Sample records for targeted proteins research

  1. The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program

    NASA Astrophysics Data System (ADS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.

  2. Drug Target Protein-Protein Interaction Networks: A Systematic Perspective

    PubMed Central

    2017-01-01

    The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated three main ways to understand the functional biomolecules based on the topological features of drug targets. There are no significant differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug target efficiently and economically. By this way, a drug target's homologue set containing 102 potential target proteins is predicted in the paper. PMID:28691014

  3. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  4. Targeting endogenous proteins for degradation through the affinity-directed protein missile system.

    PubMed

    Fulcher, Luke J; Hutchinson, Luke D; Macartney, Thomas J; Turnbull, Craig; Sapkota, Gopal P

    2017-05-01

    Targeted proteolysis of endogenous proteins is desirable as a research toolkit and in therapeutics. CRISPR/Cas9-mediated gene knockouts are irreversible and often not feasible for many genes. Similarly, RNA interference approaches necessitate prolonged treatments, can lead to incomplete knockdowns and are often associated with off-target effects. Targeted proteolysis can overcome these limitations. In this report, we describe an affinity-directed protein missile (AdPROM) system that harbours the von Hippel-Lindau (VHL) protein, the substrate receptor of the Cullin2 (CUL2) E3 ligase complex, tethered to polypeptide binders that selectively bind and recruit endogenous target proteins to the CUL2-E3 ligase complex for ubiquitination and proteasomal degradation. By using synthetic monobodies that selectively bind the protein tyrosine phosphatase SHP2 and a camelid-derived VHH nanobody that selectively binds the human ASC protein, we demonstrate highly efficient AdPROM-mediated degradation of endogenous SHP2 and ASC in human cell lines. We show that AdPROM-mediated loss of SHP2 in cells impacts SHP2 biology. This study demonstrates for the first time that small polypeptide binders that selectively recognize endogenous target proteins can be exploited for AdPROM-mediated destruction of the target proteins. © 2017 The Authors.

  5. Targeting endogenous proteins for degradation through the affinity-directed protein missile system

    PubMed Central

    Fulcher, Luke J.; Hutchinson, Luke D.; Macartney, Thomas J.; Turnbull, Craig

    2017-01-01

    Targeted proteolysis of endogenous proteins is desirable as a research toolkit and in therapeutics. CRISPR/Cas9-mediated gene knockouts are irreversible and often not feasible for many genes. Similarly, RNA interference approaches necessitate prolonged treatments, can lead to incomplete knockdowns and are often associated with off-target effects. Targeted proteolysis can overcome these limitations. In this report, we describe an affinity-directed protein missile (AdPROM) system that harbours the von Hippel–Lindau (VHL) protein, the substrate receptor of the Cullin2 (CUL2) E3 ligase complex, tethered to polypeptide binders that selectively bind and recruit endogenous target proteins to the CUL2-E3 ligase complex for ubiquitination and proteasomal degradation. By using synthetic monobodies that selectively bind the protein tyrosine phosphatase SHP2 and a camelid-derived VHH nanobody that selectively binds the human ASC protein, we demonstrate highly efficient AdPROM-mediated degradation of endogenous SHP2 and ASC in human cell lines. We show that AdPROM-mediated loss of SHP2 in cells impacts SHP2 biology. This study demonstrates for the first time that small polypeptide binders that selectively recognize endogenous target proteins can be exploited for AdPROM-mediated destruction of the target proteins. PMID:28490657

  6. Small molecules targeting heterotrimeric G proteins.

    PubMed

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    PubMed

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  8. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.

    PubMed

    Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun

    2017-11-27

    Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.

  9. Properties of Protein Drug Target Classes

    PubMed Central

    Bull, Simon C.; Doig, Andrew J.

    2015-01-01

    Accurate identification of drug targets is a crucial part of any drug development program. We mined the human proteome to discover properties of proteins that may be important in determining their suitability for pharmaceutical modulation. Data was gathered concerning each protein’s sequence, post-translational modifications, secondary structure, germline variants, expression profile and drug target status. The data was then analysed to determine features for which the target and non-target proteins had significantly different values. This analysis was repeated for subsets of the proteome consisting of all G-protein coupled receptors, ion channels, kinases and proteases, as well as proteins that are implicated in cancer. Machine learning was used to quantify the proteins in each dataset in terms of their potential to serve as a drug target. This was accomplished by first inducing a random forest that could distinguish between its targets and non-targets, and then using the random forest to quantify the drug target likeness of the non-targets. The properties that can best differentiate targets from non-targets were primarily those that are directly related to a protein’s sequence (e.g. secondary structure). Germline variants, expression levels and interactions between proteins had minimal discriminative power. Overall, the best indicators of drug target likeness were found to be the proteins’ hydrophobicities, in vivo half-lives, propensity for being membrane bound and the fraction of non-polar amino acids in their sequences. In terms of predicting potential targets, datasets of proteases, ion channels and cancer proteins were able to induce random forests that were highly capable of distinguishing between targets and non-targets. The non-target proteins predicted to be targets by these random forests comprise the set of the most suitable potential future drug targets, and should therefore be prioritised when building a drug development programme. PMID

  10. Rapid detection of proteins in transgenic crops without protein reference standards by targeted proteomic mass spectrometry.

    PubMed

    Schacherer, Lindsey J; Xie, Weiping; Owens, Michaela A; Alarcon, Clara; Hu, Tiger X

    2016-09-01

    Liquid chromatography coupled with tandem mass spectrometry is increasingly used for protein detection for transgenic crops research. Currently this is achieved with protein reference standards which may take a significant time or efforts to obtain and there is a need for rapid protein detection without protein reference standards. A sensitive and specific method was developed to detect target proteins in transgenic maize leaf crude extract at concentrations as low as ∼30 ng mg(-1) dry leaf without the need of reference standards or any sample enrichment. A hybrid Q-TRAP mass spectrometer was used to monitor all potential tryptic peptides of the target proteins in both transgenic and non-transgenic samples. The multiple reaction monitoring-initiated detection and sequencing (MIDAS) approach was used for initial peptide/protein identification via Mascot database search. Further confirmation was achieved by direct comparison between transgenic and non-transgenic samples. Definitive confirmation was provided by running the same experiments of synthetic peptides or protein standards, if available. A targeted proteomic mass spectrometry method using MIDAS approach is an ideal methodology for detection of new proteins in early stages of transgenic crop research and development when neither protein reference standards nor antibodies are available. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Genomes2Drugs: Identifies Target Proteins and Lead Drugs from Proteome Data

    PubMed Central

    Toomey, David; Hoppe, Heinrich C.; Brennan, Marian P.; Nolan, Kevin B.; Chubb, Anthony J.

    2009-01-01

    Background Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. Methodology/Principal Findings To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. Conclusions/Significance Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under ‘change-of-application’ patents. PMID:19593435

  12. Targeted protein degradation by PROTACs.

    PubMed

    Neklesa, Taavi K; Winkler, James D; Crews, Craig M

    2017-06-01

    Targeted protein degradation using the PROTAC technology is emerging as a novel therapeutic method to address diseases driven by the aberrant expression of a disease-causing protein. PROTAC molecules are bifunctional small molecules that simultaneously bind a target protein and an E3-ubiquitin ligase, thus causing ubiquitination and degradation of the target protein by the proteasome. Like small molecules, PROTAC molecules possess good tissue distribution and the ability to target intracellular proteins. Herein, we highlight the advantages of protein degradation using PROTACs, and provide specific examples where degradation offers therapeutic benefit over classical enzyme inhibition. Foremost, PROTACs can degrade proteins regardless of their function. This includes the currently "undruggable" proteome, which comprises approximately 85% of all human proteins. Other beneficial aspects of protein degradation include the ability to target overexpressed and mutated proteins, as well as the potential to demonstrate prolonged pharmacodynamics effect beyond drug exposure. Lastly, due to their catalytic nature and the pre-requisite ubiquitination step, an exquisitely potent molecules with a high degree of degradation selectivity can be designed. Impressive preclinical in vitro and in vivo PROTAC data have been published, and these data have propelled the development of clinically viable PROTACs. With the molecular weight falling in the 700-1000Da range, the delivery and bioavailability of PROTACs remain the largest hurdles on the way to the clinic. Solving these issues and demonstrating proof of concept clinical data will be the focus of many labs over the next few years. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?

    PubMed Central

    Cierpicki, Tomasz; Grembecka, Jolanta

    2015-01-01

    Summary Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of pre-clinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of protein-protein interactions highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address ‘druggability’ of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new protein-protein interactions and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new protein-protein interactions. PMID:25510283

  14. Synchronous detection of miRNAs, their targets and downstream proteins in transferred FFPE sections: applications in clinical and basic research.

    PubMed

    Zhao, Jin-yao; Liu, Chun-qing; Zhao, He-nan; Ding, Yan-Fang; Bi, Tie; Wang, Bo; Lin, Xing-chi; Guo, Gordon; Cui, Shi-ying

    2012-10-01

    After discovering new miRNAs, it is often difficult to determine their targets and effects on downstream protein expression. In situ hybridization (ISH) and immunohistochemistry (IHC) are two commonly used methods for clinical diagnosis and basic research. We used an optimized technique that simultaneously detects miRNAs, their binding targets and corresponding proteins on transferred serial formalin fixed paraffin embedded (FFPE) sections from patients. Combined with bioinformatics, this method was used to validate the reciprocal expression of specific miRNAs and targets that were detected by ISH, as well as the expression of downstream proteins that were detected by IHC. A complete analysis was performed using a limited number of transferred serial FFPE sections that had been stored for 1-4 years at room temperature. Some sections had even been previously stained with H&E. We identified a miRNA that regulates epithelial ovarian cancer, along with its candidate target and related downstream protein. These findings were directly validated using sub-cellular components obtained from the same patient sample. In addition, the expression of Nephrin (a podocyte marker) and Stmn1 (a recently identified marker related to glomerular development) were confirmed in transferred FFPE sections of mouse kidney. This procedure may be adapted for clinical diagnosis and basic research, providing a qualitative and efficient method to dissect the detailed spatial expression patterns of miRNA pathways in FFPE tissue, especially in cases where only a small biopsy sample can be obtained. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Aptamers as inhibitors of target proteins.

    PubMed

    Missailidis, S; Hardy, A

    2009-08-01

    Aptamers as inhibitors of proteins in therapeutic applications offer great advantages over their antibody counterparts and the promise to be developed into the next generation therapeutic agents. However, the control of aptamer intellectual property (IP) by two major players has made aptamers an area difficult to operate and often off-putting for academic and commercial organisations. Yet, their great potential is keeping aptamers at the research forefront, with one aptamer in the clinic and various at different stages of clinical trials. To provide a comprehensive review of the aptamer IP landscape and the issues associated with aptamer therapeutics against protein targets. Extensive review of the scientific and patent literature. Following our experience in developing, patenting and commercialising our aptamers against MUC1 and an extensive review of the literature, we have identified a variety of issues pertaining to the development of aptamers against protein targets for therapeutic applications, their patenting and granting of patents, the original IP holders and their policy, as well as the current market and traits. Despite a slow start, aptamers have been developed against various therapeutic proteins and offer the promise of providing a novel generation of therapeutic entities with a variety of applications.

  16. Cell cycle proteins as promising targets in cancer therapy.

    PubMed

    Otto, Tobias; Sicinski, Piotr

    2017-01-27

    Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

  17. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    PubMed

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  18. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  19. Orally active-targeted drug delivery systems for proteins and peptides.

    PubMed

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  20. Data-Driven Approach To Determine Popular Proteins for Targeted Proteomics Translation of Six Organ Systems.

    PubMed

    Lam, Maggie P Y; Venkatraman, Vidya; Xing, Yi; Lau, Edward; Cao, Quan; Ng, Dominic C M; Su, Andrew I; Ge, Junbo; Van Eyk, Jennifer E; Ping, Peipei

    2016-11-04

    Amidst the proteomes of human tissues lie subsets of proteins that are closely involved in conserved pathophysiological processes. Much of biomedical research concerns interrogating disease signature proteins and defining their roles in disease mechanisms. With advances in proteomics technologies, it is now feasible to develop targeted proteomics assays that can accurately quantify protein abundance as well as their post-translational modifications; however, with rapidly accumulating number of studies implicating proteins in diseases, current resources are insufficient to target every protein without judiciously prioritizing the proteins with high significance and impact for assay development. We describe here a data science method to prioritize and expedite assay development on high-impact proteins across research fields by leveraging the biomedical literature record to rank and normalize proteins that are popularly and preferentially published by biomedical researchers. We demonstrate this method by finding priority proteins across six major physiological systems (cardiovascular, cerebral, hepatic, renal, pulmonary, and intestinal). The described method is data-driven and builds upon the collective knowledge of previous publications referenced on PubMed to lend objectivity to target selection. The method and resulting popular protein lists may also be useful for exploring biological processes associated with various physiological systems and research topics, in addition to benefiting ongoing efforts to facilitate the broad translation of proteomics technologies.

  1. Y-Trap Cancer Immunotherapy Drug Targets Two Proteins

    Cancer.gov

    Two groups of researchers, working independently, have fused a TGF-beta receptor to a monoclonal antibody that targets a checkpoint protein. The result, this Cancer Currents blog describes, is a single hybrid molecule called a Y-trap that blocks two pathways used by tumors to evade the immune system.

  2. Chemical probes targeting epigenetic proteins: Applications beyond oncology

    PubMed Central

    Ackloo, Suzanne; Brown, Peter J.; Müller, Susanne

    2017-01-01

    ABSTRACT Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used. PMID:28080202

  3. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  4. [Programmed necrosis mediated by receptor-interacting protein 3: a new target for liver disease research].

    PubMed

    Zhang, J; Jing, Y; Li, Y N; Zhou, L; Wang, B M

    2016-09-20

    Hepatocyte death mainly includes apoptosis and necrosis and is a critical process in the pathophysiological mechanism of liver injury caused by various reasons. Recent studies have shown that key regulatory molecules in the inhibition of apoptosis such as caspase cannot be used as targets for inhibiting disease progression in clinical practice. In recent years, programmed necrosis mediated by receptor-interacting protein 3(RIP3)becomes a new hot research topic. It not only plays an important role in inducing inflammatory response, but also is closely regulated by intracellular signal factors, and it is a type of active cell death which can be interfered with. Compared with apoptosis, programmed necrosis is accompanied by the release of various inflammatory factors, which significantly affects local immune microenvironment. RIP3-mediated programmed necrosis has been taken seriously in many diseases. Although its mechanism of action in liver disease remains unclear, the results of recent studies confirmed its important role in the development of liver disease. This article reviews the research advances in the role of RIP3-mediated programmed necrosis signaling pathway in liver disease of various causes and investigates the possibility of RIP3-mediated programmed necrosis as a new target in the treatment of liver disease.

  5. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins.

    PubMed

    Boja, Emily S; Rodriguez, Henry

    2012-04-01

    Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Heterologous mitochondrial targeting sequences can deliver functional proteins into mitochondria.

    PubMed

    Marcus, Dana; Lichtenstein, Michal; Cohen, Natali; Hadad, Rita; Erlich-Hadad, Tal; Greif, Hagar; Lorberboum-Galski, Haya

    2016-12-01

    Mitochondrial Targeting Sequences (MTSs) are responsible for trafficking nuclear-encoded proteins into mitochondria. Once entering the mitochondria, the MTS is recognized and cleaved off. Some MTSs are long and undergo two-step processing, as in the case of the human frataxin (FXN) protein (80aa), implicated in Friedreich's ataxia (FA). Therefore, we chose the FXN protein to examine whether nuclear-encoded mitochondrial proteins can efficiently be targeted via a heterologous MTS (hMTS) and deliver a functional protein into mitochondria. We examined three hMTSs; that of citrate synthase (cs), lipoamide deydrogenase (LAD) and C6ORF66 (ORF), as classically MTS sequences, known to be removed by one-step processing, to deliver FXN into mitochondria, in the form of fusion proteins. We demonstrate that using hMTSs for delivering FXN results in the production of 4-5-fold larger amounts of the fusion proteins, and at 4-5-fold higher concentrations. Moreover, hMTSs delivered a functional FXN protein into the mitochondria even more efficiently than the native MTSfxn, as evidenced by the rescue of FA patients' cells from oxidative stress; demonstrating a 18%-54% increase in cell survival; and a 13%-33% increase in ATP levels, as compared to the fusion protein carrying the native MTS. One fusion protein with MTScs increased aconitase activity within patients' cells, by 400-fold. The implications form our studies are of vast importance for both basic and translational research of mitochondrial proteins as any mitochondrial protein can be delivered efficiently by an hMTS. Moreover, effective targeting of functional proteins is important for restoration of mitochondrial function and treatment of related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advances in targeted proteomics and applications to biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Song, Ehwang; Nie, Song

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications inmore » human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.« less

  8. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2more » reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. -- Highlights: •Fifteen-deoxyspergualin (DSG) is an immunosuppressive agent clinically used. •We have identified PCBP2, an RNA-binding protein, as a molecular target of DSG. •Alteration of PCBP2 activity may explain the immunosuppressive activity of DSG.« less

  9. Targeting malaria parasite proteins to the erythrocyte.

    PubMed

    Templeton, Thomas J; Deitsch, Kirk W

    2005-09-01

    The intraerythrocytic stages of the protozoan parasite Plasmodium falciparum reside within a parasitophorous vacuole (PV) and set up unique "extraparasite, intraerythrocyte" protein-trafficking pathways that target parasite-encoded proteins to the erythrocyte cytoplasm and cell surface. Two recent articles report the identification of trafficking motifs that regulate the transport of parasite-encoded proteins across the PV. These articles greatly aid the annotation of the parasite "secretome" catalog of proteins that are targeted to the erythrocyte cytoplasm or cell membrane.

  10. Protein-protein interactions and cancer: targeting the central dogma.

    PubMed

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  11. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  12. In silico re-identification of properties of drug target proteins.

    PubMed

    Kim, Baeksoo; Jo, Jihoon; Han, Jonghyun; Park, Chungoo; Lee, Hyunju

    2017-05-31

    Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. When the newly proposed properties are integrated, the prediction performance

  13. C-Myc Protein-Protein and Protein-DNA Interactions: Targets for Therapeutic Intervention.

    DTIC Science & Technology

    1997-09-01

    including those of the Myc family. In fact, members of different bHLH protein subgroups, including the Myc proteins, are characterized by conserved BR...important functional consequences, and they provide insights into how different bHLH proteins can act on different targets. The zinc finger protein...roles for a number of BR residues which do not contact bases, yet are conserved within different bHLH protein sub- families (Benezra et al. 1990), and

  14. Brachyury Protein: A Potential Target in Lung Cancer Therapy | Center for Cancer Research

    Cancer.gov

    Previous research has shown that Brachyury protein plays a role in initiating the processes that lead to the growth and spread of cancer. Now CCR scientists have for the first time demonstrated the expression of Brachyury protein in lung cancer tumors, as well as a correlation between the overexpression of Brachyury protein and drug resistance.

  15. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance

    PubMed Central

    Lee, Samuel; Kim, Soo Min

    2013-01-01

    Abstract The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes. Antioxid. Redox Signal. 18, 1165–1207. PMID:22607099

  16. Comprehensive peptidomimetic libraries targeting protein-protein interactions.

    PubMed

    Whitby, Landon R; Boger, Dale L

    2012-10-16

    Transient protein-protein interactions (PPIs) are essential components in cellular signaling pathways as well as in important processes such as viral infection, replication, and immune suppression. The unknown or uncharacterized PPIs involved in such interaction networks often represent compelling therapeutic targets for drug discovery. To date, however, the main strategies for discovery of small molecule modulators of PPIs are typically limited to structurally characterized targets. Recent developments in molecular scaffolds that mimic the side chain display of peptide secondary structures have yielded effective designs, but few screening libraries of such mimetics are available to interrogate PPI targets. We initiated a program to prepare a comprehensive small molecule library designed to mimic the three major recognition motifs that mediate PPIs (α-helix, β-turn, and β-strand). Three libraries would be built around templates designed to mimic each such secondary structure and substituted with all triplet combinations of groups representing the 20 natural amino acid side chains. When combined, the three libraries would contain a member capable of mimicking the key interaction and recognition residues of most targetable PPIs. In this Account, we summarize the results of the design, synthesis, and validation of an 8000 member α-helix mimetic library and a 4200 member β-turn mimetic library. We expect that the screening of these libraries will not only provide lead structures against α-helix- or β-turn-mediated protein-protein or peptide-receptor interactions, even if the nature of the interaction is unknown, but also yield key insights into the recognition motif (α-helix or β-turn) and identify the key residues mediating the interaction. Consistent with this expectation, the screening of the libraries against p53/MDM2 and HIV-1 gp41 (α-helix mimetic library) or the opioid receptors (β-turn mimetic library) led to the discovery of library members expected

  17. Protein targets for anticancer gold compounds: mechanistic inferences.

    PubMed

    Gabbiani, Chiara; Messori, Luigi

    2011-12-01

    Gold compounds form an interesting class of antiproliferative agents of potential pharmacological use in cancer treatment. Indeed, a number of gold compounds, either gold(III) or gold(I), were recently described and characterised that manifested remarkable cytotoxic properties in vitro against cultured cancer cells; for some of them encouraging in vivo results were also reported toward a few relevant animal models of cancer. The molecular mechanisms through which gold compounds exert their biological effects are still largely unknown and the subject of intense investigations. Recent studies point out that the modes of action of cytotoxic gold compounds are essentially DNA-independent and cisplatin-unrelated, relying -most likely- on gold interactions with a variety of protein targets. Notably, a few cellular proteins playing relevant functional roles were proposed to represent effective targets for cytotoxic gold compounds but these hypotheses need adequate validation. The state of the art of this research area and the perspectives for future studies are herein critically analysed and discussed.

  18. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    PubMed

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  1. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    PubMed Central

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  2. Druggable orthosteric and allosteric hot spots to target protein-protein interactions.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2014-01-01

    Drug designing targeting protein-protein interactions is challenging. Because structural elucidation and computational analysis have revealed the importance of hot spot residues in stabilizing these interactions, there have been on-going efforts to develop drugs which bind the hot spots and out-compete the native protein partners. The question arises as to what are the key 'druggable' properties of hot spots in protein-protein interactions and whether these mimic the general hot spot definition. Identification of orthosteric (at the protein- protein interaction site) and allosteric (elsewhere) druggable hot spots is expected to help in discovering compounds that can more effectively modulate protein-protein interactions. For example, are there any other significant features beyond their location in pockets in the interface? The interactions of protein-protein hot spots are coupled with conformational dynamics of protein complexes. Currently increasing efforts focus on the allosteric drug discovery. Allosteric drugs bind away from the native binding site and can modulate the native interactions. We propose that identification of allosteric hot spots could similarly help in more effective allosteric drug discovery. While detection of allosteric hot spots is challenging, targeting drugs to these residues has the potential of greatly increasing the hot spot and protein druggability.

  3. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    PubMed

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  5. TARGET Research Goals

    Cancer.gov

    TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.

  6. Characterization of the targeting signal in mitochondrial β-barrel proteins

    PubMed Central

    Jores, Tobias; Klinger, Anna; Groß, Lucia E.; Kawano, Shin; Flinner, Nadine; Duchardt-Ferner, Elke; Wöhnert, Jens; Kalbacher, Hubert; Endo, Toshiya; Schleiff, Enrico; Rapaport, Doron

    2016-01-01

    Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. PMID:27345737

  7. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.

    PubMed

    Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas

    2016-05-12

    Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically

  8. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    PubMed Central

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  9. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    PubMed Central

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  10. Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications.

    PubMed

    Kobayashi, Hiroki; Harada, Hiroko; Nakamura, Masaomi; Futamura, Yushi; Ito, Akihiro; Yoshida, Minoru; Iemura, Shun-Ichiro; Shin-Ya, Kazuo; Doi, Takayuki; Takahashi, Takashi; Natsume, Tohru; Imoto, Masaya; Sakakibara, Yasubumi

    2012-04-05

    Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis. We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system.As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins. This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.

  11. Discovery-2: an interactive resource for the rational selection and comparison of putative drug target proteins in malaria

    PubMed Central

    2013-01-01

    Background Drug resistance to anti-malarial compounds remains a serious problem, with resistance to newer pharmaceuticals developing at an alarming rate. The development of new anti-malarials remains a priority, and the rational selection of putative targets is a key element of this process. Discovery-2 is an update of the original Discovery in silico resource for the rational selection of putative drug target proteins, enabling researchers to obtain information for a protein which may be useful for the selection of putative drug targets, and to perform advanced filtering of proteins encoded by the malaria genome based on a series of molecular properties. Methods An updated in silico resource has been developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein properties used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions. Newly added features include drugability measures from ChEMBL, automated literature relations and links to clinical trial information. Searching by chemical structure is also available. Results The updated functionality of the Discovery-2 resource is presented, together with a detailed case study of the Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (PfSAHH) protein. A short example of a chemical search with pyrimethamine is also illustrated. Conclusion The updated Discovery-2 resource allows researchers to obtain detailed properties of proteins from the malaria genome, which may be of interest in the target selection process, and to perform advanced filtering and selection of proteins based on a relevant range of molecular characteristics. PMID:23537208

  12. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  13. The past and presence of gene targeting: from chemicals and DNA via proteins to RNA.

    PubMed

    Geel, T M; Ruiters, M H J; Cool, R H; Halby, L; Voshart, D C; Andrade Ruiz, L; Niezen-Koning, K E; Arimondo, P B; Rots, M G

    2018-06-05

    The ability to target DNA specifically at any given position within the genome allows many intriguing possibilities and has inspired scientists for decades. Early gene-targeting efforts exploited chemicals or DNA oligonucleotides to interfere with the DNA at a given location in order to inactivate a gene or to correct mutations. We here describe an example towards correcting a genetic mutation underlying Pompe's disease using a nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene correction, scientists soon realized that genes could be inactivated or even re-activated without inducing potentially harmful DNA damage by targeting transcriptional modulators to a particular gene. However, it proved difficult to fuse protein effector domains to the first generation of programmable DNA-binding agents. The engineering of gene-targeting proteins (zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs)) circumvented this problem. The disadvantage of protein-based gene targeting is that a fusion protein needs to be engineered for every locus. The recent introduction of CRISPR/Cas offers a flexible approach to target a (fusion) protein to the locus of interest using cheap designer RNA molecules. Many research groups now exploit this platform and the first human clinical trials have been initiated: CRISPR/Cas has kicked off a new era of gene targeting and is revolutionizing biomedical sciences.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).

  14. Hsp70 Protein Complexes as Drug Targets

    PubMed Central

    Assimon, Victoria A.; Gillies, Anne T.; Rauch, Jennifer N.; Gestwicki, Jason E.

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology. PMID:22920901

  15. Complex network theory for the identification and assessment of candidate protein targets.

    PubMed

    McGarry, Ken; McDonald, Sharon

    2018-06-01

    In this work we use complex network theory to provide a statistical model of the connectivity patterns of human proteins and their interaction partners. Our intention is to identify important proteins that may be predisposed to be potential candidates as drug targets for therapeutic interventions. Target proteins usually have more interaction partners than non-target proteins, but there are no hard-and-fast rules for defining the actual number of interactions. We devise a statistical measure for identifying hub proteins, we score our target proteins with gene ontology annotations. The important druggable protein targets are likely to have similar biological functions that can be assessed for their potential therapeutic value. Our system provides a statistical analysis of the local and distant neighborhood protein interactions of the potential targets using complex network measures. This approach builds a more accurate model of drug-to-target activity and therefore the likely impact on treating diseases. We integrate high quality protein interaction data from the HINT database and disease associated proteins from the DrugTarget database. Other sources include biological knowledge from Gene Ontology and drug information from DrugBank. The problem is a very challenging one since the data is highly imbalanced between target proteins and the more numerous nontargets. We use undersampling on the training data and build Random Forest classifier models which are used to identify previously unclassified target proteins. We validate and corroborate these findings from the available literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Identification and Herc5-mediated ISGylation of novel target proteins.

    PubMed

    Takeuchi, Tomoharu; Inoue, Satoshi; Yokosawa, Hideyoshi

    2006-09-22

    ISG15, a protein containing two ubiquitin-like domains, is an interferon-stimulated gene product that functions in antiviral response and is conjugated to various cellular proteins (ISGylation) upon interferon stimulation. ISGylation occurs via a pathway similar to the pathway for ubiquitination that requires the sequential action of E1/E2/E3: the E1 (UBE1L), E2 (UbcH8), and E3 (Efp/Herc5) enzymes for ISGylation have been hitherto identified. In this study, we identified six novel candidate target proteins for ISGylation by a proteomic approach. Four candidate target proteins were demonstrated to be ISGylated in UBE1L- and UbcH8-dependent manners, and ISGylation of the respective target proteins was stimulated by Herc5. In addition, Herc5 was capable of binding with the respective target proteins. Thus, these results suggest that Herc5 functions as a general E3 ligase for protein ISGylation.

  17. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  18. Targeting a KH-domain protein with RNA decoys.

    PubMed

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-09-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins.

  19. Targeting a KH-domain protein with RNA decoys.

    PubMed Central

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-01-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435

  20. Quantitative proteomics in cardiovascular research: global and targeted strategies

    PubMed Central

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  1. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE PAGES

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.; ...

    2017-04-19

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  2. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velásquez, André C.; Nomura, Kinya; Cooper, Max D.

    The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less

  3. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations.

    PubMed

    Ito, Mikako; Ohno, Kinji

    2018-02-20

    Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression

  4. Targeting protein-trafficking pathways alters melanoma treatment sensitivity

    PubMed Central

    Huang, Zhi-ming; Chinen, Milka; Chang, Philip J.; Xie, Tong; Zhong, Lily; Demetriou, Stephanie; Patel, Mira P.; Scherzer, Rebecca; Sviderskaya, Elena V.; Bennett, Dorothy C.; Millhauser, Glenn L.; Oh, Dennis H.; Cleaver, James E.; Wei, Maria L.

    2012-01-01

    Protein-trafficking pathways are targeted here in human melanoma cells using methods independent of oncogene mutational status, and the ability to up-regulate and down-regulate tumor treatment sensitivity is demonstrated. Sensitivity of melanoma cells to cis-diaminedichloroplatinum II (cDDP, cis-platin), carboplatin, dacarbazine, or temozolomide together with velaparib, an inhibitor of poly (ADP ribose) polymerase 1, is increased by up to 10-fold by targeting genes that regulate both protein trafficking and the formation of melanosomes, intracellular organelles unique to melanocytes and melanoma cells. Melanoma cells depleted of either of the protein-trafficking regulators vacuolar protein sorting 33A protein (VPS33A) or cappuccino protein (CNO) have increased nuclear localization of cDDP, increased nuclear DNA damage by platination, and increased apoptosis, resulting in increased treatment sensitivity. Depleted cells also exhibit a decreased proportion of intracellular, mature melanosomes compared with undepleted cells. Modulation of protein trafficking via cell-surface signaling by binding the melanocortin 1 receptor with the antagonist agouti-signaling protein decreased the proportion of mature melanosomes formed and increased cDDP sensitivity, whereas receptor binding with the agonist melanocyte-stimulating hormone resulted in an increased proportion of mature melanosomes formed and in decreased sensitivity (i.e., increased resistance) to cDDP. Mutation of the protein-trafficking gene Hps6, known to impair the formation of mature melanosomes, also increased cDDP sensitivity. Together, these results indicate that targeting protein-trafficking molecules markedly increases melanoma treatment sensitivity and influences the degree of melanosomes available for sequestration of therapeutic agents. PMID:22203954

  5. Polymerase Acidic Protein-Basic Protein 1 (PA-PB1) Protein-Protein Interaction as a Target for Next-Generation Anti-influenza Therapeutics.

    PubMed

    Massari, Serena; Goracci, Laura; Desantis, Jenny; Tabarrini, Oriana

    2016-09-08

    The limited therapeutic options against the influenza virus (flu) and increasing challenges in drug resistance make the search for next-generation agents imperative. In this context, heterotrimeric viral PA/PB1/PB2 RNA-dependent RNA polymerase is an attractive target for a challenging but strategic protein-protein interaction (PPI) inhibition approach. Since 2012, the inhibition of the polymerase PA-PB1 subunit interface has become an active field of research following the publication of PA-PB1 crystal structures. In this Perspective, we briefly discuss the validity of flu polymerase as a drug target and its inhibition through a PPI inhibition strategy, including a comprehensive analysis of available PA-PB1 structures. An overview of all of the reported PA-PB1 complex formation inhibitors is provided, and approaches used for identification of the inhibitors, the hit-to-lead studies, and the emerged structure-activity relationship are described. In addition to highlighting the strengths and weaknesses of all of the PA-PB1 heterodimerization inhibitors, we analyze their hypothesized binding modes and alignment with a pharmacophore model that we have developed.

  6. Targeting BET bromodomain proteins in solid tumors

    PubMed Central

    Sahai, Vaibhav; Redig, Amanda J.; Collier, Katharine A.; Eckerdt, Frank D.; Munshi, Hidayatullah G.

    2016-01-01

    There is increasing interest in inhibitors targeting BET (bromodomain and extra-terminal) proteins because of the association between this family of proteins and cancer progression. BET inhibitors were initially shown to have efficacy in hematologic malignancies; however, a number of studies have now shown that BET inhibitors can also block progression of non-hematologic malignancies. In this Review, we summarize the efficacy of BET inhibitors in select solid tumors; evaluate the role of BET proteins in mediating resistance to current targeted therapies; and consider potential toxicities of BET inhibitors. We also evaluate recently characterized mechanisms of resistance to BET inhibitors; summarize ongoing clinical trials with these inhibitors; and discuss potential future roles of BET inhibitors in patients with solid tumors. PMID:27283767

  7. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  8. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  9. Targeted quantitation of proteins by mass spectrometry.

    PubMed

    Liebler, Daniel C; Zimmerman, Lisa J

    2013-06-04

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement.

  10. Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection

    PubMed Central

    Mukherjee, Uma A.; Ong, Sang-Bing; Ong, Sang-Ging; Hausenloy, Derek J.

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death and disability worldwide. Therefore, novel therapeutic targets for protecting the heart against acute ischemia/reperfusion injury (IRI) are required to attenuate cardiomyocyte death, preserve myocardial function, and prevent the onset of heart failure. In this regard, a specific group of mitochondrial proteins, which have been linked to familial forms of Parkinson's disease (PD), may provide novel therapeutic targets for cardioprotection. In dopaminergic neurons of the substantia nigra, these PD proteins, which include Parkin, PINK1, DJ-1, LRRK2, and α-synuclein, play essential roles in preventing cell death—through maintaining normal mitochondrial function, protecting against oxidative stress, mediating mitophagy, and preventing apoptosis. These rare familial forms of PD may therefore provide important insights into the pathophysiology underlying mitochondrial dysfunction and the development of PD. Interestingly, these PD proteins are also present in the heart, but their role in myocardial health and disease is not clear. In this article, we review the role of these PD proteins in the heart and explore their potential as novel mitochondrial targets for cardioprotection. PMID:26481155

  11. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    PubMed Central

    Torres, Jaume; Surya, Wahyu; Li, Yan; Liu, Ding Xiang

    2015-01-01

    Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity. PMID:26053927

  12. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  13. Identifying protein kinase target preferences using mass spectrometry

    PubMed Central

    Douglass, Jacqueline; Gunaratne, Ruwan; Bradford, Davis; Saeed, Fahad; Hoffert, Jason D.; Steinbach, Peter J.; Pisitkun, Trairak

    2012-01-01

    A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called “PhosphoLogo,” uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit α), revealing the well-known preference for basic amino acids in positions −2 and −3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKCδ, CaMK2δ, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3β, Wnk1, and Wnk4. PMID:22723110

  14. Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces

    PubMed Central

    Luchini, Alessandra; Espina, Virginia; Liotta, Lance A.

    2014-01-01

    Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of protein–protein complexes. The molecular paints, which block trypsin cleavage sites, are excluded from the binding interface. Following mass spectrometry, only peptides hidden in the interface emerge as positive hits, revealing the functional contact regions that are drug targets. We use protein painting to discover contact regions between the three-way interaction of IL1β ligand, the receptor IL1RI and the accessory protein IL1RAcP. We then use this information to create peptides and monoclonal antibodies that block the interaction and abolish IL1β cell signalling. The technology is broadly applicable to discover protein interaction drug targets. PMID:25048602

  15. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    DTIC Science & Technology

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks...to 00-00-2012 4. TITLE AND SUBTITLE Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks 5a. CONTRACT NUMBER 5b

  16. Phage protein-targeted cancer nanomedicines

    PubMed Central

    Petrenko, V.A.; Jayanna, P.K.

    2015-01-01

    Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review. PMID:24269681

  17. Mechanism-based Proteomic Screening Identifies Targets of Thioredoxin-like Proteins*

    PubMed Central

    Nakao, Lia S.; Everley, Robert A.; Marino, Stefano M.; Lo, Sze M.; de Souza, Luiz E.; Gygi, Steven P.; Gladyshev, Vadim N.

    2015-01-01

    Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes. PMID:25561728

  18. Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants1[W][OA

    PubMed Central

    Xu, Lin; Carrie, Chris; Law, Simon R.; Murcha, Monika W.; Whelan, James

    2013-01-01

    The dual-targeting ability of a variety of proteins from Physcomitrella patens, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) was tested to determine when dual targeting arose and to what extent it was conserved in land plants. Overall, the targeting ability of over 80 different proteins from rice and P. patens, representing 42 dual-targeted proteins in Arabidopsis, was tested. We found that dual targeting arose early in land plant evolution, as it was evident in many cases with P. patens proteins that were conserved in rice and Arabidopsis. Furthermore, we found that the acquisition of dual-targeting ability is still occurring, evident in P. patens as well as rice and Arabidopsis. The loss of dual-targeting ability appears to be rare, but does occur. Ascorbate peroxidase represents such an example. After gene duplication in rice, individual genes encode proteins that are targeted to a single organelle. Although we found that dual targeting was generally conserved, the ability to detect dual-targeted proteins differed depending on the cell types used. Furthermore, it appears that small changes in the targeting signal can result in a loss (or gain) of dual-targeting ability. Overall, examination of the targeting signals within this study did not reveal any clear patterns that would predict dual-targeting ability. The acquisition of dual-targeting ability also appears to be coordinated between proteins. Mitochondrial intermembrane space import and assembly protein40, a protein involved in oxidative folding in mitochondria and peroxisomes, provides an example where acquisition of dual targeting is accompanied by the dual targeting of substrate proteins. PMID:23257241

  19. Multi-Conformer Ensemble Docking to Difficult Protein Targets

    DOE PAGES

    Ellingson, Sally R.; Miao, Yinglong; Baudry, Jerome; ...

    2014-09-08

    We investigate large-scale ensemble docking using five proteins from the Directory of Useful Decoys (DUD, dud.docking.org) for which docking to crystal structures has proven difficult. Molecular dynamics trajectories are produced for each protein and an ensemble of representative conformational structures extracted from the trajectories. Docking calculations are performed on these selected simulation structures and ensemble-based enrichment factors compared with those obtained using docking in crystal structures of the same protein targets or random selection of compounds. We also found simulation-derived snapshots with improved enrichment factors that increased the chemical diversity of docking hits for four of the five selected proteins.more » A combination of all the docking results obtained from molecular dynamics simulation followed by selection of top-ranking compounds appears to be an effective strategy for increasing the number and diversity of hits when using docking to screen large libraries of chemicals against difficult protein targets.« less

  20. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets.

    PubMed

    Kudinov, Alexander E; Karanicolas, John; Golemis, Erica A; Boumber, Yanis

    2017-05-01

    Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila , the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR . ©2017

  1. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    PubMed

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  2. Phage display selection of peptides that target calcium-binding proteins.

    PubMed

    Vetter, Stefan W

    2013-01-01

    Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

  3. A cell death assay for assessing the mitochondrial targeting of proteins.

    PubMed

    Camara Teixeira, Daniel; Cordonier, Elizabeth L; Wijeratne, Subhashinee S K; Huebbe, Patricia; Jamin, Augusta; Jarecke, Sarah; Wiebe, Matthew; Zempleni, Janos

    2018-06-01

    The mitochondrial proteome comprises 1000 to 1500 proteins, in addition to proteins for which the mitochondrial localization is uncertain. About 800 diseases have been linked with mutations in mitochondrial proteins. We devised a cell survival assay for assessing the mitochondrial localization in a high-throughput format. This protocol allows us to assess the mitochondrial localization of proteins and their mutants, and to identify drugs and nutrients that modulate the mitochondrial targeting of proteins. The assay works equally well for proteins directed to the outer mitochondrial membrane, inner mitochondrial membrane mitochondrial and mitochondrial matrix, as demonstrated by assessing the mitochondrial targeting of the following proteins: carnitine palmitoyl transferase 1 (consensus sequence and R123C mutant), acetyl-CoA carboxylase 2, uncoupling protein 1 and holocarboxylase synthetase. Our screen may be useful for linking the mitochondrial proteome with rare diseases and for devising drug- and nutrition-based strategies for altering the mitochondrial targeting of proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast

    PubMed Central

    Vidi, Pierre-Alexandre; Kessler, Felix; Bréhélin, Claire

    2007-01-01

    Background The potential of transgenic plants for cost-effective production of pharmaceutical molecules is now becoming apparent. Plants have the advantage over established fermentation systems (bacterial, yeast or animal cell cultures) to circumvent the risk of pathogen contamination, to be amenable to large scaling up and to necessitate only established farming procedures. Chloroplasts have proven a useful cellular compartment for protein accumulation owing to their large size and number, as well as the possibility for organellar transformation. They therefore represent the targeting destination of choice for recombinant proteins in leaf crops such as tobacco. Extraction and purification of recombinant proteins from leaf material contribute to a large extent to the production costs. Developing new strategies facilitating these processes is therefore necessary. Results Here, we evaluated plastoglobule lipoprotein particles as a new subchloroplastic destination for recombinant proteins. The yellow fluorescent protein as a trackable cargo was targeted to plastoglobules when fused to plastoglobulin 34 (PGL34) as the carrier. Similar to adipocyte differentiation related protein (ADRP) in animal cells, most of the protein sequence of PGL34 was necessary for targeting to lipid bodies. The recombinant protein was efficiently enriched in plastoglobules isolated by simple flotation centrifugation. The viability of plants overproducing the recombinant protein was not affected, indicating that plastoglobule targeting did not significantly impair photosynthesis or sugar metabolism. Conclusion Our data identify plastoglobules as a new targeting destination for recombinant protein in leaf crops. The wide-spread presence of plastoglobules and plastoglobulins in crop species promises applications comparable to those of transgenic oilbody-oleosin technology in molecular farming. PMID:17214877

  5. The identification of new protein kinase inhibitors as targets in modern drug discovery.

    PubMed

    Akritopoulou-Zanze, Irini

    2006-07-01

    In recent years there has been great interest in developing protein kinase inhibitors as therapeutic agents for a variety of diseases. This article provides an overview on the history, development and validity of kinases as drug targets, as well as a description of kinase research, including its limitations, challenges and successes.

  6. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  7. Discovery: an interactive resource for the rational selection and comparison of putative drug target proteins in malaria

    PubMed Central

    Joubert, Fourie; Harrison, Claudia M; Koegelenberg, Riaan J; Odendaal, Christiaan J; de Beer, Tjaart AP

    2009-01-01

    Background Up to half a billion human clinical cases of malaria are reported each year, resulting in about 2.7 million deaths, most of which occur in sub-Saharan Africa. Due to the over-and misuse of anti-malarials, widespread resistance to all the known drugs is increasing at an alarming rate. Rational methods to select new drug target proteins and lead compounds are urgently needed. The Discovery system provides data mining functionality on extensive annotations of five malaria species together with the human and mosquito hosts, enabling the selection of new targets based on multiple protein and ligand properties. Methods A web-based system was developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein features used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions and host-pathogen interactions among others. Searching by chemical structure is also available. Results An in silico system for the selection of putative drug targets and lead compounds is presented, together with an example study on the bifunctional DHFR-TS from Plasmodium falciparum. Conclusion The Discovery system allows for the identification of putative drug targets and lead compounds in Plasmodium species based on the filtering of protein and chemical properties. PMID:19642978

  8. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  9. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  10. A protein in neuroblastoma could be a target of immunotoxins or immunotherapy | Center for Cancer Research

    Cancer.gov

    A cell surface protein, glycoprotein glypican-2 (GPC2), has been found to be an effective therapeutic target in cell cultures and mouse models that mimic childhood neuroblastoma.  The CCR scientists who made this discovery, reported July 24, 2017, in PNAS, have also produced immunotoxins and chimeric antigen receptor (CAR) T cells, a type of immunotherapy, that have shown

  11. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis.

    PubMed

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific

  12. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study.

    PubMed

    Burslem, George M; Smith, Blake E; Lai, Ashton C; Jaime-Figueroa, Saul; McQuaid, Daniel C; Bondeson, Daniel P; Toure, Momar; Dong, Hanqing; Qian, Yimin; Wang, Jing; Crew, Andrew P; Hines, John; Crews, Craig M

    2018-01-18

    Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Selective Targeting of Proteins within Secretory Pathway for Endoplasmic Reticulum-associated Degradation

    PubMed Central

    Vecchi, Lara; Petris, Gianluca; Bestagno, Marco; Burrone, Oscar R.

    2012-01-01

    The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity. PMID:22523070

  14. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    PubMed Central

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to

  15. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Membrane and inclusion body targeting of lyssavirus matrix proteins.

    PubMed

    Pollin, Reiko; Granzow, Harald; Köllner, Bernd; Conzelmann, Karl-Klaus; Finke, Stefan

    2013-02-01

    Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation, differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinctintracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis. © 2012 Blackwell Publishing Ltd.

  17. A protein in neuroblastoma could be a target of immunotoxins or immunotherapy | Center for Cancer Research

    Cancer.gov

    A cell surface protein, glycoprotein glypican-2 (GPC2), has been found to be an effective therapeutic target in cell cultures and mouse models that mimic childhood neuroblastoma.  The CCR scientists who made this discovery, reported July 24, 2017, in PNAS, have also produced immunotoxins and chimeric antigen receptor (CAR) T cells, a type of immunotherapy, that have shown promise against this solid tumor. Read more...

  18. Targeted proteins for diabetes drug design

    NASA Astrophysics Data System (ADS)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  19. Requests Cancer Targets for Monoclonal Antibody Production and Characterization | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. The program from The Office of Cancer Clinical Proteomics Research provides reagents and other critical resources that support protein and/or peptide measurements and analysis.

  20. Reagent Target Request for Monoclonal Antibody Production and Characterization | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    NCI's Antibody Characterization Program provides reagents and other critical resources to support protein/peptide measurements and analysis. In an effort to produce and distribute well-characterized monoclonal antibodies to the scientific community, the program is seeking cancer related protein targets for antibody production and characterization for distribution to the research community. Submission Period: May 20, 2011 - July 1, 2011.

  1. How proteins bind to DNA: target discrimination and dynamic sequence search by the telomeric protein TRF1

    PubMed Central

    2017-01-01

    Abstract Target search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments of chromosomal DNA. In this study, we use extensive (>0.5 ms in total) MD simulations to study the dynamical aspects of sequence-specific binding of TRF1 at both telomeric and non-cognate DNA. For the first time, we describe the spontaneous formation of a sequence-specific native protein–DNA complex in atomistic detail, and study the mechanism by which proteins avoid off-target binding while retaining high affinity for target sites. Our calculated free energy landscapes reproduce the thermodynamics of sequence-specific binding, while statistical approaches allow for a comprehensive description of intermediate stages of complex formation. PMID:28633355

  2. An affinity-directed protein missile system for targeted proteolysis.

    PubMed

    Fulcher, Luke J; Macartney, Thomas; Bozatzi, Polyxeni; Hornberger, Annika; Rojas-Fernandez, Alejandro; Sapkota, Gopal P

    2016-10-01

    The von Hippel-Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate. © 2016 The Authors.

  3. An affinity-directed protein missile system for targeted proteolysis

    PubMed Central

    Fulcher, Luke J.; Macartney, Thomas; Bozatzi, Polyxeni; Hornberger, Annika; Rojas-Fernandez, Alejandro

    2016-01-01

    The von Hippel–Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate. PMID:27784791

  4. A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    PubMed Central

    Gonzalez, Nicola H.; Felsner, Gregor; Schramm, Frederic D.; Klingl, Andreas; Maier, Uwe-G.; Bolte, Kathrin

    2011-01-01

    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1. PMID:21966495

  5. Targeting pH regulating proteins for cancer therapy-Progress and limitations.

    PubMed

    Parks, Scott K; Pouysségur, Jacques

    2017-04-01

    Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pH i ) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pH i regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pH i in the continued presence of external acidification (pH e ). Considerable experimentation has revealed targets that successfully disrupt tumour pH i regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na + /H + exchangers (NHEs), carbonic anhydrases (CAs), Na + /HCO 3 - co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pH i when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.

    PubMed

    Okuhira, Keiichiro; Shoda, Takuji; Omura, Risa; Ohoka, Nobumichi; Hattori, Takayuki; Shibata, Norihito; Demizu, Yosuke; Sugihara, Ryo; Ichino, Asato; Kawahara, Haruka; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Kurihara, Masaaki; Itoh, Susumu; Saito, Hiroyuki; Naito, Mikihiko

    2017-03-01

    Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein. Copyright © 2017 by

  7. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    DOE PAGES

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...

    2015-03-06

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less

  9. The potential of targeting Ras proteins in lung cancer.

    PubMed

    McCormick, Frank

    2015-04-01

    The Ras pathway is a major driver in lung adenocarcinoma: over 75% of all cases harbor mutations that activate this pathway. While spectacular clinical successes have been achieved by targeting activated receptor tyrosine kinases in this pathway, little, if any, significant progress has been achieved targeting Ras proteins themselves or cancers driven by oncogenic Ras mutants. New approaches to drug discovery, new insights into Ras function, new ways of attacking undruggable proteins through RNA interference and new ways of harnessing the immune system could change this landscape in the relatively near future.

  10. Genetically engineered and self-assembled oncolytic protein nanoparticles for targeted cancer therapy.

    PubMed

    Lee, Joong-Jae; Kang, Jung Ae; Ryu, Yiseul; Han, Sang-Soo; Nam, You Ree; Rho, Jong Kook; Choi, Dae Seong; Kang, Sun-Woong; Lee, Dong-Eun; Kim, Hak-Sung

    2017-03-01

    The integration of a targeted delivery with a tumour-selective agent has been considered an ideal platform for achieving high therapeutic efficacy and negligible side effects in cancer therapy. Here, we present engineered protein nanoparticles comprising a tumour-selective oncolytic protein and a targeting moiety as a new format for the targeted cancer therapy. Apoptin from chicken anaemia virus (CAV) was used as a tumour-selective apoptotic protein. An EGFR-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was employed to play a dual role as a tumour-targeting moiety and a fusion partner for producing apoptin nanoparticles in E. coli, respectively. The repebody was genetically fused to apoptin, and the resulting fusion protein was shown to self-assemble into supramolecular repebody-apoptin nanoparticles with high homogeneity and stability as a soluble form when expressed in E. coli. The repebody-apoptin nanoparticles showed a remarkable anti-tumour activity with negligible side effects in xenograft mice through a cooperative action of the two protein components with distinct functional roles. The repebody-apoptin nanoparticles can be developed as a systemic injectable and tumour-selective therapeutic protein for targeted cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. RNA-modifying proteins as anticancer drug targets.

    PubMed

    Boriack-Sjodin, P Ann; Ribich, Scott; Copeland, Robert A

    2018-06-01

    All major biological macromolecules (DNA, RNA, proteins and lipids) undergo enzyme-catalysed covalent modifications that impact their structure, function and stability. A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA stability and translation to proteins; these mechanisms of translational control have been termed epitranscriptomics. Emerging data suggest that some epitranscriptomic mechanisms are altered in human cancers as well as other human diseases. In this Review, we examine the current understanding of RNA modifications with a focus on mRNA methylation, highlight their possible roles in specific cancer indications and discuss the emerging potential of RNA-modifying proteins as therapeutic targets.

  12. Improved protein model quality assessments by changing the target function.

    PubMed

    Uziela, Karolis; Menéndez Hurtado, David; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2018-06-01

    Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates. © 2018 Wiley Periodicals, Inc.

  13. Massively parallel de novo protein design for targeted therapeutics.

    PubMed

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J; Hicks, Derrick R; Vergara, Renan; Murapa, Patience; Bernard, Steffen M; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T; Koday, Merika T; Jenkins, Cody M; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M; Fernández-Velasco, D Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A; Fuller, Deborah H; Baker, David

    2017-10-05

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  14. Massively parallel de novo protein design for targeted therapeutics

    NASA Astrophysics Data System (ADS)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-10-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  15. Massively parallel de novo protein design for targeted therapeutics

    PubMed Central

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  16. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  17. Targeted intracellular delivery of proteins with spatial and temporal control.

    PubMed

    Morales, Demosthenes P; Braun, Gary B; Pallaoro, Alessia; Chen, Renwei; Huang, Xiao; Zasadzinski, Joseph A; Reich, Norbert O

    2015-02-02

    While a host of methods exist to deliver genetic materials or small molecules to cells, very few are available for protein delivery to the cytosol. We describe a modular, light-activated nanocarrier that transports proteins into cells by receptor-mediated endocytosis and delivers the cargo to the cytosol by light triggered endosomal escape. The platform is based on hollow gold nanoshells (HGN) with polyhistidine tagged proteins attached through an avidity-enhanced, nickel chelation linking layer; here, we used green fluorescent protein (GFP) as a model deliverable cargo. Endosomal uptake of the GFP loaded nanocarrier was mediated by a C-end Rule (CendR) internalizing peptide fused to the GFP. Focused femtosecond pulsed-laser excitation triggered protein release from the nanocarrier and endosome disruption, and the released protein was capable of targeting the nucleoli, a model intracellular organelle. We further demonstrate the generality of the approach by loading and releasing Sox2 and p53. This method for targeting of individual cells, with resolution similar to microinjection, provides spatial and temporal control over protein delivery.

  18. Fusion proteins in head and neck neoplasms: Clinical implications, genetics, and future directions for targeting

    PubMed Central

    Escalante, Derek A.; Wang, He; Fundakowski, Christopher E.

    2016-01-01

    ABSTRACT Fusion proteins resulting from chromosomal rearrangements are known to drive the pathogenesis of a variety of hematological and solid neoplasms such as chronic myeloid leukemia and non-small-cell lung cancer. Efforts to elucidate the role they play in these malignancies have led to important diagnostic and therapeutic triumphs, including the famous development of the tyrosine kinase inhibitor dasatinib targeting the BCR-ABL fusion. Until recently, there has been a paucity of research investigating fusion proteins harbored by head and neck neoplasms. The discovery and characterization of novel fusion proteins in neoplasms originating from the thyroid, nasopharynx, salivary glands, and midline head and neck structures offer substantial contributions to our understanding of the pathogenesis and biological behavior of these neoplasms, while raising new therapeutic and diagnostic opportunities. Further characterization of these fusion proteins promises to facilitate advances on par with those already achieved with regard to hematologic malignancies in the precise, molecularly guided diagnosis and treatment of head and neck neoplasms. The following is a subsite specific review of the clinical implications of fusion proteins in head and neck neoplasms and the future potential for diagnostic targeting. PMID:27636353

  19. False-positive rate determination of protein target discovery using a covalent modification- and mass spectrometry-based proteomics platform.

    PubMed

    Strickland, Erin C; Geer, M Ariel; Hong, Jiyong; Fitzgerald, Michael C

    2014-01-01

    Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2% and <0.8% are calculated for SPROX experiments using Q-TOF and Orbitrap mass spectrometer systems, respectively. Our results indicate that the false-positive rate is largely determined by random errors associated with the mass spectral analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

  20. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

    PubMed Central

    Tacchi, Jessica L.; Raymond, Benjamin B. A.; Haynes, Paul A.; Berry, Iain J.; Widjaja, Michael; Bogema, Daniel R.; Woolley, Lauren K.; Jenkins, Cheryl; Minion, F. Chris; Padula, Matthew P.; Djordjevic, Steven P.

    2016-01-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. PMID:26865024

  1. Inferring protein domains associated with drug side effects based on drug-target interaction network.

    PubMed

    Iwata, Hiroaki; Mizutani, Sayaka; Tabei, Yasuo; Kotera, Masaaki; Goto, Susumu; Yamanishi, Yoshihiro

    2013-01-01

    Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.

  2. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility thatmore » had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.« less

  3. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  4. Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics.

    PubMed

    Gaunt, Hannah J; Vasudev, Naveen S; Beech, David J

    2016-10-01

    Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating Ca 2+ entry because of the critical roles played by Ca 2+ in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (-)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling.

  5. Detecting protein-protein interactions using Renilla luciferase fusion proteins.

    PubMed

    Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W

    2002-11-01

    We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.

  6. Modulation of telomere binding proteins: a future area of research for skin protection and anti-aging target.

    PubMed

    Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha

    2012-06-01

    Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.

  7. Reverse screening methods to search for the protein targets of chemopreventive compounds

    NASA Astrophysics Data System (ADS)

    Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan

    2018-05-01

    This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and

  8. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds.

    PubMed

    Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan

    2018-01-01

    This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn

  9. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds

    PubMed Central

    Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan

    2018-01-01

    This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn

  10. Lupus autoantibodies target ribosomal P proteins

    PubMed Central

    1985-01-01

    All nine SLE (systemic lupus erythematosus) sera with antiribosomal antibody activity targeted the same three ribosomal protein antigens, of molecular masses 38 and 17/19 kD when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. One serum reacted with an additional protein of approximately kD. Ribosomal subunit fractionation by composite gel electrophoresis and sucrose density ultracentrifugation showed that these proteins were part of the large subunit. Isoelectric focusing in agarose, and two-dimensional polyacrylamide gel electrophoresis revealed that the antigens had pI between 4.5 and 6.5, but that the 17/19 kD antigens were more acidic than the 38 kD antigen. Similarities in the molecular masses, charges, as well as the presence of highly conserved crossreactive epitopes, failure to bind to carboxymethylcellulose at pH 4.2, and extractability of the 17/19 kD proteins by 400 mM NH4Cl-ethanol at 0 degrees C indicated that these antigens were analogous to the proteins P0 (38 kD) and P1/P2 (17/19 kD) described previously (25, 36). Co-identity was confirmed using reference antibodies and antigen. Although antibodies to these proteins were only found in 5-10% of more than 50 sera screened by radioimmunoassay or Western blotting, the selective production of antibodies to epitopes on three (out of a total of more than 80) ribosomal proteins may provide further clues to autoantibody induction of SLE. PMID:2410526

  11. Targeting G protein coupled receptor-related pathways as emerging molecular therapies

    PubMed Central

    Ghanemi, Abdelaziz

    2013-01-01

    G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730

  12. Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    PubMed Central

    Sarmady, Mahdi; Dampier, William; Tozeren, Aydin

    2011-01-01

    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584

  13. Target Highlights in CASP9: Experimental Target Structures for the Critical Assessment of Techniques for Protein Structure Prediction

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten

    2011-01-01

    One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785

  14. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.

    PubMed

    Belsare, Ketaki D; Andorfer, Mary C; Cardenas, Frida S; Chael, Julia R; Park, Hyun June; Lewis, Jared C

    2017-03-17

    Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450 BM3 , pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.

  15. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase-a comprehensive drug target database for Lymphatic filariasis

    NASA Astrophysics Data System (ADS)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in.

  16. Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds.

    PubMed

    Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen

    2017-08-01

    Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.

  17. Synthetic Zinc Finger Proteins: The Advent of Targeted Gene Regulation and Genome Modification Technologies

    PubMed Central

    2015-01-01

    Conspectus The understanding of gene regulation and the structure and function of the human genome increased dramatically at the end of the 20th century. Yet the technologies for manipulating the genome have been slower to develop. For instance, the field of gene therapy has been focused on correcting genetic diseases and augmenting tissue repair for more than 40 years. However, with the exception of a few very low efficiency approaches, conventional genetic engineering methods have only been able to add auxiliary genes to cells. This has been a substantial obstacle to the clinical success of gene therapies and has also led to severe unintended consequences in several cases. Therefore, technologies that facilitate the precise modification of cellular genomes have diverse and significant implications in many facets of research and are essential for translating the products of the Genomic Revolution into tangible benefits for medicine and biotechnology. To address this need, in the 1990s, we embarked on a mission to develop technologies for engineering protein–DNA interactions with the aim of creating custom tools capable of targeting any DNA sequence. Our goal has been to allow researchers to reach into genomes to specifically regulate, knock out, or replace any gene. To realize these goals, we initially focused on understanding and manipulating zinc finger proteins. In particular, we sought to create a simple and straightforward method that enables unspecialized laboratories to engineer custom DNA-modifying proteins using only defined modular components, a web-based utility, and standard recombinant DNA technology. Two significant challenges we faced were (i) the development of zinc finger domains that target sequences not recognized by naturally occurring zinc finger proteins and (ii) determining how individual zinc finger domains could be tethered together as polydactyl proteins to recognize unique locations within complex genomes. We and others have since used

  18. Inferring protein domains associated with drug side effects based on drug-target interaction network

    PubMed Central

    2013-01-01

    Background Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. Results In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. Conclusion The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains. PMID:24565527

  19. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    PubMed

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  20. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  1. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  2. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    PubMed

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.

  3. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  4. A Universal Method for Fishing Target Proteins from Mixtures of Biomolecules using Isothermal Titration Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Sun, Q; Kini, R

    2008-01-01

    The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstratemore » a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.« less

  5. A Strategy Based on Protein-Protein Interface Motifs May Help in Identifying Drug Off-Targets

    PubMed Central

    Engin, H. Billur; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila

    2014-01-01

    Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can ‘attack’ nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, “The Interface Attack”, based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model which we call “Protein Interface and Interaction Network (P2IN)”, which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces, and which proteins may compete to bind the same surface region. We built the P2IN of p53 signaling network and performed network robustness analysis. We show that (1) ‘hitting’ frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes); (2) frequent interfaces are not always topologically critical elements in the network; and (3) interface attack may reveal functional changes in the system better than attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D. PMID:22817115

  6. Advances in recombinant protein expression for use in pharmaceutical research.

    PubMed

    Assenberg, Rene; Wan, Paul T; Geisse, Sabine; Mayr, Lorenz M

    2013-06-01

    Protein production for structural and biophysical studies, functional assays, biomarkers, mechanistic studies in vitro and in vivo, but also for therapeutic applications in pharma, biotech and academia has evolved into a mature discipline in recent years. Due to the increased emphasis on biopharmaceuticals, the growing demand for proteins used for structural and biophysical studies, the impact of genomics technologies on the analysis of large sets of structurally diverse proteins, and the increasing complexity of disease targets, the interest in innovative approaches for the expression, purification and characterisation of recombinant proteins has steadily increased over the years. In this review, we summarise recent developments in the field of recombinant protein expression for research use in pharma, biotech and academia. We focus mostly on the latest developments for protein expression in the most widely used expression systems: Escherichia coli (E. coli), insect cell expression using the Baculovirus Expression Vector System (BEVS) and, finally, transient and stable expression of recombinant proteins in mammalian cells. Copyright © 2013. Published by Elsevier Ltd.

  7. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms.

    PubMed Central

    Maeda, Kenji; Finnie, Christine; Svensson, Birte

    2004-01-01

    Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots. The technique also provided information about accessible thiol groups in the proteins identified in the barley seed proteome. In total, 16 different putative target proteins were identified from 26 spots using tryptic in-gel digestion, matrix-assisted laser-desorption ionization-time-of-flight MS and database search. HvTrxh1 and HvTrxh2 were shown to have similar target specificity. Barley alpha-amylase/subtilisin inhibitor, previously demonstrated to be reduced by both HvTrxh1 and HvTrxh2, was among the identified target proteins, confirming the suitability of the method. Several alpha-amylase/trypsin inhibitors, some of which are already known as target proteins of thioredoxin h, and cyclophilin known as a target protein of m-type thioredoxin were also identified. Lipid transfer protein, embryospecific protein, three chitinase isoenzymes, a single-domain glyoxalase-like protein and superoxide dismutase were novel identifications of putative target proteins, suggesting new physiological roles of thioredoxin h in barley seeds. PMID:14636158

  8. A comparative study of disease genes and drug targets in the human protein interactome

    PubMed Central

    2015-01-01

    Background Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. Results In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. Conclusions The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing. PMID:25861037

  9. A comparative study of disease genes and drug targets in the human protein interactome.

    PubMed

    Sun, Jingchun; Zhu, Kevin; Zheng, W; Xu, Hua

    2015-01-01

    Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.

  10. Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions.

    PubMed

    Du, Jinping; Rehm, Bernd H A

    2017-11-02

    Recombinant protein production and purification from Escherichia coli is often accompanied with expensive and complicated procedures, especially for therapeutic proteins. Here it was demonstrated that, by using an intein cleavable polyhydroxyalkanoate synthase fusion, recombinant proteins can be first produced and sequestered on a natural resin, the polyhydroxyalkanoate (PHA) inclusions, then separated from contaminating host proteins via simple PHA bead isolation steps, and finally purified by specific release into the soluble fraction induced by a pH reduction. By translationally fusing a target protein to PHA synthase using a self-cleaving intein as linker, intracellular production of PHA beads was achieved. Upon isolation of respective PHA beads the soluble pure target protein was released by a simple pH shift to 6. The utility of this approach was exemplified by producing six target proteins, including Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b). Here a new method for production and purification of a tag-less protein was developed through intein cleavable polyhydroxyalkanoate synthase fusion. Pure target protein could be easily obtained without laborious downstream processing.

  11. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Lipton, Stuart A.

    2015-01-01

    At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. In contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. Here we highlight protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent posttranslational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics. PMID:26707925

  12. NMR-based investigations into target DNA search processes of proteins.

    PubMed

    Iwahara, Junji; Zandarashvili, Levani; Kemme, Catherine A; Esadze, Alexandre

    2018-05-10

    To perform their function, transcription factors and DNA-repair/modifying enzymes must first locate their targets in the vast presence of nonspecific, but structurally similar sites on genomic DNA. Before reaching their targets, these proteins stochastically scan DNA and dynamically move from one site to another on DNA. Solution NMR spectroscopy provides unique atomic-level insights into the dynamic DNA-scanning processes, which are difficult to gain by any other experimental means. In this review, we provide an introductory overview on the NMR methods for the structural, dynamic, and kinetic investigations of target DNA search by proteins. We also discuss advantages and disadvantages of these NMR methods over other methods such as single-molecule techniques and biochemical approaches. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Drug Target Validation Methods in Malaria - Protein Interference Assay (PIA) as a Tool for Highly Specific Drug Target Validation.

    PubMed

    Meissner, Kamila A; Lunev, Sergey; Wang, Yuan-Ze; Linzke, Marleen; de Assis Batista, Fernando; Wrenger, Carsten; Groves, Matthew R

    2017-01-01

    The validation of drug targets in malaria and other human diseases remains a highly difficult and laborious process. In the vast majority of cases, highly specific small molecule tools to inhibit a proteins function in vivo are simply not available. Additionally, the use of genetic tools in the analysis of malarial pathways is challenging. These issues result in difficulties in specifically modulating a hypothetical drug target's function in vivo. The current "toolbox" of various methods and techniques to identify a protein's function in vivo remains very limited and there is a pressing need for expansion. New approaches are urgently required to support target validation in the drug discovery process. Oligomerisation is the natural assembly of multiple copies of a single protein into one object and this self-assembly is present in more than half of all protein structures. Thus, oligomerisation plays a central role in the generation of functional biomolecules. A key feature of oligomerisation is that the oligomeric interfaces between the individual parts of the final assembly are highly specific. However, these interfaces have not yet been systematically explored or exploited to dissect biochemical pathways in vivo. This mini review will describe the current state of the antimalarial toolset as well as the potentially druggable malarial pathways. A specific focus is drawn to the initial efforts to exploit oligomerisation surfaces in drug target validation. As alternative to the conventional methods, Protein Interference Assay (PIA) can be used for specific distortion of the target protein function and pathway assessment in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Computer-aided identification of novel protein targets of bisphenol A.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2013-10-09

    The xenoestrogen bisphenol A (2,2-bis-(p-hydroxyphenyl)-2-propane, BPA) is a known endocrine-disrupting chemical used in the fabrication of plastics, resins and flame retardants, that can be found throughout the environment and in numerous every day products. Human exposure to this chemical is extensive and generally occurs via oral route because it leaches from the food and beverage containers that contain it. Although most of the effects related to BPA exposure have been linked to the activation of the estrogen receptor (ER), the mechanisms of the interaction of BPA with protein targets different from ER are still unknown. Therefore, the objective of this work was to use a bioinformatics approach to identify possible new targets for BPA. Docking studies were performed between the optimized structure of BPA and 271 proteins related to different biochemical processes, as selected by text-mining. Refinement docking experiments and conformational analyses were carried out using LigandScout 3.0 for the proteins selected through the affinity ranking (lower than -8.0kcal/mol). Several proteins including ERR gamma (-9.9kcal/mol), and dual specificity protein kinases CLK-4 (-9.5kcal/mol), CLK-1 (-9.1kcal/mol) and CLK-2 (-9.0kcal/mol) presented great in silico binding affinities for BPA. The interactions between those proteins and BPA were mostly hydrophobic with the presence of some hydrogen bonds formed by leucine and asparagine residues. Therefore, this study suggests that this endocrine disruptor may have other targets different from the ER. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    PubMed Central

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730

  16. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    PubMed

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  17. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  18. Urea transporter proteins as targets for small-molecule diuretics.

    PubMed

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  19. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    PubMed Central

    Kunze, Markus; Berger, Johannes

    2015-01-01

    The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678

  20. Moonlighting Proteins and Protein–Protein Interactions as Neurotherapeutic Targets in the G Protein-Coupled Receptor Field

    PubMed Central

    Fuxe, Kjell; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Palkovits, Miklós; Tarakanov, Alexander O; Ciruela, Francisco; Agnati, Luigi F

    2014-01-01

    There is serious interest in understanding the dynamics of the receptor–receptor and receptor–protein interactions in space and time and their integration in GPCR heteroreceptor complexes of the CNS. Moonlighting proteins are special multifunctional proteins because they perform multiple autonomous, often unrelated, functions without partitioning into different protein domains. Moonlighting through receptor oligomerization can be operationally defined as an allosteric receptor–receptor interaction, which leads to novel functions of at least one receptor protomer. GPCR-mediated signaling is a more complicated process than previously described as every GPCR and GPCR heteroreceptor complex requires a set of G protein interacting proteins, which interacts with the receptor in an orchestrated spatio-temporal fashion. GPCR heteroreceptor complexes with allosteric receptor–receptor interactions operating through the receptor interface have become major integrative centers at the molecular level and their receptor protomers act as moonlighting proteins. The GPCR heteroreceptor complexes in the CNS have become exciting new targets for neurotherapeutics in Parkinson's disease, schizophrenia, drug addiction, and anxiety and depression opening a new field in neuropsychopharmacology. PMID:24105074

  1. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Facebook targeted advertisement for research recruitment: A primer for nurse researchers.

    PubMed

    Carter-Harris, Lisa

    2016-11-01

    Recruiting participants for research studies can be challenging and costly. Innovative recruitment methods are needed. Facebook targeted advertisement offers a low-cost alternative to traditional methods that has been successfully used in research study recruitment. This primer offers nurse researchers a method utilizing social media as a recruitment tool and details Facebook targeted advertisement for research recruitment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting

    PubMed Central

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308

  4. Advances in the Study of Aptamer-Protein Target Identification Using the Chromatographic Approach.

    PubMed

    Drabik, Anna; Ner-Kluza, Joanna; Mielczarek, Przemyslaw; Civit, Laia; Mayer, Günter; Silberring, Jerzy

    2018-06-01

    Ever since the development of the process known as the systematic evolution of ligands by exponential enrichment (SELEX), aptamers have been widely used in a variety of studies, including the exploration of new diagnostic tools and the discovery of new treatment methods. Aptamers' ability to bind to proteins with high affinity and specificity, often compared to that of antibodies, enables the search for potential cancer biomarkers and helps us understand the mechanisms of carcinogenesis. The blind spot of those investigations is usually the difficulty in the selective extraction of targets attached to the aptamer. There are many studies describing the cell SELEX for the prime choice of aptamers toward living cancer cells or even whole tumors in the animal models. However, a dilemma arises when a large number of proteins are being identified as potential targets, which is often the case. In this article, we present a new analytical approach designed to selectively target proteins bound to aptamers. During studies, we have focused on the unambiguous identification of the molecular targets of aptamers characterized by high specificity to the prostate cancer cells. We have compared four assay approaches using electrophoretic and chromatographic methods for "fishing out" aptamer protein targets followed by mass spectrometry identification. We have established a new methodology, based on the fluorescent-tagged oligonucleotides commonly used for flow-cytometry experiments or as optic aptasensors, that allowed the detection of specific aptamer-protein interactions by mass spectrometry. The use of atto488-labeled aptamers for the tracking of the formation of specific aptamer-target complexes provides the possibility of studying putative protein counterparts without needing to apply enrichment techniques. Significantly, changes in the hydrophobic properties of atto488-labeled aptamer-protein complexes facilitate their separation by reverse-phase chromatography combined with

  5. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  6. Development of Cell-Permeable, Non-Helical Constrained Peptides to Target a Key Protein-Protein Interaction in Ovarian Cancer.

    PubMed

    Wiedmann, Mareike M; Tan, Yaw Sing; Wu, Yuteng; Aibara, Shintaro; Xu, Wenshu; Sore, Hannah F; Verma, Chandra S; Itzhaki, Laura; Stewart, Murray; Brenton, James D; Spring, David R

    2017-01-09

    There is a lack of current treatment options for ovarian clear cell carcinoma (CCC) and the cancer is often resistant to platinum-based chemotherapy. Hence there is an urgent need for novel therapeutics. The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in CCC and is seen as an attractive therapeutic target. This was validated through shRNA-mediated knockdown of the target protein, HNF1β, in five high- and low-HNF1β-expressing CCC lines. To inhibit the protein function, cell-permeable, non-helical constrained proteomimetics to target the HNF1β-importin α protein-protein interaction were designed, guided by X-ray crystallographic data and molecular dynamics simulations. In this way, we developed the first reported series of constrained peptide nuclear import inhibitors. Importantly, this general approach may be extended to other transcription factors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer

    DOE PAGES

    Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...

    2017-07-19

    Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less

  8. A targeted IL-15 fusion protein with potent anti-tumor activity

    PubMed Central

    Chen, Siqi; Huang, Qiang; Liu, Jiayu; Xing, Jieyu; Zhang, Ning; Liu, Yawei; Wang, Zhong; Li, Qing

    2015-01-01

    IL-15 has been actively investigated for its potential in tumor immunotherapy. To enhance the anti-tumor activity of IL-15, the novel PFC-1 construct was designed, which comprises the following 3 parts: (1) IL-15Rα fused with IL-15 to enhance IL-15 activity, (2) an Fc fragment to increase protein half-life, and (3) an integrin-targeting RGD peptide to enhance tumor targeting. PFC-1 showed tumor cell targeting without compromising IL-15 activity. PFC-1 also had potent anti-tumor activities in xenograft models, suggesting the potential application of this multi-functional fusion protein in tumor therapy. PMID:26176990

  9. Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells.

    PubMed

    Sánchez-Gómez, F J; González-Morena, J M; Vida, Y; Pérez-Inestrosa, E; Blanca, M; Torres, M J; Pérez-Sala, D

    2017-03-01

    Allergic reactions to β-lactams are among the most frequent causes of drug allergy and constitute an important clinical problem. Drug covalent binding to endogenous proteins (haptenation) is thought to be required for activation of the immune system. Nevertheless, neither the nature nor the role of the drug protein targets involved in this process is fully understood. Here, we aim to identify novel intracellular targets for haptenation by amoxicillin (AX) and their cellular fate. We have treated B lymphocytes with either AX or a biotinylated analog (AX-B). The identification of protein targets for haptenation by AX has been approached by mass spectrometry and immunoaffinity techniques. In addition, intercellular communication mediated by the delivery of vesicles loaded with AX-B-protein adducts has been explored by microscopy techniques. We have observed a complex pattern of AX-haptenated proteins. Several novel targets for haptenation by AX in B lymphocytes have been identified. AX-haptenated proteins were detected in cell lysates and extracellularly, either as soluble proteins or in lymphocyte-derived extracellular vesicles. Interestingly, exosomes from AX-B-treated cells showed a positive biotin signal in electron microscopy. Moreover, they were internalized by endothelial cells, thus supporting their involvement in intercellular transfer of haptenated proteins. These results represent the first identification of AX-mediated haptenation of intracellular proteins. Moreover, they show that exosomes can constitute a novel vehicle for haptenated proteins, and raise the hypothesis that they could provide antigens for activation of the immune system during the allergic response. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Protein targeting in the analysis of learning and memory: a potential alternative to gene targeting.

    PubMed

    Gerlai, R; Williams, S P; Cairns, B; Van Bruggen, N; Moran, P; Shih, A; Caras, I; Sauer, H; Phillips, H S; Winslow, J W

    1998-11-01

    Gene targeting using homologous recombination in embryonic stem (ES) cells offers unprecedented precision with which one may manipulate single genes and investigate the in vivo effects of defined mutations in the mouse. Geneticists argue that this technique abrogates the lack of highly specific pharmacological tools in the study of brain function and behavior. However, by now it has become clear that gene targeting has some limitations too. One problem is spatial and temporal specificity of the generated mutation, which may appear in multiple brain regions or even in other organs and may also be present throughout development, giving rise to complex, secondary phenotypical alterations. This may be a disadvantage in the functional analysis of a number of genes associated with learning and memory processes. For example, several proteins, including neurotrophins--cell-adhesion molecules--and protein kinases, that play a significant developmental role have recently been suggested to be also involved in neural and behavioral plasticity. Knocking out genes of such proteins may lead to developmental alterations or even embryonic lethality in the mouse, making it difficult to study their function in neural plasticity, learning, and memory. Therefore, alternative strategies to gene targeting may be needed. Here, we suggest a potentially useful in vivo strategy based on systemic application of immunoadhesins, genetically engineered fusion proteins possessing the Fc portion of the human IgG molecule and, for example, a binding domain of a receptor of interest. These proteins are stable in vivo and exhibit high binding specificity and affinity for the endogenous ligand of the receptor, but lack the ability to signal. Thus, if delivered to the brain, immunoadhesins may specifically block signalling of the receptor of interest. Using osmotic minipumps, the protein can be infused in a localized region of the brain for a specified period of time (days or weeks). Thus, the location

  11. Selective targeting of G-protein-coupled receptor subtypes with venom peptides.

    PubMed

    Näreoja, K; Näsman, J

    2012-02-01

    The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  12. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    NASA Astrophysics Data System (ADS)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for

  13. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-03-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research.

  14. Magnetic Resonance Imaging Revealed Splenic Targeting of Canine Parvovirus Capsid Protein VP2

    PubMed Central

    Ma, Yufei; Wang, Haiming; Yan, Dan; Wei, Yanquan; Cao, Yuhua; Yi, Peiwei; Zhang, Hailu; Deng, Zongwu; Dai, Jianwu; Liu, Xiangtao; Luo, Jianxun; Zhang, Zhijun; Sun, Shiqi; Guo, Huichen

    2016-01-01

    Canine parvovirus (CPV) is a highly contagious infectious virus, whose infectious mechanism remains unclear because of acute gastroenteritis and the lack of an efficient tool to visualize the virus in real time during virology research. In this study, we developed an iron oxide nanoparticle supported by graphene quantum dots (GQD), namely, FeGQD. In this composite material, GQD acts as a stabilizer; thus, vacancies are retained on the surface for further physical adsorption of the CPV VP2 protein. The FeGQD@VP2 nanocomposite product showed largely enhanced colloidal stability in comparison with bare FeGQD, as well as negligible toxicity both in vitro and in vivo. The composite displayed high uptake into transferrin receptor (TfR) positive cells, which are distinguishable from FeGQD or TfR negative cells. In addition, the composite developed a significant accumulation in spleen rather than in liver, where bare FeGQD or most iron oxide nanoparticles gather. As these evident targeting abilities of FeGQD@VP2 strongly suggested, the biological activity of CPV VP2 was retained in our study, and its biological functions might correspond to CPV when the rare splenic targeting ability is considered. This approach can be applied to numerous other biomedical studies that require a simple yet efficient approach to track proteins in vivo while retaining biological function and may facilitate virus-related research. PMID:26996514

  15. Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response

    PubMed Central

    2014-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597

  16. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  17. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    PubMed

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  18. Target Identification of Grape Seed Extract in Colorectal Cancer using Drug Affinity Responsive Target Stability (DARTS) Technique: Role of Endoplasmic Reticulum Stress Response Proteins

    PubMed Central

    Derry, Molly M.; Somasagara, Ranganatha; Raina, Komal; Kumar, Sushil; Gomez, Joe; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2014-01-01

    Various natural agents, including grape seed extract (GSE), have shown considerable chemopreventive and anti-cancer efficacy against different cancers in pre-clinical studies; however, their specific protein targets are largely unknown and thus, their clinical usefulness is marred by limited scientific evidences about their direct cellular targets. Accordingly, herein, employing, for the first time, the recently developed drug affinity responsive target stability (DARTS) technique, we aimed to profile the potential protein targets of GSE in human colorectal cancer (CRC) cells. Unlike other methods, which can cause chemical alteration of the drug components to allow for detection, this approach relies on the fact that a drug bound protein may become less susceptible to proteolysis and hence the enriched proteins can be detected by Mass Spectroscopy methods. Our results, utilizing the DARTS technique followed by examination of the spectral output by LC/MS and the MASCOT data, revealed that GSE targets endoplasmic reticulum (ER) stress response proteins resulting in overall down regulation of proteins involved in translation and that GSE also causes oxidative protein modifications, specifically on methionine amino acids residues on its protein targets. Corroborating these findings, mechanistic studies revealed that GSE indeed caused ER stress and strongly inhibited PI3k-Akt–mTOR pathway for its biological effects in CRC cells. Furthermore, bioenergetics studies indicated that GSE also interferes with glycolysis and mitochondrial metabolism in CRC cells. Together, the present study identifying GSE molecular targets in CRC cells, combined with its efficacy in vast pre-clinical CRC models, further supports its usefulness for CRC prevention and treatment. PMID:24724981

  19. Quantification of proteins in urine samples using targeted mass spectrometry methods.

    PubMed

    Khristenko, Nina; Domon, Bruno

    2015-01-01

    Numerous clinical proteomics studies are focused on the development of biomarkers to improve either diagnostics for early disease detection or the monitoring of the response to the treatment. Although, a wealth of biomarker candidates are available, their evaluation and validation in a true clinical setup remains challenging. In biomarkers evaluation studies, a panel of proteins of interest are systematically analyzed in a large cohort of samples. However, in spite of the latest progresses in mass spectrometry, the consistent detection of pertinent proteins in high complex biological samples is still a challenging task. Thus, targeted LC-MS/MS methods are better suited for the systematic analysis of biomarkers rather than shotgun approaches. This chapter describes the workflow used to perform targeted quantitative analyses of proteins in urinary samples. The peptides, as surrogates of the protein of interest, are commonly measured using a triple quadrupole mass spectrometers operated in selected reaction monitoring (SRM) mode. More recently, the advances in targeted LC-MS/MS analysis based on parallel reaction monitoring (PRM) performed on a quadrupole-orbitrap instrument have allowed to increase the specificity and selectivity of the measurements.

  20. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    PubMed

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  1. Target research on tumor biology characteristics of mir-155-5p regulation on gastric cancer cell.

    PubMed

    Feng, Jun-an

    2016-03-01

    After the mir-155-5p over expressed in gastric cancer cells, the expression profile chip was adopted to screen its target genes. Some of the intersection of target genes were selected based on the bioinformatics prediction, in order to study the mechanism of its function and role of research. Affymetrix eukaryotic gene expression spectrum was conducted to screen mir-155-5p regulated genetic experiment. Western blot technique was employed to detect and screen the protein expression of target genes. Mimics was transfected in BGC-823 of gastric cancer cells. Compared with mimics-nc group and mock group, the mRNA expression quantities of SMAD1, STAT1, CAB39, CXCR4 and CA9 were significantly lower. After the gastric cancer cells BGC-823 and MKN-45 had been transfected by mimics, compared with mimics-nc (MNC) group and mock (MOCK) group, it was decreased for the protein expression of SMAD1, STAT1 and CAB39 in mimics (MIMICS) group. The verification of qRT-PCR demonstrated that SMAD1, STAT1, CAB39, CXCR4 and CA9 were the predicted target genes and target proteins of mir-155-5p, the over expression of mir-155-5p could enable the decreasing of its expression level in gastric cancer cells MKN-45 and BGC-823.

  2. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy.

    PubMed

    An, So Young; Kim, Eun-Hee; Suh, Jeong-Yong

    2018-06-05

    Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.

    PubMed

    Shi, Junwei; Wang, Eric; Milazzo, Joseph P; Wang, Zihua; Kinney, Justin B; Vakoc, Christopher R

    2015-06-01

    CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.

  4. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    PubMed Central

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  5. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  6. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.

    PubMed

    Hassuna, Noha; Monk, Peter N; Moseley, Gregory W; Partridge, Lynda J

    2009-01-01

    The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining 'signature' motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as 'molecular organizers' involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a 'gateway' to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting

  7. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  8. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network.

    PubMed

    Uddin, Reaz; Jamil, Faiza

    2018-06-01

    Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that has the capability to acquire resistance under hostile conditions and become a threat worldwide. It is involved in nosocomial infections. In the current study, potential novel drug targets against P. aeruginosa have been identified using core proteomic analysis and Protein-Protein Interactions (PPIs) studies. The non-redundant reference proteome of 68 strains having complete genome and latest assembly version of P. aeruginosa were downloaded from ftp NCBI RefSeq server in October 2016. The standalone CD-HIT tool was used to cluster ortholog proteins (having >=80% amino acid identity) present in all strains. The pan-proteome was clustered in 12,380 Clusters of Orthologous Proteins (COPs). By using in-house shell scripts, 3252 common COPs were extracted out and designated as clusters of core proteome. The core proteome of PAO1 strain was selected by fetching PAO1's proteome from common COPs. As a result, 1212 proteins were shortlisted that are non-homologous to the human but essential for the survival of the pathogen. Among these 1212 proteins, 321 proteins are conserved hypothetical proteins. Considering their potential as drug target, those 321 hypothetical proteins were selected and their probable functions were characterized. Based on the druggability criteria, 18 proteins were shortlisted. The interacting partners were identified by investigating the PPIs network using STRING v10 database. Subsequently, 8 proteins were shortlisted as 'hub proteins' and proposed as potential novel drug targets against P. aeruginosa. The study is interesting for the scientific community working to identify novel drug targets against MDR pathogens particularly P. aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    PubMed

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-11-01

    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .

  10. Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology

    PubMed Central

    Pawar, Sumit; Ungricht, Rosemarie; Tiefenboeck, Peter; Leroux, Jean-Christophe

    2017-01-01

    Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER. PMID:28826471

  11. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  12. Targeting RNA–Protein Interactions within the Human Immunodeficiency Virus Type 1 Lifecycle

    PubMed Central

    2013-01-01

    RNA–protein interactions are vital throughout the HIV-1 life cycle for the successful production of infectious virus particles. One such essential RNA–protein interaction occurs between the full-length genomic viral RNA and the major structural protein of the virus. The initial interaction is between the Gag polyprotein and the viral RNA packaging signal (psi or Ψ), a highly conserved RNA structural element within the 5′-UTR of the HIV-1 genome, which has gained attention as a potential therapeutic target. Here, we report the application of a target-based assay to identify small molecules, which modulate the interaction between Gag and Ψ. We then demonstrate that one such molecule exhibits potent inhibitory activity in a viral replication assay. The mode of binding of the lead molecules to the RNA target was characterized by 1H NMR spectroscopy. PMID:24358934

  13. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions.

    PubMed

    Ivanov, Sergey; Semin, Maxim; Lagunin, Alexey; Filimonov, Dmitry; Poroikov, Vladimir

    2017-07-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  15. Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain.

    PubMed

    Lim, Wooi F; Burdach, Jon; Funnell, Alister P W; Pearson, Richard C M; Quinlan, Kate G R; Crossley, Merlin

    2016-04-20

    Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA bindingin vitro, it appears thatin vivoFDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to theVEGF-Apromoter as predicted, but was also found to occupy approximately 25,000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50,000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Cancer.gov

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  17. [Research progress in hirudin fusion protein--review].

    PubMed

    Zhang, Chuan-Ling; Yu, Ai-Ping; Jin, Ji-De; Wu, Chu-Tse

    2007-02-01

    Natural hirudin extracted from the secretion of medical leech salivary gland is a single-chain peptide containing 65 aminoacid residues with molecular weight of 7000 D, and exists in three isomers of HV1, HV2 and HV3. Hirudin possesses three disulfide bridges forming the structure of core cyclic peptides, which binds to the catalytic site of thrombin so as to inhibit the catalysis of thrombin. Its c-terminus rich in acidic aminoacid residues possesses hydrophilicity, and is free on the molecular surface, and can bind with fibrin recognition site of hirudin. The minimal segment of 12 - 16 C-terminal acidic residues keeps the minimal activity of anti-thrombosis. Thus, hirudin, as a potent and specific inhibitor of thrombin, can be used to protect from and to treat clinically thrombosis. As it has some disadvantages such as short half-life, bleeding side-effect and mono-function, and so on, hirudin has been fused with some other functional proteins in recent years. The obtained fusion proteins can prolong the half life of hirudin, or relieve it bleeding side effect, or bring new functions, such as thrombolysis, inhibiting the platelet aggregation, targeting specifically. The research progress in hirudin fusion protein was summarized in this review.

  18. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  20. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein ismore » designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.« less

  1. Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway.

    PubMed

    Collins, Ian; Wang, Hannah; Caldwell, John J; Chopra, Raj

    2017-03-15

    Manipulation of the ubiquitin-proteasome system to achieve targeted degradation of proteins within cells using chemical tools and drugs has the potential to transform pharmacological and therapeutic approaches in cancer and other diseases. An increased understanding of the molecular mechanism of thalidomide and its analogues following their clinical use has unlocked small-molecule modulation of the substrate specificity of the E3 ligase cereblon (CRBN), which in turn has resulted in the advancement of new immunomodulatory drugs (IMiDs) into the clinic. The degradation of multiple context-specific proteins by these pleiotropic small molecules provides a means to uncover new cell biology and to generate future drug molecules against currently undruggable targets. In parallel, the development of larger bifunctional molecules that bring together highly specific protein targets in complexes with CRBN, von Hippel-Lindau, or other E3 ligases to promote ubiquitin-dependent degradation has progressed to generate selective chemical compounds with potent effects in cells and in vivo models, providing valuable tools for biological target validation and with future potential for therapeutic use. In this review, we survey recent breakthroughs achieved in these two complementary methods and the discovery of new modes of direct and indirect engagement of target proteins with the proteasome. We discuss the experimental characterisation that validates the use of molecules that promote protein degradation as chemical tools, the preclinical and clinical examples disclosed to date, and the future prospects for this exciting area of chemical biology. © 2017 The Author(s).

  2. Role of protein kinase D in Golgi exit and lysosomal targeting of the transmembrane protein, Mcoln1

    PubMed Central

    Marks, David L.; Holicky, Eileen L.; Wheatley, Christine L.; Frumkin, Ayala; Bach, Gideon; Pagano, Richard E.

    2012-01-01

    The targeting of lysosomal transmembrane proteins from the Golgi apparatus to lysosomes is a complex process that is only beginning to be understood. Here, the lysosomal targeting of Mcoln1, the transmembrane protein defective in the autosomal recessive disease, Mucolipidosis, type IV, was studied by over-expressing full length and truncated forms of the protein in human cells, followed by detection using immunofluorescence and immunoblotting. We demonstrated that a 53 amino acid C-terminal region of Mcoln1 is required for efficient exit from the Golgi. Truncations lacking this region exhibited reduced delivery to lysosomes and decreased proteolytic cleavage of Mcoln1 into characteristic ~35 kDa fragments, suggesting that this cleavage occurs in lysosomes. In addition, we found that co-expression of full length Mcoln1 with kinase-inactive protein kinase D (PKD) 1 or 2 inhibited Mcoln1 Golgi exit and transport to lysosomes and decreased Mcoln1 cleavage. These studies suggest that PKDs play a role in the delivery of some lysosomal resident transmembrane proteins from the Golgi to the lysosomes. PMID:22268962

  3. Plasmids for variable expression of proteins targeted to the mitochondrial matrix or intermembrane space.

    PubMed

    Newman, Laura E; Schiavon, Cara; Kahn, Richard A

    2016-01-01

    We describe the construction and uses of a series of plasmids for directing expression to varied levels of exogenous proteins targeted to the mitochondrial matrix or intermembrane space. We found that the level of protein expression achieved, the kinetics of expression and mitochondrial import, and half-life after import can each vary with the protein examined. These factors should be considered when directing localization of an exogenous protein to mitochondria for rescue, proteomics, or other approaches. We describe the construction of a collection of plasmids for varied expression of proteins targeted to the mitochondrial matrix or intermembrane space, using previously defined targeting sequences and strength CMV promoters. The limited size of these compartments makes them particularly vulnerable to artifacts from over-expression. We found that different proteins display different kinetics of expression and import that should be considered when analyzing results from this approach. Finally, this collection of plasmids has been deposited in the Addgene plasmid repository to facilitate the ready access and use of these tools.

  4. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    PubMed Central

    Herbert, Martha

    2017-01-01

    Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease. PMID:28894619

  5. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  6. Reminder: NCI Requests Cancer Targets for Monoclonal Antibody Production and Characterization | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to improve rigor and reproducibility, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for monoclonal antibody production and distribution to the scientific community. The program from The Office of Cancer Clinical Proteomics Research provides well-characterized

  7. Phase I clinical trial will test multi-targeted immunotherapy in common childhood cancer | Center for Cancer Research

    Cancer.gov

    Chimeric antigen receptor (CAR) T-cell immunotherapy targeting the protein CD19 has shown promise in treating acute lymphoblastic leukemia (ALL). CD22-CAR T-cell therapy has yielded similarly encouraging results, but many patients relapse after either therapy. In an upcoming phase I clinical trial, Center for Cancer Research investigators will test a new strategy—treating patients with a CAR T-cell therapy that targets CD19 and CD22 simultaneously.

  8. Demonstrating In-Cell Target Engagement Using a Pirin Protein Degradation Probe (CCT367766)

    PubMed Central

    2017-01-01

    Demonstrating intracellular protein target engagement is an essential step in the development and progression of new chemical probes and potential small molecule therapeutics. However, this can be particularly challenging for poorly studied and noncatalytic proteins, as robust proximal biomarkers are rarely known. To confirm that our recently discovered chemical probe 1 (CCT251236) binds the putative transcription factor regulator pirin in living cells, we developed a heterobifunctional protein degradation probe. Focusing on linker design and physicochemical properties, we generated a highly active probe 16 (CCT367766) in only three iterations, validating our efficient strategy for degradation probe design against nonvalidated protein targets. PMID:29240418

  9. Strategic Protein Target Analysis for Developing Drugs to Stop Dental Caries

    PubMed Central

    Horst, J.A.; Pieper, U.; Sali, A.; Zhan, L.; Chopra, G.; Samudrala, R.; Featherstone, J.D.B.

    2012-01-01

    Dental caries is the most common disease to cause irreversible damage in humans. Several therapeutic agents are available to treat or prevent dental caries, but none besides fluoride has significantly influenced the disease burden globally. Etiologic mechanisms of the mutans group streptococci and specific Lactobacillus species have been characterized to various degrees of detail, from identification of physiologic processes to specific proteins. Here, we analyze the entire Streptococcus mutans proteome for potential drug targets by investigating their uniqueness with respect to non-cariogenic dental plaque bacteria, quality of protein structure models, and the likelihood of finding a drug for the active site. Our results suggest specific targets for rational drug discovery, including 15 known virulence factors, 16 proteins for which crystallographic structures are available, and 84 previously uncharacterized proteins, with various levels of similarity to homologs in dental plaque bacteria. This analysis provides a map to streamline the process of clinical development of effective multispecies pharmacologic interventions for dental caries. PMID:22899687

  10. Protein sorting, targeting and trafficking in photoreceptor cells

    PubMed Central

    Pearring, Jillian N.; Salinas, Raquel Y.; Baker, Sheila A.; Arshavsky, Vadim Y.

    2013-01-01

    Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins. PMID:23562855

  11. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  12. Identification of human microRNA targets from isolated argonaute protein complexes.

    PubMed

    Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter

    2007-06-01

    MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.

  13. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin.

    PubMed

    Westerlund, Annie M; Delemotte, Lucie

    2018-04-01

    Calmodulin (CaM) is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity.

  14. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin

    PubMed Central

    Westerlund, Annie M.

    2018-01-01

    Calmodulin (CaM) is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity. PMID:29614072

  15. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces

    PubMed Central

    2016-01-01

    Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450

  16. Targeting protein homeostasis in sporadic inclusion body myositis.

    PubMed

    Ahmed, Mhoriam; Machado, Pedro M; Miller, Adrian; Spicer, Charlotte; Herbelin, Laura; He, Jianghua; Noel, Janelle; Wang, Yunxia; McVey, April L; Pasnoor, Mamatha; Gallagher, Philip; Statland, Jeffrey; Lu, Ching-Hua; Kalmar, Bernadett; Brady, Stefen; Sethi, Huma; Samandouras, George; Parton, Matt; Holton, Janice L; Weston, Anne; Collinson, Lucy; Taylor, J Paul; Schiavo, Giampietro; Hanna, Michael G; Barohn, Richard J; Dimachkie, Mazen M; Greensmith, Linda

    2016-03-23

    Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients more than 50 years of age. Previous therapeutic trials have targeted the inflammatory features of sIBM but all have failed. Because protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein (VCP) mice, which develop an inclusion body myopathy, treatment with arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated arimoclomol in an investigator-led, randomized, double-blind, placebo-controlled, proof-of-concept trial in sIBM patients and showed that arimoclomol was safe and well tolerated. Although arimoclomol improved some IBM-like pathology in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in the proof-of-concept patient trial. Copyright © 2016, American Association for the Advancement of Science.

  17. Targeting Protein Homeostasis in Sporadic Inclusion Body Myositis

    PubMed Central

    Ahmed, Mhoriam; Machado, Pedro M.; Miller, Adrian; Spicer, Charlotte; Herbelin, Laura; He, Jianghua; Noel, Janelle; Wang, Yunxia; McVey, April L.; Pasnoor, Mamatha; Gallagher, Philip; Statland, Jeffrey; Lu, Ching-Hua; Kalmar, Bernadett; Brady, Stefen; Sethi, Huma; Samandouras, George; Parton, Matt; Holton, Janice L.; Weston, Anne; Collinson, Lucy; Taylor, J. Paul; Schiavo, Giampietro; Hanna, Michael G.; Barohn, Richard J.; Dimachkie, Mazen M.; Greensmith, Linda

    2016-01-01

    Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients over age 50. Previous therapeutic trials have targeted the inflammatory features of sIBM, but all have failed. Since protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with Arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein VCP mice, which develop an inclusion body myopathy (IBM), treatment with Arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated the safety and tolerability of Arimoclomol in an investigator-lead, randomised, double-blind, placebo-controlled, proof-of-concept patient trial and gathered exploratory efficacy data which showed that Arimoclomol was safe and well tolerated. Although Arimoclomol improved some IBM-like pathology in vitro and in vivo in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in this proof of concept patient trial. PMID:27009270

  18. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  19. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  20. Targeting the Allosteric Site of Oncoprotein BCR-ABL as an Alternative Strategy for Effective Target Protein Degradation.

    PubMed

    Shimokawa, Kenichiro; Shibata, Norihito; Sameshima, Tomoya; Miyamoto, Naoki; Ujikawa, Osamu; Nara, Hiroshi; Ohoka, Nobumichi; Hattori, Takayuki; Cho, Nobuo; Naito, Mikihiko

    2017-10-12

    Protein degradation technology based on hybrid small molecules is an emerging drug modality that has significant potential in drug discovery and as a unique method of post-translational protein knockdown in the field of chemical biology. Here, we report the first example of a novel and potent protein degradation inducer that binds to an allosteric site of the oncogenic BCR-ABL protein. BCR-ABL allosteric ligands were incorporated into the SNIPER (Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers) platform, and a series of in vitro biological assays of binding affinity, target protein modulation, signal transduction, and growth inhibition were carried out. One of the designed compounds, 6 (SNIPER(ABL)-062), showed desirable binding affinities against ABL1, cIAP1/2, and XIAP and consequently caused potent BCR-ABL degradation.

  1. Targeted proteins for diagnostic imaging: does chemistry make a difference?

    PubMed

    Fritzberg, A R; Beaumier, P L

    1992-03-01

    The Oyen et al. study is valuable in that it systematically evaluates several of the factors involved in radiolabeled protein uptake and retention in infectious foci. The role of particular proteins and their receptor specific interactions seems to be inconsequential in agreement with the findings of other. However, the role of the radiolabel was shown to be important and significant differences were delineated from comparisons of the radionuclides and their associated chemistries. The conclusion implicating radionuclide chemistry and associated linkages underscores the need to optimize the attachment and labeling chemical modifications of protein carriers. Evaluation criteria should include serum stability, determination and assessment of the effect of molar substitution ratio, and potential for improving blood clearance without reducing the target-to-non-target ratio. Important areas for future study include characterization of radioactive metabolites and the design and synthesis of new ligands which direct the disposition of metabolites reducing retention in normal organs or accelerating renal excretion. Additionally, intracellular processing of radiolabel, compartmental distribution and strategies for augmenting internalization and retention within the target cell merit detailed exploration. For each radionuclide of interest, 111In, radioiodines, 99mTc and others, improved chemical moieties exist for controlling radiolabel fate. When carrying out mechanistic and evaluative studies, clear-cut conclusions will only be reached when defined and controlled chemistry is used. Having established a "gold standard," simplifications in radiolabeling and other chemical refinements can then be pursued with a quantitative understanding of the trade-offs in targeting agent performance versus other considerations such as cost reduction, simplicity, and convenience.

  2. Identification of Histone Deacetylase (HDAC) as a drug target against MRSA via interolog method of protein-protein interaction prediction.

    PubMed

    Uddin, Reaz; Tariq, Syeda Sumayya; Azam, Syed Sikander; Wadood, Abdul; Moin, Syed Tarique

    2017-08-30

    Patently, Protein-Protein Interactions (PPIs) lie at the core of significant biological functions and make the foundation of host-pathogen relationships. Hence, the current study is aimed to use computational biology techniques to predict host-pathogen Protein-Protein Interactions (HP-PPIs) between MRSA and Humans as potential drug targets ultimately proposing new possible inhibitors against them. As a matter of fact this study is based on the Interolog method which implies that homologous proteins retain their ability to interact. A distant homolog approach based on Interolog method was employed to speculate MRSA protein homologs in Humans using PSI-BLAST. In addition the protein interaction partners of these homologs as listed in Database of Interacting Proteins (DIP) were predicted to interact with MRSA as well. Moreover, a direct approach using BLAST was also applied so as to attain further confidence in the strategy. Consequently, the common HP-PPIs predicted by both approaches are suggested as potential drug targets (22%) whereas, the unique HP-PPIs estimated only through distant homolog approach are presented as novel drug targets (12%). Furthermore, the most repeated entry in our results was found to be MRSA Histone Deacetylase (HDAC) which was then modeled using SWISS-MODEL. Eventually, small molecules from ZINC, selected randomly, were docked against HDAC using Auto Dock and are suggested as potential binders (inhibitors) based on their energetic profiles. Thus the current study provides basis for further in-depth analysis of such data which not only include MRSA but other deadly pathogens as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    PubMed

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  4. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  5. Conformational stability as a design target to control protein aggregation.

    PubMed

    Costanzo, Joseph A; O'Brien, Christopher J; Tiller, Kathryn; Tamargo, Erin; Robinson, Anne Skaja; Roberts, Christopher J; Fernandez, Erik J

    2014-05-01

    Non-native protein aggregation is a prevalent problem occurring in many biotechnological manufacturing processes and can compromise the biological activity of the target molecule or induce an undesired immune response. Additionally, some non-native aggregation mechanisms lead to amyloid fibril formation, which can be associated with debilitating diseases. For natively folded proteins, partial or complete unfolding is often required to populate aggregation-prone conformational states, and therefore one proposed strategy to mitigate aggregation is to increase the free energy for unfolding (ΔGunf) prior to aggregation. A computational design approach was tested using human γD crystallin (γD-crys) as a model multi-domain protein. Two mutational strategies were tested for their ability to reduce/increase aggregation rates by increasing/decreasing ΔGunf: stabilizing the less stable domain and stabilizing the domain-domain interface. The computational protein design algorithm, RosettaDesign, was implemented to identify point variants. The results showed that although the predicted free energies were only weakly correlated with the experimental ΔGunf values, increased/decreased aggregation rates for γD-crys correlated reasonably well with decreases/increases in experimental ΔGunf, illustrating improved conformational stability as a possible design target to mitigate aggregation. However, the results also illustrate that conformational stability is not the sole design factor controlling aggregation rates of natively folded proteins.

  6. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  7. [Targeted public funding for health research in the Netherlands].

    PubMed

    Viergever, Roderik F; Hendriks, Thom C C

    2014-01-01

    The Dutch government funds health research in several ways. One component of public funding consists of funding programmes issued by the Netherlands Organisation for Health Research and Development (ZonMw). The majority of ZonMw's programmes provide funding for research in specific health research areas. Such targeted funding plays an important role in addressing knowledge gaps and in generating products for which there is a need. Good governance of the allocation of targeted funding for health research requires three elements: a research agenda, an overview of the health research currently being conducted, and a transparent decision-making process regarding the distribution of funds. In this article, we describe how public funding for health research is organized in the Netherlands and how the allocation of targeted funds is governed. By describing the questions that the current model of governance raises, we take a first step towards a debate about the governance of targeted public funding for health research in the Netherlands.

  8. HIV and Drug Resistance: Hitting a Moving Target | Center for Cancer Research

    Cancer.gov

    Prior research revealed how HIV-1 makes its destructive entry into the target cell by fusing together the cholesterol-rich lipid bilayer of the viral envelope—made with key glycoproteins gp120 and gp41—and the host cell’s plasma membrane. Cell-viral interactions begin with the binding of gp120 to the CD4 receptor molecule on the target cell, followed by gp120 binding to coreceptors. These coreceptors likely reside in structures called lipid rafts—areas in the cell plasma membrane that are rich in cholesterol, saturated fatty acids, and certain proteins that facilitate the entry of viruses into host cells. Finally, sequences in gp41 trigger the fusion of the viral and cellular lipid bilayers. The lipid rafts are then involved in the production of new viral particles.

  9. Natural products used as a chemical library for protein-protein interaction targeted drug discovery.

    PubMed

    Jin, Xuemei; Lee, Kyungro; Kim, Nam Hee; Kim, Hyun Sil; Yook, Jong In; Choi, Jiwon; No, Kyoung Tai

    2018-01-01

    Protein-protein interactions (PPIs), which are essential for cellular processes, have been recognized as attractive therapeutic targets. Therefore, the construction of a PPI-focused chemical library is an inevitable necessity for future drug discovery. Natural products have been used as traditional medicines to treat human diseases for millennia; in addition, their molecular scaffolds have been used in diverse approved drugs and drug candidates. The recent discovery of the ability of natural products to inhibit PPIs led us to use natural products as a chemical library for PPI-targeted drug discovery. In this study, we collected natural products (NPDB) from non-commercial and in-house databases to analyze their similarities to small-molecule PPI inhibitors (iPPIs) and FDA-approved drugs by using eight molecular descriptors. Then, we evaluated the distribution of NPDB and iPPIs in the chemical space, represented by the molecular fingerprint and molecular scaffolds, to identify the promising scaffolds, which could interfere with PPIs. To investigate the ability of natural products to inhibit PPI targets, molecular docking was used. Then, we predicted a set of high-potency natural products by using the iPPI-likeness score based on a docking score-weighted model. These selected natural products showed high binding affinities to the PPI target, namely XIAP, which were validated in an in vitro experiment. In addition, the natural products with novel scaffolds might provide a promising starting point for further medicinal chemistry developments. Overall, our study shows the potency of natural products in targeting PPIs, which might help in the design of a PPI-focused chemical library for future drug discovery. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane.

    PubMed

    Carel, Clément; Marcoux, Julien; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Demange, Pascal; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G; Renault, Marie A M

    2017-04-18

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum , a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum , we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O -mycoloylation, pyroglutamylation, and N -formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O -acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment.

  11. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane

    PubMed Central

    Carel, Clément; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G.; Renault, Marie A. M.

    2017-01-01

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum, a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum, we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O-mycoloylation, pyroglutamylation, and N-formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O-acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment. PMID:28373551

  12. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.

    PubMed

    Kellenberger, Esther; Foata, Nicolas; Rognan, Didier

    2008-05-01

    Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target rate depends on specificity and promiscuity in protein-ligand interactions and, to a considerable extent, on the effectiveness of the scoring function, which still is the Achilles' heel of molecular docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleoside, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets, including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering out most false positive entries. The current survey suggests that selecting a small number of targets (<20) for experimental evaluation is achievable with a pure structure-based approach.

  13. Landscape phages and their fusion proteins targeted to breast cancer cells

    PubMed Central

    Fagbohun, Olusegun A.; Bedi, Deepa; Grabchenko, Natalia I.; Deinnocentes, Patricia A.; Bird, Richard C.; Petrenko, Valery A.

    2012-01-01

    Breast cancer is a leading cause of death among women in the USA. The efficacy of existing anticancer therapeutics can be improved by targeting them through conjugation with ligands binding to cellular receptors. Recently, we developed a novel drug targeting strategy based on the use of pre-selected cancer-specific ‘fusion pVIII proteins’ (fpVIII), as targeting ligands. To study the efficiency of this approach in animal models, we developed a panel of breast cancer cell-binding phages as a source of targeted fpVIIIs. Two landscape phage peptide libraries (8-mer f8/8 and 9-mer f8/9) were screened to isolate 132 phage variants that recognize breast carcinoma cells MCF-7 and ZR-75-1 and internalize into the cells. When tested for their interaction with the breast cancer cells in comparison with liver cancer cells HepG2, human mammary cells MCF-10A cells and serum, 16 of the phage probes selectively interacted with the breast cancer cells whereas 32 bound both breast and liver cancer cells. The most prominent cancer-specific phage DMPGTVLP, demonstrating sub-nanomolar Kd in interaction with target cells, was used for affinity chromatography of cellular membrane molecules to reveal its potential binding receptor. The isolated protein was identified by direct sequencing as cellular surface nucleolin. This conclusion was confirmed by inhibition of the phage–cell interaction with nucleolin antibodies. Other prominent phage binders VPTDTDYS, VEEGGYIAA, and DWRGDSMDS demonstrate consensus motifs common to previously identified cancer-specific peptides. Isolated phage proteins exhibit inherent binding specificity towards cancer cells, demonstrating the functional activity of the selected fused peptides. The selected phages, their peptide inserts and intact fusion proteins can serve as promising ligands for the development of targeted nanomedicines and their study in model mice with xenograft of human cells MCF-7 and ZR-75-1. PMID:22490956

  14. Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion

    PubMed Central

    Shi, Tujin; Sun, Xuefei; Gao, Yuqian; Fillmore, Thomas L.; Schepmoes, Athena A.; Zhao, Rui; He, Jintang; Moore, Ronald J.; Kagan, Jacob; Rodland, Karin D.; Liu, Tao; Liu, Alvin Y.; Smith, Richard D.; Tang, Keqi; Camp, David G.; Qian, Wei-Jun

    2013-01-01

    We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM) for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50–100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion. Limits of quantification (LOQ) at low ng/mL levels with a median coefficient of variation (CV) of ~12% were achieved for proteins spiked into human female serum. PRISM-SRM provided >100-fold improvement in the LOQ when compared to conventional LC-SRM measurements. PRISM-SRM was then applied to measure several low-abundance endogenous serum proteins, including prostate-specific antigen (PSA), in clinical prostate cancer patient sera. PRISM-SRM enabled confident detection of all target endogenous serum proteins except the low pg/mL-level cardiac troponin T. A correlation coefficient >0.99 was observed for PSA between the results from PRISM-SRM and immunoassays. Our results demonstrate that PRISM-SRM can successful quantify low ng/mL proteins in human plasma or serum without depletion. We anticipate broad applications for PRISM-SRM quantification of low-abundance proteins in candidate biomarker verification and systems biology studies. PMID:23763644

  15. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics.

    PubMed

    Stayton, P S; Hoffman, A S; Murthy, N; Lackey, C; Cheung, C; Tan, P; Klumb, L A; Chilkoti, A; Wilbur, F S; Press, O W

    2000-03-01

    There are many protein and DNA based therapeutics under development in the biotechnology and pharmaceutical industries. Key delivery challenges remain before many of these biomolecular therapeutics reach the clinic. Two important barriers are the effective targeting of drugs to specific tissues and cells and the subsequent intracellular delivery to appropriate cellular compartments. In this review, we summarize protein engineering work aimed at improving the stability and refolding efficiency of antibody fragments used in targeting, and at constructing new streptavidin variants which may offer improved performance in pre-targeting delivery strategies. In addition, we review recent work with pH-responsive polymers that mimic the membrane disruptive properties of viruses and toxins. These polymers could serve as alternatives to fusogenic peptides in gene therapy formulations and to enhance the intracellular delivery of protein therapeutics that function in the cytoplasm.

  16. The Controversy Surrounding Bone Morphogenetic Proteins in the Spine: A Review of Current Research

    PubMed Central

    Hustedt, Joshua W.; Blizzard, Daniel J.

    2014-01-01

    Bone morphogenetic proteins have been in use in spinal surgery since 2002. These proteins are members of the TGF-beta superfamily and guide mesenchymal stem cells to differentiate into osteoblasts to form bone in targeted tissues. Since the first commercial BMP became available in 2002, a host of research has supported BMPs and they have been rapidly incorporated in spinal surgeries in the United States. However, recent controversy has arisen surrounding the ethical conduct of the research supporting the use of BMPs. Yale University Open Data Access (YODA) recently teamed up with Medtronic to offer a meta-analysis of the effectiveness of BMPs in spinal surgery. This review focuses on the history of BMPs and examines the YODA research to guide spine surgeons in their use of BMP in spinal surgery. PMID:25506287

  17. Concepts of Protein Sorting or Targeting Signals and Membrane Topology in Undergraduate Teaching

    ERIC Educational Resources Information Center

    Tang, Bor Luen; Teng, Felicia Yu Hsuan

    2005-01-01

    The process of protein biogenesis culminates in its correct targeting to specific subcellular locations where it serves a function. Contemporary molecular and cell biology investigations often involve the exogenous expression of epitope- or fluorescent protein-tagged recombinant molecules as well as subsequent analysis of protein-protein…

  18. Targeting Virus-host Interactions of HIV Replication.

    PubMed

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  19. Extracting sets of chemical substructures and protein domains governing drug-target interactions.

    PubMed

    Yamanishi, Yoshihiro; Pauwels, Edouard; Saigo, Hiroto; Stoven, Véronique

    2011-05-23

    The identification of rules governing molecular recognition between drug chemical substructures and protein functional sites is a challenging issue at many stages of the drug development process. In this paper we develop a novel method to extract sets of drug chemical substructures and protein domains that govern drug-target interactions on a genome-wide scale. This is made possible using sparse canonical correspondence analysis (SCCA) for analyzing drug substructure profiles and protein domain profiles simultaneously. The method does not depend on the availability of protein 3D structures. From a data set of known drug-target interactions including enzymes, ion channels, G protein-coupled receptors, and nuclear receptors, we extract a set of chemical substructures shared by drugs able to bind to a set of protein domains. These two sets of extracted chemical substructures and protein domains form components that can be further exploited in a drug discovery process. This approach successfully clusters protein domains that may be evolutionary unrelated but that bind a common set of chemical substructures. As shown in several examples, it can also be very helpful for predicting new protein-ligand interactions and addressing the problem of ligand specificity. The proposed method constitutes a contribution to the recent field of chemogenomics that aims to connect the chemical space with the biological space.

  20. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    PubMed

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Targeted Quantification of Isoforms of a Thylakoid-Bound Protein: MRM Method Development.

    PubMed

    Bru-Martínez, Roque; Martínez-Márquez, Ascensión; Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Esteso, María José; Pineda-Lucas, José Luis; Luque, Ignacio

    2018-01-01

    Targeted mass spectrometric methods such as selected/multiple reaction monitoring (SRM/MRM) have found intense application in protein detection and quantification which competes with classical immunoaffinity techniques. It provides a universal procedure to develop a fast, highly specific, sensitive, accurate, and cheap methodology for targeted detection and quantification of proteins based on the direct analysis of their surrogate peptides typically generated by tryptic digestion. This methodology can be advantageously applied in the field of plant proteomics and particularly for non-model species since immunoreagents are scarcely available. Here, we describe the issues to take into consideration in order to develop a MRM method to detect and quantify isoforms of the thylakoid-bound protein polyphenol oxidase from the non-model and database underrepresented species Eriobotrya japonica Lindl.

  2. Pac-Man for biotechnology: co-opting degrons for targeted protein degradation to control and alter cell function.

    PubMed

    Yu, Geng; Rosenberg, Julian N; Betenbaugh, Michael J; Oyler, George A

    2015-12-01

    Protein degradation in normal living cells is precisely regulated to match the cells' physiological requirements. The selectivity of protein degradation is determined by an elaborate degron-tagging system. Degron refers to an amino acid sequence that encodes a protein degradation signal, which is oftentimes a poly-ubiquitin chain that can be transferred to other proteins. Current understanding of ubiquitination dependent and independent protein degradation processes has expanded the application of degrons for targeted protein degradation and novel cell engineering strategies. Recent findings suggest that small molecules inducing protein association can be exploited to create degrons that target proteins for degradation. Here, recent applications of degron-based targeted protein degradation in eukaryotic organisms are reviewed. The degron mediated protein degradation represents a rapidly tunable methodology to control protein abundance, which has broad application in therapeutics and cellular function control and monitoring. Copyright © 2015. Published by Elsevier Ltd.

  3. Heat shock proteins as potential targets for protective strategies in neurodegeneration.

    PubMed

    Kampinga, Harm H; Bergink, Steven

    2016-06-01

    Protein aggregates are hallmarks of nearly all age-related neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and several polyglutamine diseases such as Huntington's disease and different forms of spinocerebellar ataxias (SCA; SCA1-3, SCA6, and SCA7). The collapse of cellular protein homoeostasis can be both a cause and a consequence of this protein aggregation. Boosting components of the cellular protein quality control system has been widely investigated as a strategy to counteract protein aggregates or their toxic consequences. Heat shock proteins (HSPs) play a central part in regulating protein quality control and contribute to protein aggregation and disaggregation. Therefore, HSPs are viable targets for the development of drugs aimed at reducing pathogenic protein aggregates that are thought to contribute to the development of so many neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Peptide drugs to target G protein-coupled receptors.

    PubMed

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein.

    PubMed

    Raghuwanshi, Dharmendra; Mishra, Vivek; Das, Dipankar; Kaur, Kamaljit; Suresh, Mavanur R

    2012-04-02

    This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for noninvasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid DNA loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal routes showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through a noninvasive intranasal route can be a strategy for designing low-dose vaccines.

  6. The G Protein α Chaperone Ric-8 as a Potential Therapeutic Target

    PubMed Central

    Papasergi, Makaía M.; Patel, Bharti R.

    2015-01-01

    Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein–coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein–protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies. PMID:25319541

  7. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  8. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein

    PubMed Central

    Krishna, B. A.; Spiess, K.; Poole, E. L.; Lau, B.; Voigt, S.; Kledal, T. N.; Rosenkilde, M. M.; Sinclair, J. H.

    2017-01-01

    Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation. PMID:28148951

  9. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells

    PubMed Central

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640

  10. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  11. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.

    PubMed

    Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei

    2018-01-01

    Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drugtarget interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-theart Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer

    PubMed Central

    Mehra, Ranee; Serebriiskii, Ilya G.; Dunbrack, Roland L.; Robinson, Matthew K.; Burtness, Barbara; Golemis, Erica A.

    2011-01-01

    Agents targeting EGFR and related ErbB family proteins are valuable therapies for the treatment of many cancers. For some tumor types, including squamous cell carcinomas of the head and neck (SCCHN), antibodies targeting EGFR were the first protein-directed agents to show clinical benefit, and remain a standard component of clinical strategies for management of the disease. Nevertheless, many patients display either intrinsic or acquired resistance to these drugs; hence, major research goals are to better understand the underlying causes of resistance, and to develop new therapeutic strategies that boost the impact of EGFR/ErbB inhibitors. In this review, we first summarize current standard use of EGFR inhibitors in the context of SCCHN, and described new agents targeting EGFR currently moving through pre-clinical and clinical development. We then discuss how changes in other transmembrane receptors, including IGF1R, c-Met, and TGF-β, can confer resistance to EGFR-targeted inhibitors, and discuss new agents targeting these proteins. Moving downstream, we discuss critical EGFR-dependent effectors, including PLC-γ; PI3K and PTEN; SHC, GRB2, and RAS and the STAT proteins, as factors in resistance to EGFR-directed inhibitors and as alternative targets of therapeutic inhibition. We summarize alternative sources of resistance among cellular changes that target EGFR itself, through regulation of ligand availability, post-translational modification of EGFR, availability of EGFR partners for hetero-dimerization and control of EGFR intracellular trafficking for recycling versus degradation. Finally, we discuss new strategies to identify effective therapeutic combinations involving EGFR-targeted inhibitors, in the context of new system level data becoming available for analysis of individual tumors. PMID:21920801

  13. Prioritizing and modelling of putative drug target proteins of Candida albicans by systems biology approach.

    PubMed

    Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul

    2018-01-01

    Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are

  14. Dudrick Research Symposium 2015-Lean Tissue and Protein in Health and Disease.

    PubMed

    Earthman, Carrie P; Wolfe, Robert R; Heymsfield, Steven B

    2017-02-01

    The 2015 Dudrick Research Symposium "Lean Tissue and Protein in Health and Disease: Key Targets and Assessment Strategies" was held on February 16, 2015, at Clinical Nutrition Week in Long Beach, California. The Dudrick Symposium honors the many pivotal and innovative contributions to the development and advancement of parenteral nutrition made by Dr Stanley J. Dudrick, physician scientist, academic leader, and a founding member of the American Society for Parenteral and Enteral Nutrition. As the 2014 recipient of the Dudrick award, Dr Carrie Earthman chaired the symposium and was the first of 3 speakers, followed by Dr Robert Wolfe and Dr Steven Heymsfield. The symposium addressed the importance of lean tissue to health and response to disease and injury, as well as the many opportunities and challenges in its assessment at the bedside. Lean tissue assessment is beneficial to clinical care in chronic and acute care clinical settings, given the strong relationship between lean tissue and outcomes, including functional status. Currently available bioimpedance techniques, including the use of bioimpedance parameters, for lean tissue and nutrition status assessment were presented. The connection between protein requirements and lean tissue was discussed, highlighting the maintenance of lean tissue as one of the most important primary end points by which protein requirements can be estimated. The various tracer techniques to establish protein requirements were presented, emphasizing the importance of practical considerations in research protocols aimed to establish protein requirements. Ultrasound and other new and emerging technologies that may be used for lean tissue assessment were discussed, and areas for future research were highlighted.

  15. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets

    PubMed Central

    2012-01-01

    Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery

  16. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    PubMed

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  17. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation.

    PubMed

    Wang, Xin; Feng, Shaozhen; Fan, Jinjin; Li, Xiaoyan; Wen, Qiong; Luo, Ning

    2016-09-15

    Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3).

    PubMed

    Jeudy, Jeremy; Salvador, Arnaud; Simon, Romain; Jaffuel, Aurore; Fonbonne, Catherine; Léonard, Jean-François; Gautier, Jean-Charles; Pasquier, Olivier; Lemoine, Jerome

    2014-02-01

    Targeted mass spectrometry in the so-called multiple reaction monitoring mode (MRM) is certainly a promising way for the precise, accurate, and multiplexed measurement of proteins and their genetic or posttranslationally modified isoforms. MRM carried out on a low-resolution triple quadrupole instrument faces a lack of specificity when addressing the quantification of weakly concentrated proteins. In this case, extensive sample fractionation or immunoenrichment alleviates signal contamination by interferences, but in turn decreases assay performance and throughput. Recently, MRM(3) was introduced as an alternative to MRM to improve the limit of quantification of weakly concentrated protein biomarkers. In the present work, we compare MRM and MRM(3) modes for the detection of biomarkers in plasma and urine. Calibration curves drawn with MRM and MRM(3) showed a similar range of linearity (R(2) > 0.99 for both methods) with protein concentrations above 1 μg/mL in plasma and a few nanogram per milliliter in urine. In contrast, optimized MRM(3) methods improve the limits of quantification by a factor of 2 to 4 depending on the targeted peptide. This gain arises from the additional MS(3) fragmentation step, which significantly removes or decreases interfering signals within the targeted transition channels.

  19. Rational modification of protein stability by targeting surface sites leads to complicated results

    PubMed Central

    Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.

    2013-01-01

    The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426

  20. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK61

    PubMed Central

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named “SlRd2”. SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N. benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation. PMID:27899535

  1. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6.

    PubMed

    Gutiérrez-Beltrán, Emilio; Personat, José María; de la Torre, Fernando; Del Pozo, Olga

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca 2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H 2 O 2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. [Expression and Preliminary Research on the Soluble Domain of EV-D68 3A Protein].

    PubMed

    Li, Ting; Kong, Jia; Yu, Xiao-fang; Han, Xue

    2015-11-01

    To understand the structure of the soluble region of Enterovirus 68 3A protein, we construct a prokaryotic expression vector expressing the soluble region of EV-D68 3A protein, and identify the forms of expression product after purification. The EV-D68 3A(1-61) gene was amplified by PCR and then cloned into the expression vector pET-28a-His-SUMO. The recombinant plasmid was transformed into Escherichia coli BL21 induced by IPTG to express the fusion protein His-SUMO-3A(1-61). The recombinant protein was purified by Ni-NTA Agarose and cleaved by ULP Protease to remove His-SUMO tag. After that, the target protein 3A(1-61) was purified by a series of purification methods such as Ni-NTA, anion exchange chromatography and gel filtration chromato- graphy. Chemical cross-linking reaction assay was taken to determine the multiple polymerization state of the 3A soluble region. A prokaryotic expression vector pET28a-His-SUMO-3A(1-61) expressing the solution region of EV-D68 3A was successfully constructed and plenty of highly pure target proteins were obtained by multiple purification steps . The total protein amount was about 5 mg obtained from 1L Escherichia coli BL21 with purity > 95%. At the same time, those results determined the homomultimer form of soluble 3A construct. These data demonstrated that the expression and purification system of the soluble region of 3A were successfully set up and provide some basic konwledge for the research about 3A crystal structure and the development of antiviral drugs targeted at 3A to block viral replication.

  3. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  4. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    PubMed

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  5. Prostate Cancer Clinical Consortium Clinical Research Site:Targeted Therapies

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0159 TITLE: Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies PRINCIPAL INVESTIGATOR...Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies 5b. GRANT NUMBER... therapy resistance/sensitivity, identification of new therapeutic targets through high quality genomic analyses, providing access to the highest quality

  6. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  7. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  8. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    PubMed Central

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs. PMID:28054562

  9. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases.

    PubMed

    Cabral-Marques, Otavio; Riemekasten, Gabriela

    2017-11-01

    G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.

  10. Synthetic aperture radar operator tactical target acquisition research

    NASA Technical Reports Server (NTRS)

    Hershberger, M. L.; Craig, D. W.

    1978-01-01

    A radar target acquisition research study was conducted to access the effects of two levels of 13 radar sensor, display, and mission parameters on operator tactical target acquisition. A saturated fractional-factorial screening design was employed to examine these parameters. Data analysis computed ETA squared values for main and second-order effects for the variables tested. Ranking of the research parameters in terms of importance to system design revealed four variables (radar coverage, radar resolution/multiple looks, display resolution, and display size) accounted for 50 percent of the target acquisition probability variance.

  11. IFPTarget: A Customized Virtual Target Identification Method Based on Protein-Ligand Interaction Fingerprinting Analyses.

    PubMed

    Li, Guo-Bo; Yu, Zhu-Jun; Liu, Sha; Huang, Lu-Yi; Yang, Ling-Ling; Lohans, Christopher T; Yang, Sheng-Yong

    2017-07-24

    Small-molecule target identification is an important and challenging task for chemical biology and drug discovery. Structure-based virtual target identification has been widely used, which infers and prioritizes potential protein targets for the molecule of interest (MOI) principally via a scoring function. However, current "universal" scoring functions may not always accurately identify targets to which the MOI binds from the retrieved target database, in part due to a lack of consideration of the important binding features for an individual target. Here, we present IFPTarget, a customized virtual target identification method, which uses an interaction fingerprinting (IFP) method for target-specific interaction analyses and a comprehensive index (Cvalue) for target ranking. Evaluation results indicate that the IFP method enables substantially improved binding pose prediction, and Cvalue has an excellent performance in target ranking for the test set. When applied to screen against our established target library that contains 11,863 protein structures covering 2842 unique targets, IFPTarget could retrieve known targets within the top-ranked list and identified new potential targets for chemically diverse drugs. IFPTarget prediction led to the identification of the metallo-β-lactamase VIM-2 as a target for quercetin as validated by enzymatic inhibition assays. This study provides a new in silico target identification tool and will aid future efforts to develop new target-customized methods for target identification.

  12. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

    PubMed

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M Michael; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-11-26

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.

  13. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target

    PubMed Central

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M. Michael; Taguchi, Y-h.; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A. Mary; Velmurugan, D.; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-01-01

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective. PMID:26607293

  14. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.

    PubMed

    Jimenez, Connie R; Verheul, Henk M W

    2014-01-01

    Proteomics is optimally suited to bridge the gap between genomic information on the one hand and biologic functions and disease phenotypes at the other, since it studies the expression and/or post-translational modification (especially phosphorylation) of proteins--the major cellular players bringing about cellular functions--at a global level in biologic specimens. Mass spectrometry technology and (bio)informatic tools have matured to the extent that they can provide high-throughput, comprehensive, and quantitative protein inventories of cells, tissues, and biofluids in clinical samples at low level. In this article, we focus on next-generation proteomics employing nanoliquid chromatography coupled to high-resolution tandem mass spectrometry for in-depth (phospho)protein profiling of tumor tissues and (proximal) biofluids, with a focus on studies employing clinical material. In addition, we highlight emerging proteogenomic approaches for the identification of tumor-specific protein variants, and targeted multiplex mass spectrometry strategies for large-scale biomarker validation. Below we provide a discussion of recent progress, some research highlights, and challenges that remain for clinical translation of proteomic discoveries.

  15. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles

    PubMed Central

    Vannucci, Luca; Falvo, Elisabetta; Fornara, Manuela; Di Micco, Patrizio; Benada, Oldrich; Krizan, Jiri; Svoboda, Jan; Hulikova-Capkova, Katarina; Morea, Veronica; Boffi, Alberto; Ceci, Pierpaolo

    2012-01-01

    Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment

  16. Phase I clinical trial will test multi-targeted immunotherapy in common childhood cancer | Center for Cancer Research

    Cancer.gov

    Chimeric antigen receptor (CAR) T-cell immunotherapy targeting the protein CD19 has shown promise in treating acute lymphoblastic leukemia (ALL). CD22-CAR T-cell therapy has yielded similarly encouraging results, but many patients relapse after either therapy. In an upcoming phase I clinical trial, Center for Cancer Research investigators will test a new strategy—treating

  17. HIV-1 Proteins, Tat and gp120, Target the Developing Dopamine System

    PubMed Central

    Fitting, Sylvia; Booze, Rosemarie M.; Mactutus, Charles F.

    2015-01-01

    In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection. PMID:25613135

  18. Targeted therapies in cancer - challenges and chances offered by newly developed techniques for protein analysis in clinical tissues

    PubMed Central

    Malinowsky, K; Wolff, C; Gündisch, S; Berg, D; Becker, KF

    2011-01-01

    In recent years, new anticancer therapies have accompanied the classical approaches of surgery and radio- and chemotherapy. These new forms of treatment aim to inhibit specific molecular targets namely altered or deregulated proteins, which offer the possibility of individualized therapies. The specificity and efficiency of these new approaches, however, bring about a number of challenges. First of all, it is essential to specifically identify and quantify protein targets in tumor tissues for the reasonable use of such targeted therapies. Additionally, it has become even more obvious in recent years that the presence of a target protein is not always sufficient to predict the outcome of targeted therapies. The deregulation of downstream signaling molecules might also play an important role in the success of such therapeutic approaches. For these reasons, the analysis of tumor-specific protein expression profiles prior to therapy has been suggested as the most effective way to predict possible therapeutic results. To further elucidate signaling networks underlying cancer development and to identify new targets, it is necessary to implement tools that allow the rapid, precise, inexpensive and simultaneous analysis of many network components while requiring only a small amount of clinical material. Reverse phase protein microarray (RPPA) is a promising technology that meets these requirements while enabling the quantitative measurement of proteins. Together with recently developed protocols for the extraction of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues, RPPA may provide the means to quantify therapeutic targets and diagnostic markers in the near future and reliably screen for new protein targets. With the possibility to quantitatively analyze DNA, RNA and protein from a single FFPE tissue sample, the methods are available for integrated patient profiling at all levels of gene expression, thus allowing optimal patient stratification for

  19. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2014-09-01

    chondroitin sulfate A proteoglycans present on all tested breast cancer cells and the vast majority of tested tissue biopsies. Using pull down assays...Invited, Daugaard. C) 2014. Gordon research conference, July 6-11; Targeting of cancer-specific chondroitin sulfate on circulating tumor cells using...now successfully identified a number of proteoglycans that interact with the recombinant malaria protein VAR2CSA when sulfated on carbon 4 of the CS

  20. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry.

    PubMed

    Csősz, É; Emri, G; Kalló, G; Tsaprailis, G; Tőzsér, J

    2015-10-01

    The healthy human skin with its effective antimicrobial defense system forms an efficient barrier against invading pathogens. There is evidence suggesting that the composition of this chemical barrier varies between diseases, making the easily collected sweat an ideal candidate for biomarker discoveries. Our aim was to provide information about the normal composition of the sweat, and to study the chemical barrier found at the surface of skin. Sweat samples from healthy individuals were collected during sauna bathing, and the global protein panel was analysed by label-free mass spectrometry. SRM-based targeted proteomic methods were designed and stable isotope labelled reference peptides were used for method validation. Ninety-five sweat proteins were identified, 20 of them were novel proteins. It was shown that dermcidin is the most abundant sweat protein, and along with apolipoprotein D, clusterin, prolactin-inducible protein and serum albumin, they make up 91% of secreted sweat proteins. The roles of these highly abundant proteins were reviewed; all of which have protective functions, highlighting the importance of sweat glands in composing the first line of innate immune defense system, and maintaining the epidermal barrier integrity. Our findings with regard to the proteins forming the chemical barrier of the skin as determined by label-free quantification and targeted proteomics methods are in accordance with previous studies, and can be further used as a starting point for non-invasive sweat biomarker research. © 2015 European Academy of Dermatology and Venereology.

  1. Proteomic characterization of Withaferin A-targeted protein networks for the treatment of monoclonal myeloma gammopathies.

    PubMed

    Dom, Martin; Offner, Fritz; Vanden Berghe, Wim; Van Ostade, Xaveer

    2018-05-15

    Withaferin A (WA), a natural steroid lactone from the plant Withania somnifera, is often studied because of its antitumor properties. Although many in vitro and in vivo studies have been performed, the identification of Withaferin A protein targets and its mechanism of antitumor action remain incomplete. We used quantitative chemoproteomics and differential protein expression analysis to characterize the WA antitumor effects on a multiple myeloma cell model. Identified relevant targets were further validated by Ingenuity Pathway Analysis and Western blot and indicate that WA targets protein networks that are specific for monoclonal gammopathy of undetermined significance (MGUS) and other closely related disorders, such as multiple myeloma (MM) and Waldenström macroglobulinemia (WM). By blocking the PSMB10 proteasome subunit, downregulation of ANXA4, potential association with HDAC6 and upregulation of HMOX1, WA puts a massive blockage on both proteotoxic and oxidative stress responses pathways, leaving cancer cells defenseless against WA induced stresses. These results indicate that WA mediated apoptosis is preceded by simultaneous targeting of cellular stress response pathways like proteasome degradation, autophagy and unfolded protein stress response and thus suggests that WA can be used as an effective treatment for MGUS and other closely related disorders. Multifunctional antitumor compounds are of great potential since they reduce the risk of multidrug resistance in chemotherapy. Unfortunately, characterization of all protein targets of a multifunctional compound is lacking. Therefore, we optimized an SILAC quantitative chemoproteomics workflow to identify the potential protein targets of Withaferin A (WA), a natural multifunctional compound with promising antitumor properties. To further understand the antitumor mechanisms of WA, we performed a differential protein expression analysis and combined the altered expression data with chemoproteome WA target data

  2. Protein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer's Disease

    PubMed Central

    Zali, Hakimeh; Zamanian-Azodi, Mona; Rezaei Tavirani, Mostafa; Akbar-zadeh Baghban, Alireza

    2015-01-01

    Different treatment strategies of Alzheimer's disease (AD) are being studied for treating or slowing the progression of AD. Many pharmaceutically important regulation systems operate through proteins as drug targets. Here, we investigate the drug target proteins in beta-amyloid (Aβ) injected rat hippocampus treated with Lavandula angustifolia (LA) by proteomics techniques. The reported study showed that lavender extract (LE) improves the spatial performance in AD animal model by diminishing Aβ production in histopathology of hippocampus, so in this study neuroprotective proteins expressed in Aβ injected rats treated with LE were scrutinized. Rats were divided into three groups including normal, Aβ injected, and Aβ injected that was treated with LE. Protein expression profiles of hippocampus tissue were determined by two-dimensional electrophoresis (2DE) method and dysregulated proteins such as Snca, NF-L, Hspa5, Prdx2, Apoa1, and Atp5a1were identified by MALDI-TOF/TOF. KEGG pathway and gene ontology (GO) categories were used by searching DAVID Bioinformatics Resources. All detected protein spots were used to determine predictedinteractions with other proteins in STRING online database. Different isoforms of important protein, Snca that exhibited neuroprotective effects by anti-apoptotic properties were expressed. NF-L involved in the maintenance of neuronal caliber. Hspa5 likewise Prdx2 displays as anti-apoptotic protein that Prdx2 also involved in the neurotrophic effects. Apoa1 has anti-inflammatory activity and Atp5a1, produces ATP from ADP. To sum up, these proteins as potential drug targets were expressed in hippocampus in response to effective components in LA may have therapeutic properties for the treatment of AD and other neurodegenerative diseases. PMID:25561935

  3. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations.

    PubMed

    Chakraborty, Sandeep

    2014-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational

  4. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells

    PubMed Central

    Checco, James W.; Lee, Erinna F.; Evangelista, Marco; Sleebs, Nerida J.; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J.; Eddinger, Geoffrey A.; Belair, David G.; Wilson, Julia L.; Eller, Chelcie H.; Raines, Ronald T.; Murphy, William L.; Smith, Brian J.; Gellman, Samuel H.; Fairlie, W. Douglas

    2015-01-01

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of L-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues (“α/β-peptides”) manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous “α-peptides”. This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a “stapled” Bim BH3 α-peptide, which contains a hydrocarbon crosslink to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain crosslinking to produce synergistic benefits. PMID:26317395

  5. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells.

    PubMed

    Checco, James W; Lee, Erinna F; Evangelista, Marco; Sleebs, Nerida J; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J; Eddinger, Geoffrey A; Belair, David G; Wilson, Julia L; Eller, Chelcie H; Raines, Ronald T; Murphy, William L; Smith, Brian J; Gellman, Samuel H; Fairlie, W Douglas

    2015-09-09

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

  6. Interaction of cellular proteins with BCL-xL targeted to cytoplasmic inclusion bodies in adenovirus infected cells.

    PubMed

    Subramanian, T; Vijayalingam, S; Kuppuswamy, M; Chinnadurai, G

    2015-09-01

    Adenovirus-mediated apoptosis was suppressed when cellular anti-apoptosis proteins (BCL-2 and BCL-xL) were substituted for the viral E1B-19K. For unbiased proteomic analysis of proteins targeted by BCL-xL in adenovirus-infected cells and to visualize the interactions with target proteins, BCL-xL was targeted to cytosolic inclusion bodies utilizing the orthoreovirus µNS protein sequences. The chimeric protein was localized in non-canonical cytosolic factory-like sites and promoted survival of virus-infected cells. The BCL-xL-associated proteins were isolated from the cytosolic inclusion bodies in adenovirus-infected cells and analyzed by LC-MS. These proteins included BAX, BAK, BID, BIK and BIM as well as mitochondrial proteins such as prohibitin 2, ATP synthase and DNA-PKcs. Our studies suggested that in addition to the interaction with various pro-apoptotic proteins, the association with certain mitochondrial proteins such as DNA-PKcs and prohibitins might augment the survival function of BCL-xL in virus infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Engineering an effective Mn-binding MRI reporter protein by subcellular targeting

    PubMed Central

    Bartelle, Benjamin B.; Mana, Miyeko D.; Suero-Abreu, Giselle A.; Rodriguez, Joe J.; Turnbull, Daniel H.

    2014-01-01

    Purpose Manganese (Mn) is an effective contrast agent and biologically active metal, which has been widely utilized for Mn-enhanced MRI (MEMRI). The purpose of this study was to develop and test a Mn binding protein for use as an genetic reporter for MEMRI. Methods The bacterial Mn-binding protein, MntR was identified as a candidate reporter protein. MntR was engineered for expression in mammalian cells, and targeted to different subcellular organelles, including the Golgi Apparatus where cellular Mn is enriched. Transfected HEK293 cells and B16 melanoma cells were tested in vitro and in vivo, using immunocytochemistry and MR imaging and relaxometry. Results Subcellular targeting of MntR to the cytosol, endoplasmic reticulum and Golgi apparatus was verified with immunocytochemistry. After targeting to the Golgi, MntR expression produced robust R1 changes and T1 contrast in cells, in vitro and in vivo. Co-expression with the divalent metal transporter DMT1, a previously described Mn-based reporter, further enhanced contrast in B16 cells in culture, but in the in vivo B16 tumor model tested was not significantly better than MntR alone. Conclusion This second-generation reporter system both expands the capabilities of genetically-encoded reporters for imaging with MEMRI and provides important insights into the mechanisms of Mn biology which create endogenous MEMRI contrast. PMID:25522343

  8. Dynamin-Related Protein 1 as a therapeutic target in cardiac arrest

    PubMed Central

    Sharp, Willard W.

    2015-01-01

    Despite improvements in cardiopulmonary resuscitation (CPR) quality, defibrillation technologies, and implementation of therapeutic hypothermia, less than 10% of out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge. New resuscitation therapies have been slow to develop, in part, because the pathophysiologic mechanisms critical for resuscitation are not understood. During cardiac arrest, systemic cessation of blood flow results in whole body ischemia. CPR, and the restoration of spontaneous circulation (ROSC), both result in immediate reperfusion injury of the heart that is characterized by severe contractile dysfunction. Unlike diseases of localized ischemia/reperfusion (IR) injury (myocardial infarction and stroke), global IR injury of organs results in profound organ dysfunction with far shorter ischemic times. The two most commonly injured organs following cardiac arrest resuscitation, the heart and brain, are critically dependent on mitochondrial function. New insights into mitochondrial dynamics and the role of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) in apoptosis have made targeting these mechanisms attractive for IR therapy. In animal models, inhibiting Drp1 following IR injury or cardiac arrest confers protection to both the heart and brain. In this review, the relationship of the major mitochondrial fission protein Drp1 to ischemic changes in the heart and its targeting as a new therapeutic target following cardiac arrest are discussed. PMID:25659608

  9. Activated GTPase movement on an RNA scaffold drives cotranslational protein targeting

    PubMed Central

    Shen, Kuang; Arslan, Sinan; Akopian, David; Ha, Taekjip; Shan, Shu-ou

    2012-01-01

    Roughly one third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane1. The proper localization of these proteins is mediated by a universally conserved protein targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences2–4 and, via interactions with the SRP receptor5,6, delivers them to the protein translocation machinery on the target membrane7. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA whose precise functions have remained elusive. Here, we used single molecule fluorescence microscopy to demonstrate that the SRP-receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism to ensure the productive exchange of the targeting and translocation machineries at the ribosome exit site with exquisite spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the facile exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes. PMID:23235881

  10. CPTAC Team Releases Targeted Proteomic Assays for Ovarian Cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Pacific Northwest National Laboratory (PNNL) investigators in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), announces the public release of 98 targeted mass spectrometry-based assays for ovarian cancer research studies.  Chosen based on proteogenomic observations from the recently published multi-institutional collaborative project between PNNL and Johns Hopkins University that comprehensively examined the collections of proteins in the tumors of ovarian cancer patients (highlighted in a paper in

  11. Chemical Synthesis of Hydrocarbon-Stapled Peptides for Protein Interaction Research and Therapeutic Targeting

    PubMed Central

    Bird, Gregory H.; Crannell, W. Christian; Walensky, Loren D.

    2016-01-01

    The peptide alpha-helix represents one of Nature’s most featured protein shapes and is employed in a diversity of protein architectures, spanning the very cytoskeletal infrastructure of the cell to the most intimate contact points between crucial signaling proteins. By installing an all-hydrocarbon crosslink into native sequences, we recapitulate the shape and biological activity of natural peptide alpha-helices, yielding a chemical toolbox to both interrogate the protein interactome and modulate interaction networks for potential therapeutic benefit. Here, we describe our latest approach to synthesizing Stabilized Alpha-Helices (SAH) corresponding to key protein interaction domains. We emphasize a stepwise approach to the production of crosslinking non-natural amino acids, their incorporation into peptide templates, and the application of ruthenium-catalyzed ring closing metathesis to generate hydrocarbon-stapled peptides. Through facile derivatization and functionalization steps, SAHs can be tailored for a broad range of applications in biochemical, structural, proteomic, cellular and in vivo studies. PMID:23801563

  12. Unlocking the secrets to protein–protein interface drug targets using structural mass spectrometry techniques

    PubMed Central

    Dailing, Angela; Luchini, Alessandra; Liotta, Lance

    2016-01-01

    Protein–protein interactions (PPIs) drive all biologic systems at the subcellular and extracellular level. Changes in the specificity and affinity of these interactions can lead to cellular malfunctions and disease. Consequently, the binding interfaces between interacting protein partners are important drug targets for the next generation of therapies that block such interactions. Unfortunately, protein–protein contact points have proven to be very difficult pharmacological targets because they are hidden within complex 3D interfaces. For the vast majority of characterized binary PPIs, the specific amino acid sequence of their close contact regions remains unknown. There has been an important need for an experimental technology that can rapidly reveal the functionally important contact points of native protein complexes in solution. In this review, experimental techniques employing mass spectrometry to explore protein interaction binding sites are discussed. Hydrogen–deuterium exchange, hydroxyl radical footprinting, crosslinking and the newest technology protein painting, are compared and contrasted. PMID:26400464

  13. Quantitative imaging of protein targets in the human brain with PET

    NASA Astrophysics Data System (ADS)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  14. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane

    PubMed Central

    Ungricht, Rosemarie; Klann, Michael; Horvath, Peter

    2015-01-01

    Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2β as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention–based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo. PMID:26056139

  15. The p38α mitogen-activated protein kinase as a central nervous system drug discovery target

    PubMed Central

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-01-01

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985

  16. The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.

    PubMed

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-12-03

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.

  17. Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0159 TITLE: Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies PRINCIPAL INVESTIGATOR...Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...AND SUBTITLE Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  18. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko

    2006-06-10

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less

  19. Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Sun, Xuefei; Gao, Yuqian

    2013-07-05

    We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM) for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50-100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion and the multiplexing potential of this technique. Limits of quantification (LOQs) at low ng/mL levels with a medianmore » CV of ~12% were achieved for proteins spiked into human female serum using as little as 2 µL serum. PRISM-SRM provided up to ~1000-fold improvement in the LOQ when compared to conventional SRM measurements. Multiplexing capability of PRISM-SRM was also evaluated by two sets of serum samples with 6 and 21 target peptides spiked at the low attomole/µL levels. The results from SRM measurements for pooled or post-concatenated samples were comparable to those obtained from individual peptide fractions in terms of signal-to-noise ratios and SRM peak area ratios of light to heavy peptides. PRISM-SRM was applied to measure several ng/mL-level endogenous plasma proteins, including prostate-specific antigen, in clinical patient sera where correlation coefficients > 0.99 were observed between the results from PRISM-SRM and ELISA assays. Our results demonstrate that PRISM-SRM can be successfully used for quantification of low-abundance endogenous proteins in highly complex samples. Moderate throughput (50 samples/week) can be achieved by applying the post-concatenation or fraction multiplexing strategies. We anticipate broad applications for targeted PRISM

  20. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    PubMed

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A Pathogenic Nematode Targets Recognition Proteins to Avoid Insect Defenses

    PubMed Central

    Toubarro, Duarte; Avila, Mónica Martinez; Montiel, Rafael; Simões, Nelson

    2013-01-01

    Steinernema carpocapsae is a nematode pathogenic in a wide variety of insect species. The great pathogenicity of this nematode has been ascribed to its ability to overcome the host immune response; however, little is known about the mechanisms involved in this process. The analysis of an expressed sequence tags (EST) library in the nematode during the infective phase was performed and a highly abundant contig homologous to serine protease inhibitors was identified. In this work, we show that this contig is part of a 641-bp cDNA that encodes a BPTI-Kunitz family inhibitor (Sc-KU-4), which is up-regulated in the parasite during invasion and installation. Recombinant Sc-KU-4 protein was produced in Escherichia coli and shown to inhibit chymotrypsin and elastase activities in a dose-dependent manner by a competitive mechanism with Ki values of 1.8 nM and 2.6 nM, respectively. Sc-KU-4 also inhibited trypsin and thrombin activities to a lesser extent. Studies of the mode of action of Sc-KU-4 and its effects on insect defenses suggest that although Sc-KU-4 did not inhibit the activation of hemocytes or the formation of clotting fibers, it did inhibit hemocyte aggregation and the entrapment of foreign particles by fibers. Moreover, Sc-KU-4 avoided encapsulation and the deposition of clotting materials, which usually occurs in response to foreign particles. We show by protein-protein interaction that Sc-KU-4 targets recognition proteins of insect immune system such as masquerade-like and serine protease-like homologs. The interaction of Sc-KU-4 with these proteins explains the ability of the nematode to overcome host reactions and its large pathogenic spectrum, once these immune proteins are well conserved in insects. The discovery of this inhibitor targeting insect recognition proteins opens new avenues for the development of S . carpocapsae as a biological control agent and provides a new tool to study host-pathogen interactions. PMID:24098715

  2. Brainstorming: weighted voting prediction of inhibitors for protein targets.

    PubMed

    Plewczynski, Dariusz

    2011-09-01

    The "Brainstorming" approach presented in this paper is a weighted voting method that can improve the quality of predictions generated by several machine learning (ML) methods. First, an ensemble of heterogeneous ML algorithms is trained on available experimental data, then all solutions are gathered and a consensus is built between them. The final prediction is performed using a voting procedure, whereby the vote of each method is weighted according to a quality coefficient calculated using multivariable linear regression (MLR). The MLR optimization procedure is very fast, therefore no additional computational cost is introduced by using this jury approach. Here, brainstorming is applied to selecting actives from large collections of compounds relating to five diverse biological targets of medicinal interest, namely HIV-reverse transcriptase, cyclooxygenase-2, dihydrofolate reductase, estrogen receptor, and thrombin. The MDL Drug Data Report (MDDR) database was used for selecting known inhibitors for these protein targets, and experimental data was then used to train a set of machine learning methods. The benchmark dataset (available at http://bio.icm.edu.pl/∼darman/chemoinfo/benchmark.tar.gz ) can be used for further testing of various clustering and machine learning methods when predicting the biological activity of compounds. Depending on the protein target, the overall recall value is raised by at least 20% in comparison to any single machine learning method (including ensemble methods like random forest) and unweighted simple majority voting procedures.

  3. Intein-mediated site-specific synthesis of tumor-targeting protein delivery system: Turning PEG dilemma into prodrug-like feature

    PubMed Central

    Chen, Yingzhi; Zhang, Meng; Jin, Hongyue; Tang, Yisi; Wang, Huiyuan; Xu, Qin; Li, Yaping; Li, Feng; Huang, Yongzhuo

    2017-01-01

    Poor tumor-targeted and cytoplasmic delivery is a bottleneck for protein toxin-based cancer therapy. Ideally, a protein toxin drug should remain stealthy in circulation for prolonged half-life and reduced side toxicity, but turn activated at tumor. PEGylation is a solution to achieve the first goal, but creates a hurdle for the second because PEG rejects interaction between the drugs and tumor cells therein. Such PEG dilemma is an unsolved problem in protein delivery. Herein proposed is a concept of turning PEG dilemma into prodrug-like feature. A site-selectively PEGylated, gelatinase-triggered cell-penetrating trichosanthin protein delivery system is developed with three specific aims. The first is to develop an intein-based ligation method for achieving site-specific modification of protein toxins. The second is to develop a prodrug feature that renders protein toxins remaining stealthy in blood for reduced side toxicity and improved EPR effect. The third is to develop a gelatinase activatable cell-penetration strategy for enhanced tumor targeting and cytoplasmic delivery. Of note, site-specific modification is a big challenge in protein drug research, especially for such a complicated, multifunctional protein delivery system. We successfully develop a protocol for constructing a macromolecular prodrug system with intein-mediated ligation synthesis. With an on-column process of purification and intein-mediated cleavage, the site-specific PEGylation then can be readily achieved by conjugation with the activated C-terminus, thus constructing a PEG-capped, cell-penetrating trichosanthin system with a gelatinase-cleavable linker that enables tumor-specific activation of cytoplasmic delivery. It provides a promising method to address the PEG dilemma for enhanced protein drug delivery, and importantly, a facile protocol for site-specific modification of such a class of protein drugs for improving their druggability and industrial translation. PMID:27914267

  4. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.

    PubMed

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing

    2018-01-01

    Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A strategy for targeting recombinant proteins to protein storage vacuoles by fusion to Brassica napus napin in napin-depleted seeds.

    PubMed

    Hegedus, Dwayne D; Baron, Marcus; Labbe, Natalie; Coutu, Cathy; Lydiate, Derek; Lui, Helen; Rozwadowski, Kevin

    2014-03-01

    Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  6. Membrane-spanning α-helical barrels as tractable protein-design targets.

    PubMed

    Niitsu, Ai; Heal, Jack W; Fauland, Kerstin; Thomson, Andrew R; Woolfson, Derek N

    2017-08-05

    The rational ( de novo ) design of membrane-spanning proteins lags behind that for water-soluble globular proteins. This is due to gaps in our knowledge of membrane-protein structure, and experimental difficulties in studying such proteins compared to water-soluble counterparts. One limiting factor is the small number of experimentally determined three-dimensional structures for transmembrane proteins. By contrast, many tens of thousands of globular protein structures provide a rich source of 'scaffolds' for protein design, and the means to garner sequence-to-structure relationships to guide the design process. The α-helical coiled coil is a protein-structure element found in both globular and membrane proteins, where it cements a variety of helix-helix interactions and helical bundles. Our deep understanding of coiled coils has enabled a large number of successful de novo designs. For one class, the α-helical barrels-that is, symmetric bundles of five or more helices with central accessible channels-there are both water-soluble and membrane-spanning examples. Recent computational designs of water-soluble α-helical barrels with five to seven helices have advanced the design field considerably. Here we identify and classify analogous and more complicated membrane-spanning α-helical barrels from the Protein Data Bank. These provide tantalizing but tractable targets for protein engineering and de novo protein design.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'. © 2017 The Author(s).

  7. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins

    PubMed Central

    Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle

    2017-01-01

    Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393

  8. Targeting BCL-2-like Proteins to Kill Cancer Cells.

    PubMed

    Cory, Suzanne; Roberts, Andrew W; Colman, Peter M; Adams, Jerry M

    2016-08-01

    Mutations that impair apoptosis contribute to cancer development and reduce the effectiveness of conventional anti-cancer therapies. These insights and understanding of how the B cell lymphoma (BCL)-2 protein family governs apoptosis have galvanized the search for a new class of cancer drugs that target its pro-survival members by mimicking their natural antagonists, the BCL-2 homology (BH)3-only proteins. Successful initial clinical trials of the BH3 mimetic venetoclax/ABT-199, specific for BCL-2, have led to its recent licensing for refractory chronic lymphocytic leukemia and to multiple ongoing trials for other malignancies. Moreover, preclinical studies herald the potential of emerging BH3 mimetics targeting other BCL-2 pro-survival members, particularly myeloid cell leukemia (MCL)-1, for multiple cancer types. Thus, BH3 mimetics seem destined to become powerful new weapons in the arsenal against cancer. This review sketches the discovery of the BCL-2 family and its impact on cancer development and therapy; describes how interactions of family members trigger apoptosis; outlines the development of BH3 mimetic drugs; and discusses their potential to advance cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life

    PubMed Central

    Weßling, Ralf; Epple, Petra; Altmann, Stefan; He, Yijian; Yang, Li; Henz, Stefan R.; McDonald, Nathan; Wiley, Kristin; Bader, Kai Christian; Gläßer, Christine; Mukhtar, M. Shahid; Haigis, Sabine; Ghamsari, Lila; Stephens, Amber E.; Ecker, Joseph R.; Vidal, Marc; Jones, Jonathan D. G.; Mayer, Klaus F. X.; van Themaat, Emiel Ver Loren; Weigel, Detlef; Schulze-Lefert, Paul; Dangl, Jeffery L.; Panstruga, Ralph; Braun, Pascal

    2014-01-01

    SUMMARY While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this dataset with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intra- and interspecies convergence and several altered immune response phenotypes. The effectors and most heavily targeted host protein co-localized in sub-nuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets. PMID:25211078

  10. The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division.

    PubMed

    Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S

    2017-07-15

    Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.

  11. GABARAPL1 antibodies: target one protein, get one free!

    PubMed

    Le Grand, Jaclyn Nicole; Chakrama, Fatima Zahra; Seguin-Py, Stéphanie; Fraichard, Annick; Delage-Mourroux, Régis; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël

    2011-11-01

    Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.

  12. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  13. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates

    PubMed Central

    Mahe, Karan; Ou, Tingyoung; Castro, Noemi M; Christensen, Lana N; Cheung, Lee; Jiang, Xueer; Yoon, Daniel; Huang, Bo

    2018-01-01

    As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. PMID:29708497

  15. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep).

    PubMed

    Guellouz, Asma; Valerio-Lepiniec, Marie; Urvoas, Agathe; Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a "filtration" procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×10(9) independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.

  16. Human long intrinsically disordered protein regions are frequent targets of positive selection.

    PubMed

    Afanasyeva, Arina; Bockwoldt, Mathias; Cooney, Christopher R; Heiland, Ines; Gossmann, Toni I

    2018-06-01

    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts. © 2018 Afanasyeva et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  18. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB.

    PubMed

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.

  19. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302).

    PubMed

    Watanabe, Tanya A; Geary, Richard S; Levin, Arthur A

    2006-01-01

    In vitro ultrafiltration was used to determine the plasma protein-binding characteristics of phosphorothioate oligonucleotides (PS ODNs). Although there are binding data on multiple PS ODNs presented here, the focus of this research is on the protein-binding characteristics of ISIS 2302, a PS ODN targeting human intercellular adhesion molecule-1 (ICAM-1) mRNA, which is currently in clinical trials for the treatment of ulcerative colitis. ISIS 2302 was shown to be highly bound (> 97%) across species (mouse, rat, monkey, human), with the mouse having the least degree of binding. ISIS 2302 was highly bound to albumin and, to a lesser, extent alpha2-macroglobulin and had negligible binding to alpha1-acid glycoprotein. Ten shortened ODN metabolites (8, 10, and 12-19 nucleotides [nt] in length, truncated from the 3' end) were evaluated in human plasma. The degree of binding was reduced as the ODN metabolite length decreased. Three additional 20-nt (20-mer) PS ODNs (ISIS 3521, ISIS 2503, and ISIS 5132) of varying sequence but similar chemistry were evaluated. Although the tested PS ODNs were highly bound to plasma proteins, suggesting a commonality within the chemical class, these results suggested that the protein-binding characteristics in human plasma may be sequence dependent. Lastly, drug displacement studies with ISIS 2302 and other concomitant drugs with known protein-binding properties were conducted to provide information on potential drug interactions. Coadministered ISIS 2302 and other high-binding drugs evaluated in this study did not displace one another at supraclinical plasma concentrations and, thus, are not anticipated to cause any pharmacokinetic interaction in the clinic as a result of the displacement of binding to plasma proteins.

  20. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs).

    PubMed

    Rathore, Rama; McCallum, Jennifer E; Varghese, Elizabeth; Florea, Ana-Maria; Büsselberg, Dietrich

    2017-07-01

    Inhibitors of apoptosis (IAPs) are a family of proteins that play a significant role in the control of programmed cell death (PCD). PCD is essential to maintain healthy cell turnover within tissue but also to fight disease or infection. Uninhibited, IAPs can suppress apoptosis and promote cell cycle progression. Therefore, it is unsurprising that cancer cells demonstrate significantly elevated expression levels of IAPs, resulting in improved cell survival, enhanced tumor growth and subsequent metastasis. Therapies to target IAPs in cancer has garnered substantial scientific interest and as resistance to anti-cancer agents becomes more prevalent, targeting IAPs has become an increasingly attractive strategy to re-sensitize cancer cells to chemotherapies, antibody based-therapies and TRAIL therapy. Antagonism strategies to modulate the actions of XIAP, cIAP1/2 and survivin are the central focus of current research and this review highlights advances within this field with particular emphasis upon the development and specificity of second mitochondria-derived activator of caspase (SMAC) mimetics (synthetic analogs of endogenously expressed inhibitors of IAPs SMAC/DIABLO). While we highlight the potential of SMAC mimetics as effective single agent or combinatory therapies to treat cancer we also discuss the likely clinical implications of resistance to SMAC mimetic therapy, occasionally observed in cancer cell lines.

  1. Avidin-Based Targeting and Purification of a Protein IX-Modified, Metabolically Biotinylated Adenoviral Vector

    PubMed Central

    Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.

    2014-01-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061

  2. Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins

    PubMed Central

    De, Swastik; Kaus, Katherine; Sinclair, Shada

    2018-01-01

    Vibrio cholerae is an aquatic gram-negative microbe responsible for cholera, a pandemic disease causing life-threatening diarrheal outbreaks in populations with limited access to health care. Like most pathogenic bacteria, V. cholerae secretes virulence factors to assist colonization of human hosts, several of which bind carbohydrate receptors found on cell-surfaces. Understanding how pathogenic virulence proteins specifically target host cells is important for the development of treatment strategies to fight bacterial infections. Vibrio cholerae cytolysin (VCC) is a secreted pore-forming toxin with a carboxy-terminal β-prism domain that targets complex N-glycans found on mammalian cell-surface proteins. To investigate glycan selectivity, we studied the VCC β-prism domain and two additional β-prism domains found within the V. cholerae biofilm matrix protein RbmC. We show that the two RbmC β-prism domains target a similar repertoire of complex N-glycan receptors as VCC and find through binding and modeling studies that a branched pentasaccharide core (GlcNAc2-Man3) represents the likely footprint interacting with these domains. To understand the structural basis of V. cholerae β-prism selectivity, we solved high-resolution crystal structures of fragments of the pentasaccharide core bound to one RbmC β-prism domain and conducted mutagenesis experiments on the VCC toxin. Our results highlight a common strategy for cell-targeting utilized by both toxin and biofilm matrix proteins in Vibrio cholerae and provide a structural framework for understanding the specificity for individual receptors. Our results suggest that a common strategy for disrupting carbohydrate interactions could affect multiple virulence factors produced by V. cholerae, as well as similar β-prism domains found in other vibrio pathogens. PMID:29432487

  3. Novel target for high-risk neuroblastoma identified in pre-clinical research | Center for Cancer Research

    Cancer.gov

    Pre-clinical research by investigators at the Center for Cancer Research and their colleagues have identified a number of novel epigenetic targets for high-risk neuroblastoma and validated a promising new targeted inhibitor in pre-clinical models.  Read more...

  4. Biosafety research for non-target organism risk assessment of RNAi-based GE plants

    PubMed Central

    Roberts, Andrew F.; Devos, Yann; Lemgo, Godwin N. Y.; Zhou, Xuguo

    2015-01-01

    RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. PMID:26594220

  5. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    PubMed

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  6. Chemical proteomics for target discovery of head-to-tail cyclized mini-proteins

    NASA Astrophysics Data System (ADS)

    Hellinger, Roland; Thell, Kathrin; Vasileva, Mina; Muhammad, Taj; Gunasekera, Sunithi; Kümmel, Daniel; Göransson, Ulf; Becker, Christian W.; Gruber, Christian W.

    2017-10-01

    Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomal synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target of the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.

  7. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.

    PubMed

    Uddin, Reaz; Siddiqui, Quratulain Nehal; Azam, Syed Sikander; Saima, Bibi; Wadood, Abdul

    2018-03-01

    Among the resistant isolates of tuberculosis (TB), the multidrug resistance tuberculosis (MDR-TB) and extensively drug resistant tuberculosis (XDR-TB) are the areas of growing concern for which the front-line antibiotics are no more effective. As a result, the search of new therapeutic targets against TB is an imperative need of time. On the other hand, the target identification is an a priori step in drug discovery based research. Furthermore, the availability of the complete proteomic data of extensively drug resistant Mycobacterium tuberculosis (XDR-MTB) made it possible to carry out in silico analysis for the discovery of new drug targets. In the current study, we aimed to prioritize the potential drug targets among the hypothetical proteins of XDR-TB via subtractive genomics approach. In the subtractive genomics, we stepwise reduced the complete proteome of XDR-MTB to only two hypothetical proteins and evidently proposed them as new therapeutic targets. The 3D structure of one of the two target proteins was predicted via homology modeling and later on, validated by various analysis tools. Our study suggested that the domains identified and the motif hits found in the sequences of the shortlisted drug targets are crucial for the survival of the XDR-MTB. To the best of our knowledge, the current study is the first attempt in which the complete proteomic data of XDR-MTB was subjected to the computational subtractive genomics approach and therefore, would provide an opportunity to identify the unique therapeutic targets against deadly XDR-MTB. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Internalization and Recycling of the HER2 Receptor on Human Breast Adenocarcinoma Cells Treated with Targeted Phototoxic Protein DARPinminiSOG

    PubMed Central

    Shilova, O. N.; Proshkina, G. M.; Lebedenko, E. N.; Deyev, S. M.

    2015-01-01

    Design and evaluation of new high-affinity protein compounds that can selectively and efficiently destroy human cancer cells are a priority research area in biomedicine. In this study we report on the ability of the recombinant phototoxic protein DARPin-miniSOG to interact with breast adenacarcinoma human cells overexpressing the extracellular domain of human epidermal growth factor receptor 2 (HER2). It was found that the targeted phototoxin DARPin-miniSOG specifically binds to the HER2 with following internalization and slow recycling back to the cell membrane. An insight into the role of DARPin-miniSOG in HER2 internalization could contribute to the treatment of HER2-positive cancer using this phototoxic protein. PMID:26483969

  9. Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Song; Shi, Tujin; Fillmore, Thomas L.

    Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined withmore » precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.« less

  10. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    PubMed

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  11. A Protein Chimera Strategy Supports Production of a Model "Difficult-to-Express" Recombinant Target.

    PubMed

    Hussain, Hirra; Fisher, David I; Roth, Robert G; Abbott, W Mark; Carballo-Amador, Manuel Alejandro; Warwicker, Jim; Dickson, Alan J

    2018-06-22

    Due in part to the needs of the biopharmaceutical industry, there has been an increased drive to generate high quality recombinant proteins in large amounts. However, achieving high yields can be a challenge as the novelty and increased complexity of new targets often makes them 'difficult-to-express'. This study aimed to define the molecular features that restrict the production of a model 'difficult-to-express' recombinant protein, Tissue Inhibitor Metalloproteinase-3 (TIMP-3). Building from experimental data, computational approaches were used to rationalise the re-design of this recombinant target to generate a chimera with enhanced secretion. The results highlight the importance of early identification of unfavourable sequence attributes, enabling the generation of engineered protein forms that bypass 'secretory' bottlenecks and result in efficient recombinant protein production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  13. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies.

    PubMed

    Gagat, Przemysław; Bodył, Andrzej; Mackiewicz, Paweł

    2013-07-11

    It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the beginning. Only a handful of host

  14. Selection of Specific Protein Binders for Pre-Defined Targets from an Optimized Library of Artificial Helicoidal Repeat Proteins (alphaRep)

    PubMed Central

    Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2013-01-01

    We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties. PMID:24014183

  15. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates.

    PubMed

    Purcell, James W; Tanlimco, Sonia G; Hickson, Jonathan A; Fox, Melvin; Sho, Mien; Durkin, Lisa; Uziel, Tamar; Powers, Rick; Foster-Duke, Kelly D; McGonigal, Thomas; Kumar, Subashri; Samayoa, Josue; Zhang, Dong; Palma, Joann P; Mishra, Sasmita; Hollenbaugh, Diane; Gish, Kurt; Morgan-Lappe, Susan E; Hsi, Eric D; Chao, Debra T

    2018-05-15

    Progress in understanding tumor stromal biology has been constrained in part because cancer-associated fibroblasts (CAF) are a heterogeneous population with limited cell type-specific protein markers. Using RNA expression profiling, we identified the membrane protein leucine rich repeat containing 15 (LRRC15) as highly expressed in multiple solid tumor indications with limited normal tissue expression. LRRC15 was expressed on stromal fibroblasts in many solid tumors (e.g., breast, head and neck, lung, pancreatic) as well as directly on a subset of cancer cells of mesenchymal origin (e.g., sarcoma, melanoma, glioblastoma). LRRC15 expression was induced by TGFβ on activated fibroblasts (αSMA+) as well as on mesenchymal stem cells (MSC). These collective findings suggested LRRC15 as a novel CAF and mesenchymal marker with utility as a therapeutic target for the treatment of cancers with LRRC15-positive stromal desmoplasia or cancers of mesenchymal origin. ABBV-085 is a monomethyl auristatin E (MMAE)-containing antibody-drug conjugate (ADC) directed against LRRC15 and it demonstrated robust preclinical efficacy against LRRC15 stromal-positive/cancer-negative, and LRRC15 cancer-positive models as a monotherapy, or in combination with standard of care therapies. ABBV-085's unique mechanism of action relied upon the cell-permeable properties of MMAE to preferentially kill cancer cells over LRRC15-positive CAF while also increasing immune infiltrate (e.g., F4/80+ macrophages) in the tumor microenvironment. In summary, these findings validate LRRC15 as a novel therapeutic target in multiple solid tumor indications and support the ongoing clinical development of the LRRC15-targeted ADC ABBV-085. Copyright ©2018, American Association for Cancer Research.

  16. Cell culture media supplementation of uncommonly used sugars sucrose and tagatose for the targeted shifting of protein glycosylation profiles of recombinant protein therapeutics.

    PubMed

    Hossler, Patrick; McDermott, Sean; Racicot, Christopher; Chumsae, Christopher; Raharimampionona, Haly; Zhou, Yu; Ouellette, David; Matuck, Joseph; Correia, Ivan; Fann, John; Li, Jianmin

    2014-01-01

    Protein glycosylation is an important post-translational modification toward the structure and function of recombinant therapeutics. The addition of oligosaccharides to recombinant proteins has been shown to greatly influence the overall physiochemical attributes of many proteins. It is for this reason that protein glycosylation is monitored by the developer of a recombinant protein therapeutic, and why protein glycosylation is typically considered a critical quality attribute. In this work, we highlight a systematic study toward the supplementation of sucrose and tagatose into cell culture media for the targeted modulation of protein glycosylation profiles on recombinant proteins. Both sugars were found to affect oligosaccharide maturation resulting in an increase in the percentage of high mannose N-glycan species, as well as a concomitant reduction in fucosylation. The latter effect was demonstrated to increase antibody-dependent cell-mediated cytotoxicity for a recombinant antibody. These aforementioned results were found to be reproducible at different scales, and across different Chinese hamster ovary cell lines. Through the selective supplementation of these described sugars, the targeted modulation of protein glycosylation profiles is demonstrated, as well as yet another tool in the cell culture toolbox for ensuring product comparability. © 2014 American Institute of Chemical Engineers.

  17. A fusion-protein approach enabling mammalian cell production of tumor targeting protein domains for therapeutic development.

    PubMed

    Hu, Jia; Chen, Xiang; Zhang, Xuhua; Yuan, Xiaopeng; Yang, Mingjuan; Dai, Hui; Yang, Wei; Zhou, Qinghua; Wen, Weihong; Wang, Qirui; Qin, Weijun; Zhao, Aizhi

    2018-05-01

    A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (V H ) and light (V L ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development. © 2018 The Protein Society.

  18. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.

    PubMed

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-07-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  19. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  20. Neuronal calcium sensor proteins are direct targets of the insulinotropic agent repaglinide.

    PubMed Central

    Okada, Miki; Takezawa, Daisuke; Tachibanaki, Shuji; Kawamura, Satoru; Tokumitsu, Hiroshi; Kobayashi, Ryoji

    2003-01-01

    The NCS (neuronal calcium sensor) proteins, including neurocalcins, recoverins and visinin-like proteins are members of a family of Ca2+-sensitive regulators, each with three Ca2+-binding EF-hand motifs. In plants, lily CCaMK [chimaeric Ca2+/CaM (calmodulin)-dependent protein kinase] and its PpCaMK ( Physcomitrella patens CCaMK) homologue are characterized by a visinin-like domain with three EF-hands. In the present study, in an effort to discover NCS antagonists, we screened a total of 43 compounds using Ca2+-dependent drug affinity chromatography and found that the insulinotropic agent repaglinide targets the NCS protein family. Repaglinide was found to bind to NCS proteins, but not to CaM or S100 proteins, in a Ca2+-dependent manner. Furthermore, the drug antagonized the inhibitory action of recoverin in a rhodopsin kinase assay with IC50 values of 400 microM. Moreover, repaglinide tightly bound to the visinin-like domain of CCaMK and PpCaMK in a Ca2+-dependent manner and antagonized the regulatory function of the domain with IC50 values of 55 and 4 microM for CCaMK and PpCaMK respectively. Although both repaglinide and a potent insulin secretagogue, namely glibenclamide, blocked K(ATP) channels with similar potency, glibenclamide had no antagonizing effect on the Ca2+-stimulated CCaMK and PpCaMK autophosphorylation, mediated by their visinin-like domain. In addition, a typical CaM antagonist, trifluoperazine, had no effect on the CCaMK and PpCaMK autophosphorylation. Repaglinide appears to be the first antagonist of NCS proteins and visinin-like domain-bearing enzymes. It may serve as a useful tool for evaluating the physiological functions of the NCS protein family. In addition, since repaglinide selectively targets NCS proteins among the EF-hand Ca2+-binding proteins, it is a potential lead compound for the development of more potent NCS antagonists. PMID:12844348

  1. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network.

    PubMed

    Lautz, Jonathan D; Brown, Emily A; VanSchoiack, Alison A Williams; Smith, Stephen E P

    2018-05-27

    Cells utilize dynamic, network level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of preexisting multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. This article is protected by copyright. All

  2. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice.

    PubMed

    Shen, Bo-Ran; Zhu, Cheng-Hua; Yao, Zhen; Cui, Li-Li; Zhang, Jian-Jun; Yang, Cheng-Wei; He, Zheng-Hui; Peng, Xin-Xiang

    2017-04-11

    Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.

  3. Rapid computational identification of the targets of protein kinase inhibitors.

    PubMed

    Rockey, William M; Elcock, Adrian H

    2005-06-16

    We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in

  4. Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins.

    PubMed

    Kemme, Catherine A; Marquez, Rolando; Luu, Ross H; Iwahara, Junji

    2017-07-27

    Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    PubMed

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  7. Induced oligomerization targets Golgi proteins for degradation in lysosomes.

    PubMed

    Tewari, Ritika; Bachert, Collin; Linstedt, Adam D

    2015-12-01

    Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130's cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes. © 2015 Tewari et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. A Program for Iron Economy during Deficiency Targets Specific Fe Proteins.

    PubMed

    Hantzis, Laura J; Kroh, Gretchen E; Jahn, Courtney E; Cantrell, Michael; Peers, Graham; Pilon, Marinus; Ravet, Karl

    2018-01-01

    Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis ( Arabidopsis thaliana ) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome- b 6 f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency. © 2018 American Society of Plant Biologists. All Rights Reserved.

  9. Small-Molecule Targeting of BET Proteins in Cancer.

    PubMed

    French, C A

    2016-01-01

    BET proteins have recently become recognized for their role in a broad range of cancers and are defined by the presence of two acetyl-histone reading bromodomains and an ET domain. This family of proteins includes BRD2, BRD3, BRD4, and BRDT. BRD4 is the most-studied BET protein in cancer, and normally serves as an epigenetic reader that links active chromatin marks to transcriptional elongation through activation of RNA polymerase II. The role of BRD3 and BRD4 first became known in cancer as mutant oncoproteins fused to the p300-recruiting NUT protein in a rare aggressive subtype of squamous cell cancer known as NUT midline carcinoma (NMC). BET inhibitors are acetyl-histone mimetics that specifically bind BET bromodomains, competitively inhibiting its engagement with chromatin. The antineoplastic effects of BET inhibitors were first demonstrated in NMC and have since been shown to be effective at inhibiting the growth of many different cancers, particularly acute leukemia. BET inhibitors have also been instrumental as tool compounds that have demonstrated the key role of BRD4 in driving NMC and non-NMC cancer growth. Many clinical trials enrolling patients with hematologic and solid tumors are ongoing, with encouraging preliminary findings. BET proteins BRD2, BRD3, and BRD4 are expressed in nearly all cells of the body, so there are concerns of toxicity with BET inhibitors, as well as the development of resistance. Toxicity and resistance may be overcome by combining BET inhibitors with other targeted inhibitors, or through the use of novel BET inhibitor derivatives. © 2016 Elsevier Inc. All rights reserved.

  10. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    PubMed

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    PubMed Central

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  12. Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins.

    PubMed

    Martinko, Alexander J; Truillet, Charles; Julien, Olivier; Diaz, Juan E; Horlbeck, Max A; Whiteley, Gordon; Blonder, Josip; Weissman, Jonathan S; Bandyopadhyay, Sourav; Evans, Michael J; Wells, James A

    2018-01-23

    While there have been tremendous efforts to target oncogenic RAS signaling from inside the cell, little effort has focused on the cell-surface. Here, we used quantitative surface proteomics to reveal a signature of proteins that are upregulated on cells transformed with KRAS G12V , and driven by MAPK pathway signaling. We next generated a toolkit of recombinant antibodies to seven of these RAS-induced proteins. We found that five of these proteins are broadly distributed on cancer cell lines harboring RAS mutations. In parallel, a cell-surface CRISPRi screen identified integrin and Wnt signaling proteins as critical to RAS-transformed cells. We show that antibodies targeting CDCP1, a protein common to our proteomics and CRISPRi datasets, can be leveraged to deliver cytotoxic and immunotherapeutic payloads to RAS-transformed cancer cells and report for RAS signaling status in vivo. Taken together, this work presents a technological platform for attacking RAS from outside the cell. © 2018, Martinko et al.

  13. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins.

    PubMed

    Konziase, Benetode

    2015-08-01

    We studied the target proteins of artemisinin in Trypanosoma brucei brucei using the affinity-labeling method. We designed and synthesized four biotinylated probes of artemisinin for use as molecular tools. Their in vitro trypanocidal activities (data not shown) proved that they mimicked the biological action of artemisinin. We assessed the chemical stability for all of the probes in the parasite culture medium and lysate using reversed-phase high-performance liquid chromatography (HPLC). After 3-h incubations, the probes remained undecomposed in a range of 40 to 65% in the parasite culture medium, whereas approximately 80% of the probes remained stable in the parasite lysate. Using liquid chromatography mass spectrometry (LC-MS), we demonstrated that, with respect to all of the probes, uptakes into the parasite ranging from 81 to 96% occurred after 30-min incubations. In a competitive binding assay between artemisinin and the four biotinylated probes, we searched for the trypanosomal target protein of artemisinin. Consequently, we observed that only the diazirine-free probe 5 could provide the desired result with high affinity-labeling efficiency. Using the horseradish peroxidase-tagged streptavidin-biotin method, we showed that artemisinin could specifically bind to candidate target proteins of approximately 60, 40, and 39 kDa. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Protein Targeting: ER Leads the Way to the Inner Nuclear Envelope.

    PubMed

    Blackstone, Craig

    2017-12-04

    Efficient targeting of newly synthesized membrane proteins from the endoplasmic reticulum to the inner nuclear membrane depends on nucleotide hydrolysis. A new study shows that this dependence reflects critical actions of the atlastin family of GTPases in maintaining the morphology of the endoplasmic reticulum network. Published by Elsevier Ltd.

  15. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    PubMed

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  16. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    PubMed Central

    2013-01-01

    Background It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. Results We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. Conclusions The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the

  17. From Bioengineering to CRISPR/Cas9 – A Personal Retrospective of 20 Years of Research in Programmable Genome Targeting

    PubMed Central

    Jeltsch, Albert

    2018-01-01

    Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation. PMID:29434619

  18. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods.

    PubMed

    Li, Yun-He; Romeis, Jörg; Wu, Kong-Ming; Peng, Yu-Fa

    2014-04-01

    In assessing an insect-resistant genetically engineered (IRGE) crop before its commercialization, researchers normally use so-called "Tier-1 assays" as the initial step to determine the effects of the crop on non-target organisms. In these tests, the insecticidal proteins (IPs) produced by the IRGEs are added to the diets of test organisms in the laboratory. Test organisms in such assays can be directly exposed to much higher concentrations of the test IPs than they would encounter in the field. The results of Tier-1 assays are thus more conservative than those generated in studies in which the organisms are exposed to the IPs by feeding on IRGE plant tissue or in the case of predators or parasites, by feeding on invertebrate prey or hosts that have fed on IRGE plant tissue. In this report, we consider three important factors that must be considered in Tier-1 assays: (i) methods for delivery of the IP to the test organisms; (ii) the need for and selection of compounds used as positive controls; and (iii) methods for monitoring the concentration, stability and bioactivity of the IP during the assay. We also analyze the existing data from Tier-1 assays regarding the toxicity of Bt Cry proteins to non-target arthropod species. The data indicate that the widely used Bt proteins have no direct toxicity to non-target organisms. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  19. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    PubMed

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liu, E-mail: lyang@u.washington.edu; Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108; Hu, Hsien-Ming

    2010-11-05

    Research highlights: {yields} Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. {yields} The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. {yields} While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. {yields} This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusionmore » protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.« less

  1. Micro-Environmental Signature of The Interactions between Druggable Target Protein, Dipeptidyl Peptidase-IV, and Anti-Diabetic Drugs.

    PubMed

    Chakraborty, Chiranjib; Mallick, Bidyut; Sharma, Ashish Ranjan; Sharma, Garima; Jagga, Supriya; Doss, C George Priya; Nam, Ju-Suk; Lee, Sang-Soo

    2017-01-01

    Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals'+H-bond+desolvo energy (E VHD ) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.

  2. New tools for evaluating protein tyrosine sulphation: Tyrosyl Protein Sulphotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors.

    PubMed

    Byrne, Dominic P; Li, Yong; Ngamlert, Pawin; Ramakrishnan, Krithika; Eyers, Claire E; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A

    2018-06-22

    Protein tyrosine sulphation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulphation is catalysed by two Golgi-resident enzymes termed Tyrosyl Protein Sulpho Transferases (TPSTs) 1 and 2, which transfer sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulphation assays has hampered the development of chemical biology approaches for the identification of small molecule inhibitors of tyrosine sulphation. In this paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulphation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set (PKIS), we identified oxindole-based inhibitors of the Ser/Thr kinase RAF as low micromolar inhibitors of TPST1 and TPST2.  Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulphotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulphation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors. ©2018 The Author(s).

  3. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    PubMed

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species.

  4. Multi-target drugs: the trend of drug research and development.

    PubMed

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  5. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.

    PubMed

    Kimple, Adam J; Bosch, Dustin E; Giguère, Patrick M; Siderovski, David P

    2011-09-01

    Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.

  6. Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase and antibodies to neuron‐specific antigens

    PubMed Central

    Vojdani, Aristo

    2016-01-01

    Abstract Evidence continues to increase linking autoimmunity and other complex diseases to the chemicals commonly found in our environment. Bisphenol A (BPA) is a synthetic monomer used widely in many forms, from food containers to toys, medical products and many others. The potential for BPA to participate as a triggering agent for autoimmune diseases is likely due to its known immunological influences. The goal of this research was to determine if immune reactivity to BPA has any correlation with neurological antibodies. BPA binds to a target enzyme called protein disulfide isomerase (PDI). Myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) are neuronal antigens that are target sites for neuroinflammation and neuroautoimmunity. We determined the co‐occurrence of anti‐MBP and anti‐MOG antibodies with antibodies made against BPA bound to human serum albumin in 100 healthy human subjects. Correlation between BPA to PDI, BPA to MOG, BPA to MBP, PDI to MBP and PDI to MOG were all highly statistically significant (P < 0.0001). The outcome of our study suggests that immune reactivity to BPA‐human serum albumin and PDI has a high degree of statistical significance with substantial correlation with both MBP and MOG antibody levels. This suggests that BPA may be a trigger for the production of antibodies against PDI, MBP and MOG. Immune reactivity to BPA bound to human tissue proteins may be a contributing factor to neurological autoimmune disorders. Further research is needed to determine the exact relationship of these antibodies with neuroautoimmunities. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:27610592

  7. Identifying mRNA sequence elements for target recognition by human Argonaute proteins

    PubMed Central

    Li, Jingjing; Kim, TaeHyung; Nutiu, Razvan; Ray, Debashish; Hughes, Timothy R.; Zhang, Zhaolei

    2014-01-01

    It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO–mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity. PMID:24663241

  8. Human Spermatozoa Contain Multiple Targets for Protein S-Nitrosylation: An Alternative Mechanism of the Modulation of Sperm Function by Nitric Oxide?

    PubMed Central

    Lefièvre, Linda; Chen, Yongjian; Conner, Sarah J; Scott, Joanna L; Publicover, Steve J; Ford, W Christopher L; Barratt, Christopher LR

    2009-01-01

    Nitric oxide (NO) enhances human sperm motility and capacitation associated with increased protein phosphorylation. NO activates soluble guanylyl cyclase, but can also modify protein function covalently via S-nitrosylation of cysteine. Remarkably, this mechanism remains unexplored in sperm although they depend on post-translational protein modification to achieve changes in function required for fertilisation. Our objective was to identify targets for S-nitrosylation in human sperm. Spermatozoa were incubated with NO donors and S-nitrosylated proteins were identified using the biotin switch assay and a proteomic approach using tandem mass spectrometry. 240 S-nitrosylated proteins were detected in sperm incubated with S-nitrosoglutathione. Minimal levels were observed in glutathione or untreated samples. Proteins identified consistently based on multiple peptides included established targets for S-nitrosylation in other cells e.g. tubulin,, glutathione-S-transferase and heat shock proteins but also novel targets including A-kinase anchoring protein (AKAP) types 3 and 4, voltage-dependent anion-selective channel protein 3 and semenogelin 1 and 2. In situ localisation revealed S-nitrosylated targets on the post-acrosomal region of the head and throughout the flagellum. Potential targets for S-nitrosylation in human sperm include physiologically significant proteins not previously reported in other cells. Their identification will provide novel insight into the mechanism of action of NO in spermatozoa. PMID:17683036

  9. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    PubMed

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides

  10. Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics.

    PubMed

    Ferreira, José Alexandre; Magalhães, Ana; Gomes, Joana; Peixoto, Andreia; Gaiteiro, Cristiana; Fernandes, Elisabete; Santos, Lúcio Lara; Reis, Celso A

    2017-02-28

    Glycosylation is the most frequent and structurally complex posttranslational modification in cell-surface and secreted proteins. Glycans are major orchestrators of biological processes, namely, by controlling protein folding and key biological functions such as cell adhesion, migration, signaling and immune recognition. Altered glycosylation is considered a hallmark of malignant transformations that decisively contributes to disease outcome. This review comprehensively summarizes the main findings related with gastrointestinal cancers and the decisive impact of aberrant glycosylation on tumor biology toward more aggressive phenotypes. Particular emphasis is given to alterations in O-glycosylation, namely, the overexpression of immature O-glycans, and the sialylated Lewis antigens sialyl-LeA and sialyl-LeX, frequently implicated in lymphohematogenous metastasis. We further discuss how recent contributions from glycoproteomics and glycoengineering fields have broadened our understanding of the human O-glycoproteome and its implications for cancer research. Finally, we address the tremendous potential of glycans in the context of targeted therapeutics (selective inhibition of glycosylation pathways, immunotherapy) and discuss the need to include glycomics/glycoproteomics in holistic panomics models toward true precision medicine settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10.

    PubMed

    Kryshtafovych, Andriy; Moult, John; Bales, Patrick; Bazan, J Fernando; Biasini, Marco; Burgin, Alex; Chen, Chen; Cochran, Frank V; Craig, Timothy K; Das, Rhiju; Fass, Deborah; Garcia-Doval, Carmela; Herzberg, Osnat; Lorimer, Donald; Luecke, Hartmut; Ma, Xiaolei; Nelson, Daniel C; van Raaij, Mark J; Rohwer, Forest; Segall, Anca; Seguritan, Victor; Zeth, Kornelius; Schwede, Torsten

    2014-02-01

    For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, more than 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this article, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid-gated urea channel, a difficult to predict transmembrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin (IL)-34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fiber protein gene product 17 from bacteriophage T7; the bacteriophage CBA-120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally, an unprecedented class of structure prediction targets based on engineered disulfide-rich small proteins. Copyright © 2013 The Authors. Wiley Periodicals, Inc.

  12. Challenging the state-of-the-art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bales, Patrick; Bazan, J. Fernando; Biasini, Marco; Burgin, Alex; Chen, Chen; Cochran, Frank V.; Craig, Timothy K.; Das, Rhiju; Fass, Deborah; Garcia-Doval, Carmela; Herzberg, Osnat; Lorimer, Donald; Luecke, Hartmut; Ma, Xiaolei; Nelson, Daniel C.; van Raaij, Mark J.; Rohwer, Forest; Segall, Anca; Seguritan, Victor; Zeth, Kornelius; Schwede, Torsten

    2014-01-01

    For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, over 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this paper, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid-gated urea channel, a difficult to predict trans-membrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin IL-34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fibre protein gp17 from bacteriophage T7; the Bacteriophage CBA-120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally an unprecedented class of structure prediction targets based on engineered disulfide-rich small proteins. PMID:24318984

  13. Challenges in validating candidate therapeutic targets in cancer

    PubMed Central

    Sawyers, Charles L; Hunter, Tony

    2018-01-01

    More than 30 published articles have suggested that a protein kinase called MELK is an attractive therapeutic target in human cancer, but three recent reports describe compelling evidence that it is not. These reports highlight the caveats associated with some of the research tools that are commonly used to validate candidate therapeutic targets in cancer research. PMID:29417929

  14. Immunotherapy Targets Common Cancer Mutation

    Cancer.gov

    In a study of an immune therapy for colorectal cancer that involved a single patient, researchers identified a method for targeting the cancer-causing protein produced by a mutant form of the KRAS gene.

  15. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach

    PubMed Central

    Burns, Timothy F.

    2017-01-01

    Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of “client” proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail. PMID:28914774

  16. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach.

    PubMed

    Chatterjee, Suman; Burns, Timothy F

    2017-09-15

    Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.

  17. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  18. A New Way to Treat Brain Tumors: Targeting Proteins Coded by Microcephaly Genes?: Brain tumors and microcephaly arise from opposing derangements regulating progenitor growth. Drivers of microcephaly could be attractive brain tumor targets.

    PubMed

    Lang, Patrick Y; Gershon, Timothy R

    2018-05-01

    New targets for brain tumor therapies may be identified by mutations that cause hereditary microcephaly. Brain growth depends on the repeated proliferation of stem and progenitor cells. Microcephaly syndromes result from mutations that specifically impair the ability of brain progenitor or stem cells to proliferate, by inducing either premature differentiation or apoptosis. Brain tumors that derive from brain progenitor or stem cells may share many of the specific requirements of their cells of origin. These tumors may therefore be susceptible to disruptions of the protein products of genes that are mutated in microcephaly. The potential for the products of microcephaly genes to be therapeutic targets in brain tumors are highlighted hereby reviewing research on EG5, KIF14, ASPM, CDK6, and ATR. Treatments that disrupt these proteins may open new avenues for brain tumor therapy that have increased efficacy and decreased toxicity. © 2018 WILEY Periodicals, Inc.

  19. Large-scale identification of target proteins of a glycosyltransferase isozyme by Lectin-IGOT-LC/MS, an LC/MS-based glycoproteomic approach

    PubMed Central

    Sugahara, Daisuke; Kaji, Hiroyuki; Sugihara, Kazushi; Asano, Masahide; Narimatsu, Hisashi

    2012-01-01

    Model organisms containing deletion or mutation in a glycosyltransferase-gene exhibit various physiological abnormalities, suggesting that specific glycan motifs on certain proteins play important roles in vivo. Identification of the target proteins of glycosyltransferase isozymes is the key to understand the roles of glycans. Here, we demonstrated the proteome-scale identification of the target proteins specific for a glycosyltransferase isozyme, β1,4-galactosyltransferase-I (β4GalT-I). Although β4GalT-I is the most characterized glycosyltransferase, its distinctive contribution to β1,4-galactosylation has been hardly described so far. We identified a large number of candidates for the target proteins specific to β4GalT-I by comparative analysis of β4GalT-I-deleted and wild-type mice using the LC/MS-based technique with the isotope-coded glycosylation site-specific tagging (IGOT) of lectin-captured N-glycopeptides. Our approach to identify the target proteins in a proteome-scale offers common features and trends in the target proteins, which facilitate understanding of the mechanism that controls assembly of a particular glycan motif on specific proteins. PMID:23002422

  20. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Payne, H. Ross; Kier, Ann B.

    2012-01-01

    The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting. PMID:22859366

  1. Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification.

    PubMed

    Rashid, Zahra; Ghahremanzadeh, Ramin; Nejadmoghaddam, Mohammad-Reza; Nazari, Mahboobeh; Shokri, Mohammad-Reza; Naeimi, Hossein; Zarnani, Amir-Hassan

    2017-03-24

    In this research, a simple, efficient, inexpensive, rapid and high yield method for the purification of 6×histidine-tagged recombinant protein was developed. For this purpose, manganese ferrite magnetic nanoparticles (MNPs) were synthesized through a co-precipitation method and then they were conveniently surface-modified with tetraethyl orthosilicate (TEOS) in order to prevent oxidation and form high density of hydroxyl groups. Next, the salen ligand was prepared from condensation reaction of salicylaldehyde and 3-aminopropyl (trimethoxy) silane (APTMS) in 1:1 molar ratio; followed by complexation with Ni(OAc) 2 .4H 2 O. Finally, the prepared Ni(II)-salen complex conjugated to silica coated MNPs and MnFe 2 O 4 @SiO 2 @Ni-Salen complex nanoparticles were obtained. The functionalized nanoparticles were spherical with an average diameter around 70nm. The obtained MNPs had a saturation magnetization about 54 emu/g and had super paramagnetic character. These MNPs were used efficiently to enrich recombinant histidine-tagged (His-tagged) protein-A from bacterial cell lysate. In about 45min, highly pure His-tagged recombinant protein was obtained, as judged by SDS-PAGE analysis and silver staining. The amount of target protein in flow through and washing fractions was minimal denoting the high efficiency of purification process. The average capacity of the matrix was found to be high and about 180±15mgg -1 (protein/MnFe 2 O 4 @SiO 2 @Ni-Salen complex). Collectively, purification process with MnFe 2 O 4 @SiO 2 @Ni-Salen complex nanoparticles is rapid, efficient, selective and whole purification can be carried out in only a single tube without the need for expensive systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target.

    PubMed

    Chemes, Lucía B; Sánchez, Ignacio E; de Prat-Gay, Gonzalo

    2011-09-16

    The retinoblastoma tumor suppressor (Rb) plays a key role in cell cycle control and is linked to various types of human cancer. Rb binds to the LxCxE motif, present in a number of cellular and viral proteins such as AdE1A, SV40 large T-antigen and human papillomavirus (HPV) E7, all instrumental in revealing fundamental mechanisms of tumor suppression, cell cycle control and gene expression. A detailed kinetic study of RbAB binding to the HPV E7 oncoprotein shows that an LxCxE-containing E7 fragment binds through a fast two-state reaction strongly favored by electrostatic interactions. Conversely, full-length E7 binds through a multistep process involving a pre-equilibrium between E7 conformers, a fast electrostatically driven association step guided by the LxCxE motif and a slow conformational rearrangement. This kinetic complexity arises from the conformational plasticity and intrinsically disordered nature of E7 and from multiple interaction surfaces present in both proteins. Affinity differences between E7N domains from high- and low-risk types are explained by their dissociation rates. In fact, since Rb is at the center of a large protein interaction network, fast and tight recognition provides an advantage for disruption by the viral proteins, where the balance of physiological and pathological interactions is dictated by kinetic ligand competition. The localization of the LxCxE motif within an intrinsically disordered domain provides the fast, diffusion-controlled interaction that allows viral proteins to outcompete physiological targets. We describe the interaction mechanism of Rb with a protein ligand, at the same time an LxCxE-containing model target, and a paradigmatic intrinsically disordered viral oncoprotein. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    PubMed

    LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C

    2014-01-01

    Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number

  4. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    NASA Technical Reports Server (NTRS)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  5. Targeted light-inactivation of the Ki-67 protein using theranostic liposomes leads to death of proliferating cells

    NASA Astrophysics Data System (ADS)

    Rahmanzadeh, Ramtin; Rai, Prakash; Gerdes, Johannes; Hasan, Tayyaba

    2010-02-01

    Nanomedicine is beginning to impact the treatment of several diseases and current research efforts include development of integrated nano-constructs (theranostics) which serve as probes for imaging and therapy in addition to delivering macromolecules intracellularly. In cancer, there is a vital unmet need for effective alternative treatments with high specificity and low systemic toxicity. This can be achieved by targeting key molecular markers associated with cancer cells with reduced effective drug doses. Here, we show an innovative proof-of-principle approach for efficient killing of proliferating ovarian cancer cells by inactivating a protein associated with cell proliferation namely, the nuclear Ki-67 protein (pKi-67), using nanotechnology-based photodynamic therapy (PDT). Antibodies against pKi-67 are widely used as prognostic tools for tumor diagnosis. In this work, anti pKi-67 antibodies were first conjugated to fluorescein isothiocyanate (FITC) and then encapsulated inside liposomes. After incubation of OVCAR-5 ovarian cancer cells with these liposomes, confocal microscopy confirmed the localization of the antibodies to the nucleoli of the cells. Irradiation with a 488 nm laser led to a significant loss of cell viability. The specificity of this approach for pKi-67 positive cells was demonstrated in confluent human lung fibroblasts (MRC-5) where only a small population of cells stain positive for pKi-67 and only minimal cell death was observed. Taken together, our findings suggest that pKi-67 targeted with nano-platform is an attractive therapeutic target in cancer therapy.

  6. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes

    PubMed Central

    Kimple, Michelle E; Neuman, Joshua C; Linnemann, Amelia K; Casey, Patrick J

    2014-01-01

    The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology. PMID:24946790

  7. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets.

    PubMed

    Xu, Weijun; Lucke, Andrew J; Fairlie, David P

    2015-04-01

    Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Emergence of Protein Kinase CK2 as a Key Target in Cancer Therapy

    PubMed Central

    Trembley, Janeen H.; Chen, Zhong; Unger, Gretchen; Slaton, Joel; Kren, Betsy T.; Van Waes, Carter; Ahmed, Khalil

    2010-01-01

    Protein kinase CK2, a protein serine/threonine kinase, plays a global role in activities related to cell growth, cell death and cell survival. CK2 has a large number of potential substrates localized in diverse locations in the cell including, e.g., NF-κB as an important downstream target of the kinase. In addition to its involvement in cell growth and proliferation it is also a potent suppressor of apoptosis, raising its key importance in cancer cell phenotype. CK2 interacts with diverse pathways which illustrates the breadth of its impact on the cellular machinery of both cell growth and cell death giving it the status of a “master regulator” in the cell. With respect to cancer, CK2 has been found to be dysregulated in all cancers examined demonstrating increased protein expression levels and nuclear localization in cancer cells compared with their normal counterparts. We originally proposed CK2 as a potentially important target for cancer therapy. Given the ubiquitous and essential for cell survival nature of the kinase, an important consideration would be to target it specifically in cancer cells while sparing normal cells. Towards that end, our design of a tenascin based sub-50 nm (i.e., less than 50 nm size) nanocapsule in which an anti-CK2 therapeutic agent can be packaged is highly promising because this formulation can specifically deliver the cargo intracellularly to the cancer cells in vivo. Thus, appropriate strategies to target CK2 especially by molecular approaches may lead to a highly feasible and effective approach to eradication of a given cancer. PMID:20533398

  9. Searching target sites on DNA by proteins: Role of DNA dynamics under confinement

    PubMed Central

    Mondal, Anupam; Bhattacherjee, Arnab

    2015-01-01

    DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely. PMID:26400158

  10. From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets

    PubMed Central

    Chen, Lu; Morrow, John K.; Tran, Hoang T.; Phatak, Sharangdhar S.; Du-Cuny, Lei; Zhang, Shuxing

    2013-01-01

    As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes drug discovery targeting protein-ligand and protein-protein interactions. Meanwhile, challenges, noted by low accuracy and combinatoric issues, may also cause failures. In this review, state-of-the-art techniques for protein modeling (e.g. structure prediction, modeling protein flexibility, etc.), hit identification/optimization (e.g. molecular docking, focused library design, fragment-based design, molecular dynamic, etc.), and polypharmacology design will be discussed. We will explore how structure-based techniques can facilitate the drug discovery process and interplay with other experimental approaches. PMID:22316152

  11. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    PubMed

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  12. Ses proteins as possible targets for vaccine development against Staphylococcus epidermidis infections.

    PubMed

    Hofmans, Dorien; Khodaparast, Laleh; Khodaparast, Ladan; Vanstreels, Els; Shahrooei, Mohammad; Van Eldere, Johan; Van Mellaert, Lieve

    2018-05-09

    The opportunistic pathogen Staphylococcus epidermidis is progressively involved in device-related infections. Since these infections involve biofilm formation, antibiotics are not effective. Conversely, a vaccine can be advantageous to prevent these infections. In view of vaccine development, predicted surface proteins were evaluated on their potential as a vaccine target. Immunoglobulins directed against S. epidermidis surface proteins SesB, M, O, Q and R, were used to firstly affirm their surface location. Further, inhibitory effects of these IgGs on biofilm formation were determined in vitro on polystyrene and polyurethane surfaces and in vivo using a subcutaneous catheter mouse model. We also examined the opsonophagocytic capacity of these IgGs. Surface localization of the five Ses proteins was demonstrated both for planktonic and sessile cells, though to a variable extent. Ses-specific IgGs added to planktonic cells had a variable inhibitory effect on cell adhesion to polystyrene, while only anti-SesO IgGs decreased cell attachment to polyurethane catheters. Although phagocytic killing was only obtained after opsonisation with SesB-specific IgGs, a significant reduction of in vivo formed biofilms was observed after administration of SesB-, SesM- and SesO-specific IgGs. Regardless of their characterization or function, S. epidermidis surface proteins can be adequate targets for vaccine development aiming the prevention of device-related infections caused by invasive S. epidermidis strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Targeting functional motifs of a protein family

    NASA Astrophysics Data System (ADS)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  14. Thiazolidine-2,4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions.

    PubMed

    Chadha, Navriti; Bahia, Malkeet Singh; Kaur, Maninder; Silakari, Om

    2015-07-01

    Thiazolidine-2,4-dione is an extensively explored heterocyclic nucleus for designing of novel agents implicated for a wide variety of pathophysiological conditions, that is, diabetes, diabetic complications, cancer, arthritis, inflammation, microbial infection, and melanoma, etc. The current paradigm of drug development has shifted to the structure-based drug design, since high-throughput screenings have continued to generate disappointing results. The gap between hit generation and drug establishment can be narrowed down by investigation of ligand interactions with its receptor protein. Therefore, it would always be highly beneficial to gain knowledge of molecular level interactions between specific protein target and developed ligands; since this information can be maneuvered to design new molecules with improved protein fitting. Thus, considering this aspect, we have corroborated the information about molecular (target) level implementations of thiazolidine-2,4-diones (TZD) derivatives having therapeutic implementations such as, but not limited to, anti-diabetic (glitazones), anti-cancer, anti-arthritic, anti-inflammatory, anti-oxidant and anti-microbial, etc. The structure based SAR of TZD derivatives for various protein targets would serve as a benchmark for the alteration of existing ligands to design new ones with better binding interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    PubMed Central

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.

    2011-01-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service. PMID:21460443

  16. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory.

    PubMed

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M

    2011-04-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  17. Drug-target residence time--a case for G protein-coupled receptors.

    PubMed

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  18. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    PubMed

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    PubMed Central

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  20. A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases.

    PubMed

    Pratt, William B; Morishima, Yoshihiro; Gestwicki, Jason E; Lieberman, Andrew P; Osawa, Yoichi

    2014-11-01

    In an EBM Minireview published in 2010, we proposed that the heat shock protein (Hsp)90/Hsp70-based chaperone machinery played a major role in determining the selection of proteins that have undergone oxidative or other toxic damage for ubiquitination and proteasomal degradation. The proposal was based on a model in which the Hsp90 chaperone machinery regulates signaling by modulating ligand-binding clefts. The model provides a framework for thinking about the development of neuroprotective therapies for protein-folding diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and the polyglutamine expansion disorders, such as Huntington's disease (HD) and spinal and bulbar muscular atrophy (SBMA). Major aberrant proteins that misfold and accumulate in these diseases are "client" proteins of the abundant and ubiquitous stress chaperone Hsp90. These Hsp90 client proteins include tau (AD), α-synuclein (PD), huntingtin (HD), and the expanded glutamine androgen receptor (polyQ AR) (SBMA). In this Minireview, we update our model in which Hsp90 acts on protein-folding clefts and show how it forms a rational basis for developing drugs that promote the targeted elimination of these aberrant proteins. © 2014 by the Society for Experimental Biology and Medicine.

  1. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes.

    PubMed

    Li, Xiang; Yang, Weijing; Zou, Yan; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2015-12-28

    Protein drugs as one of the most potent biotherapeutics have a tremendous potential in cancer therapy. Their application is, nevertheless, restricted by absence of efficacious, biocompatible, and cancer-targeting nanosystems. In this paper, we report that 2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid (Acupa)-decorated pH-responsive chimaeric polymersomes (Acupa-CPs) efficiently deliver therapeutic proteins into prostate cancer cells. Acupa-CPs had a unimodal distribution with average sizes ranging from 157-175 nm depending on amounts of Acupa. They displayed highly efficient loading of both model proteins, bovine serum albumin (BSA) and cytochrome C (CC), affording high protein loading contents of 9.1-24.5 wt.%. The in vitro release results showed that protein release was markedly accelerated at mildly acidic pH due to the hydrolysis of acetal bonds in the vesicular membrane. CLSM and MTT studies demonstrated that CC-loaded Acupa10-CPs mediated efficient delivery of protein drugs into PSMA positive LNCaP cells leading to pronounced antitumor effect, in contrast to their non-targeting counterparts and free CC. Remarkably, granzyme B (GrB)-loaded Acupa10-CPs caused effective apoptosis of LNCaP cells with a low half-maximal inhibitory concentration (IC50) of 1.6 nM. Flow cytometry and CLSM studies using MitoCapture™ revealed obvious depletion of mitochondria membrane potential in LNCaP cells treated with GrB-loaded Acupa10-CPs. The preliminary in vivo experiments showed that Acupa-CPs had a long circulation time with an elimination phase half-life of 3.3h in nude mice. PSMA-targeted, pH-responsive, and chimaeric polymersomes have appeared as efficient protein nanocarriers for targeted prostate cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ethical research as the target of animal extremism: an international problem.

    PubMed

    Conn, P Michael; Rantin, F T

    2010-02-01

    Animal extremism has been increasing worldwide; frequently researchers are the targets of actions by groups with extreme animal rights agendas. Sometimes this targeting is violent and may involve assaults on family members or destruction of property. In this article, we summarize recent events and suggest steps that researchers can take to educate the public on the value of animal research both for people and animals.

  3. Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin

    PubMed Central

    Krasnykh, Victor; Belousova, Natalya; Korokhov, Nikolay; Mikheeva, Galina; Curiel, David T.

    2001-01-01

    The utility of adenovirus (Ad) vectors for gene therapy is restricted by their inability to selectively transduce disease-affected tissues. This limitation may be overcome by the derivation of vectors capable of interacting with receptors specifically expressed in the target tissue. Previous attempts to alter Ad tropism by genetic modification of the Ad fiber have had limited success due to structural conflicts between the fiber and the targeting ligand. Here we present a strategy to derive an Ad vector with enhanced targeting potential by a radical replacement of the fiber protein in the Ad capsid with a chimeric molecule containing a heterologous trimerization motif and a receptor-binding ligand. Our approach, which capitalized upon the overall structural similarity between the human Ad type 5 (Ad5) fiber and bacteriophage T4 fibritin proteins, has resulted in the generation of a genetically modified Ad5 incorporating chimeric fiber-fibritin proteins targeted to artificial receptor molecules. Gene transfer studies employing this novel viral vector have demonstrated its capacity to efficiently deliver a transgene payload to the target cells in a receptor-specific manner. PMID:11287567

  4. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics.

    PubMed

    Chen, Chen; Liu, Xiaohui; Zheng, Weimin; Zhang, Lei; Yao, Jun; Yang, Pengyuan

    2014-04-04

    To completely annotate the human genome, the task of identifying and characterizing proteins that currently lack mass spectrometry (MS) evidence is inevitable and urgent. In this study, as the first effort to screen missing proteins in large scale, we developed an approach based on SDS-PAGE followed by liquid chromatography-multiple reaction monitoring (LC-MRM), for screening of those missing proteins with only a single peptide hit in the previous liver proteome data set. Proteins extracted from normal human liver were separated in SDS-PAGE and digested in split gel slice, and the resulting digests were then subjected to LC-schedule MRM analysis. The MRM assays were developed through synthesized crude peptides for target peptides. In total, the expressions of 57 target proteins were confirmed from 185 MRM assays in normal human liver tissues. Among the proved 57 one-hit wonders, 50 proteins are of the minimally redundant set in the PeptideAtlas database, 7 proteins even have none MS-based information previously in various biological processes. We conclude that our SDS-PAGE-MRM workflow can be a powerful approach to screen missing or poorly characterized proteins in different samples and to provide their quantity if detected. The MRM raw data have been uploaded to ISB/SRM Atlas/PASSEL (PXD000648).

  5. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  6. Proteomics Reveals Plastid- and Periplastid-Targeted Proteins in the Chlorarachniophyte Alga Bigelowiella natans

    PubMed Central

    Hopkins, Julia F.; Spencer, David F.; Laboissiere, Sylvie; Neilson, Jonathan A.D.; Eveleigh, Robert J.M.; Durnford, Dion G.; Gray, Michael W.; Archibald, John M.

    2012-01-01

    Chlorarachniophytes are unicellular marine algae with plastids (chloroplasts) of secondary endosymbiotic origin. Chlorarachniophyte cells retain the remnant nucleus (nucleomorph) and cytoplasm (periplastidial compartment, PPC) of the green algal endosymbiont from which their plastid was derived. To characterize the diversity of nucleus-encoded proteins targeted to the chlorarachniophyte plastid, nucleomorph, and PPC, we isolated plastid–nucleomorph complexes from the model chlorarachniophyte Bigelowiella natans and subjected them to high-pressure liquid chromatography-tandem mass spectrometry. Our proteomic analysis, the first of its kind for a nucleomorph-bearing alga, resulted in the identification of 324 proteins with 95% confidence. Approximately 50% of these proteins have predicted bipartite leader sequences at their amino termini. Nucleus-encoded proteins make up >90% of the proteins identified. With respect to biological function, plastid-localized light-harvesting proteins were well represented, as were proteins involved in chlorophyll biosynthesis. Phylogenetic analyses revealed that many, but by no means all, of the proteins identified in our proteomic screen are of apparent green algal ancestry, consistent with the inferred evolutionary origin of the plastid and nucleomorph in chlorarachniophytes. PMID:23221610

  7. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design.

    PubMed

    Howe, George W; Beach, Steven R H; Brody, Gene H; Wyman, Peter A

    2015-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach.

  8. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design

    PubMed Central

    Howe, George W.; Beach, Steven R. H.; Brody, Gene H.; Wyman, Peter A.

    2016-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach. PMID:26779062

  9. INCENP Centromere and Spindle Targeting: Identification of Essential Conserved Motifs and Involvement of Heterochromatin Protein HP1

    PubMed Central

    Ainsztein, Alexandra M.; Kandels-Lewis, Stefanie E.; Mackay, Alastair M.; Earnshaw, William C.

    1998-01-01

    The inner centromere protein (INCENP) has a modular organization, with domains required for chromosomal and cytoskeletal functions concentrated near the amino and carboxyl termini, respectively. In this study we have identified an autonomous centromere- and midbody-targeting module in the amino-terminal 68 amino acids of INCENP. Within this module, we have identified two evolutionarily conserved amino acid sequence motifs: a 13–amino acid motif that is required for targeting to centromeres and transfer to the spindle, and an 11–amino acid motif that is required for transfer to the spindle by molecules that have targeted previously to the centromere. To begin to understand the mechanisms of INCENP function in mitosis, we have performed a yeast two-hybrid screen for interacting proteins. These and subsequent in vitro binding experiments identify a physical interaction between INCENP and heterochromatin protein HP1Hsα. Surprisingly, this interaction does not appear to be involved in targeting INCENP to the centromeric heterochromatin, but may instead have a role in its transfer from the chromosomes to the anaphase spindle. PMID:9864353

  10. The Leishmania infantum PUF proteins are targets of the humoral response during visceral leishmaniasis

    PubMed Central

    2010-01-01

    Background RNA-binding proteins of the PUF family share a conserved domain consisting of tandemly repeated 36-40 amino acid motifs (typically eight) known as Puf repeats. Proteins containing tandem repeats are often dominant targets of humoral responses during infectious diseases. Thus, we considered of interest to analyze whether Leishmania PUF proteins result antigenic during visceral leishmaniasis (VL). Findings Here, employing whole-genome databases, we report the composition, and structural features, of the PUF family in Leishmania infantum. Additionally, the 10 genes of the L. infantum PUF family were cloned and used to express the Leishmania PUFs in bacteria as recombinant proteins. Finally, the antigenicity of these PUF proteins was evaluated by determining levels of specific antibodies in sera from experimentally infected hamsters. The Leishmania PUFs were all recognized by the sera, even though with different degree of reactivity and/or frequency of recognition. The reactivity of hamster sera against recombinant LiPUF1 and LiPUF2 was particularly prominent, and these proteins were subsequently assayed against sera from human patients. High antibody responses against rLiPUF1 and rLiPUF2 were found in sera from VL patients, but these proteins resulted also recognized by sera from Chagas' disease patients. Conclusion Our results suggest that Leishmania PUFs are targets of the humoral response during L. infantum infection and may represent candidates for serodiagnosis and/or vaccine reagents; however, it should be kept in mind the cross-reactivity of LiPUFs with antibodies induced against other trypanosomatids such as Trypanosoma cruzi. PMID:20180988

  11. Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Quek, Sue-Ing; Gao, Yuqian

    Biomarkers for effective early diagnosis and prognosis of prostate cancer are still lacking. Multiplexed assays for cancer-associated proteins could be useful for identifying biomarkers for cancer detection and stratification. Herein, we report the development of sensitive targeted mass spectrometry assays for simultaneous quantification of 10 prostate cancer-associated proteins in urine. The diagnostic utility of these markers was evaluated with an initial cohort of 20 clinical urine samples. Individual marker concentration was normalized against the measured urinary prostate-specific antigen level as a reference of prostate-specific secretion. The areas under the receiver-operating characteristic curves for the 10 proteins ranged from 0.75 formore » CXCL14 to 0.87 for CEACAM5. Furthermore, MMP9 level was found to be significantly higher in patients with high Gleason scores, suggesting a potential of MMP9 as a marker for risk level assessment. Taken together, our work illustrated the feasibility of accurate multiplexed measurements of low-abundance cancer-associated proteins in urine and provided a viable path forward for preclinical verification of candidate biomarkers for prostate cancer.« less

  12. Finding the target sites of RNA-binding proteins

    PubMed Central

    Li, Xiao; Kazan, Hilal; Lipshitz, Howard D; Morris, Quaid D

    2014-01-01

    RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201 PMID:24217996

  13. Hitting the sweet spot-glycans as targets of fungal defense effector proteins.

    PubMed

    Künzler, Markus

    2015-05-06

    Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.

  14. SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability

    PubMed Central

    Kim, Min Jung; Chia, Ian V.; Costantini, Frank

    2008-01-01

    Axin is a scaffold protein for the β-catenin destruction complex, and a negative regulator of canonical Wnt signaling. Previous studies implicated the six C-terminal amino acids (C6 motif) in the ability of Axin to activate c-Jun N-terminal kinase, and identified them as a SUMOylation target. Deletion of the C6 motif of mouse Axin in vivo reduced the steady-state protein level, which caused embryonic lethality. Here, we report that this deletion (Axin-ΔC6) causes a reduced half-life in mouse embryonic fibroblasts and an increased susceptibility to ubiquitination in HEK 293T cells. We confirmed the C6 motif as a SUMOylation target in vitro, and found that mutating the C-terminal SUMOylation target residues increased the susceptibility of Axin to polyubiquitination and reduced its steady-state level. Heterologous SUMOylation target sites could replace C6 in providing this protective effect. These findings suggest that SUMOylation of the C6 motif may prevent polyubiquitination, thus increasing the stability of Axin. Although C6 deletion also caused increased association of Axin with Dvl-1, this interaction was not altered by mutating the lysine residues in C6, nor could heterologous SUMOylation motifs replace the C6 motif in this assay. Therefore, some other specific property of the C6 motif seems to reduce the interaction of Axin with Dvl-1.—Kim, M. J., Chia, I. V., Costantini, F. SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. PMID:18632848

  15. Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis

    PubMed Central

    Chi, Richard J.; Torres, Onaidy T.; Segarra, Verónica A.; Lansley, Tanya; Chang, Ji Suk; Newpher, Thomas M.; Lemmon, Sandra K.

    2012-01-01

    Summary Phosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis. In this study we analyzed scd5-PP1Δ2, a mutation causing impaired PP1 binding. scd5-PP1Δ2 caused hyperphosphorylation of several Prk1 endocytic targets. Live-cell imaging of 15 endocytic components in scd5-PP1Δ2 revealed that most factors arriving before the invagination/actin phase of endocytosis had delayed lifetimes. Severely affected were early factors and Sla2 (Hip1R homolog), whose lifetime was extended nearly fourfold. In contrast, the lifetime of Sla1, a Prk1 target, was extended less than twofold, but its cortical recruitment was significantly reduced. Delayed Sla2 dynamics caused by scd5-PP1Δ2 were suppressed by SLA1 overexpression. This was dependent on the LxxQxTG repeats (SR) of Sla1, which are phosphorylated by Prk1 and bind Pan1, another Prk1 target, in the dephosphorylated state. Without the SR, Sla1ΔSR was still recruited to the cell surface, but was less concentrated in cortical patches than Pan1. sla1ΔSR severely impaired endocytic progression, but this was partially suppressed by overexpression of LAS17, suggesting that without the SR region the SH3 region of Sla1 causes constitutive negative regulation of Las17 (WASp). These results demonstrate that Scd5/PP1 is important for recycling Prk1 targets to initiate new rounds of endocytosis and provide new mechanistic information on the role of the Sla1 SR domain in regulating progression to the invagination/actin phase of endocytosis. PMID:22825870

  16. Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for Ex Vivo Biotinylation of Azido and Alkynyl Derivatives

    PubMed Central

    Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.

    2009-01-01

    Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be

  17. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    PubMed

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  18. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy.

    PubMed

    Smith, Emily; Zhou, Wei; Shindiapina, Polina; Sif, Said; Li, Chenglong; Baiocchi, Robert A

    2018-05-21

    Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.

  19. Aberration hubs in protein interaction networks highlight actionable targets in cancer.

    PubMed

    Karimzadeh, Mehran; Jandaghi, Pouria; Papadakis, Andreas I; Trainor, Sebastian; Rung, Johan; Gonzàlez-Porta, Mar; Scelo, Ghislaine; Vasudev, Naveen S; Brazma, Alvis; Huang, Sidong; Banks, Rosamonde E; Lathrop, Mark; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-18

    Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e. individual proteins that interact extensively with genes that show aberrant mutation or expression. Our analysis of the breast cancer data of the TCGA and the renal cancer data from the ICGC shows that aberration hubs are involved in relevant cancer pathways, including factors promoting cell cycle and DNA replication in basal-like breast tumors, and Src kinase and VEGF signaling in renal carcinoma. Moreover, our analysis uncovers novel functionally relevant and actionable targets, among which we have experimentally validated abnormal splicing of spleen tyrosine kinase as a key factor for cell proliferation in renal cancer. Thus, AbHAC provides an effective strategy to uncover novel disease factors that are only identifiable by examining mutational and expression data in the context of biological networks.

  20. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer.

    PubMed

    Biron, Eric; Bédard, François

    2016-07-01

    The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  2. A Hot-Spot Motif Characterizes the Interface between a Designed Ankyrin-Repeat Protein and Its Target Ligand

    PubMed Central

    Cheung, Luthur Siu-Lun; Kanwar, Manu; Ostermeier, Marc; Konstantopoulos, Konstantinos

    2012-01-01

    Nonantibody scaffolds such as designed ankyrin repeat proteins (DARPins) can be rapidly engineered to detect diverse target proteins with high specificity and offer an attractive alternative to antibodies. Using molecular simulations, we predicted that the binding interface between DARPin off7 and its ligand (maltose binding protein; MBP) is characterized by a hot-spot motif in which binding energy is largely concentrated on a few amino acids. To experimentally test this prediction, we fused MBP to a transmembrane domain to properly orient the protein into a polymer-cushioned lipid bilayer, and characterized its interaction with off7 using force spectroscopy. Using this, to our knowledge, novel technique along with surface plasmon resonance, we validated the simulation predictions and characterized the effects of select mutations on the kinetics of the off7-MBP interaction. Our integrated approach offers scientific insights on how the engineered protein interacts with the target molecule. PMID:22325262

  3. Activity Based Protein Profiling Leads to Identification of Novel Protein Targets for Nerve Agent VX.

    PubMed

    Carmany, Dan; Walz, Andrew J; Hsu, Fu-Lian; Benton, Bernard; Burnett, David; Gibbons, Jennifer; Noort, Daan; Glaros, Trevor; Sekowski, Jennifer W

    2017-04-17

    Organophosphorus (OP) nerve agents continue to be a threat at home and abroad during the war against terrorism. Human exposure to nerve agents such as VX results in a cascade of toxic effects relative to the exposure level including ocular miosis, excessive secretions, convulsions, seizures, and death. The primary mechanism behind these overt symptoms is the disruption of cholinergic pathways. While much is known about the primary toxicity mechanisms of nerve agents, there remains a paucity of information regarding impacts on other pathways and systemic effects. These are important for establishing a comprehensive understanding of the toxic mechanisms of OP nerve agents. To identify novel proteins that interact with VX, and that may give insight into these other mechanisms, we used activity-based protein profiling (ABPP) employing a novel VX-probe on lysates from rat heart, liver, kidney, diaphragm, and brain tissue. By making use of a biotin linked VX-probe, proteins covalently bound by the probe were isolated and enriched using streptavidin beads. The proteins were then digested, labeled with isobarically distinct tandem mass tag (TMT) labels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative analysis identified 132 bound proteins, with many proteins found in multiple tissues. As with previously published ABPP OP work, monoacylglycerol lipase associated proteins and fatty acid amide hydrolase (FAAH) were shown to be targets of VX. In addition to these two and other predicted neurotransmitter-related proteins, a number of proteins involved with energy metabolism were identified. Four of these enzymes, mitochondrial isocitrate dehydrogenase 2 (IDH2), isocitrate dehydrogenase 3 (IDH3), malate dehydrogenase (MDH), and succinyl CoA (SCS) ligase, were assayed for VX inhibition. Only IDH2 NADP+ activity was shown to be inhibited directly. This result is consistent with other work reporting animals exposed to OP compounds exhibit

  4. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors.

    PubMed

    Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.

  5. Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors

    PubMed Central

    Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585

  6. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability

    PubMed Central

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela

    2014-01-01

    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ−/− mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ−/− mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ−/− mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper–tyrosine-phosphorylated in the PTPσ−/− mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ−/− mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD. PMID:24385580

  7. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting

    PubMed Central

    Siu, Fai Y.; Spanggord, Richard J.; Doudna, Jennifer A.

    2007-01-01

    The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP–receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP–receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP–receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo. PMID:17164479

  8. Targeted polypeptide degradation

    DOEpatents

    Church, George M [Brookline, MA; Janse, Daniel M [Brookline, MA

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  9. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli*

    PubMed Central

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H.; Pessi, Gabriella; Eberl, Leo; Robinson, John A.

    2016-01-01

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837

  10. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18*

    PubMed Central

    Yang, Zhaoshou; Hou, Yongheng; Hao, Taofang; Rho, Hee-Sool; Wan, Jun; Luan, Yizhao; Gao, Xin; Yao, Jianping; Pan, Aihua; Xie, Zhi; Qian, Jiang; Liao, Wanqin; Zhu, Heng; Zhou, Xingwang

    2017-01-01

    Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface. PMID:28087594

  11. Structure–function studies of STAR family Quaking proteins bound to their in vivo RNA target sites

    PubMed Central

    Teplova, Marianna; Hafner, Markus; Teplov, Dmitri; Essig, Katharina; Tuschl, Thomas; Patel, Dinshaw J.

    2013-01-01

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins. PMID:23630077

  12. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-04-01

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SPIRE: Systematic protein investigative research environment.

    PubMed

    Kolker, Eugene; Higdon, Roger; Morgan, Phil; Sedensky, Margaret; Welch, Dean; Bauman, Andrew; Stewart, Elizabeth; Haynes, Winston; Broomall, William; Kolker, Natali

    2011-12-10

    The SPIRE (Systematic Protein Investigative Research Environment) provides web-based experiment-specific mass spectrometry (MS) proteomics analysis (https://www.proteinspire.org). Its emphasis is on usability and integration of the best analytic tools. SPIRE provides an easy to use web-interface and generates results in both interactive and simple data formats. In contrast to run-based approaches, SPIRE conducts the analysis based on the experimental design. It employs novel methods to generate false discovery rates and local false discovery rates (FDR, LFDR) and integrates the best and complementary open-source search and data analysis methods. The SPIRE approach of integrating X!Tandem, OMSSA and SpectraST can produce an increase in protein IDs (52-88%) over current combinations of scoring and single search engines while also providing accurate multi-faceted error estimation. One of SPIRE's primary assets is combining the results with data on protein function, pathways and protein expression from model organisms. We demonstrate some of SPIRE's capabilities by analyzing mitochondrial proteins from the wild type and 3 mutants of C. elegans. SPIRE also connects results to publically available proteomics data through its Model Organism Protein Expression Database (MOPED). SPIRE can also provide analysis and annotation for user supplied protein ID and expression data. Copyright © 2011. Published by Elsevier B.V.

  14. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks.

    PubMed

    Folador, Edson Luiz; de Carvalho, Paulo Vinícius Sanches Daltro; Silva, Wanderson Marques; Ferreira, Rafaela Salgado; Silva, Artur; Gromiha, Michael; Ghosh, Preetam; Barh, Debmalya; Azevedo, Vasco; Röttger, Richard

    2016-11-04

    Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis.

  15. A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Wolfram, Stefanie; Wielsch, Natalie; Hupfer, Yvonne; Mönch, Bettina; Lu-Walther, Hui-Wen; Heintzmann, Rainer; Werz, Oliver; Svatoš, Aleš; Pohnert, Georg

    2015-01-01

    Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs) that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways. PMID:26496085

  16. Prioritization of biomarker targets in human umbilical cord blood: identification of proteins in infant blood serving as validated biomarkers in adults.

    PubMed

    Hansmeier, Nicole; Chao, Tzu-Chiao; Goldman, Lynn R; Witter, Frank R; Halden, Rolf U

    2012-05-01

    Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure-disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were detected in UCB and represent high-priority targets for

  17. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    PubMed Central

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  18. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Moorhead, Greg B

    2013-09-01

    The major plant serine/threonine protein phosphatases belong to the phosphoprotein phosphatase (PPP) family. Over the past few years the complement of Arabidopsis thaliana PPP family of catalytic subunits has been cataloged and many regulatory subunits identified. Specific roles for PPPs have been characterized, including roles in auxin and brassinosteroid signaling, in phototropism, in regulating the target of rapamycin pathway, and in cell stress responses. In this review, we provide a framework for understanding the PPP family by exploring the fundamental role of the phosphatase regulatory subunits that drive catalytic engine specificity. Although there are fewer plant protein phosphatases compared with their protein kinase partners, their function is now recognized to be as dynamic and as regulated as that of protein kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases.

    PubMed

    Jarvis, Lesley A; Toering, Stephanie J; Simon, Michael A; Krasnow, Mark A; Smith-Bolton, Rachel K

    2006-03-01

    Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.

  20. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    PubMed Central

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette

    2017-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research. PMID:27711401

  1. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation.

    PubMed

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2016-10-04

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  2. New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness.

    PubMed

    Ritzefeld, Markus; Wright, Megan H; Tate, Edward W

    2018-02-01

    Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases.

  3. Tracking 20 Years of Compound-to-Target Output from Literature and Patents

    PubMed Central

    Southan, Christopher; Varkonyi, Peter; Boppana, Kiran; Jagarlapudi, Sarma A.R.P.; Muresan, Sorel

    2013-01-01

    The statistics of drug development output and declining yield of approved medicines has been the subject of many recent reviews. However, assessing research productivity that feeds development is more difficult. Here we utilise an extensive database of structure-activity relationships extracted from papers and patents. We have used this database to analyse published compounds cumulatively linked to nearly 4000 protein target identifiers from multiple species over the last 20 years. The compound output increases up to 2005 followed by a decline that parallels a fall in pharmaceutical patenting. Counts of protein targets have plateaued but not fallen. We extended these results by exploring compounds and targets for one large pharmaceutical company. In addition, we examined collective time course data for six individual protease targets, including average molecular weight of the compounds. We also tracked the PubMed profile of these targets to detect signals related to changes in compound output. Our results show that research compound output had decreased 35% by 2012. The major causative factor is likely to be a contraction in the global research base due to mergers and acquisitions across the pharmaceutical industry. However, this does not rule out an increasing stringency of compound quality filtration and/or patenting cost control. The number of proteins mapped to compounds on a yearly basis shows less decline, indicating the cumulative published target capacity of global research is being sustained in the region of 300 proteins for large companies. The tracking of six individual targets shows uniquely detailed patterns not discernible from cumulative snapshots. These are interpretable in terms of events related to validation and de-risking of targets that produce detectable follow-on surges in patenting. Further analysis of the type we present here can provide unique insights into the process of drug discovery based on the data it actually generates. PMID

  4. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis.

    PubMed

    Jadhav, Ankush; Shanmugham, Buvaneswari; Rajendiran, Anjana; Pan, Archana

    2014-10-01

    Food and waterborne diseases are a growing concern in terms of human morbidity and mortality worldwide, even in the 21st century, emphasizing the need for new therapeutic interventions for these diseases. The current study aims at prioritizing broad-spectrum antibacterial targets, present in multiple food and waterborne bacterial pathogens, through a comparative genomics strategy coupled with a protein interaction network analysis. The pathways unique and common to all the pathogens under study (viz., methane metabolism, d-alanine metabolism, peptidoglycan biosynthesis, bacterial secretion system, two-component system, C5-branched dibasic acid metabolism), identified by comparative metabolic pathway analysis, were considered for the analysis. The proteins/enzymes involved in these pathways were prioritized following host non-homology analysis, essentiality analysis, gut flora non-homology analysis and protein interaction network analysis. The analyses revealed a set of promising broad-spectrum antibacterial targets, present in multiple food and waterborne pathogens, which are essential for bacterial survival, non-homologous to host and gut flora, and functionally important in the metabolic network. The identified broad-spectrum candidates, namely, integral membrane protein/virulence factor (MviN), preprotein translocase subunits SecB and SecG, carbon storage regulator (CsrA), and nitrogen regulatory protein P-II 1 (GlnB), contributed by the peptidoglycan pathway, bacterial secretion systems and two-component systems, were also found to be present in a wide range of other disease-causing bacteria. Cytoplasmic proteins SecG, CsrA and GlnB were considered as drug targets, while membrane proteins MviN and SecB were classified as vaccine targets. The identified broad-spectrum targets can aid in the design and development of antibacterial agents not only against food and waterborne pathogens but also against other pathogens. Copyright © 2014 Elsevier B.V. All rights

  5. Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics.

    PubMed

    Piper, Peter W; Millson, Stefan H

    2012-12-12

    Heat shock protein 90 (Hsp90) is a promising cancer drug target as a molecular chaperone critical for stabilization and activation of several of the oncoproteins that drive cancer progression. Its actions depend upon its essential ATPase, an activity fortuitously inhibited with a very high degree of selectivity by natural antibiotics: notably the actinomycete-derived benzoquinone ansamycins (e.g. geldanamycin) and certain fungal-derived resorcyclic acid lactones (e.g. radicicol). The molecular interactions made by these antibiotics when bound within the ADP/ATP-binding site of Hsp90 have served as templates for the development of several synthetic Hsp90 inhibitor drugs. Much attention now focuses on the clinical trials of these drugs. However, because microbes have evolved antibiotics to target Hsp90, it is probable that they often exploit Hsp90 inhibition when interacting with each other and with plants. Fungi known to produce Hsp90 inhibitors include mycoparasitic, as well as plant-pathogenic, endophytic and mycorrhizal species. The Hsp90 chaperone may, therefore, be a prominent target in establishing a number of mycoparasitic (interfungal), fungal pathogen-plant and symbiotic fungus-plant relationships. Furthermore the Hsp90 family proteins of the microbes that produce Hsp90 inhibitor antibiotics are able to reveal how drug resistance can arise by amino acid changes in the highly conserved ADP/ATP-binding site of Hsp90.

  6. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  7. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  8. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2014-09-01

    protein VAR2CSA. We have extensive data demonstrating that this protein specifically targets sulfated chondroitin sulfate A proteoglycans present on all... chondroitin sulfate A on circulating tumor cells using a evolutionary refined malaria protein B) National Annual PhD meeting in Oncology, March 26-27...malaria protein VAR2CSA when sulfated on carbon 4 of the CS backbone. We have identified CSPG4 as a major protein in breast cancer cells, but also a

  9. Targeting Heat Shock Protein 90 for the Treatment of Malignant Pheochromocytoma

    PubMed Central

    Giubellino, Alessio; Sourbier, Carole; Lee, Min-Jung; Scroggins, Brad; Bullova, Petra; Landau, Michael; Ying, Weiwen; Neckers, Len

    2013-01-01

    Metastatic pheochromocytoma represents one of the major clinical challenges in the field of neuroendocrine oncology. Recent molecular characterization of pheochromocytoma suggests new treatment options with targeted therapies. In this study we investigated the 90 kDa heat shock protein (Hsp90) as a potential therapeutic target for advanced pheochromocytoma. Both the first generation, natural product Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), and the second-generation synthetic Hsp90 inhibitor STA-9090 (ganetespib) demonstrated potent inhibition of proliferation and migration of pheochromocytoma cell lines and induced degradation of key Hsp90 clients. Furthermore, ganetespib induced dose-dependent cytotoxicity in primary pheochromocytoma cells. Using metastatic models of pheochromocytoma, we demonstrate the efficacy of 17-AAG and ganetespib in reducing metastatic burden and increasing survival. Levels of Hsp70 in plasma from the xenograft studies served as a proximal biomarker of drug treatment. Our study suggests that targeting Hsp90 may benefit patients with advanced pheochromocytoma. PMID:23457505

  10. Genus Beta Human Papillomavirus E6 Proteins Vary in Their Effects on the Transactivation of p53 Target Genes

    PubMed Central

    White, Elizabeth A.; Walther, Johanna; Javanbakht, Hassan

    2014-01-01

    ABSTRACT The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help

  11. Targeting tumor cells via EGF receptors: selective toxicity of an HBEGF-toxin fusion protein.

    PubMed

    Chandler, L A; Sosnowski, B A; McDonald, J R; Price, J E; Aukerman, S L; Baird, A; Pierce, G F; Houston, L L

    1998-09-25

    Over-expression of the epidermal growth factor receptor (EGFR) is a hallmark of numerous solid tumors, thus providing a means of selectively targeting therapeutic agents. Heparin-binding epidermal growth factor (HBEGF) binds to EGFRs with high affinity and to heparan sulfate proteoglycans, resulting in increased mitogenic potential compared to other EGF family members. We have investigated the feasibility of using HBEGF to selectively deliver a cytotoxic protein into EGFR-expressing tumor cells. Recombinant fusion proteins consisting of mature human HBEGF fused to the plant ribosome-inactivating protein saporin (SAP) were expressed in Escherichia coli. Purified HBEGF-SAP chimeras inhibited protein synthesis in a cell-free assay and competed with EGF for binding to receptors on intact cells. A construct with a 22-amino-acid flexible linker (L22) between the HBEGF and SAP moieties exhibited an affinity for the EGFR that was comparable to that of HBEGF. The sensitivity to HBEGF-L22-SAP was determined for a variety of human tumor cell lines, including the 60 cell lines comprising the National Cancer Institute Anticancer Drug Screen. HBEGF-L22-SAP was cytotoxic in vitro to a variety of EGFR-bearing cell lines and inhibited growth of EGFR-over-expressing human breast carcinoma cells in vivo. In contrast, the fusion protein had no effect on small-cell lung carcinoma cells, which are EGFR-deficient. Our results demonstrate that fusion proteins composed of HBEGF and SAP exhibit targeting specificity and cytotoxicity that may be of therapeutic value in treating a variety of EGFR-bearing malignancies.

  12. Targeted Protein Degradation by Salmonella under Phagosome-Mimicking Culture Conditions Investigated Using Comparative Peptidomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manes, Nathan P.; Gustin, Jean K.; Rue, Joanne

    2007-04-01

    The pathogen Salmonella enterica is known to cause both food poisoning and typhoid fever. Due to the emergence of antibiotic-resistant isolates and the threat of bioterrorism (e.g., contamination of the food supply), there is a growing need to study this bacterium. In this investigation, comparative peptidomics was used to study Salmonella enterica serovar Typhimurium cultured in either a rich medium or in an acidic, low magnesium, and minimal nutrient medium designed to roughly mimic the macrophage phagosomal compartment (within which Salmonella are known to survive). Native peptides from cleared cell lysates were enriched by using isopropanol extraction and analyzed bymore » using both LC-MS/MS and LC-FTICR-MS. We identified 5,163 distinct peptides originating from 682 proteins and the data clearly indicated that compared to cells cultured in the rich medium, Salmonella cultured in the phagosome-mimicking medium had dramatically higher abundances of a wide variety of protein degradation products, especially from ribosomal proteins. Salmonella from the same cultures were also analyzed by using bottom-up proteomics, and when the peptidomic and proteomic data were analyzed together, two clusters of proteins targeted for proteolysis were tentatively identified. Possible roles of targeted proteolysis by phagocytosed Salmonella are discussed.« less

  13. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    PubMed

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.

    PubMed

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-10

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  15. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    NASA Astrophysics Data System (ADS)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  16. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    PubMed

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  17. Beyond cysteine: recent developments in the area of targeted covalent inhibition.

    PubMed

    Mukherjee, Herschel; Grimster, Neil P

    2018-05-29

    Over the past decade targeted covalent inhibitors have undergone a renaissance due to the clinical validation and regulatory approval of several small molecule therapeutics that are designed to irreversibly modify their target protein. Invariably, these compounds rely on the serendipitous placement of a cysteine residue proximal to the small molecule binding site; while this strategy has afforded numerous successes, it necessarily limits the number of proteins that can be targeted by this approach. This drawback has led several research groups to develop novel methodologies that target non-cysteine residues for covalent modification. Herein, we survey the current literature of warheads that covalently modify non-cysteine amino acids in proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Computational evaluation of new homologous down regulators of Translationally Controlled Tumor Protein (TCTP) targeted for tumor reversion.

    PubMed

    Nayarisseri, Anuraj; Yadav, Mukesh; Wishard, Rohan

    2013-12-01

    The Translationally Controlled Tumor Protein (TCTP) has been investigated for tumor reversion and is a target of cancer therapy. Down regulators which suppress the expression of TCTP can trigger the process of tumor reversion leading to the transformation of tumor cells into revertant cells. The present investigation is a novel protein-protein docking approach to target TCTP by a set of proteins similar to the protein: sorting nexin 6 (SNX6) which is an established down regulator of TCTP. The established down regulator along with its set of most similar proteins were modeled using the PYTHON based software - MODELLER v9.9, followed by structure validation using the Procheck Package. Further TCTP was docked with its established and prospective down regulators using the flexible docking protocol suite HADDOCK. The results were evaluated and ranked according to the RMSD values of the complex and the HADDOCK score, which is a weighted sum of van der Waal's energy, electrostatic energy, restraints violation energy and desolvation energy. Results concluded the protein sorting nexin 6 of Mus musculus to be a better down regulator of TCTP, as compared to the suggested down regulator (Homo sapiens snx6).

  19. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    PubMed

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  20. Administering and Detecting Protein Marks on Arthropods for Dispersal Research.

    PubMed

    Hagler, James R; Machtley, Scott A

    2016-01-28

    Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.

  1. Harnessing Drug Resistance: Using ABC Transporter Proteins To Target Cancer Cells

    PubMed Central

    Leitner, Heather M.; Kachadourian, Remy; Day, Brian J.

    2007-01-01

    The ATP-binding cassette (ABC) class of proteins is one of the most functionally diverse transporter families found in biological systems. Although the abundance of ABC proteins varies between species, they are highly conserved in sequence and often demonstrate similar functions across prokaryotic and eukaryotic organisms. Beginning with a brief summary of the events leading to our present day knowledge of ABC transporters, the purpose of this review is to discuss the potential for utilizing ABC transporters as a means for cellular glutathione (GSH) modulation. GSH is one of the most abundant thiol antioxidants in cells. It is involved in cellular division, protein and DNA synthesis, maintenance of cellular redox status and xenobiotic metabolism. Cellular GSH levels are often altered in many disease states including cancer. Over the past two decades there has been considerable emphasis on methods to sensitize cancer cells to chemotherapeutics and ionization radiation therapy by GSH depletion. We contend that ABC transporters, particularly multi-drug resistant proteins (MRPs), may be used as therapeutic targets for applications aimed at modulation of GSH levels. This review will emphasize MRP-mediated modulation of intracellular GSH levels as a potential alternative and adjunctive approach for cancer therapy. PMID:17585883

  2. Mutant onco-proteins as drug targets: successes, failures, and future prospects.

    PubMed

    McCormick, Frank

    2011-02-01

    Mutant onco-proteins play a direct, causal role in cancer and are therefore considered attractive drug targets. Clinical experience has supported this view, with some exceptions. However, clinical benefit has often been restricted by rapid emergence of drug-resistant clones through several distinct mechanisms. This problem can, in principle, be addressed through cocktails containing several drugs. However, the number of tumors whose survival is dependent on a single, druggable mutant onco-protein is currently unknown. The majority of tumors may be driven either by single drivers that are un-druggable, or by combinations of drivers. In both cases, new approaches will be necessary. Development of systemic RNA interference may be a solution to these problems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: Ranking 1654 human protein targets by assayed compounds and molecular scaffolds

    PubMed Central

    2011-01-01

    Background Since the classic Hopkins and Groom druggable genome review in 2002, there have been a number of publications updating both the hypothetical and successful human drug target statistics. However, listings of research targets that define the area between these two extremes are sparse because of the challenges of collating published information at the necessary scale. We have addressed this by interrogating databases, populated by expert curation, of bioactivity data extracted from patents and journal papers over the last 30 years. Results From a subset of just over 27,000 documents we have extracted a set of compound-to-target relationships for biochemical in vitro binding-type assay data for 1,736 human proteins and 1,654 gene identifiers. These are linked to 1,671,951 compound records derived from 823,179 unique chemical structures. The distribution showed a compounds-per-target average of 964 with a maximum of 42,869 (Factor Xa). The list includes non-targets, failed targets and cross-screening targets. The top-278 most actively pursued targets cover 90% of the compounds. We further investigated target ranking by determining the number of molecular frameworks and scaffolds. These were compared to the compound counts as alternative measures of chemical diversity on a per-target basis. Conclusions The compounds-per-protein listing generated in this work (provided as a supplementary file) represents the major proportion of the human drug target landscape defined by published data. We supplemented the simple ranking by the number of compounds assayed with additional rankings by molecular topology. These showed significant differences and provide complementary assessments of chemical tractability. PMID:21569515

  4. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tuhin; Ghosh, Soumitra; Dixit, Karuna; Ganesan, Varsha; Ramagopal, Udupi A.; Dey, Debayan; Sarma, Siddhartha P.; Ramakumar, Suryanarayanarao; Nagaraja, Valakunja

    2014-06-01

    The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.

  5. Applying a Targeted Label-free Approach using LC-MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Jaitly, Navdeep; Jayachandran, Hemalatha

    2007-10-12

    To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative Phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation sitemore » and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.« less

  6. Plasmonic welded single walled carbon nanotubes on monolayer graphene for sensing target protein

    NASA Astrophysics Data System (ADS)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-05-01

    We developed plasmonic welded single walled carbon nanotubes (SWCNTs) on monolayer graphene as a biosensor to detect target antigen molecules, fc fusion protein without any treatment to generate binder groups for linker and antibody. This plasmonic welding induces atomic networks between SWCNTs as junctions containing carboxylic groups and improves the electrical sensitivity of a SWCNTs and the graphene membrane to detect target protein. We investigated generation of the atomic networks between SWCNTs by field-emission scanning electron microscopy and atomic force microscopy after plasmonic welding process. We compared the intensity ratios of D to G peaks from the Raman spectra and electrical sheet resistance of welded SWCNTs with the results of normal SWCNTs, which decreased from 0.115 to 0.086 and from 10.5 to 4.12, respectively. Additionally, we measured the drain current via source/drain voltage after binding of the antigen to the antibody molecules. This electrical sensitivity of the welded SWCNTs was 1.55 times larger than normal SWCNTs.

  7. The Flavonoid Apigenin Downregulates CDK1 by Directly Targeting Ribosomal Protein S9

    PubMed Central

    Iizumi, Yosuke; Oishi, Masakatsu; Taniguchi, Tomoyuki; Goi, Wakana; Sowa, Yoshihiro; Sakai, Toshiyuki

    2013-01-01

    Flavonoids have been reported to inhibit tumor growth by causing cell cycle arrest. However, little is known about the direct targets of flavonoids in tumor growth inhibition. In the present study, we developed a novel method using magnetic FG beads to purify flavonoid-binding proteins, and identified ribosomal protein S9 (RPS9) as a binding partner of the flavonoid apigenin. Similar to treatment with apigenin, knockdown of RPS9 inhibited the growth of human colon cancer cells at the G2/M phase by downregulating cyclin-dependent kinase 1 (CDK1) expression at the promoter level. Furthermore, knockdown of RPS9 suppressed G2/M arrest caused by apigenin. These results suggest that apigenin induces G2/M arrest at least partially by directly binding and inhibiting RPS9 which enhances CDK1 expression. We therefore raise the possibility that identification of the direct targets of flavonoids may contribute to the discovery of novel molecular mechanisms governing tumor growth. PMID:24009741

  8. Homology modeling and virtual screening to discover potent inhibitors targeting the imidazole glycerophosphate dehydratase protein in Staphylococcus xylosus

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua

    2017-11-01

    The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus (S. xylosus) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus. Nine hits were identified from 2500 compounds by docking studies. Then, these 9 compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus. Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

  9. Homology Modeling and Virtual Screening to Discover Potent Inhibitors Targeting the Imidazole Glycerophosphate Dehydratase Protein in Staphylococcus xylosus.

    PubMed

    Chen, Xing-Ru; Wang, Xiao-Ting; Hao, Mei-Qi; Zhou, Yong-Hui; Cui, Wen-Qiang; Xing, Xiao-Xu; Xu, Chang-Geng; Bai, Jing-Wen; Li, Yan-Hua

    2017-01-01

    The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus ( S. xylosus ) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus . Nine hits were identified from 2,500 compounds by docking studies. Then, these nine compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus . Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.

  10. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  11. A genetically encoded and gate for cell-targeted metabolic labeling of proteins.

    PubMed

    Mahdavi, Alborz; Segall-Shapiro, Thomas H; Kou, Songzi; Jindal, Granton A; Hoff, Kevin G; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F; Silberg, Jonathan J; Tirrell, David A

    2013-02-27

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNA(Met). Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within 5 min after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals.

  12. A Genetically Encoded AND Gate for Cell-Targeted Metabolic Labeling of Proteins

    PubMed Central

    Mahdavi, Alborz; Segall-Shapiro, Thomas H.; Kou, Songzi; Jindal, Granton A.; Hoff, Kevin G.; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F.; Silberg, Jonathan J.; Tirrell, David A.

    2013-01-01

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNAMet. Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within five minutes after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals. PMID:23406315

  13. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    PubMed

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Development of Cell‐Permeable, Non‐Helical Constrained Peptides to Target a Key Protein–Protein Interaction in Ovarian Cancer

    PubMed Central

    Wiedmann, Mareike M.; Tan, Yaw Sing; Wu, Yuteng; Aibara, Shintaro; Xu, Wenshu; Sore, Hannah F.; Verma, Chandra S.; Itzhaki, Laura; Stewart, Murray; Brenton, James D.

    2016-01-01

    Abstract There is a lack of current treatment options for ovarian clear cell carcinoma (CCC) and the cancer is often resistant to platinum‐based chemotherapy. Hence there is an urgent need for novel therapeutics. The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in CCC and is seen as an attractive therapeutic target. This was validated through shRNA‐mediated knockdown of the target protein, HNF1β, in five high‐ and low‐HNF1β‐expressing CCC lines. To inhibit the protein function, cell‐permeable, non‐helical constrained proteomimetics to target the HNF1β–importin α protein–protein interaction were designed, guided by X‐ray crystallographic data and molecular dynamics simulations. In this way, we developed the first reported series of constrained peptide nuclear import inhibitors. Importantly, this general approach may be extended to other transcription factors. PMID:27918136

  15. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.

    PubMed

    Sail, Vibhavari; Rizzo, Alessandro A; Chatterjee, Nimrat; Dash, Radha C; Ozen, Zuleyha; Walker, Graham C; Korzhnev, Dmitry M; Hadden, M Kyle

    2017-07-21

    Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.

  16. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR.

    PubMed

    Bruggisser, Julia; Käser, Sandro; Mani, Jan; Schneider, André

    2017-02-24

    The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei , is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Metformin targets multiple signaling pathways in cancer.

    PubMed

    Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi

    2017-01-26

    Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.

  18. Experiment research on infrared targets signature in mid and long IR spectral bands

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Hong, Pu; Lei, Bo; Yue, Song; Zhang, Zhijie; Ren, Tingting

    2013-09-01

    Since the infrared imaging system has played a significant role in the military self-defense system and fire control system, the radiation signature of IR target becomes an important topic in IR imaging application technology. IR target signature can be applied in target identification, especially for small and dim targets, as well as the target IR thermal design. To research and analyze the targets IR signature systematically, a practical and experimental project is processed under different backgrounds and conditions. An infrared radiation acquisition system based on a MWIR cooled thermal imager and a LWIR cooled thermal imager is developed to capture the digital infrared images. Furthermore, some instruments are introduced to provide other parameters. According to the original image data and the related parameters in a certain scene, the IR signature of interested target scene can be calculated. Different background and targets are measured with this approach, and a comparison experiment analysis shall be presented in this paper as an example. This practical experiment has proved the validation of this research work, and it is useful in detection performance evaluation and further target identification research.

  19. The OncoPPi Portal: an integrative resource to explore and prioritize protein-protein interactions for cancer target discovery. | Office of Cancer Genomics

    Cancer.gov

    Motivation: As cancer genomics initiatives move toward comprehensive identification of genetic alterations in cancer, attention is now turning to understanding how interactions among these genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data suggest a highly promising role of cancer-specific protein-protein interactions (PPIs) as druggable cancer targets. However, large-scale experimental identification of cancer-related PPIs remains challenging, and currently available resources to explore oncogenic PPI networks are limited.

  20. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation.

    PubMed

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-06-01

    Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G 2 /M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules. In addition, our studies of S. cerevisiae sake yeast strains revealed that Rim15p also plays a significant role in the control of alcoholic fermentation. Despite an extensive history of research on glycolysis and alcoholic fermentation, there has been no critical clue to artificial modification of fermentation performance of yeast cells. Our finding of an in vivo metabolic regulatory mechanism is expected to provide a major breakthrough in yeast breeding technologies for fermentation applications.

  1. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  2. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  3. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Jung, Jinjoo; Koo, Jaeyoung; Cho, Wansang; Lee, Won Seok; Kim, Chanwoo; Park, Wonwoo; Park, Seung Bum

    2016-10-01

    Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.

  4. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.

    PubMed

    Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S

    2012-01-01

    Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. UniDrug-Target is expected to accelerate

  5. The targeting of plant cellular systems by injected type III effector proteins.

    PubMed

    Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell

    2009-12-01

    The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.

  6. Glioma Dual-Targeting Nanohybrid Protein Toxin Constructed by Intein-Mediated Site-Specific Ligation for Multistage Booster Delivery

    PubMed Central

    Chen, Yingzhi; Zhang, Meng; Jin, Hongyue; Li, Dongdong; Xu, Fan; Wu, Aihua; Wang, Jinyu; Huang, Yongzhuo

    2017-01-01

    Malignant glioma is one of the most untreatable cancers because of the formidable blood-brain barrier (BBB), through which few therapeutics can penetrate and reach the tumors. Biologics have been booming in cancer therapy in the past two decades, but their application in brain tumor has long been ignored due to the impermeable nature of BBB against effective delivery of biologics. Indeed, it is a long unsolved problem for brain delivery of macromolecular drugs, which becomes the Holy Grail in medical and pharmaceutical sciences. Even assisting by targeting ligands, protein brain delivery still remains challenging because of the synthesis difficulties of ligand-modified proteins. Herein, we propose a rocket-like, multistage booster delivery system of a protein toxin, trichosanthin (TCS), for antiglioma treatment. TCS is a ribosome-inactivating protein with the potent activity against various solid tumors but lack of specific action and cell penetration ability. To overcome the challenge of its poor druggability and site-specific modification, intein-mediated ligation was applied, by which a gelatinase-cleavable peptide and cell-penetrating peptide (CPP)-fused recombinant TCS toxin can be site-specifically conjugated to lactoferrin (LF), thus constructing a BBB-penetrating, gelatinase-activatable cell-penetrating nanohybrid TCS toxin. This nanohybrid TCS system is featured by the multistage booster strategy for glioma dual-targeting delivery. First, LF can target to the BBB-overexpressing low-density lipoprotein receptor-related protein-1 (LRP-1), and assist with BBB penetration. Second, once reaching the tumor site, the gelatinase-cleavable peptide acts as a separator responsive to the glioma-associated matrix metalloproteinases (MMPs), thus releasing to the CPP-fused toxin. Third, CPP mediates intratumoral and intracellular penetration of TCS toxin, thereby enhancing its antitumor activity. The BBB penetration and MMP-2-activability of this delivery system were

  7. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  8. Targeting G protein-coupled receptor kinases (GRKs) in Heart Failure

    PubMed Central

    Brinks, Henriette; Koch, Walter J

    2010-01-01

    In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF. PMID:21218155

  9. High-throughput docking for the identification of new influenza A virus polymerase inhibitors targeting the PA-PB1 protein-protein interaction.

    PubMed

    Tintori, Cristina; Laurenzana, Ilaria; Fallacara, Anna Lucia; Kessler, Ulrich; Pilger, Beatrice; Stergiou, Lilli; Botta, Maurizio

    2014-01-01

    A high-throughput molecular docking approach was successfully applied for the selection of potential inhibitors of the Influenza RNA-polymerase which act by targeting the PA-PB1 protein-protein interaction. Commercially available compounds were purchased and biologically evaluated in vitro using an ELISA-based assay. As a result, some compounds possessing a 3-cyano-4,6-diphenyl-pyridine nucleus emerged as effective inhibitors with the best ones showing IC50 values in the micromolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. SuperTarget goes quantitative: update on drug–target interactions

    PubMed Central

    Hecker, Nikolai; Ahmed, Jessica; von Eichborn, Joachim; Dunkel, Mathias; Macha, Karel; Eckert, Andreas; Gilson, Michael K.; Bourne, Philip E.; Preissner, Robert

    2012-01-01

    There are at least two good reasons for the on-going interest in drug–target interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget. PMID:22067455

  11. Targeting the GPI biosynthetic pathway.

    PubMed

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  12. Identification of Nuclear Protein Targets for Six Leukemogenic Tyrosine Kinases Governed by Post-Translational Regulation

    PubMed Central

    Pierce, Andrew; Williamson, Andrew; Jaworska, Ewa; Griffiths, John R.; Taylor, Sam; Walker, Michael; O’Dea, Mark Aspinall; Spooncer, Elaine; Unwin, Richard D.; Poolman, Toryn; Ray, David; Whetton, Anthony D.

    2012-01-01

    Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases. PMID:22745689

  13. Actin and microtubule-based cytoskeletal cues direct polarized targeting of proteins in neurons

    PubMed Central

    Arnold, Don B.

    2010-01-01

    Neuronal proteins are transported to either the axon or dendrites through the action of kinesin motors; however understanding of how cytoskeletal elements steer these cargo-motor complexes to one compartment or the other has remained elusive. Three recent developments, the discovery of an actin-based filter within the axon initial segment, the identification of the pivotal role played by myosin motors in dendritic targeting, and the determination of the properties of a kinesin motor that cause it to prefer axonal to dendritic microtubules, have now provided a structural framework for understanding polarized targeting in neurons. PMID:19671926

  14. Wongabel rhabdovirus accessory protein U3 targets the SWI/SNF chromatin remodeling complex.

    PubMed

    Joubert, D Albert; Rodriguez-Andres, Julio; Monaghan, Paul; Cummins, Michelle; McKinstry, William J; Paradkar, Prasad N; Moseley, Gregory W; Walker, Peter J

    2015-01-15

    Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the nucleus and interacts

  15. Wongabel Rhabdovirus Accessory Protein U3 Targets the SWI/SNF Chromatin Remodeling Complex

    PubMed Central

    Joubert, D. Albert; Rodriguez-Andres, Julio; Monaghan, Paul; Cummins, Michelle; McKinstry, William J.; Paradkar, Prasad N.; Moseley, Gregory W.

    2014-01-01

    ABSTRACT Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. IMPORTANCE The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the

  16. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans.

    PubMed

    Alam, Md Ashiqul; Kamlangdee, Niyom; Kelly, Joan M

    2017-08-01

    Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.

  17. Prioritization of Biomarker Targets in Human Umbilical Cord Blood: Identification of Proteins in Infant Blood Serving as Validated Biomarkers in Adults

    PubMed Central

    Hansmeier, Nicole; Chao, Tzu-Chiao; Goldman, Lynn R.; Witter, Frank R.

    2012-01-01

    Background: Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. Objectives: Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. Methods: We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. Results: A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. Conclusions: The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure–disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were

  18. Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain.

    PubMed

    Leontovyc, Ivan; Habart, David; Loukotova, Sarka; Kosinova, Lucie; Kriz, Jan; Saudek, Frantisek; Koblas, Tomas

    2017-01-01

    Cell reprogramming requires efficient delivery of reprogramming transcription factors into the cell nucleus. Here, we compared the robustness and workload of two protein delivery methods that avoid the risk of genomic integration. The first method is based on fusion of the protein of interest to a protein transduction domain (PTD) for delivery across the membranes of target cells. The second method relies on de novo synthesis of the protein of interest inside the target cells utilizing synthetic mRNA (syn-mRNA) as a template. We established a Cre/lox reporter system in three different cell types derived from human (PANC-1, HEK293) and rat (BRIN-BD11) tissues and used Cre recombinase to model a protein of interest. The system allowed constitutive expression of red fluorescence protein (RFP), while green fluorescence protein (GFP) was expressed only after the genomic action of Cre recombinase. The efficiency of protein delivery into cell nuclei was quantified as the frequency of GFP+ cells in the total cell number. The PTD method showed good efficiency only in BRIN-BD11 cells (68%), whereas it failed in PANC-1 and HEK293 cells. By contrast, the syn-mRNA method was highly effective in all three cell types (29-71%). We conclude that using synthetic mRNA is a more robust and less labor-intensive approach than using the PTD-fusion alternative.

  19. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.

    PubMed

    Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya

    2016-04-28

    RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The mRNA-stabilizing factor HuR protein is targeted by β-TrCP protein for degradation in response to glycolysis inhibition.

    PubMed

    Chu, Po-Chen; Chuang, Hsiao-Ching; Kulp, Samuel K; Chen, Ching-Shih

    2012-12-21

    The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, (296)EEAMAIAS(304), in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy.