecific microbubbles, leading to low tumor-to-normal tissue uptake ratio and adverse side effects. In this study, we synthesized the LHRH receptor-targeted and paclitaxel (PTX)-loaded lipid microbubbles (TPLMBs) for tumor-specific binding and enhanced therapeutic effect at the tumor site. An ovarian cancer xenograft model was established by injecting A2780/DDP cells intraperitoneally in BALB/c nude mice. Microscopic imaging of tumor sections after intraperitoneal injection of TPLMBs showed effective binding of the microbubbles with cancer cells. Ultrasound mediated destruction of the intraperitoneally injected TPLMBs yielded a superior therapeutic outcome in comparison with other treatment options. Immunohistochemical analyses of the dissected tumor tissue further confirmed the increased tumor apoptosis and reduced angiogenesis. Our experiment suggests that ultrasound-mediated intraperitoneal administration of the targeted drug-loaded microbubbles may be a useful method for the treatment of ovarian cancer. PMID:24237050

  1. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor.

    PubMed

    Chen, Yanzuo; Zhang, Wei; Huang, Yukun; Gao, Feng; Sha, Xianyi; Fang, Xiaoling

    2015-07-01

    Although doxorubicin (DOX) and paclitaxel (PTX) are widely used in clinic as chemotherapeutics, both drug substances are found to be glycoprotein P (P-gp) substrates which are liable to develop the multidrug resistance (MDR). Additionally, the use of single chemotherapeutic drug has known limitations such as high toxicity profile due to the relatively high doses and limited regimen of clinical application. To this end, Pluronic P105-DOX conjugate was successfully designed and developed which can be further used as a hydrophobic core to entrap another anti-cancer drug PTX with Pluronic F127 to form the dual drug-loaded mixed micelles (PF-DP) in our study, which would offer great advantages over conventional micelles, including easy fabrication, high loading capacity, and co-delivery of hydrophilic DOX and hydrophobic PTX to achieve synergistic effect of these two drug substances. Results showed that PF-DP possessed a good polydispersity and sustained release profile for both DOX and PTX in vitro. Studies on cellular uptake demonstrated both anti-cancer drugs in PF-DP can effectively accumulate in MDR cancer cells. Furthermore, in vitro cytotoxicity, cell apoptosis and cell cycle arrest studies indicated that PF-DP had better antitumor efficacy in MDR cancer cells compared to those of single-drug loaded micelles. It was also found that PF-DP can suppress the growth of tumor cells more efficiently than single drug formulations at the equivalent drug concentrations, suggesting synergistic effect could be achieved. More importantly, a much stronger antitumor efficacy in MCF-7/ADR tumor-bearing mice was observed in PF-DP group than that of combined administration of free DOX and PTX. Collectively, the dual drug-loaded Pluronic-based functional mixed micelles developed in this study might be a potential nano-drug delivery system for MDR cancer chemotherapy. PMID:25899286

  2. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel.

    PubMed

    Hu, Hongxiang; Lin, Zhiqiang; He, Bing; Dai, Wenbing; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Zhang, Hua; Zhang, Qiang

    2015-12-28

    The combination of high dose of oral lapatinib (LAPA), a HER2 tyrosine kinase inhibitor, with intravenous paclitaxel (PTX) exhibited a clinical survival advantage compared with PTX alone against HER2 positive breast cancer. However, localized delivery system with high regional drug level may greatly decrease the dose of drug, leading to higher safety and lower cost. In an attempt to imitate the fast and slow exposure of these two drugs in clinic use, we incorporated PTX nanoparticles and LAPA microparticles into a thermosensitive hydrogel (PL-gel) for peritumoral injection, using PTX-gel plus LAPA-oral (P-gel+L-oral) and so on as controls. To visually study in vitro or in vivo, PTX/DID and LAPA/DIR hybrid crystals were prepared. In vitro and in vivo studies demonstrated the fast and short-term release of PTX, as well as the slow and long-term release of LAPA from the PL-gel. The most synergistic effect was found between LAPA and PTX on the cell line overexpressing both HER2 and P-gp, and the mechanisms related to LAPA-induced inhibition on P-gp expression, more G2/M phase arrest of PTX and more uptake of PTX in tumor cells. With a dose of LAPA in PL-gel group only less than 5% of that in P-gel+L-oral group, PL-gel demonstrated significant tumor suppression similar to P-gel+L-oral group, and showed longer mice survival time. Besides, PL-gel achieved more steady LAPA accumulation in tumors and revealed significantly less toxicity compared with P-gel+L-oral group. To summarize, this localized co-delivery system with good synergistic effects between LAPA and PTX might offer a potential strategy for HER2 and P-gp positive breast cancer. PMID:26474677

  3. Polymer Nanocomposites Based Thermo-Sensitive Gel for Paclitaxel and Temozolomide Co-Delivery to Glioblastoma Cells.

    PubMed

    Xu, Yuanyuan; Shen, Ming; Sun, Ying; Gao, Pei; Duan, Yourong

    2015-12-01

    In this work, we have reported the preparation and optimization of paclitaxel (PTX) and temozolomide (TMZ) loaded monomethoxy (polyethylene glycol)-poly(D, L-lactide-co-glycolide) (mPEG-PLGA) nanocomposite which is a thermo-sensitive gel delivery system to glioblastoma. We utilized the orthogonal design and homogeneous design for the optimal drug-loaded nanoparticles (NPs) and composite gel prescription, respectively. The physicochemical characteristics of NPs and rheological properties of the gel were analyzed. Then the in vitro release of the gel was determined with a membrane-less diffusion system. Finally, the cytotoxic and apoptosis-inducing effects of the gel on the human malignant glioblastoma cell line U87 and C6 rat glioblastoma cell line were evaluated by MTT and flow cytometry apoptosis assay, respectively. The transmission electron microscopy (TEM) analysis revealed the optimized NPs with a relatively uniform diameter and distribution. The homogeneous design and rheological determination showed that the optimized gel prescription was 250 mg/mL Pluronic F127 (F127), 0.5% hydroxy propyl methylcellulose (HPMC-100M), 0.5% Pluronic F68 (F68), 0.5% sodium alginate (SA) and suitable NPs, which possessed the appropriate gelation behaviors: gelation temperature 28.01 degrees C, gelation time 127.1 s and corrosion speed 0.1892 g/cm2 x hr; and rheological properties: suitable elasticity modulus, viscosity modulus and low phase angle. The in vitro results suggested that the PTX and TMZ were sustainedly released from nanoparticles or the composite gel, and the release and elimination time greatly prolonged; and the composite gel possessed much higher growth-inhibiting effect and apoptosis-inducing rate in U87 and C6 cells than other formulations. These findings demonstrated that the optimal gel was a promising delivery system for the interstitial chemotherapy to glioblastoma. PMID:26682412

  4. Targeting the brain: advances in drug delivery.

    PubMed

    Blumling Iii, James P; Silva, Gabriel A

    2012-09-01

    The blood-brain barrier (BBB) represents a significant obstacle for drug delivery to the brain. Many therapeutics with potential for treating neurological conditions prove incompatible with intravenous delivery simply because of this barrier. Rather than modifying drugs to penetrate the BBB directly, it has proven more efficacious to either physically bypass the barrier or to use specialized delivery vehicles that circumvent BBB regulatory mechanisms. Controlled-release intracranial polymer implants and particle injections are the clinical state of the art with regard to localized delivery, although these approaches can impose significant surgical risks. Focused ultrasound provides a non-invasive alternative that may prove more desirable for acute treatment of brain tumors and other conditions requiring local tissue necrosis. For targeting the brain as a whole, cell-penetrating peptides (CPPs) and molecular trojan horses (MTHs) have demonstrated particular ability as delivery molecules and will likely see increased application. CPPs are not brain specific but offer the potential for efficient traversal of the BBB, and tandem systems with targeting molecules may produce extremely effective brain drug delivery tools. Molecular trojan horses utilize receptor-mediated transcytosis to transport cargo and are thus limited by the quantity of relevant receptors; however, they can be very selective for the BBB endothelium and have shown promise in gene therapy. PMID:23016646

  5. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    NASA Astrophysics Data System (ADS)

    Mandal, Biman B.; Kundu, S. C.

    2009-09-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  6. Synthesis and Evaluation of a Backbone Biodegradable Multiblock HPMA Copolymer Nanocarrier for the Systemic Delivery of Paclitaxel

    PubMed Central

    Zhang, Rui; Luo, Kui; Yang, Jiyuan; Sima, Monika; Sun, Yongen; Janát-Amsbury, Margit M.; Kopeček, Jindřich

    2012-01-01

    The performance and safety of current antineoplastic agents, particularly water-insoluble drugs, are still far from satisfactory. For example, the currently widely used Cremophor EL®-based paclitaxel (PTX) formulation exhibits pharmacokinetic concerns and severe side effects. Thus, the concept of a biodegradable polymeric drug-delivery system, which can significantly improve therapeutic efficacy and reduce side effects is advocated. The present work aims to develop a new-generation of long-circulating, biodegradable carriers for effective delivery of PTX. First, a multiblock backbone biodegradable N-(2-hydroxypropyl)methacrylamide(HPMA) copolymer- PTX conjugate (mP-PTX) with molecular weight (Mw) of 335 kDa was synthesized by RAFT (reversible addition-fragmentation chain transfer) copolymerization, followed by chain extension. In vitro studies on human ovarian carcinoma A2780 cells were carried out to investigate the cytotoxicity of free PTX, HPMA copolymer-PTX conjugate with Mw of 48 kDa (P-PTX), and mP-PTX. The experiments demonstrated that mP-PTX has a similar cytotoxic effect against A2780 cells as free PTX and P-PTX. To further compare the behavior of this new biodegradable conjugate (mP-PTX) with free PTX and P-PTX in vivo evaluation was performed using female nu/nu mice bearing orthotopic A2780 ovarian tumors. Pharmacokinetics study showed that high Mw mP-PTX was cleared more slowly from the blood than commercial PTX formulation and low Mw P-PTX. SPECT/CT imaging and biodistribution studies demonstrated biodegradability as well as elimination of mP-PTX from the body. The tumors in the mP-PTX treated group grew more slowly than those treated with saline, free PTX, and P-PTX (single dose at 20 mg PTX/kg equivalent). Moreover, mice treated with mP-PTX had no obvious ascites and body-weight loss. Histological analysis indicated that mP-PTX had no toxicity in liver and spleen, but induced massive cell death in the tumor. In summary, this biodegradable drug delivery system has a great potential to improve performance and safety of current antineoplastic agents. PMID:23262201

  7. Biodistribution and Bioimaging Studies of Hybrid Paclitaxel Nanocrystals: Lessons Learned of the EPR Effect and Image-Guided Drug Delivery

    PubMed Central

    Hollis, Christin P.; Weiss, Heidi L.; Leggas, Markos; Evers, B. Mark; Gemeinhart, Richard A.; Li, Tonglei

    2013-01-01

    Paclitaxel (PTX) nanocrystals (200 nm) were produced by crystallization from solution. Antitumor efficacy and toxicity were examined through a survival study in a human HT-29 colon cancer xenograft murine model. The antitumor activity of the nanocrystal treatments was comparable with that by the conventional solubilization formulation (Taxol®), but yielded less toxicity as indicated by the result of survival study. Tritium-labeled PTX nanocrystals were further produced with a near infrared (NIR) fluorescent dye physically integrated in the crystal lattice. Biodistribution and tumor accumulation of the tritium-labeled PTX nanocrystals were determined immediately after intravenous administration and up to 48 hours by scintillation counting. Whole-body optical imaging of animals was concurrently carried out; fluorescent intensities were also measured from excised tumors and major organs of euthanized animals. It was found that drug accumulation in the tumor was less than 1% of 20 mg/kg intravenous dose. Qualitatively correlation was identified between the biodistribution determined by using tritium-labeled particles and that using optical imaging, but quantitative divergence existed. The divergent results suggest possible ways to improve the design of hybrid nanocrystals for cancer therapy and diagnosis. The study also raises questions of the general role of the enhanced permeability and retention (EPR) effect in tumor targeting and the effectiveness of bioimaging, specifically for hybrid nanocrystals, in tracking drug distribution and pharmacokinetics. PMID:23920039

  8. Immunosafety and chronic toxicity evaluation of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) polymer micelles for paclitaxel delivery.

    PubMed

    Li, Chang; Shen, Yan; Sun, Chunmeng; Nihad, Cheraga; Tu, Jiasheng

    2016-03-01

    To investigate the physicochemical properties, immunosafety and chronic toxicity of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) (mPEG-PLA), a copolymer used as a carrier for paclitaxel (PTX) delivery. The H-Nuclear Magnetic Resonance (H-NMR), dynamic light scattering and fluorescence probe technique were conducted to determine the physicochemical properties of mPEG-PLA copolymer. PTX-loaded polymeric micelles were characterized regarding their particle size, entrapment efficiency (EE), drug loading (DL), in vitro drug release and hemolysis rate. The complement activation in human serum and mast cells degranulation were performed by ELISA and RBL-2H3 cell line in vitro, respectively. The chronic toxicity study was carried out on beagle dogs. The optimized PTX-loaded mPEG-PLA (40/60) micelles showed a particle size of 37 nm and EE of 98.0% with a DL of 17.0% w/w. Transmission electron microscopy (TEM) analyses showed that mPEG-PLA (40/60) micelles have spherical shape with dense core. In vitro release study showed a sustained release for 24 h, and the hemolysis study revealed that mPEG-PLA (40/60) was a safe nanocarrier for intravenous administration. mPEG-PLA (40/60) showed a lower complement activation ability compared to mPEG-PLA (50/50) and Cremophor® EL (Cr EL). Furthermore, the chronic toxicity of PTX-loaded mPEG-PLA (40/60) micelles was significantly lower than those of mPEG-PLA (50/50) and Cr EL. PMID:24901209

  9. β-Cyclodextrin-Based Inclusion Complexation Bridged Biodegradable Self-Assembly Macromolecular Micelle for the Delivery of Paclitaxel.

    PubMed

    Chen, Yanzuo; Huang, Yukun; Qin, Dongdong; Liu, Wenchao; Song, Chao; Lou, Kaiyan; Wang, Wei; Gao, Feng

    2016-01-01

    In this study, a novel adamantanamine-paclitaxel (AD-PTX) incorporated oligochitosan- carboxymethyl-β-cyclodextrin (CSO-g-CM-β-CD) self-assembly macromolecular (CSO-g-CM-β-CD@AD-PTX) micelle was successfully prepared in water through sonication. The formed molecules were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) spectroscopy, two-dimensional NMR, elemental analysis, and liquid chromatography-mass spectrometry, while the correspondent micelles were characterized by dynamic light scattering and transmission electron microscopy. We showed that the macromolecular micelle contained a spherical core-shell structure with a diameter of 197.1 ± 3.3 nm and zeta potential of -19.1 ± 4.3 mV. The CSO-g-CM-β-CD@AD-PTX micelle exhibited a high drug-loading efficacy up to 31.3%, as well as a critical micelle concentration of 3.4 × 10-7 M, which indicated good stability. Additionally, the in vitro release profile of the CSO-g-CM-β-CD@AD-PTX micelle demonstrated a long-term release pattern, 63.1% of AD-PTX was released from the micelle during a 30-day period. Moreover, the CSO-g-CM-β-CD@AD-PTX micelle displayed cytotoxicity at a sub-μM scale similar to PTX in U87 MG cells, and CSO-g-CM-β-CD exhibited a good safety profile by not manifesting significant toxicity at concentrations up to 100 μM. These results indicated that β-CD-based inclusion complexation resulting in biodegradable self-assembled macromolecular micelles can be utilized as nanocarrier, and may provide a promising platform for drug delivery in the future medical applications. PMID:26964047

  10. β-Cyclodextrin-Based Inclusion Complexation Bridged Biodegradable Self-Assembly Macromolecular Micelle for the Delivery of Paclitaxel

    PubMed Central

    Chen, Yanzuo; Huang, Yukun; Qin, Dongdong; Liu, Wenchao; Song, Chao; Lou, Kaiyan; Wang, Wei; Gao, Feng

    2016-01-01

    In this study, a novel adamantanamine-paclitaxel (AD-PTX) incorporated oligochitosan- carboxymethyl-β-cyclodextrin (CSO-g-CM-β-CD) self-assembly macromolecular (CSO-g-CM-β-CD@AD-PTX) micelle was successfully prepared in water through sonication. The formed molecules were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) spectroscopy, two-dimensional NMR, elemental analysis, and liquid chromatography-mass spectrometry, while the correspondent micelles were characterized by dynamic light scattering and transmission electron microscopy. We showed that the macromolecular micelle contained a spherical core-shell structure with a diameter of 197.1 ± 3.3 nm and zeta potential of −19.1 ± 4.3 mV. The CSO-g-CM-β-CD@AD-PTX micelle exhibited a high drug-loading efficacy up to 31.3%, as well as a critical micelle concentration of 3.4 × 10-7 M, which indicated good stability. Additionally, the in vitro release profile of the CSO-g-CM-β-CD@AD-PTX micelle demonstrated a long-term release pattern, 63.1% of AD-PTX was released from the micelle during a 30-day period. Moreover, the CSO-g-CM-β-CD@AD-PTX micelle displayed cytotoxicity at a sub-μM scale similar to PTX in U87 MG cells, and CSO-g-CM-β-CD exhibited a good safety profile by not manifesting significant toxicity at concentrations up to 100 μM. These results indicated that β-CD-based inclusion complexation resulting in biodegradable self-assembled macromolecular micelles can be utilized as nanocarrier, and may provide a promising platform for drug delivery in the future medical applications. PMID:26964047

  11. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo.

    PubMed

    Zhong, Yinan; Goltsche, Katharina; Cheng, Liang; Xie, Fang; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan; Haag, Rainer

    2016-04-01

    The therapeutic efficacy of nanoscale anticancer drug delivery systems is severely truncated by their low tumor-targetability and inefficient drug release at the target site. Here, we report the design and development of novel endosomal pH-activatable paclitaxel prodrug micelles based on hyaluronic acid-b-dendritic oligoglycerol (HA-dOG-PTX-PM) for active targeting and effective treatment of CD44-overexpressing human breast cancer xenografts in nude mice. HA-dOG-PTX-PM had a high drug content of 20.6 wt.% and an average diameter of 155 nm. The release of PTX was slow at pH 7.4 but greatly accelerated at endosomal pH. MTT assays, flow cytometry and confocal experiments showed that HA-dOG-PTX-PM possessed a high targetability and antitumor activity toward CD44 receptor overexpressing MCF-7 human breast cancer cells. The in vivo pharmacokinetics and biodistribution studies showed that HA-dOG-PTX-PM had a prolonged circulation time in the nude mice and a remarkably high accumulation in the MCF-7 tumor (6.19%ID/g at 12 h post injection). Interestingly, HA-dOG-PTX-PM could effectively treat mice bearing MCF-7 human breast tumor xenografts with little side effects, resulting in complete inhibition of tumor growth and a 100% survival rate over an experimental period of 55 days. These results indicate that hyaluronic acid-shelled acid-activatable PTX prodrug micelles have a great potential for targeted chemotherapy of CD44-positive cancers. PMID:26851390

  12. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol(®)-resistant ovarian cancer.

    PubMed

    Shen, Yao-An; Li, Wai-Hou; Chen, Po-Hung; He, Chun-Lin; Chang, Yen-Hou; Chuang, Chi-Mu

    2015-01-01

    Taxol(®) remained as the mainstay therapeutic agent in the treatment of ovarian cancer, however recurrence rate is still high. Cancer stem cells (CSCs) represent a subset of cells in the bulk of tumors and play a central role in inducing drug resistance and recurrence. Furthermore, cancer metabolism has been an area under intensive investigation, since accumulating evidence has shown that CSCs and cancer metabolism are closely linked, an effect named as metabolic reprogramming. In this work, we aimed to investigate the impacts of a novel liposome-encapsulated paclitaxel (Nano-Taxol) on the stemness phenotype and metabolic reprogramming. A paclitaxel-resistant cell line (TR) was established at first. Tumor growth was induced in the mice peritoneal cavity by inoculation of TR cells. A 2x2 factorial experiment was designed to test the therapeutic efficacy in which factor 1 represented the comparison of drugs (Taxol(®) versus Nano-Taxol), while factor 2 represented the delivery route (intravenous versus intraperitoneal delivery). In this work, we found that intraperitoneal delivery of Nano-Taxol redirects metabolic reprogramming, from glycolysis to oxidative phosphorylation, and effectively suppresses cancer stem cells. Also, intraperitoneal delivery of Nano-Taxol led to a significantly better control of tumor growth compared with intravenous delivery of Taxol(®) (current standard treatment). This translational research may serve as a novel pathway for the drug development of nanomedicine. In the future, this treatment modality may be extended to treat several relevant cancers that have been proved to be suitable for the loco-regional delivery of therapeutic agents, including colon cancer, gastric cancer, and pancreatic cancer. PMID:26175846

  13. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol®-resistant ovarian cancer

    PubMed Central

    Shen, Yao-An; Li, Wai-Hou; Chen, Po-Hung; He, Chun-Lin; Chang, Yen-Hou; Chuang, Chi-Mu

    2015-01-01

    Taxol® remained as the mainstay therapeutic agent in the treatment of ovarian cancer, however recurrence rate is still high. Cancer stem cells (CSCs) represent a subset of cells in the bulk of tumors and play a central role in inducing drug resistance and recurrence. Furthermore, cancer metabolism has been an area under intensive investigation, since accumulating evidence has shown that CSCs and cancer metabolism are closely linked, an effect named as metabolic reprogramming. In this work, we aimed to investigate the impacts of a novel liposome-encapsulated paclitaxel (Nano-Taxol) on the stemness phenotype and metabolic reprogramming. A paclitaxel-resistant cell line (TR) was established at first. Tumor growth was induced in the mice peritoneal cavity by inoculation of TR cells. A 2x2 factorial experiment was designed to test the therapeutic efficacy in which factor 1 represented the comparison of drugs (Taxol® versus Nano-Taxol), while factor 2 represented the delivery route (intravenous versus intraperitoneal delivery). In this work, we found that intraperitoneal delivery of Nano-Taxol redirects metabolic reprogramming, from glycolysis to oxidative phosphorylation, and effectively suppresses cancer stem cells. Also, intraperitoneal delivery of Nano-Taxol led to a significantly better control of tumor growth compared with intravenous delivery of Taxol® (current standard treatment). This translational research may serve as a novel pathway for the drug development of nanomedicine. In the future, this treatment modality may be extended to treat several relevant cancers that have been proved to be suitable for the loco-regional delivery of therapeutic agents, including colon cancer, gastric cancer, and pancreatic cancer. PMID:26175846

  14. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis.

    PubMed

    Chatterjee, Abhisek; Chattopadhyay, Dhrubajyoti; Chakrabarti, Gopal

    2015-02-01

    Non-small cell lung cancer is one of the most aggressive cancers as per as the mortality and occurrence is concerned. Paclitaxel based chemotherapeutic regimes are now used as an important option for the treatment of lung cancer. However, resistance of lung cancer cells to paclitaxel continues to be a major clinical problem nowadays. Despite impressive initial clinical response, most of the patients eventually develop some degree of paclitaxel resistance in the course of treatment. Previously, utilizing miRNA arrays we reported that downregulation of miR-17 is at least partly involved in the development of paclitaxel resistance in lung cancer cells by modulating Beclin-1 expression [1]. In this study, we showed that miR-16 was also significantly downregulated in paclitaxel resistant lung cancer cells. We demonstrated that anti-apoptotic protein Bcl-2 was directly targeted miR-16 in paclitaxel resistant lung cancer cells. Moreover, in this report we showed that the combined overexpression of miR-16 and miR-17 and subsequent paclitaxel treatment greatly sensitized paclitaxel resistant lung cancer cells to paclitaxel by inducing apoptosis via caspase-3 mediated pathway. Combined overexpression of miR-16 and miR-17 greatly reduced Beclin-1 and Bcl-2 expressions respectively. Our results indicated that though miR-17 and miR-16 had no common target, both miR-16 and miR-17 jointly played roles in the development of paclitaxel resistance in lung cancer. miR-17 overexpression reduced cytoprotective autophagy by targeting Beclin-1, whereas overexpression of miR-16 potentiated paclitaxel induced apoptotic cell death by inhibiting anti-apoptotic protein Bcl-2. PMID:25435430

  15. Targeting of Synthetic Gene Delivery Systems

    PubMed Central

    2003-01-01

    Safe, efficient, and specific delivery of therapeutic genes remains an important bottleneck for the development of gene therapy. Synthetic, nonviral systems have a unique pharmaceutical profile with potential advantages for certain applications. Targeting of the synthetic vector improves the specificity of gene medicines through a modulation of the carriers' biodistribution, thus creating a dose differential between healthy tissue and the target site. The biodistribution of current carrier systems is being influenced to a large extent by intrinsic physicochemical characteristics, such as charge and size. Consequently, such nonspecific interactions can interfere with specific targeting, for example, by ligands. Therefore, a carrier complex should ideally be inert, that is, free from intrinsic properties that would bias its distribution away from the target site. Strategies such as coating of DNA carrier complexes with hydrophilic polymers have been used to mask some of these intrinsic targeting effects and avoid nonspecific interactions. Preexisting endogenous ligand-receptor interactions have frequently been used for targeting to certain cell types or tumours. Recently exogenous ligands have been derived from microorganisms or, like antibodies or phage-derived peptides, developed de novo. In animal models, such synthetic vectors have targeted remote sites such as a tumour. Furthermore, the therapeutic proof of the concept has been demonstrated for fitting combinations of synthetic vectors and therapeutic gene. PMID:12721518

  16. The Na+ /H+ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells

    PubMed Central

    Amith, Schammim Ray; Wilkinson, Jodi Marie; Baksh, Shairaz; Fliegel, Larry

    2015-01-01

    Dysregulation of Na+ /H+ exchanger isoform one (NHE1) activity is a hallmark of cells undergoing tumorigenesis and metastasis, the leading cause of patient mortality. The acidic tumor microenvironment is thought to facilitate the development of resistance to chemotherapy drugs and to promote extracellular matrix remodeling leading to metastasis. Here, we investigated NHE1 as a co-adjuvant target in paclitaxel chemotherapy of metastatic breast cancer. We generated a stable NHE1-knockout of the highly invasive, triple-negative, MDA-MB-231 breast cancer cells. The NHE1-knockout cells proliferated comparably to parental cells, but had markedly lower rates of migration and invasion in vitro. In vivo xenograft tumor growth in athymic nude mice was also dramatically decreased compared to parental MDA-MB-231 cells. Loss of NHE1 expression also increased the susceptibility of knockout cells to paclitaxel-mediated cell death. NHE1 inhibition, in combination with paclitaxel, resulted in a dramatic decrease in viability, and migratory and invasive potential of triple-negative breast cancer cells, but not in hormone receptor-positive, luminal MCF7 cells. Our data suggest that NHE1 is critical in triple-negative breast cancer metastasis, and its chemical inhibition boosts the efficacy of paclitaxel in vitro, highlighting NHE1 as a novel, potential co-adjuvant target in breast cancer chemotherapy. PMID:25514463

  17. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  18. Tumor hypoxia, the Warburg effect, and multidrug resistance: Modulation of hypoxia induced MDR using EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine therapy

    NASA Astrophysics Data System (ADS)

    Jabr-Milane, Lara Scheherazade

    Multi-drug resistant (MDR) cancer is a significant clinical obstacle and is often implicated in cases of recurrent, non-responsive disease. The biological focus of this work is to explore the relationship between the hypoxic microenvironment of a tumor, the development of MDR, and the energetic profile characteristic of the Warburg effect (aerobic glycolysis). The therapeutic aim of this research is to develop an EGFR-targeted nanocarrier system for combination (paclitaxel/lonidamine) therapy for the treatment of MDR cancer. The stability of the nanocarrier formulation was validated in vitro and the system was characterized for drug release kinetics, size, surface modification, and EGFR-targeting ability. An orthotopic animal model of hypoxic, MDR breast cancer was developed for the pre-clinical evaluation of this system. The EGFR-targeted nanoparticles loaded with lonidamine and paclitaxel demonstrated superior pharmacokinetic parameters relative to non-targeted nanoparticles and drug solution. Combination therapy with lonidamine and paclitaxel, in solution and EGFR-targeted nanoparticle form, was more effective at suppressing tumor growth than single agent treatment. However, combination therapy with EGFR-targeted nanoparticles was less toxic than treatment with drug solution. Combination therapy did change the MDR and hypoxic character of the tumors as demonstrated by a decrease in marker proteins. This EGFR-targeted combination nanocarrier therapy has the potential to make the successful treatment of MDR a clinical reality.

  19. Globular protein-coated Paclitaxel nanosuspensions: interaction mechanism, direct cytosolic delivery, and significant improvement in pharmacokinetics.

    PubMed

    Li, Yongji; Wu, Zhannan; He, Wei; Qin, Chao; Yao, Jing; Zhou, Jianping; Yin, Lifang

    2015-05-01

    About 40% of the marketed drugs and 70-90% of new drug candidates are insoluble in water and therefore poorly bioavailable, which significantly compromises their therapeutic effects. A formulation of nanosuspensions achieved by reducing the pure drug particle size down to seb-micron range is one of the most promising approaches to overcome the insolubility. However, the nanosuspension formulations are subject to instability because of nucleation and particle growth. Therefore, a stabilizer is needed to be incorporated into the nanosuspension formulation during the preparation process to suppress the aggregation of drug particles. ?-LG, a globular protein, is broken by heat-induced denaturation, and its hydrophobic area is exposed, which allows it to associate with organic particles. PTX, an insoluble drug, is widely used for the clinical treatment of human cancer. However, this drug's clinical application is greatly limited by intrinsic defects including poor solubility, adverse side effects, and poor tumor penetration. In this study, we prepared ?-LG-stabilized PTX nanosuspensions (PTX-NS) by coating the protein onto nanoscaled drug particles, investigating the stabilization effect of ?-LG on PTX-NS, and evaluating its in vitro and in vivo performance. PTX-NS with a diameter of approximately 200 nm was easily prepared. ?-LG produced significantly stabilized effect on PTX-NS via the interaction between the hydrophobic area of the protein and the hydrophobic surface of the drug particles, which resulted in a conformational change of the protein, the loss of both secondary and tertiary structures, and the transition of Trp residues to a less hydrophobic condition. Importantly, unlike other conventional nanoparticles, PTX-NS could directly translocated across the membrane into the cytosol in an energy-independent manner, without entrapment within the endosomal-lysosomal system. Moreover, compared with Taxol, PTX-NS increased AUC and Cmax by 26- and 16-fold, respectively, and prolonged T1/2 by 314-fold. As expected, PTX-NS had better in vitro and in vivo antitumor activity compared to PTX alone. Additionally, ?-LG is cyto- and bio-compatible, and PTX-NS is not toxic to healthy tissues. In conclusion, the present study has suggested the high potency of globular proteins, such as ?-LG, as novel biomaterials for nanosuspension platform to improve the drug delivery for disease treatment. PMID:25799282

  20. Cooperative assembly in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  1. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells. PMID:23615724

  2. Targeted delivery of colloids by swimming bacteria.

    PubMed

    Koumakis, N; Lepore, A; Maggi, C; Di Leonardo, R

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  3. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  4. Targeted delivery of colloids by swimming bacteria

    PubMed Central

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  5. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy.

    PubMed

    Satsangi, Arpan; Roy, Sudipa S; Satsangi, Rajiv K; Tolcher, Anthony W; Vadlamudi, Ratna K; Goins, Beth; Ong, Joo L

    2015-08-01

    Breast cancer is the leading cause of cancer deaths among women. Paclitaxel (PTX), an important breast cancer medicine, exhibits reduced bioavailability and therapeutic index due to high hydrophobicity and indiscriminate cytotoxicity. PTX encapsulation in one-level active targeting overcomes such barriers, but enhances toxicity to normal tissues with cancer-similar expression profiles. This research attempted to overcome this challenge by increasing selectivity of cancer cell targeting while maintaining an ability to overcome traditional pharmacological barriers. Thus, a multi-core, multi-targeting construct for tumor specific delivery of PTX was fabricated with (i) an inner-core prodrug targeting the cancer-overexpressed cathepsin B through a cathepsin B-cleavable tetrapeptide that conjugates PTX to a poly(amidoamine) dendrimer, and (ii) the encapsulation of this prodrug (PGD) in an outer core of a RES-evading, folate receptor (FR)-targeting liposome. Compared to traditional FR-targeting PTX liposomes, this sequentially active-targeted dendrosome demonstrated better prodrug retention, an increased cytotoxicity to cancer cells (latter being true when FR and cathepsin B activities were both at moderate-to-high levels) and higher tumor reduction. This research may eventually evolve a product platform with reduced systemic toxicity inherent with traditional chemotherapy and localized toxicity inherent to single-target nanoplatforms, thereby allowing for better tolerance of higher therapeutic load in advanced disease states. PMID:25956854

  6. Clusterin is a potential molecular predictor for ovarian cancer patient's survival: targeting Clusterin improves response to paclitaxel

    PubMed Central

    2011-01-01

    Background Clusterin is a cytoprotective chaperone protein involved in numerous physiological processes, carcinogenesis, tumor growth and tissue remodelling. The purpose of this study was to investigate whether clusterin (CLU), an antiapoptotic molecule, could be a potential predictor molecule for ovarian cancer and whether or not targeting this molecule can improve survival of ovarian cancer patients. Methods Clusterin expression was compared between ten primary and their recurrent tumors from same patients immunohistochemically. We analyzed prognostic significance of CLU expression in another 47 ovarian cancer tissue samples by immunohistochemistry. We used small interference RNA to knock down CLU in the chemo-resistant ovarian cancer cell lines. KF-TX and SKOV-3-TX, paclitaxel-resistant ovarian cancer cells, were established from parental KF and SKOV-3 chemo-sensitive cell lines, respectively. Either siRNA or second generation antisense oligodeoxynucleotide against CLU (OGX-011), which is currently evaluated in clinical phase II trials in other cancer s, was used to modulate sensitivity to paclitaxel (TX) in ovarian cancer cells in vitro. Cellular viability assay, FACS analysis and annexin V staining were used to evaluate the comparative effect of CLU knocking down in ovarian cancer cells. Results Immunohistochemical analysis of CLU expression in primary ovarian cancer tissue specimens and their recurrent counterparts from same patients demonstrated higher expression of CLU in the recurrent resistant tumors compared with their primary tumors. High expression of CLU by immunohistochemistry among 47 surgical tissue specimens of early-stage (stage I/II) ovarian cancer, who underwent complete cytoreduction as a primary surgery, significantly related to poor survival, while none of other clinicopathological factors analyzed were related to survival in this patient cohort. Secretory CLU (s-CLU; 60 KDa) expression was upregulated in TX-resistant ovarian cancer cells compared to parental cells. Transfection of siRNA or OGX-011 clearly reduced CLU expression. Cell viability assay, FACS analysis and annexin V staining demonstrated that targeting CLU expression by siRNA or OGX-011 sensitized ovarian cancer cells to TX. Conclusion We conclude that CLU could be a potential molecular target to predict survival while targeting this s-CLU may improve survival of patients with ovarian cancer. PMID:22185350

  7. Targeted Lung Delivery of Nasally Administered Aerosols

    PubMed Central

    Tian, Geng; Hindle, Michael; Longest, P. Worth

    2014-01-01

    Using the nasal route to deliver pharmaceutical aerosols to the lungs has a number of advantages including co-administration during non-invasive ventilation. The objective of this study was to evaluate the growth and deposition characteristics of nasally administered aerosol throughout the conducting airways based on delivery with streamlined interfaces implementing two forms of controlled condensational growth technology. Characteristic conducting airways were considered including a nose-mouth-throat (NMT) geometry, complete upper tracheobronchial (TB) model through the third bifurcation (B3), and stochastic individual path (SIP) model to the terminal bronchioles (B15). Previously developed streamlined nasal cannula interfaces were used for the delivery of submicrometer particles using either enhanced condensational growth (ECG) or excipient enhanced growth (EEG) techniques. Computational fluid dynamics (CFD) simulations predicted aerosol transport, growth and deposition for a control (4.7 μm) and three submicrometer condensational aerosols with budesonide as a model insoluble drug. Depositional losses with condensational aerosols in the cannula and NMT were less than 5% of the initial dose, which represents an order-of-magnitude reduction compared to the control. The condensational growth techniques increased the TB dose by a factor of 1.1–2.6x, delivered at least 70% of the dose to the alveolar region, and produced final aerosol sizes ≥2.5 μm. Compared to multiple commercial orally inhaled products, the nose-to-lung delivery approach increased dose to the biologically important lower TB region by factors as large as 35x. In conclusion, nose-to-lung delivery with streamlined nasal cannulas and condensational aerosols was highly efficient and targeted deposition to the lower TB and alveolar regions. PMID:24932058

  8. Targeted estrogen delivery reverses the metabolic syndrome.

    PubMed

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Mller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; Garca-Cceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrab?; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschp, Matthias H

    2012-12-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1-targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1-estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  9. Targeted estrogen delivery reverses the metabolic syndrome

    PubMed Central

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

    2013-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  10. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    NASA Astrophysics Data System (ADS)

    Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita

    2015-07-01

    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.

  11. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    PubMed Central

    Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B.N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita

    2015-01-01

    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues. PMID:26145450

  12. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer

    PubMed Central

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-01-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and PTX may provide useful guidance for effective and safe cancer chemotherapy, especially in tumors with high FA receptor expression. PMID:26517524

  13. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and PTX may provide useful guidance for effective and safe cancer chemotherapy, especially in tumors with high FA receptor expression. PMID:26517524

  14. Targeted medication delivery using magnetic nanostructures

    SciTech Connect

    Yoon, Mina

    2007-01-01

    We use quaternion molecular dynamics simulations to describe field-induced structural transitions in systems of few magnetic dipoles and their use for targeted medication delivery. Compact ring isomers of magnetic particles are contained, together with molecules of an active medication, inside inert microcapsules. The filled microcapsules may be transported within the body using a weak,inhomogeneous magnetic field. Medication release is triggered by puncturing the container during a structural transition within the magnetic subsystem, induced by an externally applied strong magnetic field. Our simulations describe not only the time evolution of the magnetic subsystem during a successful medication release, but also address ways to suppress an accidental release induced by thermal and magnetic fluctuations.

  15. Delayed onset of paresis in rats with experimental intramedullary spinal cord gliosarcoma following intratumoral administration of the paclitaxel delivery system OncoGel

    PubMed Central

    Tyler, Betty M.; Hdeib, Alia; Caplan, Justin; Legnani, Federico G.; Fowers, Kirk D.; Brem, Henry; Jallo, George; Pradilla, Gustavo

    2014-01-01

    Object Treatment options for anaplastic or malignant intramedullary spinal cord tumors (IMSCTs) remain limited. Paclitaxel has potent cytotoxicity against experimental intracranial gliomas and could be beneficial in the treatment of IMSCTs, but poor CNS penetration and significant toxicity limit its use. Such limitations could be overcome with local intratumoral delivery. Paclitaxel has been previously incorporated into a biodegradable gel depot delivery system (OncoGel) and in this study the authors evaluated the safety of intramedullary injections of OncoGel in rats and its efficacy against an intramedullary rat gliosarcoma. Methods Safety of intramedullary OncoGel was tested in 12 Fischer-344 rats using OncoGel concentrations of 1.5 and 6.0 mg/ml (5 μl); median survival and functional motor scores (Basso-Beattie-Bresnahan [BBB] scale) were compared with those obtained with placebo (ReGel) and medium-only injections. Efficacy of OncoGel was tested in 61 Fischer-344 rats implanted with an intramedullary injection of 9L gliosarcoma containing 100,000 cells in 5 μl of medium, and randomized to receive OncoGel administered on the same day (in 32 rats) or 5 days after tumor implantation (in 29 rats) using either 1.5 mg/ml or 3.0 mg/ml doses of paclitaxel. Median survival and BBB scores were compared with those of ReGel-treated and tumor-only rats. Animals were killed after the onset of deficits for histopathological analysis. Results OncoGel was safe for intramedullary injection in rats in doses up to 5 μl of 3.0 mg/ml of paclitaxel; a dose of 5 μl of 6.0 mg/ml caused rapid deterioration in BBB scores. OncoGel at concentrations of 1.5 mg/ml and 3.0 mg/ml paclitaxel given on both Day 0 and Day 5 prolonged median survival and preserved BBB scores compared with controls. OncoGel 1.5 mg/ml produced 62.5% long-term survivors when delivered on Day 0. A comparison between the 1.5 mg/ml and the 3.0 mg/ml doses showed higher median survival with the 1.5 mg/ml dose on Day 0, and no differences in median survival or BBB scores after treatment on Day 5. Conclusions OncoGel is safe for intramedullary injection in rats in doses up to 5 μl of 3.0 mg/ml, prolongs median survival, and increases functional motor scores in rats challenged with an intramedullary gliosarcoma at the doses tested. This study suggests that locally delivered chemotherapeutic agents could be of temporary benefit in the treatment of malignant IMSCTs under experimental settings. PMID:22208429

  16. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response.

    PubMed

    Jiang, Lei; Li, Li; He, Xiaodan; Yi, Qiangying; He, Bin; Cao, Jun; Pan, Weisan; Gu, Zhongwei

    2015-06-01

    Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites, and these have a tremendous potential for killing cancer cells, especially those with multidrug resistance (MDR). Herein we report a novel dual-functional liposome system possessing both extracellular pH response and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Briefly, peptide D[KLAKLAK]2 (KLA) was modified with 2, 3-dimethylmaleic anhydride (DMA) and combined with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-KLA-DMA (DKD) lipid. This dual-functional DKD was then mixed with other commercially available lipids to fabricate liposomes. In vitro anticancer efficacy of this liposome system was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/Taxol cells. At tumor extracellular pH (∼6.8), liposomes could reverse their surface charge (negative to positive), facilitating liposome internalization. After cellular uptake, KLA peptide directed delivery-enabled selective accumulation of these liposomes into mitochondria and favored release of their cargo paclitaxel (PTX) into desired sites. Specifically, enhanced apoptosis of MDR cancer cells through mitochondrial signaling pathways was evidenced by release of cytochrome c and increased activity of caspase-9 and -3. These dual-functional liposomes had the greatest efficacy for treating A549 cells and A549/Taxol cells in vitro, and in treating drug-resistant lung cancer A549/Taxol cells xenografted onto nude mice (tumor growth inhibition 86.7%). In conclusion, dual-functional liposomes provide a novel and versatile approach for overcoming MDR in cancer treatment. PMID:25818419

  17. Mitochondrial biology, targets, and drug delivery.

    PubMed

    Milane, Lara; Trivedi, Malav; Singh, Amit; Talekar, Meghna; Amiji, Mansoor

    2015-06-10

    In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application. PMID:25841699

  18. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    PubMed

    Raz, Nasibeh Rady; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes. PMID:26529771

  19. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel.

    PubMed

    Tambe, Mahesh; Pruikkonen, Sofia; Mäki-Jouppila, Jenni; Chen, Ping; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J

    2016-03-15

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3' UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy. PMID:26943585

  20. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  1. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.

    PubMed

    Wang, Hai; Zhao, Ying; Wu, Yan; Hu, Yu-lin; Nan, Kaihui; Nie, Guangjun; Chen, Hao

    2011-11-01

    The use of single chemotherapeutic drug has shown some limitations in anti-tumor treatment, such as development of drug resistance, high toxicity and limited regime of clinical uses. The combination of two or more therapeutic drugs is feasible means to overcome the limitations. Co-delivery strategy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies. Attempts have been made to deliver chemotherapeutic drugs simultaneously using drug carriers, such as micelles, liposomes, and inorganic nanoparticles (NPs). Here we reported core-shell NPs that were doubly emulsified from an amphiphilic copolymer methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA). These NPs offered advantages over other nanocarriers, as they were easy to fabricate by improved double emulsion method, biocompatible, and showed high loading efficacy. More importantly, these NPs could co-deliver hydrophilic doxorubicin (DOX) and hydrophobic paclitaxel (TAX). The drug-loaded NPs possessed a better polydispersity, indicating that they are more readily subject to controlled size distribution. Studies on drug release and cellular uptake of the co-delivery system demonstrated that both drugs were effectively taken up by the cells and released simultaneously. Furthermore, the co-delivery nanocarrier suppressed tumor cells growth more efficiently than the delivery of either DOX or TAX at the same concentrations, indicating a synergistic effect. Moreover, the NPs loading drugs with a DOX/TAX concentration ratio of 2:1 showed the highest anti-tumor activity to three different types of tumor cells. This nanocarrier might have important potential in clinical implications for co-delivery of multiple anti-tumor drugs with different properties. PMID:21807411

  2. Nanoparticle-based targeted drug delivery

    PubMed Central

    Singh, Rajesh; Lillard, James W.

    2009-01-01

    Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the “nanometer” size range. These nano-sized objects, e.g., “nanoparticles”, take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad© nanoparticle formulation that has shown efficacy in treating solid tumors, for single dose vaccination, and oral delivery of therapeutic proteins. PMID:19186176

  3. Synthesis and biological evaluation of a peptide-paclitaxel conjugate which targets the integrin αvβ₆.

    PubMed

    Li, Shunzi; Gray, Bethany Powell; McGuire, Michael J; Brown, Kathlynn C

    2011-09-15

    The integrin α(v)β(6) is an emergent biomarker for non-small cell lung cancer (NSCLC) as well as other carcinomas. We previously developed a tetrameric peptide, referred to as H2009.1, which binds α(v)β(6) and displays minimal affinity for other RGD-binding integrins. Here we report the use of this peptide to actively deliver paclitaxel to α(v)β(6)-positive cells. We synthesized a water soluble paclitaxel-H2009.1 peptide conjugate in which the 2'-position of paclitaxel is attached to the tetrameric peptide via an ester linkage. The conjugate maintains its specificity for α(v)β(6)-expressing NSCLC cells, resulting in selective cytotoxicity. Treatment of α(v)β(6)-positive cells with the conjugate results in cell cycle arrest followed by induction of apoptosis in the same manner as free paclitaxel. However, initiation of apoptosis and the resultant cell death is delayed compared to free drug. The conjugate demonstrates anti-tumor activity in a H2009 xenograft model of NSCLC with efficacy comparable to treatment with free paclitaxel. PMID:21868241

  4. Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model

    PubMed Central

    Yang, Ming; Yu, Tao; Wood, Joseph; Wang, Ying-Ying; Tang, Benjamin C.; Zeng, Qi; Simons, Brian W.; Fu, Jie; Chuang, Chi-Mu; Lai, Samuel K.; Wu, T.-C.; Hung, Chien-Fu; Hanes, Justin

    2014-01-01

    Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (~ 13% w/w) and prolonged release (~ 13 days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40 days and extended the median survival time to 75 days compared to treatments with Taxol® (47 days) or IP placebo particles (34 days). IP PTX/PEG-PSA was well tolerated, with only minimal to mild inflammation. Our findings support PTX/PEG–PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer, and potentially other metastatic peritoneal cancers. PMID:24816829

  5. Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model.

    PubMed

    Yang, Ming; Yu, Tao; Wood, Joseph; Wang, Ying-Ying; Tang, Benjamin C; Zeng, Qi; Simons, Brian W; Fu, Jie; Chuang, Chi-Mu; Lai, Samuel K; Wu, T-C; Hung, Chien-Fu; Hanes, Justin

    2014-04-01

    Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (~ 13% w/w) and prolonged release (~ 13 days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40 days and extended the median survival time to 75 days compared to treatments with Taxol(®) (47 days) or IP placebo particles (34 days). IP PTX/PEG-PSA was well tolerated, with only minimal to mild inflammation. Our findings support PTX/PEG-PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer, and potentially other metastatic peritoneal cancers. PMID:24816829

  6. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells.

    PubMed

    Satsangi, Arpan; Roy, Sudipa S; Satsangi, Rajiv K; Vadlamudi, Ratna K; Ong, Joo L

    2014-06-01

    Breast cancer is the second most common cause of cancer-related deaths in women. Chemotherapy is an important treatment modality, and paclitaxel (PTX) is often the first-line therapy for its metastatic form. The two most notable limitations related to PTX-based treatment are the poor hydrophilicity of the drug and the systemic toxicity due to the drug's nonspecific and indiscriminate distribution among the tissues. The present work describes an approach to counter both challenges by designing a conjugate of PTX with a hydrophilic macromolecule that is coupled through a biocleavable linker, thereby allowing for active targeting to an enzyme significantly upregulated in cancer cells. The resultant strategy would allow for the release of the active ingredient preferentially at the site of action in related cancer cells and spare normal tissue. Thus, PTX was conjugated to the hydrophilic poly(amdioamine) [PAMAM] dendrimer through the cathepsin B-cleavable tetrapeptide Gly-Phe-Leu-Gly. The PTX prodrug conjugate (PGD) was compared to unbound PTX through in vitro evaluations against breast cancer cells and normal kidney cells as well as through in vivo evaluations using xenograft mice models. As compared to PTX, PGD demonstrated a higher cytotoxicity specific to cell lines with moderate-to-high cathepsin B activity; cells with comparatively lower cathepsin B activity demonstrated an inverse of this relationship. Regression analysis between the magnitude of PGD-induced cytotoxic increase over PTX and cathepsin B expression showed a strong, statistically significant correlation (r(2) = 0.652, p < 0.05). The PGD conjugate also demonstrated a markedly higher tumor reduction as compared to PTX treatment alone in MDA-MB-231 tumor xenograft models, with PGD-treated tumor volumes being 48% and 34% smaller than PTX-treated volumes at weeks 2 and 3 after treatment initiation. PMID:24847940

  7. Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders

    PubMed Central

    Dang, Lei; Liu, Jin; Li, Fangfei; Wang, Luyao; Li, Defang; Guo, Baosheng; He, Xiaojuan; Jiang, Feng; Liang, Chao; Liu, Biao; Badshah, Shaikh Atik; He, Bing; Lu, Jun; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation. PMID:27011176

  8. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel.

    PubMed

    Lv, Shixian; Tang, Zhaohui; Zhang, Dawei; Song, Wantong; Li, Mingqiang; Lin, Jian; Liu, Huaiyu; Chen, Xuesi

    2014-11-28

    The synthesis of polymer-drug conjugate (PDC) capable of convenient preparation and controlled release of therapeutic agents is still an urgent requirement in drug delivery field. Herein, we develop a novel anti-cancer PDC engineered with side groups of disulfide and ester bonds for on-demand delivery of paclitaxel (PTX) with redox and pH dual sensitive behaviors. A simple polymer, 3,3'-dithiodipropionic acid functionalized poly(ethylene glycol)-b-poly(l-lysine) (mPEG-b-P(LL-DTPA)), was synthesized and PTX was directly conjugated to the carboxyl groups of mPEG-b-P(LL-DTPA) to obtain the disulfide-containing polymer-PTX conjugate (P(L-SS-PTX)). Another structural similar polymer-PTX conjugate without disulfide bonds (P(L-PTX)) was also prepared to verify the function of disulfide linkages. The P(L-SS-PTX) micelles showed rapid drug release under tumor-relevant reductive conditions as designed. Interestingly, the PTX release from P(L-SS-PTX) micelles could also be promoted by the increased acidity (pH ≈ 5). In vitro cytotoxicity study showed that the P(L-SS-PTX) micelles exhibited significantly enhanced cytotoxicity against a variety of tumor cells compared to the non-sensitive P(L-PTX) micelles. The in vivo studies on B16F1 melanoma bearing C57BL/6 mice demonstrated the superior antitumor activity of P(L-SS-PTX) over both free PTX and P(L-PTX). This dual-sensitive prodrug provides a useful strategy for anti-tumor drug delivery. PMID:25220162

  9. β-Lapachone and Paclitaxel Combination Micelles with Improved Drug Encapsulation and Therapeutic Synergy as Novel Nanotherapeutics for NQO1-Targeted Cancer Therapy.

    PubMed

    Zhang, Ling; Chen, Zhen; Yang, Kuan; Liu, Chun; Gao, Jinming; Qian, Feng

    2015-11-01

    β-Lapachone (LPC) is a novel cytotoxic agent that is bioactivated by NADP(H): quinone oxidoreductase 1 (NQO1), an enzyme elevated in a variety of tumors, such as non-small cell lung cancer (NSCLC), pancreatic cancer, liver cancer, and breast cancer. Despite its unique mechanism of action, its clinical evaluation has been largely hindered by low water solubility, short blood half-life, and narrow therapeutic window. Although encapsulation into poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-PLA) micelles could modestly improve its solubility and prolong its half-life, the extremely fast intrinsic crystallization tendency of LPC prevents drug loading higher than ∼2 wt %. The physical stability of the LPC-loaded micelles is also far from satisfactory for further development. In this study, we demonstrate that paclitaxel (PTX), a front-line drug for many cancers, can provide two functions when coencapsulated together with LPC in the PEG-PLA micelles; first, as a strong crystallization inhibitor for LPC, thus to significantly increase the LPC encapsulation efficiency in the micelle from 11.7 ± 2.4% to 100.7 ± 2.2%. The total drug loading efficiency of both PTX and LPC in the combination polymeric micelle reached 100.3 ± 3.0%, and the drug loading density reached 33.2 ± 1.0%. Second, the combination of LPC/PTX demonstrates strong synergistic cytotoxicity effect against the NQO1 overexpressing cancer cells, including A549 NSCLC cells, and several pancreatic cancer cells (combination index <1). In vitro drug release study showed that LPC was released faster than PTX either in phosphate-buffered saline (PH = 7.4) or in 1 M sodium salicylate, which agrees with the desired dosing sequence of the two drugs to exert synergistic pharmacologic effect at different cell checkpoints. The PEG-PLA micelles coloaded with LPC and PTX offer a novel nanotherapeutic, with high drug loading, sufficient physical stability, and biological synergy to increase drug delivery efficiency and optimize the therapeutic window for NOQ1-targeted therapy of cancer. PMID:26415823

  10. CYCLOSTREPTIN DERIVATIVES SPECIFICALLY TARGET CELLULAR TUBULIN AND FURTHER MAP THE PACLITAXEL SITE†

    PubMed Central

    Calvo, Enrique; Barasoain, Isabel; Matesanz, Ruth; Pera, Benet; Camafeita, Emilio; Pineda, Oriol; Hamel, Ernest; Vanderwal, Christopher D.; Andreu, José Manuel; López, Juan A.; Díaz, José Fernando

    2012-01-01

    Cyclostreptin is the first microtubule stabilizing agent whose mechanism of action was discovered to involve formation of a covalent bond with tubulin. Treatment of cells with cyclostreptin irreversibly stabilizes their microtubules because cyclostreptin forms a covalent bond to β-tubulin at either the T220 or the N228 residue, located, respectively, at the microtubule pore and luminal taxoid binding sites. Due to its unique mechanism of action, cyclostreptin overcomes P-glycoprotein-mediated multidrug resistance in tumor cells. We used a series of reactive cyclostreptin analogues, 6-chloroacetyl-cyclostreptin, 8-chloroacetyl-cyclostreptin, and [14C-acetyl]-8-acetyl-cyclostreptin, to characterize the cellular target of the compound and to map the binding site. The three analogues were cytotoxic and stabilized microtubules in both sensitive and multidrug resistant tumor cells. In both types of cells, we identified β-tubulin as the only or the predominantly labeled cellular protein, indicating that a covalent binding to microtubules is sufficient to prevent drug efflux mediated by P-glycoprotein. 6-chloroacetyl-cyclostreptin, 8-chloroacetyl-cyclostreptin, and 8-acetyl-cyclostreptin labeled both microtubules and unassembled tubulin at a single residue of the same tryptic peptide of β-tubulin as was labeled by cyclostreptin (219-LTTPTYGDLNHLVSATMSGVTTCLR-243), but labeling with the analogues occurred at different positions of the peptide. 8-Acetyl-cyclostreptin reacted either with T220 or N228, as did the natural product, while 8-chloroacetyl-cyclostreptin formed a cross link to C241. Finally 6-chloroacetyl-cyclostreptin reacted with any one of the three residues, thus labeling the pathway for cyclostreptin-like compounds, leading from the pore where these compounds enter the microtubule to the luminal binding pocket. PMID:22148836

  11. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: preparation, characterization and antitumor activity.

    PubMed

    Patel, Ketan; Patil, Anand; Mehta, Miten; Gota, Vikram; Vavia, Pradeep

    2014-09-10

    Several molecular inheritances have severely restrained the peroral delivery of taxanes. The main objective of the present investigation was to develop a paclitaxel (PTX) formulation which can circumvent the hurdles of its extremely poor solubility and permeability, Pgp efflux and high pre-systemic metabolism. Positively charged PTX nanocrystals of 209 nm were prepared by sonoprecipitation with high pressure homogenization technique, wherein an arginine based surfactant was explored as a stabilizer. The BET surface area analysis revealed that the surface area of PNC was 8.53 m(2)/gm, reflecting significant rise in surface area with nanonization of PTX. The DSC and XRD pattern suggested that the PTX is in the form of the most stable dihydrate crystal. The PNC showed very rapid dissolution profile compared to plain PTX in both sinks and non-sink conditions. Clarithromycin (CLM) was evaluated as a better alternative to cyclosporin A in improving PTX permeability. The PNC-CLM showed remarkable enhancement of 453% in relative bioavailability along with maintaining the therapeutic concentration of PTX for 8h. Efficacy data in B16 F10 melanoma tumor bearing mice showed substantial reduction in tumor volume and improvement in percentage survival compared to the control group. PMID:24954663

  12. Heat-treated emulsions with cross-linking bovine serum albumin interfacial films and different dextran surfaces: effect of paclitaxel delivery.

    PubMed

    Qi, Jianing; Huang, Chong; He, Fen; Yao, Ping

    2013-04-01

    In this study, a type of biocompatible and biodegradable oil-in-water emulsion for hydrophobic drug delivery was evaluated in vitro and in vivo. Bovine serum albumin (BSA)-dextran conjugates with different dextran molecular weights and different conjugation degrees were used as the emulsifier and stabilizer. Paclitaxel (PTX), a hydrophobic antitumor drug, was effectively loaded inside the oil droplets via high-pressure homogenization. The emulsions were heated at 90°C for 1 h to eliminate the anaphylaxis of BSA. By virtue of the cross-linked BSA films at the oil-water interfaces produced by the heat treatment and the hydrophilic dextran surfaces, the emulsions are stable in blood serum, as well as stable against long-term storage. In vitro cytotoxicity study verifies that the unloaded emulsions are biocompatible and the PTX-loaded emulsions have similar antitumor activity as PTX solution. In vivo investigation of murine ascites hepatoma H22-tumor-bearing mice demonstrates that the PTX-loaded emulsion with shorter and denser dextran surface has better tumor inhibition and survivability efficacy than the commercial PTX injection. PMID:23389967

  13. Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice

    PubMed Central

    2015-01-01

    Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer. PMID:25776964

  14. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent.

    PubMed

    Ray Chowdhuri, Angshuman; Bhattacharya, Dipsikha; Sahu, Sumanta Kumar

    2016-02-21

    The development of a novel multifunctional porous nanoplatform for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging has been realised in the current work. Here we have developed a magnetic nanoscale metal organic frameworks (NMOF) for potential targeted drug delivery. These magnetic NMOFs were fabricated by incorporation of Fe3O4 nanoparticles into porous isoreticular metal organic frameworks (IRMOF-3). To achieve targeted drug delivery towards cancer cells specifically, folic acid was conjugated to the NMOF surface. Then, the fluorescent molecule rhodamine B isothiocyanate (RITC) was conjugated to the NMOFs for biological imaging applications. The synthesized magnetic NMOFs were fully characterised by FTIR, powder XRD, XPS, SQUID, TGA, TEM, FESEM, and DLS. The synthesized magnetic NMOFs were observed to be smaller than 100 nm and were found to be nontoxic towards human cervix adenocarcinoma (HeLa) and murine fibroblast (NIH3T3) cells according to cell viability assays. The cancer chemotherapy drug paclitaxel was conjugated to the magnetic NMOFs through hydrophobic interactions with a relatively high loading capacity. Moreover, these folic acid-conjugated magnetic NMOFs showed stronger T2-weighted MRI contrast towards the cancer cells, justifying their possible significance in imaging. PMID:26754449

  15. Receptor-targeted nanocarriers for therapeutic delivery to cancer

    PubMed Central

    YU, BO; TAI, HENG CHIAT; XUE, WEIMING; LEE, L. JAMES; LEE, ROBERT J.

    2013-01-01

    Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles. PMID:21028937

  16. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy.

    PubMed

    Chari

    1998-04-01

    The potential of targeted delivery of chemotherapeutic drugs for the treatment of cancer has not yet been realized owing to the difficulty of delivering therapeutic concentrations to the target site. While in vivo studies in animal tumor models have produced very encouraging results, clinical studies with antibody-drug conjugates have been less successful. This paper will review the current status of the targeted delivery approach and analyze some of the reasons for the lack of success so far. Starting with a historical perspective, this review will end with a description of newer, more potent and specific antibody-drug conjugates, which behave like tumor-activated prodrugs that may yet fulfil the promise of the targeted delivery approach for the treatment of cancer. PMID:10837619

  17. Targeted Nanomedicine for Suppression of CD44 and Simultaneous Cell Death Induction in Ovarian Cancer: an Optimal Delivery of siRNA and Anticancer Drug

    PubMed Central

    Shah, Vatsal; Taratula, Oleh; Garbuzenko, Olga B.; Taratula, Olena R.; Rodriguez-Rodriguez, Lorna; Minko, Tamara

    2013-01-01

    Purpose: The proposed project is aimed at enhancing the efficiency of epithelial ovarian cancer treatment and reducing adverse side effects of chemotherapy using nanotechnology. Overexpression of the CD44 membrane receptor results in tumor initiation, growth, tumor stem cells specific behavior, development of drug resistance, and metastases. We hypothesize that a developed cancer targeted delivery system which combines CD44 siRNA with paclitaxel would successfully deliver its payload inside cancer cells, effectively induce cell death, and prevent metastases. Experimental Design: We synthesized, characterized, and tested a nanoscale-based drug delivery system containing a modified Polypropylenimine (PPI) dendrimer as a carrier; anticancer drug paclitaxel as a cell death inducer; a synthetic analog of luteinizing hormone-releasing hormone (LHRH) peptide as a tumor targeting moiety, and siRNA targeted to CD44 mRNA. The proposed NDDS was tested in vitro and in vivo using metastatic ovarian cancer cells isolated from patients with malignant ascites. Results: We found that in contrast to cells isolated from primary tumors, CD44 was highly overexpressed in metastatic cancer cells. Treatment with the proposed tumor-targeted nanoscale-based nucleic acid and drug delivery system led to the suppression of CD44 mRNA and protein, efficient induction of cell death, effective tumor shrinkage, and prevention of adverse side effects on healthy organs. Conclusion: We show a high therapeutic potential for combinatorial treatment of ovarian carcinoma with a novel drug delivery system that effectively transports siRNA targeting to CD44 mRNA simultaneously with cytotoxic agents. PMID:24036854

  18. Microrough cobalt-chromium alloy surfaces for paclitaxel delivery: preparation, characterization, and in vitro drug release studies.

    PubMed

    Lancaster, Susan; Kakade, Sandeep; Mani, Gopinath

    2012-08-01

    Cobalt-chromium (Co-Cr) alloys have extensive biomedical applications including drug-eluting stents (DES). This study investigates the use of eight different microrough Co-Cr alloy surfaces for delivering paclitaxel (PAT) for potential use in DES. The eight different surfaces include four bare microrough and four self-assembled monolayer (SAM) coated microrough surfaces. The bare microrough surfaces were prepared by grit blasting Co-Cr with glass beads (50 and 100 μm in size) and Al(2)O(3) (50 and 110 μm). The SAM coated surfaces were prepared by depositing a -COOH terminated phosphonic acid monolayer on the different microrough surfaces. PAT was then deposited on all the bare and SAM coated microrough surfaces. The surfaces were characterized using scanning electron microscopy (SEM), 3D optical profilometry, and Fourier transform infrared spectroscopy (FTIR). SEM showed the different morphologies of microrough surfaces without and with PAT coating. An optical profiler showed the 3D topography of the different surfaces and the changes in surface roughness and surface area after SAM and PAT deposition. FTIR showed ordered SAMs were formed on glass bead grit blasted surfaces, while the molecules were disordered on Al(2)O(3) grit blasted surfaces. Also, FTIR showed the successful deposition of PAT on these surfaces. The PAT release was investigated for up to two weeks using high performance liquid chromatography. Al(2)O(3) grit blasted bare microrough surfaces showed sustained release profiles, while the glass bead grit blasted surfaces showed burst release profiles. All SAM coated surfaces showed biphasic drug release profiles, which is an initial burst release followed by a slow and sustained release. SAM coated Al(2)O(3) grit blasted surfaces prolonged the sustained release of PAT in a significant amount during the second week of drug elution studies, while this behavior was not observed for any other surfaces used in this study. Thus, this study demonstrates the use of different microrough Co-Cr alloy surfaces for delivering PAT for potential applications in DES and other medical devices. PMID:22720656

  19. Effect of lipid bilayer alteration on transdermal delivery of a high-molecular-weight and lipophilic drug: studies with paclitaxel.

    PubMed

    Panchagnula, Ramesh; Desu, Hariraghuram; Jain, Amit; Khandavilli, Sateesh

    2004-09-01

    Skin forms an excellent barrier against drug permeation, due to the rigid lamellar structure of the stratum corneum (SC) lipids. Poor permeability of drugs can be enhanced through alteration in partition and diffusion coefficients, or concentration gradient of drug with an appropriate choice of solvent system, along with penetration enhancers. The aim of the current investigation was to assess applicability of lipid bilayer alteration by fatty acids and terpenes toward the permeation enhancement of a high-molecular-weight, lipophilic drug, paclitaxel (PCL) through rat skin. From among the fatty acids studied using ethanol/isopropyl myristate (1:1) vehicle, no significant enhancement in flux of PCL was observed (p > 0.05). In the case of cis mono and polyunsaturated fatty acids lag time was found to be similar to control (p > 0.05). This suggests that the permeation of a high-molecular-weight, lipophilic drug may not be enhanced by the alteration of the lipid bilayer, or the main barrier to permeation could lie in lower hydrophilic layers of skin. A significant increase in lag time was observed with trans unsaturated fatty acids unlike the cis isomers, and this was explained on the basis of conformation and preferential partitioning of fatty acids into skin. From among the terpenes, flux of PCL with cineole was significantly different from other studied terpenes and controls, and after treatment with menthol and menthone permeability was found to be reduced. Menthol and menthone cause loosening of the SC lipid bilayer due to breaking of hydrogen bonding between ceramides, resulting in penetration of water into the lipids of the SC lipid bilayer that leads to creation of new aqueous channels and is responsible for increased hydrophilicity of SC. This increased hydrophilicity of the SC bilayer might have resulted in unfavorable conditions for ethanol/isopropyl myristate (1:1) along with PCL to penetrate into skin, therefore permeability was reduced. The findings of this study suggest that the permeation of a high-molecular-weight and lipophilic drug cannot be enhanced through bilayer alteration by penetration enhancers, and alteration in partitioning of drug into skin could be a feasible mode to enhance the permeation of drug. PMID:15295779

  20. Strategies for optimizing targeting and delivery of mucosal HIV vaccines.

    PubMed

    Ahlers, Jeffrey D; Belyakov, Igor M

    2009-10-01

    Effective frontline defenses against HIV-1 will require targeting vaccines to mucosal tissue in order to induce alphabeta CD8(+) lymphocytes in mucosal effector sites (lamina propria and intraepithelial compartment) as well as antibody secreting plasma cells that can neutralize and limit free virus. A concerted second wave of assault against the virus will require the activation and recruitment of antigen specific memory CD4(+) and CD8(+) T cells in mesenteric lymph nodes and distal secondary lymphoid organs. New delivery strategies targeting the "right" DC subsets in combination with delivery of mucosal adjuvants and innate signals for activating DC will be essential for mucosal vaccines in order to circumvent the naturally tolerogenic environment and the induction of Tregs. Mucosal delivery of antigen in combination with inflammatory signals has been shown to empower systemic immunization by directing responses to mucosal sites for imprinting optimum mucosal memory. Here, we discuss novel vaccine strategies and adjuvants for optimizing mucosal delivery of HIV vaccines. PMID:19609978

  1. Single-Step Surface Functionalization of Polymeric Nanoparticles for Targeted Drug Delivery

    PubMed Central

    Patil, Yogesh; Toti, Udaya; Khdair, Ayman; Ma, Linan; Panyam, Jayanth

    2009-01-01

    Targeted drug delivery using nanocarriers is achieved by functionalizing the carrier surface with a tissue-recognition ligand. Current surface modification methods require tedious and inefficient synthesis and purification steps, and are not easily amenable to incorporating multiple functionalities on a single surface. In this report, we describe a versatile, single-step surface functionalizing technique for polymeric nanoparticles. The technique utilizes the fact that when a diblock copolymer like polylactide-polyethylene glycol (PLA-PEG) is introduced in the oil/water emulsion used in polymeric nanoparticle formulation, the PLA block partitions into the polymer containing organic phase and PEG block partitions into the aqueous phase. Removal of the organic solvent results in the formation of nanoparticles with PEG on the surface. When a PLA-PEG-ligand conjugate is used instead of PLA-PEG copolymer, this technique permits a ‘one-pot’ fabrication of ligand-functionalized nanoparticles. In the current study, the IAASF approach facilitated the simultaneous incorporation of biotin and folic acid, known tumor-targeting ligands, on drug-loaded nanoparticles in a single step. Incorporation of the ligands on nanoparticles was confirmed by using NMR, surface plasmon resonance, transmission electron microscopy and tumor cell uptake studies. Simultaneous functionalization with both ligands significantly enhanced nanoparticle accumulation in tumors in vivo, and resulted in greatly improved efficacy of paclitaxel-loaded nanoparticles in a mouse xenograft tumor model. This new surface functionalization approach will enable the development of targeting strategies based on the use of multiple ligands on a single surface to target a tissue of interest. PMID:19019427

  2. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery.

    PubMed

    Patil, Yogesh B; Toti, Udaya S; Khdair, Ayman; Ma, Linan; Panyam, Jayanth

    2009-02-01

    Targeted drug delivery using nanocarriers is achieved by functionalizing the carrier surface with a tissue-recognition ligand. Current surface modification methods require tedious and inefficient synthesis and purification steps, and are not easily amenable to incorporating multiple functionalities on a single surface. In this report, we describe a versatile, single-step surface functionalizing technique for polymeric nanoparticles. The technique utilizes the fact that when a diblock copolymer like polylactide-polyethylene glycol (PLA-PEG) is introduced in the oil/water emulsion used in polymeric nanoparticle formulation, the PLA block partitions into the polymer containing organic phase and PEG block partitions into the aqueous phase. Removal of the organic solvent results in the formation of nanoparticles with PEG on the surface. When a PLA-PEG-ligand conjugate is used instead of PLA-PEG copolymer, this technique permits a 'one-pot' fabrication of ligand-functionalized nanoparticles. In the current study, the IAASF approach facilitated the simultaneous incorporation of biotin and folic acid, known tumor-targeting ligands, on drug-loaded nanoparticles in a single step. Incorporation of the ligands on nanoparticles was confirmed by using NMR, surface plasmon resonance, transmission electron microscopy and tumor cell uptake studies. Simultaneous functionalization with both ligands significantly enhanced nanoparticle accumulation in tumors in vivo, and resulted in greatly improved efficacy of paclitaxel-loaded nanoparticles in a mouse xenograft tumor model. This new surface functionalization approach will enable the development of targeting strategies based on the use of multiple ligands on a single surface to target a tissue of interest. PMID:19019427

  3. Functionalized Nanosystems for Targeted Mitochondrial Delivery

    PubMed Central

    Durazo, Shelley A.; Kompella, Uday B.

    2011-01-01

    Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer’s disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects. PMID:22138492

  4. Synthetic LDL as targeted drug delivery vehicle

    SciTech Connect

    Forte, Trudy M.; Nikanjam, Mina

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  5. Targeted Delivery of Radioprotective Agents to Mitochondria

    PubMed Central

    Zabbarova, Irina; Kanai, Anthony

    2010-01-01

    Adverse effects of ionizing radiation are mediated through reactive oxygen and nitrogen species. Mitochondria are the principal source of these species in the cell and play an important role in irradiation-induced apoptosis. The use of free radical scavengers and nitric oxide synthase inhibitors has proven to protect normal tissues and, in some cases, to sensitize tumor tissues to radiation damage. Dual molecules that combine radical-scavenging and NOS-inhibitory functions may be particularly effective. Drugging strategies that target mitochondria can enhance the effectiveness of such agents, in comparison to systemic administration, and circumvent side effects. PMID:19144902

  6. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery

    PubMed Central

    Yun, Yeonhee; Cho, Yong Woo; Park, Kinam

    2012-01-01

    As the field of biotechnology has advanced, oral protein delivery has also made significant progress. Oral delivery is the most common method of drug administration with high levels of patient acceptance. Despite the preference of oral delivery, administration of therapeutic proteins has been extremely difficult. Increasing the bioavailability of oral protein drugs to the therapeutically acceptable level is still a challenging goal. Poor membrane permeability, high molecular weight, and enzymatic degradation of protein drugs have remained unsolved issues. Among diverse strategies, nanotechnology has provided a glimpse of hope in oral delivery of protein drugs. Nanoparticles have advantages, such as small size, high surface area, and modification using functional groups for high capacity or selectivity. Nanoparticles with peptidic ligands are especially worthy of notice because they can be used for specific targeting in the gastrointestinal (GI) tract. This article reviews the transport mechanism of the GI tract, barriers to protein absorption, current status and limitations of nanotechnology for oral protein delivery system. PMID:23123292

  7. Targeted delivery to bone and mineral deposits using bisphosphonate ligands.

    PubMed

    Cole, Lisa E; Vargo-Gogola, Tracy; Roeder, Ryan K

    2016-04-01

    The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes. PMID:26482186

  8. Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles induces proliferation inhibition and apoptosis in ovarian cancer cells.

    PubMed

    Liu, Hongxia; Chang, Shufang; Sun, Jiangchuan; Zhu, Shenyin; Pu, Caixiu; Zhu, Yi; Wang, Zhigang; Xu, Ronald X

    2014-01-01

    Although paclitaxel (PTX) is used with platinum as the first line chemotherapy regimen for ovarian cancer, its clinical efficacy is often limited by severe adverse effects. Ultrasound-targeted microbubble destruction (UTMD) technique holds a great promise in minimizing the side effects and maximizing the therapeutic efficacy. However, the technique typically uses nontargeted microbubbles with suboptimal efficiency. We synthesized targeted and PTX-loaded microbubbles (MBs) for UTMD mediated chemotherapy in ovarian cancer cells. PTX-loaded lipid MBs were coated with a luteinizing hormone-releasing hormone analogue (LHRHa) through a biotin-avidin linkage to target the ovarian cancer A2780/DDP cells that express the LHRH receptor. In the cell culture studies, PTX-loaded and LHRHa-targeted MBs (TPLMBs) in combination with ultrasound (300 kHz, 0.5 W/cm(2), 30 s) demonstrated antiproliferative activities of 41.30 ± 3.93%, 67.76 ± 2.45%, and 75.93 ± 2.81% at 24, 48, and 72 h after the treatment, respectively. The cell apoptosis ratio at 24 h after the treatment is 32.6 ± 0.79%, which is significantly higher than other treatment groups such as PTX only and no-targeted PTX-loaded MBs (NPLMBs) with or without ultrasound mediation. Our experiment verifies the hypothesis that ultrasound mediation of ovarian cancer-targeted and drug-loaded MBs will enhance the PTX therapeutic efficiency. PMID:24266423

  9. Macitentan (ACT-064992), a tissue-targeting endothelin receptor antagonist, enhances therapeutic efficacy of paclitaxel by modulating survival pathways in orthotopic models of metastatic human ovarian cancer.

    PubMed

    Kim, Sun-Jin; Kim, Jang Seong; Kim, Seung Wook; Brantley, Emily; Yun, Seok Joong; He, Junqin; Maya, Marva; Zhang, Fahao; Wu, Qiuyu; Lehembre, François; Regenass, Urs; Fidler, Isaiah J

    2011-02-01

    Potential treatments for ovarian cancers that have become resistant to standard chemotherapies include modulators of tumor cell survival, such as endothelin receptor (ETR) antagonist. We investigated the therapeutic efficacy of the dual ETR antagonist, macitentan, on human ovarian cancer cells, SKOV3ip1 and IGROV1, growing orthotopically in nude mice. Mice with established disease were treated with vehicle (control), paclitaxel (weekly, intraperitoneal injections), macitentan (daily oral administrations), or a combination of paclitaxel and macitentan. Treatment with paclitaxel decreased tumor weight and volume of ascites. Combination therapy with macitentan and paclitaxel reduced tumor incidence and further reduced tumor weight and volume of ascites when compared with paclitaxel alone. Macitentan alone occasionally reduced tumor weight but alone had no effect on tumor incidence or ascites. Immunohistochemical analyses revealed that treatment with macitentan and macitentan plus paclitaxel inhibited the phosphorylation of ETRs and suppressed the survival pathways of tumor cells by decreasing the levels of pVEGFR2, pAkt, and pMAPK. The dose of macitentan necessary for inhibition of phosphorylation correlated with the dose required to increase antitumor efficacy of paclitaxel. Treatment with macitentan enhanced the cytotoxicity mediated by paclitaxel as measured by the degree of apoptosis in tumor cells and tumor-associated endothelial cells. Collectively, these results show that administration of macitentan in combination with paclitaxel prevents the progression of ovarian cancer in the peritoneal cavity of nude mice in part by inhibiting survival pathways of both tumor cells and tumor-associated endothelial cells. PMID:21403842

  10. Nanobiotechnology-based drug delivery in brain targeting.

    PubMed

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity of specific receptors expressed across the BBB. It is found that the low density lipoproteins related protein (LPR) with engineered peptide compound (EpiC) formed the platform incorporating the Angiopep peptide as a new effective therapeutics. The current challenges are to design and develop the drug delivery careers, which must be able to deliver the drug across the BBB at a safe and effective manner. Nanoparticles are found to be effective careers in delivery of conventional drugs, recombinant proteins, vaccines as well as nucleotides. Nanoparticlulate drug delivery systems are found to be improving in the pharmacokinetic strategies of the drug molecules such as biodistribution, bioavailability and drug release characteristics in a controlled and effective manner with site specific drug delivery targeting to tissue or cell with reduction in toxic manifestation. Therefore, the use of nanotechnology in the field of pharmaceutical biotechnology helps in improving the drug delivery strategy including the kinetics and therapeutic index to solve the delivery problems of some biotech drugs including the recombinant proteins and oligonucleotides. This review is made to provide an insight to the role of nanobiotechnology in drug delivery and drug targeting to brain and its recent advances in the field of drug delivery systems. PMID:24910011

  11. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    NASA Astrophysics Data System (ADS)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  12. Liver cell-targeted delivery of therapeutic molecules.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies. PMID:25025274

  13. Bioengineered Silk Gene Delivery System for Nuclear Targeting

    PubMed Central

    Yigit, Sezin; Tokareva, Olena; Varone, Antonio; Georgakoudi, Irene

    2015-01-01

    Gene delivery research has gained momentum with the use of lipophilic vectors that mimic viral systems to increase transfection efficiency. However, maintaining cell viability with these systems remains a major challenge. Therefore biocompatible and nontoxic biopolymers that are designed by combining non-immunological viral mimicking components with suitable carriers have been explored to address these limitations. In the present study recombinant DNA technology was used to design a multi-functional gene delivery system for nuclear targeting, while also supporting cell viability. Spider dragline silk recombinant proteins were modified with DNA condensing units and the proton sponge endosomal escape pathway was utilized for enhanced delivery. Short-term transfection efficiency in a COS-7 cell line (adherent kidney cells isolated from African green monkey) was enhanced compared to lipofectamine and polyethyleneimine (PEI), as was cell viability with these recombinant bio-polyplexes. Endosomal escape and consequent nuclear targeting were shown with fluorescence microscopy. PMID:24889658

  14. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty, targeted PA nanofibers showed enhanced binding by fluorescence relative to spherical micelles with the same targeting sequence, demonstrating the importance of nanostructure shape for vascular binding. Nitric oxide was functionalized onto the PA nanostructure through the S-nitrosylation (SNO) of a cysteine residue. Two weeks after vascular injury, the SNO-functionalized, targeted nanofibers showed significantly decreased levels of restenosis. In all treatment methods described, the control of multivalency through the tuning of supramolecular structure was essential to achieve optimal binding. Understanding the role of dynamic, supramolecular structures for the systemic delivery of peptide therapeutics should be an important focus of future work.

  15. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Su, Yue; Chen, Jia-Tong; Liu, Yu

    2014-02-01

    Through the high affinity of the β-cyclodextrin (β-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and biocompatible platform for the loading and delivery of various anticancer drugs, such as doxorubicin hydrochloride (DOX), paclitaxel (PTX), camptothecin (CPT), irinotecan hydrochloride (CPT-11), and topotecan hydrochloride (TPT), by taking advantage of the controlled association/dissociation of drug molecules from the cavities formed by the HACD skeletons and AuNPs cores as well as by harnessing the efficient targeting of cancer cells by hyaluronic acid. Significantly, the release of anticancer drugs from the drug@HACD-AuNPs system was pH-responsive, with more efficient release occurring under a mildly acidic environment, such as that in a cancer cell. Taking the anticancer drug DOX as an example, cell viability experiments revealed that the DOX@HACD-AuNPs system exhibited similar tumor cell inhibition abilities but lower toxicity than free DOX due to the hyaluronic acid reporter-mediated endocytosis. Therefore, the HACD-AuNPs supramolecular conjugates may possess great potential for the targeted delivery of anticancer drugs.

  16. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs

    PubMed Central

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Su, Yue; Chen, Jia-Tong; Liu, Yu

    2014-01-01

    Through the high affinity of the ?-cyclodextrin (?-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and biocompatible platform for the loading and delivery of various anticancer drugs, such as doxorubicin hydrochloride (DOX), paclitaxel (PTX), camptothecin (CPT), irinotecan hydrochloride (CPT-11), and topotecan hydrochloride (TPT), by taking advantage of the controlled association/dissociation of drug molecules from the cavities formed by the HACD skeletons and AuNPs cores as well as by harnessing the efficient targeting of cancer cells by hyaluronic acid. Significantly, the release of anticancer drugs from the drug@HACD-AuNPs system was pH-responsive, with more efficient release occurring under a mildly acidic environment, such as that in a cancer cell. Taking the anticancer drug DOX as an example, cell viability experiments revealed that the DOX@HACD-AuNPs system exhibited similar tumor cell inhibition abilities but lower toxicity than free DOX due to the hyaluronic acid reporter-mediated endocytosis. Therefore, the HACD-AuNPs supramolecular conjugates may possess great potential for the targeted delivery of anticancer drugs. PMID:24566666

  17. Clinical implementation of target tracking by breathing synchronized delivery

    SciTech Connect

    Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang; Paliwal, Bhudatt; Metha, Minesh

    2006-11-15

    Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of target tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.

  18. Polyethylene Glycol–Phosphatidylethanolamine (PEG–PE)/Vitamin E Micelles for Co-Delivery of Paclitaxel and Curcumin to Overcome Multi-Drug Resistance in Ovarian Cancer

    PubMed Central

    Abouzeid, Abraham H.; Patel, Niravkumar R.

    2014-01-01

    The therapeutic potential of mixed micelles, made of PEG-PE and vitamin E co-loaded with curcumin and paclitaxel, was investigated against SK-OV-3 human ovarian adenocarcinoma along with its multi-drug resistant version SK-OV-3-paclitaxel-resistant (TR) cells in vitro and in vivo. The addition of curcumin at various concentrations did not significantly enhance the cytotoxicity of paclitaxel against SK-OV-3 in vitro. However, a clear synergistic effect was observed with the combination treatment against SK-OV-3TR in vitro. In vivo, this combination treatment produced a three-fold tumor inhibition with each of these cell lines. Our results indicate that such co-loaded mixed micelles could have significant clinical advantages for the treatment of resistant ovarian cancer. PMID:24440402

  19. Convection-enhanced delivery: targeted toxin treatment of malignant glioma.

    PubMed

    Hall, Walter A; Sherr, Gregory T

    2006-01-01

    Historically, malignant gliomas are perhaps the most difficult intracranial neoplasms to treat. Surgery, radiation therapy, and traditional chemotherapy have not been able to significantly alter the course of this disease. By definition, these tumors are located in the protected space of the cranial vault, where the blood-brain barrier prevents most therapies from gaining access. Because of the difficulty in treating this disease, new, innovative treatments and alternative delivery techniques for those therapies are needed. Targeted toxins are fusion proteins that represent a novel medical treatment for these cancers that is under development. However, the efficacy of these agents is dependent on the method of delivery to the tumor. The administration of targeted toxins requires image-guided placement of catheters, either within the tumor or into the adjacent infiltrated brain, and positive pressure infusion. The term that has been applied to this microinfusion technique is convection-enhanced delivery (CED). This infusion method was first attempted via direct intratumoral infusion in nude mouse flank tumor models of human malignant glioma. After significant development of this delivery technique in animal models, the successful demonstration of in vivo efficacy of targeted toxins in Phase I and II clinical trials was reported. Currently, ongoing targeted toxin trials are being conducted at academic health centers to define the best clinical practice for CED. This work involves refining the details of delivery such as infusion rate, duration of treatment, and drug dosing. The early results of CED of targeted toxins supports their continued investigation, as few other treatment modalities have produced durable results in the fight against gliomas. PMID:16709015

  20. [Nab-paclitaxel].

    PubMed

    Lopez-Trabada Ataz, Daniel; Dumont, Sarah; André, Thierry

    2015-06-01

    Paclitaxel is conventionally used in a wide range of oncology indications. Nab-paclitaxel is synthesized by a process of high pressure homogenization of paclitaxel in the presence of human albumin and it was originally developed to reduce the toxicity usually associated with cremophor in soluble paclitaxel and to increase its penetration in tumor tissues. After the trials that led to its approval in first-line treatment of metastatic pancreatic carcinomas and in second line therapy for metastatic breast cancer, nab-paclitaxel is being tested for many other situations in oncology due to its profile of security and its good tolerance. Different lines of research are being developed about the possible biomarkers that could predict the effect of nab-paclitaxel. This review summarizes the results of trials that led to the approval of the nab-paclitaxel in advanced breast cancer and pancreatic cancer, and also resumes the lines of research to the future development of the drug. PMID:26008630

  1. Targeting homeostasis in drug delivery using bioresponsive hydrogel microforms.

    PubMed

    Wilson, A Nolan; Guiseppi-Elie, Anthony

    2014-01-30

    A drug delivery platform comprising a biocompatible, bioresponsive hydrogel and possessing a covalently tethered peptide-drug conjugate was engineered to achieve stasis, via a closed control loop, of the external biochemical activity of the actuating protease. The delivery platform contains a peptide-drug conjugate covalently tethered to the hydrogel matrix, which in the presence of the appropriate protease, was cleaved and the drug released into the bathing environment. This platform was developed and investigated in silico using a finite element modeling (FEM) approach. Firstly, the primary governing phenomena guiding drug release profiles were investigated, and it was confirmed that under transport-limited conditions, the diffusion of the enzyme within the hydrogel and the coupled enzyme kinetics accurately model the system and are in agreement with published results. Secondly, the FEM model was used to investigate the release of a competitive protease inhibitor, MAG283, via cleavage of Acetyl-Pro-Leu-Gly|Leu-MAG-283 by MMP9 in order to achieve targeted homeostasis of MMP-9 activity, such as in the pathophysiology of chronic wounds, via closed-loop feedback control. The key engineering parameters for the delivery device are the radii of the hydrogel microspheres and the concentration of the peptide-inhibitor conjugate. Homeostatic drug delivery, where the focus turns away from the drug release rate and turns toward achieving targeted control of biochemical activity within a biochemical pathway, is an emerging approach in drug delivery methodologies for which the potential has not yet been fully realized. PMID:24333901

  2. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery

    PubMed Central

    Barve, Ashutosh; Jin, Wei; Cheng, Kun

    2014-01-01

    Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184

  3. Delivery of Polymeric Nanoparticles to Target Vascular Diseases

    PubMed Central

    Agyare, Edward; Kandimalla, Karunyna

    2015-01-01

    Current advances in nanotechnology have paved the way for the early detection, prevention and treatment of various diseases such as vascular disorders and cancer. These advances have provided novel approaches or modalities of incorporating or adsorbing therapeutic, biosensor and targeting agents into/on nanoparticles. With significant progress, nanomedicine for vascular therapy has shown significant advantages over traditional medicine because of its ability to selectively target the disease site and reduce adverse side effects. Targeted delivery of nanoparticles to vascular endothelial cells or the vascular wall provides an effective and more efficient way for early detection and/or treatment of vascular diseases such as atherosclerosis, thrombosis and Cerebrovascular Amyloid Angiopathy (CAA). Clinical applications of biocompatible and biodegradable polymers in areas such as vascular graft, implantable drug delivery, stent devices and tissue engineering scaffolds have advanced the candidature of polymers as potential nano-carriers for vascular-targeted delivery of diagnostic agents and drugs. This review focuses on the basic aspects of the vasculature and its associated diseases and relates them to polymeric nanoparticle-based strategies for targeting therapeutic agents to diseased vascular site. PMID:26069867

  4. Non-Spherical Particles for Targeted Drug Delivery

    PubMed Central

    Chen, Jinrong; Clay, Nicholas; Kong, Hyunjoon

    2015-01-01

    Nano- and microparticles loaded with various bioimaging contrast agents or therapeutic molecules have been increasingly used for the diagnosis and treatment of diseases and tissue defects. These particles, often a filled or hollow sphere, can extend the lifetime of encapsulated biomedical modalities in circulation and in target tissue. However, there is a great need to improve the drug loading and targeting efficiency of these particles. Recently, several simulation and in vitro experimental studies reported that particle shape plays a pivotal role in the targeted delivery of molecules. To better understand these findings and subsequently expedite the use of particles in biomedical applications, this review paper summarizes the methods to prepare non-spherical nano- and micro-scaled particles. In addition, this review covers studies reporting the effects of particle shape on the loading, delivery and release of encapsulated bioactive cargos. Finally, it discusses future directions to further improve the properties of non-spherical particles. PMID:25838583

  5. The role of acoustofluidics in targeted drug delivery.

    PubMed

    Bose, Nilanjana; Zhang, Xunli; Maiti, Tapas K; Chakraborty, Suman

    2015-09-01

    With the fast development of acoustic systems in clinical and therapeutic applications, acoustically driven microbubbles have gained a prominent role as powerful tools to carry, transfer, direct, and target drug molecules in cells, tissues, and tumors in the expanding fields of targeted drug delivery and gene therapy. The aim of the present study is to establish a biocompatible acoustic microfluidic system and to demonstrate the generation of an acoustic field and its effects on microbubbles and biological cells in the microfluidic system. The acoustic field creates non-linear oscillations of the microbubble-clusters, which results in generation of shear stress on cells in such microsystems. This effectively helps in delivering extracellular probes in living cells by sonoporation. The sonoporation is investigated under the combined effects of acoustic stress and hydrodynamic stress during targeted drug and gene delivery. PMID:26339329

  6. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-01-01

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites. PMID:26556723

  7. Peptide-Functionalized Nanogels for Targeted siRNA Delivery

    PubMed Central

    Blackburn, William H.; Dickerson, Erin B.; Smith, Michael H.; McDonald, John F.; Lyon, L. Andrew

    2009-01-01

    A major bottleneck in the development of siRNA therapies is their delivery to the desired cell type or tissue, followed by effective passage across the cell membrane with subsequent silencing of the targeted mRNA. To address this problem, we describe the synthesis of core/shell hydrogel nanoparticles (nanogels) with surface-localized peptides that specifically target ovarian carcinoma cell lines possessing high expression levels of the Eph2A receptor. These nanogels are also demonstrated to be highly effective in the noncovalent encapsulation of siRNA and enable cell-specific delivery of the oligonucleotides in serum-containing medium. Cell toxicity and viability assays reveal that the nanogel construct is nontoxic under the conditions studied, as no toxicity or decrease in cell proliferation is observed following delivery. Importantly, a preliminary investigation of gene silencing illustrates that nanogel-mediated delivery of siRNA targeted to the EGF receptor results in knockdown of that receptor. Excellent protection of siRNA during endosomal uptake and endosomal escape of the nanogels is suggested by these results since siRNA activity in the cytosol is required for gene silencing. PMID:19341276

  8. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  9. Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery.

    PubMed

    Phillips, Linsey C; Klibanov, Alexander L; Wamhoff, Brian R; Hossack, John A

    2012-07-01

    We are investigating the combination of microbubble-based targeted drug delivery and intravascular ultrasound (IVUS) imaging as a potential therapy to reduce incidence of restenosis following stent placement in atherosclerotic coronary arteries. The goal of these studies was to determine whether IVUS could be used to detect targeted microbubbles and enhance drug/gene delivery through targeting. Quiescent vascular smooth muscle cells (SMCs) were stimulated with cytokine IL-1β to induce the inflammatory cell surface marker vascular cell adhesion molecule 1 (VCAM-1). Molecular-targeted (VCAM-1 Ab or IgG control Ab), fluorescent-labeled microbubbles were conjugated with plasmid DNA expressing green fluorescent protein (GFP, pMax-GFP) and exposed to the inflamed SMCs under flow to measure adhesion compared with control microbubbles. Gene delivery was performed using a modified IVUS catheter to generate 1.5-MHz ultrasound at 200 kPa. Detection of adherent microbubbles to inflamed SMCs in culture and flow chambers was measured using an IVUS catheter and scanner. VCAM-1-targeted microbubbles enhanced adhesion to inflamed SMCs 100-fold over nontargeted microbubbles. Compared with noninflamed SMCs, VCAM-1-targeted microbubbles exhibited a 7.9-fold increase in adhesion to IL-1β-treated cells. Targeted microbubbles resulted in a 5.5-fold increase in plasmid DNA transfection over nontargeted microbubbles in conjunction with a focused 2.54-cm (1-in) diameter 1-MHz transducer and also enhanced transfection by the modified IVUS transducer at 1.5 MHz. Targeted microbubbles (at a density of 3 × 10⁴ microbubbles/mm²) increased IVUS image intensity 13.2 dB over non-microbubble-coated surfaces. Rupture of microbubbles from the modified IVUS transducer resulted in a 53% reduction in image intensity. Taken together, these results indicate that IVUS may be used to detect targeted microbubbles to inflamed vasculature and subsequently deliver a gene/drug locally. PMID:22828854

  10. Ultrasound and microbubble-targeted delivery of therapeutic compounds

    PubMed Central

    Juffermans, L.J.M.; Meijering, D.B.M.; van Wamel, A.; Henning, R.H.; Kooiman, K.; Emmer, M.; de Jong, N.; van Gilst, W.H.; Musters, R.; Paulus, W.J.; van Rossum, A.C.; Deelman, L.E.; Kamp, O.

    2009-01-01

    The molecular understanding of diseases has been accelerated in recent years, producing many new potential therapeutic targets. A noninvasive delivery system that can target specific anatomical sites would be a great boost for many therapies, particularly those based on manipulation of gene expression. The use of microbubbles controlled by ultrasound as a method for delivery of drugs or genes to specific tissues is promising. It has been shown by our group and others that ultrasound increases cell membrane permeability and enhances uptake of drugs and genes. One of the important mechanisms is that microbubbles act to focus ultrasound energy by lowering the threshold for ultrasound bioeffects. Therefore, clear understanding of the bioeffects and mechanisms underlying the membrane permeability in the presence of microbubbles and ultrasound is of paramount importance. (Neth Heart J 2009;17:82-6.) PMID:19247472

  11. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-03-24

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. PMID:26974603

  12. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of the particles, SAXS, N2 adsorption, cytotoxicity assays. See DOI: 10.1039/c5nr09112h

  13. Phase behavior of dioleyphosphatidylethanolamine molecules in the presence of components of pH-sensitive liposomes and paclitaxel.

    PubMed

    Monteiro, Liziane O F; Lopes, Sávia C A; Barros, André Luís B; Magalhães-Paniago, Rogério; Malachias, Ângelo; Oliveira, Mônica C; Leite, Elaine A

    2016-08-01

    Paclitaxel is a potent antimicrotubule chemotherapeutic agent widely used for clinical treatment of a variety of solid tumors. However, the low solubility of the drug in aqueous medium and the toxic effects of the commercially available formulation, Taxol(®), has hindered its clinical application. To overcome these paclitaxel-related disadvantages, several drug delivery approaches have been thoroughly investigated. In this context, our research group has developed long-circulating and pHsensitive liposomes containing paclitaxel composed of dioleylphosphatidylethanolamine, cholesterylhemisuccinate and distearoylphosphatidylethanolamine-polyethylene glycol2000, which have shown to be very promising carriers for this taxane. For the destabilization of pH-sensitive liposomal systems and the release of the encapsulated drug in the cytoplasm of tumor cells, the occurrence of a phase transition from a lamellar to a non-lamellar phase of dioleylphosphatidylethanolamine molecules is essential. Two techniques, differential scanning calorimetry and small angle X-ray scattering, were used to investigate the influence of the liposomal components and paclitaxel in the phase transition process of dioleylphosphatidylethanolamine molecules and to evaluate the pH-sensitivity of the formulation under low hydration conditions. The findings clearly evidence the phase transition of dioleylphosphatidylethanolamine molecules in the presence and absence of PTX indicating that the introduction of the drug in the system does not bring damage to the pH-sensitivity of the system, which resulting in liposome destabilization at low pH regions and encapsulated paclitaxel release preferentially in a desired target tissue. PMID:27100854

  14. Peptide Anchor for Folate-Targeted Liposomal Delivery.

    PubMed

    Nogueira, Eugénia; Mangialavori, Irene C; Loureiro, Ana; Azoia, Nuno G; Sárria, Marisa P; Nogueira, Patrícia; Freitas, Jaime; Härmark, Johan; Shimanovich, Ulyana; Rollett, Alexandra; Lacroix, Ghislaine; Bernardes, Gonçalo J L; Guebitz, Georg; Hebert, Hans; Moreira, Alexandra; Carmo, Alexandre M; Rossi, Juan Pablo F C; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-09-14

    Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol. PMID:26241560

  15. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  16. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    PubMed

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed. PMID:23313176

  17. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    PubMed

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-01

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. PMID:26436442

  18. Multifunctional TK-VLPs nanocarrier for tumor-targeted delivery.

    PubMed

    Ren, Yachao; Mu, Yu; Jiang, Lei; Yu, Hui; Yang, Shuman; Zhang, Yu; Wang, Jianzhong; Zhang, Hua; Sun, Hunan; Xiao, Cuihong; Peng, Haisheng; Zhou, Yulong; Lu, Weiyue

    2016-04-11

    Virus-like particles (VLPs) have been exploited for various biomedical applications, such as the monitoring, prevention, diagnosis and therapy of disease. In this study, a novel multifunctional VLPs nanocarrier (TK-VLPs) was prepared and used for tumor-targeted delivery. The SPR and cell uptake results indicated that the TK peptide is a "bi-functional ligand" with high affinity for Caco-2, HRT-18 and HUVEC cells through the integrin α6β1 and integrin αvβ3 receptors. The results of the direct immunofluorescence, SDS-PAGE and western blot assays demonstrated that the TK-VLPs were successfully prepared using the baculovirus expression system. Confocal laser scanning microscopy and the flow cytometry analysis validated that the TK-VLPs could target to Caco-2, HRT-18 and HUVEC cells. An in vivo study further confirmed that the TK-VLPs could target and efficiently deliver fluorescein to tumor cells and the tumor vasculature in mice bearing subcutaneous tumors. TK-VLPs-DOX displayed a uniform, spherical shape and an average size of approximately 28nm. The results of the cell uptake and cytotoxicity assays indicated that TK-VLPs-DOX could enhance the selectivity for colorectal cancer cells. Together, our studies provide strong evidence that TK-VLPs could target colon tumor cells and tumor angiogenesis with enhanced permeability and retention effects, suggesting that the TK-VLPs are a multifunctional nanocarrier with potential applications in a colon tumor-targeted drug delivery system. PMID:26915810

  19. Convection-enhanced delivery of targeted toxins for malignant glioma.

    PubMed

    Hall, Walter A; Sherr, Gregory T

    2006-05-01

    Malignant gliomas represent a difficult treatment challenge for the neuro-oncologist and the neurosurgeon. These tumours continue to be refractory to standard therapies, such as surgery, radiotherapy and conventional chemotherapy, and new therapeutic options are clearly needed. Therefore, investigators have recently taken a new direction and started to engineer compounds such as recombinant cytotoxins, antiangiogenesis factors and genetic delivery vectors. However, these promising new agents are all dependent on an effective distribution method in order to bypass the blood-brain barrier. Convection-enhanced delivery (CED) allows for the administration of targeted toxins and other agents directly into the brain at the site of a tumour via catheters placed with the aid of stereotactic or image-guided surgery. The use of this technique is gaining momentum as a newly accepted treatment modality where little else has produced durable results in the fight against gliomas. Direct intratumoural infusion was first performed in nude mouse flank tumour models of human malignant glioma. After significant testing in preclinical animal studies, this method of delivery was followed by the successful demonstration of in vivo efficacy in Phase I and II clinical trials. Currently, this technique is being used in the investigational setting at academic medical centres where investigators are starting to define the best practice for CED. Fundamental issues in this method of delivery such as rate of infusion, cannula size, infusate concentration and tissue-cannula sealing time shape the current discussion in the literature. Targeted toxin therapy represents one of the newest and most promising treatments for this unfortunate patient population, with proven clinical efficacy administered through CED, which is a novel approach to drug delivery. PMID:16640497

  20. In vivo targeted delivery of nanoparticles for theranosis.

    PubMed

    Koo, Heebeom; Huh, Myung Sook; Sun, In-Cheol; Yuk, Soon Hong; Choi, Kuiwon; Kim, Kwangmeyung; Kwon, Ick Chan

    2011-10-18

    Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future. PMID:21851104

  1. Targeted delivery of liquid microvolumes into the lung.

    PubMed

    Kim, Jinho; O'Neill, John D; Dorrello, N Valerio; Bacchetta, Matthew; Vunjak-Novakovic, Gordana

    2015-09-15

    The ability to deliver drugs to specific sites in the lung could radically improve therapeutic outcomes of a variety of lung diseases, including cystic fibrosis, severe bronchopneumonia, chronic obstructive pulmonary disease, and lung cancer. Using conventional methods for pulmonary drug administration, precise, localized delivery of exact doses of drugs to target regions remains challenging. Here we describe a more controlled delivery of soluble reagents (e.g., drugs, enzymes, and radionuclides) in microvolume liquid plugs to targeted branches of the pulmonary airway tree: upper airways, small airways (bronchioles), or the most distal alveoli. In this approach, a soluble liquid plug of very small volume (<1 mL) is instilled into the upper airways, and with programmed air ventilation of the lungs, the plug is pushed into a specific desired (more distal) airway to achieve deposition of liquid film onto the lung epithelium. The plug volume and ventilation conditions were determined by mathematical modeling of plug transport in a tubular geometry, and targeted liquid film deposition was demonstrated in rat lungs by three different in vivo imaging modalities. The experimental and modeling data suggest that instillation of microvolumes of liquid into a ventilated pulmonary airway could be an effective strategy to deliver exact doses of drugs to targeted pathologic regions of the lung, especially those inaccessible by bronchoscopy, to increase in situ efficacy of the drug and minimize systemic side effects. PMID:26324893

  2. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. Electronic supplementary information (ESI) available: Synthesis of m-HA; synthesis of rhodamine-HA derivative; supplementary data on relative fluorescence intensity of DOX-EN-NGs on HeLa cells. See DOI: 10.1039/c5nr08895j

  3. Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine.

    PubMed

    Sun, Wujin; Ji, Wenyan; Hu, Quanyin; Yu, Jicheng; Wang, Chao; Qian, Chenggen; Hochu, Gabrielle; Gu, Zhen

    2016-07-01

    Direct delivery of cytokines using nanocarriers holds great promise for cancer therapy. However, the nanometric scale of the vehicles made them susceptible to size-dependent endocytosis, reducing the plasma membrane-associated apoptosis signaling. Herein, we report a tumor microenvironment-responsive and transformable nanocarrier for cell membrane targeted delivery of cytokine. This formulation is comprised of a phospholipase A2 (PLA2) degradable liposome as a shell, and complementary DNA nanostructures (designated as nanoclews) decorated with cytokines as the cores. Utilizing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a model cytokine, we demonstrate that the TRAIL loaded DNA nanoclews are capable of transforming into nanofibers after PLA2 activation. The nanofibers with micro-scaled lengths efficiently present the loaded TRAIL to death receptors on the cancer cell membrane and amplified the apoptotic signaling with reduced TRAIL internalization. PMID:27131597

  4. Delivery of substances and their target-specific topical activation.

    PubMed

    Pipkorn, Rüdiger; Waldeck, Waldemar; Spring, Herbert; Jenne, Jürgen W; Braun, Klaus

    2006-05-01

    Goal in pharmaceutical research is achievement of necessary drug concentrations in the target organ, effective treatment with safe delivery of genetic agents, while sparing normal tissue and minimizing side effects. A new "BioShuttle"-delivery system harbouring a cathepsin B cutting site, a nuclear address sequence and a functional peptide was developed and tumor cells were treated. Transport and subcellular activation were determined by confocal laser scanning microscopy permitting the conclusion: BioShuttle-conjugates prove as efficient tools for genetic interventions by selective and topical activation of therapeutic peptide precursors by enzymatic cleavage. As shown here for glioma cells and the cathepsin B cleavable site, living cells can be treated with high specificity and selectivity for diagnostic and therapeutic purposes. PMID:16730647

  5. Delivery and targeting of nanoparticles into hair follicles.

    PubMed

    Fang, Chia-Lang; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-01-01

    It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization. PMID:25375342

  6. Multifunctional particles for melanoma-targeted drug delivery.

    PubMed

    Wadajkar, Aniket S; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T

    2012-08-01

    New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. PMID:22561668

  7. Cell membrane-formed nanovesicles for disease-targeted delivery.

    PubMed

    Gao, Jin; Chu, Dafeng; Wang, Zhenjia

    2016-02-28

    Vascular inflammation is the underlying component of most diseases. To target inflamed vasculature, nanoparticles are commonly engineered by conjugating antibody to the nanoparticle surface, but this bottom-up approach could affect nanoparticle targeting and therapeutic efficacy in complex, physiologically related systems. During vascular inflammation endothelium via the NF-κB pathway instantly upregulates intercellular adhesion molecule 1 (ICAM-1) which binds integrin β2 on neutrophil membrane. Inspired by this interaction, we created a nanovesicle-based drug delivery system using nitrogen cavitation which rapidly disrupts activated neutrophils to make cell membrane nanovesicles. Studies using intravital microscopy of live mouse cremaster venules showed that these vesicles can selectively bind inflamed vasculature because they possess intact targeting molecules of integrin β2. Administering of nanovesicles loaded with TPCA-1 (a NF-κB inhibitor) markedly mitigated mouse acute lung inflammation. Our studies reveal a new top-down strategy for directly employing a diseased tissue to produce biofunctional nanovesicle-based drug delivery systems potentially applied to treat various diseases. PMID:26778696

  8. Mesoporous silica nanoparticles in target drug delivery system: A review.

    PubMed

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  9. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  10. "Nanotheranostics" for tumor imaging and targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Zou, Peng

    The magnetic resonance imaging (MRI) technique is a promising tool that improves cancer detection, facilitates diagnosis and monitors therapeutic effects. Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as MRI contrast agents for tumor imaging and as potential vectors for targeted anti-cancer drug delivery; nevertheless, the application of SPIOs has been hampered due to a lack of specificity to tumor tissues and premature drug release. This project aims at developing multifunctional SPIOs for both cancer imaging and targeted drug delivery via conjugation of tumor specific antibodies with SPIOs. The application of anti-TAG-72 antibodies as tumor targeting modalities was evaluated in cultured colorectal cancer cells and in xenograft models by using fluorescent imaging and positron emission tomography (PET) imaging. It was demonstrated that antibody-labeled SPIOs were superior imaging agents and drug carriers for increased tumor specificity. The regulation and kinetics of intracellular drug release from SPIOs were explored by means of fluorescence imaging. In vitro and in vivo fluorescence resonance energy transfer (FRET) imaging was employed to investigate the mechanisms of premature drug release from nanocarriers. The large volume and high hydrophobicity of cell membranes were found to play an important role in premature drug release. The encapsulation of SPIOs into nanocarriers decreased drug release in a dose-dependent mode. This study provided future opportunities to improve the efficiency of nanocarriers by exploring the mechanism of drug release and disassembly of SPIO-loaded polymeric nanoparticles.

  11. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  12. Internalized compartments encapsulated nanogels for targeted drug delivery.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-28

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. PMID:27074960

  13. AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis.

    PubMed

    Ren, Yu; Zhou, Xuan; Yang, Juan-Juan; Liu, Xia; Zhao, Xiao-hui; Wang, Qi-xue; Han, Lei; Song, Xin; Zhu, Zhi-yan; Tian, Wei-ping; Zhang, Lun; Mei, Mei; Kang, Chun-sheng

    2015-07-01

    Paclitaxel (taxol) is a widely used chemo-drug for many solid tumors, while continual taxol treatment is revealed to stimulate tumor dissemination. We previously found that a small molecule inhibitor of miR-21, termed AC1MMYR2, had the potential to impair tumorigenesis and metastasis. The aim of this study was to investigate whether combining AC1MMYR2 with taxol could be explored as a means to limit tumor metastasis. Here we showed that abnormal activation of miR-21/CDK5 axis was associated with breast cancer lymph node metastasis, which was also contribute to high dose taxol-induced invasion and epithelial mesenchymal transition (EMT) in both breast cancer cell line MDA-MB-231 and glioblastoma cell line U87VIII. AC1MMYR2 attenuated CDK5 activity by functional targeting CDK5RAP1, CDK5 activator p39 and target p-FAK(ser732). A series of in vitro assays indicated that treatment of AC1MMYR2 combined with taxol suppressed tumor migration and invasion ability in both MDA-MB-231 and U87VIII cell. More importantly, combination therapy impaired high-dose taxol induced invadopodia, and EMT markers including ?-catenin, E-cadherin and vimentin. Strikingly, a significant reduction of lung metastasis in mice was observed in the AC1MMYR2 plus taxol treatment. Taken together, our work demonstrated that AC1MMYR2 appeared to be a promising strategy in combating taxol induced cancer metastasis by targeting miR-21/CDK5 axis, which highlighted the potential for development of therapeutic modalities for better clinic taxol application. PMID:25827073

  14. Transferrin conjugated poly (?-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticles for targeting drug delivery.

    PubMed

    Zhao, Caiyan; Liu, Xiaoguang; Liu, Junxing; Yang, Zhiwei; Rong, Xianghui; Li, Mingjun; Liang, Xingjie; Wu, Yan

    2014-11-01

    Targeted drug delivery strategies have shown great potential in solving some problems of chemotherapy, such as non-selectivity and severe side effects, thus enhancing the anti-tumor efficiency of chemotherapeutic agents. In this work, we have prepared a novel nanoparticle consisted of amphiphilic poly(?-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine (?-PGA-MAL-PLA-DPPE) copolymer decorated with transferrin (Tf), which can specifically deliver anti-cancer drug paclitaxel (PTX) to the tumor cells for targeting chemotherapy. These nanoparticles (NPs) have preferable particle size, high encapsulation efficiency and a pH-dependent release profile. As expected, The Tf modification mediate specific targeting to nasopharyngeal carcinoma (C666-1) cells and human cervical carcinoma (Hela) cells with the transferrin receptor (TfR) overexpressed and enhance cellular uptake of the NPs, as demonstrated by flow cytometry and confocal microscopy assays. In vitro cytotoxicity studies reveal that the NPs have excellent biocompatibility, and the presence of Tf enhance the activity of PTX to the targeted cells. All these results prove that Tf modified ?-PGA-MAL-PLA-DPPE NPs could facilitate the tumor-specific therapy. Therefore, such a targeting drug delivery system provides significant advances toward cancer therapy. PMID:25454663

  15. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics.

    PubMed

    Liang, Ruizheng; Wei, Min; Evans, David G; Duan, Xue

    2014-11-25

    Inorganic nanomaterials including gold nanoparticles, mesoporous silica nanoparticles, graphene, magnetic nanoparticles, quantum dots and layered double hydroxides have become one of the most active research fields in biochemistry, biotechnology and biomedicine. Benefiting from the facile synthesis/modification, intrinsically physicochemical properties and good biocompatibility, inorganic nanomaterials have shown great potential in bioimaging, targeted drug delivery and cancer therapies. This Feature Article summarizes recent progress on various inorganic nanocarriers, including the background, synthesis, modification, cytotoxicity, physicochemical properties as well as their applications in biomedicine. PMID:24955443

  16. Construction of paclitaxel-loaded poly (2-hydroxyethyl methacrylate)-g-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity

    PubMed Central

    Ma, Xiaowei; Wang, Huan; Jin, Shubin; Wu, Yan; Liang, Xing-Jie

    2012-01-01

    Background There is an urgent need to develop drug-loaded biocompatible nanoscale packages with improved therapeutic efficacy for effective clinical treatment. To address this need, a novel poly (2-hydroxyethyl methacrylate)-poly (lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine [PHEMA-g-(PLA-DPPE)] copolymer was designed and synthesized to enable these nanoparticles to be pH responsive under pathological conditions. Methods The structural properties and thermal stability of the copolymer was measured and confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and thermogravimetric analysis. In order to evaluate its feasibility as a drug carrier, paclitaxel-loaded PHEMA-g-(PLA-DPPE) nanoparticles were prepared using the emulsion-solvent evaporation method. Results The PHEMA-g-(PLA-DPPE) nanoparticles could be efficiently loaded with paclitaxel and controlled to release the drug gradually and effectively. In vitro release experiments demonstrated that drug release was faster at pH 5.0 than at pH 7.4. The anticancer activity of the PHEMA-g-(PLA-DPPE) nanoparticles was measured in breast cancer MCF-7 cells in vivo and in vitro. In comparison with the free drug, the paclitaxel-loaded PHEMA-g-(PLA-DPPE) nanoparticles could induce more significant tumor regression. Conclusion This study indicates that PHEMA-g-(PLA-DPPE) nanoparticles are promising carriers for hydrophobic drugs. This system can passively target cancer tissue and release drugs in a controllable manner, as determined by the pH value of the area in which the drug accumulates. PMID:22419875

  17. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.

    PubMed

    Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C

    2014-07-16

    In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter observation is consistent with the high cytotoxicity of vehicles having both FA and the thermoresponsive polymer. The study highlights the potential of DNA-capped gold nanoparticles as delivery vehicles for doxorubicin in cancer chemotherapy. PMID:24911830

  18. Antibody-drug conjugates: targeted drug delivery for cancer.

    PubMed

    Alley, Stephen C; Okeley, Nicole M; Senter, Peter D

    2010-08-01

    The antibody-drug conjugate field has made significant progress recently owing to careful optimization of several parameters, including mAb specificity, drug potency, linker technology, and the stoichiometry and placement of conjugated drugs. The underlying reason for this has been obtained in pre-clinical biodistribution and pharmacokinetics studies showing that targeted delivery leads to high intratumoral free drug concentrations, while non-target tissues are largely spared from chemotherapeutic exposure. Recent developments in the field have led to an increase in the number of ADCs being tested clinically, with 3 in late stage clinical trials: brentuximab vedotin (also referred to as SGN-35) for Hodgkin lymphoma; Trastuzumab-DM1 for breast cancer; and Inotuzumab ozogamicin for non-Hodgkin lymphoma. This review highlights the recent pre-clinical and clinical advances that have been made. PMID:20643572

  19. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy

    PubMed Central

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-01-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  20. From hybrid compounds to targeted drug delivery in antimalarial therapy.

    PubMed

    Oliveira, Rudi; Miranda, Daniela; Magalhães, Joana; Capela, Rita; Perry, Maria J; O'Neill, Paul M; Moreira, Rui; Lopes, Francisca

    2015-08-15

    The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented. PMID:25913864

  1. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  2. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel.

    PubMed

    Muntimadugu, Eameema; Kumar, Rajendra; Saladi, Shantikumar; Rafeeqi, Towseef Amin; Khan, Wahid

    2016-07-01

    This combinational therapy is mainly aimed for complete eradication of tumor by killing both cancer cells and cancer stem cells. Salinomycin (SLM) was targeted towards cancer stem cells whereas paclitaxel (PTX) was used to kill cancer cells. Drug loaded poly (lactic-co-glycolic acid) nanoparticles were prepared by emulsion solvent diffusion method using cationic stabilizer. Size of the nanoparticles (below 150nm) was determined by dynamic light scattering technique and transmission electron microscopy. In vitro release study confirmed the sustained release pattern of SLM and PTX from nanoparticles more than a month. Cytotoxicity studies on MCF-7 cells revealed the toxicity potential of nanoparticles over drug solutions. Hyaluronic acid (HA) was coated onto the surface of SLM nanoparticles for targeting CD44 receptors over expressed on cancer stem cells and they showed the highest cytotoxicity with minimum IC50 on breast cancer cells. Synergistic cytotoxic effect was also observed with combination of nanoparticles. Cell uptake studies were carried out using FITC loaded nanoparticles. These particles showed improved cellular uptake over FITC solution and HA coating further enhanced the effect by 1.5 folds. CD44 binding efficiency of nanoparticles was studied by staining MDA-MB-231 cells with anti CD44 human antibody and CD44(+) cells were enumerated using flow cytometry. CD44(+) cell count was drastically decreased when treated with HA coated SLM nanoparticles indicating their efficiency towards cancer stem cells. Combination of HA coated SLM nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44(+) cells. Hence combinational therapy using conventional chemotherapeutic drug and cancer stem cell inhibitor could be a promising approach in overcoming cancer recurrence due to resistant cell population. PMID:27045981

  3. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    NASA Astrophysics Data System (ADS)

    Hwang, Tae Heon; Kim, Jin Bum; Som Yang, Da; Park, Yong-il; Ryu, WonHyoung

    2013-03-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro.

  4. Targeted Intracellular Delivery of Proteins with Spatial and Temporal Control

    PubMed Central

    2015-01-01

    While a host of methods exist to deliver genetic materials or small molecules to cells, very few are available for protein delivery to the cytosol. We describe a modular, light-activated nanocarrier that transports proteins into cells by receptor-mediated endocytosis and delivers the cargo to the cytosol by light triggered endosomal escape. The platform is based on hollow gold nanoshells (HGN) with polyhistidine tagged proteins attached through an avidity-enhanced, nickel chelation linking layer; here, we used green fluorescent protein (GFP) as a model deliverable cargo. Endosomal uptake of the GFP loaded nanocarrier was mediated by a C-end Rule (CendR) internalizing peptide fused to the GFP. Focused femtosecond pulsed-laser excitation triggered protein release from the nanocarrier and endosome disruption, and the released protein was capable of targeting the nucleoli, a model intracellular organelle. We further demonstrate the generality of the approach by loading and releasing Sox2 and p53. This method for targeting of individual cells, with resolution similar to microinjection, provides spatial and temporal control over protein delivery. PMID:25490248

  5. Polyelectrolyte Nanogels Decorated with Monoclonal Antibody for Targeted Drug Delivery

    PubMed Central

    Nukolova, Nataliya V.; Yang, Zigang; Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2010-01-01

    Novel surface-functionalized cross-linked nanogels were developed as a platform to allow conjugation of monoclonal antibodies (mAb) for targeted drug delivery. Well-defined diblock copolymers of poly(ethylene glycol)-b-poly(methacrylic acid) (PEG-b-PMA) with PEG terminal aldehyde functionality were synthesized by atom transfer radical polymerization (ATRP) and characterized by GPC and 1H NMR. These copolymers were used to prepare nanogels via condensation of PEG-b-PMA with Ca2+ ions into micelle-like aggregates, cross-linking of the PMA/Ca2+ cores and removal of Ca2+ ions. The resulting nanogels represent highly swollen spherical polyelectrolyte particles with free terminal aldehyde functionalities at the nonionic PEG chains. A reductive amination reaction between aldehyde groups and amino groups of mAb resulted in effective conjugation to the nanogels of mAb CC49 against tumor-associated glycoprotein 72 (TAG-72). The mAb retained the binding affinity to bovine submaxillary mucin after conjugation as shown by surface plasmon resonance (SPR). Therefore, aldehyde functionalized nanogels can be linked to mAb using a simple, one-step approach. They may have potential for targeted delivery of diagnostic and therapeutic agents to tumors. PMID:21503276

  6. Initial experience with paclitaxel-coated stents.

    PubMed

    Grube, Eberhard; Büllesfeld, Lutz

    2002-12-01

    Local delivery of immunosuppressive or antiproliferative agents using a drug-eluting stent is a new technology that is supposed to inhibit in-stent restenosis, thus providing a biological and mechanical solution. This technique is a very promising. To date, several agents have been used, including paclitaxel, QP-2, rapamycin, actinomycin D, dexamethason, tacrolimus, and everolimus. Several studies, published recently or still ongoing, have evaluated these drugs as to their release kinetics, effective dosage, safety in clinical practice, and benefit. These studies include: SCORE (paclitaxel derivative), TAXUS I-VI, ELUTES, ASPECT, DELIVER (paclitaxel), RAVEL, SIRIUS (sirolimus), ACTION (actinomycin), EVIDENT, PRESENT (tacrolimus), EMPEROR (dexamethason), and FUTURE (everolimus). Paclitaxel was one of the first stent-based antiproliferative agents under clinical investigation that provided profound inhibition of neointimal thickening depending on delivery duration and drug dosage. The randomized, multicenter SCORE trail (Quanam stent, paclitaxel-coated) enrolled 266 patients at 17 sites. At 6-month's follow-up, a drop of 83% in stent restenosis using the drug-eluting stent could be achieved (6.4% drug-eluting stent vs 36.9% control group), which was attributable to a remarkable decrease in intimal proliferation. Unfortunately, due to frequent stent thrombosis and side-branch occlusions, the reported 30-day MACE rate was 10.2%. The randomized TAXUS-I safety trial (BSC, NIRx, paclitaxel-coated) also demonstrated beneficial reduction of restenotic lesions at 6-month's follow-up (0% vs 10%) but was associated with the absence of thrombotic events presumably due to less drug dosage. The ongoing TAXUS II-VI trials are addressing additional insight regarding the efficacy of the TAXUS paclitaxel-eluting stent. ASPECT and ELUTES evaluated paclitaxel-coated stents (i.e., Cook and Supra G), including subgroups with different drug dosages. With respect to stent restenosis and neointimal proliferation, both studies demonstrated a clear dose response. The RAVEL and the SIRIUS trials evaluated sirolimus-coated stents (i.e., Cordis, Johnson & Johnson, and Bx VELOCITY stents). Results confirmed the beneficial findings regarding reduction of renarrowing using a drug-eluting stent without any major adverse effects. Although parameters such as drug toxicity, optimal drug dosage, or delayed endothelial healing still need to be evaluated, today's clinical experience indicates that drug-coated stents are extremely beneficial in the interventional treatment of coronary lesions. PMID:12476650

  7. Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs

    PubMed Central

    Li, Yong Tsuey; Chua, Ming Jang; Kunnath, Anil Philip; Chowdhury, Ezharul Hoque

    2012-01-01

    Background Multidrug resistance, a major impediment to successful cancer chemotherapy, is the result of overexpression of ATP-binding cassette (ABC) transporters extruding internalized drugs. Silencing of ABC transporter gene expression with small interfering RNA (siRNA) could be an attractive approach to overcome multidrug resistance of cancer, although delivery of siRNA remains a major hurdle to fully exploit the potential of siRNA-based therapeutics. Recently, we have developed pH-sensitive carbonate apatite nanoparticles to efficiently carry and transport siRNA across the cell membrane, enabling knockdown of the cyclin B1 gene and consequential induction of apoptosis in synergy with anti-cancer drugs. Methods and results We report that carbonate apatite-mediated delivery of the siRNAs targeting ABCG2 and ABCB1 gene transcripts in human breast cancer cells which constitutively express both of the transporter genes dose-dependently enhanced chemosensitivity to doxorubicin, paclitaxel and cisplatin, the traditionally used chemotherapeutic agents. Moreover, codelivery of two specific siRNAs targeting ABCB1 and ABCG2 transcripts resulted in a more robust increase of chemosensitivity in the cancer cells, indicating the reversal of ABC transporter-mediated multidrug resistance. Conclusion The delivery concept of multiple siRNAs against ABC transporter genes is highly promising for preclinical and clinical investigation in reversing the multidrug resistance phenotype of breast cancer. PMID:22701315

  8. Enhanced oral delivery of paclitaxel using acetylcysteine functionalized chitosan-vitamin E succinate nanomicelles based on a mucus bioadhesion and penetration mechanism.

    PubMed

    Lian, He; Zhang, Tianhong; Sun, Jin; Liu, Xiaohong; Ren, Guolian; Kou, Longfa; Zhang, Youxi; Han, Xiaopeng; Ding, Wenya; Ai, Xiaoyu; Wu, Chunnuan; Li, Lin; Wang, Yongjun; Sun, Yinghua; Wang, Siling; He, Zhonggui

    2013-09-01

    In addition to being a physiological protective barrier, the gastrointestinal mucosal membrane is also a primary obstacle that hinders the oral absorption of many therapeutic compounds, especially drugs with a poor permeability. In order to resolve this impasse, we have designed multifunctional nanomicelles based on the acetylcysteine functionalized chitosan-vitamin E succinate copolymer (CS-VES-NAC, CVN), which exhibit marked bioadhesion, possess the ability to penetrate mucus, and enhance the oral absorption of a hydrophobic drug with a poor penetrative profile, paclitaxel. The intestinal absorption (Ka = 0.38 ± 0.04 min(-1), Papp = 0.059 cm · min(-1)) of CVN nanomicelles was greatly improved (4.5-fold) in comparison with paclitaxel solution, and CLSM (confocal laser scanning microscope) pictures also showed not only enhanced adhesion to the intestinal surface but improved accumulation within intestinal villi. The in vivo pharmacokinetics indicated that the AUC0-t (586.37 ng/mL · h) of CVN nanomicelles was markedly enhanced compared with PTX solution. In summary, the novel multifunctional CVN nanomicelles appear to be a promising nanocarrier for insoluble and poorly permeable drugs due to their high bioadhesion and permeation-enhancing capability. PMID:23909663

  9. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes.

    PubMed

    Dicheva, Bilyana M; ten Hagen, Timo L M; Schipper, Debby; Seynhaeve, Ann L B; van Rhoon, Gerard C; Eggermont, Alexander M M; Koning, Gerben A

    2014-12-10

    Liposomal nanoparticles can circumvent toxicity of encapsulated chemotherapeutic drugs, but fall short in tumor-specific and efficient intracellular drug delivery. To overcome these shortcomings, we designed a multifunctional dual targeted, heat-responsive nanocarrier encapsulating doxorubicin (Dox) as a chemotherapeutic content. Dox-loaded cationic thermosensitive liposomes (Dox-CTSL) carry targeting functions addressing tumor cells and tumor vasculature and have a heat-responsive lipid bilayer. Targeted Dox-CTSL demonstrated superior uptake by and toxicity to different tumor cell lines and endothelial cells compared to non-targeted TSL. Heat triggered intracellular Dox release in acidic cell compartments was visualized as fluorescent Dox nanobursts by live cell confocal microscopy. In vivo, using high resolution intravital microscopy, we demonstrated that Dox-CTSL upon an external heat-trigger delivered 3-fold higher Dox quantity to tumors than TSL. Dox-CTSL bound specifically to tumor vasculature, which in combination with the heat-triggered drug release caused significant tumor vessel damage, which was not observed when non-targeted TSL were administered. Therefore, Dox-CTSL have strong potency to increase drug efficacy due to targeted delivery and heat-triggered drug release in tumors. PMID:25176578

  10. Cargo-Delivery Platforms for Targeted Delivery of Inhibitor Cargos Against Botulism

    PubMed Central

    Wilson, Brenda A.; Ho, Mengfei

    2015-01-01

    Delivering therapeutic cargos to specific cell types in vivo poses many technical challenges. There is currently a plethora of drug leads and therapies against numerous diseases, ranging from small molecule compounds to nucleic acids to peptides to proteins with varying binding or enzymatic functions. Many of these candidate therapies have documented potential for mitigating or reversing disease symptoms, if only a means for gaining access to the intracellular target were available. Recent advances in our understanding of the biology of cellular uptake and transport processes and the mode of action of bacterial protein toxins have accelerated the development of toxin-based cargo-delivery vehicle platforms. This review provides an updated survey of the status of available platforms for targeted delivery of therapeutic cargos, outlining various strategies that have been used to deliver different types of cargo into cells. Particular emphasis is placed on the application of toxin-based approaches, examining critical issues that have hampered realization of post-intoxication antitoxins against botulism. PMID:25335885

  11. Functional liposomes in the cancer-targeted drug delivery.

    PubMed

    Tila, Dena; Ghasemi, Saeed; Yazdani-Arazi, Seyedeh Narjes; Ghanbarzadeh, Saeed

    2015-07-01

    Cancer is considered as one of the most severe health problems and is currently the third most common cause of death in the world after heart and infectious diseases. Novel therapies are constantly being discovered, developed and trialed. Many of the current anticancer agents exhibit non-ideal pharmaceutical and pharmacological properties and are distributed non-specifically throughout the body. This results in death of the both normal healthy and malignant cells and substantially leads to accruing a variety of serious toxic side effects. Therefore, the efficient systemic therapy of cancer is almost impossible due to harmful side effects of anticancer agents to the healthy organs and tissues. Furthermore, several problems such as low bioavailability of the drugs, low drug concentrations at the site of action, lack of drug specificity and drug-resistance also cause many restrictions on clinical applications of these drugs in the tumor therapy. Different types of the liposomal formulations have been used in medicine due to their distinctive advantages associated with their structural flexibility in the encapsulation of various agents with different physicochemical properties. They can also mediate delivery of the cargo to the appropriate cell type and subcellular compartment, reducing the effective dosage and possible side effects which are related to high systemic concentrations. Therefore, these novel systems were found very promising and encouraging dosage forms for the treatment of different types of cancer by increasing efficiency and reducing the systemic toxicity due to the specific drug delivery and targeting. PMID:25823898

  12. Targeted delivery of pharmacological agents into rat dorsal root ganglion

    PubMed Central

    Puljak, Livia; Kojundzic, Sanja Lovric; Hogan, Quinn H.; Sapunar, Damir

    2009-01-01

    We sought an optimal method for targeted delivery into dorsal root ganglia (DRGs) for experimental studies, in terms of precision of delivery and avoidance of behavioral disturbances. We examined three approaches for injection into rat DRGs: percutaneous injection without surgical exposure, injection after deep exposure, and injection following deep exposure and partial laminectomy. Coomassie blue and Fast Blue were injected into DRGs for validation. At necropsy, the spread of Coomassie blue and Fast Blue was investigated under stereomicroscope and fluorescent microscope, respectively. We found that percutaneous approach did not provide any successful DRG injections. Deep exposure prior to intraganglionic injection provided variable results, but intraganglionic injection after deep exposure plus partial laminectomy was successful in 100% of attempts. Our subsequent skeletal analysis showed that the anatomical location of DRG is not compatible with successful DRG injection without surgical exposure. Neither of the methods using surgical exposure caused behavioral disturbances. Based on these results we conclude that partial laminectomy offers the most precise method of injecting DRG and does not produce behavioral evidence of nerve damage. Intraganglionic injection after deep exposure alone is less predictable, while percutaneous approaches only allow injection in the peripheral nerve. PMID:19027036

  13. Targeted delivery of pharmacological agents into rat dorsal root ganglion.

    PubMed

    Puljak, Livia; Kojundzic, Sanja Lovric; Hogan, Quinn H; Sapunar, Damir

    2009-03-15

    We sought an optimal method for targeted delivery into dorsal root ganglia (DRGs) for experimental studies, in terms of precision of delivery and avoidance of behavioral disturbances. We examined three approaches for injection into rat DRGs: percutaneous injection without surgical exposure, injection after deep exposure, and injection following deep exposure and partial laminectomy. Coomassie blue and Fast Blue were injected into DRGs for validation. At necropsy, the spread of Coomassie blue and Fast Blue was investigated under stereomicroscope and fluorescent microscope, respectively. We found that percutaneous approach did not provide any successful DRG injections. Deep exposure prior to intraganglionic injection provided variable results, but intraganglionic injection after deep exposure plus partial laminectomy was successful in 100% of attempts. Our subsequent skeletal analysis showed that the anatomical location of DRG is not compatible with successful DRG injection without surgical exposure. Neither of the methods using surgical exposure caused behavioral disturbances. Based on these results we conclude that partial laminectomy offers the most precise method of injecting DRG and does not produce behavioral evidence of nerve damage. Intraganglionic injection after deep exposure alone is less predictable, while percutaneous approaches only allow injection in the peripheral nerve. PMID:19027036

  14. Cubosomes as targeted drug delivery systems - a biopharmaceutical approach.

    PubMed

    Lakshmi, Naga M; Yalavarthi, Prasanna R; Vadlamudi, Harini C; Thanniru, Jyotsna; Yaga, Gowri; K, Haritha

    2014-01-01

    Cubosomes are reversed bicontinuous cubic phases and possess unique physicochemical properties. These special systems are receiving much attention for the delivery of various hydrophilic, hydrophobic and amphiphilic drugs with enhanced bioavailability and high loading capacity. A wide variety of drugs are applicable for cubosome formulation for various routes of delivery. The lipids used in cubosome formulation are more stable and offer stability to the formulation during shelf-life. The article reviews about the back ground, techniques of cubosome preparation such as high pressure homogenization, probe ultrasonication and automated cubosome preparation; and also methods of cubosomes preparation such as top down, bottom up and other methods with pictorial presentation. This article emphasizes the phase transition and also targeted approaches of cubosomes. The characterization studies for cubosomes such as cryo transmission electron microscopy, differential scanning calorimetry and scanning electron microscopy followed by in-vitro and in-vivo evaluation studies of cubosomes were explained with appropriate examples. Recent applications of cubosomes were explained with reference to flurbiprofen, odorranalectin, diazepam and dexamethasone. The advantages, disadvantages and limitations of cubosomal technology were emphasized. PMID:24836404

  15. Engineering Polymer Hydrogel Nanoparticles for Lymph Node-Targeted Delivery.

    PubMed

    De Koker, Stefaan; Cui, Jiwei; Vanparijs, Nane; Albertazzi, Lorenzo; Grooten, Johan; Caruso, Frank; De Geest, Bruno G

    2016-01-01

    The induction of antigen-specific adaptive immunity exclusively occurs in lymphoid organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects the efficacy of the vaccine. Here, we report the design of polymer hydrogel nanoparticles that efficiently target multiple immune cell subsets in the draining lymph nodes. Nanoparticles are fabricated by infiltrating mesoporous silica particles (ca. 200 nm) with poly(methacrylic acid) followed by disulfide-based crosslinking and template removal. PEGylation of these nanoparticles does not affect their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. The functional relevance of these observations is further illustrated by the increased priming of antigen-specific T cells. Our findings highlight the potential of engineered hydrogel nanoparticles for the lymphatic delivery of antigens and immune-modulating compounds. PMID:26666207

  16. Possibilities of acoustic thermometry for controlling targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Nemchenko, O. Yu.; Less, Yu. A.; Kazanskii, A. S.; Mansfel'd, A. D.

    2015-07-01

    Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.

  17. Targeting tumor metastases: drug delivery mechanisms and technologies

    PubMed Central

    Ganapathy, Vidya; Moghe, Prabhas V.; Roth, Charles M.

    2016-01-01

    Primary sites of tumor are the focal triggers of cancers, yet it is the subsequent metastasis events that cause the majority of the morbidity and mortality. Metastatic tumor cells exhibit a phenotype that differs from that of the parent cells, as they represent a resistant, invasive subpopulation of the original tumor, may have acquired additional genetic or epigenetic alterations under exposure to prior chemotherapeutic or radiotherapeutic treatments, and reside in a microenvironment differing from that of its origin. This combination of resistant phenotype and distal location make tracking and treating metastases particularly challenging. In this review, we highlight some of the unique biological traits of metastasis, which in turn, inspire emerging strategies for targeted imaging of metastasized tumors and metastasis-directed delivery of therapeutics. PMID:26409123

  18. Development of paclitaxel-TyroSpheres for topical skin treatment

    PubMed Central

    Kilfoyle, Brian E.; Sheihet, Larisa; Zhang, Zheng; Laohoo, Marissa; Kohn, Joachim; Michniak-Kohn, Bozena B.

    2012-01-01

    A potential topical psoriasis therapy has been developed consisting of tyrosine-derived nanospheres (TyroSpheres) with encapsulated anti-proliferative paclitaxel. TyroSpheres provide enhancement of paclitaxel solubility (almost 4,000 times greater than PBS) by effective encapsulation and enable sustained, dose-controlled release over 72 hours under conditions mimicking skin permeation. TyroSpheres offer potential in the treatment of psoriasis, a disease resulting from over-proliferation of keratinocytes in the basal layer of the epidermis, by (a) enabling delivery of paclitaxel into the epidermis at concentrations >100 ng/cm2 of skin surface area and (b) enhancing the cytotoxicity of loaded paclitaxel to human keratinocytes (IC50 of paclitaxel-TyroSpheres was approximately 45% lower than that of free paclitaxel). TyroSpheres were incorporated into a gel-like viscous formulation to improve their flow characteristics with no impact on homogeneity, release or skin distribution of the payload. The findings reported here confirm that the TyroSpheres provide a platform for paclitaxel topical administration allowing skin drug localization and minimal systemic escape. PMID:22732474

  19. Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    PubMed Central

    Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael

    2014-01-01

    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy. PMID:24378441

  20. Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel.

    PubMed

    Wang, Zhi-Yuan; Zhang, Hui; Yang, Yang; Xie, Xiang-Yang; Yang, Yan-Fang; Li, Zhiping; Li, Ying; Gong, Wei; Yu, Fang-Lin; Yang, Zhenbo; Li, Ming-Yuan; Mei, Xing-Guo

    2016-05-01

    To increase the anti-tumor activity of paclitaxel (PTX), novel temperature-sensitive liposomes loading paclitaxel (PTX-TSL) were developed. In vitro, characteristics of PTX-TSL were evaluated. The mean particle diameter was about 100 nm, and the entrapment efficiency was larger than 95%. The phase-transition temperature of PTX-TSL determined by differential scanning calorimetry was about 42 °C. The result of in vitro drug release from PTX-TSL illustrated that release rate at 37 °C was obviously lower than that at 42 °C. Stability data indicated that the liposome was physically and chemically stable for at least 3 months at -20 °C. In vivo study, after three injections with hyperthermia in the xenograft lung tumor model, PTX-TSL showed distinguished tumor growth suppression, compared with non-temperature-sensitive liposome and free drug. The results of intratumoral drug concentration indicated that PTX-TSL combined with hyperthermia delivered more paxlitaxel into the tumor location than the other two paxlitaxel formulations. In summary, PTX-TSL combined with hyperthermia significantly inhibited tumor growth, due to the increased targeting efficiency of PTX to tumor tissues. Such approach may enhance the delivery efficiency of chemotherapeutics into solid tumors. PMID:26666408

  1. Magnetically responsive microparticles for targeted drug and radionuclide delivery.

    SciTech Connect

    Kaminski, M. D.; Ghebremeskel, A. N.; Nunez, L.; Kasza, K. E.; Chang, F.; Chien, T.-H.; Fisher, P. F.; Eastman, J. A.; Rosengart, A. J.; McDonald, L.; Xie, Y.; Johns, L.; Pytel, P.; Hafeli, U. O.

    2004-02-16

    We are currently investigating the use of magnetic particles--polymeric-based spheres containing dispersed magnetic nanocrystalline phases--for the precise delivery of drugs via the human vasculature. According to this review, meticulously prepared magnetic drug targeting holds promise as a safe and effective method of delivering drugs to specific organ, tissue or cellular targets. We have critically examined the wide range of approaches in the design and implementation of magnetic-particle-based drug delivery systems to date, including magnetic particle preparation, drug encapsulation, biostability, biocompatibility, toxicity, magnetic field designs, and clinical trials. However, we strongly believe that there are several limitations with past developments that need to be addressed to enable significant strides in the field. First, particle size has to be carefully chosen. Micrometer-sized magnetic particles are better attracted over a distance than nanometer sized magnetic particles by a constant magnetic field gradient, and particle sizes up to 1 {micro}m show a much better accumulation with no apparent side effects in small animal models, since the smallest blood vessels have an inner diameter of 5-7 {micro}m. Nanometer-sized particles <70 nm will accumulate in organ fenestrations despite an effective surface stabilizer. To be suitable for future human applications, our experimental approach synthesizes the magnetic drug carrier according to specific predefined outcome metrics: monodisperse population in a size range of 100 nm to 1.0 {micro}m, non-toxic, with appropriate magnetic properties, and demonstrating successful in vitro and in vivo tests. Another important variable offering possible improvement is surface polarity, which is expected to prolong particle half-life in circulation and modify biodistribution and stability of drugs in the body. The molecules in the blood that are responsible for enhancing the uptake of particles by the reticuloendothelial system (RES) prefer to associate with hydrophobic surfaces. Accordingly, we will tackle this challenge by modifying the particles with hydrophilic coatings such as PEG or poloxamer (co-polymers containing hydrophobic polyoxypropylene segments and repetitive polyoxyethylene hydrophilic groups), which have a proven ability to mask recognition by the RES. Modeling is needed to help optimize the performance of targeted magnetic-particle delivery, enhance its medicinal value, and expedite its medical application. To this end, scientists at Argonne National Laboratory, working with The University of Chicago and Cleveland Clinic Hospital, are working on an effective magnetic drug targeting system based on custom magnetic field designs coupled to a three-dimensional imaging platform that addresses all associated physical and theoretical problems. Furthermore, while our clinical trial results are encouraging with regard to the tolerance and applicability of the system, more improvements must be made with respect to future study designs and systems being used. Given the technical hurdles in developing this potentially important technology, we believe we have made great progress and that we have a strong developmental plan.

  2. Chimeric aptamers in cancer cell-targeted drug delivery.

    PubMed

    Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

    2011-12-01

    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities. PMID:21955150

  3. Chimeric aptamers in cancer cell-targeted drug delivery

    PubMed Central

    Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

    2011-01-01

    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities. PMID:21955150

  4. Electrospun Nanofibers of Guar Galactomannan for Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Chu, Hsiao Mei Annie

    2011-12-01

    Guar galactomannan is a biodegradable polysaccharide used widely in the food industry but also in the cosmetics, pharmaceutical, oil drilling, textile and paper industries. Guar consists of a mannose backbone and galactose side groups that are both susceptible to enzyme degradation, a unique property that can be explored for targeted drug delivery especially since those enzymes are naturally secreted by the microflora in human colon. The present study can be divided into three parts. In the first part, we discuss ways to modify guar to produce nanofibers by electrospinning, a process that involves the application of an electric field to a polymer solution or melt to facilitate production of fibers in the sub-micron range. Nanofibers are currently being explored as the next generation of drug carriers due to its many advantages, none more important than the fact that nanofibers are on a size scale that is a fraction of a hair's width and have large surface-to-volume ratio. The incorporation and controlled release of nano-sized drugs is one way in which nanofibers are being utilized in drug delivery. In the second part of the study, we explore various methods to crosslink guar nanofibers as a means to promote water-resistance in a potential drug carrier. The scope and utility of water-resistant guar nanofibers can only be fully appreciated when subsequent drug release studies are carried out. To that end, the third part of our study focuses on understanding the kinetics and diffusion mechanisms of a model drug, Rhodamine B, through moderately-swelling (crosslinked) hydrogel nanofibers in comparison to rapidly-swelling (non-crosslinked) nanofibers. Along the way, our investigations led us to a novel electrospinning set-up that has a unique collector designed to capture aligned nanofibers. These aligned nanofiber bundles can then be twisted to hold them together like yarn. From a practical standpoint, these yarns are advantageous because they come freely suspended and without any attached support. As composites of aligned nanofibers, yarns potentially combine the inherent advantages of nanofibers with the strength and pliability of larger sized fibers. As such, we became interested in exploring the potential of nanofiber yarns as drug carriers. Our study evolved to accommodate comparative studies between the behavior of traditional nonwoven mats and nanofiber yarns. Throughout the process, we sought to answer the bigger question: Can guar galactomannan nanofibers be used as a new biodegradable platform for drug delivery?

  5. Identification of pathways involved in paclitaxel activity in cervical cancer.

    PubMed

    Qiao, Wen-Juan; Cheng, Hai-Yan; Li, Chun-Quan; Jin, Hong; Yang, Shan-Shan; Li, Xia; Zhang, Yun-Yan

    2011-01-01

    Paclitaxel is one of the key chemotherapeutic drugs widely used to treat various types of cancer. Many cervical cancer patients exhibit selectivity in response to thereapy, however, which is considered to be correlated with drug-gene-pathways. The aim of this study was to identify pathways involved in paclitaxel activity in cervical cancer. Gene expression data was obtained from the NCBI Gene Expression Omnibus and the associations between paclitaxel and genes from DrugBank, MATADOR, TTD, CTD and SuperTarget databases. Differentially expressed genes in cervical cancer were identified using the significance analysis of microarrays (SAM) statistical technique. Pathway analysis was performed according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database using the software package SubpathwayMiner to predict target genes of paclitaxel in cervical cancer and regulated pathways. We found that paclitaxel, which exhibits anticancer activity in cervical cancer, may interact with these differentially expressed genes and their corresponding signaling pathways. Our study presents the first in-depth, large-scale analysis of pathways involved in paclitaxel activity in cervical cancer. Interestingly, these pathways have not been reported to be involved in other tumors. Thus our findings may contribute to the understanding of the mechanisms underlying paclitaxel resistance in cervical cancer. PMID:21517239

  6. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  7. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  8. Reversible Masking Using Low-Molecular-Weight Neutral Lipids to Achieve Optimal-Targeted Delivery

    PubMed Central

    Templeton, Nancy Smyth; Senzer, Neil

    2012-01-01

    Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic. PMID:22655199

  9. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    PubMed Central

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer circulation and biodistrbution study confirmed high RES uptake (75%) in RES organs like liver lung spleen etc. Conclusion: The high RES uptake suggests BPQ SLN as a promising approach for targeted and improved delivery in theileriosis. PMID:24459400

  10. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery.

    PubMed

    Lee, Min Hee; Sessler, Jonathan L; Kim, Jong Seung

    2015-11-17

    Theranostics, chemical entities designed to combine therapeutic effects and imaging capability within one molecular system, have received considerable attention in recent years. Much of this interest reflects the promise inherent in personalized medicine, including disease-targeted treatments for cancer patients. One important approach to realizing this latter promise involves the development of so-called theranostic conjugates, multicomponent constructs that selectively target cancer cells and deliver cytotoxic agents while producing a readily detectable signal that can be monitored both in vitro and in vivo. This requires the synthesis of relatively complex systems comprising imaging reporters, masked chemotherapeutic drugs, cleavable linkers, and cancer targeting ligands. Ideally, the cleavage process should take place within or near cancer cells and be activated by cellular components that are associated with cancer states or specifically expressed at a higher level in cancer cells. Among the cleavable linkers currently being explored for the construction of such localizing conjugates, disulfide bonds are particularly attractive. This is because disulfide bonds are stable in most blood pools but are efficiently cleaved by cellular thiols, including glutathione (GSH) and thioredoxin (Trx), which are generally found at elevated levels in tumors. When disulfide bonds are linked to fluorophores, changes in emission intensity or shifts in the emission maxima are typically seen upon cleavage as the result of perturbations to internal charge transfer (ICT) processes. In well-designed systems, this allows for facile imaging. In this Account, we summarize our recent studies involving disulfide-based fluorescent drug delivery conjugates, including preliminary tests of their biological utility in vitro and in vivo. To date, a variety of chemotherapeutic agents, such as doxorubicin, gemcitabine, and camptothecin, have been used to create disulfide-based conjugates, as have a number of fluorophores, including naphthalimide, coumarin, BODIPY, rhodol, and Cy7. The resulting theranostic core (drug-disulfide-fluorophore) can be further linked to any of several site-localizing entities, including galactose, folate, biotin, and the RGD (Arg-Gly-Asp) peptide sequence, to create systems with an intrinsic selectivity for cancer cells over normal cells. Site-specific cleavage by endogenous thiols serves to release the cytotoxic drug and produce an easy-to-monitor change in the fluorescence signature of the cell. On the basis of the results summarized in this Account, we propose that disulfide-based cancer-targeting theranostics may have a role to play in advancing drug discovery efforts, as well as improving our understanding of cellular uptake and drug release mechanisms. PMID:26513450

  11. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery.

    PubMed

    Vooturi, Sunil K; Kadam, Rajendra S; Kompella, Uday B

    2012-11-01

    In this work, we aim to design and synthesize prodrugs of gatifloxacin targeting organic cation transporter (OCT), monocarboxylate transporter (MCT), and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. An LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and log D (pH 7.4) were measured for prodrugs and the parent drug. The permeability of the prodrugs was determined in the cornea, conjunctiva, and sclera-choroid-retinal pigment epitheluim (SCRPE) and compared with gatifloxacin using an Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits, and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across the cornea, conjunctiva, and SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3-, and 2.5-fold improvement in permeability across the cornea, conjunctiva, and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), the permeability of CP-GFX was reduced across the conjunctiva. However, the cornea and SCRPE permeability of CP-GFX was not affected by nicotinic acid. APM-GFX did not show any improvement in permeability when compared to GFX across the cornea, conjunctiva, and SCRPE. Based on solubility and permeability, DMAP-GFX was selected for in vivo studies. DMAP-GFX showed 3.6- and 1.95-fold higher levels in vitreous humor and CRPE compared to that of GFX at 1 h after topical dosing. In vivo conversion of DMAP-GFX prodrug to GFX was quantified in tissues isolated at 1 h after dosing. The parent drug-to-prodrug ratio was 8, 70, 24, 21, 29, 13, 55, and 60% in the cornea, conjunctiva, iris-ciliary body, aqueous humor, sclera, CRPE, retina, and vitreous humor, respectively. In conclusion, DMAP-GFX prodrug enhanced solubility, log D, as well as OCT mediated delivery of gatifloxacin to the back of the eye. PMID:23003105

  12. Transporter targeted gatifloxacin prodrugs: Synthesis, permeability, and topical ocular delivery

    PubMed Central

    Vooturi, Sunil K.; Kadam, Rajendra S.; Kompella, Uday B.

    2013-01-01

    Purpose To design and synthesize prodrugs of gatifloxacin targeting OCT, MCT, and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Method Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and Log D (pH 7.4) were measured for prodrugs and the parent drug. Permeability of the prodrugs was determined in cornea, conjunctiva, and sclera-choroidretinal pigment epitheluim (SCRPE) and compared with gatifloxacin using Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. Results DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured Log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (Log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across cornea, conjunctiva, as well as SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3- and 2.5-fold improvement in permeability across cornea, conjunctiva and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), permeability of CP-GFX was reduced across conjunctiva. However, cornea and SCRPE permeability of CP-GFX was not affected by nicotinic acid. APM-GFX did not show any improvement in permeability when compared to GFX across cornea, conjunctiva, and SCRPE. Based on solubility and permeability, DMAP-GFX was selected for in vivo studies. DMAP-GFX showed 3.6- and 1.95-fold higher levels in vitreous humor and CRPE compared to that of GFX at 1 hour after topical dosing. In vivo conversion of DMAP-GFX prodrug to GFX was quantified in tissues isolated at 1 hour after dosing. Prodrug-to-parent drug ratio was 8, 70, 24, 21, 29, 13, 55, and 60 % in cornea, conjunctiva, iris-ciliary body, aqueous humor, sclera, CRPE, retina, and vitreous humor, respectively. Conclusions DMAP-GFX prodrug enhanced solubility, Log D, as well as OCT mediated delivery of gatifloxacin to the back of the eye. PMID:23003105

  13. [Ultrasonic microbubbles for glioma-targeted drug delivery].

    PubMed

    Chen, Li-juan; Lu, Cui-tao; Zhao, Ying-zheng; Du, Li-na; Jin, Yi-guang

    2015-01-01

    Ultrasonic microbubbles were used to open blood-brain barriers (BBB) with a reversed and limited behavior feature in the study, which could improve the brain-targeted delivery of anti-tumor drugs. The glioma rat model was prepared. Low-frequency ultrasound was combined with microbubbles to affect the permeability of BBB compared with the permeability of independently administered Evans blue (EB) crossing BBB. Time point and length of ultrasound were investigated whether they affect the permeability of BBB and the damage of brain tissue. The effect of the growth time of glioma on BBB permeability was explored. Only glioma had a very little impact on BBB permeability. However, ultrasonic microbubbles opened the BBB with the features of temporary, limited and reversed behavior and improved EB and magnetic resonance imaging contrast agent penetrating BBB. A length of 30 s ultrasound is appropriate for opening BBB and no damage of brain tissue. Drugs should be injected before ultrasound so that they enter into brain as BBB opening. Ultrasonic microbubbles can open BBB effectively and safely, which improve drugs penetrating BBB under proper time point and length. PMID:25924483

  14. HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery.

    PubMed

    Rollett, Alexandra; Reiter, Tamara; Ohradanova-Repic, Anna; Machacek, Christian; Cavaco-Paulo, Artur; Stockinger, Hannes; Guebitz, Georg M

    2013-12-15

    The chronic autoimmune disorder rheumatoid arthritis (RA) affects millions of adults and children every year. Chronically activated macrophages secreting enzymes and inflammatory cytokines play a key role in RA. Distinctive marker molecules on the macrophage surface could be used to design a targeted drug delivery device for the treatment of RA without affecting healthy cells and tissues. Here, different methods for covalent attachment of antibodies (mAb) recognizing MHC class II molecules found on macrophages onto human serum albumin (HSA) nanocapsules were compared. HSA nanocapsules were prepared with a hydrodynamic diameter of 500.7 ± 9.4 nm and a narrow size distribution as indicated by a polydispersity index (PDI) of 0.255 ± 0.024. This was achieved by using a sonochemical process avoiding toxic cross linking agents and emulsifiers. Covalent binding of mAb on the surface of HSA nanocapsules was realized using polyethyleneglycol (PEG)3000 as spacer molecule. The presence of mAb was confirmed by confocal laser scanning microscopy (CLSM) and enzyme-linked immunosorbent assay (ELISA). Specific binding of mAb-HSA nanocapsules to MHC class II molecules on antigen-presenting cells was demonstrated by flow cytometry analysis. PMID:24157344

  15. Modern prodrug design for targeted oral drug delivery.

    PubMed

    Dahan, Arik; Zimmermann, Ellen M; Ben-Shabat, Shimon

    2014-01-01

    The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options. PMID:25317578

  16. Evolving Evidence of the Efficacy and Safety of nab-Paclitaxel in the Treatment of Cancers with Squamous Histologies

    PubMed Central

    Loong, Herbert H.; Chan, Alvita C.Y.; Wong, Ashley C.Y.

    2016-01-01

    Taxanes, such as paclitaxel and docetaxel, are well-established cytotoxic chemotherapeutics used in the treatment of a variety of cancers, including those of squamous histology. In their formulation, both agents require solvents, which have been associated with hypersensitivity reactions, peripheral neuropathy, hepatic toxicities, and impaired drug delivery. nab-Paclitaxel is a novel, albumin-bound form of paclitaxel with improved tolerability, bioavailability, and efficacy compared with solvent-based paclitaxel. Currently, nab-paclitaxel is approved for the treatment of metastatic breast cancer, locally advanced/metastatic non-small cell lung cancer (NSCLC), and metastatic pancreatic cancer. Clinical studies suggest that nab-paclitaxel may be particularly effective in cancers with squamous histology, including NSCLC. This article reviews the emerging evidence supporting nab-paclitaxel as an effective agent in the treatment of malignancies of squamous histology. PMID:26918039

  17. Co-delivery of Pirarubicin and Paclitaxel by Human Serum Albumin Nanoparticles to Enhance Antitumor Effect and Reduce Systemic Toxicity in Breast Cancers.

    PubMed

    Yi, Xiaoli; Lian, Xianghong; Dong, Jianxia; Wan, Zhuoya; Xia, Chunyu; Song, Xu; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-11-01

    In our study, we aimed to develop a codelivery nanoparticulate system of pirarubicin (THP) and paclitaxel (PTX) (Co-AN) using human serum albumin to improve the therapeutic effect and reduce systemic toxicities. The prepared Co-AN demonstrated a narrow size distribution around 156.9 ± 3.2 nm (PDI = 0.16 ± 0.02) and high loading efficiency (87.91 ± 2.85% for THP and 80.20 ± 2.21% for PTX) with sustained release profiles. Significantly higher drug accumulation in tumors and decreased distribution in normal tissues were observed for Co-AN in xenograft 4T1 murine breast cancer bearing BALB/c mice. Cytotoxicity test against 4T1 cells in vitro and antitumor assay on 4T1 breast cancer in vivo demonstrated that the antitumor effect of Co-AN was superior to that of the single drug or free combination. Also, Co-AN induced increased apoptosis and G2/M cell cycle arrest against 4T1 cells compared to that of the single drug formulation. Remarkably, Co-AN exhibited significantly lower side effects regarding bone marrow suppression and organ and gastrointestinal toxicities. This human serum albumin-based codelivery system represents a promising platform for combination chemotherapy in breast cancers. PMID:26422373

  18. Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells.

    PubMed

    Lu, Ling; Zou, Yan; Yang, Weijing; Meng, Fenghua; Deng, Chao; Cheng, Ru; Zhong, Zhiyuan

    2015-06-01

    In spite of their high potency and specificity, few protein drugs have advanced to the clinical settings due to lack of safe and efficient delivery vehicles. Here, novel anisamide-decorated pH-sensitive degradable chimaeric polymersomes (Anis-CPs) were designed, prepared, and investigated for efficient and targeted delivery of apoptotic protein, granzyme B (GrB), to lung cancer cells. Anis-CPs were readily prepared with varying Anis surface densities from anisamide end-capped poly(ethylene glycol)-b-poly(2,4,6- trimethoxybenzylidene-1,1,1-tris(hydroxymethyl)ethane methacrylate)-b-poly(acrylic acid) (Anis-PEG-PTTMA-PAA) and PEG-PTTMA-PAA copolymers. Using cytochrome C (CC) as a model protein, Anis-CPs displayed high protein loading efficiencies (40.5-100%) and loading contents (up to 16.8 wt %). CC-loaded Anis-CPs had narrow distribution (PDI 0.04-0.13) and small sizes ranging from 152 to 171 nm, which increased with increasing CC contents. Notably, the release of proteins from Anis-CPs was accelerated under mildly acidic conditions, due to the hydrolysis of acetal bonds in PTTMA. MTT assays showed that GrB-loaded Anis-CPs (GrB-Anis-CPs) displayed high targetability to sigma receptor overexpressing cancer cells such as H460 and PC-3 cells. For example, GrB-Anis-CPs exhibited increasing antitumor efficacy to H460 cells with increasing Anis contents from 0 to 80%. The antitumor activity of GrB-Anis-CPs was significantly reduced upon pretreating H460 cells with haloperidol (a competitive antagonist). Notably, the half-maximal inhibitory concentrations (IC50) of GrB-Anis70-CPs were determined to be 6.25 and 5.94 nM for H460 and PC-3 cells, respectively, which were 2-3 orders of magnitude lower than that of chemotherapeutic drugs, such as paclitaxel. Flow cytometry studies demonstrated that GrB-Anis70-CPs induced widespread apoptosis of H460 cells. The confocal laser scanning microscopy (CLSM) experiments using FITC-labeled CC-loaded Anis-CPs confirmed fast internalization and intracellular protein release into H460 cells. GrB-Anis-CPs with high potency and specificity are particularly interesting for targeted therapy of lung cancers. PMID:25938556

  19. Targeted drug delivery using immunoconjugates: principles and applications.

    PubMed

    Pasquetto, Maria Valentina; Vecchia, Luca; Covini, Daniele; Digilio, Rita; Scotti, Claudia

    2011-01-01

    Antibody-drug conjugates (also known as "immunoconjugates") have only recently entered the arsenal of anticancer drugs, but the number of undergoing clinical trials including them is ever increasing and most therapeutic antibodies are now patented including their potential immunoconjugate derivatives. They typically consist of three components: antibody, linker, and cytotoxin. An antibody or antibody fragment targeted to a tumor-associated antigen acts as a carrier for drug delivery and can be conjugated by cleavable or uncleavable linkers to a variety of effector molecules, either a drug, toxin, radioisotope, enzyme (the latter also used in Antibody-Directed Enzyme Prodrug Therapy), or to drug-containing liposomes or nanoparticles. In this review, we propose a general outline of the field, starting from the diagnostic and clinical applications of this class of molecules. Special attention will be devoted to the principles and issues in molecular design (choice of tumor-associated antigen, critical milestones in antibody development, available alternatives for linkers and effector molecule, and strategies for fusion proteins building) to the importance of antibody affinity modulation to optimize therapeutic effect and the potential of emerging alternative scaffolds. Most of the power of these molecules is to reach high concentrations in the tumor, relatively unaffecting normal cells, although one drawback lies in their short half-life. In this respect, modifications of immunoconjugates, which have shown to strongly influence pharmacokinetics, like glycosylation and PEGylation, will be discussed. Undergoing clinical trials and active patents will be analyzed and problems present in clinical use will be reported. PMID:21989410

  20. Microemulsion-based drug delivery system for transnasal delivery of Carbamazepine: preliminary brain-targeting study.

    PubMed

    Patel, Rashmin Bharatbhai; Patel, Mrunali Rashmin; Bhatt, Kashyap K; Patel, Bharat G; Gaikwad, Rajiv V

    2016-01-01

    This study reports the development and evaluation of Carbamazepine (CMP)-loaded microemulsions (CMPME) for intranasal delivery in the treatment of epilepsy. The CMPME was prepared by the spontaneous emulsification method and characterized for physicochemical parameters. All formulations were radiolabeled with (99m)Tc (technetium) and biodistribution of CMP in the brain was investigated using Swiss albino rats. Brain scintigraphy imaging in rats was also performed to determine the uptake of the CMP into the brain. CMPME were found crystal clear and stable with average globule size of 34.11 ± 1.41 nm. (99m)Tc-labeled CMP solution (CMPS)/CMPME/CMP mucoadhesive microemulsion (CMPMME) were found to be stable and suitable for in vivo studies. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMPMME compared to intravenous CMPME was found to be 2- to 3-fold higher signifying larger extent of distribution of the CMP in brain. Drug targeting efficiency and direct drug transport were found to be highest for CMPMME post-intranasal administration compared to intravenous CMP. Rat brain scintigraphy also demonstrated higher intranasal uptake of the CMP into the brain. This investigation demonstrates a prompt and larger extent of transport of CMP into the brain through intranasal CMPMME, which may prove beneficial for treatment of epilepsy. PMID:24825492

  1. Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies

    PubMed Central

    Nie, Shufang; Hsiao, WL Wendy; Pan, Weisan; Yang, Zhijun

    2011-01-01

    Purpose To develop an in situ gel system comprising liposome-containing paclitaxel (PTX) dispersed within the thermoreversible gel (Pluronic® F127 gel) for controlled release and improved antitumor drug efficiency. Methods The dialysis membrane and membrane-less diffusion method were used to investigate the in vitro drug release behavior. Differential scanning calorimetry (DSC) thermal analysis was used to investigate the “micellization” and “sol/gel transition” process of in situ gel systems. In vitro cytotoxicity and drug uptake in KB cancer cells were determined by MTT, intercellular drug concentration, and fluorescence intensity assay. Results The in vitro release experiment performed with a dialysis membrane model showed that the liposomal gel exhibited the longest drug-release period compared with liposome, general gel, and commercial formulation Taxol®. This effect is presumably due to the increased viscosity of liposomal gel, which has the effect of creating a drug reservoir. Both drug and gel release from the in situ gel system operated under zero-order kinetics and showed a correlation of release of PTX with gel, indicating a predominating release mechanism of the erosion type. Dispersing liposomes into the gel replaced larger gel itself for achieving the same gel dissolution rate. Both the critical micelle temperature and the sol/gel temperature, detected by DSC thermal analysis, were shifted to lower temperatures by adding liposomes. The extent of the shifts depended on the amount of embedded liposomes. MTT assay and drug uptake studies showed that the treatment with PTX-loaded liposomal 18% Pluronic F127 yielded cytotoxicities, intercellular fluorescence intensity, and drug concentration in KB cells much higher than that of conventional liposome, while blank liposomal 18% Pluronic F127 gel was far less than the Cremophor EL® vehicle and empty liposomes. Conclusions A thermosensitive hydrogel with embedded liposome is a promising carrier for hydrophobic anticancer agents, to be used in parenteral formulations for treating local cancers. PMID:21499415

  2. Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy

    2015-04-01

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.

  3. Smart linkers in polymer-drug conjugates for tumor-targeted delivery.

    PubMed

    Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei

    2016-07-01

    To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes. PMID:26560242

  4. Toward improved selectivity of targeted delivery: the potential of magnetic nanoparticles.

    PubMed

    Yoo, Jin-Wook

    2012-01-01

    Magnetic nanoparticles, mostly iron oxide-based nanoparticles, have long been used as contrasting agents in magnetic resonance imaging (MRI) applications, heat mediators in hyperthermia treatments and carriers for targeted drug delivery. Magnetic nanoparticles offer some attractive characteristics for targeted drug delivery such as drug carrying ability, nano-scale dimensions and magnetism-driven selective targeting. In this issue, Escribano et al. demonstrated that iron oxide-based magnetic nanoparticles with an implanted magnet can improve selective targeting to the site of inflammation. This result opens a promising avenue for magnetic drug targeting to inflammatory diseases. PMID:22297736

  5. Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases.

    PubMed

    Vij, Neeraj

    2012-01-01

    Chronic airway inflammation is a hallmark of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease), and CF (cystic fibrosis). It is also a major challenge in delivery and therapeutic efficacy of nano-based delivery systems in these chronic airway conditions as nanoparticle (NP) need to bypass airways defense mechanisms as we recently discussed. NPs which are capable of overcoming airways defense mechanisms should allow targeted drug delivery to disease cells. Over the last decade there has been increasing interest in development of targeted NPs for cancer but relatively little effort on designing novel systems for treating chronic inflammatory and obstructive airway conditions. Here we describe methods for preparing drug loaded multifunctional nanoparticles for targeted delivery to specific cell types in airways. The formulations and methods for selective drug delivery, discussed here are currently under preclinical development in our laboratory for treating chronic airway conditions such as COPD, CF, and asthma. PMID:22791443

  6. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery

    PubMed Central

    Pan, Dipanjan; Pham, Christine TN; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a ‘magic bullet’ to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a ‘Grail Quest’ by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made ‘made the turn’ toward meaningful translational success. PMID:26296541

  7. Sunitinib Plus Paclitaxel Versus Bevacizumab Plus Paclitaxel for First-Line Treatment of Patients With Advanced Breast Cancer: A Phase III, Randomized, Open-Label Trial

    PubMed Central

    Robert, Nicholas J.; Saleh, Mansoor N.; Paul, Devchand; Generali, Daniele; Gressot, Laurent; Copur, Mehmet S.; Brufsky, Adam M.; Minton, Susan E.; Giguere, Jeffrey K.; Smith, John W.; Richards, Paul D.; Gernhardt, Diana; Huang, Xin; Liau, Katherine F.; Kern, Kenneth A.; Davis, John

    2015-01-01

    Introduction A multicenter, open-label phase III study was conducted to test whether sunitinib plus paclitaxel prolongs progression-free survival (PFS) compared with bevacizumab plus paclitaxel as first-line treatment for patients with HER2− advanced breast cancer. Patients and Methods Patients with HER2− advanced breast cancer who were disease free for ≥ 12 months after adjuvant taxane treatment were randomized (1:1; planned enrollment 740 patients) to receive intravenous (I.V.) paclitaxel 90 mg/m2 every week for 3 weeks in 4-week cycles plus either sunitinib 25 to 37.5 mg every day or bevacizumab 10 mg/kg I.V. every 2 weeks. Results The trial was terminated early because of futility in reaching the primary endpoint as determined by the independent data monitoring committee during an interim futility analysis. At data cutoff, 242 patients had been randomized to sunitinib-paclitaxel and 243 patients to bevacizumab-paclitaxel. Median PFS was shorter with sunitinib-paclitaxel (7.4 vs. 9.2 months; hazard ratio [HR] 1.63 [95% confidence interval (CI), 1.18–2.25]; 1-sided P = .999). At a median follow-up of 8.1 months, with 79% of sunitinib-paclitaxel and 87% of bevacizumab-paclitaxel patients alive, overall survival analysis favored bevacizumab-paclitaxel (HR 1.82 [95% CI, 1.16–2.86]; 1-sided P = .996). The objective response rate was 32% in both arms, but median duration of response was shorter with sunitinib-paclitaxel (6.3 vs. 14.8 months). Bevacizumab-paclitaxel was better tolerated than sunitinib-paclitaxel. This was primarily due to a high frequency of grade 3/4, treatment-related neutropenia with sunitinib-paclitaxel (52%) precluding delivery of the prescribed doses of both drugs. Conclusion The sunitinib-paclitaxel regimen evaluated in this study was clinically inferior to the bevacizumab-paclitaxel regimen and is not a recommended treatment option for patients with advanced breast cancer. PMID:21569994

  8. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Gao, Shujun; Ye, Wen-Hui; Yoon, Ho Sup; Yang, Yi-Yan

    2006-10-01

    Non-viral gene-delivery systems are safer to use and easier to produce than viral vectors, but their comparatively low transfection efficiency has limited their applications. Co-delivery of drugs and DNA has been proposed to enhance gene expression or to achieve the synergistic/combined effect of drug and gene therapies. Attempts have been made to deliver drugs and DNA simultaneously using liposomes. Here we report cationic core-shell nanoparticles that were self-assembled from a biodegradable amphiphilic copolymer. These nanoparticles offer advantages over liposomes, as they are easier to fabricate, and are more readily subject to modulation of their size and degree of positive charge. More importantly, they achieve high gene-transfection efficiency and the possibility of co-delivering drugs and genes to the same cells. Enhanced gene transfection with the co-delivery of paclitaxel has been demonstrated by in vitro and in vivo studies. In particular, the co-delivery of paclitaxel with an interleukin-12-encoded plasmid using these nanoparticles suppressed cancer growth more efficiently than the delivery of either paclitaxel or the plasmid in a 4T1 mouse breast cancer model. Moreover, the co-delivery of paclitaxel with Bcl-2-targeted small interfering RNA (siRNA) increased cytotoxicity in MDA-MB-231 human breast cancer cells.

  9. Cell-mediated Delivery and Targeted Erosion of Noncovalently Crosslinked Hydrogels

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin.

  10. [Targeted Delivery of Quantum Dots to HER2-Expressing Tumor Using Recombinant Antibodies].

    PubMed

    Balalaeva, I V; Zdobnova, T A; Sokolova, E A; Deyev, S M

    2015-01-01

    Targeted delivery of semiconductor quantum dots (Q Ds) to tumors overexpressing HER2 cancer marker has been. demonstrated on immunocompromised mice bearing human breast cancer xenografts. To obtain targeted QDs complexes we applied the approach based on the use of protein adaptor system, RNAase barnase and its inhibitor barstar. Specific binding to target cancer marker was achieved through bivalent fusion protein containing two fragments of4D5scFv recombinant antibody and a fragment of barnase. QDs were conjugated to barstar, and final assembly of targeted complexes was obtained through non-covalent specific interaction of barstar, attached to QD, and barnase, that is part of the recombinant targeting protein. The efficient delivery of QDs to HER2-expressing tumor demonstrates the possibilities and prospects of the approach for targeted delivery of nanoparticles to cancer cells in vivo as the way to improve the efficiency of diagnosis and promote development of therapies based on the use of nanoparticles. PMID:26762098

  11. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    PubMed Central

    Yang, Danbo; Yu, Lei; Van, Sang

    2011-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic. PMID:24212604

  12. Cell targeted gene delivery system based on modified pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus pectin modified with various amine groups have been studied for its potential as a novel non-viral gene delivery carrier. The modified cationic pectin was able to condense DNA and mediate transfection in a cell type specific manner. The modified pectin seems to be a promising carrier, attra...

  13. Inhibition of Spleen Tyrosine Kinase Potentiates Paclitaxel-Induced Cytotoxicity in Ovarian Cancer Cells by Stabilizing Microtubules.

    PubMed

    Yu, Yu; Gaillard, Stephanie; Phillip, Jude M; Huang, Tai-Chung; Pinto, Sneha M; Tessarollo, Nayara G; Zhang, Zhen; Pandey, Akhilesh; Wirtz, Denis; Ayhan, Ayse; Davidson, Ben; Wang, Tian-Li; Shih, Ie-Ming

    2015-07-13

    Resistance to chemotherapy represents a major obstacle for long-term remission, and effective strategies to overcome drug resistance would have significant clinical impact. We report that recurrent ovarian carcinomas after paclitaxel/carboplatin treatment have higher levels of spleen tyrosine kinase (SYK) and phospho-SYK. In vitro, paclitaxel-resistant cells expressed higher SYK, and the ratio of phospho-SYK/SYK positively associated with paclitaxel resistance in ovarian cancer cells. Inactivation of SYK by inhibitors or gene knockdown sensitized paclitaxel cytotoxicity in vitro and in vivo. Analysis of the phosphotyrosine proteome in paclitaxel-resistant tumor cells revealed that SYK phosphorylates tubulins and microtubule-associated proteins. Inhibition of SYK enhanced microtubule stability in paclitaxel-resistant tumor cells that were otherwise insensitive. Thus, targeting SYK pathway is a promising strategy to enhance paclitaxel response. PMID:26096845

  14. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    DOEpatents

    Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L

    2015-03-31

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  15. A genetic variation in microRNA target site of ETS2 is associated with clinical outcomes of paclitaxel-cisplatin chemotherapy in non-small cell lung cancer.

    PubMed

    Hong, Mi Jeong; Lee, Shin Yup; Choi, Jin Eun; Jin, Cheng Cheng; Kang, Hyo Jung; Baek, Sun Ah; Lee, So Yeon; Shin, Kyung Min; Jeong, Ji Yun; Lee, Won Kee; Yoo, Seung Soo; Lee, Jaehee; Cha, Seung Ick; Kim, Chang Ho; Son, Ji Woong; Park, Jae Yong

    2016-03-29

    The present study was performed to investigate the association of single nucleotide polymorphisms (SNPs) located in the miRNA target sites with the clinical outcomes of first line paclitaxel-cisplatin chemotherapy in advanced NSCLC. Eighty SNPs in miRNA binding sites of cancer related genes selected from 18,500 miRNA:target bindings in crosslinking, ligation, and sequencing of hybrids (CLASH) data were investigated in 379 advanced NSCLC patients using a sequenom mass spectrometry-based genotype assay. qRT-PCR and luciferase assay were conducted to examine functional relevance of potentially functional SNPs in miRNA binding sites. Of the 80 SNPs analyzed, 16 SNPs were significantly associated with the clinical outcomes after chemotherapy. Among these, ANAPC1 rs3814026C>T, ETS2 rs461155A>G, SORBS1 rs7081076C>A and POLR2A rs2071504C>T could predict both chemotherapy response and survival. Notably, ETS2 rs461155A>G was significantly associated with decreased ETS2 mRNA expression in both tumor and paired normal lung tissues (Ptrend = 4 × 10-7, and 3 × 10-4, respectively). Consistently, a decreased expression of the reporter gene for the G allele of rs461155 compared with the A allele was observed by luciferase assay. These findings suggest that the four SNPs, especially ETS2 rs461155A>G, could be used as biomarkers predicting the clinical outcomes of NSCLC patients treated with first-line paclitaxel-cisplatin chemotherapy. PMID:26893365

  16. Neoadjuvant nab-paclitaxel in the treatment of breast cancer.

    PubMed

    Ueno, Naoto T; Mamounas, Eleftherios P

    2016-04-01

    Neoadjuvant chemotherapy has the advantage of converting unresectable breast tumors to resectable tumors and allowing more conservative surgery in some mastectomy candidates. Chemotherapy agents, including taxanes, which are recommended in the adjuvant setting, are also considered in the neoadjuvant setting. Here, we review studies of nab-paclitaxel as a neoadjuvant treatment for patients with breast cancer. PubMed and conference or congress proceedings were searched for clinical studies of nab-paclitaxel in the neoadjuvant treatment of breast cancer. We also searched ClinicalTrials.gov for ongoing trials of nab-paclitaxel as a neoadjuvant agent in breast cancer. Twenty studies of nab-paclitaxel in the neoadjuvant setting were identified. In addition to reviewing key efficacy and safety data, we discuss how each trial assessed response, focusing on pathologic complete response and residual cancer burden scoring. Safety profiles are also reviewed. nab-Paclitaxel demonstrated antitumor activity and an acceptable safety profile in the neoadjuvant treatment of breast cancer. Ongoing and future trials will further evaluate preoperative nab-paclitaxel in breast cancer, including in combination with many novel immunological targeted therapies. PMID:27072366

  17. Paclitaxel uptake and transport in Taxus cell suspension cultures

    PubMed Central

    Naill, Michael C.; Kolewe, Martin E.; Roberts, Susan C.

    2012-01-01

    The transport of paclitaxel in Taxus canadensis suspension cultures was studied with a fluorescence analogue of paclitaxel (Flutax-2®) in combination with flow cytometry detection. Experiments were carried out using both isolated protoplasts and aggregated suspension cell cultures. Flutax-2® was shown to be greater than 90% stable in Taxus suspension cultures over the required incubation time (24 hours). Unlabeled paclitaxel was shown to inhibit the cellular uptake of Flutax-2®, although structurally similar taxanes such as cephalomannine, baccatin III, and 10-deacetylbaccatin III did not inhibit Flutax-2® uptake. Saturation kinetics of Flutax-2® uptake was demonstrated. These results indicate the presence of a specific transport system for paclitaxel. Suspension cells elicited with methyl jasmonate accumulated 60% more Flutax-2® than unelicited cells, possibly due to an increased cellular storage capacity following methyl jasmonate elicitation. The presence of a specific mechanism for paclitaxel transport is an important first result that will provide the basis of more detailed studies as well as the development of targeted strategies for increased paclitaxel secretion to the extracellular medium. PMID:23180977

  18. Apoptosis induced by paclitaxel-loaded copolymer PLA-TPGS in Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Tran Thi, Hong Ha; Le Quang, Duong; Nguyen Thi, Toan; Tran Thi, Nhu Hang; Huong Le, Mai; Thu Ha, Phuong

    2012-12-01

    Paclitaxel is an important anticancer drug in clinical use for treatment of a variety of cancers. The clinical application of paclitaxel in cancer treatment is considerably limited due to its serious poor delivery characteristics. In this study paclitaxel-loaded copolymer poly(lactide)-d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS) nanoparticles were prepared by a modified solvent extraction/evaporation technique. The characteristics of the nanoparticles, such as surface morphology, size distribution, zeta potential, solubility and apoptosis were investigated in vitro. The obtained spherical nanoparticles were negatively charged with a zeta potential of about -18 mV with the size around 44 nm and a narrow size distribution. The ability of paclitaxel-loaded PLA-TPGS nanoparticles to induce apoptosis in human hepatocellular carcinoma cell line (Hep-G2) indicates the possibility of developing paclitaxel nanoparticles as a potential universal cancer chemotherapeutic agent.

  19. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition.

    PubMed

    Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A; Feng, Dan; Bielecki, Timothy A; Band, Vimla; Cohen, Samuel M; Bronich, Tatiana K; Band, Hamid

    2016-03-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla®; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance receptor endocytosis and lysosomal routing can provide a novel strategy to significantly improve therapy with ANPs and ADCs. PMID:26859680

  20. Synthetic Aptamer-Polymer Hybrid Constructs for Programmed Drug Delivery into Specific Target Cells

    PubMed Central

    2015-01-01

    Viruses have evolved specialized mechanisms to efficiently transport nucleic acids and other biomolecules into specific host cells. They achieve this by performing a coordinated series of complex functions, resulting in delivery that is far more efficient than existing synthetic delivery mechanisms. Inspired by these natural systems, we describe a process for synthesizing chemically defined molecular constructs that likewise achieve targeted delivery through a series of coordinated functions. We employ an efficient “click chemistry” technique to synthesize aptamer-polymer hybrids (APHs), coupling cell-targeting aptamers to block copolymers that secure a therapeutic payload in an inactive state. Upon recognizing the targeted cell-surface marker, the APH enters the host cell via endocytosis, at which point the payload is triggered to be released into the cytoplasm. After visualizing this process with coumarin dye, we demonstrate targeted killing of tumor cells with doxorubicin. Importantly, this process can be generalized to yield APHs that specifically target different surface markers. PMID:25290917

  1. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  2. Size matters: gold nanoparticles in targeted cancer drug delivery

    PubMed Central

    Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

    2013-01-01

    Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward. PMID:22834077

  3. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  4. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems.

    PubMed

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Badshah, Shaikh Atik; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  5. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    PubMed Central

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Atik Badshah, Shaikh; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  6. Novel targeted bladder drug-delivery systems: a review

    PubMed Central

    Zacchè, Martino Maria; Srikrishna, Sushma; Cardozo, Linda

    2015-01-01

    The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. PMID:26649286

  7. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  8. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries

    PubMed Central

    Hallow, Daniel M.; Mahajan, Anuj D.; Prausnitz, Mark R.

    2007-01-01

    This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the delivery process are lacking. Viable ex vivo porcine carotid arteries were placed in a solution containing a model drug, TO-PRO®-1, and Optison® microbubbles. Arteries were exposed to ultrasound at 1.1 MHz and acoustic energies of 5.0, 66, or 630 J/cm2. Using confocal microscopy and fluorescent labeling of cells, the artery endothelium and media were imaged to determine the localization and to quantify intracellular uptake and cell death. At low to intermediate ultrasound energy, ultrasound was shown to target intracellular delivery into viable cells that represented 9 – 24% of exposed ECs. These conditions also typically caused 7 – 25% EC death. At high energy, intracellular delivery was targeted to SMCs, which was associated with denuding or death of proximal ECs. This work represents the first known in-depth study to evaluate intracellular uptake into cells in tissue. We conclude that significant intracellular uptake of molecules can be targeted into ECs and SMCs by ultrasound-enhanced delivery suggesting possible applications for treatment of cardivascular diseases and dysfunctions. PMID:17291619

  9. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model.

    PubMed

    Wang, Xu; Li, Jun; Wang, Yuxiang; Koenig, Lydia; Gjyrezi, Ada; Giannakakou, Paraskevi; Shin, Edwin H; Tighiouart, Mourad; Chen, Zhuo Georgia; Nie, Shuming; Shin, Dong M

    2011-08-23

    Resistance to chemotherapy is a major obstacle in cancer therapy. The main purpose of this study is to evaluate the potential of a folate receptor-targeting nanoparticle to overcome/minimize drug resistance and to explore the underlying mechanisms. This is accomplished with enhanced cellular accumulation and retention of paclitaxel (one of the most effective anticancer drugs in use today and a well-known P-glycoprotein (P-gp) substrate) in a P-gp-overexpressing cancer model. The folate receptor-targeted nanoparticle, HFT-T, consists of a heparin-folate-paclitaxel (HFT) backbone with an additional paclitaxel (T) loaded in its hydrophobic core. In vitro analyses demonstrated that the HFT-T nanoparticle was superior to free paclitaxel or nontargeted nanoparticle (HT-T) in inhibiting proliferation of P-gp-overexpressing cancer cells (KB-8-5), partially due to its enhanced uptake and prolonged intracellular retention. In a subcutaneous KB-8-5 xenograft model, HFT-T administration enhanced the specific delivery of paclitaxel into tumor tissues and remarkably prolonged retention within tumor tissues. Importantly, HFT-T treatment markedly retarded tumor growth in a xenograft model of resistant human squamous cancer. Immunohistochemical analysis further indicated that increased in vivo efficacy of HFT-T nanoparticles was associated with a higher degree of microtubule stabilization, mitotic arrest, antiangiogenic activity, and inhibition of cell proliferation. These findings suggest that when the paclitaxel was delivered as an HFT-T nanoparticle, the drug is better retained within the P-gp-overexpressing cells than the free form of paclitaxel. These results indicated that the targeted HFT-T nanoparticle may be promising in minimizing P-gp related drug resistance and enhancing therapeutic efficacy compared with the free form of paclitaxel. PMID:21728341

  10. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    PubMed Central

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-01-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry. PMID:26875783

  11. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles.

    PubMed

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-01-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane's electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry. PMID:26875783

  12. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-02-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.

  13. Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe3O4@LaF3: Ce3+,Tb3+/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19-37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe3O4@LaF3: Ce3+,Tb3+/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV-visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe3O4@LaF3:Tb3+/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe3O4@LaF3:Tb3+/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX.

  14. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery

    PubMed Central

    Rajapaksa, Thejani E.; Stover-Hamer, Mary; Fernandez, Xiomara; Eckelhoefer, Holly A.; Lo, David D.

    2009-01-01

    Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system. PMID:19896996

  15. Mitochondria-targeted drug delivery system for cancer treatment.

    PubMed

    Chen, Zhi-Peng; Li, Man; Zhang, Liu-Jie; He, Jia-Yu; Wu, Li; Xiao, Yan-Yu; Duan, Jin-Ao; Cai, Ting; Li, Wei-Dong

    2016-07-01

    Mitochondria are one type of the major organelles in the cell, participating in a variety of important physiological and biochemical processes, such as tricarboxylic acid cycle, fatty acid metabolism and oxidative phosphorylation. Meanwhile, it also happens to be the key regulator of apoptosis by triggering the complex cell-death processes through a variety of mechanisms. Since it plays a pivotal role in cell-death, a mitochondria-targeted treatment strategy could be promising for cancer therapy. In this comprehensive review, we focused on the mechanisms of mitochondrial targeting and a variety of strategies to realize the purpose of mitochondrial targeting, including that based on the use of lipophilic cations, and mitochondrial targeting signal peptides (MTS) as well as cell-penetrating peptides (CPPs). Then on this basis we present some several developed strategies for multifunctional mitochondria-targeted agents so as to achieve the good anti-cancer therapeutic effects. PMID:26548930

  16. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

    PubMed

    Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success. WIREs Nanomed Nanobiotechnol 2015, 8:85-106. doi: 10.1002/wnan.1355 For further resources related to this article, please visit the WIREs website. PMID:26296541

  17. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery.

    PubMed

    Chang, Tsung-Yao; Shi, Peng; Steinmeyer, Joseph D; Chatnuntawech, Itthi; Tillberg, Paul; Love, Kevin T; Eimon, Peter M; Anderson, Daniel G; Yanik, Mehmet Fatih

    2014-10-01

    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with high repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationships, which can potentially be applied to design novel delivery vehicles. PMID:25184623

  18. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery

    PubMed Central

    Chang, Tsung-Yao; Shi, Peng; Steinmeyer, Joseph D.; Chatnuntawech, Itthi; Tillberg, Paul; Love, Kevin T.; Eimon, Peter M.; Anderson, Daniel G.; Yanik, Mehmet Fatih

    2014-01-01

    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with nearly perfect repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationship, which can potentially be applied to design novel delivery vehicles. PMID:25184623

  19. Targeted drug delivery to the brain using magnetic nanoparticles.

    PubMed

    Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

    2015-10-01

    Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain. PMID:26446407

  20. Functionalized Hollow Mesoporous Silica Nanoparticles for Tumor Vasculature Targeting and PET Image-Guided Drug Delivery

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Hong, Hao; Chen, Feng; Valdovinos, Hector F.; Hernandez, Reinier; Barnhart, Todd E.; Cai, Weibo

    2014-01-01

    Aim Development of multifunctional and well-dispersed hollow mesoporous silica nanoparticles (HMSNs) for tumor vasculature targeted drug delivery and positron emission tomography (PET) imaging. Materials and Methods Amine functionalized HMSNs (150–250 nm) were conjugated with a macrocyclic chelator, NOTA, PEGylated and loaded with anti-angiogenesis drug, Sunitinib. Cyclo(Arg-Gly-Asp-D-Tyr-Lys) (cRGDyK) peptide was attached to the nanoconjugate and radiolabeled with 64Cu for PET imaging. Results 64Cu-NOTA-HMSN-PEG-cRGDyK exhibited integrin specific uptake both in vitro and in vivo. PET results indicated ~ 8 %ID/g uptake of targeted nanoconjugates in U87MG tumors, which correlated well with ex vivo and histological analyses. Enhanced tumor targeted delivery of sunitinib was also observed. Conclusions We successfully developed tumor vasculature targeted HMSNs for PET imaging and image guided drug delivery. PMID:25955122

  1. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  2. Magnetic Targeted Delivery of Dexamethasone Acetate across the Round Window Membrane in Guinea Pigs

    PubMed Central

    Du, Xiaoping; Chen, Kejian; Kuriyavar, Satish; Kopke, Richard D.; Grady, Brian P.; Bourne, David H.; Li, Wei; Dormer, Kenneth J.

    2012-01-01

    Hypothesis Magnetically susceptible PLGA nanoparticles will effectively target the round window membrane (RWM) for delivery of dexamethasone-acetate (Dex-Ac) to the scala tympani. Background Targeted delivery of therapeutics to specific tissues can be accomplished using different targeting mechanisms. One technology includes iron oxide nanoparticles, susceptible to external magnetic fields. If a nanocomposite composed of biocompatible polymer (PLGA), magnetite, and Dex-Ac can be pulled into and across the mammalian RWM, drug delivery can be enhanced. Method In vitro targeting and release kinetics of PLGA-magnetite-Dex-Ac nanoparticles first were measured using a RWM model. Next, these optimized nanocomposites were targeted to the RWM by filling the niche in anesthetized guinea pigs. A permanent magnet was placed opposite the RWM for 1 hour. Cochlear soft tissues, perilymph, and RWM were harvested after euthanasia and steroid levels were measured using HPLC. Results Membrane transport, in vitro, proved optimal targeting using a lower particle magnetite concentration (1 versus 5 or 10 mg/ml). In vivo targeted PLGA-magnetite-Dex-Ac particles had an average size of 482.8 ± 158 nm (DLS) and an average zeta potential −19.9 ± 3.3 mV. In 1 hour, there was significantly increased cochlear targeted delivery of Dex or Dex-Ac, compared with diffusion alone. Conclusion Superparamagnetic PLGA-magnetite-Dex-Ac nanoparticles under an external magnetic field (0.26 mT) for 1 hour significantly increased Dex-Ac delivery to the inner ear. The RWM was not completely permeated and also became loaded with nanocomposites, indicating that delivery to the cochlea would continue for weeks by PLGA degradation and passive diffusion. PMID:23187928

  3. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery.

    PubMed

    Partlow, Kathryn C; Lanza, Gregory M; Wickline, Samuel A

    2008-08-01

    The ability to specifically deliver therapeutic agents to selected cell types while minimizing systemic toxicity is a principal goal of nanoparticle-based drug delivery approaches. Numerous cellular portals exist for cargo uptake and transport, but after targeting, intact nanoparticles typically are internalized via endocytosis prior to drug release. However, in this work, we show that certain classes of nanoparticles, namely lipid-coated liquid perfluorocarbon emulsions, undergo unique interactions with cells to deliver lipophilic substances to target cells without the need for entire nanoparticle internalization. To define the delivery mechanisms, fluorescently-labeled nanoparticles complexed with alphav beta 3-integrin targeting ligands were incubated with alphav beta 3-integrin expressing cells (C32 melanoma) under selected inhibitory conditions that revealed specific nanoparticle-to-cell interactions. We observed that the predominant mechanism of lipophilic delivery entailed direct delivery of lipophilic substances to the target cell plasma membrane via lipid mixing and subsequent intracellular trafficking through lipid raft-dependent processes. We suggest that local drug delivery to selected cell types could be facilitated by employing targeted nanoparticles designed specifically to utilize alternative membrane transport mechanisms. PMID:18485474

  4. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. ); Bittner, D.N.; Hendricks, C.D. )

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  5. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  6. Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches

    PubMed Central

    Philip, Anil K.; Philip, Betty

    2010-01-01

    The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topical treatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeted directly into the colon, thereby reducing the systemic side effects. This review, mainly compares the primary approaches for CDDS (Colon Specific Drug Delivery) namely prodrugs, pH and time dependent systems, and microbially triggered systems, which achieved limited success and had limitations as compared with newer CDDS namely pressure controlled colonic delivery capsules, CODESTM, and osmotic controlled drug delivery which are unique in terms of achieving in vivo site specificity, and feasibility of manufacturing process. PMID:22125706

  7. Cell-Mediated Delivery of Nanoparticles: Taking Advantage of Circulatory Cells to Target Nanoparticles

    PubMed Central

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Cellular hitchhiking leverages the use of circulatory cells to enhance the biological outcome of nanoparticle drug delivery systems, which often suffer from poor circulation time and limited targeting. Cellular hitchhiking utilizes the natural abilities of circulatory cells to: (i) navigate the vasculature while avoiding immune system clearance, (ii) remain relatively inert until needed and (iii) perform specific functions, including nutrient delivery to tissues, clearance of pathogens, and immune system surveillance. A variety of synthetic nanoparticles attempt to mimic these functional attributes of circulatory cells for drug delivery purposes. By combining the advantages of circulatory cells and synthetic nanoparticles, many advanced drug delivery systems have been developed that adopt the concept of cellular hitchhiking. Here, we review the development and specific applications of cellular hitchhiking-based drug delivery systems. PMID:24747161

  8. Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles

    PubMed Central

    2015-01-01

    Delivery of nanoparticle drugs to tumors relies heavily on the enhanced permeability and retention (EPR) effect. While many consider the effect to be equally effective on all tumors, it varies drastically among the tumors’ origins, stages, and organs, owing much to differences in vessel leakiness. Suboptimal EPR effect represents a major problem in the translation of nanomedicine to the clinic. In the present study, we introduce a photodynamic therapy (PDT)-based EPR enhancement technology. The method uses RGD-modified ferritin (RFRT) as “smart” carriers that site-specifically deliver 1O2 to the tumor endothelium. The photodynamic stimulus can cause permeabilized tumor vessels that facilitate extravasation of nanoparticles at the sites. The method has proven to be safe, selective, and effective. Increased tumor uptake was observed with a wide range of nanoparticles by as much as 20.08-fold. It is expected that the methodology can find wide applications in the area of nanomedicine. PMID:24806291

  9. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    PubMed

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites. PMID:26342659

  10. New approaches to targeted drug delivery to tumour cells

    NASA Astrophysics Data System (ADS)

    Severin, E. S.

    2015-01-01

    Basic approaches to the design of targeted drugs for the treatment of human malignant tumours have been considered. The stages of the development of these approaches have been described in detail and theoretically substantiated, and basic experimental results have been reported. Considerable attention is paid to the general characteristic of nanopharmacological drugs and to the description of mechanisms of cellular interactions with nanodrugs. The potentialities and limitations of application of nanodrugs for cancer therapy and treatment of other diseases have been considered. The use of nanodrugs conjugated with vector molecules seems to be the most promising trend of targeted therapy of malignant tumours. The bibliography includes 122 references.

  11. Stathmin potentiates vinflunine and inhibits Paclitaxel activity.

    PubMed

    Malesinski, Soazig; Tsvetkov, Philipp O; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  12. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  13. Nab-paclitaxel in patients with metastatic melanoma.

    PubMed

    Leon-Ferre, Roberto A; Markovic, Svetomir N

    2015-12-01

    Cutaneous melanoma is one of the most aggressive and resistant malignancies in humans. Until recently, progress in the treatment of metastatic melanoma remained dormant for nearly two decades. However, recent advances in immune and targeted therapeutic approaches have led to dramatic and paradigm-shifting advances in the management of metastatic melanoma, that are now leading the way for other malignancies. With the advent of these new therapeutic options, chemotherapy is no longer favored as a first line strategy in metastatic melanoma, but continues to play a role in the salvage treatment of patients that have become refractory to immune-based or targeted therapies. Nab-paclitaxel, a solvent-free alternative to solvent-based paclitaxel, has shown in several trials to be active in metastatic melanoma. Herein, we summarize the role of nab-paclitaxel in the management of patients with advanced melanoma. PMID:26536477

  14. Restoration of paclitaxel resistance by CDK1 intervention in drug-resistant ovarian cancer.

    PubMed

    Bae, Taejeong; Weon, Kwon-Yeon; Lee, Jeong-Won; Eum, Ki-Hwan; Kim, Sungchul; Choi, Jin Woo

    2015-12-01

    Epithelial ovarian cancer (EOC) commonly acquires resistance to chemotherapy, and this is the major obstacle to the better prognosis. Elucidating the molecular targets altered by chemotherapy is critically required to understand and overcome drug resistance. As a drug combination including paclitaxel is a prevalent prescription for treatment of EOC, to uncover gene expression altered in paclitaxel-resistant EOC, we analyzed multidirectional microarray profiles in both EOC cell lines and patients with paclitaxel resistance. Cyclin-dependent kinase 1 (CDK1) was found to be a potential target of transcription factors to regulate paclitaxel resistance. As a result of the subsequent pharmacogenomics analysis, CDK1 inhibitor alsterpaullone was also indicated as a promising chemical that may be used in combinatorial therapies to reverse paclitaxel-induced chemoresistance. Although a CDK1 inhibitor has the potential to kill cancer cells, short-term treatment over 2 weeks at sublethal doses effectively induced cell death only upon additional treatment with paclitaxel. A prominent reduction in the tumor growth rate was observed upon paclitaxel subsequent to alsterpaullone treatment in EOC xenograft model. Thus, we suggest that inhibition of CDK1 with alsterpaullone may be a novel therapeutic method to reverse paclitaxel-induced resistance in ovarian cancer cells. PMID:26442525

  15. Preparation and biological activity of a paclitaxel-single-walled carbon nanotube complex.

    PubMed

    Fu, X D; Zhang, Y Y; Wang, X J; Shou, J X; Zhang, Z Z; Song, L J

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have unique transmembrane abilities. The huge superficial area and abundance of π electrons confer SWCNTs perfect absorptive capability toward proteins, nucleates, and many drugs. These characteristics make SWCNTs a new and efficient drug carrier. The purpose of this study was to disperse SWCNTs in water and have paclitaxel absorbed onto them in order to construct an asparagine-glycine-arginine (NGR)-SWCNT-Paclitaxel complex as a targeting nanoparticle system. The NGR-SWCNT-Paclitaxel complex was systematically studied, and analytical methods, including spectrophotometry for SWCNTs and high-performance liquid chromatography for paclitaxel, were employed. The preparation and the prescription of the NGR-SWCNT-Paclitaxel complex lyophilized powder were investigated. MCF-7 cancer cells, Sprague-Dawley rats, and S180 tumor-bearing mice were used as experimental subjects to evaluate the in vitro and in vivo activity of NGR-SWCNT-Paclitaxel complex dispersion. The complex dispersion showed obvious inhibition activity against MCF-7 cancer cells. Within 1 h, the NGR-SWCNT-Paclitaxel complex could be transferred to cells, and sustained the release of drugs. In addition, the tumor and liver targeting and improved therapeutic effects of the NGR-SWCNT-Paclitaxel complex were confirmed. PMID:24668633

  16. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery.

    PubMed

    Leach, John C; Wang, Andrew; Ye, Kaiming; Jin, Sha

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient's health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA⁺ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

  17. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.

    PubMed

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

    2013-08-01

    Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches. PMID:23721204

  18. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    PubMed Central

    Leach, John C.; Wang, Andrew; Ye, Kaiming; Jin, Sha

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

  19. Nab-paclitaxel, docetaxel, or solvent-based paclitaxel in metastatic breast cancer: a cost-utility analysis from a Chinese health care perspective

    PubMed Central

    Dranitsaris, George; Yu, Bo; King, Jennifer; Kaura, Satyin; Zhang, Adams

    2015-01-01

    Background Paclitaxel and docetaxel are commonly used for metastatic breast cancer in the People’s Republic of China. To improve the safety and efficacy of paclitaxel, an albumin-bound formulation (nab) is now available in the People’s Republic of China (Abraxane®). To provide health economic data for the key stakeholders, a cost-utility analysis comparing nab-paclitaxel to docetaxel, both as alternatives to paclitaxel, was conducted. Methods A meta-analysis of clinical outcomes Phase III trials comparing nab-paclitaxel (260 mg/m2 every [q] 3 weeks) or branded docetaxel (100 mg/m2 q 3 weeks), to solvent-based branded paclitaxel (175 mg/m2 q 3 weeks) was undertaken to provide safety and clinical data. Resource use data for the delivery of anticancer therapy and for the treatment of grade 3/4 toxicity was collected from a time and motion study conducted in three Chinese cancer centers and from a survey of clinicians. Using the Time Trade-Off technique, health utility estimates were derived from interviewing 28 breast cancer patients from one cancer center in the People’s Republic of China. All costs were reported in 2014 US dollars. Results Nab-paclitaxel had the most favorable safety profile, characterized with the lowest incidence of grade 3/4 neutropenia, febrile neutropenia, anemia, and stomatitis. When the median number of cycles delivered from the clinical trials was applied, nab-paclitaxel had a cost per course of $19,752 compared with $8,940 and $13,741 for paclitaxel and docetaxel, respectively. As an alternative to paclitaxel, the cost per quality-adjusted life-year (QALY) gained with nab-paclitaxel suggested better value than with docetaxel ($57,900 vs $130,600). Conclusion Nab-paclitaxel appears to be a cost-effective option compared with docetaxel and paclitaxel, for metastatic breast cancer in the People’s Republic of China. PMID:25999749

  20. Liposome technology. Volume III: Targeted drug delivery and biological interaction

    SciTech Connect

    Gregoriadis, G.

    1984-01-01

    These three volumes cover liposome technology in pharmacology and medicine. Contributors emphasize methodology used in their own laboratories, and include a brief introduction, coverage of relevant literature, applications and critical evaluations for the methods they describe. In Volume III, the growing variety of techniques yielding targeted liposomes and approaches of studying liposomal behavior both in vitro and in vivo are discussed.

  1. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.

    PubMed

    Kanamala, Manju; Wilson, William R; Yang, Mimi; Palmer, Brian D; Wu, Zimei

    2016-04-01

    As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy. PMID:26871891

  2. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  3. Challenges in design and characterization of ligand-targeted drug delivery systems

    PubMed Central

    Muro, Silvia

    2012-01-01

    Targeting of therapeutic agents to molecular markers expressed on the surface of cells requiring clinical intervention holds promise to improve specificity of delivery, enhancing therapeutic effects while decreasing potential damage to healthy tissues. Drug targeting to cellular receptors involved in endocytic transport facilitates intracellular delivery, a requirement for a number of therapeutic goals. However, after several decades of experimental design, there is still considerable controversy on the practical outcome of drug targeting strategies. The plethora of factors contributing to the relative efficacy of targeting makes the success of these approaches hardly predictable. Lack of fully specific targets, along with selection of targets with spatial and temporal expression well aligned to interventional requirements, pose difficulties to this process. Selection of adequate sub-molecular target epitopes determines accessibility for anchoring of drug conjugates and bulkier drug carriers, as well as proper signaling for uptake within the cell. Targeting design must adapt to physiological variables of blood flow, disease status, and tissue architecture by accommodating physicochemical parameters such as carrier composition, functionalization, geometry, and avidity. In many cases, opposite features need to meet a balance, e.g., sustained circulation versus efficient targeting, penetration through tissues versus uptake within cells, internalization within endocytic compartment to avoid efflux pumps versus accessibility to molecular targets within the cytosol, etc. Detailed characterization of these complex physiological factors and design parameters, along with a deep understanding of the mechanisms governing the interaction of targeted drugs and carriers with the biological environment, are necessary steps toward achieving efficient drug targeting systems. PMID:22709588

  4. Synthesis, Characterization, and Evaluation of a Novel Amphiphilic Polymer RGD-PEG-Chol for Target Drug Delivery System

    PubMed Central

    Zeng, Shi; Li, Bo; Song, Xiangrong; Zheng, Yu; Peng, Cheng; Huang, Wei

    2014-01-01

    An amphiphilic polymer RGD-PEG-Chol which can be produced in large scale at a very low cost has been synthesized successfully. The synthesized intermediates and final products were characterized and confirmed by 1H nuclear magnetic resonance spectrum (1H NMR) and Fourier transform infrared spectrum (FT-IR). The paclitaxel- (PTX-) loaded liposomes based on RGD-PEG-Chol were then prepared by film formation method. The liposomes had a size within 100 nm and significantly enhanced the cytotoxicity of paclitaxel to B16F10 cell as demonstrated by MTT test (IC50 = 0.079 μg/mL of RGD-modified PTX-loaded liposomes compared to 9.57 μg/mL of free PTX). Flow cytometry analysis revealed that the cellular uptake of coumarin encapsulated in the RGD-PEG-Chol modified liposome was increased for HUVEC cells. This work provides a reasonable, facile, and economic approach to prepare peptide-modified liposome materials with controllable performances and the obtained linear RGD-modified PTX-loaded liposomes might be attractive as a drug delivery system. PMID:24578646

  5. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    PubMed Central

    Omidi, Yadollah; Barar, Jaleh

    2012-01-01

    Introduction Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics). Conclusion The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent. PMID:23678437

  6. Novel colon targeted drug delivery system using natural polymers.

    PubMed

    Ravi, V; Pramod Kumar, T M; Siddaramaiah

    2008-01-01

    A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs. PMID:20390095

  7. Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform.

    PubMed

    Majoros, István J; Williams, Christopher R; Becker, Andrew; Baker, James R

    2009-01-01

    This paper provides a synopsis of the advancements made in advancing a dendrimer-based nanomedicine towards human clinical trials by the Michigan Nanotechnology Institute for Medicine and Biological Sciences. A brief description of the synthesis and characterization of a targeted multifunctional therapeutic will demonstrate the simple yet delicate task of producing novel chemotherapeutic agents. The results obtained from in vitro and in vivo studies not only authenticate the potential of using nanoparticles to target therapeutics but also provide valuable insight towards the future directions of this technology. A fundamental, cross-disciplinary collaboration was necessary to achieve the synthesis and testing of this technology, and was the keystone to establishing this innovative invention. Throughout this paper, we will stress that the unique collaboration that facilitated the evolution of this technology is vital to the success of future developments in nanomedicine. PMID:20049813

  8. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    PubMed Central

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to un-targeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging. PMID:25519743

  9. An orthopedic tissue adhesive for targeted delivery of intraoperative biologics.

    PubMed

    Simson, Jacob; Crist, Joshua; Strehin, Iossif; Lu, Qiaozhi; Elisseeff, Jennifer H

    2013-03-01

    Tissue adhesives can bind together damaged tissues and serve as tools to deliver and localize therapeutics to facilitate regeneration. One emerging therapeutic trend in orthopedics is the use of intraoperative biologics (IOB), such as bone marrow (BM) and platelet-rich plasma (PRP), to stimulate healing. Here, we introduce the application of the biomaterial chondroitin sulfate succinimidyl succinate (CS-NHS) to deliver IOB in a hydrogel adhesive. We demonstrate the biomaterial's ability to bind various tissue types and its cellular biocompatibility with encapsulated human mesenchymal stem cells (hMSCs). Further, we examine in detail the CS-NHS adhesive combined with BM aspirate for use in bone applications. hMSCs were encapsulated in CS-BM and cultured for 5 weeks in osteogenic medium. Quantitative RT-PCR demonstrated osteogenesis via upregulation of the osteogenic transcription factor Runx2 and bone markers alkaline phosphatase and osteocalcin. Significant deposition of calcium and osteocalcin was detected using biochemical, histological, and immunohistochemical techniques. Shear testing demonstrated that the CS-BM adhesive exhibited an adhesive strength approximately an order of magnitude stronger than fibrin glue and approaching that of a cyanoacrylate adhesive. These results indicate that CS-NHS is a promising delivery tool for IOB in orthopedic applications requiring a strong, degradable, and biocompatible adhesive that supports bone growth. PMID:23097279

  10. Impact of α-Targeted Radiation Therapy on Gene Expression in a Pre-Clinical Model for Disseminated Peritoneal Disease when Combined with Paclitaxel

    PubMed Central

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2014-01-01

    To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and 212Pb-trastuzumab (Pac/212Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/212Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/212Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that 212Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response. PMID:25268703

  11. Synthesis and Evaluation of Fluorescent Magnetic Composites as Targeted Drug Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Chen, Xiaolong; Wu, Juan; Xu, Shanshan; Tian, Renbing

    2015-03-01

    We have developed Fe3O4@ZnS-based fluorescent magnetic composites as targeted drug delivery carriers via a facile route. The results indicated that the composites exhibited both magnetic and fluorescent properties. Fe3O4@ZnS possessed high saturation magnetization (68.25 emu/g) at room temperature. Ultraviolet light can be easily obtained by exposing the microspheres to different excitation wavelengths. The drug loading studies showed that Fe3O4@ZnS-based fluorescent magnetic composites had an excellent drug loading performance. These traits made the composites better for the application of medical imaging and magnetic targeted drug delivery.

  12. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    PubMed Central

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  13. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell

    PubMed Central

    Xu, Cheng-Zhi; Shi, Run-Jie; Chen, Dong; Sun, Yi-Yuan; Wu, Qing-Wei; Wang, Tao; Wang, Pei-Hua

    2013-01-01

    Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients. PMID:24294361

  14. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    PubMed Central

    2011-01-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies. PMID:21995320

  15. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    NASA Astrophysics Data System (ADS)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  16. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

    PubMed

    Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

    2016-08-01

    Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review. PMID:26766303

  17. EGF-coated nano-dendriplexes for tumor-targeted nucleic acid delivery in vivo.

    PubMed

    Li, Jun; Chen, Lei; Liu, Nan; Li, Shengnan; Hao, Yanli; Zhang, Xiaoning

    2016-06-01

    The clinical success of therapeutic DNA is still hindered due to the lack of effective delivery carriers. Here, we designed a tumor-targeted gene nano delivery system based on EGFR targeting strategy. Epidermal growth factor (EGF) was introduced to nano-complexes of PAMAM dendrimer and DNA via electrostatic interactions to form self-assembled PAMAM/DNA/EGF nano-complexes. The properties of self-assembled complexes were characterized by gel retardation assay and particle size and zeta potential analysis. Meanwhile, the toxicity of EGF-dendriplexes was evaluated by the MTT assay, which indicated that the complexes exhibited decreased cytotoxicity with the incorporation of EGF. We labeled polyamidoamine (PAMAM) dendrimers with FITC or a near-infrared (NIR) dye Lss670 and tested the cellular uptake in vitro and biodistribution in xenograft mouse tumor models. As compared to dendriplexes, the ternary EGF-dendriplexes showed a significantly higher cellular uptake into HepG2 cells due to the specific binding between EGF and EGF receptor (EGFR) over expressed on HepG2 cells, which resulted in the enhanced gene transfection efficiency. The biodistribution of EGF-dendriplexes in vivo was monitored with in vivo imaging technique, which indicated that EGF-dendriplexes enhanced EGFR-positive tumor-targeted biodistribution. These findings indicate that this novel nano-vector realized efficiently tumor-targeting gene delivery and high efficient gene expression in vivo, and it may possess a potential targeting gene delivery system in cancer therapy. PMID:25693638

  18. Acoustic Molecular Imaging and Targeted Drug Delivery with Perfluorocarbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lanza, Gregory M.; Hughes, Michael. S.; Marsh, Jon N.; Scott, Michael J.; Zhang, Huiying; Lacy, Elizabeth K.; Allen, John S.; Wickline, Samuel A.

    2005-03-01

    Advances in molecular biology and cellular biochemistry are providing new opportunities for diagnostic medical imaging to "see" beyond the anatomical manifestations of disease to the earliest biochemical signatures of disease. Liquid perfluorocarbon nanoparticles provide inherent acoustic contrast when bound to targets, e.g., fibrin deposits in a thrombus, but unbound nanoparticles are undetectable. This nanoparticle platform may be further functionalized with paramagnetic metals, such as gadolinium, or radionuclides, with homing ligands, like anti-αvβ3-integrins, and therapeutic agents. Acoustic imaging of densely distributed biomarkers, e.g., fibrin epitopes, is readily accommodated with fundamental imaging, but for sparse biomarkers, e.g., integrins, we have developed and implemented novel, nonlinear imaging techniques based upon information-theoretic receivers (i.e., thermodynamic receivers). These novel receivers allow sensitive direct imaging of contrast development.

  19. Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy.

    PubMed

    Yang, Xinjian; Liu, Zhen; Li, Zhenhua; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2013-07-29

    Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near-infrared (NIR)-regulated hydrophobic drug-delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin-loaded AuMP-polyethylene glycol-folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote-controlled hydrophobic drug-delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR-controlled, targeted drug-delivery method would promote the development of high-performance hydrophobic anticancer drug-delivery system in future clinical applications. PMID:23765904

  20. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  1. Characterization of magnetic viral complexes for targeted delivery in oncology.

    PubMed

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2(*) relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2(*) compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  2. Targeted delivery of carbon nanotubes to cancer cells

    NASA Astrophysics Data System (ADS)

    Chakravarty, Pavitra

    CD22 is broadly expressed on human B cell lymphomas. Monoclonal anti-CD22 antibodies (MAbs) alone, or coupled to toxins, have been used to selectively target these tumors both in severe combined immunodeficient (SCID) mice with xenografted human lymphomas and in patients. Single-walled carbon nanotubes (CNTs) attached to antibodies or peptides represent another approach to targeting cancer cells. CNTs convert absorbed near-infrared (NIR) light into heat, which can thermally ablate cells in the vicinity of the CNTs. We have made MAb-CNT constructs where the MAb was either noncovalently or covalently coupled to CNTs, and investigated their ability to bind specifically to cells and to thermally ablate them after exposure to NIR light. The specific binding of these MAb-CNT constructs to antigen-positive and antigen-negative cells was demonstrated in vitro by using CD22+CD25 - Daudi cells, CD22-CD25+ phytohemagglutinin (PHA)-activated normal human peripheral blood mononuclear cells (PBMCs) and CNTs coupled non-covalently or covalently to either anti-CD22 or anti-CD25. We then demonstrated that the MAb-CNTs could bind to tumor cells expressing the relevant antigen but not to cells lacking the antigen. Furthermore we showed that, following exposure to NIR light, the cells could be thermally ablated. We also determined the stability of the MAb-CNTs in conditions designed to mimic the in vivo environment, i.e. mouse serum at 37°C. We then use the intrinsic Raman signature of CNTs to study the circulation and tissue distribution of intravenously injected MAb-CNTs in a murine xenograft model of lymphoma in vivo over a period of 24 hrs. We demonstrated that the MAb-CNTs have a short half-life in blood and that most of them are cleared by the reticuloendothelial system (RES). In the current embodiment, these constructs would therefore be of limited effectiveness in vivo.

  3. Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology

    PubMed Central

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J.; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  4. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers

    NASA Astrophysics Data System (ADS)

    Qu, Qiuyu; Ma, Xing; Zhao, Yanli

    2015-10-01

    A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery.A lot of investigations have been conducted using mesoporous silica nanoparticles (MSNPs) functionalized with different targeting ligands in order to deliver various hydrophobic and hydrophilic drugs to targeted cancer cells. However, the utilization of MSNPs to deliver drug molecules to targeted subcellular organelles has been rarely reported. In this work, we applied targeting ligand-conjugated MSNPs with an average diameter of 80 nm to deliver the anticancer drug doxorubicin (DOX) to mitochondria. Triphenoylphosphonium (TPP) was functionalized on MSNPs as a mitochondria targeting ligand. Mitochondria targeting efficiency was demonstrated in HeLa cells by a co-localization study of mitochondria and functionalized MSNPs as well as by fluorescence analysis in isolated mitochondria. In addition, enhanced cancer cell killing efficacy was achieved when using DOX-loaded and TPP-functionalized MSNPs for mitochondria-targeted delivery. Lowered adenosine triphosphate (ATP) production and decreased mitochondrial membrane potential were observed, demonstrating the mitochondria dysfunction caused by delivered DOX. The positive results indicate promising application potential of MSNPs in targeted subcellular drug delivery. Electronic supplementary information (ESI) available: Additional synthesis and characterization data. See DOI: 10.1039/c5nr05139h

  5. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer

    PubMed Central

    Zhang, Song-Fa; Wang, Xin-Yu; Fu, Zhi-Qin; Peng, Qiao-Hua; Zhang, Jian-Yang; Ye, Feng; Fu, Yun-Feng; Zhou, Cai-Yun; Lu, Wei-Guo; Cheng, Xiao-Dong; Xie, Xing

    2015-01-01

    Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics. PMID:25607466

  6. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting.

    PubMed

    Mehra, Neelesh Kumar; Jain, Narendra Kumar

    2016-04-01

    Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs-dendrimer, CNTs-nanoparticles, CNTs-quantum dots conjugate for delivery of bioactives, not discussed so far. PMID:26147085

  7. Mineralocorticoid receptor mediated liposomal delivery system for targeted induction of apoptosis in cancer cells.

    PubMed

    Sharma, Priyanka; Banerjee, Rajkumar; Narayan, Kumar Pranav

    2016-02-01

    Mineralocorticoid receptors (MRs) are nuclear hormone receptors that are ubiquitously present in all cell types and are known to mediate distinct physiological functions like regulating Na(+) and K(+) balance and water excretion. MRs are linked to cell proliferation and can be exploited for the targeted control of cell mass in cancer. The present study is aimed towards extending the concept of using MR ligand spironolactone for selective delivery of genes in cancer cells. The lipoplex (SP) has shown MR mediated targeted transfections as indicated by receptor down-regulation studies using MR antagonists and siRNA. SP-targeted delivery of genes resulted in apoptosis in cell-specific manner while free drug was found to be cytotoxic irrespective of the cancerous or non-cancerous nature. In conclusion, this study presents MR as a target for efficiently delivering anticancer genes and thereby treating cancer through MR-mediated pathway. PMID:26620075

  8. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  9. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    NASA Astrophysics Data System (ADS)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  10. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  11. Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer.

    TOXLINE Toxicology Bibliographic Information

    Wang B; Rosano JM; Cheheltani R; Achary MP; Kiani MF

    2010-10-01

    IMPORTANCE OF THE FIELD: Significant improvements in breast cancer treatments have resulted in a significant decrease in mortality. However, current breast cancer therapies, for example, chemotherapy, often result in high toxicity and nonspecific side effects. Other treatments, such as hormonal and antiangiogenic therapies, often have low treatment efficacy if used alone. In addition, acquired drug resistance decreases further the treatment efficacy of these therapies. Intra-tumor heterogeneity of the tumor tissue may be a major reason for the low treatment efficacy and the development of chemoresistance. Therefore, targeted multi-drug therapy is a valuable option for addressing the multiple mechanisms that may be responsible for reduced efficacy of current therapies.AREAS COVERED IN THIS REVIEW: In this article, different classes of drugs for treating breast cancer, the possible reasons for the drug resistance in breast cancer, as well as different targeted drug delivery systems are summarized. The current targeting strategies used in cancer treatment are discussed.WHAT THE READER WILL GAIN: This article considers the current state of breast cancer therapy and the possible future directions in targeted multi-drug delivery for treating breast cancer.TAKE HOME MESSAGE: A better understanding of tumor biology and physiological responses to nanoparticles, as well as advanced nanoparticle design, are needed to improve the therapeutic outcomes for treating breast cancer using nanoparticle-based targeted drug delivery systems. Moreover, selective delivery of multi-drugs to tumor tissue using targeted drug delivery systems may reduce systemic toxicity further, overcome drug resistances, and improve therapeutic efficacy in treating breast cancer.

  12. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    PubMed Central

    Islam, Md. Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery. PMID:26579539

  13. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery

    PubMed Central

    Pearson, Ryan M.; Juettner, Vanessa V.; Hong, Seungpyo

    2014-01-01

    Achieving controlled cellular responses of nanoparticles (NP) is critical for the successful development and translation of NP-based drug delivery systems. However, precise control over the physicochemical and biological properties of NPs could become convoluted, diminished, or completely lost as a result of the adsorption of biomolecules to their surfaces. Characterization of the formation of the “biomolecular” corona has thus received increased attention due to its impact on NP and protein structure as well as its negative effect on NP-based targeted drug delivery. This review presents a concise survey of the recent literature concerning the importance of the NP-biomolecule corona and how it can be utilized to improve the in vivo efficacy of targeted delivery systems. PMID:25506050

  14. Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery

    PubMed Central

    Ronaldson, Patrick T; Davis, Thomas P

    2012-01-01

    The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221

  15. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery

    PubMed Central

    Thomas, Susan N.; Schudel, Alex

    2015-01-01

    Despite drug formulation improving circulation times and targeting, efficacy is stymied by inadequate penetration into and retention within target tissues. This review highlights the barriers restricting delivery to the connective tissue interstitium, lymphatics, and lymph nodes as well as advances in engineering drug carriers to overcome these delivery challenges. Three-dimensional tissue physiology is discussed in the context of providing material design principles for delivery to these tissues; in particular the influence of interstitial and lymphatic flows as well as differential permeabilities of the blood and lymphatic capillaries. Key examples of materials with different characteristics developed to overcome these transport barriers are discussed as well as potential areas for further development. PMID:25745594

  16. Biomolecular Corona on Nanoparticles: A Survey of Recent Literature and its Implications in Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Pearson, Ryan; Juettner, Vanessa; Hong, Seungpyo

    2014-11-01

    Achieving controlled cellular responses of nanoparticles (NP) is critical for the successful development and translation of NP-based drug delivery systems. However, precise control over the physicochemical and biological properties of NPs could become convoluted, diminished, or completely lost as a result of the adsorption of biomolecules to their surfaces. Characterization of the formation of the ‘biomolecular’ corona has thus received increased attention due to its impact on NP and protein structure as well as its negative effect on NP-based targeted drug delivery. This review presents a concise survey of the recent literature concerning the importance of the NP-biomolecule corona and how it can be utilized to improve the in vivo efficacy of targeted delivery systems.

  17. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  18. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.

    PubMed

    Weng, Huei Chu

    2013-03-01

    Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction. PMID:24231820

  19. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy.

    PubMed

    Gao, Huile; Zhang, Qianyu; Yang, Yuting; Jiang, Xinguo; He, Qin

    2015-01-15

    Specific targeting ability and good tissue penetration are two critical requirements for tumor targeted delivery systems. Systematical selected peptides from a library may meet these two requirements. RLW was such a cell penetrating peptide that could specifically target to non-small cell lung cancer cells (A549). In this study, RLW was linked onto nanoparticles (RNPs) and then the RNPs were used for lung cancer targeting delivery. A traditional cell penetrating peptide, R8 (RRRRRRRR), was used as control. In vitro cellular uptake study demonstrated that modification with RLW specifically enhanced the uptake by A549 cells rather than human umbilical vein endothelial cells, while modification with R8 increased the uptake by both cells. Furthermore, the modification with RLW specifically elevated the penetration into A549 tumor spheroids rather than glioma cell (U87, used as in vivo control) spheroids. And the in vivo imaging further demonstrated RNPs could target to A549 xenografts rather than U87 xenografts. Importantly, the distribution of RNPs in normal organs was approximately the same as that of unmodified nanoparticles. However, R8 modified nanoparticles elevated the distribution in almost all the tissues. These results demonstrated that RLW was superior in A549 tumor targeted delivery. After loaded with docetaxel, an anti-microtube agent, different formulations could effectively induce the A549 cell apoptosis, and inhibit the growth of A549 spheroids in vitro. While in vivo, RNPs displayed the best antitumor effect. The tumor volume was significantly lower than other groups, which was only 33.3% as that of saline group. In conclusion, in vitro RLW could specifically target to A549 cells and enhance the cytotoxicity of docetaxel. In vivo, RLW could significantly enhance the A549 xenografts targeting delivery and led to improved antitumor effect. PMID:25448586

  20. Chimeric nucleolin aptamer with survivin DNAzyme for cancer cell targeted delivery.

    PubMed

    Subramanian, Nithya; Kanwar, Jagat R; Akilandeswari, Balachandran; Kanwar, Rupinder K; Khetan, Vikas; Krishnakumar, Subramanian

    2015-04-25

    A chimeric aptamer-DNAzyme conjugate was generated for the first time using a nucleolin aptamer (NCL-APT) and survivin Dz (Sur_Dz) and exhibited the targeted killing of cancer cells. This proof of concept of using an aptamer for the delivery of DNAzyme can be applied to other cancer types to target survivin in cancer cells in a specific manner. PMID:25797393

  1. Alveolar targeting of aerosol pentamidine. Toward a rational delivery system

    SciTech Connect

    Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. )

    1990-04-01

    Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

  2. Systemic Delivery of Blood-Brain Barrier Targeted Polymeric Nanoparticles Enhances Delivery to Brain Tissue

    PubMed Central

    Saucier-Sawyer, Jennifer K.; Deng, Yang; Seo, Young-Eun; Cheng, Christopher J.; Zhang, Junwei; Quijano, Elias; Saltzman, W. Mark

    2016-01-01

    Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer nanoparticle systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All nanoparticle preparations were able to cross the BBB, although generally in low amounts (<0.5% of the injected dose), which was consistent with prior reports. One nanoparticle produced significantly higher brain uptake (~0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad nanoparticles provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing nanoparticle transport across the BBB does not necessarily yield proportional pharmacological effects. PMID:26453169

  3. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  4. TARGETED DELIVERY OF INHALED PHARMACEUTICALS USING AN IN SILICO DOSIMETRY MODEL

    EPA Science Inventory

    We present an in silico dosimetry model which can be used for inhalation toxicology (risk assessment of inhaled air pollutants) and aerosol therapy ( targeted delivery of inhaled drugs). This work presents scientific and clinical advances beyond the development of the original in...

  5. Sodium Dependent Multivitamin Transporter (SMVT): A Potential Target for Drug Delivery

    PubMed Central

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K.

    2015-01-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge, etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems. PMID:22420308

  6. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges

    NASA Astrophysics Data System (ADS)

    Rosenholm, Jessica M.; Sahlgren, Cecilia; Lindén, Mika

    2010-10-01

    One of the big challenges of medicine today is to deliver drugs specifically to defected cells. Nanoparticulate drug carriers have the potential to answer to this call, as nanoparticles can cross physiological barriers and access different tissues, and also be provided in a targetable form aimed at enhancing cell specificity of the carrier. Recent developments within material science and strong collaborative efforts crossing disciplinary borders have highlighted the potential of mesoporous silica nanoparticles (MSNs) for such targeted drug delivery. Here we outline recent advances which in this sense push MSNs to the forefront of drug delivery development. Relatively straightforward inside-out tuning of the vehicles, high flexibility, and potential for sophisticated release mechanisms make these nanostructures promising candidates for targeted drug delivery such as `smart' cancer therapies. Moreover, due to the large surface area and the controllable surface functionality of MSNs, they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting, simultaneously carrying traceable (fluorescent or magnetically active) modalities, also making them highly interesting as theragnostic agents. However, the increased relative surface area and small size, and flexible surface functionalization which is beneficially exploited in nanomedicine, consequently also includes potential risks in their interactions with biological systems. Therefore, we also discuss some safety issues regarding MSNs and highlight how different features of the drug delivery platform influence their behaviour in a biological setting. Addressing these burning questions will facilitate the application of MSNs in nanomedicine.

  7. Theranostic Nanoparticles Carrying Doxorubicin Attenuate Targeting Ligand Specific Antibody Responses Following Systemic Delivery

    PubMed Central

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N.; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y. Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers. PMID:25553097

  8. New Tools for the Quantitative Assessment of Prodrug Delivery and Neurotoxicity

    PubMed Central

    VanSaun, Michael N.; Fan, Kang-Hsien; Dozier, E. Ashley; Carter, Kathy J.; Koyama, Tatsuki; Shyr, Yu; Aschner, Michael; Stanwood, Gregg D.; Bornhop, Darryl J.; Matrisian, Lynn M.; McIntyre, J. Oliver

    2015-01-01

    Systemic off-target toxicities, including neurotoxicity, are prevalent side effects in cancer patients treated with a number of otherwise highly efficacious anticancer drugs. In the current study, we have: 1) developed a new analytical metric for the in vivo preclinical assessment of systemic toxicities/neurotoxicity of new drugs and delivery systems; and 2) evaluated, in mice, the in vivo efficacy and toxicity of a versatile and modular NanoDendron (ND) drug delivery and imaging platform that we recently developed. Our paclitaxel-carrying ND prodrug, NDPXL, is activated following proteolytic cleavage by MMP9, resulting in localized cytotoxic chemotherapy. Using click chemistry, we combined NDPXL with a traceable beacon, NDPB, yielding NDPXL-NDPB that functions as a theranostic compound. In vivo fluorescence FRET imaging of this theranostic platform was used to confirm localized delivery to tumors and to assess the efficiency of drug delivery to tumors, achieving 25-30% activation in the tumors of an immunocompetent mouse model of breast cancer. In this model, ND-drug exhibited anti-tumor efficacy comparable to nab-paclitaxel, a clinical formulation. In addition, we combined neurobehavioral metrics of nociception and sensorimotor performance of individual mice to develop a novel composite toxicity score that reveals and quantifies peripheral neurotoxicity, a debilitating long-term systemic toxicity of paclitaxel therapy. Importantly, mice treated with nab-paclitaxel developed changes in behavioral metrics with significantly higher toxicity scores indicative of peripheral neuropathy, while mice treated with NDPXL showed no significant changes in behavioral responses or toxicity score. Our ND formulation was designed to be readily adaptable to incorporate different drugs, imaging modalities and/or targeting motifs. This formulation has significant potential for preclinical and clinical tools across multiple disease states. The studies presented here report a novel toxicity score for assessing peripheral neuropathy and demonstrate that our targeted, theranostic NDs are safe and effective, providing localized tumor delivery of a chemotherapeutic and with reduced common neurotoxic side-effects. PMID:25732874

  9. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications.

    PubMed

    Upadhyaya, Laxmi; Singh, Jay; Agarwal, Vishnu; Tewari, Ravi Prakash

    2014-07-28

    Over the last decade carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer for the development of new drug delivery systems and improved scaffolds along with other tissue engineering devices for regenerative medicine that is currently one of the most rapidly growing fields in the life sciences. CMCS is amphiprotic ether, derived from chitosan, exhibiting enhanced aqueous solubility, excellent biocompatibility, controllable biodegradability, osteogenesis ability and numerous other outstanding physicochemical and biological properties. More strikingly, it can load hydrophobic drugs and displays strong bioactivity which highlight its suitability and extensive usage for preparing different drug delivery and tissue engineering formulations respectively. This review provides a comprehensive introduction to various types of CMCS based formulations for delivery of therapeutic agents and tissue regeneration and further describes their preparation procedures and applications in different tissues/organs. Detailed information of CMCS based nano/micro systems for targeted delivery of drugs with emphasis on cancer specific and organ specific drug delivery have been described. Further, we have discussed various CMCS based tissue engineering biomaterials along with their preparation procedures and applications in different tissues/organs. The article then, gives a brief account of therapy combining drug delivery and tissue engineering. Finally, identification of major challenges and opportunities for current and ongoing application of CMCS based systems in the field are summarised. PMID:24806482

  10. Feasibility of noninvasive ultrasound delivery for tumor ablation and targeted drug delivery in the brain

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; McDannold, Nathan; Clement, Greg; White, Jason; Treat, Lisa; Yin, Xiangtao; Jolesz, Ferenc; Sheikov, Nickolai; Vykhodtseva, Natalia

    2005-04-01

    The objective of our research during the past few years has been to develop multichannel ultrasound phased arrays for noninvasive brain interventions. We have been successful in developing methods for correcting the skull induced beam distortions and thus, are able to produce sharp focusing through human skulls. This method is now being tested for thermal ablation of tumors, with results from animal studies demonstrating feasibility. In addition, the ability of ultrasound to open the blood-brain barrier (BBB) locally has been explored in animal models. The results suggest that the transcranial ultrasound exposures can induce BBB opening such that therapeutic agents can be localized in the brain. This tool is especially powerful since the beam can be guided by MR images, thus providing anatomical or functional targeting. This talk will review our current status in this research, which ultimately aims for the clinical use of this methodology.

  11. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.

    PubMed

    Tan, Jifu; Thomas, Antony; Liu, Yaling

    2011-12-22

    Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications. PMID:22375153

  12. Biodegradable micelles capable of mannose-mediated targeted drug delivery to cancer cells.

    PubMed

    Yin, Lichen; Chen, Yongbing; Zhang, Zhonghai; Yin, Qian; Zheng, Nan; Cheng, Jianjun

    2015-03-01

    A targeted micellar drug delivery system is developed from a biocompatible and biodegradable amphiphilic polyester, poly(Lac-OCA)-b-(poly(Tyr(alkynyl)-OCA)-g-mannose) (PLA-b-(PTA-g-mannose), that is synthesized via controlled ring-opening polymerization of O-carboxyanhydride (OCA) and highly efficient "Click" chemistry. Doxorubicin (DOX), a model lipophilic anticancer drug, can be effectively encapsulated into the micelles, and the mannose moiety allows active targeting of the micelles to cancer cells that specifically express mannose receptors, which thereafter enhances the anticancer efficiency of the drug. Comprised entirely of biodegradable and biocompatible polyesters, this micellar system demonstrates promising potentials for targeted drug delivery and cancer therapy. PMID:25619623

  13. Recent advances in lymphatic targeted drug delivery system for tumor metastasis

    PubMed Central

    Zhang, Xiao-Yu; Lu, Wei-Yue

    2014-01-01

    The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers. PMID:25610710

  14. Fabrication of poly hydroxybutyrate-polyethylene glycol-folic acid nanoparticles loaded by Paclitaxel.

    PubMed

    Rezaei, Fatemeh; Rafienia, Mohammad; Keshvari, Hamid; Sattary, Mansooreh; Naeimi, Mitra; Keyvani, Hossein

    2016-01-01

    In this study drug (paclitaxel)-loaded nanoparticles of poly hydroxybutyrate-polyethylene glycol-folic acid (PHB-PEG-FOL) were prepared by using an oil-in-water (O/W) emulsion-solvent evaporation method. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance tests ((1)H NMR). Morphology of nanoparticles was evaluated by scanning electron microscopy (SEM). Nanoparticles were characterized by particle size analyzer. Between two samples containing drug, the lower doses showed more homogeneous distribution, and the lowest aggregation. The drug release profiles showed a two-phase release including initial rapid release and a continuous release. MG63 cells were used to evaluate cytotoxicity. The cytotoxicity of PHB-PEG-FOL nanoparticles with drug against cancer cells was much higher and longer than free drug sample. These nanoparticles were successfully synthesized as a novel system for targeted drug delivery against cancer cells. PMID:26234551

  15. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.

    PubMed

    Zhong, Jiaju; Li, Lian; Zhu, Xi; Guan, Shan; Yang, Qingqing; Zhou, Zhou; Zhang, Zhirong; Huang, Yuan

    2015-10-01

    Tumor cell nucleus-targeted delivery of antitumor agents is of great interest in cancer therapy, since the nucleus is one of the most frequent targets of drug action. Here we report a smart polymeric conjugate platform, which utilizes stimulus-responsive strategies to achieve multistage nuclear drug delivery upon systemic administration. The conjugates composed of a backbone based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer and detachable nucleus transport sub-units that sensitive to lysosomal enzyme. The sub-units possess a biforked structure with one end conjugated with the model drug, H1 peptide, and the other end conjugated with a novel pH-responsive targeting peptide (R8NLS) that combining the strength of cell penetrating peptide and nuclear localization sequence. The conjugates exhibited prolonged circulation time and excellent tumor homing ability. And the activation of R8NLS in acidic tumor microenvironment facilitated tissue penetration and cellular internalization. Once internalized into the cell, the sub-units were unleashed for nuclear transport through nuclear pore complex. The unique features resulted in 50-fold increase of nuclear drug accumulation relative to the original polymer-drug conjugates in vitro, and excellent in vivo nuclear drug delivery efficiency. Our report provides a strategy in systemic nuclear drug delivery by combining the microenvironment-responsive structure and detachable sub-units. PMID:26142775

  16. Colon-targeted oral drug delivery systems: design trends and approaches.

    PubMed

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS. PMID:26070545

  17. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    PubMed Central

    Kean, Thomas J.; Caplan, Arnold I.; Dennis, James E.

    2013-01-01

    Mesenchymal stem cells (MSCs) are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC) therapeutic dose. PMID:24000286

  18. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review

    PubMed Central

    Liu, Jie; Gray, Warren D.; Davis, Michael E.; Luo, Ying

    2012-01-01

    Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics. PMID:23741608

  19. Phage display: development of nanocarriers for targeted drug delivery to the brain

    PubMed Central

    Bakhshinejad, Babak; Karimi, Marzieh; Khalaj-Kondori, Mohammad

    2015-01-01

    The blood brain barrier represents a formidable obstacle for the transport of most systematically administered neurodiagnostics and neurotherapeutics to the brain. Phage display is a high throughput screening strategy that can be used for the construction of nanomaterial peptide libraries. These libraries can be screened for finding brain targeting peptide ligands. Surface functionalization of a variety of nanocarriers with these brain homing peptides is a sophisticated way to develop nanobiotechnology-based drug delivery platforms that are able to cross the blood brain barrier. These efficient drug delivery systems raise our hopes for the diagnosis and treatment of various brain disorders in the future. PMID:26199590

  20. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00019f

  1. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes.

    PubMed

    Lin, Qian; Mao, Kai-Li; Tian, Fu-Rong; Yang, Jing-Jing; Chen, Pian-Pian; Xu, Jie; Fan, Zi-Liang; Zhao, Ya-Ping; Li, Wen-Feng; Zheng, Lei; Zhao, Ying-Zheng; Lu, Cui-Tao

    2016-02-01

    Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy. PMID:26666650

  2. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article. PMID:26576089

  3. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.

    PubMed

    Varshosaz, Jaleh; Farzan, Maryam

    2015-11-14

    Hepatocellular carcinoma (HCC) is the 5(th) most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article. PMID:26576089

  4. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.

  5. Radiofrequency-triggered tumor-targeting delivery system for theranostics application.

    PubMed

    Wang, Lei; Zhang, Panpan; Shi, Jinjin; Hao, Yongwei; Meng, Dehui; Zhao, Yalin; Yanyan, Yin; Li, Dong; Chang, Junbiao; Zhang, Zhenzhong

    2015-03-18

    In this study, a new type of magnetic tumor-targeting PEGylated gold nanoshell drug delivery system (DOX-TSMLs-AuNSs-PEG) based on doxorubicin-loaded thermosensitive magnetoliposomes was successfully obtained. The reverse-phase evaporation method was used to construct the magnetoliposomes, and then gold nanoshells were coated on the surface of it. The DOX-TSMLs-AuNSs-PEG delivery system was synthesized after SH-PEG2000 modification. This multifunction system was combined with a variety of functions, such as radiofrequency-triggered release, chemo-hyperthermia therapy, and dual-mode magnetic resonance/X-ray imaging. Importantly, the DOX-TSMLs-AuNSs-PEG complex was found to escape from endosomes after cellular uptake by radiofrequency-induced endosome disruption before lysosomal degradation. All results in vitro and in vivo indicated that DOX-TSMLs-AuNSs-PEG is a promising effective drug delivery system for diagnosis and treatment of tumors. PMID:25706857

  6. Cell-mediated Delivery and Targeted Erosion of Vascular Endothelial Growth Factor-Crosslinked Hydrogelsa

    PubMed Central

    Kim, Sung Hye; Kiick, Kristi L.

    2011-01-01

    We have previously reported a novel polymeric delivery vehicle that is assembled via interaction between heparin and the vascular endothelial growth factor (VEGF). Here, the cell-responsiveness of this hydrogel including the delivery of VEGF in response to VEGFR-2 overexpressing PAE/KDR cells (porcine aortic endothelial cells (PAE) equipped with the transcript for the kinase insert domain receptor (KDR)), consequent erosion of the hydrogel matrix, and cellular response are highlighted. The release of VEGF and hydrogel erosion reached 100% only in the presence of PAE/KDR. The [PEG-LMWH/VEGF] hydrogel (PEG = poly(ethylene glycol), LMWH = low molecular weight heparin) correspondingly prompted increases in VEGFR-2 phosphorylation and proliferation of PAE/KDR cells. This study proves that growth factor-crosslinked hydrogels can liberate VEGF in response to specific receptors, causing gel erosion and desired cell responses. The promise of these approaches in therapeutic applications, including targeted delivery, is suggested. PMID:21567519

  7. Targeted drug delivery for cancer therapy: the other side of antibodies

    PubMed Central

    2012-01-01

    Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144

  8. Targeted drug delivery for cancer therapy: the other side of antibodies.

    PubMed

    Firer, Michael A; Gellerman, Gary

    2012-01-01

    Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients. PMID:23140144

  9. Strategies for oral delivery and mitochondrial targeting of CoQ10.

    PubMed

    Zaki, Noha M

    2016-07-01

    Coenzyme Q10 (CoQ10), also known as ubiquinone or ubidecarenone, is a powerful, endogenously produced, intracellularly existing lipophilic antioxidant. It combats reactive oxygen species (ROS) known to be responsible for a variety of human pathological conditions. Its target site is the inner mitochondrial membrane (IMM) of each cell. In case of deficiency and/or aging, CoQ10 oral supplementation is warranted. However, CoQ10 has low oral bioavailability due to its lipophilic nature, large molecular weight, regional differences in its gastrointestinal permeability and involvement of multitransporters. Intracellular delivery and mitochondrial target ability issues pose additional hurdles. To maximize CoQ10 delivery to its biopharmaceutical target, numerous approaches have been undertaken. The review summaries the current research on CoQ10 bioavailability and highlights the headways to obtain a satisfactory intracellular and targeted mitochondrial delivery. Unresolved questions and research gaps were identified to bring this promising natural product to the forefront of therapeutic agents for treatment of different pathologies. PMID:25544601

  10. Smart Cancer Cell Targeting Imaging and Drug Delivery System by Systematically Engineering Periodic Mesoporous Organosilica Nanoparticles.

    PubMed

    Lu, Nan; Tian, Ying; Tian, Wei; Huang, Peng; Liu, Ying; Tang, Yuxia; Wang, Chunyan; Wang, Shouju; Su, Yunyan; Zhang, Yunlei; Pan, Jing; Teng, Zhaogang; Lu, Guangming

    2016-02-10

    The integration of diagnosis and therapy into one nanoplatform, known as theranostics, has attracted increasing attention in the biomedical areas. Herein, we first present a cancer cell targeting imaging and drug delivery system based on engineered thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs). The PMOs are stably and selectively conjugated with near-infrared fluorescence (NIRF) dye Cyanine 5.5 (Cy5.5) and anti-Her2 affibody on the outer surfaces to endow them with excellent NIRF imaging and cancer targeting properties. Also, taking the advantage of the thioether-group-incorporated mesopores, the release of chemotherapy drug doxorubicin (DOX) loaded in the PMOs is responsive to the tumor-related molecule glutathione (GSH). The drug release percentage reaches 84.8% in 10 mM of GSH solution within 24 h, which is more than 2-fold higher than that without GSH. In addition, the drug release also exhibits pH-responsive, which reaches 53.6% at pH 5 and 31.7% at pH 7.4 within 24 h. Confocal laser scanning microscopy and flow cytometry analysis demonstrate that the PMOs-based theranostic platforms can efficiently target to and enter Her2 positive tumor cells. Thus, the smart imaging and drug delivery nanoplatforms induce high tumor cell growth inhibition. Meanwhile, the Cy5.5 conjugated PMOs perform great NIRF imaging ability, which could monitor the intracellular distribution, delivery and release of the chemotherapy drug. In addition, cell viability and histological assessments show the engineered PMOs have good biocompatibility, further encouraging the following biomedical applications. Over all, the systemically engineered PMOs can serve as a novel cancer cell targeting imaging and drug delivery platform with NIRF imaging, GSH and pH dual-responsive drug release, and high tumor cell targeting ability. PMID:26767305

  11. Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wu, Shuxian; Wu, Cuichen; Qiu, Liping; Zhu, Guizhi; Cui, Cheng; Liu, Yuan; Hou, Weijia; Wang, Yanyue; Zhang, Liqin; Teng, I.-Ting; Yang, Huang-Hao; Tan, Weihong

    2016-04-01

    The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles, termed MSN@polyphenol. The polyphenol coatings not only improved colloidal stability and prevented premature drug leakage, but also provided a scaffold for immobilization of targeting moieties, such as aptamers. Both immobilization of targeting aptamers and synthesis of polyphenol coating are easily accomplished without the aid of any other organic reagents. Importantly, the polyphenol coating (EGCg) used in this study could be biodegraded by acidic pH and intracellular glutathione, resulting in the release of trapped anticancer drugs. Based on confocal fluorescence microscopy and cytotoxicity experiments, drug-loaded and polyphenol-coated MSNs were shown to possess highly efficient internalization and an apparent cytotoxic effect on target cancer, but not control, cells. Our results suggest that these highly biocompatible and biodegradable polyphenol-coated MSNs are promising vectors for controlled-release biomedical applications and cancer therapy.The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles, termed MSN@polyphenol. The polyphenol coatings not only improved colloidal stability and prevented premature drug leakage, but also provided a scaffold for immobilization of targeting moieties, such as aptamers. Both immobilization of targeting aptamers and synthesis of polyphenol coating are easily accomplished without the aid of any other organic reagents. Importantly, the polyphenol coating (EGCg) used in this study could be biodegraded by acidic pH and intracellular glutathione, resulting in the release of trapped anticancer drugs. Based on confocal fluorescence microscopy and cytotoxicity experiments, drug-loaded and polyphenol-coated MSNs were shown to possess highly efficient internalization and an apparent cytotoxic effect on target cancer, but not control, cells. Our results suggest that these highly biocompatible and biodegradable polyphenol-coated MSNs are promising vectors for controlled-release biomedical applications and cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00600k

  12. Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction by Inducing Fibrin Clot Formation

    PubMed Central

    Polizzotti, Brian D.; Arab, Shima; Kühn, Bernhard

    2012-01-01

    Background Administration of a recombinant peptide of Periostin (rPN) has recently been shown to stimulate cardiomyocyte proliferation and angiogensis after myocardial infarction (MI) [1]. However, strategies for targeting the delivery of rPN to the heart are lacking. Intrapericardial administration of drug-eluting hydrogels may provide a clinically viable strategy for increasing myocardial retention, therapeutic efficacy, and bioactivity of rPN and to decrease systemic re-circulation. Methods and Results We investigated the ability of intrapericardial injections of drug-eluting hydrogels to deliver and prolong the release of rPN to the myocardium in a large animal model of myocardial infarction. Gelfoam is an FDA-approved hemostatic material commonly used in surgery, and is known to stimulate fibrin clot formation. We show that Gelfoam disks loaded with rPN, when implanted within the pericardium or peritoneum of mammals becomes encapsulated within a non-fibrotic fibrin-rich hydrogel, prolonging the in vitro and in vivo release of rPN. Administration into the pericardial cavity of pigs, following a complete occlusion of the left anterior descending artery, leads to greater induction of cardiomyocyte mitosis, increased cardiomyocyte cell cycle activity, and enhanced angiogenesis compared to direct injection of rPN alone. Conclusions The results of this study suggest that intrapericardial drug delivery of Gelfoam, enhanced by triggered clot formation, can be used to effectively deliver rPN to the myocardium in a clinically relevant model of myocardial infarction. The work presented here should enhance the translational potential of pharmaceutical-based strategies that must be targeted to the myocardium. PMID:22590609

  13. Pharmacokinetic and efficacy study of cisplatin and paclitaxel formulated in a new injectable poly(sebacic-co-ricinoleic acid) polymer.

    PubMed

    Levy-Nissenbaum, Etgar; Khan, Wahid; Pawar, Rajendra P; Tabakman, Rinat; Naftali, Esmira; Winkler, Ilan; Kaufman, Olga; Klapper, Leah; Domb, Abraham J

    2012-09-01

    Injectable biodegradable polymer poly(sebacic-co-ricinoleic acid), P(SA-RA) is currently under development for intratumoral (IT) delivery of drugs for treating solid tumors. This study presents formulation development, pharmacokinetic and efficacy studies of two anticancer drugs (cisplatin and paclitaxel) formulated with P(SA-RA) polymer. In pharmacokinetic study, systemic exposure and pharmacokinetic parameters of cisplatin/paclitaxel following single intravenous (IV) or subcutaneous (SC) doses of cisplatin/paclitaxel was compared with intramuscular (IM) or SC doses of cisplatin/paclitaxel formulated with P(SA-RA) polymer in male CD rat. Simultaneously, the tumor reduction effect and toxicity for these formulations were evaluated in human FaDu head and neck tumor xenograft subcutaneous nude mouse model. Pharmacokinetic data reflect the lower maximal concentrations and sustained release of polymer-cisplatin/paclitaxel formulations compared to standard cisplatin/paclitaxel administration. Regarding efficacy study, a single IT or near the tumor injection (NT) of polymer-paclitaxel or polymer-cisplatin formulation significantly reduced the tumor size, compared to the standard paclitaxel or cisplatin treatments. No death or toxicity and no effect on body weight as well as macroscopic and/or microscopic changes in or near the injected area were observed, proving biocompatibility and acceptability of polymer-formulations. In conclusion, the developed formulation demonstrated controlled release and significant efficacy in delivering these agents and exhibit potential for further clinical development. PMID:22732267

  14. Light-Controlled Delivery of Monoclonal Antibodies for Targeted Photoinactivation of Ki-67.

    PubMed

    Wang, Sijia; Hüttmann, Gereon; Zhang, Zhenxi; Vogel, Alfred; Birngruber, Reginald; Tangutoori, Shifalika; Hasan, Tayyaba; Rahmanzadeh, Ramtin

    2015-09-01

    The selective inhibition of intracellular and nuclear molecules such as Ki-67 holds great promise for the treatment of cancer and other diseases. However, the choice of the target protein and the intracellular delivery of the functional agent remain crucial challenges. Main hurdles are (a) an effective delivery into cells, (b) endosomal escape of the delivered agents, and (c) an effective, externally triggered destruction of cells. Here we show a light-controlled two-step approach for selective cellular delivery and cell elimination of proliferating cells. Three different cell-penetrating nano constructs, including liposomes, conjugates with the nuclear localization sequence (NLS), and conjugates with the cell penetrating peptide Pep-1, delivered the light activatable antibody conjugate TuBB-9-FITC, which targets the proliferation associated protein Ki-67. HeLa cells were treated with the photosensitizer benzoporphyrin monoacid derivative (BPD) and the antibody constructs. In the first optically controlled step, activation of BPD at 690 nm triggered a controlled endosomal escape of the TuBB-9-FITC constructs. In more than 75% of Ki-67 positive, irradiated cells TuBB-9-FITC antibodies relocated within 24 h from cytoplasmic organelles to the cell nucleus and bound to Ki-67. After a second light irradiation at 490 nm, which activated FITC, cell viability decreased to approximately 13%. Our study shows an effective targeting strategy, which uses light-controlled endosomal escape and the light inactivation of Ki-67 for cell elimination. The fact that liposomal or peptide-assisted delivery give similar results leads to the additional conclusion that an effective mechanism for endosomal escape leaves greater variability for the choice of the delivery agent. PMID:26226545

  15. Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies.

    PubMed

    An, Feng; Drummond, Daryl C; Wilson, Shannon; Kirpotin, Dmitri B; Nishimura, Stephen L; Broaddus, V Courtney; Liu, Bin

    2008-03-01

    Mesothelioma is a malignancy of the mesothelium and current treatments are generally ineffective. One promising area of anticancer drug development is to explore tumor susceptibility to targeted therapy. To achieve efficient, targeted intracellular delivery of therapeutic agents to mesothelioma cells, we selected a naive human single-chain (scFv) phage antibody display library directly on the surface of live mesothelioma cells to identify internalizing antibodies that target mesothelioma-associated cell surface antigens. We have identified a panel of internalizing scFvs that bind to mesothelioma cell lines derived from both epithelioid (M28) and sarcomatous (VAMT-1) types of this disease. Most importantly, these antibodies stain mesothelioma cells in situ and therefore define a panel of clinically represented tumor antigens. We have further exploited the internalizing function of these scFvs to achieve targeted intracellular drug delivery to mesothelioma cells. We showed that scFv-targeted immunoliposomes were efficiently and specifically taken up by both epithelioid and sarcomatous mesothelioma cells, but not control cells, and immunoliposomes encapsulating the small-molecule drug topotecan caused targeted killing of both types of mesothelioma cells in vitro. PMID:18319332

  16. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies.

    PubMed

    Kaitu'u-Lino, Tu'uhevaha J; Pattison, Scott; Ye, Louie; Tuohey, Laura; Sluka, Pavel; MacDiarmid, Jennifer; Brahmbhatt, Himanshu; Johns, Terrence; Horne, Andrew W; Brown, Jeremy; Tong, Stephen

    2013-02-01

    Abnormal trophoblast growth can cause life-threatening disorders such as ectopic pregnancy, choriocarcinoma, and placenta accreta. EnGeneIC Delivery Vehicles (EDVs) are nanocells that can promote tissue-specific delivery of drugs and may be useful to medically treat such disorders. The objective of this study was to determine whether EDVs loaded with the chemotherapeutic doxorubicin and targeting the epidermal growth factor receptor (EGFR, very highly expressed on the placental surface) can regress placental cells in vitro, ex vivo, and in vivo. In female SCID mice, EGFR-targeted EDVs induced greater inhibition of JEG-3 (choriocarcinoma cells) tumor xenografts, compared with EDVs targeting an irrelevant antigen (nontargeted EDVs) or naked doxorubicin. EGFR-targeted EDVs were more readily taken up by human placental explants ex vivo and induced increased apoptosis (M30 antibody) compared with nontargeted EDVs. In vitro, EGFR-targeted EDVs administered to JEG-3 cells resulted in a dose-dependent inhibition of cell viability, proliferation, and increased apoptosis, a finding confirmed by continuous monitoring by xCELLigence. In conclusion, EGFR-targeted EDVs loaded with doxorubicin significantly inhibited trophoblastic tumor cell growth in vivo and in vitro and induced significant cell death ex vivo, potentially mediated by increasing apoptosis and decreasing proliferation. EDVs may be a novel nanoparticle treatment for ectopic pregnancy and other disorders of trophoblast growth. PMID:23288908

  17. Low-density lipoprotein-mimicking nanoparticles for tumor-targeted theranostic applications.

    PubMed

    Lee, Jeong Yu; Kim, Jin-Ho; Bae, Ki Hyun; Oh, Mi Hwa; Kim, Youngwook; Kim, Jee Seon; Park, Tae Gwan; Park, Keunchil; Lee, Jung Hee; Nam, Yoon Sung

    2015-01-14

    This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low-density lipoproteins, for the tumor-targeted co-delivery of anti-cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co-encapsulated within folate-functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about -40 mV. The folate-functionalized LNPs enable the targeted detection of MCF-7, human breast adenocarcinoma expressing folate receptors, in T2 -weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel-free LNPs show no significant cytotoxicity up to 0.2 mg mL(-1) , indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti-tumor activities of the LNPs in a mouse tumor model suggest that the low-density lipoprotein-mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor-targeted co-delivery of various anti-cancer agents. PMID:25137631

  18. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid.

    PubMed

    Shinde, Rajshree L; Bharkad, Gopal P; Devarajan, Padma V

    2015-10-01

    Intranasal Microemulsions (MEs) for nose to brain delivery of a novel combination of Albendazole sulfoxide (ABZ-SO) and Curcumin (CUR) for Neurocysticercosis (NCC), a brain infection are reported. MEs prepared by simple solution exhibited a globule size <20nm, negative zeta potential and good stability. The docosahexaenoic acid (DHA) ME revealed high and rapid ex vivo permeation of drugs through sheep nasal mucosa. Intranasal DHA ME resulted in high brain concentrations and 10.76 (ABZ-SO) and 3.24 (CUR) fold enhancement in brain area-under-the-curve (AUC) compared to intravenous DHA MEs at the same dose. Direct nose to brain transport (DTP) of >95% was seen for both drugs. High drug targeting efficiency (DTE) to the brain compared to Capmul ME and drug solution (P<0.05) suggested the role of DHA in aiding nose to brain delivery. Histopathology study confirmed no significant changes. High efficacy of ABZ-SO: CUR (100:10ng/mL) DHA ME in vitro on Taenia solium cysts was confirmed by complete ALP inhibition and disintegration of cysts at 96h. Considering that the brain concentration at 24h was 1400±160.1ng/g (ABZ-SO) and 120±35.2ng/g (CUR), the in vitro efficacy seen at a 10 fold lower concentration of the drugs strongly supports the assumption of clinical efficacy. The intranasal DHA ME is a promising delivery system for targeted nose to brain delivery. PMID:26318978

  19. LHRH-targeted nanogels as delivery system for cisplatin to ovarian cancer

    PubMed Central

    Nukolova, Natalia V.; Oberoi, Hardeep S.; Zhao, Yi; Chekhonin, Vladimir P.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2013-01-01

    Targeted drug delivery using multifunctional polymeric nanocarriers is a modern approach for cancer therapy. Our purpose was to prepare targeted nanogels for selective delivery of chemotherapeutic agent cisplatin to luteinizing hormone-releasing hormone (LHRH) receptor overexpressing tumor in vivo. Building blocks of such delivery systems consisted of innovative soft block copolymer nanogels with ionic cores serving as a reservoir for cisplatin (loading 35%) and a synthetic analog of LHRH conjugated to the nanogels via poly(ethylene glycol) spacer. Covalent attachment of (D-Lys6)-LHRH to nanogels was shown to be possible without loss in either the ligand binding affinity or the nanogel drug incorporation ability. LHRH-nanogel accumulation was specific to the LHRH-receptor positive A2780 ovarian cancer cells and not towards LHRH-receptor negative SKOV-3 cells. The LHRH-nanogel cisplatin formulation was more effective and less toxic than equimolar doses of free cisplatin or untargeted nanogels in the treatment of receptor-positive ovarian cancer xenografts in mice. Collectively, the study indicates that LHRH mediated nanogel-cisplatin delivery is a promising formulation strategy for therapy of tumors that express the LHRH receptor. PMID:23957812

  20. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds

    PubMed Central

    Taranta, Monia; Naldi, Ilaria

    2011-01-01

    Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641

  1. Quantification of Mesenchymal Stem Cell (MSC) Delivery to a Target Site Using In Vivo Confocal Microscopy

    PubMed Central

    Mortensen, Luke J.; Levy, Oren; Phillips, Joseph P.; Stratton, Tara; Triana, Brian; Ruiz, Juan P.; Gu, Fangqi; Karp, Jeffrey M.; Lin, Charles P.

    2013-01-01

    The ability to deliver cells to appropriate target tissues is a prerequisite for successful cell-based therapy. To optimize cell therapy it is therefore necessary to develop a robust method of in vivo cell delivery quantification. Here we examine Mesenchymal Stem Cells (MSCs) labeled with a series of 4 membrane dyes from which we select the optimal dye combination for pair-wise comparisons of delivery to inflamed tissue in the mouse ear using confocal fluorescence imaging. The use of an optimized dye pair for simultaneous tracking of two cell populations in the same animal enables quantification of a test population that is referenced to an internal control population, thereby eliminating intra-subject variations and variations in injected cell numbers. Consistent results were obtained even when the administered cell number varied by more than an order of magnitude, demonstrating an ability to neutralize one of the largest sources of in vivo experimental error and to greatly reduce the number of cells required to evaluate cell delivery. With this method, we are able to show a small but significant increase in the delivery of cytokine pre-treated MSCs (TNF-α & IFN-γ) compared to control MSCs. Our results suggest future directions for screening cell strategies using our in vivo cell delivery assay, which may be useful to develop methods to maximize cell therapeutic potential. PMID:24205131

  2. Polyethylenimine as a promising vector for targeted siRNA delivery.

    PubMed

    Nimesh, Surendra

    2012-05-01

    Recent discovery of RNA interference (RNAi) technology for gene therapy has triggered explosive research efforts towards development of small interfering RNA (siRNA) as therapeutic modality for gene silencing. Owing to its large molecular weight (~13 kDa), polyanionic nature (~40 negative phosphate groups) and rapid enzymatic degradation, delivery of siRNA remains an unresolved issue. Hence, there arises a need of an appropriate delivery vector to overcome the intrinsic, poor intracellular uptake and limited in vitro and in vivo stability. Amongst the various non-viral delivery vectors, the application of polymeric vectors such as polyethylenimine (PEI) or its derivatives has attracted much attention due to its high transfection efficiency and ease of manipulation. PEI has been extensively investigated for DNA delivery, only recently this polymer has been employed for siRNA delivery. This review will focus on studies done on PEI to deliver siRNA, with emphasis on the targeted, self-assembled polymeric nanoparticles with promising potential to evolve as therapeutic tool in gene therapy. PMID:22432843

  3. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors.

    PubMed

    Münch, Robert C; Muth, Anke; Muik, Alexander; Friedel, Thorsten; Schmatz, Julia; Dreier, Birgit; Trkola, Alexandra; Plückthun, Andreas; Büning, Hildegard; Buchholz, Christian J

    2015-01-01

    We describe receptor-targeted adeno-associated viral (AAV) vectors that allow genetic modification of rare cell types ex vivo and in vivo while showing no detectable off-targeting. Displaying designed ankyrin repeat proteins (DARPins) on the viral capsid and carefully depleting DARPin-deficient particles, AAV vectors were made specific for Her2/neu, EpCAM or CD4. A single intravenous administration of vector targeted to the tumour antigen Her2/neu was sufficient to track 75% of all tumour sites and to extend survival longer than the cytostatic antibody Herceptin. CD4-targeted AAVs hit human CD4-positive cells present in spleen of a humanized mouse model, while CD8-positive cells as well as liver or other off-target organs remained unmodified. Mimicking conditions of circulating tumour cells, EpCAM-AAV detected single tumour cells in human blood opening the avenue for tumour stem cell tracking. Thus, the approach developed here delivers genes to target</