Sample records for targeted therapeutic approaches

  1. Therapeutic Targeting of Siglecs using Antibody- and Glycan-based Approaches

    PubMed Central

    Angata, Takashi; Nycholat, Corwin M.; Macauley, Matthew S.

    2015-01-01

    The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell-type specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo-delivery and immunomodulation is a promising new approach. Here, we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family. PMID:26435210

  2. Therapeutic gene targeting approaches for the treatment of dyslipidemias and atherosclerosis.

    PubMed

    Mäkinen, Petri I; Ylä-Herttuala, Seppo

    2013-04-01

    Despite improved therapies, cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, new therapeutic approaches are still needed. In the gene therapy field, RNA interference (RNAi) and regulation of microRNAs (miRNAs) have gained a lot of attention in addition to traditional overexpression based strategies. Here, recent findings in therapeutic gene silencing and modulation of small RNA expression related to atherogenesis and dyslipidemia are summarized. Novel gene therapy approaches for the treatment of hyperlipidemia have been addressed. Antisense oligonucleotide and RNAi-based therapies against apolipoprotein B100 and proprotein convertase subtilisin/kexin type 9 have shown already efficacy in preclinical and clinical trials. In addition, several miRNAs dysregulated in atherosclerotic lesions and regulating cholesterol homeostasis have been found, which may represent novel targets for future therapies. New therapies for lowering lipid levels are now being tested in clinical trials, and both antisense oligonucleotide and RNAi-based therapies have shown promising results in lowering cholesterol levels. However, the modulation of inflammatory component in atherosclerosis by gene therapy and targeting of the effects to plaques are still difficult challenges.

  3. Targeting therapeutics to the glomerulus with nanoparticles.

    PubMed

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed

    Straube, Andreas; Aicher, Bernhard; Fiebich, Bernd L; Haag, Gunther

    2011-03-31

    Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.As an example the fixed-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness

  5. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed Central

    2011-01-01

    Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden the array of therapeutic

  6. Novel therapeutic approach targeting the HIF-HRE system in the kidney.

    PubMed

    Nangaku, Masaomi

    2009-01-01

    Recent studies emphasize the role of chronic hypoxia in the tubulointerstitium as a final common pathway to end-stage renal disease. Therefore, therapeutic approaches which target the chronic hypoxia should prove effective against a broad range of renal diseases. Many of hypoxia-triggered protective mechanisms are hypoxia inducible factor (HIF)-dependent. Although HIF-1 alpha and HIF-2 alpha share both structural and functional similarity, they have different localization and can contribute in a non-redundant manner. While gene transfer of constitutively active HIF has been shown effective, pharmacological approaches to activate HIF are more desirable. Oxygen-dependent activation of prolyl hydroxylases (PHD) regulates the amount of HIF by degradation of this transcription factor. Therefore, PHD inhibitors have been the focus of recent studies on novel strategies to stabilize HIF. Cobalt is one of the inhibitors of PHD, and stimulation of HIF with cobalt is effective in a variety of kidney disease models. Furthermore, crystal structures of the catalytic domain of human prolyl hydroxylase 2 have been clarified recently. The structure aids in the design of PHD selective inhibitors for the treatment of hypoxic tissue injury. Current advance has elucidated the detailed mechanism of hypoxia-induced transcription, giving hope for the development of novel therapeutic approaches against hypoxia.

  7. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer.

    PubMed

    Chang, Hae Ryung; Nam, Seungyoon; Lee, Jinhyuk; Kim, Jin-Hee; Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-12-06

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer "Big Data" has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of "hit" compounds.

  8. RNA-Targeted Therapeutics.

    PubMed

    Crooke, Stanley T; Witztum, Joseph L; Bennett, C Frank; Baker, Brenda F

    2018-04-03

    RNA-targeted therapies represent a platform for drug discovery involving chemically modified oligonucleotides, a wide range of cellular RNAs, and a novel target-binding motif, Watson-Crick base pairing. Numerous hurdles considered by many to be impassable have been overcome. Today, four RNA-targeted therapies are approved for commercial use for indications as diverse as Spinal Muscular Atrophy (SMA) and reduction of low-density lipoprotein cholesterol (LDL-C) and by routes of administration including subcutaneous, intravitreal, and intrathecal delivery. The technology is efficient and supports approaching "undruggable" targets. Three additional agents are progressing through registration, and more are in clinical development, representing several chemical and structural classes. Moreover, progress in understanding the molecular mechanisms by which these drugs work has led to steadily better clinical performance and a wide range of mechanisms that may be exploited for therapeutic purposes. Here we summarize the progress, future challenges, and opportunities for this drug discovery platform. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer

    PubMed Central

    Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-01-01

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer “Big Data” has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of “hit” compounds. PMID:27806312

  10. Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.

    PubMed

    Rahman, Wahida; Dickenson, Anthony H

    2015-06-01

    Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.

  11. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer

    PubMed Central

    Rebello, Richard J.; Pearson, Richard B.; Hannan, Ross D.; Furic, Luc

    2017-01-01

    The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential. PMID:28212321

  12. Novel delivery approaches for cancer therapeutics.

    PubMed

    Mitra, Ashim K; Agrahari, Vibhuti; Mandal, Abhirup; Cholkar, Kishore; Natarajan, Chandramouli; Shah, Sujay; Joseph, Mary; Trinh, Hoang M; Vaishya, Ravi; Yang, Xiaoyan; Hao, Yi; Khurana, Varun; Pal, Dhananjay

    2015-12-10

    Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Recent Development of Anticancer Therapeutics Targeting Akt

    PubMed Central

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing

    2013-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830

  14. Emerging therapeutic targets for treatment of leishmaniasis.

    PubMed

    Sundar, Shyam; Singh, Bhawana

    2018-06-01

    Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.

  15. Targeting Vasculature in Urologic Tumors: Mechanistic and Therapeutic Significance

    PubMed Central

    Sakamoto, Shinichi; Ryan, A. Jacqueline; Kyprianou, Natasha

    2008-01-01

    Recent advances toward understanding the molecular mechanisms regulating cancer initiation and progression provide new insights into the therapeutic value of targeting tumor vascularity by interfering with angiogenic signaling pathways. The functional contribution of key angiogenic factors toward increased vascularity characterizing metastatic tumors and their therapeutic exploitation is considered in three major urologic malignancies, renal, bladder, and prostate cancer. With the realization that the success of the therapeutic efficacy of the various anti-angiogenic approaches for the treatment of urologic tumors has yet to be proven clinically, the challenge remains to select critical angiogenesis pathways that can be targeted for an individual tumor. Here we discuss the major mechanisms that support formation of vasculature in renal, bladder, and prostate tumors and the current results of targeting of specific molecules/regulators for therapeutic intervention against metastastic disease. PMID:17668426

  16. Therapeutic targeting of the p53 pathway in cancer stem cells

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  17. RNA therapeutics targeting osteoclast-mediated excessive bone resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W

    2011-01-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356

  18. Active targeted delivery of immune therapeutics to lymph nodes.

    PubMed

    Bahmani, Baharak; Vohra, Ishaan; Kamaly, Nazila; Abdi, Reza

    2018-02-01

    Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.

  19. Advances in sarcoma genomics and new therapeutic targets

    PubMed Central

    Taylor, Barry S.; Barretina, Jordi; Maki, Robert G.; Antonescu, Cristina R.; Singer, Samuel; Ladanyi, Marc

    2012-01-01

    Preface Increasingly, human mesenchymal malignancies are classified by the abnormalities that drive their pathogenesis. While many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities and in many cases are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled to novel therapeutic strategies, have the potential to transform the care of patients with sarcoma. PMID:21753790

  20. Current Therapeutic Approach to Hypertrophic Scars

    PubMed Central

    Mokos, Zrinka Bukvić; Jović, Anamaria; Grgurević, Lovorka; Dumić-Čule, Ivo; Kostović, Krešimir; Čeović, Romana; Marinović, Branka

    2017-01-01

    Abnormal scarring and its accompanying esthetic, functional, and psychological sequelae still pose significant challe nges. To date, there is no satisfactory prevention or treatment option for hypertrophic scars (HSs), which is mostly due to not completely comprehending the mechanisms underlying their formation. That is why the apprehension of regular and controlled physiological processes of scar formation is of utmost importance when facing hypertrophic scarring, its pathophysiology, prevention, and therapeutic approach. When treating HSs and choosing the best treatment and prevention modality, physicians can choose from a plethora of therapeutic options and many commercially available products, among which currently there is no efficient option that can successfully overcome impaired skin healing. This article reviews current therapeutic approach and emerging therapeutic strategies for the management of HSs, which should be individualized, based on an evaluation of the scar itself, patients’ expectations, and practical, evidence-based guidelines. Clinicians are encouraged to combine various prevention and treatment modalities where combination therapy that includes steroid injections, 5-fluorouracil, and pulsed-dye laser seems to be the most effective. On the other hand, the current therapeutic options are usually empirical and their results are unreliable and unpredictable. Therefore, there is an unmet need for an effective, targeted therapy and prevention, which would be based on an action or a modulation of a particular factor with clarified mechanism of action that has a beneficial effect on wound healing. As the extracellular matrix has a crucial role in cellular and extracellular events that lead to pathological scarring, targeting its components mostly by regulating bone morphogenetic proteins may throw up new therapeutic approach for reduction or prevention of HSs with functionally and cosmetically acceptable outcome. PMID:28676850

  1. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  2. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma.

    PubMed

    Gautam, Shailendra K; Kumar, Sushil; Cannon, Andrew; Hall, Bradley; Bhatia, Rakesh; Nasser, Mohd Wasim; Mahapatra, Sidharth; Batra, Surinder K; Jain, Maneesh

    2017-07-01

    Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance. Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC. Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.

  3. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. A Cellular High-Throughput Screening Approach for Therapeutic trans-Cleaving Ribozymes and RNAi against Arbitrary mRNA Disease Targets

    PubMed Central

    Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.

    2016-01-01

    Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a

  5. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

    PubMed Central

    Yu, Bo; Mao, Yicheng; Bai, Li-Yuan; Herman, Sarah E. M.; Wang, Xinmei; Ramanunni, Asha; Jin, Yan; Mo, Xiaokui; Cheney, Carolyn; Chan, Kenneth K.; Jarjoura, David; Marcucci, Guido; Lee, Robert J.; Byrd, John C.

    2013-01-01

    Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif–mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)–conjugated lipopolyplex nanoparticle (RIT-INP)– and Bcl-2–targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell–targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP–G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed. PMID:23165478

  6. S100-alarmins: potential therapeutic targets for arthritis.

    PubMed

    Austermann, Judith; Zenker, Stefanie; Roth, Johannes

    2017-07-01

    In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.

  7. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.

    PubMed

    Kwekkeboom, Rick F J; Lei, Zhiyong; Doevendans, Pieter A; Musters, René J P; Sluijter, Joost P G

    2014-09-01

    Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy.

  8. Disrupting the Scaffold to Improve Focal Adhesion Kinase–Targeted Cancer Therapeutics

    PubMed Central

    Cance, William G.; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-01-01

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer. PMID:23532331

  9. Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics.

    PubMed

    Cance, William G; Kurenova, Elena; Marlowe, Timothy; Golubovskaya, Vita

    2013-03-26

    Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer.

  10. Emerging Therapeutics for Advanced Thyroid Malignancies: Rationale and Targeted Approaches

    PubMed Central

    Harris, Pamela; Bible, Keith C.

    2011-01-01

    Introduction Thyroid cancer is an emerging public health concern. In the U.S., its incidence has doubled in the past decade, making it the 8th most commonly diagnosed neoplasm in 2010. Despite this alarming increase, most thyroid cancer patients benefit from conventional approaches (surgery, radioiodine, radiotherapy, TSH suppression with levothyroxine) and are often cured. Nevertheless, a minority have aggressive tumors resistant to cytotoxic and other historical therapies; these patients sorely need new treatment options. Areas covered Herein the biology and molecular characteristics of the common histological types of thyroid cancer are reviewed to provide context for subsequent discussion of recent developments and emerging therapeutics for advanced thyroid cancers. Expert opinion Several kinase inhibitors, especially those targeting VEGFR and/or RET, have already demonstrated promising activity in differentiated and medullary thyroid cancers (DTC, MTC). Although of minimal benefit in DTC and MTC, cytotoxic chemotherapy with anti-microtubule agents and/or anthracyclines in combination with intensity modulated radiation therapy appears to extend survival for patients with locoregionally-confined anaplastic thyroid cancer (ATC), but to have only modest benefit in metastatic ATC. Further discovery and development of novel agents and combinations of agents will be critical to further progress in treating advanced thyroid cancers of all histotypes. PMID:21910667

  11. New targets for neuropathic pain therapeutics.

    PubMed

    Kinloch, Ross A; Cox, Peter J

    2005-08-01

    Neuropathic pain (NeP) is initiated by a lesion or dysfunction in the nervous system. Unlike physiological pain it serves no useful purpose and is usually sustained and chronic. NeP encompasses a wide range of pain syndromes of diverse aetiologies which together account for > 12 million sufferers in the US. Currently, there are a number of therapies available for NeP, including gabapentin, pregabalin, anticonvulsants (tiagabine HCl), tricyclic antidepressants (amitriptyline, nortriptyline) and acetaminophen/opioid combination products (Vicodin, Tylenol #3). However, these products do not provide sufficient pain relief and a significant proportion of sufferers are refractory (60%). Therefore, there is a need for new therapies that provide more predictable efficacy in all patients with improved tolerability. Over the last decade, understanding of the basic mechanisms contributing to the generation of NeP in preclinical animal models has greatly improved. Together with the completion of the various genome sequencing projects and significant advances in microarray and target validation strategies, new therapeutic approaches are being rigourously pursued. This article reviews the rationale behind a number of these mechanism-based approaches, briefly discusses specific challenges that they face, and finally, speculates on the potential of emerging technologies as alternative therapeutic strategies to the traditional 'small-molecule' approach.

  12. A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation.

    PubMed

    Kleikers, Pamela W M; Hooijmans, Carlijn; Göb, Eva; Langhauser, Friederike; Rewell, Sarah S J; Radermacher, Kim; Ritskes-Hoitinga, Merel; Howells, David W; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2015-08-27

    Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX2 to be a major therapeutic target in stroke. Systematic review and MA of all available NOX2(-/y) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX2 as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.

  13. Therapeutic Potential of Targeting PAK Signaling.

    PubMed

    Senapedis, William; Crochiere, Marsha; Baloglu, Erkan; Landesman, Yosef

    2016-01-01

    The therapeutic potential of targeting p21-Activated Kinases (PAK1 - 6) for the treatment of cancer has recently gained traction in the biotech industry. Many pharmaceutically-viable ATP competitive inhibitors have been through different stages of pre-clinical development with only a single compound evaluated in human trails (PF-3758309). The best studied functional roles of PAK proteins are control of cell adhesion and migration. PAK proteins are known downstream effectors of Ras signaling with PAK expression elevated in cancer (pancreatic, colon, breast, lung and other solid tumors). In addition altered PAK expression is a confirmed driver of this disease, especially in tumors harboring oncogenic Ras. However, there are very few examples of gain-of-function PAK mutations, as a majority of the cancer types have elevated PAK expression due to gene amplification or transcriptional modifications. There is a substantial number of known substrates affected by this aberrant PAK activity. One particular substrate, β-catenin, has garnered interest given its importance in both normal and cancer cell development. These data place PAK proteins between two major signaling pathways in cancer (Ras and β -catenin), making therapeutic targeting of PAKs an intriguing approach for the treatment of a broad array of oncological malignancies.

  14. Novel therapeutic approaches in chondrosarcoma.

    PubMed

    Polychronidou, Genovefa; Karavasilis, Vasilios; Pollack, Seth M; Huang, Paul H; Lee, Alex; Jones, Robin L

    2017-03-01

    Chondrosarcoma is a malignant tumor of bones, characterized by the production of cartilage matrix. Due to lack of effective treatment for advanced disease, the clinical management of chondrosarcomas is exceptionally challenging. Current research focuses on elucidating the molecular events underlying the pathogenesis of this rare bone malignancy, with the goal of developing new molecularly targeted therapies. Signaling pathways suggested to have a role in chondrosarcoma include Hedgehog, Src, PI3k-Akt-mTOR and angiogenesis. Mutations in IDH1/2, present in more than 50% of primary conventional chondrosarcomas, make the development of IDH inhibitors a promising treatment option. The present review discusses the preclinical and early clinical data on novel targeted therapeutic approaches in chondrosarcoma.

  15. Novel Therapeutic Targets for Chronic Migraine

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-11-1-0647 TITLE: Novel Therapeutic Targets for Chronic Migraine PRINCIPAL INVESTIGATORS: Peter Goadsby CONTRACTING...Therapeutic Targets for Chronic Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0647 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Peter Goadsby, M.D...ABSTRACT Chronic migraine is a disabling disorder that affects millions of individuals worldwide, and may result from traumatic brain injury. The purpose of

  16. Therapeutic approaches targeting intestinal microflora in inflammatory bowel disease

    PubMed Central

    Andoh, Akira; Fujiyama, Yoshihide

    2006-01-01

    Inflammatory bowel diseases, ulcerative colitis, and Crohn’s disease, are chronic intestinal disorders of unknown etiology in which in genetically susceptible individuals, the mucosal immune system shows an aberrant response towards commensal bacteria. The gastrointestinal tract has developed ingenious mechanisms to coexist with its autologous microflora, but rapidly responds to invading pathogens and then returns to homeostasis with its commensal bacteria after the pathogenic infection is cleared. In case of disruption of this tightly-regulated homeostasis, chronic intestinal inflammation may be induced. Previous studies showed that some commensal bacteria are detrimental while others have either no influence or have a protective action. In addition, each host has a genetically determined response to detrimental and protective bacterial species. These suggest that therapeutic manipulation of imbalance of microflora can influence health and disease. This review focuses on new insights into the role of commensal bacteria in gut health and disease, and presents recent findings in innate and adaptive immune interactions. Therapeutic approaches to modulate balance of intestinal microflora and their potential mechanisms of action are also discussed. PMID:16874854

  17. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo.

    PubMed

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G; Halas, Naomi J; Joshi, Amit

    2010-12-08

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions.

  18. Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo

    PubMed Central

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F.; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions. PMID:21090693

  19. Pleiotropic effects of statins: new therapeutic targets in drug design.

    PubMed

    Bedi, Onkar; Dhawan, Veena; Sharma, P L; Kumar, Puneet

    2016-07-01

    The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.

  20. Investigational CD33-targeted therapeutics for acute myeloid leukemia.

    PubMed

    Walter, Roland B

    2018-04-01

    There is long-standing interest in drugs targeting the myeloid differentiation antigen CD33 in acute myeloid leukemia (AML). Positive results from randomized trials with the antibody-drug conjugate (ADC) gemtuzumab ozogamicin (GO) validate this approach. Partly stimulated by the success of GO, several CD33-targeted therapeutics are currently in early phase testing. Areas covered: CD33-targeted therapeutics in clinical development include Fc-engineered unconjugated antibodies (BI 836858 [mAb 33.1]), ADCs (SGN-CD33A [vadastuximab talirine], IMGN779), radioimmunoconjugates ( 225 Ac-lintuzumab), bi- and trispecific antibodies (AMG 330, AMG 673, AMV564, 161533 TriKE fusion protein), and chimeric antigen receptor (CAR)-modified immune effector cells. Besides limited data on 225 Ac-lintuzumab showing modest single-agent activity, clinical data are so far primarily available for SGN-CD33A. SGN-CD33A has single-agent activity and has shown encouraging results when combined with an azanucleoside or standard chemotherapeutics. However, concerns about toxicity to the liver and normal hematopoietic cells - the latter leading to early termination of a phase 3 trial - have derailed the development of SGN-CD33A, and its future is uncertain. Expert opinion: Early results from a new generation of CD33-targeted therapeutics are anticipated in the next 2-3 years. Undoubtedly, re-approval of GO in 2017 has changed the landscape and rendered clinical development for these agents more challenging.

  1. Proteoglycans as Target for an Innovative Therapeutic Approach in Chondrosarcoma: Preclinical Proof of Concept.

    PubMed

    Peyrode, Caroline; Weber, Valérie; Voissière, Aurélien; Maisonial-Besset, Aurélie; Vidal, Aurélien; Auzeloux, Philippe; Gaumet, Vincent; Borel, Michèle; Dauplat, Marie-Mélanie; Quintana, Mercedes; Degoul, Françoise; Rédini, Françoise; Chezal, Jean-Michel; Miot-Noirault, Elisabeth

    2016-11-01

    To date, surgery remains the only option for the treatment of chondrosarcoma, which is radio- and chemoresistant due in part to its large extracellular matrix (ECM) and poor vascularity. In case of unresectable locally advanced or metastatic diseases with a poor prognosis, improving the management of chondrosarcoma still remains a challenge. Our team developed an attractive approach of improvement of the therapeutic index of chemotherapy by targeting proteoglycan (PG)-rich tissues using a quaternary ammonium (QA) function conjugated to melphalan (Mel). First of all, we demonstrated the crucial role of the QA carrier for binding to aggrecan by surface plasmon resonance. In the orthotopic model of Swarm rat chondrosarcoma, an in vivo biodistribution study of Mel and its QA derivative (Mel-QA), radiolabeled with tritium, showed rapid radioactivity accumulation in healthy cartilaginous tissues and tumor after [ 3 H]-Mel-QA injection. The higher T/M ratio of the QA derivative suggests some advantage of QA-active targeting of chondrosarcoma. The antitumoral effects were characterized by tumor volume assessment, in vivo 99m Tc-NTP 15-5 scintigraphic imaging of PGs, 1 H-HRMAS NMR spectroscopy, and histology. The conjugation of a QA function to Mel did not hamper its in vivo efficiency and strongly improved the tolerability of Mel leading to a significant decrease of side effects (hematologic analyses and body weight monitoring). Thus, QA conjugation leads to a significant improvement of the therapeutic index, which is essential in oncology and enable repeated cycles of chemotherapy in patients with chondrosarcoma. Mol Cancer Ther; 15(11); 2575-85. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. IMPACT: Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets, Complementary/Innovative Treatments, and Therapeutic Modalities

    DTIC Science & Technology

    2013-02-01

    therapies (surgery, radiation and chemotherapy) have reached a therapeutic ceiling in improving the five- year overall survival rate of non-small cell...poor understanding of the disease and its resistance to the therapy . Lung cancer is a heterogeneous disease, resulting from accumulated genetic... a new promising approach to treatment of lung cancer. The program project IMPACT has proposed to integrate targeted therapy in the lung cancer

  3. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  4. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    PubMed

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    PubMed Central

    Viola, Joana R.; Rafael, Diana F.; Wagner, Ernst; Besch, Robert; Ogris, Manfred

    2013-01-01

    Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed. PMID:23634303

  6. Targeting MDM4 as a Novel Therapeutic Approach for Hematologic Malignancies.

    PubMed

    Cao, Lei; Fan, Lei; Xu, Wei; Li, Jian-Yong

    2015-01-01

    Mouse double minute 4 (MDM4) as a member of MDM family, is an oncogene emerging as an imperative negative regulator of p53. Tumor suppressor protein p53 plays a crucial role in cell cycle arrest, apoptosis and homeostasis. It has been reported that frequent inactivation of p53 was observed in numerous human cancers including hematologic malignancies. MDM4, the newly discovered modulator of p53 protein, is frequently amplified in various solid tumors such as cutaneous melanoma, retinoblastoma and hematological malignances such as chronic lymphocytic leukemia, acute myeloid leukemia and mantle cell lymphoma. Multiple evidences implicate that over-expression of MDM4 is associated with tumor progression and poor prognosis which can be reversed by knockdown of MDM4 expression or restoration of p53 function, and support the rationale for the design of future MDM4-specific therapeutics. This article discusses and focuses on using MDM4 as a novel biomarker as well as a therapeutic target for hematologic malignancies.

  7. Breast Cancer: Current Molecular Therapeutic Targets and New Players.

    PubMed

    Nagini, Siddavaram

    2017-01-01

    Breast cancer is the most common cancer and the most frequent cause of cancer death among women worldwide. Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer (TNBC) based on histological features. Endocrine therapy, the mainstay of treatment for hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs) and aromatase inhibitors (AIs). Agents that target estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively used therapeutics for breast cancer. Crosstalk between ER and other signalling networks as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. TNBC, a complex, heterogeneous, aggressive form of breast cancer in which the cells do not express ER, progesterone receptor or HER2 is refractory to therapy. Several molecular targets are being explored to target TNBC including androgen receptor, epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, PI3K/Akt signalling pathway, microRNAs (miRs) and long noncoding RNAs (lncRNAs) are potential therapeutic targets. miR-based therapeutic approaches include inhibition of oncomiRs by antisense oligonucleotides, restoration of tumour suppressors using miR mimics, and chemical modification of miRs. The lnRNAs HOTAIR, SPRY4-IT1, GAS5, and PANDAR, new players in tumour development and prognosis may have theranostic applications in breast cancer. Several novel classes of mechanism-based drugs have been designed and synthesised for treatment of breast cancer. Integration of nucleic acid sequencing studies with mass spectrometry-based peptide sequencing and posttranslational modifications as

  8. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    PubMed Central

    2012-01-01

    Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting p

  9. MicroRNA-targeted therapeutics for lung cancer treatment.

    PubMed

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  10. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  11. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach.

    PubMed

    Cuadrado, Antonio; Manda, Gina; Hassan, Ahmed; Alcaraz, María José; Barbas, Coral; Daiber, Andreas; Ghezzi, Pietro; León, Rafael; López, Manuela G; Oliva, Baldo; Pajares, Marta; Rojo, Ana I; Robledinos-Antón, Natalia; Valverde, Angela M; Guney, Emre; Schmidt, Harald H H W

    2018-04-01

    Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases. Copyright © 2018 by The Author(s).

  12. Massively parallel de novo protein design for targeted therapeutics.

    PubMed

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J; Hicks, Derrick R; Vergara, Renan; Murapa, Patience; Bernard, Steffen M; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T; Koday, Merika T; Jenkins, Cody M; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M; Fernández-Velasco, D Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A; Fuller, Deborah H; Baker, David

    2017-10-05

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  13. Massively parallel de novo protein design for targeted therapeutics

    NASA Astrophysics Data System (ADS)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-10-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  14. Massively parallel de novo protein design for targeted therapeutics

    PubMed Central

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  15. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor- targeted therapeutics: advantages and limitations

    PubMed Central

    Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610

  16. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Prioritizing therapeutic targets using patient-derived xenograft models

    PubMed Central

    Lodhia, K.A; Hadley, A; Haluska, P; Scott, C.L

    2015-01-01

    Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDX) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximise insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design. PMID:25783201

  18. Cognition As a Therapeutic Target in the Suicidal Patient Approach

    PubMed Central

    da Silva, Antônio Geraldo; Malloy-Diniz, Leandro Fernandes; Garcia, Marina Saraiva; Figueiredo, Carlos Guilherme Silva; Figueiredo, Renata Nayara; Diaz, Alexandre Paim; Palha, António Pacheco

    2018-01-01

    The current considerations about completed suicides and suicide attempts in different cultures call the attention of professionals to this serious public health problem. Integrative approaches have shown that the confluence of multiple biological and social factors modulate various psychopathologies and dysfunctional behaviors, such as suicidal behavior. Considering the level of intermediate analysis, personality traits and cognitive functioning are also of great importance for understanding the suicide phenomenon. About cognitive factors, we can group them into cognitive schemas of reality interpretation and underlying cognitive processes. On the other hand, different types of primary cognitive alterations are related to suicidal behavior, especially those resulting from changes in frontostriatal circuits. Among such cognitive mechanisms can be highlighted the attentional bias for environmental cues related to suicide, impulsive behavior, verbal fluency deficits, non-adaptive decision-making, and reduced planning skills. Attentional bias consists in the effect of thoughts and emotions, frequently not conscious, about the perception of environmental stimuli. Suicidal ideation and hopelessness can make the patient unable to find alternative solutions to their problems other than suicide, biasing their attention to environmental cues related to such behavior. Recent research efforts are directed to assess the possible use of attention bias as a therapeutic target in patients presenting suicide behavior. The relationship between impulsivity and suicide has been largely investigated over the last decades, and there is still controversy about the theme. Although there is strong evidence linking impulsivity to suicide attempts. Effective interventions address to reduce impulsivity in clinical populations at higher risk for suicide could help in the prevention. Deficits in problem-solving ability also seem to be distorted in patients who attempt suicide. Understanding

  19. Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches.

    PubMed

    Mocellin, Simone; Rossi, Carlo R; Brandes, Alba; Nitti, Donato

    2006-02-01

    The therapeutic approach to soft tissue sarcomas (STS) has evolved over the past two decades based on the results from randomized controlled trials, which are guiding physicians in the treatment decision-making process. Despite significant improvements in the control of local disease, a significant number of patients ultimately die of recurrent/metastatic disease following radical surgery due to a lack of effective adjuvant treatments. In addition, the characteristic chemoresistance of STS has compromised the therapeutic value of conventional antineoplastic agents in cases of unresectable advanced/metastatic disease. Therefore, novel therapeutic strategies are urgently needed to improve the prognosis of patients with STS. Recent advances in STS biology are paving the way to the development of molecularly targeted therapeutic strategies, the efficacy of which relies not only on the knowledge of the molecular mechanisms underlying cancer development/progression but also on the personalization of the therapeutic regimen according to the molecular features of individual tumours. In this work, we review the state-of-the-art of conventional treatments for STS and summarize the most promising findings in the development of molecularly targeted therapeutic approaches.

  20. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma.

    PubMed

    Kalkan, Rasime

    2015-01-01

    Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics.

  1. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis.

    PubMed

    Nuvolone, Mario; Merlini, Giampaolo

    2017-12-01

    Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.

  2. An innovative and highly drug-tolerant approach for detecting neutralizing antibodies directed to therapeutic antibodies.

    PubMed

    Sloan, John H; Conway, Richard G; Pottanat, Thomas G; Troutt, Jason S; Higgs, Richard E; Konrad, Robert J; Qian, Yue-Wei

    2016-10-01

    Immunogenicity testing of biotherapeutic drugs is a regulatory requirement. Herein, we describe a drug-tolerant assay for detecting neutralizing antibodies against a therapeutic antibody. Excess target of the therapeutic antibody was incorporated into the detection step of an affinity capture elution assay. Signal generated from binding of antidrug antibody (ADA) to the therapeutic antibody was compared with signal from binding of ADA to the therapeutic antibody preincubated with its target. The results demonstrated that the target blocked binding of the therapeutic antibody to neutralizing monkey ADA and to two anti-idiotypic antibodies. This highly drug-tolerant novel approach enables the detection of neutralizing antibodies and allows for one basic assay format to achieve complete characterization of ADA responses.

  3. Challenges in validating candidate therapeutic targets in cancer

    PubMed Central

    Sawyers, Charles L; Hunter, Tony

    2018-01-01

    More than 30 published articles have suggested that a protein kinase called MELK is an attractive therapeutic target in human cancer, but three recent reports describe compelling evidence that it is not. These reports highlight the caveats associated with some of the research tools that are commonly used to validate candidate therapeutic targets in cancer research. PMID:29417929

  4. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Mathematical modeling: an essential tool for the study of therapeutic targeting in solid tumors].

    PubMed

    Saidak, Zuzana; Giacobbi, Anne-Sophie; Morisse, Mony Chenda; Mammeri, Youcef; Galmiche, Antoine

    2017-12-01

    Recent progress in biology has made the study of the medical treatment of cancer more effective, but it has also revealed the large complexity of carcinogenesis and cell signaling. For many types of cancer, several therapeutic targets are known and in some cases drugs against these targets exist. Unfortunately, the target proteins often work in networks, resulting in functional adaptation and the development of resilience/resistance to medical treatment. The use of mathematical modeling makes it possible to carry out system-level analyses for improved study of therapeutic targeting in solid tumours. We present the main types of mathematical models used in cancer research and we provide examples illustrating the relevance of these approaches in molecular oncobiology. © 2017 médecine/sciences – Inserm.

  6. In silico prediction of novel therapeutic targets using gene-disease association data.

    PubMed

    Ferrero, Enrico; Dunham, Ian; Sanseau, Philippe

    2017-08-29

    Target identification and validation is a pressing challenge in the pharmaceutical industry, with many of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. Computational prediction of successful targets could have a considerable impact on attrition rates in the drug discovery pipeline by significantly reducing the initial search space. Here, we explore whether gene-disease association data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by pharmaceutical companies or are already on the market. To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using nested cross-validation and testing on an independent set. We then select the best performing model and use it to make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for proposed therapeutic targets. We observe that the data types with the best predictive power are animal models showing a disease-relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investigation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently proposed in the literature. Our in silico approach shows that data linking genes and diseases is sufficient to predict novel therapeutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypotheses in the target discovery process. Ultimately, more rapid and automated target

  7. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    PubMed Central

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  8. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    PubMed Central

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  9. Critical questions in development of targeted nanoparticle therapeutics.

    PubMed

    Korsmeyer, Richard

    2016-06-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is 'Engineer Better Medicines'. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that the

  10. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Swati; Yadav, Anuradha; Academy of Scientific and Innovative Research

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found thatmore » the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.« less

  11. Recent developments in emerging therapeutic targets of osteoarthritis.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank; Pest, Michael A

    2017-01-01

    Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are currently no effective disease-modifying treatment options. This is in part because of our incomplete understanding of osteoarthritis disease mechanism. This review summarizes recent developments in therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into osteoarthritis pathology and possess potential for progression into preclinical studies. Several candidate pathways and processes that have been identified include chondrocyte autophagy, growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to result from growth factor signaling modulation, such as TGF-β, TGF-α, and FGF; however, the results are context-dependent and require further investigation. Pain assessment studies in rodent surgical models have demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain. Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint health.

  12. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery.

    PubMed

    Vaidya, Bhuvaneshwar; Gupta, Vivek

    2015-08-10

    Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. One target, different effects: a comparison of distinct therapeutic antibodies against the same targets.

    PubMed

    Shim, Hyunbo

    2011-10-31

    To date, more than 30 antibodies have been approved worldwide for therapeutic use. While the monoclonal antibody market is rapidly growing, the clinical use of therapeutic antibodies is mostly limited to treatment of cancers and immunological disorders. Moreover, antibodies against only five targets (TNF-α, HER2, CD20, EGFR, and VEGF) account for more than 80 percent of the worldwide market of therapeutic antibodies. The shortage of novel, clinically proven targets has resulted in the development of many distinct therapeutic antibodies against a small number of proven targets, based on the premise that different antibody molecules against the same target antigen have distinct biological and clinical effects from one another. For example, four antibodies against TNF-α have been approved by the FDA -- infliximab, adalimumab, golimumab, and certolizumab pegol -- with many more in clinical and preclinical development. The situation is similar for HER2, CD20, EGFR, and VEGF, each having one or more approved antibodies and many more under development. This review discusses the different binding characteristics, mechanisms of action, and biological and clinical activities of multiple monoclonal antibodies against TNF-α, HER-2, CD20, and EGFR and provides insights into the development of therapeutic antibodies.

  14. Functional kinomics identifies candidate therapeutic targets in head and neck cancer

    PubMed Central

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M.; Gurley, Kay E.; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G.; Margolin, Adam A.; Grandori, Carla; Kemp, Christopher J.; Méndez, Eduardo

    2014-01-01

    Purpose To identify novel therapeutic drug targets for p53 mutant head and neck squamous cell carcinoma (HNSCC). Experimental Design RNAi kinome viability screens were performed on HNSCC cells including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19Arf. Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was utilized to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets utilizing multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition utilizing a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Results Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2/M cell cycle checkpoint, SFK, PI3K and FAK pathways. RNAi mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53 mutant HNSCC xenograft model. Conclusions WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. PMID:25125259

  15. Functional kinomics identifies candidate therapeutic targets in head and neck cancer.

    PubMed

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M; Gurley, Kay E; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G; Margolin, Adam A; Grandori, Carla; Kemp, Christopher J; Méndez, Eduardo

    2014-08-15

    To identify novel therapeutic drug targets for p53-mutant head and neck squamous cell carcinoma (HNSCC). RNAi kinome viability screens were performed on HNSCC cells, including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19(Arf). Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was used to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets using multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition using a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2-M cell-cycle checkpoint, SFK, PI3K, and FAK pathways. RNAi-mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53-mutant HNSCC xenograft model. WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. ©2014 American Association for Cancer Research.

  16. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy

    PubMed Central

    Spinazzola, Janelle M.; Kunkel, Louis M.

    2016-01-01

    Introduction Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. Areas covered In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. Expert opinion For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation. PMID:28670506

  17. Breast cancer stem cells, EMT and therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they aremore » also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.« less

  18. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target

    PubMed Central

    Cassano, Tommaso; Calcagnini, Silvio; Pace, Lorenzo; De Marco, Federico; Romano, Adele; Gaetani, Silvana

    2017-01-01

    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases. PMID:28210207

  19. Novel Therapeutic Target for the Treatment of Lupus

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-12-1-0205 TITLE: Novel Therapeutic Target for the Treatment of Lupus PRINCIPAL INVESTIGATOR: Lisa Laury-Kleintop...SUBTITLE 5a. CONTRACT NUMBER Novel Therapeutic Target for the Treatment of Lupus 5b. GRANT NUMBER W81XWH-12-1-0205 5c. PROGRAM ELEMENT NUMBER 6...Systemic lupus erythematosus, autoantibodies. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 7 19a. NAME OF

  20. Target Acquired: Progress and Promise of Targeted Therapeutics in the Treatment of Prostate Cancer.

    PubMed

    Stuchbery, Ryan; Kurganovs, Natalie J; McCoy, Patrick J; Nelson, Colleen C; Hayes, Vanessa M; Corcoran, Niall M; Hovens, Christopher M

    2015-01-01

    Cancer is fundamentally a genomic disease caused by mutations or rearrangements in the DNA or epigenetic machinery of a patient. An emerging field in cancer treatment targets key aberrations arising from the mutational landscape of an individual patient's disease rather than employing a cancer-wide cytotoxic therapy approach. In prostate cancer in particular, where there is an observed variation in response to standard treatments between patients with disease of a similar pathological stage and grade, mutationdirected treatment may grow to be a viable tool for clinicians to tailor more effective treatments. This review will describe a number of mutations across multiple forms of cancer that have been successfully antagonised by targeted therapeutics including their identification, the development of targeted compounds to combat them and the development of resistance to these therapies. This review will continue to examine these same mutations in the treatment and management of prostate cancer; the prevalence of targetable mutations in prostate cancer, recent clinical trials of targeted-agents and the potential or limitations for their use.

  1. A new molecular targeted therapeutic approach for renal cell carcinoma with a p16 functional peptide using a novel transporter system.

    PubMed

    Zennami, Kenji; Yoshikawa, Kazuhiro; Kondo, Eisaku; Nakamura, Kogenta; Upsilonamada, Yoshiaki; De Velasco, Marco A; Tanaka, Motoyoshi; Uemura, Hirotsugu; Shimazui, Toru; Akaza, Hideyuki; Saga, Shinsuke; Ueda, Ryuzo; Honda, Nobuaki

    2011-08-01

    Molecular targeting agents have become formidable anticancer weapons showing much promise against refractory tumors and functional peptides and are among the more desirable of these nanobio-tools. Intracellular delivery of multiple functional peptides forms the basis for a potent, non-invasive mode of delivery, providing distinctive therapeutic advantages. We examine the growth suppression efficiency of human renal cell carcinoma (RCC) by single-peptide targeting. We simultaneously introduced p16INK4a tumor suppressor peptides by Wr-T-mediated peptide delivery. Wr-T-mediated transport of p16INK4a functional peptide into 10 RCC lines, lacking expression of the p16INK4a molecule, reversed the specific loss of p16 function, thereby drastically inhibiting tumor growth in all but 3 lines by >95% within the first 96 h. In vivo analysis using SK-RC-7 RCC xenografts in nude mice demonstrated tumor growth inhibition by the p16INK4a peptide alone, however, inoculation of Wr-T and the p16INK4a functional peptide mixture, via the heart resulted in complete tumor regression. Thus, restoration of tumor suppressor function with Wr-T peptide delivery represents a powerful approach, with mechanistic implications for the development of efficacious molecular targeting therapeutics against intractable RCC.

  2. Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment.

    PubMed

    Kim, Ye-Ram; Yang, Chul-Su

    2017-09-28

    Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

  3. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities.

    PubMed

    Au, Jessie L-S; Yeung, Bertrand Z; Wientjes, Michael G; Lu, Ze; Wientjes, M Guillaume

    2016-02-01

    Advances in molecular medicine have led to identification of worthy cellular and molecular targets located in extracellular and intracellular compartments. Effectiveness of cancer therapeutics is limited in part by inadequate delivery and transport in tumor interstitium. Parts I and II of this report give an overview on the kinetic processes in delivering therapeutics to their intended targets, the transport barriers in tumor microenvironment and extracellular matrix (TME/ECM), and the experimental approaches to overcome such barriers. Part III discusses new concepts and findings concerning nanoparticle-biocorona complex, including the effects of TME/ECM. Part IV outlines the challenges in animal-to-human translation of cancer nanotherapeutics. Part V provides an overview of the background, current status, and the roles of TME/ECM in immune checkpoint inhibition therapy, the newest cancer treatment modality. Part VI outlines the development and use of multiscale computational modeling to capture the unavoidable tumor heterogeneities, the multiple nonlinear kinetic processes including interstitial and transvascular transport and interactions between cancer therapeutics and TME/ECM, in order to predict the in vivo tumor spatiokinetics of a therapeutic based on experimental in vitro biointerfacial interaction data. Part VII provides perspectives on translational research using quantitative systems pharmacology approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  5. TARGETING POLYMER THERAPEUTICS TO BONE

    PubMed Central

    Low, Stewart; Kopeček, Jindřich

    2012-01-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides an unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems. PMID:22316530

  6. Astrocytes Pathology in ALS: A Potential Therapeutic Target?

    PubMed

    Johann, Sonja

    2017-01-01

    The mechanisms underlying neurodegeneration in amyotrophic lateral sclerosis (ALS) are multifactorial and include genetic and environmental factors. Nowadays, it is well accepted that neuronal loss is driven by non-cell autonomous toxicity. Non-neuronal cells, such as astrocytes, have been described to significantly contribute to motoneuron cell death and disease progression in cell culture experiments and animal models of ALS. Astrocytes are essential for neuronal survival and function by regulating neurotransmitter and ion homeostasis, immune response, blood flow and glucose uptake, antioxidant defence and growth factor release. Based on their significant functions in "housekeeping" the central nervous system (CNS), they are no longer thought to be passive bystanders but rather contributors to ALS pathogenesis. Findings from animal models have broadened our knowledge about different pathomechanisms in ALS, but therapeutic approaches to impede disease progression failed. So far, there is no cure for ALS and effective medication to slow down disease progression is limited. Targeting only a single aspect of this multifactorial disease may exhibit therapeutic limitations. Hence, novel cellular targets must be defined and new pharmaceutical strategies, such as combinatorial drug therapies are urgently needed. The present review discusses the physiological role of astrocytes and current hypotheses of astrocyte pathology in ALS. Furthermore, recent investigation of potential drug candidates in astrocyte cell culture systems and animal models, as well as data obtained from clinical trials, will be addressed. The central role of astrocytes in ALS pathogenesis makes them a promising target for pharmaceutical interventions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Current progress on aptamer-targeted oligonucleotide therapeutics

    PubMed Central

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  8. Therapeutic Innovations for Targeting Hepatoblastoma.

    PubMed

    Garnier, Agnès; Ilmer, Matthias; Kappler, Roland; Berger, Michael

    2016-11-01

    Hepatoblastoma is the most common pediatric liver tumor. Despite recent advances in treatment with surgery and chemotherapy, the prognosis in advanced stages remains poor. The neurokinin-1 receptor (NK1R) has recently been described to be pivotal in the development of cancer. Furthermore, overwhelming evidence now exists showing that pharmacological manipulation of NK1R can cause a robust anticancer effect. Consequently, NK1R antagonists, such as the clinical drug aprepitant, are under current investigation as future innovative anticancer agents. In that sense, new evidence suggests that NK1R is highly expressed in human hepatoblastoma and can be targeted to create a robust inhibiton of tumor growth in vivo and in vitro. The mechanisms behind this effect are only now being investigated but already reveal an arsenal of therapeutic possibilities. Our article describes the most recent developments in the field of therapeutic NK1R inhibition in cancer and focuses particularly on the newly discovered molecular mechanisms involved when targeting NK1R in hepatoblastoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?

    PubMed Central

    Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T

    2016-01-01

    Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709

  10. Neuroendocrine tumors: insights into innovative therapeutic options and rational development of targeted therapies.

    PubMed

    Barbieri, Federica; Albertelli, Manuela; Grillo, Federica; Mohamed, Amira; Saveanu, Alexandru; Barlier, Anne; Ferone, Diego; Florio, Tullio

    2014-04-01

    Neuroendocrine tumors (NETs) are heterogeneous neoplasms with respect to molecular characteristics and clinical outcome. Although slow-growing, NETs are often late diagnosed, already showing invasion of adjacent tissues and metastases. Precise knowledge of NET biological and molecular features has opened the door to the identification of novel pharmacological targets. Therapeutic options include somatostatin analogs, alone or in combination with interferon-α, multi-targeted tyrosine kinase inhibitors (e.g. sunitinib) or mammalian target of rapamycin (mTOR) inhibitors (e.g. everolimus). Antiangiogenic approaches and anti insulin-like growth factor receptor (IGFR) compounds have been also proposed as combination therapies with the aforementioned compounds. This review will focus on recent studies that have improved therapeutic strategies in NETs, discussing management challenges such as drug resistance development as well as focusing on the need for predictive biomarkers to design distinct drug combinations and optimize pharmacological control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Role of Vascular and Lymphatic Endothelial Cells in Hantavirus Pulmonary Syndrome Suggests Targeted Therapeutic Approaches

    PubMed Central

    Gorbunova, Elena E.; Dalrymple, Nadine A.; Gavrilovskaya, Irina N.

    2013-01-01

    Abstract Background Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. Results We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Conclusions Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease. PMID:24024573

  12. Role of vascular and lymphatic endothelial cells in hantavirus pulmonary syndrome suggests targeted therapeutic approaches.

    PubMed

    Mackow, Erich R; Gorbunova, Elena E; Dalrymple, Nadine A; Gavrilovskaya, Irina N

    2013-09-01

    Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

  13. Nanoparticle-based targeted therapeutics in head-and-neck cancer.

    PubMed

    Wu, Ting-Ting; Zhou, Shui-Hong

    2015-01-01

    Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.

  14. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics.

    PubMed

    Akhter, Md Habban; Rizwanullah, Md; Ahmad, Javed; Ahsan, Mohamed Jawed; Mujtaba, Md Ali; Amin, Saima

    2018-08-01

    Cancer has been growing nowadays consequently high number of death ascertained worldwide. The medical intervention involves chemotherapy, radiation therapy and surgical removal. This conventional technique lacking targeting potential and harm the normal cells. In drug treatment regimen, the combination therapy is preferred than single drug treatment module due to higher internalization of chemotherapeutics in the cancer cells both by enhance permeation retention effect and by direct cell apoptosis. The cancer therapeutics involves different methodologies of delivering active moiety to the target site. The active and passive transport mode of chemotherapeutic targeting utilizes advance nanocarriers. The nanotechnological strategic treatment applying advance nanocarrier greatly helps in mitigating the cancer prevalence. The nanocarrier-incorporating nanodrug directed for specific area appealed scientist across the globe and issues to be addressed in this regard. Therefore, various techniques and approaches invented to meet the objectives. With the advances in nanomedicine and drug delivery, this review briefly focused on various modes of nanodrug delivery including nanoparticles, liposomes, dendrimer, quantum dots, carbon nanotubes, metallic nanoparticles, nanolipid carrier (NLC), gold nanoshell, nanosize cantilevers and nanowire that looks promising and generates a novel horizon in cancer therapeutics.

  15. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. New approaches to molecular cancer therapeutics.

    PubMed

    Collins, Ian; Workman, Paul

    2006-12-01

    Cancer drug development is leading the way in exploiting molecular biological and genetic information to develop "personalized" medicine. The new paradigm is to develop agents that target the precise molecular pathology driving the progression of individual cancers. Drug developers have benefited from decades of academic cancer research and from investment in genomics, genetics and automation; their success is exemplified by high-profile drugs such as Herceptin (trastuzumab), Gleevec (imatinib), Tarceva (erlotinib) and Avastin (bevacizumab). However, only 5% of cancer drugs entering clinical trials reach marketing approval. Cancer remains a high unmet medical need, and many potential cancer targets remain undrugged. In this review we assess the status of the discovery and development of small-molecule cancer therapeutics. We show how chemical biology approaches offer techniques for interconnecting elements of the traditional linear progression from gene to drug, thereby providing a basis for increasing speed and success in cancer drug discovery.

  17. Molecular Targets in Advanced Therapeutics of Cancers: The Role of Pharmacogenetics.

    PubMed

    Abubakar, Murtala B; Gan, Siew Hua

    2016-01-01

    The advent of advanced molecular targeted therapy has resulted in improved prognoses for patients with advanced malignancies. However, despite the significant success and specificity of this advocated targeted therapy, significant on- and off-target adverse effects and inter-individual variability in treatment responses have been reported. The interpatient variability in drug response has been suggested to be partly due to variations in patient genomes. Therefore, the identification of genetic biomarkers by conducting pharmacogenetics studies can help predict patient responses to targeted therapy and may serve as a basis for individualized treatment. In this review, both clinically established and potential molecular targets are highlighted. Overall, current literature suggests that individualization of targeted therapy is promising; however, integrating the clinical benefits of identified biomarkers into clinical practice for personalized medicine remains a major challenge, and further studies to validate these markers and identify novel therapeutic approaches are needed. © 2016 S. Karger AG, Basel.

  18. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    PubMed

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Past and current perspective on new therapeutic targets for Type-II diabetes.

    PubMed

    Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2017-01-01

    Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.

  20. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  1. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment

    PubMed Central

    Moreno, Paola; Ramos-Álvarez, Irene; Moody, Terry W.; Jensen, Robert T.

    2016-01-01

    Introduction Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth via the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. Areas covered The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. Expert opinion Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing BnRs in common tumors, such as the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds. PMID:26981612

  2. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    PubMed

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma.

    PubMed

    Hanes, Robert; Grad, Iwona; Lorenz, Susanne; Stratford, Eva W; Munthe, Else; Reddy, Chilamakuri Chandra Sekhar; Meza-Zepeda, Leonardo A; Myklebost, Ola

    2016-08-23

    Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2.

  4. Senescent Cells: A Novel Therapeutic Target for Aging and Age-Related Diseases

    PubMed Central

    Naylor, RM; Baker, DJ; van Deursen, JM

    2014-01-01

    Aging is the main risk factor for most chronic diseases, disabilities, and declining health. It has been proposed that senescent cells—damaged cells that have lost the ability to divide—drive the deterioration that underlies aging and age-related diseases. However, definitive evidence for this relationship has been lacking. The use of a progeroid mouse model (which expresses low amounts of the mitotic checkpoint protein BubR1) has been instrumental in demonstrating that p16Ink4a-positive senescent cells drive age-related pathologies and that selective elimination of these cells can prevent or delay age-related deterioration. These studies identify senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. Here, we describe how senescent cells develop, the experimental evidence that causally implicates senescent cells in age-related dysfunction, the chronic diseases and disorders that are characterized by the accumulation of senescent cells at sites of pathology, and the therapeutic approaches that could specifically target senescent cells. PMID:23212104

  5. Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours

    PubMed Central

    2012-01-01

    Background Ewing sarcoma/PNET is managed with treatment paradigms involving combinations of chemotherapy, surgery, and sometimes radiation. Although the 5-year survival rate of non-metastatic disease approaches 70%, those cases that are metastatic and those that recur have 5-year survival rates of less than 20%. Molecularly targeted treatments offer the potential to further improve treatment outcomes. Methods A PUBMED search was performed from 1997 to 2011. Published literature that included the topic of the Ewing sarcoma/PNET was also referenced. Results Insulin-like growth factor-1 receptor (IGF-1R) antagonists have demonstrated modest single agent efficacy in phase I/II clinical trials in Ewing sarcoma/PNET, but have a strong preclinical rationale. Based on in vitro and animal data, treatment using antisense RNA and cDNA oligonucleotides directed at silencing the EWS-FLI chimera that occurs in most Ewing sarcoma/PNET may have potential therapeutic importance. However drug delivery and degradation problems may limit this therapeutic approach. Protein-protein interactions can be targeted by inhibition of RNA helicase A, which binds to EWS/FLI as part of the transcriptional complex. Tumour necrosis factor related apoptosis inducing ligand induction using interferon has been used in preclinical models. Interferons may be incorporated into future chemotherapeutic treatment paradigms. Histone deacetylase inhibitors can restore TGF-β receptor II allowing TFF-β signalling, which appears to inhibit growth of Ewing sarcoma/PNET cell lines in vitro. Immunotherapy using allogeneic natural killer cells has activity in Ewing sarcoma/PNET cell lines and xenograft models. Finally, cyclin dependent kinase inhibitors such as flavopiridol may be clinically efficacious in relapsed Ewing sarcoma/PNET. Conclusion Preclinical evidence exists that targeted therapeutics may be efficacious in the ESFT. IGF-1R antagonists have demonstrated efficacy in phase I/II clinical trials

  6. Therapeutic targeting of RNA splicing in myelodysplasia.

    PubMed

    Kim, Young Joon; Abdel-Wahab, Omar

    2017-07-01

    Genomic analysis of patients with myelodysplastic syndromes (MDS) has identified that mutations within genes encoding RNA splicing factors represent the most common class of genetic alterations in MDS. These mutations primarily affect SF3B1, SRSF2, U2AF1, and ZRSR2. Current data suggest that these mutations perturb RNA splicing catalysis in a manner distinct from loss of function but how exactly the global changes in RNA splicing imparted by these mutations result in MDS is not well delineated. At the same time, cells bearing mutations in RNA splicing factors are exquisitely dependent on the presence of the remaining wild-type (WT) allele to maintain residual normal splicing for cell survival. The high frequency of these mutations in MDS, combined with their mutual exclusivity and noteworthy dependence on the WT allele, make targeting RNA splicing attractive in MDS. To this end, two promising therapeutic approaches targeting RNA splicing are being tested clinically currently. These include molecules targeting core RNA splicing catalysis by interfering with the ability of the SF3b complex to interact with RNA, as well as molecules degrading the auxiliary RNA splicing factor RBM39. The preclinical and clinical evaluation of these compounds are discussed here in addition to their potential as therapies for spliceosomal mutant MDS. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  8. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy.

    PubMed

    Hosseini, Maryam; Haji-Fatahaliha, Mostafa; Jadidi-Niaragh, Farhad; Majidi, Jafar; Yousefi, Mehdi

    2016-06-01

    Cancer is one of the most important causes of death all over the world, which has not yet been treated efficiently. Although several therapeutic approaches have been used, some side effects such as toxicity and drug resistance have been observed in patients, particularly with chemotherapy. The nanoparticle-mediated drug delivery systems (DDS) have a great potential to improve cancer treatment by transferring therapeutic factors directly to the tumor site. Such a treatment significantly decreases the adverse effects associated with cancer therapy on healthy tissues. Two main strategies, including passive and active methods, have been considered to be effective techniques which can target the drugs to the tumor sites. The current review sheds some light on the place of nanotechnology in cancer drug delivery, and introduces nanomaterials and their specific characteristics that can be used in tumor therapy. Moreover, passive and active targeting approaches focus on antibodies, particularly single chain variable fragments (scFv), as a novel and important ligand in a drug delivery system.

  9. Cancer Terminator Viruses and Approaches for Enhancing Therapeutic Outcomes

    PubMed Central

    Das, Swadesh K.; Sarkar, Siddik; Dash, Rupesh; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    No single or combinatorial therapeutic approach has proven effective in decreasing morbidity or engendering a cure of metastatic cancer. In principle, conditionally replication-competent adenoviruses that induce tumor oncolysis through cancer-specific replication hold promise for cancer therapy. However, a single-agent approach may not be adequate to completely eradicate cancer in a patient because most cancers arise from abnormalities in multiple genetic and signal transduction pathways and targeting disseminated metastases is difficult to achieve. Based on these considerations, a novel class of cancer destroying adenoviruses have been produced, cancer terminator viruses (CTVs), in which cancer-specific replication is controlled by the progression-elevated gene-3 promoter and replicating viruses produce a second transgene encoding an apoptosis-inducing and immunomodulatory cytokine, either melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) or interferon-γ. This review focuses on these viruses and ways to improve their delivery systemically and enhance their therapeutic efficacy. PMID:23021240

  10. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma

    PubMed Central

    Bhatt, Shruti; Ashlock, Brittany M.; Natkunam, Yasodha; Sujoy, Victoria; Chapman, Jennifer Rose; Ramos, Juan Carlos; Mesri, Enrique A.; Lossos, Izidore S.

    2013-01-01

    Primary effusion lymphoma (PEL) is an aggressive subtype of non-Hodgkin lymphoma characterized by short survival with current therapies, emphasizing the urgent need to develop new therapeutic approaches. Brentuximab vedotin (SGN-35) is an anti-CD30 monoclonal antibody (cAC10) conjugated by a protease-cleavable linker to a microtubule-disrupting agent, monomethyl auristatin E. Brentuximab vedotin is an effective treatment of relapsed CD30-expressing Classical Hodgkin and systemic anaplastic large cell lymphomas. Herein, we demonstrated that PEL cell lines and primary tumors express CD30 and thus may serve as potential targets for brentuximab vedotin therapy. In vitro treatment with brentuximab vedotin decreased cell proliferation, induced cell cycle arrest, and triggered apoptosis of PEL cell lines. Furthermore, in vivo brentuximab vedotin promoted tumor regression and prolonged survival of mice bearing previously reported UM-PEL-1 tumors as well as UM-PEL-3 tumors derived from a newly established and characterized Kaposi’s sarcoma-associated herpesvirus- and Epstein-Barr virus-positive PEL cell line. Overall, our results demonstrate for the first time that brentuximab vedotin may serve as an effective therapy for PEL and provide strong preclinical indications for evaluation of brentuximab vedotin in clinical studies of PEL patients. PMID:23838350

  11. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    PubMed

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  12. Exosomes Facilitate Therapeutic Targeting of Oncogenic Kras in Pancreatic Cancer

    PubMed Central

    Kamerkar, Sushrut; LeBleu, Valerie S.; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F.; Melo, Sonia A.; Lee, J. Jack; Kalluri, Raghu

    2017-01-01

    Summary The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes, extracellular vesicles generated by all cells, are naturally present in the blood. Here we demonstrate that enhanced retention of exosomes in circulation, compared to liposomes, is due to CD47 mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry siRNA or shRNA specific to oncogenic KRASG12D (iExosomes), a common mutation in pancreatic cancer. Compared to liposomes, iExosomes target oncogenic Kras with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. iExosomes treatment suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased their overall survival. Our results inform on a novel approach for direct and specific targeting of oncogenic Kras in tumors using iExosomes. PMID:28607485

  13. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    PubMed

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Kyles, Philip; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neuro-degeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including: Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington disease (HD). It can be suggested that autophagy dysfunction along with oxidative stress are considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases. PMID:24807843

  15. ROCK as a therapeutic target for ischemic stroke.

    PubMed

    Sladojevic, Nikola; Yu, Brian; Liao, James K

    2017-12-01

    Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.

  16. BCL-2 as a Therapeutic Target in Human Tubulointerstitial Inflammation

    PubMed Central

    Ko, Kichul; Wang, Jianing; Perper, Stuart; Jiang, Yulei; Yanez, Denisse; Kaverina, Natalya; Ai, Junting; Liarski, Vladimir M.; Chang, Anthony; Peng, Yahui; Lan, Li; Westmoreland, Susan; Olson, Lisa; Giger, Maryellen L.; Wang, Li Chun; Clark, Marcus R.

    2016-01-01

    Objective In lupus nephritis (LuN), tubulointerstitial inflammation (TII) is associated with in situ adaptive immune cell networks that amplify local tissue damage. As patients with severe TII often fail conventional therapy and develop renal failure, understanding these in situ mechanisms might reveal new therapeutic targets. We hypothesized that in TII, dysregulated apoptotic regulators maintain local adaptive immunity and drive inflammation. Methods We developed novel computational approaches that, when applied to multicolor confocal images, quantified apoptotic regulator protein expression in selected lymphocyte subsets. This approach was validated using laser capture microdissection (LCM) coupled to qPCR. Furthermore, we explored the consequences of dysregulated apoptotic mediator expression in a murine model of LuN. Results Analyses of renal biopsies from LuN and mixed cellular allograft rejection patients revealed that BCL-2 was frequently expressed in infiltrating lymphocytes while expression of MCL-1 was low. In contrast, the reciprocal pattern of expression was observed in tonsil germinal centers. These results were consistent with RNA expression data obtained using LCM and qPCR. BCL-2 was also highly expressed in tubulointerstitial infiltrates of NZB/W F1 mice. Furthermore, treatment of NZB/W F1 mice with ABT-199, a selective oral inhibitor of BCL-2, prolonged survival and prevented proteinuria and development of TII in a prevention model. Interestingly, glomerular immune complexes were partially ameliorated by ABT-199 and serum anti-dsDNA antibody titers were unaffected. Conclusion These data demonstrate BCL-2 as an attractive therapeutic target in LuN manifesting TII. PMID:27159593

  17. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    PubMed Central

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  18. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors.

    PubMed

    Tosi, Umberto; Marnell, Christopher S; Chang, Raymond; Cho, William C; Ting, Richard; Maachani, Uday B; Souweidane, Mark M

    2017-02-08

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood-brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a "wait-and-see" approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  19. Targeting IFN-λ: therapeutic implications.

    PubMed

    Eslam, Mohammed; George, Jacob

    2016-12-01

    Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects. Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons. Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.

  20. Therapeutic potential of peptide toxins that target ion channels.

    PubMed

    Beraud, Evelyne; Chandy, K George

    2011-10-01

    Traditional healthcare systems in China, India, Greece and the Middle East have for centuries exploited venomous creatures as a resource for medicines. This review focuses on one class of pharmacologically active compounds from venom, namely peptide toxins that target ion channels. We highlight their therapeutic potential and the specific channels they target. The field of therapeutic application is vast, including pain, inflammation, cancer, neurological disorders, cardioprotection, and autoimmune diseases. One of these peptides is in clinical use, and many others are in various stages of pre-clinical and clinical development.

  1. New therapeutic approaches to spinal muscular atrophy.

    PubMed

    Lewelt, Aga; Newcomb, Tara M; Swoboda, Kathryn J

    2012-02-01

    Bench to bedside progress has been widely anticipated for a growing number of neurodegenerative disorders. Of these, spinal muscular atrophy (SMA) is perhaps the best poised to capitalize on advances in targeted therapeutics development over the next few years. Several laboratories have achieved compelling success in SMA animal models using sophisticated methods for targeted delivery, repair, or increased expression of the survival motor neuron protein, SMN. The clinical community is actively collaborating to identify, develop, and validate outcome measures and biomarkers in parallel with laboratory efforts. Innovative trial design and synergistic approaches to maximize proactive care in conjunction with treatment with one or more of the promising pharmacologic and biologic therapies currently in the pipeline will maximize our chances to achieve meaningful outcomes for patients. This review highlights recent promising scientific and clinical advances bringing us ever closer to effective treatment(s) for our patients with SMA.

  2. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases

    PubMed Central

    Bencherif, Merouane; Lippiello, Patrick M.; Lucas, Rudolf; Marrero, Mario B.

    2013-01-01

    In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components. PMID:20953658

  3. Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer.

    PubMed

    Sharma, Horrick

    2018-05-17

    Isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (αKG). IDH 1 and IDH2 regulate several cellular processes, including oxidative respiration, glutamine metabolism, lipogenesis, and cellular defense against oxidative damage. Mutations in IDH1 and IDH2 have recently been observed in multiple tumor types, including gliomas, acute myeloid leukemia, myelodysplastic syndromes, and chondrosarcoma. IDH1 and IDH2 mutations involve a gain in neomorphic activity that catalyze αKG conversion to (R)-2-hydroxyglutarate ((R)-2HG). IDH mutation-mediated accumulation of (R)-2HG result in epigenetic dysregulation, altered gene expression, and a block in cellular differentiation. Targeting mutant IDH by development of small molecule inhibitors is a rapidly emerging therapeutic approach as evidenced by the recent approval of the first selective mutant IDH2 inhibitor AG-221 (Enasidenib) for the treatment of IDH2-mutated AML. This review will focus on mutant isocitrate dehydrogenase as a therapeutic drug target and provides an update on selective and pan-mutant IDH 1/2 inhibitors in clinical trials and other mutant IDH inhibitors that are under development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A modular platform for targeted RNAi therapeutics

    NASA Astrophysics Data System (ADS)

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-01-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  5. A modular platform for targeted RNAi therapeutics.

    PubMed

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan

    2018-03-01

    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs 1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting 4-8 , their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  6. Emerging molecular therapeutic targets for cholangiocarcinoma.

    PubMed

    Rizvi, Sumera; Gores, Gregory J

    2017-09-01

    Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation. CCAs are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early-stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis has better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged, including potential driver fibroblast growth factor receptor (FGFR) gene fusions and somatic mutations in isocitrate dehydrogenase (IDH)1/2 in iCCA, protein kinase cAMP-activated catalytic subunit alpha (PRKACA) or beta (PRKACB) gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, the potentially actionable molecular aberrations in each CCA subtype, and the role of immunotherapy in CCA. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.

    PubMed

    Szebeni, Gabor J; Vizler, Csaba; Nagy, Lajos I; Kitajka, Klara; Puskas, Laszlo G

    2016-11-23

    Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.

  8. Liquid Biopsy and Therapeutic Targets: Present and Future Issues in Thoracic Oncology

    PubMed Central

    Hofman, Paul

    2017-01-01

    The practice of liquid biopsy (LB) has revolutionized the care of patients with metastatic lung cancer. Many oncologists now use this approach in daily practice, applying precise procedures for the detection of activating or resistance mutations in EGFR. These tests are performed with plasma DNA and have been approved as companion diagnostic test for patients treated with tyrosine kinase inhibitors. ALK is another important target in lung cancer since it leads to treatment of patients who are positive for a rearrangement in ALK identified with tumor tissue. By analogy with EGFR, LB for detection of genomic alterations in ALK (rearrangements or mutations) has been rapidly adopted in the clinic. However, this promising approach has some limitations and has not yet been disseminated as much as the blood test targeting EGFR. In addition to these two therapeutic targets LB can be used for evaluation of the genomic status of other genes of interest of patients with lung cancer (ROS1, RET, NTRK MET, BRAF, HER2, etc.). LB can be performed to evaluate a specific target or for a more or less complex panel of genes. Considering the number of potential targets for clinical trials, techniques of next-generation sequencing of circulating DNA are on the rise. This review will provide an update on the contribution of LB to care of patients with metastatic lung cancer, including the present limits of this approach, and will consider certain perspectives. PMID:29125548

  9. Are Th17 cells and their cytokines a therapeutic target in Guillain-Barré syndrome?

    PubMed

    Wu, Xiujuan; Wang, Juan; Liu, Kangding; Zhu, Jie; Zhang, Hong-Liang

    2016-01-01

    Guillain-Barré syndrome (GBS) is an immune-mediated inflammatory disorder of the peripheral nervous system (PNS). Experimental autoimmune neuritis (EAN) is a useful animal model for studying GBS. Currently, GBS remains a life-threatening disorder and more effective therapeutic strategies are in urgent need. Accumulating evidence has revealed that T helper (Th) 17 cells and their cytokines are pathogenic in GBS/EAN. Drugs attenuated clinical signs of GBS/EAN, in part, by decreasing Th17 cells or IL-17A. Th17 cells and their cytokines might be potential therapeutic targets. Approaches targeting Th17 cells or their cytokines are in development in treating Th17 cells-involved disorders. In this review, we summarize the up-to-date knowledge on roles of Th17 cells and their cytokines in GBS/EAN, as well potential approaches targeting Th17 cells and their cytokines as clinical applications. As Th17 cells produce different sets of pro-inflammatory cytokines and Th17-related cytokines are not exclusively produced by Th17 cells, targeting Th17 cell development may be superior to blocking a single Th17 cytokine to treat Th17 cells-involved disorders. Considering the essential role of retinoic acid-related orphan receptor γT (RORγT) and IL-23 in Th17 cell development, RORγT inhibitors or IL-23 antagonists may provide better clinical efficacy in treating GBS/EAN.

  10. Structurally Based Therapeutic Evaluation: A Therapeutic and Practical Approach to Teaching Medicinal Chemistry.

    ERIC Educational Resources Information Center

    Alsharif, Naser Z.; And Others

    1997-01-01

    Explains structurally based therapeutic evaluation of drugs, which uses seven therapeutic criteria in translating chemical and structural knowledge into therapeutic decision making in pharmaceutical care. In a Creighton University (Nebraska) medicinal chemistry course, students apply the approach to solve patient-related therapeutic problems in…

  11. Cardiac Sarcoidosis: Clinical Manifestations, Imaging Characteristics, and Therapeutic Approach

    PubMed Central

    Houston, Brian A; Mukherjee, Monica

    2014-01-01

    Sarcoidosis is a multi-system disease pathologically characterized by the accumulation of T-lymphocytes and mononuclear phagocytes into the sine qua non pathologic structure of the noncaseating granuloma. Cardiac involvement remains a key source of morbidity and mortality in sarcoidosis. Definitive diagnosis of cardiac sarcoidosis, particularly early enough in the disease course to provide maximal therapeutic impact, has proven a particularly difficult challenge. However, major advancements in imaging techniques have been made in the last decade. Advancements in imaging modalities including echocardiography, nuclear spectroscopy, positron emission tomography, and magnetic resonance imaging all have improved our ability to diagnose cardiac sarcoidosis, and in many cases to provide a more accurate prognosis and thus targeted therapy. Likewise, therapy for cardiac sarcoidosis is beginning to advance past a “steroids-only” approach, as novel immunosuppressant agents provide effective steroid-sparing options. The following focused review will provide a brief discussion of the epidemiology and clinical presentation of cardiac sarcoidosis followed by a discussion of up-to-date imaging modalities employed in its assessment and therapeutic approaches. PMID:25452702

  12. A Computational Approach to Finding Novel Targets for Existing Drugs

    PubMed Central

    Li, Yvonne Y.; An, Jianghong; Jones, Steven J. M.

    2011-01-01

    Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects. PMID:21909252

  13. Memory as a new therapeutic target

    PubMed Central

    Nader, Karim; Hardt, Oliver; Lanius, Ruth

    2013-01-01

    This review aims to demonstrate how an understanding of the brain mechanisms involved in memory provides a basis for; (i) reconceptualizing some mental disorders; (ii) refining existing therapeutic tools; and (iii) designing new ones for targeting processes that maintain these disorders. First, some of the stages which a memory undergoes are defined, and the clinical relevance of an understanding of memory processing by the brain is discussed. This is followed by a brief review of some of the clinical studies that have targeted memory processes. Finally, some new insights provided by the field of neuroscience with implications for conceptualizing mental disorders are presented. PMID:24459414

  14. Lead discovery and chemical biology approaches targeting the ubiquitin proteasome system.

    PubMed

    Akinjiyan, Favour A; Carbonneau, Seth; Ross, Nathan T

    2017-10-15

    Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches. Copyright © 2017. Published by Elsevier Ltd.

  15. Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood.

    PubMed

    Li, Jiahe; Sharkey, Charles C; Huang, Dantong; King, Michael R

    During metastasis, circulating tumor cells migrate away from a primary tumor via the blood circulation to form secondary tumors in distant organs. Mounting evidence from clinical observations indicates that the number of circulating tumor cells (CTCs) in the blood correlates with the progression of solid tumors before and during chemotherapy. Beyond the well-established role of CTCs as a fluid biopsy, however, the field of targeting CTCs for the prevention or reduction of metastases has just emerged. Conventional cancer therapeutics have a relatively short circulation time in the blood which may render the killing of CTCs inefficient due to reduced exposure of CTCs to drugs. Nevertheless, over the past few decades, the development of nanoparticles and nanoformulations to improve the half-life and release profile of drugs in circulation has rejuvenated certain traditional medicines in the emerging field of CTC neutralization. This review focuses on how the principles of nanomedicine may be applied to target CTCs. Moreover, inspired by the interactions between CTCs and host cells in the blood circulation, novel biomimetic approaches for targeted drug delivery are presented.

  16. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  17. Stromal cells in breast cancer as a potential therapeutic target

    PubMed Central

    Dykes, Samantha S.; Hughes, Veronica S.; Wiggins, Jennifer M.; Fasanya, Henrietta O.; Tanaka, Mai; Siemann, Dietmar

    2018-01-01

    Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.

  18. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment

    PubMed Central

    Zhang, Yilong; Jain, Rajul K.; Zhu, Min

    2015-01-01

    The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed. PMID:28536405

  19. Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma.

    PubMed

    Crawford, Lisa J; Anderson, Gordon; Johnston, Cliona K; Irvine, Alexandra E

    2016-10-25

    Multiple Myeloma (MM) is a haematological neoplasm characterised by the clonal proliferation of malignant plasma cells in the bone marrow. The success of proteasome inhibitors in the treatment of MM has highlighted the importance of the ubiquitin proteasome system (UPS) in the pathogenesis of this disease. In this study, we analysed gene expression of UPS components to identify novel therapeutic targets within this pathway in MM. Here we demonstrate how this approach identified previously validated and novel therapeutic targets. In addition we show that FZR1 (Fzr), a cofactor of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C), represents a novel therapeutic target in myeloma. The APC/C associates independently with two cofactors, Fzr and Cdc20, to control cell cycle progression. We found high levels of FZR1 in MM primary cells and cell lines and demonstrate that expression is further increased on adhesion to bone marrow stromal cells (BMSCs). Specific knockdown of either FZR1 or CDC20 reduced viability and induced growth arrest of MM cell lines, and resulted in accumulation of APC/CFzr substrate Topoisomerase IIα (TOPIIα) or APC/CCdc20 substrate Cyclin B. Similar effects were observed following treatment with proTAME, an inhibitor of both APC/CFzr and APC/CCdc20. Combinations of proTAME with topoisomerase inhibitors, etoposide and doxorubicin, significantly increased cell death in MM cell lines and primary cells, particularly if TOPIIα levels were first increased through pre-treatment with proTAME. Similarly, combinations of proTAME with the microtubule inhibitor vincristine resulted in enhanced cell death. This study demonstrates the potential of targeting the APC/C and its cofactors as a therapeutic approach in MM.

  20. Proteolytic systems and AMP-activated protein kinase are critical targets of acute myeloid leukemia therapeutic approaches

    PubMed Central

    Pereira, Olga; Sampaio-Marques, Belém; Paiva, Artur; Correia-Neves, Margarida; Castro, Isabel; Ludovico, Paula

    2015-01-01

    The therapeutic strategies against acute myeloid leukemia (AML) have hardly been modified over four decades. Although resulting in a favorable outcome in young patients, older individuals, the most affected population, do not respond adequately to therapy. Intriguingly, the mechanisms responsible for AML cells chemoresistance/susceptibility are still elusive. Mounting evidence has shed light on the relevance of proteolytic systems (autophagy and ubiquitin-proteasome system, UPS), as well as the AMPK pathway, in AML biology and treatment, but their exact role is still controversial. Herein, two AML cell lines (HL-60 and KG-1) were exposed to conventional chemotherapeutic agents (cytarabine and/or doxorubicin) to assess the relevance of autophagy and UPS on AML cells’ response to antileukemia drugs. Our results clearly showed that the antileukemia agents target both proteolytic systems and the AMPK pathway. Doxorubicin enhanced UPS activity while drugs’ combination blocked autophagy specifically on HL-60 cells. In contrast, KG-1 cells responded in a more subtle manner to the drugs tested consistent with the higher UPS activity of these cells. In addition, the data demonstrates that autophagy may play a protective role depending on AML subtype. Specific modulators of autophagy and UPS are, therefore, promising targets for combining with standard therapeutic interventions in some AML subtypes. PMID:25537507

  1. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    PubMed Central

    Conniot, João; Silva, Joana M.; Fernandes, Joana G.; Silva, Liana C.; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena F.; Barata, Teresa S.

    2014-01-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options

  2. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    NASA Astrophysics Data System (ADS)

    Conniot, João; Silva, Joana; Fernandes, Joana; Silva, Liana; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena; Barata, Teresa

    2014-11-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.

  3. The Molecular Phenotype of Endocapillary Proliferation: Novel Therapeutic Targets for IgA Nephropathy

    PubMed Central

    John, Rohan; Grone, Elisabeth; Porubsky, Stefan; Gröne, Hermann-Josef; Herzenberg, Andrew M.; Scholey, James W.; Hladunewich, Michelle; Cattran, Daniel C.

    2014-01-01

    IgA nephropathy (IgAN) is a clinically and pathologically heterogeneous disease. Endocapillary proliferation is associated with higher risk of progressive disease, and clinical studies suggest that corticosteroids mitigate this risk. However, corticosteroids are associated with protean cellular effects and significant toxicity. Furthermore the precise mechanism by which they modulate kidney injury in IgAN is not well delineated. To better understand molecular pathways involved in the development of endocapillary proliferation and to identify novel specific therapeutic targets, we evaluated the glomerular transcriptome of microdissected kidney biopsies from 22 patients with IgAN. Endocapillary proliferation was defined according to the Oxford scoring system independently by 3 nephropathologists. We analyzed mRNA expression using microarrays and identified transcripts differentially expressed in patients with endocapillary proliferation compared to IgAN without endocapillary lesions. Next, we employed both transcription factor analysis and in silico drug screening and confirmed that the endocapillary proliferation transcriptome is significantly enriched with pathways that can be impacted by corticosteroids. With this approach we also identified novel therapeutic targets and bioactive small molecules that may be considered for therapeutic trials for the treatment of IgAN, including resveratrol and hydroquinine. In summary, we have defined the distinct molecular profile of a pathologic phenotype associated with progressive renal insufficiency in IgAN. Exploration of the pathways associated with endocapillary proliferation confirms a molecular basis for the clinical effectiveness of corticosteroids in this subgroup of IgAN, and elucidates new therapeutic strategies for IgAN. PMID:25133636

  4. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases.

    PubMed

    Cho, Christine H; Nuttall, Mark E

    2002-12-01

    Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis

  5. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    PubMed

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  6. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  7. Unbiased Combinatorial Genomic Approaches to Identify Alternative Therapeutic Targets within the TSC Signaling Network

    DTIC Science & Technology

    2014-06-01

    Specifically, we combined the CRISPR genome editing system with a novel approach allowing efficient single cell cloning of Drosophila cells with the aim of...and culture these to produce cultures completely lacking wildtype sequence at the target locus. No robust methods existed to clone single Drosophila ...targeting all kinases and phosphatases (563 genes) in the Drosophila genome . 65 samples that displayed synthetic lethality (15 genes) or synthetic

  8. KRAS as a Therapeutic Target.

    PubMed

    McCormick, Frank

    2015-04-15

    KRAS proteins play a major role in human cancer, but have not yielded to therapeutic attack. New technologies in drug discovery and insights into signaling pathways that KRAS controls have promoted renewed efforts to develop therapies through direct targeting of KRAS itself, new ways of blocking KRAS processing, or by identifying targets that KRAS cancers depend on for survival. Although drugs that block the well-established downstream pathways, RAF-MAPK and PI3K, are being tested in the clinic, new efforts are under way to exploit previously unrecognized vulnerabilities, such as altered metabolic networks, or novel pathways identified through synthetic lethal screens. Furthermore, new ways of suppressing KRAS gene expression and of harnessing the immune system offer further hope that new ways of treating KRAS are finally coming into view. These issues are discussed in this edition of CCR Focus. ©2015 American Association for Cancer Research.

  9. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer

    PubMed Central

    Niiro, Emiko; Morioka, Sachiko; Iwai, Kana; Yamada, Yuki; Ogawa, Kenji; Kawahara, Naoki; Kobayashi, Hiroshi

    2018-01-01

    Cases of mucinous ovarian cancer are predominantly resistant to chemotherapies. The present review summarizes current knowledge of the therapeutic potential of targeting the Wingless (WNT) pathway, with particular emphasis on preclinical and clinical studies, for improving the chemoresistance and treatment of mucinous ovarian cancer. A review was conducted of English language literature published between January 2000 and October 2017 that concerned potential signaling pathways associated with the chemoresistance of mucinous ovarian cancer. The literature indicated that aberrant activation of growth factor and WNT signaling pathways is specifically observed in mucinous ovarian cancer. An evolutionarily conserved signaling cascade system including epidermal growth factor/RAS/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase, phosphoinositide 3-kinase/Akt and WNT signaling regulates a variety of cellular functions; their crosstalk mutually enhances signaling activity and induces chemoresistance. Novel antagonists, modulators and inhibitors have been developed for targeting the components of the WNT signaling pathway, namely Frizzled, low-density lipoprotein receptor-related protein 5/6, Dishevelled, casein kinase 1, AXIN, glycogen synthase kinase 3β and β-catenin. Targeted inhibition of WNT signaling represents a rational and promising novel approach to overcome chemoresistance, and several WNT inhibitors are being evaluated in preclinical studies. In conclusion, the WNT receptors and their downstream components may serve as novel therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. PMID:29564122

  10. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  11. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy.

    PubMed

    Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2016-01-01

    Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.

  12. Therapeutic Targets for Management of Periodontitis and Diabetes

    PubMed Central

    Sima, Corneliu; Van Dyke, Thomas E.

    2016-01-01

    The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from n-3 polyunsaturated fatty acids. PMID:26881443

  13. Therapeutic Targets for Management of Periodontitis and Diabetes

    PubMed Central

    Sima, Corneliu; Van Dyke, Thomas E.

    2016-01-01

    The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from Ω-3 polyunsaturated fatty acids.

  14. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect

    PubMed Central

    Greineder, Colin F.; Brenza, Jacob B.; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D.; Pan, Daniel C.; Ding, Bi-Sen; Esmon, Charles T.; Chacko, Ann Marie; Muzykantov, Vladimir R.

    2015-01-01

    Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood–tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other’s binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.—Greineder, C. F., Brenza, J. B., Carnemolla, R., Zaitsev, S., Hood, E. D., Pan, D. C., Ding, B.-S., Esmon, C. T., Chacko, A. M., Muzykantov, V. R. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect. PMID:25953848

  15. Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer.

    PubMed

    Chamberlin, Mary D; Bernhardt, Erica B; Miller, Todd W

    2016-11-01

    The majority of advanced breast cancers have genetic alterations that are potentially targetable with drugs. Through initiatives such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), data can be mined to provide context for next-generation sequencing (NGS) results in the landscape of advanced breast cancer. Therapies for targets other than estrogen receptor alpha (ER) and HER2, such as cyclin-dependent kinases CDK4 and CDK6, were recently approved based on efficacy in patient subpopulations, but no predictive biomarkers have been found, leaving clinicians to continue a trial-and-error approach with each patient. Next-generation sequencing identifies potentially actionable alterations in genes thought to be drivers in the cancerous process including phosphatidylinositol 3-kinase (PI3K), AKT, fibroblast growth factor receptors (FGFRs), and mutant HER2. Epigenetically directed and immunologic therapies have also shown promise for the treatment of breast cancer via histone deacetylases (HDAC) 1 and 3, programmed T cell death 1 (PD-1), and programmed T cell death ligand 1 (PD-L1). Identifying biomarkers to predict primary resistance in breast cancer will ultimately affect clinical decisions regarding adjuvant therapy in the first-line setting. However, the bulk of medical decision-making is currently made in the secondary resistance setting. Herein, we review the clinical potential of PI3K, AKT, FGFRs, mutant HER2, HDAC1/3, PD-1, and PD-L1 as therapeutic targets in breast cancer, focusing on the rationale for therapeutic development and the status of clinical testing. J. Cell. Biochem. 117: 2454-2463, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Glycoprotein Targeted Therapeutics: A New Era of Anti-Herpes Simplex Virus-1 Therapeutics

    PubMed Central

    Antoine, Thessicar; Park, Paul J.; Shukla, Deepak

    2013-01-01

    Herpes simplex virus type-1 (HSV-1) is among the most common human pathogens worldwide. Its entry into host cells is an intricate process that relies heavily on the ability of the viral glycoproteins to bind host cellular proteins and to efficiently mediate fusion of the virus envelope with the cell membrane. Acquisition of HSV-1 results in a lifelong latent infection. Due to the cycles of reactivation from a latent state, much emphasis has been placed on the management of infection through the use of DNA synthesis inhibitors. However, new methods are needed to provide more effective treatment at earlier phases of the viral infection and to prevent the development of drug resistance by the virus. This review outlines the infection process and the common therapeutics currently used against the fundamental stages of HSV-1 replication and fusion. The remainder of this article will focus on a new approach for HSV-1 infection control and management, the concept of glycoprotein-receptor targeting. PMID:23440920

  17. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  18. Therapeutic target discovery using Boolean network attractors: improvements of kali

    PubMed Central

    Guziolowski, Carito

    2018-01-01

    In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery. PMID:29515890

  19. ALCOHOLIC HEPATITIS: TRANSLATIONAL APPROACHES TO DEVELOP TARGETED THERAPIES

    PubMed Central

    Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu; Gao, Bin

    2016-01-01

    Alcoholic liver disease (ALD) is a leading cause of liver related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with ALD. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of ALD. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20–50% at 3 months). Available therapies are not effective in many patients and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. This review article summarizes the unmet needs for translational studies on the pathogenesis of AH, pre-clinical translational tools, and emerging drug targets to benefit the AH patient. PMID:26940353

  20. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Risk Factors and Therapeutic Targets in Pancreatic Cancer

    PubMed Central

    Wörmann, Sonja Maria; Algül, Hana

    2013-01-01

    Pancreatic cancer (PC) is one of the most challenging tumor entities worldwide, characterized as a highly aggressive disease with dismal overall prognosis and an incidence rate equalling mortality rate. Over the last decade, substantial progress has been made to define the morphological changes and key genetic events in pancreatic carcinogenesis. And yet, it is still unclear what factors trigger PC. Some risk factors appear to be associated with sex, age, race/ethnicity, or other rare genetic conditions. Additionally, modifying factors such as smoking, obesity, diabetes, occupational risk factors, etc., increase the potential for acquiring genetic mutations that may result in PC. Another hallmark of PC is its poor response to radio- and chemo-therapy. Current chemotherapeutic regimens could not provide substantial survival benefit with a clear increase in overall survival. Recently, several new approaches to significantly improve the clinical outcome of PC have been described involving downstream signaling cascades desmoplasia and stromal response as well as tumor microenvironment, immune response, vasculature, and angiogenesis. This review summarizes major risk factors for PC and tries to illuminate relevant targets considerable for new therapeutic approaches. PMID:24303367

  2. Therapeutics Targeting FGF Signaling Network in Human Diseases.

    PubMed

    Katoh, Masaru

    2016-12-01

    Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Novel Therapeutic Targets for Chronic Migraine

    DTIC Science & Technology

    2014-11-01

    A D Award Number: W81XWH-11-1-0646 TITLE: Novel Therapeutic Targets for Chronic Migraine PRINCIPAL INVESTIGATORS: Andrew Charles CONTRACTING...for Chronic Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0646 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew Charles, M.D. and Peter...Chronic migraine is a disabling disorder that affects millions of individuals worldwide, and may result from traumatic brain injury. The purpose of this

  4. Alzheimer's Disease: A Systemic Review of Substantial Therapeutic Targets and the Leading Multi-functional Molecules.

    PubMed

    Umar, Tarana; Hoda, Nasimul

    2017-01-01

    Alzheimer's Disease (AD) is a fatal neurodegenerative disorder, having a complex aetiology with numerous possible drug targets. There are targets that have been known for years while more new targets and theories have also emerged. Beta amyloid and cholinesterases are the most significant biological targets for finding curative treatment of AD. The major class of drugs used for AD till now has been the Cholinesterase (ChE) inhibitors. Other prevailing models of molecular pathogenesis in AD include Neurofibrillary Tangles (NFTs) and amyloid deposition, tryptophan degradation pathway, kinase and phosphatase activity imbalance and neuroinflammation. The beta amyloid aggregation initiates flow of events resulting in neurotoxicity and finally clinical pathogenesis of AD. Furthermore, ApoE is another very significant entity involved in repairing and maintaining the neurons and has important role in neurodegeneration. Neuroinflammation being the primmest symptom for AD is essential to focus on. Multiple factors and complexity in interlinking disease progression pose huge challenge to find one complete curing drug. With so many promising molecules having multiform pharmacological profile from all over the world however facing failures in clinical trials indicates the need to consider all aspects of the old as well as new therapeutic targets of AD. Until the disease mechanism is better understood, it is likely that multiple targeting, symptomatic and diseasemodifying, is the way forward. Most recent approaches to find anti-Alzheimer's agents have focused on multi-target directed agents that include targeting all glorious targets hypothesized against AD. New identification of prototype candidates that could be starting point of a new way of thinking drug design has been done and many drug candidates are under preclinical evaluation. The main focus of this review is to discuss the recent understanding of key targets and the development of potential therapeutic agents for the

  5. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer.

    PubMed

    Chong, Irene Yushing; Aronson, Lauren; Bryant, Hanna; Gulati, Aditi; Campbell, James; Elliott, Richard; Pettitt, Stephen; Wilkerson, Paul; Lambros, Maryou B; Reis-Filho, Jorge S; Ramessur, Anisha; Davidson, Michael; Chau, Ian; Cunningham, David; Ashworth, Alan; Lord, Christopher J

    2017-08-22

    Oesophageal cancer is the seventh most common cause of cancer-related death worldwide. Disease relapse is frequent and treatment options are limited. To identify new biomarker-defined therapeutic approaches for patients with oesophageal cancer, we integrated the genomic profiles of 17 oesophageal tumour-derived cell lines with drug sensitivity data from small molecule inhibitor profiling, identifying drug sensitivity effects associated with cancer driver gene alterations. We also interrogated recently described RNA interference screen data for these tumour cell lines to identify candidate genetic dependencies or vulnerabilities that could be exploited as therapeutic targets. By integrating the genomic features of oesophageal tumour cell lines with siRNA and drug screening data, we identified a series of candidate targets in oesophageal cancer, including a sensitivity to inhibition of the kinase BTK in MYC amplified oesophageal tumour cell lines. We found that this genetic dependency could be elicited with the clinical BTK/ERBB2 kinase inhibitor, ibrutinib. In both MYC and ERBB2 amplified tumour cells, ibrutinib downregulated ERK-mediated signal transduction, cMYC Ser-62 phosphorylation and levels of MYC protein, and elicited G 1 cell cycle arrest and apoptosis, suggesting that this drug could be used to treat biomarker-selected groups of patients with oesophageal cancer. BTK represents a novel candidate therapeutic target in oesophageal cancer that can be targeted with ibrutinib. On the basis of this work, a proof-of-concept phase II clinical trial evaluating the efficacy of ibrutinib in patients with MYC and/or ERBB2 amplified advanced oesophageal cancer is currently underway (NCT02884453). NCT02884453; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Targeting microbial biofilms: current and prospective therapeutic strategies

    PubMed Central

    Koo, Hyun; Allan, Raymond N; Howlin, Robert P; Hall-Stoodley, Luanne; Stoodley, Paul

    2017-01-01

    Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials, and indicates the need for multi-targeted or combinatorial therapies. In this review, we focus on current therapeutic strategies and those that are under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies, and provide a rationale for multi-targeted therapies that are aimed at disrupting the complex biofilm microenvironment. PMID:28944770

  7. Chapter One---Cancer terminator viruses and approaches for enhancing therapeutic outcomes.

    PubMed

    Das, Swadesh K; Sarkar, Siddik; Dash, Rupesh; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B

    2012-01-01

    No single or combinatorial therapeutic approach has proven effective in decreasing morbidity or engendering a cure of metastatic cancer. In principle, conditionally replication-competent adenoviruses that induce tumor oncolysis through cancer-specific replication hold promise for cancer therapy. However, a single-agent approach may not be adequate to completely eradicate cancer in a patient because most cancers arise from abnormalities in multiple genetic and signal transduction pathways and targeting disseminated metastases is difficult to achieve. Based on these considerations, a novel class of cancer destroying adenoviruses have been produced, cancer terminator viruses (CTVs), in which cancer-specific replication is controlled by the progression-elevated gene-3 promoter and replicating viruses produce a second transgene encoding an apoptosis-inducing and immunomodulatory cytokine, either melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) or interferon-γ. This review focuses on these viruses and ways to improve their delivery systemically and enhance their therapeutic efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Therapeutic approaches to preventing cell death in Huntington disease.

    PubMed

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  10. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion

    PubMed Central

    Lin, Peter P.; Gires, Olivier

    2017-01-01

    Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens. PMID:27683128

  11. Neuroproteomics approach and neurosystems biology analysis: ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma.

    PubMed

    Raad, Mohamad; El Tal, Tala; Gul, Rukhsana; Mondello, Stefania; Zhang, Zhiqun; Boustany, Rose-Mary; Guingab, Joy; Wang, Kevin K; Kobeissy, Firas

    2012-12-01

    Several common degenerative mechanisms and mediators underlying the neuronal injury pathways characterize several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's disease, as well as brain neurotrauma. Such common ground invites the emergence of new approaches and tools to study the altered pathways involved in neural injury alongside with neuritogenesis, an intricate process that commences with neuronal differentiation. Achieving a greater understanding of the impaired pathways of neuritogenesis would significantly help in uncovering detailed mechanisms of axonal regeneration. Among the several agents involved in neuritogenesis are the Rho and Rho kinases (ROCKs), which constitute key integral points in the Rho/ROCK pathway that is known to be disrupted in multiple neuropathologies such as spinal cord injury, traumatic brain injury, and Alzheimer's disease. This in turn renders ROCK inhibition as a promising candidate for therapeutic targets for treatment of neurodegenerative diseases. Among the novel tools to investigate the mechanisms involved in a specific disorder is the use of neuroproteomics/systems biology approach, a growing subfield of bioinformatics aiming to study and establishing a global assessment of the entire neuronal proteome, addressing the dynamic protein changes and interactions. This review aims to examine recent updates regarding how neuroproteomics aids in the understanding of molecular mechanisms of activation and inhibition in the area of neurogenesis and how Rho/ROCK pathway/ROCK inhibitors, primarily Y-27632 and Fasudil compounds, are applied in biological settings, promoting neuronal survival and neuroprotection that has direct future implications in neurotrauma. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nutrient sensing pathways as therapeutic targets for healthy ageing.

    PubMed

    Aiello, Anna; Accardi, Giulia; Candore, Giuseppina; Gambino, Caterina Maria; Mirisola, Mario; Taormina, Giusi; Virruso, Claudia; Caruso, Calogero

    2017-04-01

    In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.

  13. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  14. Therapeutic Modalities in Diabetic Nephropathy: Future Approaches*

    PubMed Central

    Reeves, William Brian; Rawal, Bishal B.; Abdel-Rahman, Emaad M.; Awad, Alaa S.

    2012-01-01

    Diabetes mellitus is the leading cause of end stage renal disease and is responsible for more than 40% of all cases in the United States. Several therapeutic interventions for the treatment of diabetic nephropathy have been developed and implemented over the past few decades with some degree of success. However, the renal protection provided by these therapeutic modalities is incomplete. More effective approaches are therefore urgently needed. Recently, several novel therapeutic strategies have been explored in treating DN patients including Islet cell transplant, Aldose reductase inhibitors, Sulodexide (GAC), Protein Kinase C (PKC) inhibitors, Connective tissue growth factor (CTGF) inhibitors, Transforming growth factor-beta (TGF-β) inhibitors and bardoxolone. The benefits and risks of these agents are still under investigation. This review aims to summarize the utility of these novel therapeutic approaches. PMID:23293752

  15. FGFR-targeted therapeutics for the treatment of breast cancer.

    PubMed

    De Luca, Antonella; Frezzetti, Daniela; Gallo, Marianna; Normanno, Nicola

    2017-03-01

    Breast cancer is a complex disease and several molecular drivers regulate its progression. Fibroblast growth factor receptor (FGFR) signaling is frequently deregulated in many cancers, including breast cancer. Due the involvement of the FGFR/FGF axis in the pathogenesis and progression of tumors, FGFR-targeted agents might represent a potential therapeutic option for breast cancer patients. Areas covered: This review offers an overview of targeted agents against FGFRs and their clinical development in breast cancer. The most relevant literature and the latest studies in the Clinicaltrial.com database have been discussed. Expert opinion: FGFR inhibition has been recently considered as a promising therapeutic option for different tumor types. However, preliminary results of clinical trials of FGFR inhibitors in breast cancer have been quite disappointing. In order to increase the clinical benefit of FGFR therapies in breast cancer, future studies should focus on: understanding the role of the various FGFR aberrations in cancer progression; identifying potential biomarkers to select patients that could benefit of FGFR inhibitors and developing therapeutic strategies that improve the efficacy of these agents and minimize toxicities.

  16. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase-a comprehensive drug target database for Lymphatic filariasis

    NASA Astrophysics Data System (ADS)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in.

  17. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach.

    PubMed

    Malhi, Sarandeep; Gu, Xiaochen

    2015-07-01

    Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies. This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics. The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.

  18. A fusion-protein approach enabling mammalian cell production of tumor targeting protein domains for therapeutic development.

    PubMed

    Hu, Jia; Chen, Xiang; Zhang, Xuhua; Yuan, Xiaopeng; Yang, Mingjuan; Dai, Hui; Yang, Wei; Zhou, Qinghua; Wen, Weihong; Wang, Qirui; Qin, Weijun; Zhao, Aizhi

    2018-05-01

    A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (V H ) and light (V L ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development. © 2018 The Protein Society.

  19. [Gap junctions: A new therapeutic target in major depressive disorder?].

    PubMed

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Therapeutic targets and new directions for antibodies developed for ovarian cancer

    PubMed Central

    Bax, Heather J.; Josephs, Debra H.; Pellizzari, Giulia; Spicer, James F.; Montes, Ana; Karagiannis, Sophia N.

    2016-01-01

    ABSTRACT Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential. PMID:27494775

  1. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  2. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases.

    PubMed

    Lee, Eun-Young; Kim, Sunghoon; Kim, Myung Hee

    2018-06-08

    Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases. Copyright © 2018. Published by Elsevier Inc.

  3. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  4. Alcoholic hepatitis: Translational approaches to develop targeted therapies.

    PubMed

    Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu; Gao, Bin

    2016-10-01

    Alcoholic liver disease is a leading cause of liver-related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with alcoholic liver disease. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of alcoholic liver disease. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20%-50% at 3 months). Available therapies are not effective in many patients, and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce the clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. This review summarizes the unmet needs for translational studies on the pathogenesis of AH, preclinical translational tools, and emerging drug targets to benefit the AH patient. (Hepatology 2016;64:1343-1355). © 2016 by the American Association for the Study of Liver Diseases.

  5. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  6. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  7. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies

    PubMed Central

    Mueller, Alan J.; Peffers, Mandy J.; Proctor, Carole J.

    2017-01-01

    ABSTRACT Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top‐down and bottom‐up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1573–1588, 2017. PMID:28318047

  8. Emerging therapeutic targets in metastatic progression: a focus on breast cancer

    PubMed Central

    Li, Zhuo; Kang, Yibin

    2016-01-01

    Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system. PMID:27000769

  9. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    PubMed

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  10. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    PubMed Central

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  11. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  13. Androgen receptor activation: a prospective therapeutic target for bladder cancer?

    PubMed

    Mizushima, Taichi; Tirador, Kathleen A; Miyamoto, Hiroshi

    2017-03-01

    Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.

  14. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  15. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  16. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    PubMed Central

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  17. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach.

    PubMed

    Dahan, Arik; Khamis, Mustafa; Agbaria, Riad; Karaman, Rafik

    2012-08-01

    The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.

  18. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    PubMed

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism

    PubMed Central

    Gorini, Giorgio; Adron Harris, R; Dayne Mayfield, R

    2014-01-01

    Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction. PMID:23900301

  20. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    PubMed Central

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  1. Targeting LGR5 in Colorectal Cancer: therapeutic gold or too plastic?

    PubMed

    Morgan, R G; Mortensson, E; Williams, A C

    2018-05-01

    Leucine-rich repeat-containing G-protein coupled receptor (LGR5 or GPR49) potentiates canonical Wnt/β-catenin signalling and is a marker of normal stem cells in several tissues, including the intestine. Consistent with stem cell potential, single isolated LGR5 + cells from the gut generate self-organising crypt/villus structures in vitro termed organoids or 'mini-guts', which accurately model the parent tissue. The well characterised deregulation of Wnt/β-catenin signalling that occurs during the adenoma-carcinoma sequence in colorectal cancer (CRC) renders LGR5 an interesting therapeutic target. Furthermore, recent studies demonstrating that CRC tumours contain LGR5 + subsets and retain a degree of normal tissue architecture has heightened translational interest. Such reports fuel hope that specific subpopulations or molecules within a tumour may be therapeutically targeted to prevent relapse and induce long-term remissions. Despite these observations, many studies within this field have produced conflicting and confusing results with no clear consensus on the therapeutic value of LGR5. This review will recap the various oncogenic and tumour suppressive roles that have been described for the LGR5 molecule in CRC. It will further highlight recent studies indicating the plasticity or redundancy of LGR5 + cells in intestinal cancer progression and assess the overall merit of therapeutically targeting LGR5 in CRC.

  2. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  3. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair

    PubMed Central

    Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.

    2017-01-01

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622

  4. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease.

    PubMed

    Mitchell, Jesse; Dimov, Vesselin; Townley, Robert G

    2010-05-01

    It is widely accepted that T-helper 2 cell (Th2) cytokines play an important role in the maintenance of asthma and allergy. Emerging evidence has highlighted the role of IL-13 in the pathogenesis of these diseases. In particular, IL-13 is involved in the regulation of IgE synthesis, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration, and has been associated with the regulation of certain chemokine receptors, notably CCR5. Thus, targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. Pharmaceutical and biotechnology companies are researching various strategies, based on this approach, aimed at binding IL-13, increasing the level of the IL-13 decoy receptor, IL-13Ralpha2, or blocking the effect of the chemokine receptor CCR5. This review focuses on the therapeutic potential of anti-IL-13 agents and their role in the treatment of asthma and allergy.

  5. Menstrual Migraine: Therapeutic Approaches

    PubMed Central

    2009-01-01

    The development of diagnostic criteria has enabled greater recognition of menstrual migraine as a highly prevalent and disabling condition meriting specific treatment. Although few therapeutic trials have yet been undertaken in accordance with the criteria, the results of those published to date confirm the efficacy of acute migraine drugs for symptomatic treatment. If this approach is insufficient, the predictability of attacks provides the opportunity for perimenstrual prophylaxis. Continuous contraceptive strategies provide an additional option for management, although clinical trial data are limited. Future approaches to treatment could explore the genomic and nongenomic actions of sex steroids. PMID:21180623

  6. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  7. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    PubMed

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors.

  8. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis.

    PubMed

    Niemietz, Christoph; Chandhok, Gursimran; Schmidt, Hartmut

    2015-09-30

    The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.

  9. Therapeutic target for protozoal diseases

    DOEpatents

    Rathore, Dharmendar [Blacksburg, VA; Jani, Dewal [Blacksburg, VA; Nagarkatti, Rana [Blacksburg, VA

    2008-10-21

    A novel Fasciclin Related Adhesive Protein (FRAP) from Plasmodium and related parasites is provided as a target for therapeutic intervention in diseases caused by the parasites. FRAP has been shown to play a critical role in adhesion to, or invasion into, host cells by the parasite. Furthermore, FRAP catalyzes the neutralization of heme by the parasite, by promoting its polymerization into hemozoin. This invention provides methods and compositions for therapies based on the administration of protein, DNA or cell-based vaccines and/or antibodies based on FRAP, or antigenic epitopes of FRAP, either alone or in combination with other parasite antigens. Methods for the development of compounds that inhibit the catalytic activity of FRAP, and diagnostic and laboratory methods utilizing FRAP are also provided.

  10. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  11. Dana-Farber Cancer Institute: Identification of Therapeutic Targets Across Cancer Types | Office of Cancer Genomics

    Cancer.gov

    The Dana Farber Cancer Institute CTD2 Center focuses on the use of high-throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in cancers. This Center aims to provide the cancer research community with information that will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies, and enable the translation of this information into therapeutics and diagnostics.

  12. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.

    PubMed

    Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele

    2014-01-01

    The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.

  13. MicroRNA as therapeutic targets for treatment of depression

    PubMed Central

    Hansen, Katelin F; Obrietan, Karl

    2013-01-01

    Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. PMID:23935365

  14. Molecular basis of human CD22 function and therapeutic targeting.

    PubMed

    Ereño-Orbea, June; Sicard, Taylor; Cui, Hong; Mazhab-Jafari, Mohammad T; Benlekbir, Samir; Guarné, Alba; Rubinstein, John L; Julien, Jean-Philippe

    2017-10-02

    CD22 maintains a baseline level of B-cell inhibition to keep humoral immunity in check. As a B-cell-restricted antigen, CD22 is targeted in therapies against dysregulated B cells that cause autoimmune diseases and blood cancers. Here we report the crystal structure of human CD22 at 2.1 Å resolution, which reveals that specificity for α2-6 sialic acid ligands is dictated by a pre-formed β-hairpin as a unique mode of recognition across sialic acid-binding immunoglobulin-type lectins. The CD22 ectodomain adopts an extended conformation that facilitates concomitant CD22 nanocluster formation on B cells and binding to trans ligands to avert autoimmunity in mammals. We structurally delineate the CD22 site targeted by the therapeutic antibody epratuzumab at 3.1 Å resolution and determine a critical role for CD22 N-linked glycosylation in antibody engagement. Our studies provide molecular insights into mechanisms governing B-cell inhibition and valuable clues for the design of immune modulators in B-cell dysfunction.The B-cell-specific co-receptor CD22 is a therapeutic target for depleting dysregulated B cells. Here the authors structurally characterize the ectodomain of CD22 and present its crystal structure with the bound therapeutic antibody epratuzumab, which gives insights into the mechanism of inhibition of B-cell activation.

  15. Use of Targeted Therapeutics in Epithelial Ovarian Cancer: A Review of Current Literature and Future Directions.

    PubMed

    Vetter, Monica Hagan; Hays, John L

    2018-03-01

    Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death in the United States. Most patients will ultimately fail platinum-based chemotherapy and have the disease recur. Interest is increasing in the use of targeted therapies in the treatment of EOC. This review focuses on the current use of targeted therapeutics in EOC as well as future directions. A literature search of Medline and PubMed was conducted (January 2000-October 2017) to identify recent reports of targeted drugs in EOC. A wide range of targeted therapeutics is currently being used as both monotherapy and in combination in the treatment of EOC. Clinically, the most commonly used classes of drugs currently are antiangiogenics and poly (ADP-ribose) polymerase inhibitors. However, a number of drugs in varying stages in development target a wide range of biochemical pathways. Activity and response rates of these drugs vary greatly. Questions continue about combination drug therapy and appropriate patient selection. The use of targeted therapeutics in the treatment of EOC, both as monotherapy and in combination, will continue to expand as more mechanisms of tumorigenesis are identified. Multiple clinical trials of a wide range of targeted therapeutics are currently ongoing. Evidence-based selection of drug targets and appropriate patient populations will allow strategic application of targeted therapeutics. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  16. Exploring miRNA based approaches in cancer diagnostics and therapeutics.

    PubMed

    Mishra, Shivangi; Yadav, Tanuja; Rani, Vibha

    2016-02-01

    MicroRNAs (miRNAs), a highly conserved class of tissue specific, small non-protein coding RNAs maintain cell homeostasis by negative gene regulation. Proper controlling of miRNA expression is required for a balanced physiological environment, as these small molecules influence almost every genetic pathway from cell cycle checkpoint, cell proliferation to apoptosis, with a wide range of target genes. Deregulation in miRNAs expression correlates with various cancers by acting as tumor suppressors and oncogenes. Although promising therapies exist to control tumor development and progression, there is a lack of efficient diagnostic and therapeutic approaches for delineating various types of cancer. The molecularly different tumors can be differentiated by specific miRNA profiling as their phenotypic signatures, which can hence be exploited to surmount the diagnostic and therapeutic challenges. Present review discusses the involvement of miRNAs in oncogenesis with the analysis of patented research available on miRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  18. Microvascular Targets for Anti-Fibrotic Therapeutics

    PubMed Central

    Pu, Kai-Ming T.; Sava, Parid; Gonzalez, Anjelica L.

    2013-01-01

    Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies. PMID:24348218

  19. Toward Personalized Targeted Therapeutics: An Overview.

    PubMed

    Weathers, Shiao-Pei S; Gilbert, Mark R

    2017-04-01

    In neuro-oncology, there has been a movement towards personalized medicine, or tailoring treatment to the individual patient. Ideally, tumor and patient evaluations would lead to the selection of the best treatment (based on tumor characterization) and the right dosing schedule (based on patient characterization). The recent advances in the molecular analysis of glioblastoma have created optimism that personalized targeted therapy is within reach. Although our understanding of the molecular complexity of glioblastoma has increased over the years, the path to developing effective targeted therapeutic strategies is wrought with many challenges, as described in this review. These challenges include disease heterogeneity, clinical and genomic patient variability, limited number of effective treatments, clinical trial inefficiency, drug delivery, and clinical trial support and accrual. To confront these challenges, it will be imperative to devise innovative and adaptive clinical trials in order to accelerate our efforts in improving the outcomes for our patients who have been in desperate need.

  20. [Anorexia nervosa in children and adolescent: new therapeutic approaches].

    PubMed

    Doyen, C; Le Heuzey, M F; Cook, S; Flého, F; Mouren-Siméoni, M C

    1999-11-01

    Classical therapeutic recommendations requires that girls with anorexia nervosa be separated from their parents. Refeeding, and later individual psychodynamic approaches were also emphasized. These guidelines are now broadened towards psychotherapeutic approaches (psychodynamic, familial, cognitive-behavioral) associated with psychoeducational and dietetic strategies. In the Child and Adolescent Psychopathology Unit of Robert-Debre Hospital in Paris, individual therapeutic programs are applied to young anorectic girls and their families. These programs are implemented within an inpatient (full-time, part-time) or outpatient (consultations, weekly day-therapeutic program) framework. In order to forge a therapeutic alliance with parents and restore "parental competences" feelings, we do not separate any longer anorectic girls from their parents during hospitalization, and we have developed an alternative therapeutic model to full-time hospitalization.

  1. Oligonucleotide therapeutics in neurodegenerative diseases.

    PubMed

    Scoles, Daniel R; Pulst, Stefan M

    2018-03-21

    Therapeutics that directly target RNAs are promising for a broad spectrum of disorders, including the neurodegenerative diseases. This is exemplified by the FDA approval of Nusinersen, an antisense oligonucleotide (ASO) therapeutic for spinal muscular atrophy (SMA). RNA targeting therapeutics are currently under development for amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias. We have used an ASO approach toward developing a treatment for spinocerebellar ataxia type 2 (SCA2), for targeting the causative gene ATXN2. We demonstrated that reduction of ATXN2 expression in SCA2 mice treated by intracerebroventicular injection (ICV) of ATXN2 ASO delayed motor phenotype onset, improved the expression of several genes demonstrated abnormally reduced by transcriptomic profiling of SCA2 mice, and restored abnormal Purkinje cell firing frequency in acute cerebellar sections. Here we discuss RNA abnormalities in disease and the prospects of targeting neurodegenerative diseases at the level of RNA control using ASOs and other RNA-targeted therapeutics.

  2. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies.

    PubMed

    Mueller, Alan J; Peffers, Mandy J; Proctor, Carole J; Clegg, Peter D

    2017-08-01

    Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top-down and bottom-up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1573-1588, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  3. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  4. Targeting friend and foe: Emerging therapeutics in the age of gut microbiome and disease.

    PubMed

    Cho, Jin Ah; Chinnapen, Daniel J F

    2018-03-01

    Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body's response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.

  5. Garp as a therapeutic target for modulation of T regulatory cell function.

    PubMed

    Shevach, Ethan M

    2017-02-01

    Foxp3 + T regulatory cells (Tregs) play critical roles in immune homeostasis primarily by suppressing many aspects of the immune response. Tregs uniquely express GARP on their cell surface and GARP functions as a delivery system for latent TGF-β. As Treg-derived TGF-β may mediate the suppressive functions of Tregs, GARP may represent a target to inhibit Treg suppression in cancer or augment suppression in autoimmunity. Areas covered: This article will focus on 1) the role of Treg-derived TGF-β in the suppressive activity of Treg, 2) the cellular and molecular regulation of expression of GARP on mouse and human Tregs, 3) the role of integrins in the activation of latent-TGF-β/GARP complex, 4) an overview of our present understanding of the function of the latent-TGF-β/GARP complex. Expert opinion: Two approaches are outlined for targeting the L-TGF-β1/GARP complex for therapeutic purposes. Tregs play a major role in suppressive effector T cell responses to tumors and TGF-β1 may be a major contributor to this process. One approach is to specifically block the production of active TGF-β1 from Tregs as an adjunct to tumor immunotherapy. The second approach in autoimmunity is to selectively enhance the production of TGF-β by Tregs at sites of chronic inflammation.

  6. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  7. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics.

    PubMed

    Stayton, P S; Hoffman, A S; Murthy, N; Lackey, C; Cheung, C; Tan, P; Klumb, L A; Chilkoti, A; Wilbur, F S; Press, O W

    2000-03-01

    There are many protein and DNA based therapeutics under development in the biotechnology and pharmaceutical industries. Key delivery challenges remain before many of these biomolecular therapeutics reach the clinic. Two important barriers are the effective targeting of drugs to specific tissues and cells and the subsequent intracellular delivery to appropriate cellular compartments. In this review, we summarize protein engineering work aimed at improving the stability and refolding efficiency of antibody fragments used in targeting, and at constructing new streptavidin variants which may offer improved performance in pre-targeting delivery strategies. In addition, we review recent work with pH-responsive polymers that mimic the membrane disruptive properties of viruses and toxins. These polymers could serve as alternatives to fusogenic peptides in gene therapy formulations and to enhance the intracellular delivery of protein therapeutics that function in the cytoplasm.

  8. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review.

    PubMed

    Wang, Yuchen; Newman, Maureen R; Benoit, Danielle S W

    2018-06-01

    Impaired fracture healing is a major clinical problem that can lead to patient disability, prolonged hospitalization, and significant financial burden. Although the majority of fractures heal using standard clinical practices, approximately 10% suffer from delayed unions or non-unions. A wide range of factors contribute to the risk for nonunions including internal factors, such as patient age, gender, and comorbidities, and external factors, such as the location and extent of injury. Current clinical approaches to treat nonunions include bone grafts and low-intensity pulsed ultrasound (LIPUS), which realizes clinical success only to select patients due to limitations including donor morbidities (grafts) and necessity of fracture reduction (LIPUS), respectively. To date, therapeutic approaches for bone regeneration rely heavily on protein-based growth factors such as INFUSE, an FDA-approved scaffold for delivery of bone morphogenetic protein 2 (BMP-2). Small molecule modulators and RNAi therapeutics are under development to circumvent challenges associated with traditional growth factors. While preclinical studies has shown promise, drug delivery has become a major hurdle stalling clinical translation. Therefore, this review overviews current therapies employed to stimulate fracture healing pre-clinically and clinically, including a focus on drug delivery systems for growth factors, parathyroid hormone (PTH), small molecules, and RNAi therapeutics, as well as recent advances and future promise of fracture-targeted drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The third international meeting on genetic disorders in the RAS/MAPK pathway: towards a therapeutic approach.

    PubMed

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D; Gripp, Karen W; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo; MacRae, Calum A; Messiaen, Ludwine; Mulero-Navarro, Sonia; Neel, Benjamin; Plotkin, Scott; Rauen, Katherine A; Roberts, Amy; Silva, Alcino J; Sittampalam, Sitta G; Zhang, Chao; Schoyer, Lisa

    2015-08-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion. © 2015 Wiley Periodicals, Inc.

  10. Liver cell-targeted delivery of therapeutic molecules.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  11. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis.

    PubMed

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2017-08-01

    Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc . Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g. , oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g. , ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.

  12. Cardiotoxicity of the new cancer therapeutics- mechanisms of, and approaches to, the problem

    PubMed Central

    Force, Thomas; Kerkelä, Risto

    2009-01-01

    Cardiotoxicity of some targeted therapeutics, including monoclonal antibodies and small molecule inhibitors, is a reality. Herein we will examine why it occurs, focusing on molecular mechanisms to better understand the issue. We will also examine how big the problem is and, more importantly, how big it may become in the future. We will review models for detecting cardiotoxicity in the pre-clinical phase. We will also focus on two key areas that drive cardiotoxicity- multi-targeting and the inherent lack of selectivity of ATP-competitive antagonists. Finally, we will examine the issue of reversibility and discuss possible approaches to keeping patients on therapy. PMID:18617014

  13. Therapeutic targeting of replicative immortality

    PubMed Central

    Yaswen, Paul; MacKenzie, Karen L.; Keith, W. Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L.; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-01-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  14. Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas

    PubMed Central

    Isono, Takahiro; Chano, Tokuhiro; Yoshida, Tetsuya; Kageyama, Susumu; Kawauchi, Akihiro; Suzaki, Masafumi; Yuasa, Takeshi

    2016-01-01

    Dormant cancer cells are deprivation-resistant, and cause a number of problems for therapeutic approaches for cancers. Renal cell carcinomas (RCCs) include deprivation-resistant cells that are resistant to various treatments. In this study, the specific characteristics of deprivation-resistant cells were transcriptionally identified by next generation sequencing. The hypoxia-inducible factors (HIF) transcription factor network was significantly enhanced in deprivation-resistant RCCs compared to the sensitive RCCs. Deprivation-resistant RCCs, that had lost Von Hippel-Lindau tumor suppressor expression, expressed hydroxyl-HIF2-alpha in the nucleus, but not sensitive-RCCs. Hydroxyl-HIF-alpha was also expressed in nuclei of RCC tissue samples. Knockdown for HIF2-alpha, but not HIF1-alpha, induced cell death related to a reduction in HIF-related gene expression in deprivation-resistant RCC cells. Chetomin, a nuclear HIF-inhibitor, induced marked level of cytotoxicity in deprivation-resistant cells, similar to the knockdown of HIF2-alpha. Therefore, hydroxyl-HIF2-alpha might be a potential therapeutic target for RCCs. PMID:27822416

  15. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction

    PubMed Central

    Xin, Zhong-Cheng; Xu, Yong-De; Lin, Guiting; Lue, Tom F; Guo, Ying-Lu

    2016-01-01

    Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1) SC niche and SC biological features in vitro; (2) localization and mobilization of endogenous SCs; (3) existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED. PMID:25926601

  16. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma

    PubMed Central

    Gamble, Laura D.; Hogarty, Michael D.; Liu, Xueyuan; Ziegler, David S.; Marshall, Glenn; Norris, Murray D.; Haber, Michelle

    2012-01-01

    Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma, and targeting polyamine homeostasis may therefore provide an attractive therapeutic approach. ODC1, an oncogenic MYCN target, is rate-limiting for polyamine synthesis, and is overexpressed in many cancers including neuroblastoma. Inhibition of ODC1 by difluoromethylornithine (DFMO) decreased tumor penetrance in TH-MYCN mice treated pre-emptively, and extended survival and synergized with chemotherapy in treating established tumors in both TH-MYCN and xenograft models. Efforts to augment DFMO activity, or otherwise maximally reduce polyamine levels, are focused on antagonizing polyamine uptake or augmenting polyamine export or catabolism. Since polyamine inhibition appears to be clinically well tolerated, these approaches, particularly when combined with chemotherapy, have great potential for improving neuroblastoma outcome in both MYCN amplified and non-MYCN amplified neuroblastomas. PMID:23181218

  17. RGS17: an emerging therapeutic target for lung and prostate cancers

    PubMed Central

    Bodle, Christopher R; Mackie, Duncan I; Roman, David L

    2013-01-01

    Ligands for G-protein-coupled receptors (GPCRs) represent approximately 50% of currently marketed drugs. RGS proteins modulate heterotrimeric G proteins and, thus, GPCR signaling, by accelerating the intrinsic GTPase activity of the Gα subunit. Given the prevalence of GPCR targeted therapeutics and the role RGS proteins play in G protein signaling, some RGS proteins are emerging as targets in their own right. One such RGS protein is RGS17. Increased RGS17 expression in some prostate and lung cancers has been demonstrated to support cancer progression, while reduced expression of RGS17 can lead to development of chemotherapeutic resistance in ovarian cancer. High-throughput screening is a powerful tool for lead compound identification, and utilization of high-throughput technologies has led to the discovery of several RGS inhibitors, thus far. As screening technologies advance, the identification of novel lead compounds the subsequent development of targeted therapeutics appears promising. PMID:23734683

  18. Therapeutic potential of target of rapamycin inhibitors.

    PubMed

    Easton, John B; Houghton, Peter J

    2004-12-01

    Target of rapamycin (TOR) functions within the cell as a transducer of information from various sources, including growth factors, energy sensors, and hypoxia sensors, as well as components of the cell regulating growth and division. Blocking TOR function mimics amino acid, and to some extent, growth factor deprivation and has a cytostatic effect on proliferating cells in vivo. Inhibition of TOR in vivo, utilising its namesake rapamycin, leads to immunosuppression. This property has been exploited successfully with the use of rapamycin and its derivatives as a therapeutic agent in the prevention of organ rejection after transplantation with relatively mild side effects when compared to other immunosuppressive agents. The cytostatic effect of TOR on vascular smooth muscle cell proliferation has also recently been exploited in the therapeutic application of rapamycin to drug eluting stents for angioplasty. These stents significantly reduce the amount of arterial reblockage that results from proliferating vascular smooth muscle cells. In cancer, the effect of blocking TOR function on tumour growth and disease progression is currently of major interest and is the basis for a number of ongoing clinical trials. However, different cell types and tumours respond differently to TOR inhibition, and TOR is clearly not cytostatic for all types of cancer cells in vitro or in vivo. As the molecular details of how TOR functions and the targets of TOR activity are further elucidated, tumour and tissue specific functions are being identified that implicate TOR in angiogenesis, apoptosis, and the reversal of some forms of cellular transformation. This review will describe our current understanding of TOR function, describe the current strategies for employing TOR inhibitors in clinical and preclinical development, and outline future strategies for appropriate targets of TOR inhibitors in the treatment of disease.

  19. BMP type II receptor as a therapeutic target in pulmonary arterial hypertension.

    PubMed

    Orriols, Mar; Gomez-Puerto, Maria Catalina; Ten Dijke, Peter

    2017-08-01

    Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.

  20. MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics.

    PubMed

    Yamamoto, Hirofumi; Mori, Masaki

    The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.

  1. [Self-selection processes in the choice of the therapeutic training approach: differences in therapeutic attitudes, personality traits and attributional complexity].

    PubMed

    Taubner, Svenja; Munder, Thomas; Möller, Heidi; Hanke, Wiebke; Klasen, Jennifer

    2014-06-01

    Treatment approaches differ to a great extent in terms of basic psychological assumptions and practical procedures. This creates questions about the fitting of therapist and therapeutic approach. This paper examines the influence of therapeutic attitudes, mentalization interest and personality traits on the decision for an approach. 184 participants of training programs in one of the 3 licensed treatment approaches in Germany were examined with questionnaires at the beginning of their training. Participants significantly differed in terms of therapeutic attitudes and the metallization interest but not in personality traits except openness. Satisfaction with training was not related to the individual fit of participants to the therapeutic attitudes typical for their approach. Therapeutic attitudes, the extent of mentalization interest, and openness may play a role in self-selection processes in the choice of the approach. © Georg Thieme Verlag KG Stuttgart · New York.

  2. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity.

    PubMed

    Bassères, Daniela S; Ebbs, Aaron; Cogswell, Patricia C; Baldwin, Albert S

    2014-04-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.

  3. Blood-Brain Barrier Integrity and Glial Support: Mechanisms that can be targeted for Novel Therapeutic Approaches in Stroke

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this “barrier,” brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a “neurovascular unit.” Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB in an effort to identify novel targets for optimization of CNS delivery of therapeutics in the setting of ischemic stroke. PMID:22574987

  4. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    PubMed

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Integrative biology approach identifies cytokine targeting strategies for psoriasis.

    PubMed

    Perera, Gayathri K; Ainali, Chrysanthi; Semenova, Ekaterina; Hundhausen, Christian; Barinaga, Guillermo; Kassen, Deepika; Williams, Andrew E; Mirza, Muddassar M; Balazs, Mercedesz; Wang, Xiaoting; Rodriguez, Robert Sanchez; Alendar, Andrej; Barker, Jonathan; Tsoka, Sophia; Ouyang, Wenjun; Nestle, Frank O

    2014-02-12

    Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.

  6. Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events.

    PubMed

    Tidball, James G; Wehling-Henricks, Michelle

    2004-12-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal, muscle wasting disease that affects 1 of 3500 boys born worldwide. The disease results from mutation of the dystrophin gene that encodes a cytoskeletal protein associated with the muscle cell membrane. Although gene therapy will likely provide the cure for DMD, it remains on the distant horizon, emphasizing the need for more rapid development of palliative treatments that build on improved understanding of the complex pathology of dystrophin deficiency. In this review, we have focused on therapeutic strategies that target downstream events in the pathologic progression of DMD. Much of this work has been developed initially using the dystrophin-deficient mdx mouse to explore basic features of the pathophysiology of dystrophin deficiency and to test potential therapeutic interventions to slow, reverse, or compensate for functional losses that occur in muscular dystrophy. In some cases, the initial findings in the mdx model have led to clinical treatments for DMD boys that have produced improvements in muscle function and quality of life. Many of these investigations have concerned interventions that can affect protein balance in muscle, by inhibiting specific proteases implicated in the DMD pathology, or by providing anabolic factors or depleting catabolic factors that can contribute to muscle wasting. Other investigations have exploited the use of anti-inflammatory agents that can reduce the contribution of leukocytes to promoting secondary damage to dystrophic muscle. A third general strategy is designed to increase the regenerative capacity of dystrophic muscle and thereby help retain functional muscle mass. Each of these general approaches to slowing the pathology of dystrophin deficiency has yielded encouragement and suggests that targeting downstream events in dystrophinopathy can yield worthwhile, functional improvements in DMD.

  7. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015)

    PubMed Central

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  8. Biomolecular self-defense and futility of high-specificity therapeutic targeting.

    PubMed

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance.

  9. Biomolecular Self-Defense and Futility of High-Specificity Therapeutic Targeting

    PubMed Central

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance. PMID:22272063

  10. Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications.

    PubMed

    Belaidi, Elise; Morand, Jessica; Gras, Emmanuelle; Pépin, Jean-Louis; Godin-Ribuot, Diane

    2016-12-01

    Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endothelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications

    PubMed Central

    Belaidi, Elise; Morand, Jessica; Gras, Emmanuelle; Pépin, Jean-Louis; Godin-Ribuot, Diane

    2016-01-01

    Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endotelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients. PMID:27492897

  12. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD)

    PubMed Central

    Ansseau, Eugénie; Vanderplanck, Céline; Wauters, Armelle; Harper, Scott Q.; Coppée, Frédérique; Belayew, Alexandra

    2017-01-01

    FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary myopathies and is generally characterized by progressive muscle atrophy affecting the face, scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite D4Z4 repeat array on chromosome 4q35. Each D4Z4 unit contains a DUX4 gene; the most distal of which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally is only expressed in germ line and stem cells. Therapeutic strategies are emerging that aim to decrease DUX4 expression or toxicity in FSHD muscle cells. We review here the heterogeneity of DUX4 mRNAs observed in muscle and stem cells; and the use of antisense oligonucleotides (AOs) targeting the DUX4 mRNA to interfere either with transcript cleavage/polyadenylation or intron splicing. We show in primary cultures that DUX4-targeted AOs suppress the atrophic FSHD myotube phenotype; but do not improve the disorganized FSHD myotube phenotype which could be caused by DUX4c over-expression. Thus; DUX4c might constitute another therapeutic target in FSHD. PMID:28273791

  13. Brain: The Potential Diagnostic and Therapeutic Target for Glaucoma.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Kumar, Ashutosh; Saluja, Daman; Dada, Tanuj

    2016-01-01

    Glaucoma is a form of multifactorial ocular neurodegeneration with immensely complex etiology, pathogenesis and pathology. Though the mainstream therapeutic management of glaucoma is lowering of intraocular pressure, there is, as of now, no cure for the disease. New evidences ardently suggest brain involvement in all aspects of this malady. This consequently advocates the opinion that brain should be the spotlight of glaucoma research and may form the impending and promising target for glaucoma diagnosis and treatment. The present analysis endeavors at understanding glaucoma vis-à-vis brain structural and/or functional derangement and central nervous system (CNS) degeneration. Commencing with the premise of developing some understanding about the brain-nature of ocular structures; we discuss the nature of the cellular and molecular moieties involved in glaucoma and Alzheimer's disease. Substantial deal of literature implies that glaucoma may well be a disease of the brain, nevertheless, manifesting as progressive loss of vision. If that is the case, then targeting brain will be far more imperative in glaucoma therapeutics than any other remedial regimen currently being endorsed.

  14. Targeting inflammation: new therapeutic approaches in chronic kidney disease (CKD).

    PubMed

    Impellizzeri, Daniela; Esposito, Emanuela; Attley, James; Cuzzocrea, Salvatore

    2014-03-01

    Chronic inflammation and oxidative stress, features that are closely associated with nuclear factor (NF-κB) activation, play a key role in the development and progression of chronic kidney disease (CKD). Several animal models and clinical trials have clearly demonstrated the effectiveness of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy to improve glomerular/tubulointerstitial damage, reduce proteinuria, and decrease CKD progression, but CKD treatment still represents a clinical challenge. Bardoxolone methyl, a first-in-class oral Nrf-2 (nuclear factor erythroid 2-related factor 2) agonist that until recently showed considerable potential for the management of a range of chronic diseases, had been shown to improve kidney function in patients with advanced diabetic nephropathy (DN) with few adverse events in a phase 2 trial, but a large phase 3 study in patients with diabetes and CKD was halted due to emerging toxicity and death in a number of patients. Instead, palmitoylethanolamide (PEA) a member of the fatty acid ethanolamine family, is a novel non-steroidal, kidney friendly anti-inflammatory and anti-fibrotic agent with a well-documented safety profile, that may represent a potential candidate in treating CKD probably by a combination of pharmacological properties, including some activity at the peroxisome proliferator activated receptor alpha (PPAR-α). The aim of this review is to discuss new therapeutic approaches for the treatment of CKD, with particular reference to the outcome of two therapies, bardoxolone methyl and PEA, to improve our understanding of which pharmacological properties are responsible for the anti-inflammatory effects necessary for the effective treatment of renal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins.

    PubMed

    Guerrero-Muñoz, Marcos J; Castillo-Carranza, Diana L; Kayed, Rakez

    2014-04-15

    Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer's disease.

    PubMed

    Ashby, Emma Louise; Kehoe, Patrick G

    2013-10-01

    Hypertension is a modifiable risk factor for Alzheimer's disease (AD) and other dementias. Yet, despite this well-documented association, few of the current strategies to treat AD are directed at this possible target. The renin-aldosterone angiotensin system (RAAS) is a centrally active modifiable pathway that is involved in cerebral blood flow regulation. Currently, three classes of RAAS-targeting drugs are licensed for treatment of peripheral hypertension--angiotensin-converting enzyme inhibitors (ACE-Is), angiotensin II receptor blockers (ARBs) and direct renin inhibitors (DRIs). All of these are generally well tolerated and have been shown to offer varying degrees of protection on aspects of cognition and dementia, thus making them an attractive therapeutic option for AD. This review summarises existing evidence regarding the plausibility of using RAAS-targeting drugs as a strategy to treat AD and highlights unresolved aspects to such approaches, namely the potential impact of altering angiotensin II-mediated processes in the central nervous system. Continued biochemical research of the RAAS pathway in combination with formal investigation of current RAAS-modifying drugs in randomised clinical trials is now necessary to determine their therapeutic value in AD.

  17. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    PubMed

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    PubMed Central

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  19. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  20. EphB4 as a therapeutic target in mesothelioma

    PubMed Central

    2013-01-01

    Background Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. Methods We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. Results EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. Conclusion EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted. PMID:23721559

  1. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment.

    PubMed

    Atkinson, Stuart P; Andreu, Zoraida; Vicent, María J

    2018-01-23

    Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.

  2. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment

    PubMed Central

    Atkinson, Stuart P.; Andreu, Zoraida; Vicent, María J.

    2018-01-01

    Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various “hurdles” that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers. PMID:29360800

  3. Novel Nano-Therapeutic Approach Actively Targets Human Ovarian Cancer Stem Cells after Xenograft into Nude Mice.

    PubMed

    Abou-ElNaga, Amoura; Mutawa, Ghada; El-Sherbiny, Ibrahim M; Abd-ElGhaffar, Hassan; Allam, Ahmed A; Ajarem, Jamaan; Mousa, Shaker A

    2017-04-12

    The power of tumorigenesis, chemo-resistance and metastasis in malignant ovarian tumors resides in a tiny population of cancer cells known as ovarian cancer stem cells (OCSCs). Developing nano-therapeutic targeting of OCSCs is considered a great challenge. The potential use of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) was investigated as a drug delivery system for paclitaxel (PTX) against OCSCs in vitro and in vivo. PTX-loaded PLGA NPs were prepared by an emulsion solvent evaporation method, supported by incorporation of folic acid (FA) as the ligand. NPs were characterized for size, surface morphology, drug loading, and encapsulation efficiency. In vitro cytotoxicity of PTX-loaded FA/PLGA NPs was tested against OCSCs with MTT assay. In vivo anti-tumoral efficiency and active targeting potential of prepared NPs against tumors in nude mice were investigated. In vitro results revealed that IC 50 of PTX was significantly reduced after loading on PLGA NPs. On the other hand, in vivo results showed that PLGA NPs enhanced the tumor suppression efficiency of PTX. Investigation with real time quantitative PCR analysis revealed the limiting expression of chemo-resistant genes ( ABCG2 and MDR1 ) after applying PLGA NPs as a drug delivery system for PTX. Histopathological examination of tumors showed the effective biological influence of PTX-loaded FA/PLGA NPs through the appearance of reactive lymphoid follicles. Targeting potential of PTX was activated by FA/PLGA NPs through significant preservation of body weight ( p < 0.0001) and minimizing the systemic toxicity in healthy tissues. Immunohistochemical investigation revealed a high expression of apoptotic markers in tumor tissue, supporting the targeting effect of FA/PLGA NPs. A drug delivery system based on FA/PLGA NPs can enhance PTX's in vitro cytotoxicity and in vivo targeting potential against OCSCs.

  4. Targeting active cancer cells with smart bullets.

    PubMed

    Martel, Sylvain

    2017-03-01

    Paul Ehrlich's 'magic bullet' concept has stimulated research for therapeutic agents with the capability to go straight to their intended targets. The 'magic bullet' concept is still considered the ultimate approach to maximize the therapeutic effects of a given therapeutic agent without affecting nontargeted tissues. But so far, there has never been a therapeutic agent or a delivery system that goes straight to the target in the body, and no approach has provided anything better than just a few percents of the total administered dose reaching the intended target sites. But engineering principles can transform systematically circulating vectors that so far were based primarily on physical characteristics and biochemical principles alone, as smart therapeutic agents with the required propulsion-navigation-homing capabilities to enable them to go straight to their intended targets.

  5. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  6. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics.

    PubMed

    Ding, Michael Q; Chen, Lujia; Cooper, Gregory F; Young, Jonathan D; Lu, Xinghua

    2018-02-01

    Precision oncology involves identifying drugs that will effectively treat a tumor and then prescribing an optimal clinical treatment regimen. However, most first-line chemotherapy drugs do not have biomarkers to guide their application. For molecularly targeted drugs, using the genomic status of a drug target as a therapeutic indicator has limitations. In this study, machine learning methods (e.g., deep learning) were used to identify informative features from genome-scale omics data and to train classifiers for predicting the effectiveness of drugs in cancer cell lines. The methodology introduced here can accurately predict the efficacy of drugs, regardless of whether they are molecularly targeted or nonspecific chemotherapy drugs. This approach, on a per-drug basis, can identify sensitive cancer cells with an average sensitivity of 0.82 and specificity of 0.82; on a per-cell line basis, it can identify effective drugs with an average sensitivity of 0.80 and specificity of 0.82. This report describes a data-driven precision medicine approach that is not only generalizable but also optimizes therapeutic efficacy. The framework detailed herein, when successfully translated to clinical environments, could significantly broaden the scope of precision oncology beyond targeted therapies, benefiting an expanded proportion of cancer patients. Mol Cancer Res; 16(2); 269-78. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Colon-targeted oral drug delivery systems: design trends and approaches.

    PubMed

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  8. The hippocampo-prefrontal pathway: a possible therapeutic target for negative and cognitive symptoms of schizophrenia

    PubMed Central

    Ghoshal, Ayan; Conn, P Jeffrey

    2015-01-01

    The hippocampo-prefrontal (H-PFC) pathway has been linked to cognitive and emotional disturbances in several psychiatric disorders including schizophrenia. Preclinical evidence from the NMDA receptor antagonism rodent model of schizophrenia shows severe pathology selective to the H-PFC pathway. It is speculated that there is an increased excitatory drive from the hippocampus to the prefrontal cortex due to dysfunctions in the H-PFC plasticity, which may serve as the basis for the behavioral consequences observed in this rodent model. Thus, the H-PFC pathway is currently emerging as a promising therapeutic target for the negative and cognitive symptom clusters of schizophrenia. Here, we have reviewed the physiological, pharmacological and functional characteristics of the H-PFC pathway and we propose that allosteric activation of glutamatergic and cholinergic neurotransmission can serve as a plausible therapeutic approach. PMID:25825588

  9. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.

    PubMed

    Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R

    2016-11-15

    The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    PubMed

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  11. Towards new therapeutic approaches for malignant melanoma.

    PubMed

    Pacheco, Ivan; Buzea, Cristina; Tron, Victor

    2011-11-01

    Recent progress in understanding the molecular mechanisms of the initiation and progression of melanoma has created new opportunities for developing novel therapeutic modalities to manage this potentially lethal disease. Although at first glance, melanoma carcinogenesis appears to be a chaotic system, it is indeed, arguably, a deterministic multistep process involving sequential alterations of proto-oncogenes, tumour suppressors and miRNA genes. The scope of this article is to discuss the most recent and significant advances in melanoma molecular therapeutics. It is apparent that using single agents targeting solely individual melanoma pathways might be insufficient for long-term survival. However, the outstanding results on melanoma survival observed with novel selective inhibitors of B-RAF, such as PLX4032 give hope that melanoma can be cured. The fact that melanoma develops acquired resistance to PLX4032 emphasises the importance of simultaneously targeting several pathways. Because the most striking feature of melanoma is its unsurpassed ability to metastasise, it is important to implement newer systems for drug delivery adapted from research on stem cells and nanotechnology.

  12. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  13. Neurotrophic factors as a therapeutic target for Parkinson's disease.

    PubMed

    Evans, Jonathan R; Barker, Roger A

    2008-04-01

    The search for therapeutic agents that might alter the disease course in Parkinson's disease (PD) is ongoing. One area of particular interest involves neurotrophic factors (NTFs), with those of the glial cell line-derived neurotrophic factor (GDNF) family showing greatest promise. The safety and efficacy of these therapies has recently come into question. Furthermore, many of the key questions pertaining to such therapies, such as the optimal method of delivery, timing of treatment and selection of patients most likely to benefit, remain unanswered. In this review we sought to evaluate the therapeutic potential of NTFs in the treatment of PD. We appraised the evidence provided by both in vitro and in vivo work before proceeding to a critical assessment of the relevant clinical trial data. Relevant literature was identified using a PubMed search of articles published up to October 2007. Search terms included: 'Parkinson's disease', 'Neurotrophic factors', 'BDNF' (Brain-derived neurotrophic factor), 'GDNF' and 'Neurturin'. Original articles were reviewed, and relevant citations from these articles were also appraised. NTF therapy has potential in the treatment of nigrostriatal dysfunction in PD but numerous methodological and safety issues will need to be addressed before this approach can be widely adopted. Furthermore PD is now recognized as being more than a pure motor disorder, and one in which neuronal loss is not just confined to the dopaminergic nigrostriatal system. Non-motor symptomatology in PD is unlikely to benefit from therapies that target only the nigrostriatal system, and this must inform our thinking as to the maximal achievable benefit that NTFs are ever likely to provide.

  14. Treponema pallidum Putative Novel Drug Target Identification and Validation: Rethinking Syphilis Therapeutics with Plant-Derived Terpenoids

    PubMed Central

    Tiwari, Sameeksha; Singh, Priyanka; Singh, Swati; Awasthi, Manika; Pandey, Veda P.

    2015-01-01

    Abstract Syphilis, a slow progressive and the third most common sexually transmitted disease found worldwide, is caused by a spirochete gram negative bacteria Treponema pallidum. Emergence of antibiotic resistant T. pallidum has led to a search for novel drugs and their targets. Subtractive genomics analyses of pathogen T. pallidum and host Homo sapiens resulted in identification of 126 proteins essential for survival and viability of the pathogen. Metabolic pathway analyses of these essential proteins led to discovery of nineteen proteins distributed among six metabolic pathways unique to T. pallidum. One hundred plant-derived terpenoids, as potential therapeutic molecules against T. pallidum, were screened for their drug likeness and ADMET (absorption, distribution, metabolism, and toxicity) properties. Subsequently the resulting nine terpenoids were docked with five unique T. pallidum targets through molecular modeling approaches. Out of five targets analyzed, D-alanine:D-alanine ligase was found to be the most promising target, while terpenoid salvicine was the most potent inhibitor. A comparison of the inhibitory potential of the best docked readily available natural compound, namely pomiferin (flavonoid) with that of the best docked terpenoid salvicine, revealed that salvicine was a more potent inhibitor than that of pomiferin. To the best of our knowledge, this is the first report of a terpenoid as a potential therapeutic molecule against T. pallidum with D-alanine:D-alanine ligase as a novel target. Further studies are warranted to evaluate and explore the potential clinical ramifications of these findings in relation to syphilis that has public health importance worldwide. PMID:25683888

  15. Metabolic abnormalities in pituitary adenoma patients: a novel therapeutic target and prognostic factor

    PubMed Central

    Zheng, Xin; Li, Song; Zhang, Wei-hua; Yang, Hui

    2015-01-01

    Metabolic abnormalities are common in cancers, and targeting metabolism is emerging as a novel therapeutic approach to cancer management. Pituitary adenoma (PA) is a type of benign tumor. Impairment of tumor cells’ metabolism in PA seems not to be as apparent as that of other malignant tumor cells; however, aberrant hormone secretion is conspicuous in most PAs. Hormones have direct impacts on systemic metabolism, which in turn, may affect the progression of PA. Nowadays, conventional therapeutic strategies for PA do not include modalities of adjusting whole-body metabolism, which is most likely due to the current consideration of the aberrant whole-body metabolism of PA patients as a passive associated symptom and not involved in PA progression. Because systemic metabolic abnormalities are presented by 22.3%–52.5% PA patients and are closely correlated with disease progression and prognosis, we propose that assessment of metabolic status should be emphasized during the treatment of PA and that control of metabolic abnormalities should be added into the current therapies for PA. PMID:26347444

  16. Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect.

    PubMed

    Greineder, Colin F; Brenza, Jacob B; Carnemolla, Ronald; Zaitsev, Sergei; Hood, Elizabeth D; Pan, Daniel C; Ding, Bi-Sen; Esmon, Charles T; Chacko, Ann Marie; Muzykantov, Vladimir R

    2015-08-01

    Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications. © FASEB.

  17. Dana-Farber Cancer Institute: Identification of Therapeutic Targets in KRAS Driven Lung Cancer | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Dana Farber Cancer Institute focuses on the use of high-throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in cancers. This Center aims to provide the cancer research community with information that will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies, and enable the translation of this information into therapeutics and diagnostics.

  18. The vascular endothelium in diabetes--a therapeutic target?

    PubMed

    Mather, Kieren J

    2013-03-01

    Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.

  19. Toxin-Based Therapeutic Approaches

    PubMed Central

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  20. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature.

    PubMed

    Poornima, Paramasivan; Kumar, Jothi Dinesh; Zhao, Qiaoli; Blunder, Martina; Efferth, Thomas

    2016-09-01

    Despite massive investments in drug research and development, the significant decline in the number of new drugs approved or translated to clinical use raises the question, whether single targeted drug discovery is the right approach. To combat complex systemic diseases that harbour robust biological networks such as cancer, single target intervention is proved to be ineffective. In such cases, network pharmacology approaches are highly useful, because they differ from conventional drug discovery by addressing the ability of drugs to target numerous proteins or networks involved in a disease. Pleiotropic natural products are one of the promising strategies due to their multi-targeting and due to lower side effects. In this review, we discuss the application of network pharmacology for cancer drug discovery. We provide an overview of the current state of knowledge on network pharmacology, focus on different technical approaches and implications for cancer therapy (e.g. polypharmacology and synthetic lethality), and illustrate the therapeutic potential with selected examples green tea polyphenolics, Eleutherococcus senticosus, Rhodiola rosea, and Schisandra chinensis). Finally, we present future perspectives on their plausible applications for diagnosis and therapy of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  2. Antibody Therapeutics in Oncology.

    PubMed

    Wold, Erik D; Smider, Vaughn V; Felding, Brunhilde H

    2016-03-01

    One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. Monoclonal antibody therapeutics are a successful and rapidly expanding drug class due to their high specificity, activity, favourable pharmacokinetics, and standardized manufacturing processes. Antibodies are capable of recruiting the immune system to attack cancer cells through complement-dependent cytotoxicity or antibody dependent cellular cytotoxicity. In an ideal scenario the initial tumor cell destruction induced by administration of a therapeutic antibody can result in uptake of tumor associated antigens by antigen-presenting cells, establishing a prolonged memory effect. Mechanisms of direct tumor cell killing by antibodies include antibody recognition of cell surface bound enzymes to neutralize enzyme activity and signaling, or induction of receptor agonist or antagonist activity. Both approaches result in cellular apoptosis. In another and very direct approach, antibodies are used to deliver drugs to target cells and cause cell death. Such antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells, after selective binding to cell surface antigens, internalization, and intracellular drug release. Efficacy and safety of ADCs for cancer therapy has recently been greatly advanced based on innovative approaches for site-specific drug conjugation to the antibody structure. This technology enabled rational optimization of function and pharmacokinetics of the resulting conjugates, and is now beginning to yield therapeutics with defined, uniform molecular characteristics, and unprecedented promise to advance cancer treatment.

  3. MicroRNA therapeutics in cardiovascular medicine

    PubMed Central

    Thum, Thomas

    2012-01-01

    Cardiovascular diseases are the most common causes of human morbidity and mortality despite significant therapeutic improvements by surgical, interventional and pharmacological approaches in the last decade. MicroRNAs (miRNAs) are important and powerful mediators in a wide range of diseases and thus emerged as interesting new drug targets. An array of animal and even human miRNA-based therapeutic studies has been performed, which validate miRNAs as being successfully targetable to treat a wide range of diseases. Here, the current knowledge about miRNAs therapeutics in cardiovascular diseases on their way to clinical use are reviewed and discussed. PMID:22162462

  4. MicroRNAs in Leukemias: Emerging Diagnostic Tools and Therapeutic Targets

    PubMed Central

    Mian, Yousaf A.; Zeleznik-Le, Nancy J.

    2010-01-01

    MicroRNAs (miRNA) are small non-coding RNAs of ~22 nucleotides that regulate the translation and stability of mRNA to control different functions of the cell. Misexpression of miRNA has been linked to disruption of normal cellular functions, which results in various disorders including cancers such as leukemias. MicroRNA involvement in disease has been the subject of much attention and is increasing our current understanding of disease biology. Such linkages have been determined by high-throughput studies, which provide a framework for characterizing differential miRNA expression levels correlating to different cytogenetic abnormalities and their corresponding malignancies. In addition, functional studies of particular miRNAs have begun to define the effects of miRNA on predicted mRNA targets. It is clear that miRNAs can serve as molecular markers of leukemias and the hope is that they can also serve as new therapeutic targets. Studies are beginning to elucidate how to deliver therapeutic antagonists to attenuate overexpressed miRNAs and to replace underexpressed miRNAs. In this review, we: i) discuss the current understanding of miRNA function and expression in normal hematopoiesis, ii) provide examples of miRNAs that are misregulated in leukemias, and iii) evaluate the current status and potential future directions for the burgeoning field of antisense oligonucleotides and other therapeutic attempts to intervene in miRNA disregulation in leukemias. PMID:20370647

  5. Integrated Stress Response as a Therapeutic Target for CNS Injuries.

    PubMed

    Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción

    2017-01-01

    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

  6. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets.

    PubMed

    Kudinov, Alexander E; Karanicolas, John; Golemis, Erica A; Boumber, Yanis

    2017-05-01

    Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila , the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR . ©2017

  7. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus

    PubMed Central

    Gottschalk, Timothy A.; Tsantikos, Evelyn; Hibbs, Margaret L.

    2015-01-01

    Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known

  8. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  9. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics.

    PubMed

    Knezevic, Nebojsa Nick; Yekkirala, Ajay; Yaksh, Tony L

    2017-11-01

    Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.

  10. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach.

    PubMed

    Chade, Alejandro R; Kelsen, Silvia

    2012-05-15

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  11. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach

    PubMed Central

    Kelsen, Silvia

    2012-01-01

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  12. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma

    PubMed Central

    ADACHI, Mami; HOSHINO, Yuki; IZUMI, Yusuke; TAKAGI, Satoshi

    2015-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  13. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi

    2016-05-03

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA.

  14. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    PubMed

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  15. DEPDC5 as a potential therapeutic target for epilepsy.

    PubMed

    Myers, Kenneth A; Scheffer, Ingrid E

    2017-06-01

    Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.

  16. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets

    PubMed Central

    Li, Ying C.

    2017-01-01

    Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000

  17. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets.

    PubMed

    Quick, Quincy A

    2018-01-26

    Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents.

  18. Therapeutic approaches for celiac disease

    PubMed Central

    Plugis, Nicholas M.; Khosla, Chaitan

    2015-01-01

    Celiac disease is a common, lifelong autoimmune disorder for which dietary control is the only accepted form of therapy. A strict gluten-free diet is burdensome to patients and can be limited in efficacy, indicating there is an unmet need for novel therapeutic approaches to supplement or supplant dietary therapy. Many molecular events required for disease pathogenesis have been recently characterized and inspire most current and emerging drug-discovery efforts. Genome-wide association studies (GWAS) confirm the importance of human leukocyte antigen genes in our pathogenic model and identify a number of new risk loci in this complex disease. Here, we review the status of both emerging and potential therapeutic strategies in the context of disease pathophysiology. We conclude with a discussion of how genes identified during GWAS and follow-up studies that enhance susceptibility may offer insight into developing novel therapies. PMID:26060114

  19. Clinical decision-making and therapeutic approaches in osteopathy - a qualitative grounded theory study.

    PubMed

    Thomson, Oliver P; Petty, Nicola J; Moore, Ann P

    2014-02-01

    There is limited understanding of how osteopaths make decisions in relation to clinical practice. The aim of this research was to construct an explanatory theory of the clinical decision-making and therapeutic approaches of experienced osteopaths in the UK. Twelve UK registered osteopaths participated in this constructivist grounded theory qualitative study. Purposive and theoretical sampling was used to select participants. Data was collected using semi-structured interviews which were audio-recorded and transcribed. As the study approached theoretical sufficiency, participants were observed and video-recorded during a patient appointment, which was followed by a video-prompted interview. Constant comparative analysis was used to analyse and code data. Data analysis resulted in the construction of three qualitatively different therapeutic approaches which characterised participants and their clinical practice, termed; Treater, Communicator and Educator. Participants' therapeutic approach influenced their approach to clinical decision-making, the level of patient involvement, their interaction with patients, and therapeutic goals. Participants' overall conception of practice lay on a continuum ranging from technical rationality to professional artistry, and contributed to their therapeutic approach. A range of factors were identified which influenced participants' conception of practice. The findings indicate that there is variation in osteopaths' therapeutic approaches to practice and clinical decision-making, which are influenced by their overall conception of practice. This study provides the first explanatory theory of the clinical decision-making and therapeutic approaches of osteopaths. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous‐cell carcinoma

    PubMed Central

    Syed, Nazia; Barbhuiya, Mustafa A.; Pinto, Sneha M.; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K.; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T. S. Keshava; Kumar, M. Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh

    2015-01-01

    Esophageal squamous‐cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early‐stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non‐neoplastic Het‐1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry‐based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA‐based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation. PMID:25366905

  1. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  2. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  3. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  4. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    PubMed

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair

    PubMed Central

    Tang, Rui; Cui, Xiao-Bing; Wang, Jia-Ning; Chen, Shi-You

    2013-01-01

    Objective Vascular remodeling due to smooth muscle cell (SMC) proliferation and neointima formation is a major medical challenge in cardiovascular intervention. However, anti-neointima drugs often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, due to their non-specific effect on endothelial cells (EC). The objective of this study was to identify a therapeutic target that differentially regulates SMC and EC proliferation. Approach and Results By using both rat balloon-injury and mouse wire-injury models, we identified CTP synthase (CTPS) as one of the potential targets that may be used for developing therapeutics for treating neointima-related disorders. CTPS1 was induced in proliferative SMCs in vitro and neointima SMCs in vivo. Blockade of CTPS1 expression by small hairpin RNA or activity by cyclopentenyl cytosine suppressed SMC proliferation and neointima formation. Surprisingly, cyclopentenyl cytosine had much less effect on EC proliferation. Of importance, blockade of CTPS1 in vivo sustained the re-endothelialization due to induction of CTP synthesis salvage pathway enzymes nucleoside diphosphate kinase A and B in ECs. Diphosphate kinase B appeared to preserve EC proliferation via utilization of extracellular cytidine to synthesize CTP. Indeed, blockade of both CTPS1 and diphosphate kinase B suppressed EC proliferation in vitro and the re-endothelization in vivo. Conclusions Our study uncovered a fundamental difference in CTP biosynthesis between SMCs and ECs during vascular remodeling, which provided a novel strategy by using cyclopentenyl cytosine or other CTPS1 inhibitors to selectively block SMC proliferation without disturbing or even promoting re-endothelialization for effective vascular repair following injury. PMID:24008161

  6. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    PubMed Central

    Borin, Thaiz F.; Angara, Kartik; Rashid, Mohammad H.; Achyut, Bhagelu R.; Arbab, Ali S.

    2017-01-01

    Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis. PMID:29292756

  7. Targeting cancer’s weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model

    PubMed Central

    Lineweaver, Charles H.; Davies, Paul C.W.; Vincent, Mark D.

    2014-01-01

    In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation. PMID:25043755

  8. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  9. Achieving the Promise of Therapeutic Extracellular Vesicles: The Devil is in Details of Therapeutic Loading.

    PubMed

    Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D

    2017-05-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.

  10. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    PubMed

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  11. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer

    PubMed Central

    Moran-Jones, Kim; Gloss, Brian S.; Murali, Rajmohan; Chang, David K.; Colvin, Emily K.; Jones, Marc D.; Yuen, Samuel; Howell, Viive M.; Brown, Laura M.; Wong, Carol W.; Spong, Suzanne M.; Scarlett, Christopher J.; Hacker, Neville F.; Ghosh, Sue; Mok, Samuel C.; Birrer, Michael J.; Samimi, Goli

    2015-01-01

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer. PMID:26575166

  12. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

    PubMed Central

    Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.

    2016-01-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175

  14. Biologically Targeted Therapeutics in Pediatric Brain Tumors

    PubMed Central

    Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.

    2013-01-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764

  15. Biologically targeted therapeutics in pediatric brain tumors.

    PubMed

    Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J

    2012-04-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery

    PubMed Central

    Imbrici, Paola; Liantonio, Antonella; Camerino, Giulia M.; De Bellis, Michela; Camerino, Claudia; Mele, Antonietta; Giustino, Arcangela; Pierno, Sabata; De Luca, Annamaria; Tricarico, Domenico; Desaphy, Jean-Francois; Conte, Diana

    2016-01-01

    In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets. PMID:27242528

  17. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery.

    PubMed

    Imbrici, Paola; Liantonio, Antonella; Camerino, Giulia M; De Bellis, Michela; Camerino, Claudia; Mele, Antonietta; Giustino, Arcangela; Pierno, Sabata; De Luca, Annamaria; Tricarico, Domenico; Desaphy, Jean-Francois; Conte, Diana

    2016-01-01

    In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.

  18. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases

    PubMed Central

    Lin, T.-h.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B.

    2017-01-01

    Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. PMID:28215222

  19. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations.

    PubMed

    Khanna, Anchit; Rane, Jayant K; Kivinummi, Kati K; Urbanucci, Alfonso; Helenius, Merja A; Tolonen, Teemu T; Saramäki, Outi R; Latonen, Leena; Manni, Visa; Pimanda, John E; Maitland, Norman J; Westermarck, Jukka; Visakorpi, Tapio

    2015-08-14

    Residual androgen receptor (AR)-signaling and presence of cancer stem-like cells (SCs) are the two emerging paradigms for clinically challenging castration-resistant prostate cancer (CRPC). Therefore, identification of AR-target proteins that are also overexpressed in the cancer SC population would be an attractive therapeutic approach.Our analysis of over three hundred clinical samples and patient-derived prostate epithelial cultures (PPECs), revealed Cancerous inhibitor of protein phosphatase 2A (CIP2A) as one such target. CIP2A is significantly overexpressed in both hormone-naïve prostate cancer (HN-PC) and CRPC patients . CIP2A is also overexpressed, by 3- and 30-fold, in HN-PC and CRPC SCs respectively. In vivo binding of the AR to the intronic region of CIP2A and its functionality in the AR-moderate and AR-high expressing LNCaP cell-model systems is also demonstrated. Further, we show that AR positively regulates CIP2A expression, both at the mRNA and protein level. Finally, CIP2A depletion reduced cell viability and colony forming efficiency of AR-independent PPECs as well as AR-responsive LNCaP cells, in which anchorage-independent growth is also impaired.These findings identify CIP2A as a common denominator for AR-signaling and cancer SC functionality, highlighting its potential therapeutic significance in the most clinically challenging prostate pathology: castration-resistant prostate cancer.

  20. Hsp27 as a therapeutic target in cancers.

    PubMed

    Acunzo, Julie; Andrieu, Claudia; Baylot, Virginie; So, Alan; Rocchi, Palma

    2014-04-01

    Heat shock protein 27 (Hsp27), induced by heat shock, environmental and pathophysiological stressors, is a multidimensional protein that acts as a protein chaperone and an antioxidant. This protein plays a major role in the inhibition of apoptosis and actin cytoskeletal remodeling. This stress-activated protein is up-regulated in many cancers and is associated with poor prognosis as well as treatment resistance by protecting cells from therapeutic agent that normally induces apoptosis. This review highlights the most recent findings and role of Hsp27 in cancer and the different strategies to target and inhibit Hsp27 for clinical purposes.

  1. A metabolic network approach for the identification and prioritization of antimicrobial drug targets

    PubMed Central

    Chavali, Arvind K.; D’Auria, Kevin M.; Hewlett, Erik L.; Pearson, Richard D.; Papin, Jason A.

    2012-01-01

    For many infectious diseases, novel treatment options are needed to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies to identify effective drug targets, and we highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents. PMID:22300758

  2. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets

    PubMed Central

    Quick, Quincy A.

    2018-01-01

    Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents. PMID:29373494

  3. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma.

    PubMed

    Reznik, Robert; Hendifar, Andrew E; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided.

  4. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  5. COGNITION AS A THERAPEUTIC TARGET IN LATE-LIFE DEPRESSION: POTENTIAL FOR NICOTINIC THERAPEUTICS

    PubMed Central

    Zurkovsky, Lilia; Taylor, Warren D.; Newhouse, Paul A.

    2013-01-01

    Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs and parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging. PMID:23933385

  6. Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and in vivo.

    PubMed

    Stenner, Frank; Liewen, Heike; Zweifel, Martin; Weber, Achim; Tchinda, Joelle; Bode, Beata; Samaras, Panagiotis; Bauer, Stefan; Knuth, Alexander; Renner, Christoph

    2008-09-01

    Anaplastic thyroid carcinoma (ATC) is among the most aggressive human malignancies, being responsible for the majority of thyroid cancer-related deaths. Despite multimodal therapy including surgery, chemotherapy, and radiotherapy, the outcome of ATC is poor. The human ATC cell line MB1, derived from tumor tissue of a 57-year-old man with thyroid cancer and pronounced neutrophilia, was established from surgically excised tumor tissue. The karyotype of the cell line shows many chromosomal abnormalities. Preclinical investigations have shown antitumor activity and effectiveness of the BRAF kinase inhibitor Sorafenib and the proteasome inhibitor Bortezomib. After establishment of the MB1 cell line these agents were applied in vitro and, showing activity in a cell culture model, were also used for in vivo treatment. Sorafenib had some clinical effect, namely normalization of leucocytosis, but had no sustained impact on subsequent tumor growth and development of distant metastasis. Molecular diagnostics of the tumor demonstrated no BRAF mutations in exons 11 and 15 concordant with a rather modest effect of Sorafenib on MB1 cell growth. Clinical benefit was seen with subsequent bortezomib therapy inducing a temporary halt to lymph node growth and a progression-free interval of 7 weeks. Our observations together with previous data from preclinical models could serve as a rationale for selecting those patients suffering from ATC most likely to benefit from targeted therapy. A prospective controlled randomized trial integrating kinase and proteasome inhibitors into a therapeutic regime for ATC is warranted.

  7. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    DOEpatents

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  8. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  9. Molecular genetics and targeted therapeutics in biliary tract carcinoma.

    PubMed

    Marks, Eric I; Yee, Nelson S

    2016-01-28

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract.

  10. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies

    PubMed Central

    Vici, P; Pizzuti, L; Mariani, L; Zampa, G; Santini, D; Di Lauro, L; Gamucci, T; Natoli, C; Marchetti, P; Barba, M; Maugeri-Saccà, M; Sergi, D; Tomao, F; Vizza, E; Di Filippo, S; Paolini, F; Curzio, G; Corrado, G; Michelotti, A; Sanguineti, G; Giordano, A; De Maria, R; Venuti, A

    2016-01-01

    ABSTRACT Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease. PMID:27063030

  11. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics

    PubMed Central

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A. K. M. G.; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E.; Kroeger, Kurt M.; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N.; Rodriguez, Ron; Lowenstein, Pedro R.; Castro, Maria G.

    2010-01-01

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM. PMID:21030678

  12. Paired Exome Analysis Reveals Clonal Evolution and Potential Therapeutic Targets in Urothelial Carcinoma.

    PubMed

    Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars

    2016-10-01

    Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2012-07-01

    are those of the author (s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...Therapeutic Targets of Mesothelioma 5b. GRANT NUMBER W81XWH-10-1-0399 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER Harvey Pass... AUTHOR (S) W91ZSQ9305N632 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER New York University School of Medicine,550

  14. Clinically advancing and promising polymer-based therapeutics.

    PubMed

    Souery, Whitney N; Bishop, Corey J

    2018-02-01

    In this review article, we will examine the history of polymers and their evolution from provisional World War II materials to medical therapeutics. To provide a comprehensive look at the current state of polymer-based therapeutics, we will classify technologies according to targeted areas of interest, including central nervous system-based and intraocular-, gastrointestinal-, cardiovascular-, dermal-, reproductive-, skeletal-, and neoplastic-based systems. Within each of these areas, we will consider several examples of novel, clinically available polymer-based therapeutics; in addition, this review will also include a discussion of developing therapies, ranging from the in vivo to clinical trial stage, for each targeted area of treatment. Finally, we will emphasize areas of patient care in need of more effective, accessible, and targeted treatment approaches where polymer-based therapeutics may offer potential solutions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Post-targeting strategy for ready-to-use targeted nanodelivery post cargo loading.

    PubMed

    Zhu, J Y; Hu, J J; Zhang, M K; Yu, W Y; Zheng, D W; Wang, X Q; Feng, J; Zhang, X Z

    2017-12-14

    Based on boronate formation, this study reports a post-targeting methodology capable of readily installing versatile targeting modules onto a cargo-loaded nanoplatform in aqueous mediums. This permits the targeted nanodelivery of broad-spectrum therapeutics (drug/gene) in a ready-to-use manner while overcoming the PEGylation-dilemma that frequently occurs in conventional targeting approaches.

  16. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    PubMed

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  17. Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy

    PubMed Central

    Beloueche-Babari, M; Chung, Y-L; Al-Saffar, N M S; Falck-Miniotis, M; Leach, M O

    2009-01-01

    Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive, biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and discuss their biological significance and future translation into clinical use. PMID:19935796

  18. Progranulin as a therapeutic target for dementia.

    PubMed

    Galimberti, Daniela; Fenoglio, Chiara; Scarpini, Elio

    2018-06-22

    Progranulin (PGRN) is an acrosomal glycoprotein that is synthesized during spermatogenesis. It is overexpressed in tumors and has anti-inflammatory properties. The protein may be cleaved into granulins which display pro-inflammatory properties. In 2006, mutations in progranulin gene (GRN) that cause haploinsufficiency were found in familial cases of frontotemporal dementia (FTD). Patients with null mutations in GRN display very low-plasma PGRN levels; this analysis is useful for identifying mutation carriers, independent of the clinical presentation, and in those before the appearance of symptoms. Areas covered: Here, we review the current knowledge of PGRN physiological functions and GRN mutations associated with FTD; we also summarize state of the art clinical trials and those compounds able to replace PGRN loss in preclinical models. Expert opinion: PGRN represents a promising therapeutic target for FTD. Cohorts suitable for treatment, ideally at the preclinical stage, where pathogenic mechanisms ongoing in the brain are targeted, are available. However, PGRN may have side effects, such as the risk of tumorigenesis, and the risk/benefit ratio of any intervention cannot be predicted. Furthermore, at present, the situation is complicated by the absence of adequate outcome measures.

  19. Alternative Splicing in the Hippo Pathway—Implications for Disease and Potential Therapeutic Targets

    PubMed Central

    Porazinski, Sean; Ladomery, Michael

    2018-01-01

    Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets. PMID:29534050

  20. New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms.

    PubMed

    Falagan-Lotsch, Priscila; Grzincic, Elissa M; Murphy, Catherine J

    2017-01-18

    Breast cancer is a major cause of suffering and mortality among women. Limitations in the current diagnostic methods and treatment approaches have led to new strategies to positively impact the survival rates and quality of life of breast cancer patients. Nanotechnology offers a real possibility of mitigating breast cancer mortality by early-stage cancer detection and more precise diagnosis as well as more effective treatments with minimal side effects. The current nanoplatforms approved for breast cancer therapeutics are based on passive tumor targeting using organic nanoparticles and have not provided the expected significant improvements in the clinic. In this review, we present the emerging approaches in breast cancer nanomedicine based on active targeting using versatile inorganic nanoplatforms with biomedical relevance, such as gold, silica, and iron oxide nanoparticles, as well as their efficacy in breast cancer imaging, drug and gene delivery, thermal therapy, combinational therapy, and theranostics in preclinical studies. The main challenges for clinical translation and perspectives are discussed.

  1. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins.

    PubMed

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-04-19

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.

  2. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders.

    PubMed

    Singh, Abhijeet; Chokriwal, Ankit; Sharma, Madan Mohan; Jain, Devendra; Saxena, Juhi; Stephen, Bjorn John

    2017-08-16

    Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.

  3. Emerging therapeutic targets in human acute myeloid leukemia (part 2) - bromodomain inhibition should be considered as a possible strategy for various patient subsets.

    PubMed

    Reikvam, Håkon; Hoang, Tuyen Thi van; Bruserud, Øystein

    2015-06-01

    The recent advances in our understanding of leukemogenesis have clearly demonstrated that human acute myeloid leukemia is a heterogeneous malignancy, and several disease mechanisms should probably be regarded as possible therapeutic targets only for specific subsets of patients and not for acute myeloid leukemia in general. One promising strategy for epigenetic targeting is inhibition of the binding between bromodomain-containing transcription regulators and acetylated lysine residues on histones. This possible approach has been investigated especially for patients with 11q23 and chromosome 8 abnormalities. An alternative target is the histone methyltransferase COT1L. Major challenges for both approaches will be to clarify how these strategies should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.

  4. Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma

    PubMed Central

    Cruickshanks, Nichola; Zhang, Ying; Yuan, Fang; Pahuski, Mary; Gibert, Myron; Abounader, Roger

    2017-01-01

    Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described. PMID:28696366

  5. Therapeutic Targeting of TRPV1 for the Treatment of Chronic Pain Associated with Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2013-07-30

    1 AD_________________ Award Number: W81XWH-11-1-0333 TITLE: Therapeutic Targeting of TRPV1 for the...TITLE AND SUBTITLE Therapeutic Targeting of TRPV1 for the Treatment of Chronic Pain 5a. CONTRACT NUMBER Associated with Prostate Cancer Bone...specific inflammatory factors, IL-6 and TNF-α, PTHrP and ET-1 on upregulation of TRPV1 channel function/expression, and nociceptor sensitization

  6. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia

    PubMed Central

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R.; Herrmann, Harald; Sison, Edward A.; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J.; Johns, Christopher; Chicas, Agustin; Mulloy, James C.; Kogan, Scott C.; Brown, Patrick; Valent, Peter; Bradner, James E.; Lowe, Scott W.; Vakoc, Christopher R.

    2012-01-01

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs1. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states2. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention. PMID:21814200

  7. Achievement of therapeutic targets in Mexican patients with diabetes mellitus.

    PubMed

    Lavalle-González, Fernando J; Chiquete, Erwin; de la Luz, Julieta; Ochoa-Guzmán, Ana; Sánchez-Orozco, Laura V; Godínez-Gutiérrez, Sergio A

    2012-12-01

    Complications of diabetes comprise the leading cause of death in Mexico. We aimed to describe the characteristics of management and achievement of therapeutic targets in Mexican patients with diabetes mellitus. We analyzed data from 2642 Mexican patients with type 1 (T1D, n=203, 7.7%) and type 2 diabetes (T2D, n=2439, 92.3%) included in the third wave of the International Diabetes Management Practices Study. Of T2D patients, 63% were on oral glucose-lowering drugs (OGLD) exclusively (mostly metformin), 11% on insulin, 22% on OGLD plus insulin, and 4% on diet and exercise exclusively. T2D patients on insulin were more likely to be trained on diabetes, but they were older, had worse control, longer disease duration and more chronic complications than patients on OGLD only. Glycated hemoglobin (HbA1c) <7% was achieved by 21% and 37% of T1D and T2D patients, respectively. Only 5% of T1D and 3% of T2D attained the composite target of HbA1c <7%, blood pressure <130/80 mmHg and low-density lipoprotein cholesterol <100 mg/dl. T1D patients had less macrovascular but more microvascular complications, compared with T2D patients. Late complications increased with disease duration, so that about 80% of patients after 20 years of diagnosis have at least one late complication. Reaching the target HbA1c <7% was associated with a reduced number of microvascular but not with less macrovascular complications. A great proportion of these Mexican patients with diabetes did not reach therapeutic targets. Insulin was used mostly in complicated cases with advanced disease. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  8. Recent insights into the molecular pathogenesis of Crohn’s disease: a review of emerging therapeutic targets

    PubMed Central

    Manuc, Teodora-Ecaterina M; Manuc, Mircea M; Diculescu, Mircea M

    2016-01-01

    Chronic inflammatory bowel diseases (IBDs) are a subject of great interest in gastroenterology, due to a pathological mechanism that is difficult to explain and an optimal therapeutic approach still undiscovered. Crohn’s disease (CD) is one of the main entities in IBD, characterized by clinical polymorphism and great variability in the treatment response. Modern theories on the pathogenesis of CD have proven that gut microbiome and environmental factors lead to an abnormal immune response in a genetically predisposed patient. Genome-wide association studies in patients with CD worldwide revealed several genetic mutations that increase the risk of IBD and that predispose to a more severe course of disease. Gut microbiota is considered a compulsory and an essential part in the pathogenesis of CD. Intestinal dysmicrobism with excessive amounts of different bacterial strains can be found in all patients with IBD. The discovery of Escherichia coli entero-invasive on resection pieces in patients with CD now increases the likelihood of antimicrobial or vaccine-type treatments. Recent studies targeting intestinal immunology and its molecular activation pathways provide new possibilities for therapeutics. In addition to antitumor necrosis factor molecules, which were a breakthrough in IBD, improving mucosal healing and resection-free survival rate, other classes of therapeutic agents come to focus. Leukocyte adhesion inhibitors block the leukocyte homing mechanism and prevent cellular immune response. In addition to anti-integrin antibodies, chemokine receptor antagonists and SMAD7 antisense oligonucleotides have shown encouraging results in clinical trials. Micro-RNAs have demonstrated their role as disease biomarkers but it could also become useful for the treatment of IBD. Moreover, cellular therapy is another therapeutic approach under development, aimed for severe refractory CD. Other experimental treatments include intravenous immunoglobulins, exclusive enteral

  9. Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway.

    PubMed

    Collins, Ian; Wang, Hannah; Caldwell, John J; Chopra, Raj

    2017-03-15

    Manipulation of the ubiquitin-proteasome system to achieve targeted degradation of proteins within cells using chemical tools and drugs has the potential to transform pharmacological and therapeutic approaches in cancer and other diseases. An increased understanding of the molecular mechanism of thalidomide and its analogues following their clinical use has unlocked small-molecule modulation of the substrate specificity of the E3 ligase cereblon (CRBN), which in turn has resulted in the advancement of new immunomodulatory drugs (IMiDs) into the clinic. The degradation of multiple context-specific proteins by these pleiotropic small molecules provides a means to uncover new cell biology and to generate future drug molecules against currently undruggable targets. In parallel, the development of larger bifunctional molecules that bring together highly specific protein targets in complexes with CRBN, von Hippel-Lindau, or other E3 ligases to promote ubiquitin-dependent degradation has progressed to generate selective chemical compounds with potent effects in cells and in vivo models, providing valuable tools for biological target validation and with future potential for therapeutic use. In this review, we survey recent breakthroughs achieved in these two complementary methods and the discovery of new modes of direct and indirect engagement of target proteins with the proteasome. We discuss the experimental characterisation that validates the use of molecules that promote protein degradation as chemical tools, the preclinical and clinical examples disclosed to date, and the future prospects for this exciting area of chemical biology. © 2017 The Author(s).

  10. Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?

    PubMed Central

    Köhler, Cristiano A.; Carvalho, André F.; Alves, Gilberto S.; McIntyre, Roger S.; Hyphantis, Thomas N.; Cammarota, Martín

    2015-01-01

    Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment. PMID:26380121

  11. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    PubMed Central

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy. PMID:24467530

  12. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    PubMed Central

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  13. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways

    PubMed Central

    Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K

    2017-01-01

    Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906

  14. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells.

    PubMed

    Krishnamurthy, Sangeetha; Ke, Xiyu; Yang, Yi Yan

    2015-01-01

    Development of cancer resistance, cancer relapse and metastasis are attributed to the presence of cancer stem cells (CSCs). Eradication of this subpopulation has been shown to increase life expectancy of patients. Since the discovery of CSCs a decade ago, several strategies have been devised to specifically target them but with limited success. Nanocarriers have recently been employed to deliver anti-CSC therapeutics for reducing the population of CSCs at the tumor site with great success. This review discusses the different therapeutic strategies that have been employed using nanocarriers, their advantages, success in targeting CSCs and the challenges that are to be overcome. Exploiting this new modality of cancer treatment in the coming decade may improve outcomes profoundly with promise of effective treatment response and reducing relapse and metastasis.

  15. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2015-01-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  16. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic.

    PubMed

    Cheng, Emily; Armstrong, Cheryl L; Galisteo, Rebeca; Winkles, Jeffrey A

    2013-12-23

    The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.

  17. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics.

    PubMed

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M

    2014-10-01

    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases.

    PubMed

    Lin, T-H; Pajarinen, J; Lu, L; Nabeshima, A; Cordova, L A; Yao, Z; Goodman, S B

    Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. © 2017 Elsevier Inc. All rights reserved.

  19. Dynamin-Related Protein 1 as a therapeutic target in cardiac arrest

    PubMed Central

    Sharp, Willard W.

    2015-01-01

    Despite improvements in cardiopulmonary resuscitation (CPR) quality, defibrillation technologies, and implementation of therapeutic hypothermia, less than 10% of out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge. New resuscitation therapies have been slow to develop, in part, because the pathophysiologic mechanisms critical for resuscitation are not understood. During cardiac arrest, systemic cessation of blood flow results in whole body ischemia. CPR, and the restoration of spontaneous circulation (ROSC), both result in immediate reperfusion injury of the heart that is characterized by severe contractile dysfunction. Unlike diseases of localized ischemia/reperfusion (IR) injury (myocardial infarction and stroke), global IR injury of organs results in profound organ dysfunction with far shorter ischemic times. The two most commonly injured organs following cardiac arrest resuscitation, the heart and brain, are critically dependent on mitochondrial function. New insights into mitochondrial dynamics and the role of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) in apoptosis have made targeting these mechanisms attractive for IR therapy. In animal models, inhibiting Drp1 following IR injury or cardiac arrest confers protection to both the heart and brain. In this review, the relationship of the major mitochondrial fission protein Drp1 to ischemic changes in the heart and its targeting as a new therapeutic target following cardiac arrest are discussed. PMID:25659608

  20. [Towards new therapeutic paradigms beyond symptom control in the management of inflammatory bowel diseases.

    PubMed

    Festa, Stefano; Zerboni, Giulia; Aratari, Annalisa; Ballanti, Riccardo; Papi, Claudio

    2018-01-01

    Inflammatory bowel diseases, Crohn's disease and ulcerative colitis are chronic relapsing conditions that may result in progressive bowel damage, high risk of complications, surgery and permanent disability. The conventional therapeutic approach for inflammatory bowel diseases is based mainly on symptom control. Unfortunately, a symptom-based therapeutic approach has little impact on major long-term disease outcomes. In other chronic disabling conditions such as diabetes, hypertension and rheumatoid arthritis, the development of new therapeutic approaches has led to better outcomes. In this context a "treat to target" strategy has been developed. This strategy is based on identification of high-risk patients, regular assessment of disease activity by means of objective measures, adjustment of treatment to reach the pre-defined target. A treat to target approach has recently been proposed for inflammatory bowel disease with the aim at modifying the natural history of the disease. In this review, the evidence and the limitations of the treat to target paradigm in inflammatory bowel disease are analyzed and discussed.

  1. ACHIEVING THE PROMISE OF THERAPEUTIC EXTRACELLULAR VESICLES: THE DEVIL IS IN DETAILS OF THERAPEUTIC LOADING

    PubMed Central

    Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Phelps, Mitch A.; Schmittgen, Thomas D.

    2017-01-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics. PMID:28315083

  2. Therapeutic Targeting of TRPV1 for the Treatment of Chronic Pain Associated with Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2012-07-01

    1 AD_________________ Award Number: W81XWH-11-1-0333 TITLE: Therapeutic Targeting of TRPV1 for the...01-07-2012 2. REPORT TYPE Annual 3. DATES COVERED 1 July 2011 to 30 June 2012 4. TITLE AND SUBTITLE Therapeutic Targeting of TRPV1 for the...specific inflammatory factors, IL-6 and TNF-α, PTHrP and ET-1 on upregulation of TRPV1 channel function/expression, and nociceptor sensitization

  3. Therapeutic Approaches in the Stimulation of the Coronary Collateral Circulation

    PubMed Central

    Degen, Achim; Millenaar, Dominic; Schirmer, Stephan H.

    2014-01-01

    Arteriogenesis as a way to restore blood flow after arterial occlusion has been under investigation for the treatment of coronary artery disease (CAD) for decades. Therapeutic approaches so far have included delivery of cytokines and growth factors as well as mechanical stimulation such as external counterpulsation. As knowledge on the mechanisms of arteriogenesis expanded, new therapeutic approaches have emerged. This review summarizes recent attempts to stimulate the growth of the coronary vasculature and discusses their potential in clinical application. This article also delivers an overview of current studies and trials on coronary arteriogenesis. PMID:23721076

  4. Genetic therapeutic approaches for Duchenne muscular dystrophy.

    PubMed

    Foster, Helen; Popplewell, Linda; Dickson, George

    2012-07-01

    Despite an expansive wealth of research following the discovery of the DMD gene 25 years ago, there is still no curative treatment for Duchenne muscular dystrophy. However, there are currently many promising lines of research, including cell-based therapies and pharmacological reagents to upregulate dystrophin via readthrough of nonsense mutations or by upregulation of the dystrophin homolog utrophin. Here we review genetic-based therapeutic strategies aimed at the amelioration of the DMD phenotype. These include the reintroduction of a copy of the DMD gene into an affected tissue by means of a viral vector; correction of the mutated DMD transcript by antisense oligonucleotide-induced exon skipping to restore the open reading frame; and direct modification of the DMD gene at a chromosomal level through genome editing. All these approaches are discussed in terms of the more recent advances, and the hurdles to be overcome if a comprehensive and effective treatment for DMD is to be found. These hurdles include the need to target all musculature of the body. Therefore any potential treatment would need to be administered systemically. In addition, any treatment needs to have a long-term effect, with the possibility of readministration, while avoiding any potentially detrimental immune response to the vector or transgene.

  5. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  6. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets.

    PubMed

    Vasaikar, Suhas; Bhatia, Pooja; Bhatia, Partap G; Chu Yaiw, Koon

    2016-11-21

    In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment.

  7. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    PubMed

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    PubMed Central

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC. PMID:26154566

  9. Therapeutic targeting of epithelial plasticity programs – Focus on the epithelial-mesenchymal transition

    PubMed Central

    Malek, Reem; Wang, Hailun; Taparra, Kekoa; Tran, Phuoc T.

    2017-01-01

    Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into three groups: (1) extracellular inducers of EMT; (2) the transcription factors that orchestrate the EMT transcriptome; and, (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT such as the signal transduction pathways TGFβ, EFGR and Axl-Gas6. We emphasize in more detail pathways that are we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only one EMT related process will be unsuccessful or only transiently successful. We suggest with greater understanding of epithelial plasticity regulation such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes. PMID:28214899

  10. Neoplastic Meningitis from Solid Tumors: New Diagnostic and Therapeutic Approaches

    PubMed Central

    Zustovich, Fable; Farina, Patrizia; Della Puppa, Alessandro; Manara, Renzo; Cecchin, Diego; Brunello, Antonella; Cappetta, Alessandro; Zagonel, Vittorina

    2011-01-01

    Neoplastic meningitis is a result of the spread of malignant cells to the leptomeninges and subarachnoid space and their dissemination within the cerebrospinal fluid. This event occurs in 4%–15% of all patients with solid tumors and represents an important prognostic factor for poor survival. Neoplastic meningitis should be diagnosed in the early stages of disease to prevent important neurological deficits and to provide the most appropriate treatment. Despite new diagnostic approaches developed in recent years, such as positron emission tomography–computed tomography and new biological markers, the combination of magnetic resonance imaging without and with gadolinium enhancement and cytology still has the greatest diagnostic sensitivity. Recently, no new randomized studies comparing intrathecal (i.t.) with systemic treatment have been performed, yet there have been a few small phase II studies and case reports about new molecularly targeted substances whose successful i.t. or systemic application has been reported. Trastuzumab, gefitinib, and sorafenib are examples of possible future treatments for neoplastic meningitis, in order to better individualize therapy thus allowing better outcomes. In this review, we analyze the most recent and interesting developments on diagnostic and therapeutic approaches. PMID:21795431

  11. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases.

    PubMed

    Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I

    2017-01-01

    The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics.

    PubMed

    Huang, Zheyong; Pei, Ning; Wang, Yanyan; Xie, Xinxing; Sun, Aijun; Shen, Li; Zhang, Shuning; Liu, Xuebo; Zou, Yunzeng; Qian, Juying; Ge, Junbo

    2010-03-01

    Magnetic targeting has recently demonstrated potential in promoting magnetically loaded cell delivery to target lesion, but its application is limited by magnetic attenuation. For deep magnetic capture of cells for spatial targeting therapeutics, we designed a magnetic pole, in which the magnetic field density can be focused at a distance from the pole. As flowing through a tube served as a model of blood vessels, the magnetically loaded mesenchymal stem cells (MagMSCs) were highly enriched at the site distance from the magnetic pole. The cell capture efficiency was positively influenced by the magnetic flux density, and inversely influenced by the flow velocity, and well-fitted with the deductive value by theoretical considerations. It appeared to us that the spatially-focused property of the magnetic apparatus promises a new deep targeting strategy to promote homing and engraftment for cellular therapy. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Finding off-targets, biological pathways, and target diseases for chymase inhibitors via structure-based systems biology approach.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang Ping; Kim, Songmi; Arulalapperumal, Venkatesh; Lee, Keun Woo

    2015-07-01

    Off-target binding connotes the binding of a small molecule of therapeutic significance to a protein target in addition to the primary target for which it was proposed. Progressively such off-targeting is emerging to be regular practice to reveal side effects. Chymase is an enzyme of hydrolase class that catalyzes hydrolysis of peptide bonds. A link between heart failure and chymase is ascribed, and a chymase inhibitor is in clinical phase II for treatment of heart failure. However, the underlying mechanisms of the off-target effects of human chymase inhibitors are still unclear. Here, we develop a robust computational strategy that is applicable to any enzyme system and that allows the prediction of drug effects on biological processes. Putative off-targets for chymase inhibitors were identified through various structural and functional similarity analyses along with molecular docking studies. Finally, literature survey was performed to incorporate these off-targets into biological pathways and to establish links between pathways and particular adverse effects. Off-targets of chymase inhibitors are linked to various biological pathways such as classical and lectin pathways of complement system, intrinsic and extrinsic pathways of coagulation cascade, and fibrinolytic system. Tissue kallikreins, granzyme M, neutrophil elastase, and mesotrypsin are also identified as off-targets. These off-targets and their associated pathways are elucidated for the effects of inflammation, cancer, hemorrhage, thrombosis, and central nervous system diseases (Alzheimer's disease). Prospectively, our approach is helpful not only to better understand the mechanisms of chymase inhibitors but also for drug repurposing exercises to find novel uses for these inhibitors. © 2014 Wiley Periodicals, Inc.

  14. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    PubMed

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  15. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy.

    PubMed

    Kume, Shinji; Koya, Daisuke

    2015-12-01

    Diabetic nephropathy is a leading cause of end stage renal disease and its occurance is increasing worldwide. The most effective treatment strategy for the condition is intensive treatment to strictly control glycemia and blood pressure using renin-angiotensin system inhibitors. However, a fraction of patients still go on to reach end stage renal disease even under such intensive care. New therapeutic targets for diabetic nephropathy are, therefore, urgently needed. Autophagy is a major catabolic pathway by which mammalian cells degrade macromolecules and organelles to maintain intracellular homeostasis. The accumulation of damaged proteins and organelles is associated with the pathogenesis of diabetic nephropathy. Autophagy in the kidney is activated under some stress conditions, such as oxidative stress and hypoxia in proximal tubular cells, and occurs even under normal conditions in podocytes. These and other accumulating findings have led to a hypothesis that autophagy is involved in the pathogenesis of diabetic nephropathy. Here, we review recent findings underpinning this hypothesis and discuss the advantages of targeting autophagy for the treatment of diabetic nephropathy.

  16. Therapeutic targeting of SPINK1-positive prostate cancer.

    PubMed

    Ateeq, Bushra; Tomlins, Scott A; Laxman, Bharathi; Asangani, Irfan A; Cao, Qi; Cao, Xuhong; Li, Yong; Wang, Xiaoju; Feng, Felix Y; Pienta, Kenneth J; Varambally, Sooryanarayana; Chinnaiyan, Arul M

    2011-03-02

    Gene fusions involving ETS (erythroblastosis virus E26 transformation-specific) family transcription factors are found in ~50% of prostate cancers and as such can be used as a basis for the molecular subclassification of prostate cancer. Previously, we showed that marked overexpression of SPINK1 (serine peptidase inhibitor, Kazal type 1), which encodes a secreted serine protease inhibitor, defines an aggressive molecular subtype of ETS fusion-negative prostate cancers (SPINK1+/ETS⁻, ~10% of all prostate cancers). Here, we examined the potential of SPINK1 as an extracellular therapeutic target in prostate cancer. Recombinant SPINK1 protein (rSPINK1) stimulated cell proliferation in benign RWPE as well as cancerous prostate cells. Indeed, RWPE cells treated with either rSPINK1 or conditioned medium from 22RV1 prostate cancer cells (SPINK1+/ETS⁻) significantly increased cell invasion and intravasation when compared with untreated cells. In contrast, knockdown of SPINK1 in 22RV1 cells inhibited cell proliferation, cell invasion, and tumor growth in xenograft assays. 22RV1 cell proliferation, invasion, and intravasation were attenuated by a monoclonal antibody (mAb) to SPINK1 as well. We also demonstrated that SPINK1 partially mediated its neoplastic effects through interaction with the epidermal growth factor receptor (EGFR). Administration of antibodies to SPINK1 or EGFR (cetuximab) in mice bearing 22RV1 xenografts attenuated tumor growth by more than 60 and 40%, respectively, or ~75% when combined, without affecting PC3 xenograft (SPINK1⁻/ETS⁻) growth. Thus, this study suggests that SPINK1 may be a therapeutic target in a subset of patients with SPINK1+/ETS⁻ prostate cancer. Our results provide a rationale for both the development of humanized mAbs to SPINK1 and evaluation of EGFR inhibition in SPINK1+/ETS⁻ prostate cancers.

  17. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Lipton, Stuart A.

    2015-01-01

    At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. In contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. Here we highlight protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent posttranslational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics. PMID:26707925

  18. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    PubMed

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  19. GPCRs as potential therapeutic targets in preeclampsia

    PubMed Central

    McGuane, JT; Conrad, KP

    2012-01-01

    Preeclampsia is an important obstetric complication that arises in 5% of women after the 20th week of gestation, for which there is no specific therapy and no cure. Although much of the recent investigation in this field has focused on soluble forms of the angiogenic membrane receptor tyrosine kinase Flt1 and the transforming growth factor β co-receptor Endoglin, there is significant clinical potential for several GPCR targets and their agonists or antagonists in preeclampsia. In this review, we discuss several of the most promising candidates in this category, including calcitonin receptor-like receptor / receptor activity modifying protein 1 complexes, the angiotensin AT1, 2 and Mas receptors, and the relaxin receptor RXFP1. We also address some of the controversies surrounding the roles and therapeutic potential of these GPCRs and their (ant)agonists in preeclampsia. PMID:23144646

  20. Therapeutic interventions in sepsis: current and anticipated pharmacological agents

    PubMed Central

    Shukla, Prashant; Rao, G Madhava; Pandey, Gitu; Sharma, Shweta; Mittapelly, Naresh; Shegokar, Ranjita; Mishra, Prabhat Ranjan

    2014-01-01

    Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ–organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis. PMID:24977655

  1. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.

    PubMed

    Uddin, Reaz; Siddiqui, Quratulain Nehal; Azam, Syed Sikander; Saima, Bibi; Wadood, Abdul

    2018-03-01

    Among the resistant isolates of tuberculosis (TB), the multidrug resistance tuberculosis (MDR-TB) and extensively drug resistant tuberculosis (XDR-TB) are the areas of growing concern for which the front-line antibiotics are no more effective. As a result, the search of new therapeutic targets against TB is an imperative need of time. On the other hand, the target identification is an a priori step in drug discovery based research. Furthermore, the availability of the complete proteomic data of extensively drug resistant Mycobacterium tuberculosis (XDR-MTB) made it possible to carry out in silico analysis for the discovery of new drug targets. In the current study, we aimed to prioritize the potential drug targets among the hypothetical proteins of XDR-TB via subtractive genomics approach. In the subtractive genomics, we stepwise reduced the complete proteome of XDR-MTB to only two hypothetical proteins and evidently proposed them as new therapeutic targets. The 3D structure of one of the two target proteins was predicted via homology modeling and later on, validated by various analysis tools. Our study suggested that the domains identified and the motif hits found in the sequences of the shortlisted drug targets are crucial for the survival of the XDR-MTB. To the best of our knowledge, the current study is the first attempt in which the complete proteomic data of XDR-MTB was subjected to the computational subtractive genomics approach and therefore, would provide an opportunity to identify the unique therapeutic targets against deadly XDR-MTB. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dietary Strategies and Novel Pharmaceutical Approaches Targeting Serum ApoA-I Metabolism: A Systematic Overview

    PubMed Central

    Smolders, Lotte; Plat, Jogchum

    2017-01-01

    The incidence of CHD is still increasing, which underscores the need for new preventive and therapeutic approaches to decrease CHD risk. In this respect, increasing apoA-I concentrations may be a promising approach, especially through increasing apoA-I synthesis. This review first provides insight into current knowledge on apoA-I production, clearance, and degradation, followed by a systematic review of dietary and novel pharmacological approaches to target apoA-I metabolism. For this, a systematic search was performed to identify randomized controlled intervention studies that examined effects of whole foods and (non)nutrients on apoA-I metabolism. In addition, novel pharmacological approaches were searched for, which were specifically developed to target apoA-I metabolism. We conclude that both dietary components and pharmacological approaches can be used to increase apoA-I concentrations or functionality. For the dietary components in particular, more knowledge about the underlying mechanisms is necessary, as increasing apoA-I per se does not necessarily translate into a reduced CHD risk. PMID:28695008

  3. Prospects for nucleic acid-based therapeutics against hepatitis C virus.

    PubMed

    Lee, Chang Ho; Kim, Ji Hyun; Lee, Seong-Wook

    2013-12-21

    In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.

  4. Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update.

    PubMed

    Tiwari, Pragya

    2015-01-01

    Diabetes highlights a growing epidemic imposing serious social economic crisis to the countries around the globe. Despite scientific breakthroughs, better healthcare facilities, and improved literacy rate, the disease continues to burden several sections, especially middle and low income countries. The present trends indicate the rise in premature death, posing a major threat to global development. Scientific and technological advances have witnessed the development of newer generation of drugs like sulphonylureas, biguanides, alpha glucosidase inhibitors, and thiazolidinediones with significant efficacy in reducing hyperglycemia. Recent approaches in drug discovery have contributed to the development of new class of therapeutics like Incretin mimetics, Amylin analogues, GIP analogs, Peroxisome proliferator activated receptors, and dipeptidyl peptidase-4 inhibitor as targets for potential drugs in diabetes treatment. Subsequently, the identification and clinical investigation of bioactive substances from plants have revolutionized the research on drug discovery and lead identification for diabetes management. With a focus on the emerging trends, the review article explores the current statistical prevalence of the disease, discussing the benefits and limitations of the commercially available drugs. Additionally, the critical areas in clinical diabetology are discussed, with respect to prospects of statins, nanotechnology, and stem cell technology as next generation therapeutics and why the herbal formulations are consistently popular choice for diabetes medication and management.

  5. Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update

    PubMed Central

    Tiwari, Pragya

    2015-01-01

    Diabetes highlights a growing epidemic imposing serious social economic crisis to the countries around the globe. Despite scientific breakthroughs, better healthcare facilities, and improved literacy rate, the disease continues to burden several sections, especially middle and low income countries. The present trends indicate the rise in premature death, posing a major threat to global development. Scientific and technological advances have witnessed the development of newer generation of drugs like sulphonylureas, biguanides, alpha glucosidase inhibitors, and thiazolidinediones with significant efficacy in reducing hyperglycemia. Recent approaches in drug discovery have contributed to the development of new class of therapeutics like Incretin mimetics, Amylin analogues, GIP analogs, Peroxisome proliferator activated receptors, and dipeptidyl peptidase-4 inhibitor as targets for potential drugs in diabetes treatment. Subsequently, the identification and clinical investigation of bioactive substances from plants have revolutionized the research on drug discovery and lead identification for diabetes management. With a focus on the emerging trends, the review article explores the current statistical prevalence of the disease, discussing the benefits and limitations of the commercially available drugs. Additionally, the critical areas in clinical diabetology are discussed, with respect to prospects of statins, nanotechnology, and stem cell technology as next generation therapeutics and why the herbal formulations are consistently popular choice for diabetes medication and management. PMID:26273667

  6. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer

    PubMed Central

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer. PMID:26937130

  7. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer.

    PubMed

    Yashiro, Masakazu; Matsuoka, Tasuku

    2016-02-28

    Fibroblast growth factor receptors (FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.

  8. Pathways and therapeutic targets in melanoma

    PubMed Central

    Shtivelman, Emma; Davies, Michael A.; Hwu, Patrick; Yang, James; Lotem, Michal; Oren, Moshe; Flaherty, Keith T.; Fisher, David E.

    2014-01-01

    This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other “omics”) scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy. PMID:24743024

  9. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma.

    PubMed

    Momtaz, Saeideh; Niaz, Kamal; Maqbool, Faheem; Abdollahi, Mohammad; Rastrelli, Luca; Nabavi, Seyed Mohammad

    2017-05-06

    Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  10. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease.

    PubMed

    Jazvinšćak Jembrek, Maja; Slade, Neda; Hof, Patrick R; Šimić, Goran

    2018-05-04

    Alzheimer's disease (AD), the most common progressive neurodegenerative disorder, is characterized by severe cognitive decline and personality changes as a result of synaptic and neuronal loss. The defining clinicopathological hallmarks of the disease are deposits of amyloid precursor protein (APP)-derived amyloid-β peptides (Aβ) in the brain parenchyma, and intracellular aggregates of truncated and hyperphosphorylated tau protein in neurofibrillary tangles (NFT). At the cellular and molecular levels, many intertwined pathological mechanisms that relate Aβ and tau pathology with a transcription factor p53 have been revealed. p53 is activated in response to various stressors that threaten genomic stability. Depending on damage severity, it promotes neuronal death or survival, predominantly via transcription-dependent mechanisms that affect expression of apoptosis-related target genes. Levels of p53 are enhanced in the AD brain and maintain sustained tau hyperphosphorylation, whereas intracellular Aβ directly contributes to p53 pool and promotes downstream p53 effects. The review summarizes the role of p53 in neuronal function, discusses the interactions of p53, tau, and Aβ in the normal brain and during the progression of AD pathology, and considers the impact of the most prominent hereditary risk factors of AD on p53/tau/Aβ interactions. A better understanding of this intricate interplay would provide deeper insight into AD pathology and might offer some novel therapeutic targets for the improvement of treatment options. In this regard, drugs and natural compounds targeting the p53 pathway are of growing interest in neuroprotection as they may represent promising therapeutic approaches in the prevention of oxidative stress-dependent pathological processes underlying AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Application of multi-target phytotherapeutic concept in malaria drug discovery: a systems biology approach in biomarker identification.

    PubMed

    Tarkang, Protus Arrey; Appiah-Opong, Regina; Ofori, Michael F; Ayong, Lawrence S; Nyarko, Alexander K

    2016-01-01

    There is an urgent need for new anti-malaria drugs with broad therapeutic potential and novel mode of action, for effective treatment and to overcome emerging drug resistance. Plant-derived anti-malarials remain a significant source of bioactive molecules in this regard. The multicomponent formulation forms the basis of phytotherapy. Mechanistic reasons for the poly-pharmacological effects of plants constitute increased bioavailability, interference with cellular transport processes, activation of pro-drugs/deactivation of active compounds to inactive metabolites and action of synergistic partners at different points of the same signaling cascade. These effects are known as the multi-target concept. However, due to the intrinsic complexity of natural products-based drug discovery, there is need to rethink the approaches toward understanding their therapeutic effect. This review discusses the multi-target phytotherapeutic concept and its application in biomarker identification using the modified reverse pharmacology - systems biology approach. Considerations include the generation of a product library, high throughput screening (HTS) techniques for efficacy and interaction assessment, High Performance Liquid Chromatography (HPLC)-based anti-malarial profiling and animal pharmacology. This approach is an integrated interdisciplinary implementation of tailored technology platforms coupled to miniaturized biological assays, to track and characterize the multi-target bioactive components of botanicals as well as identify potential biomarkers. While preserving biodiversity, this will serve as a primary step towards the development of standardized phytomedicines, as well as facilitate lead discovery for chemical prioritization and downstream clinical development.

  12. Molecular Chaperone Hsp90 Is a Therapeutic Target for Noroviruses

    PubMed Central

    Urena, Luis; Gonzalez-Hernandez, Mariam B.; Choi, Jayoung; de Rougemont, Alexis; Rocha-Pereira, Joana; Neyts, Johan; Hwang, Seungmin; Wobus, Christiane E.

    2015-01-01

    ABSTRACT Human noroviruses (HuNoV) are a significant cause of acute gastroenteritis in the developed world, and yet our understanding of the molecular pathways involved in norovirus replication and pathogenesis has been limited by the inability to efficiently culture these viruses in the laboratory. Using the murine norovirus (MNV) model, we have recently identified a network of host factors that interact with the 5′ and 3′ extremities of the norovirus RNA genome. In addition to a number of well-known cellular RNA binding proteins, the molecular chaperone Hsp90 was identified as a component of the ribonucleoprotein complex. Here, we show that the inhibition of Hsp90 activity negatively impacts norovirus replication in cell culture. Small-molecule-mediated inhibition of Hsp90 activity using 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) revealed that Hsp90 plays a pleiotropic role in the norovirus life cycle but that the stability of the viral capsid protein is integrally linked to Hsp90 activity. Furthermore, we demonstrate that both the MNV-1 and the HuNoV capsid proteins require Hsp90 activity for their stability and that targeting Hsp90 in vivo can significantly reduce virus replication. In summary, we demonstrate that targeting cellular proteostasis can inhibit norovirus replication, identifying a potential novel therapeutic target for the treatment of norovirus infections. IMPORTANCE HuNoV are a major cause of acute gastroenteritis around the world. RNA viruses, including noroviruses, rely heavily on host cell proteins and pathways for all aspects of their life cycle. Here, we identify one such protein, the molecular chaperone Hsp90, as an important factor required during the norovirus life cycle. We demonstrate that both murine and human noroviruses require the activity of Hsp90 for the stability of their capsid proteins. Furthermore, we demonstrate that targeting Hsp90 activity in vivo using small molecule inhibitors also reduces

  13. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach

    PubMed Central

    Mangano, Katia; Mazzon, Emanuela; Basile, Maria Sofia; Di Marco, Roberto; Bramanti, Placido; Mammana, Santa; Petralia, Maria Cristina; Fagone, Paolo; Nicoletti, Ferdinando

    2018-01-01

    Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors. PMID:29707160

  14. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    PubMed

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  15. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect

    PubMed Central

    Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

    2011-01-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541

  16. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.

    PubMed

    Jyotsana, Nidhi; Heuser, Michael

    2018-02-01

    Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.

  17. Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer.

    PubMed

    Garattini, Enrico; Bolis, Marco; Gianni', Maurizio; Paroni, Gabriela; Fratelli, Maddalena; Terao, Mineko

    2016-07-05

    Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.

  18. Endothelin therapeutics in cancer: Where are we?

    PubMed

    Rosanò, Laura; Bagnato, Anna

    2016-03-15

    In human cancers, the autocrine and paracrine loop mediated by the aberrantly activation of endothelin-1 (ET-1) receptor (ET-1R) elicits pleiotropic effects, preferentially mediated by the scaffold protein β-arrestin 1 (β-arr1), on tumor cells and on the host microenvironment, providing a strong rationale for targeting ET-1 receptors. This review describes the most up-to-date preclinical and clinical results obtained by using ET-1 therapeutics. The previous negative clinical results of ET-1 therapeutics should not prevent us from setting the standard of this class of drugs for future well-designed clinical trials. The preclinical data obtained with the dual ETAR and ETBR antagonist macitentan indicate that this molecule, which targets cancer cells and tumor-associated microenvironmental elements, could be a cancer therapeutic option. The field of ET-1 therapeutics will be improved in the next decade, facilitated by the new knowledge on the genomic landscape of the human stroma and tumor, and by the low invasive approaches based on liquid biopsies for the discovery of predictive biomarkers. The information obtained from preclinical studies in patient-derived models and from the Cancer Genome Atlas will set the scene of precision medicine for cancer. Results from these studies are expected to open the possibility that ET-1R antagonists might be more efficacious as molecular cancer therapeutics, able to hamper the functional β-arr1-dependent signaling complexes, either alone or coupled with new targeted approaches. Copyright © 2016 the American Physiological Society.

  19. Targeted Delivery of Therapeutic Oligonucleotides for the Treatment of Prostate Cancer

    DTIC Science & Technology

    2004-05-01

    AD Award Number: DAMD17-01-1-0090 TITLE: Targeted Delivery of Therapeutic Oligonucleotides for the Treatment of Prostate Cancer PRINCIPAL...independence and chemoresistance are the major obstacles in the treatment of patients with advanced prostate cancer (Denis & Murphy, 1993; Oh & Kantoff...independence and chemoresistance in prostate cancer (McDonnell et al., 1992; Colombel et al., 1993; Berchem et al., 1995; Raffo et al., 1995; Bauer et al

  20. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes

    PubMed Central

    Kimple, Michelle E; Neuman, Joshua C; Linnemann, Amelia K; Casey, Patrick J

    2014-01-01

    The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology. PMID:24946790

  1. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets

    PubMed Central

    Miranda-Gonçalves, Vera; Honavar, Mrinalini; Pinheiro, Céline; Martinho, Olga; Pires, Manuel M.; Pinheiro, Célia; Cordeiro, Michelle; Bebiano, Gil; Costa, Paulo; Palmeirim, Isabel; Reis, Rui M.; Baltazar, Fátima

    2013-01-01

    Background Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD147 and to assess the therapeutic impact of MCT inhibition in gliomas. Methods MCTs and CD147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models. Results MCT1, MCT4, and CD147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed. Conclusions This is the most comprehensive study reporting the expression of MCTs and CD147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment. PMID:23258846

  2. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening

    NASA Astrophysics Data System (ADS)

    Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas

    2017-07-01

    The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.

  3. Hepatocyte-targeted RNAi Therapeutics for the Treatment of Chronic Hepatitis B Virus Infection

    PubMed Central

    Wooddell, Christine I; Rozema, David B; Hossbach, Markus; John, Matthias; Hamilton, Holly L; Chu, Qili; Hegge, Julia O; Klein, Jason J; Wakefield, Darren H; Oropeza, Claudia E; Deckert, Jochen; Roehl, Ingo; Jahn-Hofmann, Kerstin; Hadwiger, Philipp; Vornlocher, Hans-Peter; McLachlan, Alan; Lewis, David L

    2013-01-01

    RNA interference (RNAi)-based therapeutics have the potential to treat chronic hepatitis B virus (HBV) infection in a fundamentally different manner than current therapies. Using RNAi, it is possible to knock down expression of viral RNAs including the pregenomic RNA from which the replicative intermediates are derived, thus reducing viral load, and the viral proteins that result in disease and impact the immune system's ability to eliminate the virus. We previously described the use of polymer-based Dynamic PolyConjugate (DPC) for the targeted delivery of siRNAs to hepatocytes. Here, we first show in proof-of-concept studies that simple coinjection of a hepatocyte-targeted, N-acetylgalactosamine-conjugated melittin-like peptide (NAG-MLP) with a liver-tropic cholesterol-conjugated siRNA (chol-siRNA) targeting coagulation factor VII (F7) results in efficient F7 knockdown in mice and nonhuman primates without changes in clinical chemistry or induction of cytokines. Using transient and transgenic mouse models of HBV infection, we show that a single coinjection of NAG-MLP with potent chol-siRNAs targeting conserved HBV sequences resulted in multilog repression of viral RNA, proteins, and viral DNA with long duration of effect. These results suggest that coinjection of NAG-MLP and chol-siHBVs holds great promise as a new therapeutic for patients chronically infected with HBV. PMID:23439496

  4. Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis.

    PubMed

    Stoletov, Konstantin; Willetts, Lian; Paproski, Robert J; Bond, David J; Raha, Srijan; Jovel, Juan; Adam, Benjamin; Robertson, Amy E; Wong, Francis; Woolner, Emma; Sosnowski, Deborah L; Bismar, Tarek A; Wong, Gane Ka-Shu; Zijlstra, Andries; Lewis, John D

    2018-06-14

    Metastasis is the most lethal aspect of cancer, yet current therapeutic strategies do not target its key rate-limiting steps. We have previously shown that the entry of cancer cells into the blood stream, or intravasation, is highly dependent upon in vivo cancer cell motility, making it an attractive therapeutic target. To systemically identify genes required for tumor cell motility in an in vivo tumor microenvironment, we established a novel quantitative in vivo screening platform based on intravital imaging of human cancer metastasis in ex ovo avian embryos. Utilizing this platform to screen a genome-wide shRNA library, we identified a panel of novel genes whose function is required for productive cancer cell motility in vivo, and whose expression is closely associated with metastatic risk in human cancers. The RNAi-mediated inhibition of these gene targets resulted in a nearly total (>99.5%) block of spontaneous cancer metastasis in vivo.

  5. Rabies in the critical care unit: diagnostic and therapeutic approaches.

    PubMed

    Jackson, Alan C

    2011-09-01

    Worldwide, human rabies is prevalent where there is endemic dog rabies, but the disease may present unexpectedly in critical care units when suggestive clinical features have passed. In North America transmission from bats is most common and there is often no history of a bat bite or even contact with bats. Laboratory diagnostic evaluation for rabies includes serology plus skin biopsy, cerebrospinal fluid, and saliva specimens for rabies virus antigen and/or RNA detection. Rare patients have survived rabies, and most received rabies vaccine prior to the onset of illness. Therapeutic coma (midazolam and phenobarbital), ketamine, and antiviral therapies (dubbed the "Milwaukee Protocol") were given to a rabies survivor, but this therapy was likely not directly responsible for the favorable outcome. There have been many subsequent failures of similar therapeutic approaches. There is no scientific rationale for the use of therapeutic coma in human rabies. New approaches to treating human rabies need to be developed.

  6. miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target.

    PubMed

    Yamamoto, Haruna; Lu, Jun; Oba, Shigeyoshi; Kawamata, Toyotaka; Yoshimi, Akihide; Kurosaki, Natsumi; Yokoyama, Kazuaki; Matsushita, Hiromichi; Kurokawa, Mineo; Tojo, Arinobu; Ando, Kiyoshi; Morishita, Kazuhiro; Katagiri, Koko; Kotani, Ai

    2016-01-12

    The Ecotropic viral integration site 1 (Evi1) is a zinc finger transcription factor, which is located on chromosome 3q26, over-expression in some acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Elevated Evi1 expression in AML is associated with unfavorable prognosis. Therefore, Evi1 is one of the strong candidate in molecular target therapy for the leukemia. MicroRNAs (miRNAs) are small non-coding RNAs, vital to many cell functions that negatively regulate gene expression by translation or inducing sequence-specific degradation of target mRNAs. As a novel biologics, miRNAs is a promising therapeutic target due to its low toxicity and low cost. We screened miRNAs which down-regulate Evi1. miR-133 was identified to directly bind to Evi1 to regulate it. miR-133 increases drug sensitivity specifically in Evi1 expressing leukemic cells, but not in Evi1-non-expressing cells The results suggest that miR-133 can be promising therapeutic target for the Evi1 dysregulated poor prognostic leukemia.

  7. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns?

    PubMed

    Banerjee, Yajnavalka; Santos, Raul D; Al-Rasadi, Khalid; Rizzo, Manfredi

    2016-05-01

    Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) regulates the expression of low-density lipoprotein (LDL)-receptors, through reducing their recycling by binding to the receptor along with LDL and targeting it for lysosomal destruction. PCSK9 also enhances the degradation of very-low-density-lipoprotein receptor (VLDLR) and lipoprotein receptor-related protein 1 (LRP-1) in a LDL-receptor independent manner. This role in lipid homeostasis presents PCSK9 as an attractive target for the therapeutic management of familial hypercholesterolemia as well as other refractory dyslipidaemias. However, PCSK9 mediates multifarious functions independent of its role in lipid homeostasis, which can be grouped under "pleiotropic functions" of the protein. This includes PCSK9's role in: trafficking of epithelial sodium channel; hepatic regeneration; pancreatic integrity and glucose homeostasis; antiviral activity; antimalarial activity; regulation of different cell signalling pathways; cortical neural differentiation; neuronal apoptosis and Alzheimer's disease. The question that needs to be investigated in depth is "How will the pleotropic functions of PCSK9, be affected by the therapeutic intervention of the protease's LDL-receptor lowering activity?" In this review, we appraise the different lipid lowering strategies targeting PCSK9 in light of the protein's different pleiotropic functions. Additionally, we delineate the key areas that require further examination, to ensure the long-term safety of the above lipid-lowering strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics.

    PubMed

    Alaoui-Jamali, Moulay A; Morand, Grégoire B; da Silva, Sabrina Daniela

    2015-01-01

    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  9. Protein kinase Cβ as a therapeutic target stabilizing blood–brain barrier disruption in experimental autoimmune encephalomyelitis

    PubMed Central

    Lanz, Tobias V.; Becker, Simon; Osswald, Matthias; Bittner, Stefan; Schuhmann, Michael K.; Opitz, Christiane A.; Gaikwad, Sadanand; Wiestler, Benedikt; Litzenburger, Ulrike M.; Sahm, Felix; Ott, Martina; Iwantscheff, Simeon; Grabitz, Carl; Mittelbronn, Michel; von Deimling, Andreas; Winkler, Frank; Meuth, Sven G.; Wick, Wolfgang; Platten, Michael

    2013-01-01

    Disruption of the blood–brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase Cβ, which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase Cβ in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS. PMID:23959874

  10. Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma.

    PubMed

    Tateishi, Kensuke; Iafrate, A John; Ho, Quan; Curry, William T; Batchelor, Tracy T; Flaherty, Keith T; Onozato, Maristela L; Lelic, Nina; Sundaram, Sudhandra; Cahill, Daniel P; Chi, Andrew S; Wakimoto, Hiroaki

    2016-09-01

    Deregulated Myc drives an oncogenic metabolic state, including pseudohypoxic glycolysis, adapted for the constitutive production of biomolecular precursors to feed rapid tumor cell growth. In glioblastoma, Myc facilitates renewal of the tumor-initiating cell reservoir contributing to tumor maintenance. We investigated whether targeting the Myc-driven metabolic state could be a selectively toxic therapeutic strategy for glioblastoma. The glycolytic dependency of Myc-driven glioblastoma was tested using (13)C metabolic flux analysis, glucose-limiting culture assays, and glycolysis inhibitors, including inhibitors of the NAD(+) salvage enzyme nicotinamide phosphoribosyl-transferase (NAMPT), in MYC and MYCN shRNA knockdown and lentivirus overexpression systems and in patient-derived glioblastoma tumorspheres with and without MYC/MYCN amplification. The in vivo efficacy of glycolyic inhibition was tested using NAMPT inhibitors in MYCN-amplified patient-derived glioblastoma orthotopic xenograft mouse models. Enforced Myc overexpression increased glucose flux and expression of glycolytic enzymes in glioblastoma cells. Myc and N-Myc knockdown and Myc overexpression systems demonstrated that Myc activity determined sensitivity and resistance to inhibition of glycolysis. Small-molecule inhibitors of glycolysis, particularly NAMPT inhibitors, were selectively toxic to MYC/MYCN-amplified patient-derived glioblastoma tumorspheres. NAMPT inhibitors were potently cytotoxic, inducing apoptosis and significantly extended the survival of mice bearing MYCN-amplified patient-derived glioblastoma orthotopic xenografts. Myc activation in glioblastoma generates a dependency on glycolysis and an addiction to metabolites required for glycolysis. Glycolytic inhibition via NAMPT inhibition represents a novel metabolically targeted therapeutic strategy for MYC or MYCN-amplified glioblastoma and potentially other cancers genetically driven by Myc. Clin Cancer Res; 22(17); 4452-65. ©2016 AACR

  11. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    PubMed

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  12. MiR-29a: a potential therapeutic target and promising biomarker in tumors

    PubMed Central

    Wang, Jin-yan; Zhang, Qian; Wang, Dan-dan; Yan, Wei; Sha, Huan-huan; Zhao, Jian-hua; Yang, Su-jin; Zhang, He-da; Hou, Jun-chen; Xu, Han-zi; He, Yun-jie; Hu, Jia-hua

    2017-01-01

    MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3′-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy. PMID:29217524

  13. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C.; Marrs, James A.

    2013-01-01

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection. PMID:24961433

  14. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C; Marrs, James A

    2013-06-19

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  15. Therapeutic Targeting of Eosinophil Adhesion and Accumulation in Allergic Conjunctivitis

    PubMed Central

    Baiula, Monica; Bedini, Andrea; Carbonari, Gioia; Dattoli, Samantha Deianira; Spampinato, Santi

    2012-01-01

    Considerable evidence indicates that eosinophils are important effectors of ocular allergy. Increased worldwide prevalence of allergic eye pathologies has stimulated the identification of novel drug targets, including eosinophils and adhesion molecules. Accumulation of eosinophils in the eye is a key event in the onset and maintenance of allergic inflammation and is mediated by different adhesion molecules. Antihistamines with multiple mechanisms of action can be effective during the early and late phases of allergic conjunctivitis by blocking the interaction between β1 integrins and vascular cell adhesion molecule (VCAM)-1. Small molecule antagonists that target key elements in the process of eosinophil recruitment have been identified and reinforce the validity of α4β1 integrin as a therapeutic target. Glucocorticoids are among the most effective drugs for ocular allergy, but their use is limited by adverse effects. Novel dissociated glucocorticoids can prevent eosinophil accumulation and induce apoptosis of eosinophils, making them promising candidates for ophthalmic drugs. This article reviews recent understanding of the role of adhesion molecules in eosinophil recruitment in the inflamed conjunctiva along with effective treatments for allergic conjunctivitis. PMID:23271999

  16. Progress and trends in complement therapeutics.

    PubMed

    Ricklin, Daniel; Lambris, John D

    2013-01-01

    The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.

  17. Progress and Trends in Complement Therapeutics.

    PubMed

    Ricklin, Daniel; Lambris, John D

    2013-01-01

    The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.

  18. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-06-01

    In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.

  19. The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential.

    PubMed

    Sprous, Dennis; Palmer, Kyle R

    2010-01-01

    Taste signaling is a critical determinant of ingestive behaviors and thereby linked to obesity and related metabolic dysfunctions. Recent evidence of taste signaling pathways in the gut suggests the link to be more direct, raising the possibility that taste receptor systems could be regarded as therapeutic targets. T1R2/T1R3, the G protein coupled receptor that mediates sweet taste, and the TRPM5 ion channel have been the focus of discovery programs seeking novel compounds that could be useful in modifying taste. We review in this chapter the hypothesis of gastrointestinal taste signaling and discuss the potential for T1R2/T1R3 and TRPM5 as targets of therapeutic intervention in obesity and diabetes. Critical to the development of a drug discovery program is the creation of libraries that enhance the likelihood of identifying novel compounds that modulate the target of interest. We advocate a computer-based chemoinformatic approach for assembling natural and synthetic compound libraries as well as for supporting optimization of structure activity relationships. Strategies for discovering modulators of T1R2/T1R3 and TRPM5 using methods of chemoinformatics are presented herein. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Selective targeting of bioengineered platelets to prostate cancer vasculature: new paradigm for therapeutic modalities

    PubMed Central

    Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H; Burns, Sarah; San Francisco, Ignacio F; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen deprivation therapy (ADT) provides palliation for most patients with advanced prostate cancer (CaP); however, greater than 80% subsequently fail ADT. ADT has been indicated to induce an acute but transient destabilization of the prostate vasculature in animal models and humans. Human re-hydrated lyophilized platelets (hRL-P) were investigated as a prototype for therapeutic agents designed to target selectively the tumour-associated vasculature in CaP. The ability of hRL-P to bind the perturbed endothelial cells was tested using thrombin- and ADP-activated human umbilical vein endothelial cells (HUVEC), as well as primary xenografts of human prostate tissue undergoing acute vascular involution in response to ADT. hRL-P adhered to activated HUVEC in a dose-responsive manner. Systemically administered hRL-P, and hRL-P loaded with super-paramagnetic iron oxide (SPIO) nanoparticles, selectively targeted the ADT-damaged human microvasculature in primary xenografts of human prostate tissue. This study demonstrated that hRL-P pre-loaded with chemo-therapeutics or nanoparticles could provide a new paradigm for therapeutic modalities to prevent the rebound/increase in prostate vasculature after ADT, inhibiting the transition to castration-recurrent growth. PMID:25736582

  1. Systemic analysis of genome-wide expression profiles identified potential therapeutic targets of demethylation drugs for glioblastoma.

    PubMed

    Ning, Tongbo; Cui, Hao; Sun, Feng; Zou, Jidian

    2017-09-05

    Glioblastoma represents one of the most aggressive malignant brain tumors with high morbidity and motility. Demethylation drugs have been developed for its treatment with little efficacy has been observed. The purpose of this study was to screen therapeutic targets of demethylation drugs or bioactive molecules for glioblastoma through systemic bioinformatics analysis. We firstly downloaded genome-wide expression profiles from the Gene Expression Omnibus (GEO) and conducted the primary analysis through R software, mainly including preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differential expression genes (DEGs). Secondly, functional enrichment analysis was conducted via the Database for Annotation, Visualization and Integrated Discovery (DAVID) to explore biological processes involved in the development of glioblastoma. Thirdly, we constructed protein-protein interaction (PPI) network of interested genes and conducted cross analysis for multi datasets to obtain potential therapeutic targets for glioblastoma. Finally, we further confirmed the therapeutic targets through real-time RT-PCR. As a result, biological processes that related to cancer development, amino metabolism, immune response and etc. were found to be significantly enriched in genes that differential expression in glioblastoma and regulated by 5'aza-dC. Besides, network and cross analysis identified ACAT2, UFC1 and CYB5R1 as novel therapeutic targets of demethylation drugs which also confirmed by real time RT-PCR. In conclusions, our study identified several biological processes and genes that involved in the development of glioblastoma and regulated by 5'aza-dC, which would be helpful for the treatment of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Targeting the RAS oncogene

    PubMed Central

    Takashima, Asami

    2013-01-01

    Introduction The Ras proteins (K-Ras, N-Ras, H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells. Areas covered The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: 1) Ras itself, 2) Ras downstream pathways, and 3) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application. Expert opinion The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” upon aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies. PMID:23360111

  3. Molecular pathways and therapeutic targets in lung cancer

    PubMed Central

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  4. Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and novel therapeutic target in acute myeloid leukemia

    PubMed Central

    Porter, Christopher C.; Kim, Jihye; Fosmire, Susan; Gearheart, Christy M.; van Linden, Annemie; Baturin, Dmitry; Zaberezhnyy, Vadym; Patel, Purvi R.; Gao, Dexiang; Tan, Aik Choon; DeGregori, James

    2011-01-01

    Acute myeloid leukemia (AML) remains a therapeutic challenge despite increasing knowledge about the molecular origins of the disease, as the mechanisms of AML cell escape from chemotherapy remain poorly defined. We hypothesized that AML cells are addicted to molecular pathways in the context of chemotherapy and used complementary approaches to identify these addictions. Using novel molecular and computational approaches, we performed genome-wide shRNA screens to identify proteins that mediate AML cell fate after cytarabine exposure, gene expression profiling of AML cells exposed to cytarabine to identify genes with induced expression in this context, and examination of existing gene expression data from primary patient samples. The integration of these independent analyses strongly implicates cell cycle checkpoint proteins, particularly WEE1, as critical mediators of AML cell survival after cytarabine exposure. Knockdown of WEE1 in a secondary screen confirmed its role in AML cell survival. Pharmacologic inhibition of WEE1 in AML cell lines and primary cells is synergistic with cytarabine. Further experiments demonstrate that inhibition of WEE1 prevents S-phase arrest induced by cytarabine, broadening the functions of WEE1 that may be exploited therapeutically. These data highlight the power of integrating functional and descriptive genomics, and identify WEE1 as potential therapeutic target in AML. PMID:22289989

  5. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors

    PubMed Central

    Linger, Rachel M.A.; Keating, Amy K.; Earp, H. Shelton

    2010-01-01

    Importance of the field Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the specific role of these receptor tyrosine kinases (RTKs) in the development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to mechanisms of cell survival, migration, invasion, metastasis, and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. Areas covered in this review Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, non-small cell lung cancer, and breast cancer is examined. A comprehensive discussion of Axl and/or Mer inhibitors in development is also provided. What the reader will gain Potential toxicities associated with Axl or Mer inhibition are addressed. We hypothesize that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a unique therapeutic opportunity to target both tumor cells and the stromal components which facilitate disease progression. Take home message Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies. PMID:20809868

  6. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo

  7. ER Stress: A Therapeutic Target in Rheumatoid Arthritis?

    PubMed

    Rahmati, Marveh; Moosavi, Mohammad Amin; McDermott, Michael F

    2018-04-22

    Diverse physiological and pathological conditions that impact on protein folding of the endoplasmic reticulum (ER) cause ER stress. The unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway are activated to cope with ER stress. In rheumatoid arthritis (RA), inflammation and ER stress work in parallel by driving inflammatory cells to release cytokines that induce chronic ER stress pathways. This chronic ER stress may contribute to the pathogenesis of RA through synoviocyte proliferation and proinflammatory cytokine production. Therefore, ER stress pathways and their constituent elements are attractive targets for RA drug development. In this review, we integrate current knowledge of the contribution of ER stress to the overall pathogenesis of RA, and suggest some therapeutic implications of these discoveries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.

    PubMed

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M

    2017-11-15

    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  9. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  10. Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma.

    PubMed

    Sekido, Yoshitaka

    2018-03-22

    Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF , NF2 , and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF , have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.

  11. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target

    PubMed Central

    Scholpa, Natalie E.

    2017-01-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. PMID:28935700

  12. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.

    PubMed

    Scholpa, Natalie E; Schnellmann, Rick G

    2017-12-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. U.S. Government work not protected by U.S. copyright.

  13. Overexpression of HER-2 via immunohistochemistry in canine urinary bladder transitional cell carcinoma - A marker of malignancy and possible therapeutic target.

    PubMed

    Millanta, F; Impellizeri, J; McSherry, L; Rocchigiani, G; Aurisicchio, L; Lubas, G

    2018-06-01

    Transitional cell carcinoma (TCC) is the most commonly diagnosed neoplasm in the urinary bladder. Distant metastases to the regional lymph nodes, lungs, abdominal organs or bones are noted in up to 50% of dogs at time of death. Surgical excision is often not practical as TCC typically involve the trigone of the bladder and/or occurs multifocally throughout the bladder with field cancerization. Therapeutic approaches are very challenging and the requirement to evaluate alternative therapeutic protocols that may prolong survival times in dogs bearing these tumours is compelling. We assessed the immunohistochemical expression of HER-2 in 23 cases of canine TCCs of the urinary bladder and compare it with non-neoplastic urothelium in order to evaluate a rationale for targeted therapies and gene-based vaccines. HER-2 positivity was recorded in 13/23 (56%) neoplastic lesions. The receptor was significantly overexpressed in neoplastic than in non-neoplastic samples (P = .015). According to our preliminary results, it would be of interest to further evaluate the role of HER-2 in canine TCCs as a marker of malignancy and a therapeutic target for cancer vaccine and antibodies. Moreover, the significantly different overexpression of HER-2 in TCCs than in non-neoplastic urothelium further supports to investigate its role in the progression toward malignancy of non-neoplastic lesions. © 2017 John Wiley & Sons Ltd.

  14. CD83 is a new potential biomarker and therapeutic target for Hodgkin lymphoma.

    PubMed

    Li, Ziduo; Ju, Xinsheng; Lee, Kenneth; Clarke, Candice; Hsu, Jennifer L; Abadir, Edward; Bryant, Christian E; Pears, Suzanne; Sunderland, Neroli; Heffernan, Scott; Hennessy, Annemarie; Lo, Tsun-Ho; Pietersz, Geoffrey A; Kupresanin, Fiona; Fromm, Phillip D; Silveira, Pablo A; Tsonis, Con; Cooper, Wendy A; Cunningham, Ilona; Brown, Christina; Clark, Georgina J; Hart, Derek N J

    2018-04-01

    Chemotherapy and hematopoietic stem cell transplantation are effective treatments for most Hodgkin lymphoma patients, however there remains a need for better tumor-specific target therapy in Hodgkin lymphoma patients with refractory or relapsed disease. Herein, we demonstrate that membrane CD83 is a diagnostic and therapeutic target, highly expressed in Hodgkin lymphoma cell lines and Hodgkin and Reed-Sternberg cells in 29/35 (82.9%) Hodgkin lymphoma patient lymph node biopsies. CD83 from Hodgkin lymphoma tumor cells was able to trogocytose to surrounding T cells and, interestingly, the trogocytosing CD83 + T cells expressed significantly more programmed death-1 compared to CD83 - T cells. Hodgkin lymphoma tumor cells secreted soluble CD83 that inhibited T-cell proliferation, and anti-CD83 antibody partially reversed the inhibitory effect. High levels of soluble CD83 were detected in Hodgkin lymphoma patient sera, which returned to normal in patients who had good clinical responses to chemotherapy confirmed by positron emission tomography scans. We generated a human anti-human CD83 antibody, 3C12C, and its toxin monomethyl auristatin E conjugate, that killed CD83 positive Hodgkin lymphoma cells but not CD83 negative cells. The 3C12C antibody was tested in dose escalation studies in non-human primates. No toxicity was observed, but there was evidence of CD83 positive target cell depletion. These data establish CD83 as a potential biomarker and therapeutic target in Hodgkin lymphoma. Copyright© 2018 Ferrata Storti Foundation.

  15. Effects of video-based therapy preparation targeting experiential acceptance or the therapeutic alliance.

    PubMed

    Johansen, Ayna B; Lumley, Mark; Cano, Annmarie

    2011-06-01

    Preparation for psychotherapy may enhance the psychotherapeutic process, reduce drop-outs, and improve outcomes, but the effective mechanisms of such preparation are poorly understood. Previous studies have rarely targeted specific processes that are associated with positive therapy outcomes. This randomized experiment compared the effects of preparatory videos that targeted either the Therapeutic Alliance, Experiential Acceptance, or a Control video on early therapeutic process variables in 105 patients seen in individual therapy. Participants watched the videos just before their first therapy session. No significant differences were found between the Alliance and Experiential Acceptance videos on patient recommendations, immediate affective reactions, or working alliance and attrition after the first session. However, the Therapeutic Alliance video produced an immediate increase in negative mood relative to the Control video, whereas the Experiential acceptance video produced a slight increase in positive mood relative to the Alliance video. Surprisingly, patients who viewed the Alliance video were rated significantly lower than the control group on therapist-rated alliance after the first session. These findings suggest there may be specific process effects in the early phase of treatment based on the type of pretraining material used, and also indicate that video-based pretraining efforts could be counterproductive. Furthermore, this research contributes to the literature by providing insights into methodological considerations for future work on the use of technology in psychotherapy and challenges associated with preparing people for successful psychotherapy.

  16. Theranostics Using Antibodies and Antibody-Related Therapeutics.

    PubMed

    Moek, Kirsten L; Giesen, Danique; Kok, Iris C; de Groot, Derk Jan A; Jalving, Mathilde; Fehrmann, Rudolf S N; Lub-de Hooge, Marjolijn N; Brouwers, Adrienne H; de Vries, Elisabeth G E

    2017-09-01

    In theranostics, radiolabeled compounds are used to determine a treatment strategy by combining therapeutics and diagnostics in the same agent. Monoclonal antibodies (mAbs) and antibody-related therapeutics represent a rapidly expanding group of cancer medicines. Theranostic approaches using these drugs in oncology are particularly interesting because antibodies are designed against specific targets on the tumor cell membrane and immune cells as well as targets in the tumor microenvironment. In addition, these drugs are relatively easy to radiolabel. Noninvasive molecular imaging techniques, such as SPECT and PET, provide information on the whole-body distribution of radiolabeled mAbs and antibody-related therapeutics. Molecular antibody imaging can potentially elucidate drug target expression, tracer uptake in the tumor, tumor saturation, and heterogeneity for these parameters within the tumor. These data can support drug development and may aid in patient stratification and monitoring of the treatment response. Selecting a radionuclide for theranostic purposes generally starts by matching the serum half-life of the mAb or antibody-related therapeutic and the physical half-life of the radionuclide. Furthermore, PET imaging allows better quantification than the SPECT technique. This information has increased interest in theranostics using PET radionuclides with a relatively long physical half-life, such as 89 Zr. In this review, we provide an overview of ongoing research on mAbs and antibody-related theranostics in preclinical and clinical oncologic settings. We identified 24 antibodies or antibody-related therapeutics labeled with PET radionuclides for theranostic purposes in patients. For this approach to become integrated in standard care, further standardization with respect to the procedures involved is required. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  17. Liprin-α4 as a Possible New Therapeutic Target for Pancreatic Cancer.

    PubMed

    Yamasaki, Akio; Nakayama, Kazunori; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Nagai, Shuntaro; Yanai, Kosuke; Onishi, Hideya

    2017-12-01

    In pancreatic cancer, where the microenvironment is extremely hypoxic, analyzing signal transduction under hypoxia is thought to be significantly important. By investigating microarray analysis of pancreatic cancer cells cultured under both normoxia and hypoxia, we found that the expression of leukocyte common antigen-related (LAR)-interacting protein (liprin)-α4 was extremely increased under hypoxia compared to under normoxia. In the present study, the biological significance of liprin-α4 in pancreatic cancer was investigated and whether liprin-α4 has potential as a therapeutic target for pancreatic cancer was estimated. Suppression of liprin-α4 reduced proliferation of pancreatic cancer cells both in vitro and in vivo. Inhibition of liprin-α4 also reduced invasiveness through the suppression of endothelial-mesenchymal transition. Stimulation by liprin-α4 was through phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways. Liprin-α4 plays a pivotal role in inducing malignant phenotypes such as increased proliferation and invasion in pancreatic cancer, and that liprin-α4 could be a new effective therapeutic target for pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease.

    PubMed

    Menendez-Gonzalez, Manuel; Padilla-Zambrano, Huber S; Alvarez, Gabriel; Capetillo-Zarate, Estibaliz; Tomas-Zapico, Cristina; Costa, Agustin

    2018-01-01

    Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer's disease (AD). This article aims to show the rationale of a new therapeutic strategy: clearing Aβ from the CSF continuously (the "CSF-sink" therapeutic strategy). First, we describe the physiologic mechanisms of Aβ clearance and the resulting AD pathology when these mechanisms are altered. Then, we review the experiences with peripheral Aβ-immunotherapy and discuss the related hypothesis of the mechanism of action of "peripheral sink." We also present Aβ-immunotherapies acting on the CNS directly. Finally, we introduce alternative methods of removing Aβ including the "CSF-sink" therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels of such proteins in the brain parenchyma. We conclude that interventions based in a "CSF-sink" of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore it may represent a new therapeutic strategy in AD.

  19. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer's disease

    PubMed Central

    Bennett, David A.; Yu, Lei; De Jager, Philip L.

    2014-01-01

    Cognitive decline, Alzheimer's disease (AD) and other causes are major public health problems worldwide. With changing demographics, the number of persons with dementia will increase rapidly. The treatment and prevention of AD and other dementias, therefore, is an urgent unmet need. There have been considerable advances in understanding the biology of many age-related disorders that cause dementia. Gains in understanding AD have led to the development of ante-mortem biomarkers of traditional neuropathology and the conduct of several phase III interventions in the amyloid-β cascade early in the disease process. Many other intervention strategies are in various stages of development. However, efforts to date have met with limited success. A recent National Institute on Aging Research Summit led to a number of requests for applications. One was to establish multi-disciplinary teams of investigators who use systems biology approaches and stem cell technology to identify a new generation of AD targets. We were recently awarded one of three such grants to build a pipeline that integrates epidemiology, systems biology, and stem cell technology to discover and validate novel therapeutic targets and lead compounds for AD treatment and prevention. Here we describe the two cohorts that provide the data and biospecimens being exploited for our pipeline and describe the available unique datasets. Second, we present evidence in support of a chronic disease model of AD that informs our choice of phenotypes as the target outcome. Third, we provide an overview of our approach. Finally, we present the details of our planned drug discovery pipeline. PMID:24508835

  20. Genetic risk variants as therapeutic targets for Crohn's disease.

    PubMed

    Gabbani, Tommaso; Deiana, Simona; Marocchi, Margherita; Annese, Vito

    2017-04-01

    The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.

  1. Novel targeted therapies for cancer cachexia.

    PubMed

    Argilés, Josep M; López-Soriano, Francisco Javier; Stemmler, Britta; Busquets, Sílvia

    2017-07-27

    Anorexia and metabolic alterations are the main components of the cachectic syndrome. Glucose intolerance, fat depletion, muscle protein catabolism and other alterations are involved in the development of cancer cachexia, a multi-organ syndrome. Nutritional approach strategies are not satisfactory in reversing the cachectic syndrome. The aim of the present review is to deal with the recent therapeutic targeted approaches that have been designed to fight and counteract wasting in cancer patients. Indeed, some promising targeted therapeutic approaches include ghrelin agonists, selective androgen receptor agonists, β-blockers and antimyostatin peptides. However, a multi-targeted approach seems absolutely essential to treat patients affected by cancer cachexia. This approach should not only involve combinations of drugs but also nutrition and an adequate program of physical exercise, factors that may lead to a synergy, essential to overcome the syndrome. This may efficiently reverse the metabolic changes described above and, at the same time, ameliorate the anorexia. Defining this therapeutic combination of drugs/nutrients/exercise is an exciting project that will stimulate many scientific efforts. Other aspects that will, no doubt, be very important for successful treatment of cancer wasting will be an optimized design of future clinical trials, together with a protocol for staging cancer patients in relation to their degree of cachexia. This will permit that nutritional/metabolic/pharmacological support can be started early in the course of the disease, before severe weight loss occurs. Indeed, timing is crucial and has to be taken very seriously when applying the therapeutic approach. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. Targeting Glutamatergic Signaling for the Development of Novel Therapeutics for Mood Disorders

    PubMed Central

    Machado-Vieira, R.; Salvadore, G.; Ibrahim, L.; DiazGranados, N.; Zarate, C.A.

    2009-01-01

    There have been no recent advances in drug development for mood disorders in terms of identifying drug targets that are mechanistically distinct from existing ones. As a result, existing antidepressants are based on decades-old notions of which targets are relevant to the mechanisms of antidepressant action. Low rates of remission, a delay of onset of therapeutic effects, continual residual depressive symptoms, relapses, and poor quality of life are unfortunately common in patients with mood disorders. Offering alternative options is requisite in order to reduce the individual and societal burden of these diseases. The glutamatergic system is a promising area of research in mood disorders, and likely to offer new possibilities in therapeutics. There is increasing evidence that mood disorders are associated with impairments in neuroplasticity and cellular resilience, and alterations of the glutamatergic system are known to play a major role in cellular plasticity and resilience. Existing antidepressants and mood stabilizers have prominent effects on the glutamate system, and modulating glutamatergic ionotropic or metabotropic receptors results in antidepressant-like properties in animal models. Several glutamatergic modulators targeting various glutamate components are currently being studied in the treatment of mood disorders, including release inhibitors of glutamate, N-methyl-D-aspartate (NMDA) antagonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) throughput enhancers, and glutamate transporter enhancers. This paper reviews the currently available knowledge regarding the role of the glutamatergic system in the etiopathogenesis of mood disorders and putative glutamate modulators. PMID:19442176

  3. Differential expression of folate receptor 1 in medulloblastoma and the correlation with clinicopathological characters and target therapeutic potential.

    PubMed

    Liu, Hailong; Sun, Qianwen; Zhang, Mingshan; Zhang, Zhihua; Fan, Xinyi; Yuan, Hongyu; Li, Cheng; Guo, Yuduo; Ning, Weihai; Sun, Youliang; Song, Yongmei; Yu, Chunjiang

    2017-04-04

    Medulloblastoma is the most common malignant brain tumor in children. Folate receptor 1 (Folr1) was abundantly expressed in some epithelial malignancies. However the expression profile and the role of clinicopathological significance and therapeutic target potential in medulloblastoma still remain elusive. Currently we detected the expression of Folr1 in medulloblastoma and identified the diagnostic application by evaluating the clinical, pathological and neuroimaging values. Then we developed a target therapeutic compound with Folr1, which exhibited promising efficiency in treatment of medulloblastoma. Folr1 expression was up-regulated in medulloblastoma and positively correlated with percentage of Ki-67 and MMP9 labeling, pathological subtypes, serum Folr1 levels and CSF spreading on MRI. The level of serum Folr1 showed rational sensitivity and specificity in predicting histological subgroups. Strong Folr1 expression was recommended as the independent value regarding the prognosis of patients with medulloblastoma. Folr1 targeted therapy attenuated the tumor growth and metastasis with down-regulation of MMPs proteins and activation of apoptosis. Immunostaining analysis in the xenograft samples showed the decreased Ki-67 and MMP9 index providing the strong evidences that Folr1 targeted application can suppress the proliferation and invasion. Our findings uncovered in Folr1 a predictive candidate and therapeutic target for medulloblastoma.

  4. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma

    PubMed Central

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable “niche” for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma. PMID:26779435

  5. RNA therapeutics: RNAi and antisense mechanisms and clinical applications.

    PubMed

    Chery, Jessica

    2016-07-01

    RNA therapeutics refers to the use of oligonucleotides to target primarily ribonucleic acids (RNA) for therapeutic efforts or in research studies to elucidate functions of genes. Oligonucleotides are distinct from other pharmacological modalities, such as small molecules and antibodies that target mainly proteins, due to their mechanisms of action and chemical properties. Nucleic acids come in two forms: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). Although DNA is more stable, RNA offers more structural variety ranging from messenger RNA (mRNA) that codes for protein to non-coding RNAs, microRNA (miRNA), transfer RNA (tRNA), short interfering RNAs (siRNAs), ribosomal RNA (rRNA), and long-noncoding RNAs (lncRNAs). As our understanding of the wide variety of RNAs deepens, researchers have sought to target RNA since >80% of the genome is estimated to be transcribed. These transcripts include non-coding RNAs such as miRNAs and siRNAs that function in gene regulation by playing key roles in the transfer of genetic information from DNA to protein, the final product of the central dogma in biology 1 . Currently there are two main approaches used to target RNA: double stranded RNA-mediated interference (RNAi) and antisense oligonucleotides (ASO). Both approaches are currently in clinical trials for targeting of RNAs involved in various diseases, such as cancer and neurodegeneration. In fact, ASOs targeting spinal muscular atrophy and amyotrophic lateral sclerosis have shown positive results in clinical trials 2 . Advantages of ASOs include higher affinity due to the development of chemical modifications that increase affinity, selectivity while decreasing toxicity due to off-target effects. This review will highlight the major therapeutic approaches of RNA medicine currently being applied with a focus on RNAi and ASOs.

  6. Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases.

    PubMed

    Choudhary, Mayur; Malek, Goldis

    2016-12-01

    Collectively, retinal diseases, including age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, result in severe vision impairment worldwide. The absence and/or limited availability of successful drug therapies for these blinding disorders necessitates further understanding their pathobiology and identifying new targetable signaling pathways. Nuclear receptors are transcription regulators of many key aspects of human physiology, as well as pathophysiology, with reported roles in development, aging, and disease. Some of the pathways regulated by nuclear receptors include, but are not limited to, angiogenesis, inflammation, and lipid metabolic dysregulation, mechanisms also important in the initiation and development of several retinal diseases. Herein, we present an overview of the biology of three diseases affecting the posterior eye, summarize a growing body of evidence that suggests direct or indirect involvement of nuclear receptors in disease progression, and discuss the therapeutic potential of targeting nuclear receptors for treatment.

  7. Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases

    PubMed Central

    Choudhary, Mayur; Malek, Goldis

    2017-01-01

    Collectively, retinal diseases, including age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, result in severe vision impairment worldwide. The absence and/or limited availability of successful drug therapies for these blinding disorders necessitates further understanding their pathobiology and identifying new targetable signaling pathways. Nuclear receptors are transcription regulators of many key aspects of human physiology, as well as pathophysiology, with reported roles in development, aging, and disease. Some of the pathways regulated by nuclear receptors include, but are not limited to, angiogenesis, inflammation, and lipid metabolic dysregulation, mechanisms also important in the initiation and development of several retinal diseases. Herein, we present an overview of the biology of three diseases affecting the posterior eye, summarize a growing body of evidence that suggests direct or indirect involvement of nuclear receptors in disease progression, and discuss the therapeutic potential of targeting nuclear receptors for treatment. PMID:27455994

  8. Precision Medicine Approach to Anaplastic Thyroid Cancer: Advances in Targeted Drug Therapy Based on Specific Signaling Pathways.

    PubMed

    Samimi, Hilda; Fallah, Parviz; Naderi Sohi, Alireza; Tavakoli, Rezvan; Naderi, Mahmood; Soleimani, Masoud; Larijani, Bagher; Haghpanah, Vahid

    2017-03-01

    Personalized medicine is a set of diagnostic, prognostic and therapeutic approaches in which medical interventions are carried out based on individual patient characteristics. As life expectancy increases in developed and developing countries, the incidence of diseases such as cancer goes up among people in the community. Cancer is a disease that the response to treatment varies from one person to another and also it is costly for individuals, families, and society. Among thyroid cancers, anaplastic thyroid carcinoma (ATC) is the most aggressive, lethal and unresponsive form of the disease. Unfortunately, current drugs are not targetable, and therefore they have restricted role in ATC treatment. Consequently, mortality of this cancer, despite advances in the field of diagnosis and treatment, is one of the most important challenges in medicine. Cellular, molecular and genetic evidences play an important role in finding more effective diagnostic and therapeutic approaches. Review of these evidences confirms the application of personalized medicine in cancer treatment including ATC. A growing body of evidence has elucidated that cellular and molecular mechanisms of cancer would pave the way for defining new biomarkers for targeted therapy, taking into account individual differences. It should be noted that this approach requires further progress in the fields of basic sciences, pharmacogenetics and drug design. An overview of the most important aspects in individualized anaplastic thyroid cancer treatment will be discussed in this review.

  9. Profiles of Brain Metastases: Prioritization of Therapeutic Targets.

    PubMed

    Ferguson, Sherise D; Zheng, Siyuan; Xiu, Joanne; Zhou, Shouhao; Khasraw, Mustafa; Brastianos, Priscilla K; Kesari, Santosh; Hu, Jethro; Rudnick, Jeremy; Salacz, Michael E; Piccioni, David; Huang, Suyun; Davies, Michael A; Glitza, Isabella C; Heymach, John V; Zhang, Jianjun; Ibrahim, Nuhad K; DeGroot, John F; McCarty, Joseph; O'Brien, Barbara J; Sawaya, Raymond; Verhaak, Roeland G W; Reddy, Sandeep K; Priebe, Waldemar; Gatalica, Zoran; Spetzler, David; Heimberger, Amy B

    2018-06-19

    We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of non-small cell lung cancer, breast cancer, and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry), and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification, and mutations among brain metastases, extracranial metastases, and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8178 non-small cell lung cancers (5098 primaries; 2787 systemic metastases; 293 brain metastases), 7064 breast cancers (3496 primaries; 3469 systemic metastases; 99 brain metastases), and 1757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1, and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication, and/or repair. This article is protected by copyright. All rights reserved. © 2018 UICC.

  10. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    PubMed Central

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2016-01-01

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  11. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    PubMed

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  12. Alcoholic Liver Disease: Pathogenesis and New Therapeutic Targets

    PubMed Central

    GAO, BIN; BATALLER, RAMON

    2011-01-01

    Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide and can lead to fibrosis and cirrhosis. The latest surveillance report published by the National Institute on Alcohol Abuse and Alcoholism showed that liver cirrhosis was the 12th leading cause of death in the United States, with a total of 29,925 deaths in 2007, 48% of which were alcohol related. The spectrum of ALD includes simple steatosis, alcoholic hepatitis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Early work on the pathogenesis of the disease focused on ethanol metabolism–associated oxidative stress and glutathione depletion, abnormal methionine metabolism, malnutrition, and production of endotoxins that activate Kupffer cells. We review findings from recent studies that have characterized specific intracellular signaling pathways, transcriptional factors, aspects of innate immunity, chemokines, epigenetic features, microRNAs, and stem cells that are associated with ALD, improving our understanding of its pathogenesis. Despite this progress, no targeted therapies are available. The cornerstone of treatment for alcoholic hepatitis remains as it was 40 years ago: abstinence, nutritional support, and corticosteroids. There is an urgent need to develop new pathophysiology-oriented therapies. Recent translational studies of human samples and animal models have identified promising therapeutic targets. PMID:21920463

  13. [Hypercholesterolemia: a therapeutic approach].

    PubMed

    Moráis López, A; Lama More, R A; Dalmau Serra, J

    2009-05-01

    High blood cholesterol levels represent an important cardiovascular risk factor. Hypercholesterolemia is defined as levels of total cholesterol and low-density lipoprotein cholesterol above 95th percentile for age and gender. For the paediatric population, selective screening is recommended in children older than 2 years who are overweight, with a family history of early cardiovascular disease or whose parents have high cholesterol levels. Initial therapeutic approach includes diet therapy, appropriate physical activity and healthy lifestyle changes. Drug treatment should be considered in children from the age of 10 who, after having followed appropriate diet recommendations, still have very high LDL-cholesterol levels or moderately high levels with concomitant risk factors. In case of extremely high LDL-cholesterol levels, drug treatment should be taken into consideration at earlier ages (8 years old). Modest response is usually observed with bile acid-binding resins. Statins can be considered first-choice drugs, once evidence on their efficacy and safety has been shown.

  14. Behçet's syndrome pathophysiology and potential therapeutic targets.

    PubMed

    Emmi, Giacomo; Silvestri, Elena; Squatrito, Danilo; D'Elios, Mario Milco; Ciucciarelli, Lucia; Prisco, Domenico; Emmi, Lorenzo

    2014-04-01

    Behçet syndrome is a systemic inflammatory disorder characterized by multiorgan involvement such as oral and genital ulcers, uveitis, skin lesions as well as by less frequent, but often more severe, central nervous system and vascular manifestations. The pathogenetic mechanisms are still incompletely known; however the interaction between a specific genetic background and environmental or infectious factors certainly contributes to the immune dysregulation that characterizes this disease. The discovery of new immunological pathways in Behçet syndrome pathogenesis may help us to set up new treatments. In this review, we will focus our attention on the possible mechanisms underlying Behçet syndrome pathogenesis and their potential role as novel therapeutic targets.

  15. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke

    PubMed Central

    Liu, Zhongwu; Chopp, Michael

    2015-01-01

    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  17. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.

    PubMed

    Andersen, Jannik N; Sathyanarayanan, Sriram; Di Bacco, Alessandra; Chi, An; Zhang, Theresa; Chen, Albert H; Dolinski, Brian; Kraus, Manfred; Roberts, Brian; Arthur, William; Klinghoffer, Rich A; Gargano, Diana; Li, Lixia; Feldman, Igor; Lynch, Bethany; Rush, John; Hendrickson, Ronald C; Blume-Jensen, Peter; Paweletz, Cloud P

    2010-08-04

    Although we have made great progress in understanding the complex genetic alterations that underlie human cancer, it has proven difficult to identify which molecularly targeted therapeutics will benefit which patients. Drug-specific modulation of oncogenic signaling pathways in specific patient subpopulations can predict responsiveness to targeted therapy. Here, we report a pathway-based phosphoprofiling approach to identify and quantify clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and PI3K-mammalian target of rapamycin (mTOR). We quantified 375 nonredundant PI3K pathway-relevant phosphopeptides, all containing AKT, PDK1, or mitogen-activated protein kinase substrate recognition motifs. Of these phosphopeptides, 71 were drug-regulated, 11 of them by all three inhibitors. Drug-modulated phosphoproteins were enriched for involvement in cytoskeletal reorganization (filamin, stathmin, dynamin, PAK4, and PTPN14), vesicle transport (LARP1, VPS13D, and SLC20A1), and protein translation (S6RP and PRAS40). We then generated phosphospecific antibodies against selected, drug-regulated phosphorylation sites that would be suitable as biomarker tools for PI3K pathway inhibitors. As proof of concept, we show clinical translation feasibility for an antibody against phospho-PRAS40(Thr246). Evaluation of binding of this antibody in human cancer cell lines, a PTEN (phosphatase and tensin homolog deleted from chromosome 10)-deficient mouse prostate tumor model, and triple-negative breast tumor tissues showed that phospho-PRAS40(Thr246) positively correlates with PI3K pathway activation and predicts AKT inhibitor sensitivity. In contrast to phosphorylation of AKT(Thr308), the phospho-PRAS40(Thr246) epitope is highly stable in tissue samples and thus is ideal for immunohistochemistry. In summary, our study illustrates a rational approach for discovery of drug

  18. Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer.

    PubMed

    Kokabee, Leila; Wang, Xianhui; Sevinsky, Christopher J; Wang, Wei Lin Winnie; Cheu, Lindsay; Chittur, Sridar V; Karimipoor, Morteza; Tenniswood, Martin; Conklin, Douglas S

    2015-01-01

    Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer.

  19. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma.

    PubMed

    Ram Kumar, Ram Mohan; Schor, Nina Felice

    2018-04-24

    Neuroblastoma (NB), a developmental cancer, is often fatal, emphasizing the need to understand its pathogenesis and identify new therapeutic targets. The heterogeneous pathological and clinical phenotype of NB underscores the cryptic biological and genetic features of this tumor that result in outcomes ranging from rapid progression to spontaneous regression. Despite recent genome-wide mutation analyses, most primary NBs do not harbor driver mutations, implicating epigenetically-mediated gene regulatory mechanisms in the initiation and maintenance of NB. Aberrant epigenomic mechanisms, as demonstrated by global changes in DNA methylation signatures, acetylation, re-distribution of histone marks, and change in the chromatin architecture, are hypothesized to play a role in NB oncogenesis. This paper reviews the evidence for, putative mechanisms underlying, and prospects for therapeutic targeting of NB oncogenesis related to DNA methylation.

  20. Targeted delivery of cancer-specific multimodal contrast agents for intraoperative detection of tumor boundaries and therapeutic margins

    NASA Astrophysics Data System (ADS)

    Xu, Ronald X.; Xu, Jeff S.; Huang, Jiwei; Tweedle, Michael F.; Schmidt, Carl; Povoski, Stephen P.; Martin, Edward W.

    2010-02-01

    Background: Accurate assessment of tumor boundaries and intraoperative detection of therapeutic margins are important oncologic principles for minimal recurrence rates and improved long-term outcomes. However, many existing cancer imaging tools are based on preoperative image acquisition and do not provide real-time intraoperative information that supports critical decision-making in the operating room. Method: Poly lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) were synthesized by a modified double emulsion method. The MB and NB surfaces were conjugated with CC49 antibody to target TAG-72 antigen, a human glycoprotein complex expressed in many epithelial-derived cancers. Multiple imaging agents were encapsulated in MBs and NBs for multimodal imaging. Both one-step and multi-step cancer targeting strategies were explored. Active MBs/NBs were also fabricated for therapeutic margin assessment in cancer ablation therapies. Results: The multimodal contrast agents and the cancer-targeting strategies were tested on tissue simulating phantoms, LS174 colon cancer cell cultures, and cancer xenograft nude mice. Concurrent multimodal imaging was demonstrated using fluorescence and ultrasound imaging modalities. Technical feasibility of using active MBs and portable imaging tools such as ultrasound for intraoperative therapeutic margin assessment was demonstrated in a biological tissue model. Conclusion: The cancer-specific multimodal contrast agents described in this paper have the potential for intraoperative detection of tumor boundaries and therapeutic margins.

  1. miRNAs as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo

    2012-03-01

    Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.

  2. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    NASA Astrophysics Data System (ADS)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  3. Localized Hyperthermia for Enhanced Targeted Delivery of Polymer Therapeutics

    NASA Astrophysics Data System (ADS)

    Frazier, Nicholas

    It is estimated that in 2016, more than 848,000 new cases of cancer will be diagnosed in men with more than a quarter being prostate cancer and more than 26,000 deaths attributed to this disease. Prostate cancer poses a limited risk when detected at an early stage and treatment of stages II-III has a 5-year survival rate of almost 100%. However, these early-stage cancers can eventually progress and develop into stage IV, dramatically dropping the 5-year survival rate to 28%. Thus, development of a new therapy is needed to fully eliminate these tumors. Combination of heat and chemotherapy improves therapeutic efficacy while allowing for reduced dosing of drugs and limiting side effects. Localized hyperthermia has been used to enhance the delivery of polymer therapeutics to prostate tumors through increased blood flow, vascular permeability, and incorporation of heat shock targeting. This strategy has been shown to increase the delivery and retention of polymer-drug conjugates leading to enhanced efficacy. Although much work has been done using this strategy, the effects of different thermal dosing on polymer accumulation are unknown. The first aim of this research is to examine how altering heating parameters influences polymer tumor accumulation. The hypothesis for this aim is that there is an optimal thermal treatment that leads to the maximal amount of polymer accumulation in the tumors. Additionally, the previously used heating method of plasmonic photothermal therapy (PPTT) can result in long-term accumulation of gold nanoparticles in healthy organs, potentially limiting clinical applicability. The second aim of this proposal will be focused on investigating the alternative method of high intensity focused ultrasound (HIFU) for selective heating of tumors and enhancing macromolecular delivery. HIFU has shown the capability for precise, noninvasive heating of specific regions within the prostate through magnetic resonance imaging (MRI) guidance. The hypothesis

  4. [Adipose-derived stromal cells (ASC) - basics and therapeutic approaches in otorhinolaryngology].

    PubMed

    Frölich, K; Hagen, R; Kleinsasser, N

    2014-06-01

    Adipose-derived Stromal Cells (ASC) - Basics and Therapeutic Approaches in Otorhinolaryngology Mesenchymal stem cells from adipose tissue can be easily harvested with less discomfort, low donor-site morbidity and high amount compared to bone marrow-derived stem cells. Due to their multilineage differentiation potential in various cell types, immunmodulatory properties and their capability to enhance wound healing, ASC are a promising cell source for tissue engineering approaches and regenerative medicine. They are characterized by the expression of specific surface marker proteins and their differentiation potential into the mesenchymal lineages. Whereas only preclinical studies are published for otorhinolaryngology-related therapeutic options using ASC, various diseases, for instance graft-versus-host disease, have already been treated with ASC in single cases or clinical trials. Safety and genomic stability of ASC as well as the risk of spontaneous malignant transformation are still disputed. This review summarizes the current literature on characterization and anatomic localization of ASC. In addition, beside the presentation of preclinical studies concerning therapeutic approaches in otorhinolaryngology as well as of current clinical applications, the issue of safety of ASC in human stem cell therapy is discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Natural Products as Anticancerous Therapeutic Molecules with Special Reference to Enzymatic Targets Topoisomerase, COX, LOX and Aromatase.

    PubMed

    Singh, Swati; Awasthi, Manika; Pandey, Veda P; Dwivedi, Upendra N

    2018-01-01

    Cancer, characterized by uncontrolled growth and proliferation of cells, is affecting millions of people every year and estimated as the second leading cause of death. Its successful treatment yet remains a challenge due to the lack of selectivity, toxicity and the development of multidrug resistant cells to the currently available drugs. Plant derived natural products hold great promise for discovery and development of new pharmaceuticals against cancer as evident by the fact that out of 121 drugs prescribed for cancer treatment till date, 90 are derived from plant sources. Furthermore, the plant derived therapeutic molecules are also considered as safer substitutes to those of synthetic ones. In this review, the therapeutic potentials of plant derived natural products belonging to secondary metabolites, namely alkaloids, flavonoids and terpenoids as anticancer molecules, involving various strategies of treatment, have been discussed with special reference to topoisomerases (Topo), cyclooxygenases (COX), lipoxygenase (LOX) and aromatase as enzymatic targets for various types of cancers. Furthermore, in view of the recent advances made in the field of computer aided drug design, the present review also discusses the use of computational approaches such as ADMET, molecular docking, molecular dynamics simulation and QSAR to assess and predict the safety, efficacy, potency and identification of such potent anticancerous therapeutic molecules. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Cancer stem cell as therapeutic target for melanoma treatment.

    PubMed

    Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed

    2016-12-01

    Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.

  7. Iron addiction: a novel therapeutic target in ovarian cancer

    DOE PAGES

    Basuli, D.; Tesfay, L.; Deng, Z.; ...

    2017-03-20

    Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor-initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependencemore » on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Some mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of interleukin 6 (IL-6). Here, we show that the iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.« less

  8. Iron addiction: a novel therapeutic target in ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basuli, D.; Tesfay, L.; Deng, Z.

    Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor-initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependencemore » on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Some mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of interleukin 6 (IL-6). Here, we show that the iron dependence of ovarian cancer TICs renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.« less

  9. The Syk kinase as a therapeutic target in leukemia and lymphoma.

    PubMed

    Efremov, Dimitar G; Laurenti, Luca

    2011-05-01

    The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.

  10. Nanotechnology—novel therapeutics for CNS disorders

    PubMed Central

    Srikanth, Maya; Kessler, John A.

    2013-01-01

    Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood–brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders—in particular, neurodegenerative disease and malignant brain tumours—and for the promotion of neuroregeneration. PMID:22526003

  11. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins

    PubMed Central

    Kurylowicz, Alina

    2016-01-01

    Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs), enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed. PMID:27104517

  12. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.

    PubMed

    Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B

    2017-08-15

    Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel unconventional therapeutic approaches to atopic eczema.

    PubMed

    Worm, M; Henz, B M

    2000-01-01

    Atopic eczema is a chronic, recurrent, multifactorial skin disease, and, accordingly, there are numerous therapeutic options for its symptomatic treatment. Conventional medications are however often unsatisfactory for many patients because of adverse effects on long-term use. For this reason, patients often readily welcome unconventional therapeutic approaches. We present here a selected number of such treatment modalities, namely gamma-linolenic acid, Chinese herbal tea, diets eliminating allergens, pseudoallergens, metal salts and sodium, and bioresonance. When stringent scientific criteria are applied in the evaluation of such study results, none of the reviewed alternative treatments provides unequivocal, convincing evidence of its efficacy, even when double-blind, placebo-controlled studies are available. With Chinese herbal tea, potentially serious adverse effects should be considered as well. Any new type of unconventional therapy should thus be thoroughly evaluated and shown to be equal or superior to conventional treatments with regard to both efficacy and tolerability before it is recommended for use in clinical practice. Copyright 2000 S. Karger AG, Basel.

  14. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  15. Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells.

    PubMed

    Tong, Jingshan; Wang, Peng; Tan, Shuai; Chen, Dongshi; Nikolovska-Coleska, Zaneta; Zou, Fangdong; Yu, Jian; Zhang, Lin

    2017-05-01

    The Bcl-2 family protein Mcl-1 is often degraded in cancer cells subjected to effective therapeutic treatment, and defective Mcl-1 degradation has been associated with intrinsic and acquired drug resistance. However, a causal relationship between Mcl-1 degradation and anticancer drug responses has not been directly established, especially in solid tumor cells where Mcl-1 inhibition alone is insufficient to trigger cell death. In this study, we present evidence that Mcl-1 participates directly in determining effective therapeutic responses in colon cancer cells. In this setting, Mcl-1 degradation was induced by a variety of multikinase inhibitor drugs, where it relied upon GSK3β phosphorylation and FBW7-dependent ubiquitination. Specific blockade by genetic knock-in (KI) abolished apoptotic responses and conferred resistance to kinase inhibitors. Mcl-1 -KI also suppressed the antiangiogenic and anti-hypoxic effects of kinase inhibitors in the tumor microenvironment. Interestingly, these same inhibitors also induced the BH3-only Bcl-2 family protein PUMA, which is required for apoptosis. Degradation-resistant Mcl-1 bound and sequestered PUMA from other prosurvival proteins to maintain cell survival, which was abolished by small-molecule Mcl-1 inhibitors. Our findings establish a pivotal role for Mcl-1 degradation in the response of colon cancer cells to targeted therapeutics, and they provide a useful rational platform to develop Mcl-1-targeting agents that can overcome drug resistance. Cancer Res; 77(9); 2512-21. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Therapeutic approaches of leptin in Alzheimer's disease.

    PubMed

    Carro, Eva M

    2009-11-01

    Novel approaches in the understanding of the neurodegeneration observed in Alzheimer's disease (AD), involving neurochemical as well as biochemical techniques are being developed, opening up new possibilities in the direction of a metabolic degeneration. Indeed, brain lipids are closely involved in amyloid beta-related pathogenic pathways. An important modulator of lipid homeostasis is the pluripotent peptide leptin, which has been shown to reduce amyloid beta levels and tau-related pathological pathways, the major pathological hallmarks of AD. These data suggest that leptin holds promise as a novel therapeutic tool for AD. In this article, with some patent literature we will review here some of the most promising approaches involving leptin to cure and prevent, rather than to treat, AD symptoms.

  17. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy

    PubMed Central

    Clossen, Bryan L.; Reddy, Doodipala Samba

    2017-01-01

    This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982–2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy. PMID:28179120

  18. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy.

    PubMed

    Clossen, Bryan L; Reddy, Doodipala Samba

    2017-06-01

    This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer.

    PubMed

    Daigo, Kayo; Takano, Atsushi; Thang, Phung Manh; Yoshitake, Yoshihiro; Shinohara, Masanori; Tohnai, Iwau; Murakami, Yoshinori; Maegawa, Jiro; Daigo, Yataro

    2018-01-01

    Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer.

  20. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer

    PubMed Central

    Daigo, Kayo; Takano, Atsushi; Thang, Phung Manh; Yoshitake, Yoshihiro; Shinohara, Masanori; Tohnai, Iwau; Murakami, Yoshinori; Maegawa, Jiro; Daigo, Yataro

    2018-01-01

    Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer. PMID:29115586

  1. p62 as a therapeutic target for inhibition of autophagy in prostate cancer.

    PubMed

    Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S

    2018-04-01

    To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.

  2. Translational epigenetics: clinical approaches to epigenome therapeutics for cancer.

    PubMed

    Selcuklu, S Duygu; Spillane, Charles

    2008-01-01

    Cancer epigenetics research is now entering an exciting phase of translational epigenetics whereby novel epigenome therapeutics is being developed for application in clinical settings. Epigenetics refers to all heritable and potentially reversible changes in gene or genome functioning that occurs without altering the nucleotide sequence of the DNA. A range of different epigenetic "marks" can activate or repress gene expression. While epigenetic alterations are associated with most cancers, epigenetic dysregulation can also have a causal role in cancer etiology. Epigenetically disrupted stem or progenitor cells could have an early role in neoplastic transformations, while perturbance of epigenetic regulatory mechanisms controlling gene expression in cancer-relevant pathways will also be a contribution factor. The reversibility of epigenetic marks provides the possibility that the activity of key cancer genes and pathways can be regulated as a therapeutic approach. The growing availability of a range of chemical agents which can affect epigenome functioning has led to a range of epigenetic-therapeutic approaches for cancer and intense interest in the development of second-generation epigenetic drugs (epi-drugs) which would have greater specificity and efficacy in clinical settings. The latest developments in this exciting arena of translational cancer epigenetics were presented at a recent conference on "Epigenetics and New Therapies in Cancer" at the Spanish National Cancer Research Center (CNIO), Spain.

  3. Activin in acute pancreatitis: Potential risk-stratifying marker and novel therapeutic target.

    PubMed

    Staudacher, Jonas J; Yazici, Cemal; Carroll, Timothy; Bauer, Jessica; Pang, Jingbo; Krett, Nancy; Xia, Yinglin; Wilson, Annette; Papachristou, Georgios; Dirmeier, Andrea; Kunst, Claudia; Whitcomb, David C; Fantuzzi, Giamila; Jung, Barbara

    2017-10-06

    Acute Pancreatitis is a substantial health care challenge with increasing incidence. Patients who develop severe disease have considerable mortality. Currently, no reliable predictive marker to identify patients at risk for severe disease exists. Treatment is limited to rehydration and supporting care suggesting an urgent need to develop novel approaches to improve standard care. Activin is a critical modulator of inflammatory responses, but has not been assessed in pancreatitis. Here, we demonstrate that serum activin is elevated and strongly correlates with disease severity in two established murine models of acute pancreatitis induced by either cerulein or IL-12 + IL-18. Furthermore, in mice, inhibition of activin conveys survival benefits in pancreatitis. In addition, serum activin levels were measured from a retrospective clinical cohort of pancreatitis patients and high activin levels in patients at admission are predictive of worse outcomes, indicated by longer overall hospital and intensive care unit stays. Taken together, activin is a novel candidate as a clinical marker to identify those acute pancreatitis patients with severe disease who would benefit from aggressive treatment and activin may be a therapeutic target in severe acute pancreatitis.

  4. The apelin-APJ axis: A novel potential therapeutic target for organ fibrosis.

    PubMed

    Huang, Shifang; Chen, Linxi; Lu, Liqun; Li, Lanfang

    2016-05-01

    Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is expressed in a diverse number of organs. The apelin-APJ axis helps to control the processes of pathological and physiological fibrosis, including renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. However, the role of apelin-APJ in organ fibrosis remains controversial due to conflicting study results. The apelin-APJ axis is a detrimental mechanism which promotes liver fibrosis mainly via up-regulation the expression of collagen-II and platelet-derived growth factor receptor β (PDGFRβ). On the contrary, the apelin-APJ axis is beneficial for renal fibrosis, cardiac fibrosis and pulmonary fibrosis. The apelin-APJ axis alleviates renal fibrosis by restraining the expression of transforming growth factor-β1 (TGF-β1). In addition, the apelin-APJ axis attenuates cardiac fibrosis through multiple pathways. Furthermore, the apelin-APJ axis has beneficial effects on experimental bronchopulmonary dysplasia (BPD) and acute respiratory distress syndrome (ARDS) which suggest the apelin-APJ axis potentially alleviates pulmonary fibrosis. In this article, we review the controversies associated with apelin-APJ in organ fibrosis and introduce the drugs that target apelin-APJ. We conclude that future studies should place more emphasis on the relationship among apelin isoforms, APJ receptor subtypes and organ fibrosis. The apelin-APJ axis will be a potential therapeutic target and those drugs targeted for apelin-APJ may constitute a novel therapeutic strategy for renal fibrosis, cardiac fibrosis, liver fibrosis and pulmonary fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Blood–brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches

    PubMed Central

    Marchi, Nicola; Granata, Tiziana; Ghosh, Chaitali; Janigro, Damir

    2016-01-01

    The blood–brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte–endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB-centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add-on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs. PMID:22905812

  6. Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas

    PubMed Central

    Orlova, Anna; Wingelhofer, Bettina; Neubauer, Heidi A.; Maurer, Barbara; Berger-Becvar, Angelika; Keserű, György Miklós; Gunning, Patrick T.; Valent, Peter; Moriggl, Richard

    2018-01-01

    ABSTRACT Introduction: Hematopoietic neoplasms are often driven by gain-of-function mutations of the JAK-STAT pathway together with mutations in chromatin remodeling and DNA damage control pathways. The interconnection between the JAK-STAT pathway, epigenetic regulation or DNA damage control is still poorly understood in cancer cell biology. Areas covered: Here, we focus on a broader description of mutational insights into myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas, since sequencing efforts have identified similar combinations of driver mutations in these diseases covering different lineages. We summarize how these pathways might be interconnected in normal or cancer cells, which have lost differentiation capacity and drive oncogene transcription. Expert opinion: Due to similarities in driver mutations including epigenetic enzymes, JAK-STAT pathway activation and mutated checkpoint control through TP53, we hypothesize that similar therapeutic approaches could be of benefit in these diseases. We give an overview of how driver mutations in these malignancies contribute to hematopoietic cancer initiation or progression, and how these pathways can be targeted with currently available tools. PMID:29148847

  7. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  8. TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2017-10-01

    performed global phosphotyrosine profiling for a panel of 25 TNBC cell lines. When we correlated protein phosphorylation levels with cellular oncogenic...levels and activation correlate with clinical and pathological features of TNBC? Aim 2: What is the value of TNK2 as a therapeutic target in vitro and

  9. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells

    PubMed Central

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi

    2015-01-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. PMID:25910782

  10. Integrin Targeted Therapeutics

    PubMed Central

    Millard, Melissa; Odde, Srinivas; Neamati, Nouri

    2011-01-01

    Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated. PMID:21547158

  11. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE PAGES

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...

    2016-02-02

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  12. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  13. Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy.

    PubMed

    Kleber, Martina; Udi, Josefina; Metzke, Barbara; Terpos, Evangelos; Roodmann, G David; Morgan, Gareth; Dispenzieri, Angela; Einsele, Hermann; Wäsch, Ralph; Engelhardt, Monika

    2012-06-01

    An international myeloma meeting entitled "Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy" was held in Freiburg, Germany in July 2011 to discuss novel insights into and approaches to myeloma bone disease and other bone-seeking tumors. This review briefly summarizes the most prominent data of the meeting and current literature on our understanding of bone disease, the role of imaging techniques, operative interventions and systemic bone-seeking treatment, all of which should further improve our future therapeutic choices.

  14. BCL-2 as therapeutic target for hematological malignancies.

    PubMed

    Perini, Guilherme Fleury; Ribeiro, Glaciano Nogueira; Pinto Neto, Jorge Vaz; Campos, Laura Tojeiro; Hamerschlak, Nelson

    2018-05-11

    Disruption of the physiologic balance between cell proliferation and cell death is an important step of cancer development. Increased resistance to apoptosis is a key oncogenic mechanism in several hematological malignancies and, in many cases, especially in lymphoid neoplasias, has been attributed to the upregulation of BCL-2. The BCL-2 protein is the founding member of the BCL-2 family of apoptosis regulators and was the first apoptosis modulator to be associated with cancer. The recognition of the important role played by BCL-2 for cancer development and resistance to treatment made it a relevant target for therapy for many diseases, including solid tumors and hematological neoplasias. Among the different strategies that have been developed to inhibit BCL-2, BH3-mimetics have emerged as a novel class of compounds with favorable results in different clinical settings, including chronic lymphocytic leukemia (CLL). In April 2016, the first inhibitor of BCL-2, venetoclax, was approved by the US Food and Drug Administration for the treatment of patients with CLL who have 17p deletion and had received at least one prior therapy. This review focuses on the relevance of BCL-2 for apoptosis modulation at the mitochondrial level, its potential as therapeutic target for hematological malignancies, and the results obtained with selective inhibitors belonging to the BH3-mimetics, especially venetoclax used in monotherapy or in combination with other agents.

  15. Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer

    PubMed Central

    Kokabee, Leila; Wang, Xianhui; Sevinsky, Christopher J; Wang, Wei Lin Winnie; Cheu, Lindsay; Chittur, Sridar V; Karimipoor, Morteza; Tenniswood, Martin; Conklin, Douglas S

    2015-01-01

    Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer. PMID:26383180

  16. THE PATHOPHYSIOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION AND THE COMPLEMENT PATHWAY AS A THERAPEUTIC TARGET

    PubMed Central

    Schmidt-Erfurth, Ursula; van Lookeren Campagne, Menno; Henry, Erin C.; Brittain, Christopher

    2017-01-01

    Purpose: Geographic atrophy (GA) is an advanced, vision-threatening form of age-related macular degeneration (AMD) affecting approximately five million individuals worldwide. To date, there are no approved therapeutics for GA treatment; however, several are in clinical trials. This review focuses on the pathophysiology of GA, particularly the role of complement cascade dysregulation and emerging therapies targeting the complement cascade. Methods: Primary literature search on PubMed for GA, complement cascade in age-related macular degeneration. ClinicalTrials.gov was searched for natural history studies in GA and clinical trials of drugs targeting the complement cascade for GA. Results: Cumulative damage to the retina by aging, environmental stress, and other factors triggers inflammation via multiple pathways, including the complement cascade. When regulatory components in these pathways are compromised, as with several GA-linked genetic risk factors in the complement cascade, chronic inflammation can ultimately lead to the retinal cell death characteristic of GA. Complement inhibition has been identified as a key candidate for therapeutic intervention, and drugs targeting the complement pathway are currently in clinical trials. Conclusion: The complement cascade is a strategic target for GA therapy. Further research, including on natural history and genetics, is crucial to expand the understanding of GA pathophysiology and identify effective therapeutic targets. PMID:27902638

  17. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases.

    PubMed

    Gabathuler, Reinhard

    2010-01-01

    The central nervous system is protected by barriers which control the entry of compounds into the brain, thereby regulating brain homeostasis. The blood-brain barrier, formed by the endothelial cells of the brain capillaries, restricts access to brain cells of blood-borne compounds and facilitates nutrients essential for normal metabolism to reach brain cells. This very tight regulation of the brain homeostasis results in the inability of some small and large therapeutic compounds to cross the blood-brain barrier (BBB). Therefore, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. In this review, we will address the different approaches used to increase the transport of therapeutics from blood into the brain parenchyma. We will mainly concentrate on the physiologic approach which takes advantage of specific receptors already expressed on the capillary endothelial cells forming the BBB and necessary for the survival of brain cells. Among all the approaches used for increasing brain delivery of therapeutics, the most accepted method is the use of the physiological approach which takes advantage of the transcytosis capacity of specific receptors expressed at the BBB. The low density lipoprotein receptor related protein (LRP) is the most adapted for such use with the engineered peptide compound (EPiC) platform incorporating the Angiopep peptide in new therapeutics the most advanced with promising data in the clinic.

  18. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets.

    PubMed

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin; Calvisi, Diego F; Andersen, Jesper B

    2017-04-01

    Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor. Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise to improve the prognosis of iCCA patients.

  19. Allergen-specific immunotherapy: from therapeutic vaccines to prophylactic approaches

    PubMed Central

    Valenta, R.; Campana, R.; Marth, K.; van Hage, M.

    2015-01-01

    Immunoglobulin E-mediated allergies affect more than 25% of the population. Allergen exposure induces a variety of symptoms in allergic patients, which include rhinitis, conjunctivitis, asthma, dermatitis, food allergy and life-threatening systemic anaphylaxis. At present, allergen-specific immunotherapy (SIT), which is based on the administration of the disease-causing allergens, is the only disease-modifying treatment for allergy. Current therapeutic allergy vaccines are still prepared from relatively poorly defined allergen extracts. However, with the availability of the structures of the most common allergen molecules, it has become possible to produce well-defined recombinant and synthetic allergy vaccines that allow specific targeting of the mechanisms of allergic disease. Here we provide a summary of the development and mechanisms of SIT, and then review new forms of therapeutic vaccines that are based on recombinant and synthetic molecules. Finally, we discuss possible allergen-specific strategies for prevention of allergic disease. PMID:22640224

  20. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286