Sample records for targeted thrust fact

  1. Target thrust measurement for applied-field magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Wang, B.; Yang, W.; Tang, H.; Li, Z.; Kitaeva, A.; Chen, Z.; Cao, J.; Herdrich, G.; Zhang, K.

    2018-07-01

    In this paper, we present a flat target thrust stand which is designed to measure the thrust of a steady-state applied-field magnetoplasmadynamic thruster (AF-MPDT). In our experiments we varied target-thruster distances and target size to analyze their influence on the target thrust measurement results. The obtained thrust-distance curves increase to local maximum and then decreases with the increasing distance, which means that the plume of the AF-MPDT can still accelerate outside the thruster exit. The peak positions are related to the target sizes: larger targets can make the peak positions further from the thruster and decrease the measurement errors. To further improve the reliability of measurement results, a thermal equilibrium assumption combined with Knudsen’s cosine law is adapted to analyze the error caused by the back stream of plume particles. Under the assumption, the error caused by particle backflow is no more than 3.6% and the largest difference between the measured thrust and the theoretical thrust is 14%. Moreover, it was verified that target thrust measurement can disturb the working of the AF-MPD thruster, and the influence on the thrust measurement result is no more than 1% in our experiment.

  2. Measurement of plasma momentum exerted on target by a small helicon plasma thruster and comparison with direct thrust measurement.

    PubMed

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2015-02-01

    Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.

  3. Explicit Low-Thrust Guidance for Reference Orbit Targeting

    NASA Technical Reports Server (NTRS)

    Lam, Try; Udwadia, Firdaus E.

    2013-01-01

    The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.

  4. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  5. On the calculation of low-thrust fail-safe trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1975-01-01

    A guidance algorithm is developed for a low-thrust spacecraft such that target intercept is possible in spite of premature thrust termination along the trajectory. Such a trajectory is called a 'fail-safe' trajectory and the spacecraft thrust is utilized to minimize the relative target-spacecraft approach speed. The fail-safe guidance algorithm is solved using the concept of a critical thrust plane and a non-critical thrust direction. Several examples of fail-safe guidance are presented for a solar-electric propulsion flyby mission to the comet Encke.

  6. Optimal thrust level for orbit insertion

    NASA Astrophysics Data System (ADS)

    Cerf, Max

    2017-07-01

    The minimum-fuel orbital transfer is analyzed in the case of a launcher upper stage using a constantly thrusting engine. The thrust level is assumed to be constant and its value is optimized together with the thrust direction. A closed-loop solution for the thrust direction is derived from the extremal analysis for a planar orbital transfer. The optimal control problem reduces to two unknowns, namely the thrust level and the final time. Guessing and propagating the costates is no longer necessary and the optimal trajectory is easily found from a rough initialization. On the other hand the initial costates are assessed analytically from the initial conditions and they can be used as initial guess for transfers at different thrust levels. The method is exemplified on a launcher upper stage targeting a geostationary transfer orbit.

  7. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control ofmore » the thrust even under the low-intensity level.« less

  8. Wind tunnel test of model target thrust reversers for the Pratt and Whitney aircraft JT8D-100 series engines installed on a 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Hambly, D.

    1974-01-01

    The results of a low speed wind tunnel test of 0.046 scale model target thrust reversers installed on a 727-200 model airplane are presented. The full airplane model was mounted on a force balance, except for the nacelles and thrust reversers, which were independently mounted and isolated from it. The installation had the capability of simulating the inlet airflows and of supplying the correct proportions of primary and secondary air to the nozzles. The objectives of the test were to assess the compatibility of the thrust reversers target door design with the engine and airplane. The following measurements were made: hot gas ingestion at the nacelle inlets; model lift, drag, and pitching moment; hot gas impingement on the airplane structure; and qualitative assessment of the rudder effectiveness. The major parameters controlling hot gas ingestion were found to be thrust reverser orientation, engine power setting, and the lip height of the bottom thrust reverser doors on the side nacelles. The thrust reversers tended to increase the model lift, decrease the drag, and decrease the pitching moment.

  9. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  10. Distinguishing thrust sequences in gravity-driven fold and thrust belts

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Weinberger, R.; Marco, S.

    2018-04-01

    Piggyback or foreland-propagating thrust sequences, where younger thrusts develop in the footwalls of existing thrusts, are generally assumed to be the typical order of thrust development in most orogenic settings. However, overstep or 'break-back' sequences, where later thrusts develop above and in the hangingwalls of earlier thrusts, may potentially form during cessation of movement in gravity-driven mass transport deposits (MTDs). In this study, we provide a detailed outcrop-based analysis of such an overstep thrust sequence developed in an MTD in the southern Dead Sea Basin. Evidence that may be used to discriminate overstep thrusting from piggyback thrust sequences within the gravity-driven fold and thrust belt includes upright folds and forethrusts that are cut by younger overlying thrusts. Backthrusts form ideal markers that are also clearly offset and cut by overlying younger forethrusts. Portions of the basal detachment to the thrust system are folded and locally imbricated in footwall synclines below forethrust ramps, and these geometries also support an overstep sequence. However, new 'short-cut' basal detachments develop below these synclines, indicating that movement continued on the basal detachment rather than it being abandoned as in classic overstep sequences. Further evidence for 'synchronous thrusting', where movement on more than one thrust occurs at the same time, is provided by displacement patterns on sequences of thrust ramp imbricates that systematically increases downslope towards the toe of the MTD. Older thrusts that initiate downslope in the broadly overstep sequence continue to move and therefore accrue greater displacements during synchronous thrusting. Our study provides a template to help distinguish different thrust sequences in both orogenic settings and gravity-driven surficial systems, with displacement patterns potentially being imaged in seismic sections across offshore MTDs.

  11. The paradox of vertical σ2 in foreland fold and thrust belts

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano

    2014-05-01

    Occurrence of aesthetically appealing thrust systems and associated large scale anticlines, in both active and fossil foreland fold and thrust belts, is commonly interpreted as an evidence for Andersonian compressional framework. Indeed, these structures would testify for a roughly vertical σ3. Such a correlation between thrusts occurrence and stress field orientation, however, frequently fails to explain denser observations at a smaller scale. The syn-orogenic deformation meso-structures hosted in exposed km-scale thrust-related folds, in fact, frequently and paradoxically witness for a syn-thrusting strike-slip stress configuration, with a near-vertical σ2 and a sub-horizontal σ3. This apparent widespread inconsistency between syn-orogenic meso-structures and stress field orientation is here named "the σ2 paradox". A possible explanation for such a paradox is provided by inherited extensional deformation structures commonly developed prior to thrusting, in the flexural foreland basins located ahead of fold and thrust belts. Thrust nucleation and propagation is facilitated and driven by the positive inversion of the extensional inheritances, and their subsequent linkage. This process eventually leads to the development of large reverse fault zones and can occur both in compressive and strike-slip stress configurations.

  12. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David

    2016-01-01

    Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.

  13. Bilateral and multiple cavitation sounds during upper cervical thrust manipulation

    PubMed Central

    2013-01-01

    Background The popping produced during high-velocity, low-amplitude (HVLA) thrust manipulation is a common sound; however to our knowledge, no study has previously investigated the location of cavitation sounds during manipulation of the upper cervical spine. The primary purpose was to determine which side of the spine cavitates during C1-2 rotatory HVLA thrust manipulation. Secondary aims were to calculate the average number of pops, the duration of upper cervical thrust manipulation, and the duration of a single cavitation. Methods Nineteen asymptomatic participants received two upper cervical thrust manipulations targeting the right and left C1-2 articulation, respectively. Skin mounted microphones were secured bilaterally over the transverse process of C1, and sound wave signals were recorded. Identification of the side, duration, and number of popping sounds were determined by simultaneous analysis of spectrograms with audio feedback using custom software developed in Matlab. Results Bilateral popping sounds were detected in 34 (91.9%) of 37 manipulations while unilateral popping sounds were detected in just 3 (8.1%) manipulations; that is, cavitation was significantly (P < 0.001) more likely to occur bilaterally than unilaterally. Of the 132 total cavitations, 72 occurred ipsilateral and 60 occurred contralateral to the targeted C1-2 articulation. In other words, cavitation was no more likely to occur on the ipsilateral than the contralateral side (P = 0.294). The mean number of pops per C1-2 rotatory HVLA thrust manipulation was 3.57 (95% CI: 3.19, 3.94) and the mean number of pops per subject following both right and left C1-2 thrust manipulations was 6.95 (95% CI: 6.11, 7.79). The mean duration of a single audible pop was 5.66 ms (95% CI: 5.36, 5.96) and the mean duration of a single manipulation was 96.95 ms (95% CI: 57.20, 136.71). Conclusions Cavitation was significantly more likely to occur bilaterally than unilaterally during upper cervical HVLA

  14. Thrust rollers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A thrust roller bearing system comprising an inner rotating member, an outer rotating member and multiple rollers coupling the inner rotating member with outer rotating member. The inner and outer rotating members include thrust lips to enable the rollers to act as thrust rollers. The rollers contact inner and outer rotating members at bearing contact points along a contact line. Consequently, the radial/tilt and thrust forces move synchronously and simultaneously to create a bearing action with no slipping.

  15. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  16. Influence of the thrust bearing on the natural frequencies of a 72-MW hydropower rotor

    NASA Astrophysics Data System (ADS)

    Cupillard, S.; Aidanpää, J.-O.

    2016-11-01

    The thrust bearing is an essential element of a hydropower machine. Not only does it carry the total axial load but it also introduces stiffness and damping properties in the system. The focus of this study is on the influence of the thrust bearing on the lateral vibrations of the shaft of a 72-MW propeller turbine. The thrust bearing has a non-conventional design with a large radius and two rows of thrust pads. A numerical model is developed to estimate natural frequencies. Numerical results are analyzed and related to experimental measurements of a runaway test. The results show the need to include the thrust bearing in the model. In fact, the vibration modes are substantially increased towards higher frequencies with the added properties from the thrust bearing. The second mode of vibration has been identified in the experimental measurements. Its frequency and mode shape compare well with numerical results.

  17. Thrust reverser design studies for an over-the-wing STOL transport

    NASA Technical Reports Server (NTRS)

    Ammer, R. C.; Sowers, H. D.

    1977-01-01

    Aerodynamic and acoustics analytical studies were conducted to evaluate three thrust reverser designs for potential use on commercial over-the-wing STOL transports. The concepts were: (1) integral D nozzle/target reverser, (2) integral D nozzle/top arc cascade reverser, and (3) post exit target reverser integral with wing. Aerodynamic flowpaths and kinematic arrangements for each concept were established to provide a 50% thrust reversal capability. Analytical aircraft stopping distance/noise trade studies conducted concurrently with flow path design showed that these high efficiency reverser concepts are employed at substantially reduced power settings to meet noise goals of 100 PNdB on a 152.4 m sideline and still meet 609.6 m landing runway length requirements. From an overall installation standpoint, only the integral D nozzle/target reverser concept was found to penalize nacelle cruise performance; for this concept a larger nacelle diameter was required to match engine cycle effective area demand in reverse thrust.

  18. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find

  19. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  20. Relationship between Biomechanical Characteristics of Spinal Manipulation and Neural Responses in an Animal Model: Effect of Linear Control of Thrust Displacement versus Force, Thrust Amplitude, Thrust Duration, and Thrust Rate

    PubMed Central

    Reed, William R.; Cao, Dong-Yuan; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    High velocity low amplitude spinal manipulation (HVLA-SM) is used frequently to treat musculoskeletal complaints. Little is known about the intervention's biomechanical characteristics that determine its clinical benefit. Using an animal preparation, we determined how neural activity from lumbar muscle spindles during a lumbar HVLA-SM is affected by the type of thrust control and by the thrust's amplitude, duration, and rate. A mechanical device was used to apply a linear increase in thrust displacement or force and to control thrust duration. Under displacement control, neural responses during the HVLA-SM increased in a fashion graded with thrust amplitude. Under force control neural responses were similar regardless of the thrust amplitude. Decreasing thrust durations at all thrust amplitudes except the smallest thrust displacement had an overall significant effect on increasing muscle spindle activity during the HVLA-SMs. Under force control, spindle responses specifically and significantly increased between thrust durations of 75 and 150 ms suggesting the presence of a threshold value. Thrust velocities greater than 20–30 mm/s and thrust rates greater than 300 N/s tended to maximize the spindle responses. This study provides a basis for considering biomechanical characteristics of an HVLA-SM that should be measured and reported in clinical efficacy studies to help define effective clinical dosages. PMID:23401713

  1. Shaping low-thrust trajectories with thrust-handling feature

    NASA Astrophysics Data System (ADS)

    Taheri, Ehsan; Kolmanovsky, Ilya; Atkins, Ella

    2018-02-01

    Shape-based methods are becoming popular in low-thrust trajectory optimization due to their fast computation speeds. In existing shape-based methods constraints are treated at the acceleration level but not at the thrust level. These two constraint types are not equivalent since spacecraft mass decreases over time as fuel is expended. This paper develops a shape-based method based on a Fourier series approximation that is capable of representing trajectories defined in spherical coordinates and that enforces thrust constraints. An objective function can be incorporated to minimize overall mission cost, i.e., achieve minimum ΔV . A representative mission from Earth to Mars is studied. The proposed Fourier series technique is demonstrated capable of generating feasible and near-optimal trajectories. These attributes can facilitate future low-thrust mission designs where different trajectory alternatives must be rapidly constructed and evaluated.

  2. Over-the-wing model thrust reverser noise tests

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.; Gutierrez, O.

    1977-01-01

    Static acoustic tests were conducted on a 1/12 scale model over-the-wing target type thrust reverser. The model configuration simulates a design that is applicable to the over-the-wing short-haul advanced technology engine. Aerodynamic screening tests of a variety of reverser designs identified configurations that satisfied a reverse thrust requirement of 35 percent of forward thrust at a nozzle pressure ratio of 1.29. The variations in the reverser configuration included, blocker door angle, blocker door lip angle and shape, and side skirt shape. Acoustic data are presented and compared for the various configurations. The model data scaled to a single full size engine show that peak free field perceived noise (PN) levels at a 152.4 meter sideline distance range from 98 to 104 PNdb.

  3. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  4. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  5. Status of Low Thrust Work at JSC

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2004-01-01

    High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.

  6. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  7. Detailed Design of a Pulsed Plasma Thrust Stand

    NASA Astrophysics Data System (ADS)

    Verbin, Andrew J.

    This thesis gives a detailed design process for a pulsed type thruster. The thrust stand designed in this paper is for a Pulsed Plasma Thruster built by Sun Devil Satellite Laboratory, a student organization at Arizona State University. The thrust stand uses a torsional beam rotating to record displacement. This information, along with impulse-momentum theorem is applied to find the impulse bit of the thruster, which varies largely from other designs which focus on using the natural dynamics their fixtures. The target impulse to record on this fixture was estimated to be 275 muN-s of impulse. Through calibration and experimentation, the fixture is capable of recording an impulse of 332 muN-s +/- 14.81 muN-s, close to the target impulse. The error due to noise was characterized and evaluated to be under 5% which is deemed to be acceptable.

  8. Thrust bearing

    NASA Technical Reports Server (NTRS)

    Anderson, W. J. (Inventor)

    1976-01-01

    A gas lubricated thrust bearing is described which employs relatively rigid inwardly cantilevered spokes carrying a relatively resilient annular member or annulus. This annulus acts as a beam on which are mounted bearing pads. The resilience of the beam mount causes the pads to accept the load and, with proper design, responds to a rotating thrust-transmitting collar by creating a gas film between the pads and the thrust collar. The bearing may be arranged for load equalization thereby avoiding the necessity of gimbal mounts or the like for the bearing. It may also be arranged to respond to rotation in one or both directions.

  9. Asymmetric Thrust Reversers

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M. (Inventor); Suciu, Gabriel L. (Inventor)

    2018-01-01

    An aircraft includes a propulsion supported within an aft portion of a fuselage A thrust reverser is mounted in the aft portion of the fuselage proximate the propulsion system for directing thrust in a direction to slow the aircraft. The thrust reverser includes an upper blocker door movable about a first pivot axis to a deployed position and a lower blocker door movable about a second pivot axis not parallel to the first pivot axis.

  10. A microNewton thrust stand for average thrust measurement of pulsed microthruster.

    PubMed

    Zhou, Wei-Jing; Hong, Yan-Ji; Chang, Hao

    2013-12-01

    A torsional thrust stand has been developed for the study of the average thrust for microNewton pulsed thrusters. The main body of the thrust stand mainly consists of a torsional balance, a pair of flexural pivots, a capacitive displacement sensor, a calibration assembly, and an eddy current damper. The behavior of the stand was thoroughly studied. The principle of thrust measurement was analyzed. The average thrust is determined as a function of the average equilibrium angle displacement of the balance and the spring stiffness. The thrust stand has a load capacity up to 10 kg, and it can theoretically measure the force up to 609.6 μN with a resolution of 24.4 nN. The static calibrations were performed based on the calibration assembly composed of the multiturn coil and the permanent magnet. The calibration results demonstrated good repeatability (less than 0.68% FSO) and good linearity (less than 0.88% FSO). The assembly of the multiturn coil and the permanent magnet was also used as an exciter to simulate the microthruster to further research the performance of the thrust stand. Three sets of force pulses at 17, 33.5, and 55 Hz with the same amplitude and pulse width were tested. The repeatability error at each frequency was 7.04%, 1.78%, and 5.08%, respectively.

  11. Spacing of Imbricated Thrust Faults and the Strength of Thrust-Belts and Accretionary Wedges

    NASA Astrophysics Data System (ADS)

    Ito, G.; Regensburger, P. V.; Moore, G. F.

    2017-12-01

    The pattern of imbricated thrust blocks is a prominent characteristic of the large-scale structure of thrust-belts and accretionary wedges around the world. Mechanical models of these systems have a rich history from laboratory analogs, and more recently from computational simulations, most of which, qualitatively reproduce the regular patterns of imbricated thrusts seen in nature. Despite the prevalence of these patterns in nature and in models, our knowledge of what controls the spacing of the thrusts remains immature at best. We tackle this problem using a finite difference, particle-in-cell method that simulates visco-elastic-plastic deformation with a Mohr-Coulomb brittle failure criterion. The model simulates a horizontal base that moves toward a rigid vertical backstop, carrying with it an overlying layer of crust. The crustal layer has a greater frictional strength than the base, is cohesive, and is initially uniform in thickness. As the layer contracts, a series of thrust blocks immerge sequentially and form a wedge having a mean taper consistent with that predicted by a noncohesive, critical Coulomb wedge. The widths of the thrust blocks (or spacing between adjacent thrusts) are greatest at the front of the wedge, tend to decrease with continued contraction, and then tend toward a pseudo-steady, minimum width. Numerous experiments show that the characteristic spacing of thrusts increases with the brittle strength of the wedge material (cohesion + friction) and decreases with increasing basal friction for low (<8°) taper angles. These relations are consistent with predictions of the elastic stresses forward of the frontal thrust and at what distance the differential stress exceeds the brittle threshold to form a new frontal thrust. Hence the characteristic spacing of the thrusts across the whole wedge is largely inherited at the very front of the wedge. Our aim is to develop scaling laws that will illuminate the basic physical processes controlling

  12. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    NASA Astrophysics Data System (ADS)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  13. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  14. Automated low-thrust guidance for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  15. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  16. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  17. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  18. Improved gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Etsion, I.

    1979-01-01

    Two variations of gas-lubricated thrust bearings extend substantially load-carrying range over existing gas bearings. Dual-Action Gas Thrust Bearing's load-carrying capacity is more than ninety percent greater than that of single-action bearing over range of compressibility numbers. Advantages of Cantilever-mounted Thrust Bearing are greater tolerance to dirt ingestion, good initial lift-off characteristics, and operational capability over wide temperature range.

  19. The results of a low-speed wind tunnel test to investigate the effects of the Refan JT8D engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Kupcis, E. A.

    1974-01-01

    The effects of the Refan JT8D side engine target thrust reverser on the stability and control characteristics of the Boeing 727-200 airplane were investigated using the Boeing-Vertol 20 x 20 ft Low-Speed Wind Tunnel. A powered model of the 727-200 was tested in groud effect in the landing configuration. The Refan target reverser configuration was evaluated relative to the basic production 727 airplane with its clamshell-deflector door thrust reverser design. The Refan configuration had slightly improved directional control characteristics relative to the basic airplane. Clocking the Refan thrust reversers 20 degrees outboard to direct the reverser flow away from the vertical tail, had little effect on directional control. However, clocking them 20 degrees inboard resulted in a complete loss of rudder effectiveness for speeds greater than 90 knots. Variations in Refan reverser lip/fence geometry had a minor effect on directional control.

  20. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Ghanbarian, Mohammad Ali

    2014-05-01

    The collision of the Iranian microcontinent with the Afro-Arabian continent resulted in the deformation of the Zagros orogenic belt. The foreland of this belt in the Persian Gulf and Arabian platform has been investigated for its petroleum and gas resource potentials, but the Zagros hinterland is poorly investigated and our knowledge about its deformation is much less than other parts of this orogen. Therefore, this work presents a new geological map, stratigraphic column and two detailed geological cross sections. This study indicates the presence of a hinterland fold-and-thrust belt on northeastern side of the Zagros orogenic core that consists of in-sequence thrusting and basement involvement in this important part of the Zagros hinterland. The in-sequence thrusting resulted in first- and second-order duplex systems, Mode I fault-bend folding, fault-propagation folding and asymmetric detachment folding which indicate close relationships between folding and thrusting. Study of fault-bend folds shows that layer-parallel simple shear has the same role in the southeastern and northwestern parts of the study area (αe = 23.4 ± 9.1°). A major lateral ramp in the basement beneath the Talaee plain with about one kilometer of vertical offset formed parallel to the SW movement direction and perpendicular to the major folding and thrusting.

  1. Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Burke, Laura M.; Mccarty, Steven L.; Hack, Kurt J.; Whitley, Ryan J.; Davis, Diane C.; Ocampo, Cesar

    2017-01-01

    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated.

  2. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  3. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  4. Recommended Practices in Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  5. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  6. Thrust modeling for hypersonic engines

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.; Mcclinton, C. R.

    1995-01-01

    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  7. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  8. Are we reaching the target audience? Evaluation of a fish fact sheet.

    PubMed

    Burger, J; Waishwell, L

    2001-09-28

    According to the US Environmental Protection Agency, over 16% of freshwater lakes and 7% of the rivers are under some sort of fish consumption advisory because of the presence of toxic chemicals. There is considerable interest in the issuing of information, advisories, and fact sheets concerning the consumption of wild-caught fish from contaminated waters, and in the actual consumption patterns of subsistence and recreational anglers. Despite the large number of consumption advisories issued by state agencies, there is little information on how these advisories, or other forms of risk communication, are perceived by target audiences, notably fishermen and women of child-bearing age. The states of South Carolina and Georgia issue consumption advisories for fish from the Savannah River, among other sites. To gain a greater insight into the perception of anglers about a supplemental fish fact sheet jointly developed by South Carolina, Georgia, federal agencies, and the Consortium for Risk Evaluation with Stakeholder Participation, we interviewed fisherman along the Savannah River. The objectives were to determine: (1) whether they had previously read the Fish Fact Sheet or had heard about the consumption advisories; (2) what major message they obtained from the sheet; (3) who they felt the fact sheet was aimed at, and who should get the Fish Fact Sheet; (4) who should be concerned about health risks from consuming the fish; and (5) the best method of disseminating such information. We interviewed 92 fishermen (37% black, 62% white) during the fishing season of 1999. Half had heard some information about consumption advisories, mainly from the media (64%). The study concluded that there were no ethnic differences in whether they had heard about the advisories, understood the major message of the fact sheet, felt they could reduce their risk from consuming the fish, or felt that it made a difference which agency issued the fact sheet. There were significant ethnic

  9. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  10. Oxygen/Alcohol Dual Thrust RCS Engines

    NASA Technical Reports Server (NTRS)

    Angstadt, Tara; Hurlbert, Eric

    1999-01-01

    A non-toxic dual thrust RCS engine offers significant operational, safety, and performance advantages to the space shuttle and the next generation RLVs. In this concept, a single engine produces two thrust levels of 25 and 870 lbf. The low thrust level is provided by the spark torch igniter, which, with the addition of 2 extra valves, can also be made to function as a vernier. A dual thrust RCS engine allows 38 verniers to be packaged more efficiently on a vehicle. These 38 vemiers improve translation and reduce cross coupling, thereby providing more pure roll, pitch, and yaw maneuvers of the vehicle. Compared to the 6 vemiers currently on the shuttle, the 38 dual thrust engines would be 25 to 40% more efficient for the same maneuvers and attitude control. The vernier thrust level also reduces plume impingement and contamination concerns. Redundancy is also improved, thereby improving mission success reliability. Oxygen and ethanol are benign propellants which do not create explosive reaction products or contamination, as compared to hypergolic propellants. These characteristics make dual-thrust engines simpler to implement on a non-toxic reaction control system. Tests at WSTF in August 1999 demonstrated a dual-thrust concept that is successful with oxygen and ethanol. Over a variety of inlet pressures and mixture ratios at 22:1 area ratio, the engine produced between 230 and 297 sec Isp, and thrust levels from 8 lbf. to 50 lbf. This paper describes the benefits of dual-thrust engines and the recent results from tests at WSTF.

  11. Space Shuttle booster thrust imbalance analysis

    NASA Technical Reports Server (NTRS)

    Bailey, W. R.; Blackwell, D. L.

    1985-01-01

    An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).

  12. Geometry of a large-scale low-angle mid-crustal thrust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil S.; Hawemann, Friedrich; Pennacchioni, Giorgio; Camacho, Alfredo

    2015-04-01

    Young orogens, such as the Alps, mainly expose the upper part of the continental crust and it is not possible to follow large-scale thrusts (e.g. the Glarus Thrust) to great depth in order to study their changing rheological behavior. This knowledge, however, is crucial for determining the overall kinematic and dynamic response during collision, as middle to lower crustal rocks represent the major part of the total crustal section. Information from deeper parts of the continental crust can only be obtained directly by investigating regions where these levels are now exhumed. The Musgrave Ranges in Central Australia is a very well exposed, semi-desert area, in which numerous large-scale shear zones developed during the Petermann Orogeny around 550 Ma. The most prominent structure is the ˜400 km long E-W trending Woodroffe Thrust, which placed ˜1.2 Ga granulites onto similarly-aged amphibolite and granulite facies gneisses along a generally south-dipping thrust plane with a top-to-north shear sense. Geothermobarometric calculations on the associated mylonites established that the structure developed under mid-crustal conditions (500-650°C, 0.8-1 GPa). Regional P/T variations in the direction of thrusting are small, but show trends consistent with the south-dipping orientation of the thrust plane, which predicts deeper levels and a higher metamorphic grade in the south than in the north. They imply a very low gradient of only around 3°C/km for a distance of some 30 km in the movement direction of the thrust. Combined with a geothermal gradient on the order of 20°C/km, calculated from four separate P/T estimates from the hanging wall and footwall, this regional gradient indicates that the Woodroffe Thrust was originally shallow-dipping at an average angle of only around 9°. This suggests that upper crustal brittle thrusts do not necessarily steepen into the middle to lower crust, but can define very shallow-dipping, large-scale planar features, with dimensions in

  13. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e

  14. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  15. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  16. A Note on Rocket Performance Comparison Through Impulse and Thrust Coefficients

    NASA Astrophysics Data System (ADS)

    Taylor, N. V.

    Comparison of rocket motor systems is important when generating data to be used in making design decisions. In order to present meaningful comparisons, non-dimensional numbers related to performance are beneficial, as they remove effects of scale. Traditionally thrust coefficients and C* have been used to quantify the aerodynamic and chemical performance of a system respectively. However, it is argued here that in fact the thrust coefficient does not fully account for aerodynamic performance, as the impact of non-uniform flow at the throat is not accounted for. This discharge coefficient is usually allocated to the chemical efficiency through a correction to C*. However, this causes a coupling between chemical and aerodynamic efficiencies which may lead to poor design decisions. Through the use of a specific impulse coefficient, this risk is avoided, and furthermore comparison of unconventional nozzles becomes more straightforward. It is admitted, however, that this has no actual impact on real motor performance, being more in the way of a tidier `accounting' system.

  17. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  18. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    NASA Astrophysics Data System (ADS)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  19. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  20. Dynamics of gas-thrust bearings

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1978-01-01

    Computer program calculates load coefficients, up to third harmonic, for hydrostatic gas thrust bearings. Program is useful in identification of industrial situations where gas-thrust bearings have potential applications.

  1. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David

    2016-01-01

    Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.

  2. Geometry of a large-scale, low-angle, midcrustal thrust (Woodroffe Thrust, central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, S.; Mancktelow, N. S.; Hawemann, F.; Camacho, A.; Pennacchioni, G.

    2017-11-01

    The Musgrave Block in central Australia exposes numerous large-scale mylonitic shear zones developed during the intracontinental Petermann Orogeny around 560-520 Ma. The most prominent structure is the crustal-scale, over 600 km long, E-W trending Woodroffe Thrust, which is broadly undulate but generally dips shallowly to moderately to the south and shows an approximately top-to-north sense of movement. The estimated metamorphic conditions of mylonitization indicate a regional variation from predominantly midcrustal (circa 520-620°C and 0.8-1.1 GPa) to lower crustal ( 650°C and 1.0-1.3 GPa) levels in the direction of thrusting, which is also reflected in the distribution of preserved deformation microstructures. This variation in metamorphic conditions is consistent with a south dipping thrust plane but is only small, implying that a ≥60 km long N-S segment of the Woodroffe Thrust was originally shallowly dipping at an average estimated angle of ≤6°. The reconstructed geometry suggests that basement-cored, thick-skinned, midcrustal thrusts can be very shallowly dipping on a scale of many tens of kilometers in the direction of movement. Such a geometry would require the rocks along the thrust to be weak, but field observations (e.g., large volumes of syntectonic pseudotachylyte) argue for a strong behavior, at least transiently. Localization on a low-angle, near-planar structure that crosscuts lithological layers requires a weak precursor, such as a seismic rupture in the middle to lower crust. If this was a single event, the intracontinental earthquake must have been large, with the rupture extending laterally over hundreds of kilometers.

  3. Low Thrust Orbital Maneuvers Using Ion Propulsion

    NASA Astrophysics Data System (ADS)

    Ramesh, Eric

    2011-10-01

    Low-thrust maneuver options, such as electric propulsion, offer specific challenges within mission-level Modeling, Simulation, and Analysis (MS&A) tools. This project seeks to transition techniques for simulating low-thrust maneuvers from detailed engineering level simulations such as AGI's Satellite ToolKit (STK) Astrogator to mission level simulations such as the System Effectiveness Analysis Simulation (SEAS). Our project goals are as follows: A) Assess different low-thrust options to achieve various orbital changes; B) Compare such approaches to more conventional, high-thrust profiles; C) Compare computational cost and accuracy of various approaches to calculate and simulate low-thrust maneuvers; D) Recommend methods for implementing low-thrust maneuvers in high-level mission simulations; E) prototype recommended solutions.

  4. Changes in Manipulative Peak Force Modulation and Time to Peak Thrust among First-Year Chiropractic Students Following a 12-Week Detraining Period.

    PubMed

    Starmer, David J; Guist, Brett P; Tuff, Taylor R; Warren, Sarah C; Williams, Matthew G R

    2016-05-01

    The purpose of this study was to analyze differences in peak force modulation and time-to-peak thrust in posterior-to-anterior (PA) high-velocity-low-amplitude (HVLA) manipulations in first-year chiropractic students prior to and following a 12-week detraining period. Chiropractic students (n=125) performed 2 thrusts prior to and following a 12-week detraining period: total peak force targets were 400 and 600 N, on a force-sensing table using a PA hand contact of the participant's choice (bilateral hypothenar, bilateral thenar, or cross bilateral). Force modulation was compared to defined target total peak force values of 600 and 400 N, and time-to-peak thrust was compared between data sets using 2-tailed paired t-tests. Total peak force for the 600 N intensity varied by 124.11 + 65.77 N during the pre-test and 123.29 + 61.43 N during the post-test compared to the defined target of 600 N (P = .90); total peak force for the 400 N intensity varied by 44.91 + 34.67 N during the pre-test and 44.60 + 32.63 N during the post-test compared to the defined target of 400 N (P = .57). Time-to-peak thrust for the 400 N total peak force was 137.094 + 42.47 milliseconds during the pre-test and 125.385 + 37.46 milliseconds during the post-test (P = .0004); time-to-peak thrust for the 600 N total peak force was 136.835 + 40.48 milliseconds during the pre-test and 125.385 + 33.78 milliseconds during the post-test (P = .03). The results indicate no drop-off in the ability to modulate force for either thrust intensity, but did indicate a statistically significant change in time-to-peak thrust for the 400 N total peak force thrust intensity in first-year chiropractic students following a 12-week detraining period. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  5. A possible explanation for foreland thrust propagation

    NASA Astrophysics Data System (ADS)

    Panian, John; Pilant, Walter

    1990-06-01

    A common feature of thin-skinned fold and thrust belts is the sequential nature of foreland directed thrust systems. As a rule, younger thrusts develop in the footwalls of older thrusts, the whole sequence propagating towards the foreland in the transport direction. As each new younger thrust develops, the entire sequence is thickened; particularly in the frontal region. The compressive toe region can be likened to an advancing wave; as the mountainous thrust belt advanced the down-surface slope stresses drive thrusts ahead of it much like a surfboard rider. In an attempt to investigate the stresses in the frontal regions of thrustsheets, a numerical method has been devised from the algorithm given by McTigue and Mei [1981]. The algorithm yields a quickly computed approximate solution of the gravity- and tectonic-induced stresses of a two-dimensional homogeneous elastic half-space with an arbitrarily shaped free surface of small slope. A comparison of the numerical method with analytical examples shows excellent agreement. The numerical method was devised because it greatly facilitates the stress calculations and frees one from using the restrictive, simple topographic profiles necessary to obtain an analytical solution. The numerical version of the McTigue and Mei algorithm shows that there is a region of increased maximum resolved shear stress, τ, directly beneath the toe of the overthrust sheet. Utilizing the Mohr-Coulomb failure criterion, predicted fault lines are computed. It is shown that they flatten and become horizontal in some portions of this zone of increased τ. Thrust sheets are known to advance upon weak decollement zones. If there is a coincidence of increased τ, a weak rock layer, and a potential fault line parallel to this weak layer, we have in place all the elements necessary to initiate a new thrusting event. That is, this combination acts as a nucleating center to initiate a new thrusting event. Therefore, thrusts develop in sequence

  6. High-power, null-type, inverted pendulum thrust stand.

    PubMed

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.

  7. Thrusting and back-thrusting as post-emplacement kinematics of the Almora klippe: Insights from Low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Patel, R. C.; Singh, Paramjeet; Lal, Nand

    2015-06-01

    Crystalline klippen over the Lesser Himalayan Sequence (LHS) in the Kumaon and Garhwal regions of NW-Himalaya, are the representative of southern portion of the Main Central Thrust (MCT) hanging wall. These were tectonically transported over the juxtaposed thrust sheets (Berinag, Tons and Ramgarh) of the LHS zone along the MCT. These klippen comprise of NW-SE trending synformal folded thrust sheet bounded by thrusts in the south and north. In the present study, the exhumation histories of two well-known klippen namely Almora and Baijnath, and the Ramgarh thrust sheet, in the Kumaon and Garhwal regions vis-a-vis Himalayan orogeny have been investigated using Apatite Fission Track (AFT) ages. Along a ~ 60 km long orogen perpendicular transect across the Almora klippe and the Ramgarh thrust sheet, 16 AFT cooling ages from the Almora klippe and 2 from the Ramgarh thrust sheet have been found to range from 3.7 ± 0.8 to 13.2 ± 2.7 Ma, and 6.3 ± 0.8 to 7.2 ± 1.0 Ma respectively. From LHS meta-sedimentary rocks only a single AFT age of 3.6 ± 0.8 Ma could be obtained. Three AFT ages from the Baijnath klippe range between 4.7 ± 0.5 and 6.6 ± 0.8 Ma. AFT ages and exhumation rates of different klippen show a dynamic coupling between tectonic and erosion processes in the Kumaon and Garhwal regions of NW-Himalaya. However, the tectonic processes play a dominant role in controlling the exhumation. Thrusting and back thrusting within the Almora klippe and Ramgarh thrust sheet are the post-emplacement kinematics that controlled the exhumation of the Almora klippe. Combining these results with the already published AFT ages from the crystalline klippen and the Higher Himalayan Crystalline (HHC), the kinematics of emplacement of the klippen over the LHS and exhumation pattern across the MCT in the Kumaon and Garhwal regions of NW-Himalaya have been investigated.

  8. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    NASA Astrophysics Data System (ADS)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  9. A miniature electrothermal thruster using microwave-excited microplasmas: Thrust measurement and its comparison with numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2007-06-15

    A microplasma thruster has been developed, consisting of a cylindrical microplasma source 10 mm long and 1.5 mm in inner diameter and a conical micronozzle 1.0-1.4 mm long with a throat of 0.12-0.2 mm in diameter. The feed or propellant gas employed is Ar at pressures of 10-100 kPa, and the surface-wave-excited plasma is established by 4.0 GHz microwaves at powers of <10 W. The thrust has been measured by a combination of target and pendulum methods, exhibiting the performance improved by discharging the plasma. The thrust obtained is 1.4 mN at an Ar gas flow rate of 60 SCCMmore » (1.8 mg/s) and a microwave power of 6 W, giving a specific impulse of 79 s and a thrust efficiency of 8.7%. The thrust and specific impulse are 0.9 mN and 51 s, respectively, in cold-gas operation. A comparison with numerical analysis indicates that the pressure thrust contributes significantly to the total thrust at low gas flow rates, and that the micronozzle tends to have an isothermal wall rather than an adiabatic.« less

  10. Thrust Breakdown Characteristics of Conventional Propellers

    DTIC Science & Technology

    2007-09-01

    extends beyond the trailing edge of the blade . These sheets violently collapse as the blade moves out of the wake deficit produced by the hull. This...thrust breakdown, vibration, noise , erosion and blade damage. Propellers operating with enough cavitation to cause thrust breakdown can experience...7 Figure 5. Sensitivity of thrust reduction to harmonic content in wake (Prop 5491) .................. 8 Figure 6. Comparison of

  11. In-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.

  12. Optimal high- and low-thrust geocentric transfer

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Edelbaum, T. N.

    1974-01-01

    A computer code which rapidly calculates time optimal combined high- and low-thrust transfers between two geocentric orbits in the presence of a strong gravitational field has been developed as a mission analysis tool. The low-thrust portion of the transfer can be between any two arbitrary ellipses. There is an option for including the effect of two initial high-thrust impulses which would raise the spacecraft from a low, initially circular orbit to the initial orbit for the low-thrust portion of the transfer. In addition, the effect of a single final impulse after the low-thrust portion of the transfer may be included. The total Delta V for the initial two impulses must be specified as well as the Delta V for the final impulse. Either solar electric or nuclear electric propulsion can be assumed for the low-thrust phase of the transfer.

  13. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  14. Alternative model of thrust-fault propagation

    NASA Astrophysics Data System (ADS)

    Eisenstadt, Gloria; de Paor, Declan G.

    1987-07-01

    A widely accepted explanation for the geometry of thrust faults is that initial failures occur on deeply buried planes of weak rock and that thrust faults propagate toward the surface along a staircase trajectory. We propose an alternative model that applies Gretener's beam-failure mechanism to a multilayered sequence. Invoking compatibility conditions, which demand that a thrust propagate both upsection and downsection, we suggest that ramps form first, at shallow levels, and are subsequently connected by flat faults. This hypothesis also explains the formation of many minor structures associated with thrusts, such as backthrusts, wedge structures, pop-ups, and duplexes, and provides a unified conceptual framework in which to evaluate field observations.

  15. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  16. Integrated Targeting and Guidance for Powered Planetary Descent

    NASA Astrophysics Data System (ADS)

    Azimov, Dilmurat M.; Bishop, Robert H.

    2018-02-01

    This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.

  17. Integrated Targeting and Guidance for Powered Planetary Descent

    NASA Astrophysics Data System (ADS)

    Azimov, Dilmurat M.; Bishop, Robert H.

    2018-06-01

    This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.

  18. Thrust Control Loop Design for Electric-Powered UAV

    NASA Astrophysics Data System (ADS)

    Byun, Heejae; Park, Sanghyuk

    2018-04-01

    This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.

  19. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  20. CAMELOT: Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox

    NASA Astrophysics Data System (ADS)

    Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano

    2018-03-01

    Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox (CAMELOT) is a toolbox for the fast preliminary design and optimisation of low-thrust trajectories. It solves highly complex combinatorial problems to plan multi-target missions characterised by long spirals including different perturbations. To do so, CAMELOT implements a novel multi-fidelity approach combining analytical surrogate modelling and accurate computational estimations of the mission cost. Decisions are then made using two optimisation engines included in the toolbox, a single-objective global optimiser, and a combinatorial optimisation algorithm. CAMELOT has been applied to a variety of case studies: from the design of interplanetary trajectories to the optimal de-orbiting of space debris and from the deployment of constellations to on-orbit servicing. In this paper, the main elements of CAMELOT are described and two examples, solved using the toolbox, are presented.

  1. Pulsed Ejector Thrust Amplification Tested and Modeled

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    2004-01-01

    There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.

  2. Kinematics and strain distribution of a thrust-related fold system in the Lewis thrust plate, northwestern Montana (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Yin, An; Oertel, Gerhard

    1993-06-01

    In order to understand interactions between motion along thrusts and the associated style of deformation and strain distribution in their hangingwalls, geologic mapping and strain measurements were conducted in an excellently exposed thrust-related fold system in the Lewis thrust plate, northwestern Montana. This system consists of: (1) an E-directed basal thrust (the Gunsight thrust) that has a flat-ramp geometry and a slip of about 3.6 km; (2) an E-verging asymmetric anticline with its nearly vertical forelimb truncated by the basal thrust from below; (3) a 4-km wide fold belt, the frontal fold complex, that lies directly in front of the E-verging anticline; (4) a W-directed bedding-parallel fault (the Mount Thompson fault) that bounds the top of the frontal fold belt and separates it from the undeformed to broadly folded strata above; and (5) regionally developed, W-dipping spaced cleavage. Although the overall geometry of the thrust-related fold system differs from any previously documented fault-related folds, the E-verging anticline itself resembles geometrically a Rich-type fault-bend fold. The observed initial cut-off and fold interlimb angles of this anticline, however, cannot be explained by cross-section balancing models for the development of either a fault-bend fold or a fault propagation fold. Possible origins for the E-verging anticline include (1) the fold initiated as an open fault-bend fold and tightened only later during its emplacement along the basal thrust and (2) the fold started as either a fault-bend or a fault-propagation fold, but simultaneous or subsequent volume change incompatible with any balanced cross-section models altered its shape. Strain in the thrust-related fold system was determined by the preferred orientation of mica and chlorite grains. The direction and magnitude of the post-compaction strain varies from place to place. Strains in the foreclimb of the hangingwall anticline imply bedding-parallel thinning at some

  3. Limited fluid in carbonate-shale hosted thrust faults of the Rocky Mountain Fold-and-Thrust Belt (Sun River Canyon, Montana)

    NASA Astrophysics Data System (ADS)

    OBrien, V. J.; Kirschner, D. L.

    2001-12-01

    It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian

  4. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  5. Initiation of a thrust fault revealed by analog experiments

    NASA Astrophysics Data System (ADS)

    Dotare, Tatsuya; Yamada, Yasuhiro; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-08-01

    To reveal in detail the process of initiation of a thrust fault, we conducted analog experiments with dry quartz sand using a high-resolution digital image correlation technique to identify minor shear-strain patterns for every 27 μm of shortening (with an absolute displacement accuracy of 0.5 μm). The experimental results identified a number of "weak shear bands" and minor uplift prior to the initiation of a thrust in cross-section view. The observations suggest that the process is closely linked to the activity of an adjacent existing thrust, and can be divided into three stages. Stage 1 is characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will subsequently be generated. The area that will eventually be the hanging wall starts to uplift before the fault forms. The shear strain along the existing thrust decreases linearly during this stage. Stage 2 is defined by the generation of the new thrust and active displacements along it, identified by the shear strain along the thrust. The location of the new thrust may be constrained by its back-thrust, generally produced at the foot of the surface slope. The activity of the existing thrust falls to zero once the new thrust is generated, although these two events are not synchronous. Stage 3 of the thrust is characterized by a constant displacement that corresponds to the shortening applied to the model. Similar minor shear bands have been reported in the toe area of the Nankai accretionary prism, SW Japan. By comparing several transects across this subduction margin, we can classify the lateral variations in the structural geometry into the same stages of deformation identified in our experiments. Our findings may also be applied to the evaluation of fracture distributions in thrust belts during unconventional hydrocarbon exploration and production.

  6. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  7. Modes of thrust generation in flying animals

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Song, Jialei; Tobalske, Bret; Luo Team; Tobalske Team

    2016-11-01

    For flying animals in forward flight, thrust is usually much smaller as compared with weight support and has not been given the same amount of attention. Several modes of thrust generation are discussed in this presentation. For insects performing slow flight that is characterized by low advance ratios (i.e., the ratio between flight speed and wing speed), thrust is usually generated by a "backward flick" mode, in which the wings moves upward and backward at a faster speed than the flight speed. Paddling mode is another mode used by some insects like fruit flies who row their wings backward during upstroke like paddles (Ristroph et al., PRL, 2011). Birds wings have high advance ratios and produce thrust during downstroke by directing aerodynamic lift forward. At intermediate advance ratios around one (e.g., hummingbirds and bats), the animal wings generate thrust during both downstroke and upstroke, and thrust generation during upstroke may come at cost of negative weight support. These conclusions are supported by previous experiment studies of insects, birds, and bats, as well as our recent computational modeling of hummingbirds. Supported by the NSF.

  8. Low-thrust chemical orbit transfer propulsion

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    The need for large structures in high orbit is reported in terms of the many mission opportunities which require such structures. Mission and transportation options for large structures are presented, and it is shown that low-thrust propulsion is an enabling requirement for some missions and greatly enhancing to many others. Electric and low-thrust chemical propulsion are compared, and the need for an requirements of low-thrust chemical propulsion are discussed in terms of the interactions that are perceived to exist between the propulsion system and the large structure.

  9. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  10. Thrust control system design of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren

    2011-07-01

    The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.

  11. The thrust belt in Southwest Montana and east-central Idaho

    USGS Publications Warehouse

    Ruppel, Edward T.; Lopez, David A.

    1984-01-01

    The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear

  12. Flight Management System Execution of Idle-Thrust Descents in Operations

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  13. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  14. In-water gas combustion for thrust production

    NASA Astrophysics Data System (ADS)

    Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.

    2017-07-01

    The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104-105 s (105-106 m/s) with account for positive and negative components of impulse.

  15. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  16. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  17. Origin of the Uinta recess, Sevier fold thrust belt, Utah: influence of basin architecture on fold thrust belt geometry

    NASA Astrophysics Data System (ADS)

    Paulsen, Timothy; Marshak, Stephen

    1999-11-01

    Structural trends in the Sevier fold-thrust belt define a pronounced concave-to-the-foreland map-view curve, the Uinta recess, in north-central Utah. This recess separates two convex-to-the-foreland curves, the Provo salient on the south and the Wyoming salient on the north. The two limbs of the recess comprise transverse zones (fault zones at a high-angle to the regional trend of the orogen) that border the flanks of the east-west-trending Uinta/Cottonwood arch. Our structural analysis indicates that the transverse zones formed during the Sevier orogeny, and that they differ markedly from each other in structural style. The Charleston transverse zone (CTZ), on the south side of the arch, initiated as a complex sinistral strike-slip fault system that defines the abrupt northern boundary of the Provo salient. The Mount Raymond transverse zone (MRTZ), on the north side of the arch, represents the region in which the southeast-verging southern limb of the gently curving Wyoming salient was tilted northwards during the Laramide phase of uplift of the Uinta/Cottonwood arch. In effect, the MRTZ represents an oblique cross section through a thrust belt. The contrasting architecture of these transverse zones demonstrates how pre-deformation basin geometry influences the geometry of a fold-thrust belt. Analysis of isopach maps indicates that, at the time the Sevier fold-thrust belt formed, the area just north of the present site of the Uinta/Cottonwood arch was a basement high, with a gently dipping north flank, and a steeply dipping south flank. Thus, predeformational sediment thickened abruptly to the south of the high and thickened gradually to the north of the high. As illustrated by sandbox models, the distance that a fold-thrust belt propagates into the foreland depends on the thickness of the sedimentary layer being deformed, so the shape of the salient mimics the longitudinal cross-sectional shape of the sedimentary basin. Where basins taper gradually along strike

  18. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    produce thrust. Specifically, one test article contained internal physical modifications that were designed to produce thrust, while the other did not (with the latter being referred to as the "null" test article). Test data gathered includes torsion pendulum displacement measurements which are used to calculate generated force, still imagery in the visible spectrum to document the physical configuration, still imagery in the infrared spectrum to characterize the thermal environment, and video imagery. Post-test data includes static and animated graphics produced during RF resonant cavity characterization using the COMSOL Multiphysics® software application. Excerpts from all of the above are included and discussed in this paper. Lessons learned from test integration and operations include identification of the need to replace manual control of the resonant cavity target frequency with an automated frequency control capability. Future test plans include the development of an automatic frequency control circuit. Test results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma. Future test plans include independent verification and validation at other test facilities.

  19. Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1978-01-01

    An acoustic and aerodynamic test program was conducted on a 1/6.25 scale model of the Quiet, Clean, Short-Haul Experimental Engine (QCSEE) forward thrust over-the-wing (OTW) nozzle and OTW thrust reverser. In reverse thrust, the effect of reverser geometry was studied by parametric variations in blocker spacing, blocker height, lip angle, and lip length. Forward thrust nozzle tests determined the jet noise levels of the cruise and takeoff nozzles, the effect of opening side doors to achieve takeoff thrust, and scrubbing noise of the cruise and takeoff jet on a simulated wing surface. Velocity profiles are presented for both forward and reverse thrust nozzles. An estimate of the reverse thrust was made utilizing the measured centerline turning angle.

  20. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  1. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  2. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  3. Evaluation of various thrust calculation techniques on an F404 engine

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1990-01-01

    In support of performance testing of the X-29A aircraft at the NASA-Ames, various thrust calculation techniques were developed and evaluated for use on the F404-GE-400 engine. The engine was thrust calibrated at NASA-Lewis. Results from these tests were used to correct the manufacturer's in-flight thrust program to more accurately calculate thrust for the specific test engine. Data from these tests were also used to develop an independent, simplified thrust calculation technique for real-time thrust calculation. Comparisons were also made to thrust values predicted by the engine specification model. Results indicate uninstalled gross thrust accuracies on the order of 1 to 4 percent for the various in-flight thrust methods. The various thrust calculations are described and their usage, uncertainty, and measured accuracies are explained. In addition, the advantages of a real-time thrust algorithm for flight test use and the importance of an accurate thrust calculation to the aircraft performance analysis are described. Finally, actual data obtained from flight test are presented.

  4. A 10 nN resolution thrust-stand for micro-propulsion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert, E-mail: herbert.shea@epfl.ch

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better thanmore » 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.« less

  5. A 10 nN resolution thrust-stand for micro-propulsion devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  6. Preliminary Design of Low-Thrust Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Flanagan, Steve N.

    1997-01-01

    For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.

  7. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  8. Extended performance solar electric propulsion thrust system study. Volume 3: Tradeoff studies of alternate thrust system configurations

    NASA Technical Reports Server (NTRS)

    Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.

  9. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    NASA Technical Reports Server (NTRS)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  10. Initiation process of a thrust fault revealed by analog experiments

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Dotare, Tatsuya; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-04-01

    We conducted 2D (cross-sectional) analog experiments with dry sand using a high resolution digital image correlation (DIC) technique to reveal initiation process of a thrust fault in detail, and identified a number of "weak shear bands" and minor uplift prior to the thrust initiation. The observations suggest that the process can be divided into three stages. Stage 1: characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will be generated later. Before initiation of the fault, the area to be the hanging wall starts to uplift. Stage 2: defined by the generation of the new thrust and its active displacement. The location of the new thrust seems to be constrained by its associated back-thrust, produced at the foot of the surface slope (by the previous thrust). The activity of the previous thrust turns to zero once the new thrust is generated, but the timing of these two events is not the same. Stage 3: characterized by a constant displacement along the (new) thrust. Similar minor shear bands can be seen in the toe area of the Nankai accretionary prism, SW Japan and we can correlate the along-strike variations in seismic profiles to the model results that show the characteristic features in each thrust development stage.

  11. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    NASA Astrophysics Data System (ADS)

    Marinescu, A.; Dumitrache, M.

    equations of the extremals and integrating these differential equations we obtain the desired extremals which characterize the minimum propellant optimal manoeuvres of transfer from libration points to their orbits. By means of Legendre conditions for weak minimum and Weierstrass condition for strong minimum, is demonstrated that variational problem so formulated has sense and is a problem of minimum. The integration of extremal's differential equations system can not lead to analytical solutions easily to obtain and for this we have directed to a numerical integration. The problem is a bilocal one because the motion parameter values are predicted at the beginning and of the maneuver (the manoeuvre duration coincides with the combustion duration) the values of the Lagrange multipliers not being specified at the beginning and end of the manoeuvre. For determination of the velocities at any point on the libration point L4 and L2 has been elaborated the program of calculus on the integration of the motion equations without accelerations due thrust during a revolution period the coordinates and velocities to be equal, with which have been calculated the velocities at the apoapsis A and respectively A'. With these specifications, the final conditions (at the end of the maneuver) could be established, and the determination of optimal transfer parameters in the specified points could be determined. The calculus performed for the transfer from the libration points L4 and L2 to their orbits, shows that the evolution velocities on the orbits are in general small, the velocities on the L2 orbits being greater than the velocities on L 4 orbits having the same semimajor axis. This fact is explicable because the period of evolution on orbits of libration point L4 is greater than the period of orbits of the libration point L2. For the transfer in the apoapsis of both orbits (the points A. and A') on can remarque the fact the accelerations due thrust are greater for orbits around the

  12. Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser

    NASA Astrophysics Data System (ADS)

    Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro

    2011-09-01

    To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.

  13. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  14. Communication Fact Sheets for Parents.

    ERIC Educational Resources Information Center

    Stremel, Kathleen; Bixler, Betsy; Morgan, Susanne; Layton, Kristen

    This booklet contains 28 fact sheets on communication written primarily for parents and families with a child who is deaf-blind. They attempt to address fundamental but complex issues related to the communication needs of children with vision and hearing impairments. Each fact sheet targets a specific area, including: (1) communication; (2)…

  15. Thrust Augmentation with Mixer/Ejector Systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  16. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  17. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  18. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  19. OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1994-01-01

    OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.

  20. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  1. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Reemsnyder, D. C.; Blodmer, H. E.

    1980-01-01

    Results of steady state reverse and forward to reverse thrust transient performance tests are presented. The original quiet, clean, short haul, experimental engine four segment variable fan nozzle was retested in reverse and compared with a continuous, 30 deg half angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30 deg exlet resulted in lower engine vibrations, lower fan blade stress, and approximately a 20 percent improvement in reverse thrust. Objective reverse thrust of 35 percent of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff to reverse thrust transients.

  2. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  3. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.

  4. Solar electric propulsion. [low thrust trajectory control

    NASA Technical Reports Server (NTRS)

    Barbieri, R. W.

    1975-01-01

    The major components of a solar electric propulsion system are discussed and some problems in low thrust mission analysis are detailed. Emphasis is placed on the development of a nominal low thrust trajectory and guidance and navigation aspects.

  5. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading-edge thrust are possible at supersonic speeds for certain planforms having the geometry to support the theoretical thrust-distribution potential. The new analytical process employed provides not only the level of leading-edge thrust attainable but also the spanwise distribution of both it and that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  6. Improved Propulsion Modeling for Low-Thrust Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Knittel, Jeremy M.; Englander, Jacob A.; Ozimek, Martin T.; Atchison, Justin A.; Gould, Julian J.

    2017-01-01

    Low-thrust trajectory design is tightly coupled with spacecraft systems design. In particular, the propulsion and power characteristics of a low-thrust spacecraft are major drivers in the design of the optimal trajectory. Accurate modeling of the power and propulsion behavior is essential for meaningful low-thrust trajectory optimization. In this work, we discuss new techniques to improve the accuracy of propulsion modeling in low-thrust trajectory optimization while maintaining the smooth derivatives that are necessary for a gradient-based optimizer. The resulting model is significantly more realistic than the industry standard and performs well inside an optimizer. A variety of deep-space trajectory examples are presented.

  7. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  8. Recommended Practices in Thrust Measurements

    DTIC Science & Technology

    2013-10-01

    Turin.5,38 This stand consists of two BeCu plates which hang from flexible BeCu mounts on a rigid block of Zerodur c, a material with a very low coe...2013 Figure 4. Example of a state-of-the-art hanging pendulum thrust stand. 38 Two spherical mirrors mounted on the plates form an optical cavity for...the Zerodur frame. Temperature control and careful choice of materials were used to minimize and correct for thermal drift. 2. Thrust Stand Performance

  9. Hydrodynamic aspects of thrust generation in gymnotiform swimming

    NASA Astrophysics Data System (ADS)

    Shirgaonkar, Anup A.; Curet, Oscar M.; Patankar, Neelesh A.; Maciver, Malcolm A.

    2008-11-01

    The primary propulsor in gymnotiform swimmers is a fin running along most of the ventral midline of the fish. The fish propagates traveling waves along this ribbon fin to generate thrust. This unique mode of thrust generation gives these weakly electric fish great maneuverability cluttered spaces. To understand the mechanical basis of gymnotiform propulsion, we investigated the hydrodynamics of a model ribbon-fin of an adult black ghost knifefish using high-resolution numerical experiments. We found that the principal mechanism of thrust generation is a central jet imparting momentum to the fluid with associated vortex rings near the free edge of the fin. The high-fidelity simulations also reveal secondary vortex rings potentially useful in rapid sideways maneuvers. We obtained the scaling of thrust with respect to the traveling wave kinematic parameters. Using a fin-plate model for a fish, we also discuss improvements to Lighthill's inviscid theory for gymnotiform and balistiform modes in terms of thrust magnitude, viscous drag on the body, and momentum enhancement.

  10. Simple control laws for low-thrust orbit transfers

    NASA Technical Reports Server (NTRS)

    Petropoulos, Anastassios E.

    2003-01-01

    Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.

  11. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  12. Measuring Model Rocket Engine Thrust Curves

    ERIC Educational Resources Information Center

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  13. A lifting surface theory for thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bevilaqua, P. M.

    1977-01-01

    The circulation theory of airfoil lift has been applied to calculate the performance of thrust augmenting ejectors. The ejector shroud is considered to be 'flying' in the secondary velocity field induced by the entrainment of the primary jet, so that the augmenting thrust is viewed as analogous to the lift on an airfoil. Vortex lattice methods are utilized to compute the thrust augmentation from the force on the flaps. The augmentation is shown to be a function of the length and shape of the flaps, as well as their position and orientation. Predictions of this new theory are compared with the results of classical methods of calculating the augmentation by integration of the stream thrust.

  14. Design and Analysis of an Electromagnetic Thrust Bearing

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti; Rao, Dantam K.

    1996-01-01

    A double-acting electromagnetic thrust bearing is normally used to counter the axial loads in many rotating machines that employ magnetic bearings. It essentially consists of an actuator and drive electronics. Existing thrust bearing design programs are based on several assumptions. These assumptions, however, are often violated in practice. For example, no distinction is made between maximum external loads and maximum bearing forces, which are assumed to be identical. Furthermore, it is assumed that the maximum flux density in the air gap occurs at the nominal gap position of the thrust runner. The purpose of this paper is to present a clear theoretical basis for the design of the electromagnetic thrust bearing which obviates such assumptions.

  15. Coseismic fault-related fold model, growth structure, and the historic multisegment blind thrust earthquake on the basement-involved Yoro thrust, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Sato, Hiroshi; Togo, Masami

    2007-03-01

    We use high-resolution seismic reflection profiles, boring transects, and mapping of fold scarps that deform late Quaternary and Holocene sediments to define the kinematic evolution, subsurface geometry, coseismic behavior, and fault slip rates for an active, basement-involved blind thrust system in central Japan. Coseismic fold scarps on the Yoro basement-involved fold are defined by narrow fold limbs and angular hinges on seismic profiles, suggesting that at least 3.9 km of fault slip is consumed by wedge thrust folding in the upper 10 km of the crust. The close coincidence and kinematic link between folded horizons and the underlying thrust geometry indicate that the Yoro basement-involved fold has accommodated slip at an average rate of 3.2 ± 0.1 mm/yr on a shallowly west dipping thrust fault since early Pleistocene time. Past large-magnitude earthquakes, including an historic M˜7.7 event in A.D. 1586 that occurred on the Yoro blind thrust, are shown to have produced discrete folding by curved hinge kink band migration above the eastward propagating tip of the wedge thrust. Coseismic fold scarps formed during the A.D. 1586 earthquake can be traced along the en echelon active folds that extend for at least 60 km, in spite of different styles of folding along the apparently hard-linked Nobi-Ise blind thrust system. We thus emphasize the importance of this multisegment earthquake rupture across these structures and the potential risk for similar future events in en echelon active fold and thrust belts.

  16. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V

  17. Low thrust propulsion literature survey

    NASA Technical Reports Server (NTRS)

    Monroe, Darrel

    1989-01-01

    A literature search was performed to investigate the area of low thrust propulsion. In an effort to evaluate this technology, a number of articles, obtained through the use of the NASA-RECON database, were collected and categorized. The study indicates that although much was done, particularly in the 1960's and 1970's, more can be done in the area of practical navigation and guidance. It is suggested that the older studies be reinvestigated to see what potential there exists for future low thrust applications.

  18. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Parrish, Randall R.; Regis, Daniele; Warren, Clare J.; Argles, Tom W.; Harris, Nigel B. W.; Roberts, Nick M. W.

    2015-07-01

    Quantitative constraints on the rates of tectonic processes underpin our understanding of the mechanisms that form mountains. In the Sikkim Himalaya, late structural doming has revealed time-transgressive evidence of metamorphism and thrusting that permit calculation of the minimum rate of movement on a major ductile fault zone, the Main Central Thrust (MCT), by a novel methodology. U-Th-Pb monazite ages, compositions, and metamorphic pressure-temperature determinations from rocks directly beneath the MCT reveal that samples from 50 km along the transport direction of the thrust experienced similar prograde, peak, and retrograde metamorphic conditions at different times. In the southern, frontal edge of the thrust zone, the rocks were buried to conditions of 550°C and 0.8 GPa between 21 and 18 Ma along the prograde path. Peak metamorphic conditions of 650°C and 0.8-1.0 GPa were subsequently reached as this footwall material was underplated to the hanging wall at 17-14 Ma. This same process occurred at analogous metamorphic conditions between 18-16 Ma and 14.5-13 Ma in the midsection of the thrust zone and between 13 Ma and 12 Ma in the northern, rear edge of the thrust zone. Northward younging muscovite 40Ar/39Ar ages are consistently 4 Ma younger than the youngest monazite ages for equivalent samples. By combining the geochronological data with the >50 km minimum distance separating samples along the transport axis, a minimum average thrusting rate of 10 ± 3 mm yr-1 can be calculated. This provides a minimum constraint on the amount of Miocene India-Asia convergence that was accommodated along the MCT.

  19. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  20. Thrust Measurements of an Underexpanded Orifice in the Transitional Regime

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew D.

    2003-05-01

    The popularity of micropropulsion system development has led to renewed interest in the determination of propulsive properties of orifice flows since micronozzle expansions may suffer high viscous losses at low pressure operation. The mass flow and relative thrust for an under expanded orifice is measured as a function of orifice stagnation pressure from 0.1 to 3.5 Torr. Nitrogen, argon, and helium propellant gases are passed through a 1.0 mm diameter orifice with a wall thickness of 0.015 mm . Near-free molecule, transitional and continuum flow regimes are studied. The relative thrust is determined by a novel thrust stand designed primarily for low operating pressure, micropropulsion systems. It is shown that the thrust indications obtained from the stand are a function of the facility background pressure, and corrections are made to determine the indicated thrust for a zero background pressure with nitrogen as propellant. Highly repeatable (within 1 %) indicated thrust measurements are obtained in the thrust range from 5 to 500 μN.

  1. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows

    NASA Technical Reports Server (NTRS)

    Imlay, S. T.

    1986-01-01

    An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

  2. Design and test of a magnetic thrust bearing

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Mikula, A.; Banerjee, B.; Lewis, D. W.; Imlach, J.

    1993-01-01

    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented.

  3. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  4. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought

  5. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  6. Was Himalayan normal faulting triggered by initiation of the Ramgarh-Munsiari Thrust?

    USGS Publications Warehouse

    Robinson, Delores M.; Pearson, Ofori N.

    2013-01-01

    The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.

  7. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...

  8. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...

  9. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...

  10. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...

  11. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff of... range of operation; (d) Upon a failure or malfunction of augmentor combustion, not cause the engine to...

  12. Polyphase thrust tectonic in the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Paris, I. A.

    1986-01-01

    In the circa 3.5 by-old Barberton greenstone belt, the supracrustal rocks form a thick and strongly deformed thrust complex. Structural studies in the southern part of the belt have shown that 2 separate phases of over-thrusting (D sub 1 and D sub 2) successively dismembered the original stratigraphy. Thrust nappes were subsequently refolded during later deformations (D sub 3 and D sub 4). This report deals with the second thrusting event which, in the study region appears to be dominant, and (unlike the earlier thrusting), affects the entire supracrustal pile. The supracrustal rocks form a predominantly NE/SW oriented, SE dipping tectonic fan (the D sub 2 fan) in which tectonic slices of ophiolitic-like rocks are interleaved with younger sedimentary sequences of the Diepgezet and malalotcha groups. Structural and sedimentological data indicate that the D sub 2 tectonic fan was formed during a prolonged, multi-stage regional horizontal shortening event during which several types of internal deformation mechanisms were successively and/or simultaneously active. Movement appears to have been predominantly to the NW and to the N. During D sub 2, periods of quiescence and sedimentation followed periods of thrust propagation. Although the exact kinematics which led to the formation of this fan is not yet known, paleoenvironmental interpretations together with structural data suggest that D sub 2 was probably related to (an) Archean collision(s).

  13. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  14. Dynamic rupture modeling of thrust faults with parallel surface traces.

    NASA Astrophysics Data System (ADS)

    Peshette, P.; Lozos, J.; Yule, D.

    2017-12-01

    Fold and thrust belts (such as those found in the Himalaya or California Transverse Ranges) consist of many neighboring thrust faults in a variety of geometries. Active thrusts within these belts individually contribute to regional seismic hazard, but further investigation is needed regarding the possibility of multi-fault rupture in a single event. Past analyses of historic thrust surface traces suggest that rupture within a single event can jump up to 12 km. There is also observational precedent for long distance triggering between subparallel thrusts (e.g. the 1997 Harnai, Pakistan events, separated by 50 km). However, previous modeling studies find a maximum jumping rupture distance between thrust faults of merely 200 m. Here, we present a new dynamic rupture modeling parameter study that attempts to reconcile these differences and determine which geometrical and stress conditions promote jumping rupture. We use a community verified 3D finite element method to model rupture on pairs of thrust faults with parallel surface traces. We vary stress drop and fault strength to determine which conditions produce jumping rupture at different dip angles and different separations between surface traces. This parameter study may help to understand the likelihood of jumping rupture in real-world thrust systems, and may thereby improve earthquake hazard assessment.

  15. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  16. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  17. Episodic Growth of Fold-Thrust Belts: Insights from Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Yang, X.; Peel, F.; Sanderson, D. J.; McNeill, L. C.

    2016-12-01

    The sequential development of an imbricate thrust system was investigated using a set of 2D FEM models. This study provides new insights on how the style and location of thrust activity changes through cycles of thrust accretion by making refined measurements of the thrust system parameters through time and tracking these parameters through each cycle. In addition to conventional wedge parameters (i.e. surface slope, wedge width and height), the overall taper angle is used to determine how the critical taper angle is reached; a particular focus is on the region of outboard minor horizontal displacement provides insights into the forward propagation of material within, and in front of, the thrust wedge; tracking the position of the failure front (where the frontal thrust roots into the basal detachment) reveals the sequence and advancement of the imbricate thrusts. The model results show that a thrust system is generally composed of three deformation components: thrust wedge, pre-wedge and wedge front. A thrust belt involves growth that repeats episodically and cyclically. When a wedge reaches critical taper ( 10°), thrust movement within the wedge slows while the taper angle and wedge width gradually increase. In contrast, the displacement front (tracked here by the location of 0 m displacement) rapidly propagates forward along whilst the wedge height is fast growing. During this period, the wedge experiences a significant shortening after a new thrust initiates at the failure front, leading to an obvious decrease in wedge width. As soon as the critical taper is achieved, wedge interior (tracked here by the location of 50 m displacement) accelerates forward reducing the taper angle below critical. This is accompanied by a sudden increase in wedge width, slow advancement of displacement front, and slow uplift of the fold-thrust belt. The rapid movements within and in front of the wedge occur alternately. The model results also show that there is clear, although

  18. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  19. Navigation and Guidance for Low-Thrust Trajectories, LOTNAV

    NASA Astrophysics Data System (ADS)

    Cano, J. L.; Bello, M.; Rodriguez-Canabal, J.

    A number of interplanetary low-thrust missions have already been flown by many space agencies. Examples of already flown missions based on the use of electric propulsion are Deep Space 1, Hayabusa and SMART-1. Many others are already in the assessment phase or in the development phase itself. In such perspective, it is required by the space agencies the procurement and utilisation of assessment tools for fast prototyping in the areas of mission design and navigation. The Low-Thrust Interplanetary Navigation Tool, which is the subject of this paper, allows the mission analyst performing such type of quick assessment studies for the early phases in the development of low-thrust missions. A number of test cases on low-thrust missions are also presented along with the utilities composing the LOTNAV tool.

  20. A simplified gross thrust computing technique for an afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Hamer, M. J.; Kurtenbach, F. J.

    1978-01-01

    A simplified gross thrust computing technique extended to the F100-PW-100 afterburning turbofan engine is described. The technique uses measured total and static pressures in the engine tailpipe and ambient static pressure to compute gross thrust. Empirically evaluated calibration factors account for three-dimensional effects, the effects of friction and mass transfer, and the effects of simplifying assumptions for solving the equations. Instrumentation requirements and the sensitivity of computed thrust to transducer errors are presented. NASA altitude facility tests on F100 engines (computed thrust versus measured thrust) are presented, and calibration factors obtained on one engine are shown to be applicable to the second engine by comparing the computed gross thrust. It is concluded that this thrust method is potentially suitable for flight test application and engine maintenance on production engines with a minimum amount of instrumentation.

  1. Dynamic Imbalance Would Counter Offcenter Thrust

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason

    1994-01-01

    Dynamic imbalance generated by offcenter thrust on rotating body eliminated by shifting some of mass of body to generate opposing dynamic imbalance. Technique proposed originally for spacecraft including massive crew module connected via long, lightweight intermediate structure to massive engine module, such that artificial gravitation in crew module generated by rotating spacecraft around axis parallel to thrust generated by engine. Also applicable to dynamic balancing of rotating terrestrial equipment to which offcenter forces applied.

  2. GSFC Technology Thrusts and Partnership Opportunities

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline

    2010-01-01

    This slide presentation reviews the technology thrusts and the opportunities to partner in developing software in support of the technological advances at the Goddard Space Flight Center (GSFC). There are thrusts in development of end-to-end software systems for mission data systems in areas of flight software, ground data systems, flight dynamic systems and science data systems. The required technical expertise is reviewed, and the supported missions are shown for the various areas given.

  3. Large-Scale Wind-Tunnel Tests of Exhaust Ingestion Due to Thrust Reversal on a Four-Engine Jet Transport during Ground Roll

    NASA Technical Reports Server (NTRS)

    Tolhurst, William H., Jr.; Hickey, David H.; Aoyagi, Kiyoshi

    1961-01-01

    Wind-tunnel tests have been conducted on a large-scale model of a swept-wing jet transport type airplane to study the factors affecting exhaust gas ingestion into the engine inlets when thrust reversal is used during ground roll. The model was equipped with four small jet engines mounted in nacelles beneath the wing. The tests included studies of both cascade and target type reversers. The data obtained included the free-stream velocity at the occurrence of exhaust gas ingestion in the outboard engine and the increment of drag due to thrust reversal for various modifications of thrust reverser configuration. Motion picture films of smoke flow studies were also obtained to supplement the data. The results show that the free-stream velocity at which ingestion occurred in the outboard engines could be reduced considerably, by simple modifications to the reversers, without reducing the effective drag due to reversed thrust.

  4. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  5. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ashpis, David E.; Laun, Matthew C.

    2013-11-01

    DBD plasma actuators generate a wall-jet that can be used for active flow control. We used an analytical balance to measure the thrust generated by the actuator, it is a common metric of its performance without external flow. We found that the measured force is afflicted by several problems; it drifts in time, not always repeatable, is unstable, and depends on the manner the voltage is applied. We report results of investigations of these issues. Tests were conducted on an actuator constructed of 1/4 inch thick high-density polyethylene (HDPE) dielectric with 100 mm long offset electrodes, with applied voltages up to 48 kV p-p and frequencies from 32 Hz to 2.5 kHz, and pure Sine and Trapezoidal waveforms. The relative humidity was in the range of 51-55%, corresponding to moisture range of 10,500 to13,000 ppm mass. Force readings were up to 500 mg, (approximately 50 mN/m). We found that the measured force is the net of the positive thrust generated by the wall-jet and an ``anti-thrust'' acting in the opposite direction. We propose a correction procedure that yields the plasma-generated thrust. The correction is based on voltage-dependent anti-thrust measured in the low frequency range of 20-40 Hz. We found that adjacent objects in a test setup affect the measured thrust, and verified it by comparing experiments with and without a metal enclosure, grounded and ungrounded. Uncorrected thrust varied by up to approximately +/-100%, and the corrected thrust variations were up to approximately 30%. Supported by NASA's FAP/Aerospace Sciences Project.

  6. Flat-ramp vs. convex-concave thrust geometries in a deformable hanging wall: new insights from analogue modeling experiments

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Tomas, Ricardo; Rosas, Filipe; Duarte, Joao; Terrinha, Pedro

    2015-04-01

    Different modes of strain accommodation affecting a deformable hanging-wall in a flat-ramp-flat thrust system were previously addressed through several (sandbox) analog modeling studies, focusing on the influence of different variables, such as: a) thrust ramp dip angle and friction (Bonini et al, 2000); b) prescribed thickness of the hanging-wall (Koy and Maillot, 2007); and c) sin-thrust erosion (compensating for topographic thrust edification, e.g. Persson and Sokoutis, 2002). In the present work we reproduce the same experimental procedure to investigate the influence of two different parameters on hanging-wall deformation: 1) the geometry of the thrusting surface; and 2) the absence of a velocity discontinuity (VD) that is always present in previous similar analogue modeling studies. Considering the first variable we use two end member ramp geometries, flat-ramp-flat and convex-concave, to understand the control exerted by the abrupt ramp edges in the hanging-wall stress-strain distribution, comparing the obtain results with the situation in which such edge singularities are absent (convex-concave thrust ramp). Considering the second investigated parameter, our motivation was the recognition that the VD found in the different analogue modeling settings simply does not exist in nature, despite the fact that it has a major influence on strain accommodation in the deformable hanging-wall. We thus eliminate such apparatus artifact from our models and compare the obtained results with the previous ones. Our preliminary results suggest that both investigated variables play a non-negligible role on the structural style characterizing the hanging-wall deformation of convergent tectonic settings were such thrust-ramp systems were recognized. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013. Pedro Almeida wants to thank to FCT for the Ph.D. grant (SFRH/BD/52556/2014) under the

  7. 14 CFR 25.934 - Turbojet engine thrust reverser system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet engine thrust reverser system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.934 Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet the...

  8. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.

    PubMed

    Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y

    2007-11-01

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster.

  9. Combined high and low-thrust geostationary orbit insertion with radiation constraint

    NASA Astrophysics Data System (ADS)

    Macdonald, Malcolm; Owens, Steven Robert

    2018-01-01

    The sequential use of an electric propulsion system is considered in combination with a high-thrust propulsion system for application to the propellant-optimal Geostationary Orbit insertion problem, whilst considering both temporal and radiation flux constraints. Such usage is found to offer a combined propellant mass saving when compared with an equivalent high-thrust only transfer. This propellant mass saving is seen to increase as the allowable transfer duration is increased, and as the thrust from the low-thrust system is increased, assuming constant specific impulse. It was found that the required plane change maneuver is most propellant-efficiently performed by the high-thrust system. The propellant optimal trajectory incurs a significantly increased electron flux when compared to an equivalent high-thrust only transfer. However, the electron flux can be reduced to a similar order of magnitude by increasing the high-thrust propellant consumption, whilst still delivering an improved mass fraction.

  10. Static Performance of a Wing-Mounted Thrust Reverser Concept

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    1998-01-01

    An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.

  11. Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.

  12. Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Fariz, A.; Sasongko, R. A.; Poetro, R. E.

    2018-04-01

    The effect of solid rocket motor specifications, i.e. specific impulse and mass flow rate, and coast time on the thrust profile of three stages small launch vehicle is studied. Solid rocket motor specifications are collected from various small launch vehicle that had ever been in operation phase, and also from previous study. Comparison of orbital parameters shows that the radius of apocenter targeted can be approached using one combination of solid rocket motor specifications and appropriate coast time. However, the launch vehicle designed is failed to achieve the targeted orbit nor injecting the satellite to any orbit.

  13. Direct thrust measurement of a permanent magnet helicon double layer thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Lafleur, T.; Charles, C.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  14. Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Lawrence, James; Vera, Jerry; Sylvester, Andre; Brady, David; Bailey, Paul

    2016-01-01

    A vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) has been completed. The test campaign consisted of a forward thrust phase and reverse thrust phase at less than 8 x 10(exp -6) Torr vacuum with power scans at 40 watts, 60 watts, and 80 watts. The test campaign included a null thrust test effort to identify any mundane sources of impulsive thrust, however none were identified. Thrust data from forward, reverse, and null suggests that the system is consistently performing with a thrust to power ratio of 1.2 +/- 0.1 mN/kW.

  15. Thrust Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pak, Sibtosh; Shehadeh, R.; Saretto, S. R.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors aimed at probing different aspects of PDE ejector processes, are presented and discussed. The PDE was operated using ethylene as the fuel and an equimolar oxygen/nitrogen mixture as the oxidizer at an equivalence ratio of one. The thrust measurements for the PDE alone are in excellent agreement with experimental and modeling results reported in the literature and serve as a Baseline for the ejector studies. These thrust measurements were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups using constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  16. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...

  17. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...

  18. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  19. Selection and trajectory design to mission secondary targets

    NASA Astrophysics Data System (ADS)

    Victorino Sarli, Bruno; Kawakatsu, Yasuhiro

    2017-02-01

    Recently, with new trajectory design techniques and use of low-thrust propulsion systems, missions have become more efficient and cheaper with respect to propellant. As a way to increase the mission's value and scientific return, secondary targets close to the main trajectory are often added with a small change in the transfer trajectory. As a result of their large number, importance and facility to perform a flyby, asteroids are commonly used as such targets. This work uses the Primer Vector theory to define the direction and magnitude of the thrust for a minimum fuel consumption problem. The design of a low-thrust trajectory with a midcourse asteroid flyby is not only challenging for the low-thrust problem solution, but also with respect to the selection of a target and its flyby point. Currently more than 700,000 minor bodies have been identified, which generates a very large number of possible flyby points. This work uses a combination of reachability, reference orbit, and linear theory to select appropriate candidates, drastically reducing the simulation time, to be later included in the main trajectory and optimized. Two test cases are presented using the aforementioned selection process and optimization to add and design a secondary flyby to a mission with the primary objective of 3200 Phaethon flyby and 25143 Itokawa rendezvous.

  20. Thrust modulation methods for a subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.

    1981-01-01

    Low speed wind tunnel tests were conducted to assess four methods for attaining thrust modulation for V/STOL aircraft. The four methods were: (1) fan speed change, (2) fan nozzle exit area change, (3) variable pitch rotor (VPR) fan, and (4) variable inlet guide vanes (VIGV). The interrelationships between inlet and thrust modulation system were also investigated using a double slotted inlet and thick lip inlet. Results can be summarized as: (1) the VPR and VIGV systems were the most promising, (2) changes in blade angle to obtain changes in fan thrust have significant implications for the inlet, and (3) both systems attained required level of thrust with acceptable levels of fan blade stress.

  1. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  2. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, N.; Yokota, S.; Komurasaki, K.

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less

  3. Recent advances in low-thrust propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1988-01-01

    The NASA low-thrust propulsion technology program is aimed at providing high performance options to a broad class of near-term and future missions. Major emphases of the program are on storable and hydrogen/oxygen low-thrust chemical, low-power (auxiliary) electrothermal, and high-power electric propulsion. This paper represents the major accomplishments of the program and discusses their impact.

  4. Tertiary structural evolution of the Gangdese thrust system southeastern Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, An; Harrison, M.; Ryerson, F.J.

    1994-09-10

    Structural and thermochronological investigations of southern Tibet (Xizang) suggest that intracontinental thrusting has been the dominant cause for formation of thickened crust in the southernmost Tibetan plateau since late Oligocene. Two thrust systems are documented in this study: the north dipping Gangdese system (GTS) and the younger south dipping Renbu-Zedong system (RZT). West of Lhasa, the Gangdese thrust juxtaposes the Late Cretaceous forearc basin deposits of the Lhasa Block (the Xigaze Group) over the Tethyan sedimentary rocks of the Indian plate, whereas east of Lhasa, the fault juxtaposes the Late Cretaceous-Eocene, Andean-type arc (the Gangdese batholith) over Tethyan sedimentary rocks.more » Near Zedong, 150 km southeast of Lhasa, the Gangdese thrust is marked by a >200-m-thick mylonitic shear zone that consists of deformed granite and metasedimentary rocks. A major south dipping backthrust in the hanging wall of the Gangdese thrust puts the Xigaze Group over Tertiary conglomerates and the Gangdese plutonics north of Xigaze and west of Lhasa. A lower age bound for the Gangdese thrust of 18.3{+-}0.5 Ma is given by crosscutting relationships. The timing of slip on the Gangdese thrust is estimate to be 27-23 Ma from {sup 40}Ar/{sup 39}Ar thermochronology, and a displacement of at least 46{+-}9 km is indicated near Zedong. The age of the Gangdese thrust (GT) is consistent with an upper age limit of {approximately}24 Ma for the initiation of movement on the Main Central thrust. In places, the younger Renbu-Zedong fault is thrust over the trace of the GT, obscuring its exposure. The RZT appears to have been active at circa 18 Ma but had ceased movement by 8{+-}1 Ma. The suture between India and Asia has been complexely modified by development of the GTS, RZT, and, locally, strike-slip and normal fault systems. 64 refs., 14 figs., 2 tabs.« less

  5. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  6. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    USGS Publications Warehouse

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  7. The Development of NASA's Low Thrust Trajectory Tool Set

    NASA Technical Reports Server (NTRS)

    Sims, Jon; Artis, Gwen; Kos, Larry

    2006-01-01

    Highly efficient electric propulsion systems can enable interesting classes of missions; unfortunately, they provide only a limited amount of thrust. Low-thrust (LT) trajectories are much more difficult to design than impulsive-type (chemical propulsion) trajectories. Previous low-thrust (LT) trajectory optimization software was often difficult to use, often had difficulties converging, and was somewhat limited in the types of missions it could support. A new state-of-the-art suite (toolbox) of low-thrust (LT) tools along with improved algorithms and methods was developed by NASA's MSFC, JPL, JSC, and GRC to address the needs of our customers to help foster technology development in the areas of advanced LT propulsion systems, and to facilitate generation of similar results by different analysts.

  8. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  9. Analyzing structural variations along strike in a deep-water thrust belt

    NASA Astrophysics Data System (ADS)

    Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan

    2018-03-01

    We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.

  10. Episodic growth of fold-thrust belts: Insights from Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Peel, Frank J.; Sanderson, David J.; McNeill, Lisa C.

    2017-09-01

    The sequential development of a fold-thrust belt was investigated using 2D Finite Element Modelling (FEM). The new model results show that a thrust system is typically composed of three distinct regions: the thrust wedge, pre-wedge, and undeformed region. The thrust wedge involves growth that repeats episodically and cyclically. A cycle of wedge building starts as frontal accretion occurs, which is accompanied by a rapid increase in wedge width reducing the taper angle below critical. In response to this, the wedge interior (tracked here by the 50 m displacement position) rapidly propagates forwards into a region of incipient folding. The taper angle progressively increases until it obtains a constant apparent critical value (∼10°). During this period, the wedge experiences significant shortening after a new thrust initiates at the failure front, leading to a decrease in wedge width. Successive widening of the wedge and subsequent shortening and thrusting maintain a reasonably constant taper angle. The fold-thrust belt evolves cyclically, through a combination of rapid advancement of the wedge and subsequent gradual, slow wedge growth. The new model results also highlights that there is clear, although minor, deformation (0-10 m horizontal displacement) in front of the thrust wedge.

  11. Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2007-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.

  12. Development of a Transient Thrust Stand with Sub-Millisecond Resolution

    NASA Astrophysics Data System (ADS)

    Spells, Corbin Fraser

    The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.

  13. Scale independence of décollement thrusting

    USGS Publications Warehouse

    McBride, John H.; Pugin, Andre J.M.; Hatcher, Robert D.

    2007-01-01

    Orogen-scale décollements (detachment surfaces) are an enduring subject of investigation by geoscientists. Uncertainties remain as to how crustal convergence processes maintain the stresses necessary for development of low-angle fault surfaces above which huge slabs of rock are transported horizontally for tens to hundreds of kilometers. Seismic reflection profiles from the southern Appalachian crystalline core and several foreland fold-and-thrust belts provide useful comparisons with high-resolution shallow-penetration seismic reflection profiles acquired over the frontal zone of the Michigan lobe of the Wisconsinan ice sheet northwest of Chicago, Illinois. These profiles provide images of subhorizontal and overlapping dipping reflections that reveal a ramp-and-flat thrust system developed in poorly consolidated glacial till. The system is rooted in a master décollement at the top of bedrock. These 2–3 km long images contain analogs of images observed in seismic reflection profiles from orogenic belts, except that the scale of observation in the profiles in glacial materials is two orders of magnitude less. Whereas the décollement beneath the ice lobe thrust belt lies ∼70 m below thrusted anticlines having wavelengths of tens of meters driven by an advancing ice sheet, seismic images from overthrust terranes are related to lithospheric convergence that produces décollements traceable for thousands of kilometers at depths ranging from a few to over 10 km. Dual vergence or reversals in vergence (retrocharriage) that developed over abrupt changes in depth to the décollement can be observed at all scales. The strikingly similar images, despite the contrast in scale and driving mechanism, suggest a scale- and driving mechanism–independent behavior for décollement thrust systems. All these systems initially had the mechanical properties needed to produce very similar geometries with a compressional driving mechanism directed subparallel to Earth's surface

  14. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  15. Some effects of cyclic induced deformation in rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Quentmeyer, R. J.

    1979-01-01

    A test program to investigate the deformation process observed in the hot gas wall of rocket thrust chambers was conducted using three different liner materials. Five thrust chambers were cycled to failure using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/m square (600 psia). The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the types of failure encountered. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers.

  16. Environmental Thrust Handbook.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    This handbook was prepared as a tool to assist U. S. Department of Agriculture (USDA) employees coordinate their resources and efforts to help people improve their environment. Twenty-two projects are outlined as potential environmental thrusts at the community level. It is the role of USDA employees to encourage and assist, in every way possible,…

  17. Application of Chaboche Model in Rocket Thrust Chamber Analysis

    NASA Astrophysics Data System (ADS)

    Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba

    2017-06-01

    Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.

  18. Duplex thrusting in the South Dabashan arcuate belt, central China

    NASA Astrophysics Data System (ADS)

    Li, Wangpeng; Liu, Shaofeng; Wang, Yi; Qian, Tao; Gao, Tangjun

    2017-10-01

    Due to later tectonic superpositioning and reworking, the South Dabashan arcuate belt extending NW to SE has experienced several episodes of deformation. The earlier deformational style and formation mechanism of this belt remain controversial. Seismic interpretations and fieldwork show that the curved orogen can be divided into three sub-belts perpendicular to the strike of the orogen, the imbricate thrust fault belt, the detachment fold belt and the frontal belt from NE to SW. The imbricate thrust fault belt is characterized by a series of SW-directed thrust faults and nappes. Two regional detachment layers at different depths have been recognized in the detachment fold and frontal belts, and these detachment layers divide the sub-belts into three structural layers: the lower, middle, and upper structural layers. The middle structural layer is characterized by a passive roof duplex structure, which is composed of a roof thrust at the top of the Sinian units, a floor thrust in the upper Lower Triassic units, and horses in between. Apatite fission track dating results and regional structural analyses indicate that the imbricate thrust fault belt may have formed during the latest Early Cretaceous to earliest Paleogene and that the detachment fold belt may have formed during the latest Late Cretaceous to earliest Neogene. Our findings provide important reference values for researching intra-continental orogenic and deformation mechanisms in foreland fold-thrust belts.

  19. Thrust imbalance of the Space Shuttle solid rocket motors

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Sforzini, R. H.; Shackelford, B. W., Jr.

    1981-01-01

    The Monte Carlo statistical analysis of thrust imbalance is applied to both the Titan IIIC and the Space Shuttle solid rocket motors (SRMs) firing in parallel, and results are compared with those obtained from the Space Shuttle program. The test results are examined in three phases: (1) pairs of SRMs selected from static tests of the four developmental motors (DMs 1 through 4); (2) pairs of SRMs selected from static tests of the three quality assurance motors (QMs 1 through 3); (3) SRMs on the first flight test vehicle (STS-1A and STS-1B). The simplified internal ballistic model utilized for computing thrust from head-end pressure measurements on flight tests is shown to agree closely with measured thrust data. Inaccuracies in thrust imbalance evaluation are explained by possible flight test instrumentation errors.

  20. A trajectory generation and system characterization model for cislunar low-thrust spacecraft. Volume 2: Technical manual

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.

    1990-01-01

    The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.

  1. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  2. Spatial measurement in rotating magnetic field plasma acceleration method by using two-dimensional scanning instrument and thrust stand

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Yano, K.; Kuwahara, D.; Shinohara, S.

    2018-04-01

    A two-dimensional scanning probe instrument has been developed to survey spatial plasma characteristics in our electrodeless plasma acceleration schemes. In particular, diagnostics of plasma parameters, e.g., plasma density, temperature, velocity, and excited magnetic field, are essential for elucidating physical phenomena since we have been concentrating on next generation plasma propulsion methods, e.g., Rotating Magnetic Field plasma acceleration method, by characterizing the plasma performance. Moreover, in order to estimate the thrust performance in our experimental scheme, we have also mounted a thrust stand, which has a target type, on this movable instrument, and scanned the axial profile of the thrust performance in the presence of the external magnetic field generated by using permanent magnets, so as to investigate the plasma captured in a stand area, considering the divergent field lines in the downstream region of a generation antenna. In this paper, we will introduce the novel measurement instrument and describe how to measure these parameters.

  3. Quantifying the high-velocity, low-amplitude spinal manipulative thrust: a systematic review.

    PubMed

    Downie, Aron S; Vemulpad, Subramanyam; Bull, Peter W

    2010-09-01

    The purpose of this study was to systematically review studies that quantify the high-velocity, low-amplitude (HVLA) spinal thrust, to qualitatively compare the apparatus used and the force-time profiles generated, and to critically appraise studies involving the quantification of thrust as an augmented feedback tool in psychomotor learning. A search of the literature was conducted to identify the sources that reported quantification of the HVLA spinal thrust. MEDLINE-OVID (1966-present), MANTIS-OVID (1950-present), and CINAHL-EBSCO host (1981-present) were searched. Eligibility criteria included that thrust subjects were human, animal, or manikin and that the thrust type was a hand-delivered HVLA spinal thrust. Data recorded were single force, force-time, or displacement-time histories. Publications were in English language and after 1980. The relatively small number of studies, combined with the diversity of method and data interpretation, did not enable meta-analysis. Twenty-seven studies met eligibility criteria: 17 studies measured thrust as a primary outcome (13 human, 2 cadaver, and 2 porcine). Ten studies demonstrated changes in psychomotor learning related to quantified thrust data on human, manikin, or other device. Quantifiable parameters of the HVLA spinal thrust exist and have been described. There remain a number of variables in recording that prevent a standardized kinematic description of HVLA spinal manipulative therapy. Despite differences in data between studies, a relationship between preload, peak force, and thrust duration was evident. Psychomotor learning outcomes were enhanced by the application of thrust data as an augmented feedback tool. Copyright © 2010 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  4. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes

    NASA Technical Reports Server (NTRS)

    Yetter, Jeffrey A.

    1995-01-01

    Although thrust reversers are used for only a fraction of the airplane operating time, their impact on nacelle design, weight, airplane cruise performance, and overall airplane operating and maintenance expenses is significant. Why then do the airlines want and use thrust reversers? In an effort to understand the airlines need for thrust reversers, a survey of the airline industry was made to determine why and under what situations thrust reversers are currently used or thought to be needed. The survey was intended to help establish the cost/benefits trades for the use of thrust reversers and airline opinion regarding alternative deceleration devices. A compilation and summary of the responses given to the survey questionnaire is presented.

  5. Efficient Optimization of Low-Thrust Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul

    2007-01-01

    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.

  6. A Determinate Model of Thrust-Augmenting Ejectors

    NASA Astrophysics Data System (ADS)

    Whitley, N.; Krothapalli, A.; van Dommelen, L.

    1996-01-01

    A theoretical analysis of the compressible flow through a constant-area jet-engine ejector in which a primary jet mixes with ambient fluid from a uniform free stream is pursued. The problem is reduced to a determinate mathematical one by prescribing the ratios of stagnation properties between the primary and secondary flows. For some selections of properties and parameters more than one solution is possible and the meaning of these solutions is discussed by means of asymptotic expansions. Our results further show that while under stationary conditions the thrust-augmentation ratio assumes a value of 2 in the large area-ratio limit, for a free-stream Mach number greater than 0.6 very little thrust augmentation is left. Due to the assumptions made, the analysis provides idealized values for the thrust-augmentation ratio and the mass flux entrainment factor.

  7. The challenges of numerically simulating analogue brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2017-04-01

    Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that

  8. Early history and reactivation of the rand thrust, southern California

    NASA Astrophysics Data System (ADS)

    Postlethwaite, Clay E.; Jacobson, Carl E.

    The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.

  9. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  10. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David A.; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, lessons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.

  11. Internal performance characteristics of thrust-vectored axisymmetric ejector nozzles

    NASA Technical Reports Server (NTRS)

    Lamb, Milton

    1995-01-01

    A series of thrust-vectored axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at the Langley research center. This study indicated that discontinuities in the performance occurred at low primary nozzle pressure ratios and that these discontinuities were mitigated by decreasing expansion area ratio. The addition of secondary flow increased the performance of the nozzles. The mid-to-high range of secondary flow provided the most overall improvements, and the greatest improvements were seen for the largest ejector area ratio. Thrust vectoring the ejector nozzles caused a reduction in performance and discharge coefficient. With or without secondary flow, the vectored ejector nozzles produced thrust vector angles that were equivalent to or greater than the geometric turning angle. With or without secondary flow, spacing ratio (ejector passage symmetry) had little effect on performance (gross thrust ratio), discharge coefficient, or thrust vector angle. For the unvectored ejectors, a small amount of secondary flow was sufficient to reduce the pressure levels on the shroud to provide cooling, but for the vectored ejector nozzles, a larger amount of secondary air was required to reduce the pressure levels to provide cooling.

  12. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  13. Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines

    NASA Technical Reports Server (NTRS)

    Halliwell, Ian

    2001-01-01

    = 2.0 were investigated. The single-spool 5,000-lbf-thrust turbofan was refined and the small engine study was extended to include a 2,000-lbf-thrust turbojet. More attention was paid to optimizing the turbomachinery. Turbine cooling flows were eliminated, in keeping with the use of uncooled CMC material in exoskeletal engines. The turbine performance parameters moved much closer to the nominal target values, demonstrating the great benefits to the cycle of uncooled turbines.

  14. Exoskeletal Engine Concept: Feasibility Studies for Medium and Small Thrust Engines

    NASA Technical Reports Server (NTRS)

    Halliwell, Ian

    2001-01-01

    BPR = 2.0 were investigated. The single-spool 5.000-lbf-thrust turbofan was refined and the small engine study was extended to include a 2,000-lbf-thrust turbojet. More attention was paid to optimizing the turbomachinery. Turbine cooling flows were eliminated, in keeping with the use of uncooled CMC materials in exoskeletal engines. The turbine performance parameters moved much closer to the nominal target values, demonstrating the great benefits to the cycle of uncooled turbines.

  15. Dual-action gas thrust bearing for improving load capacity

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.

  16. Electromagnetic calibration system for sub-micronewton torsional thrust stand

    NASA Astrophysics Data System (ADS)

    Lam, J. K.; Koay, S. C.; Cheah, K. H.

    2017-12-01

    It is critical for a micropropulsion system to be evaluated. Thrust stands are widely recognised as the instrument to complete such tasks. This paper presents the development of an alternative electromagnetic calibration technique for thrust stands. Utilising the commercially made voice coils and permanent magnets, the proposed system is able to generate repeatable and also consistent steady-state calibration forces at over four orders of magnitude (30 - 23000 μN). The system is then used to calibrate a custom-designed torsional thrust stand, where its inherent ability in ease of setup is well demonstrated.

  17. Experimental Determination of Exhaust Gas Thrust, Special Report

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Voss, Fred

    1940-01-01

    This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.

  18. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  19. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less

  20. A new method for optimization of low-thrust gravity-assist sequences

    NASA Astrophysics Data System (ADS)

    Maiwald, V.

    2017-09-01

    Recently missions like Hayabusa and Dawn have shown the relevance and benefits of low-thrust spacecraft concerning the exploration of our solar system. In general, the efficiency of low-thrust propulsion is one means of improving mission payload mass. At the same time, gravity-assist maneuvers can serve as mission enablers, as they have the capability to provide "free energy." A combination of both, gravity-assist and low-thrust propulsion, has the potential to generally improve mission performance, i.e. planning and optimization of gravity-assist sequences for low-thrust missions is a desirable asset. Currently no established methods exist to include the gravity-assist partners as optimization variable for low-thrust missions. The present paper explains how gravity-assists are planned and optimized, including the gravity-assist partners, for high-thrust missions and discusses the possibility to transfer the established method, based on the Tisserand Criterion, to low-thrust missions. It is shown how the Tisserand Criterion needs to be adapted using a correction term for the low-thrust situation. It is explained why this necessary correction term excludes an a priori evaluation of sequences and therefore their planning and an alternate approach is proposed. Preliminary results of this method, by application of a Differential Evolution optimization algorithm, are presented and discussed, showing that the method is valid but can be improved. Two constraints on the search space are briefly presented for that aim.

  1. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.

    PubMed

    Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise

    2012-02-01

    A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.

  2. Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1992-01-01

    An investigation is underway to determine the benefits of a new propulsion system optimization algorithm in an F-15 airplane. The performance seeking control (PSC) algorithm optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses an onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. As part of the PSC test program, the F-15 aircraft was operated on a horizontal thrust stand. Thrust was measured with highly accurate load cells. The measured thrust was compared to onboard model estimates and to results from posttest performance programs. Thrust changes using the various PSC modes were recorded. Those results were compared to benefits using the less complex highly integrated digital electronic control (HIDEC) algorithm. The PSC maximum thrust mode increased intermediate power thrust by 10 percent. The PSC engine model did very well at estimating measured thrust and closely followed the transients during optimization. Quantitative results from the evaluation of the algorithms and performance calculation models are included with emphasis on measured thrust results. The report presents a description of the PSC system and a discussion of factors affecting the accuracy of the thrust stand load measurements.

  3. Sedimentation of Jurassic fan-delta wedges in the Xiahuayuan basin reflecting thrust-fault movements of the western Yanshan fold-and-thrust belt, China

    NASA Astrophysics Data System (ADS)

    Lin, Chengfa; Liu, Shaofeng; Zhuang, Qitian; Steel, Ronald J.

    2018-06-01

    Mesozoic thrusting within the Yanshan fold-and-thrust belt of North China resulted in a series of fault-bounded intramontane basins whose infill and evolution remain poorly understood. In particular, the bounding faults and adjacent sediment accumulations along the western segments of the belt are almost unstudied. A sedimentological and provenance analysis of the Lower Jurassic Xiahuayuan Formation and the Upper Jurassic Jiulongshan Formation have been mapped to show two distinctive clastic wedges: an early Jurassic wedge representing a mass-flow-dominated, Gilbert-type fan delta with a classic tripartite architecture, and an late Jurassic shoal-water fan delta without steeply inclined strata. The basinward migration of the fan-delta wedges, together with the analysis of their conglomerate clast compositions, paleocurrent data and detrital zircon U-Pb age spectra, strongly suggest that the northern-bounding Xuanhuan thrust fault controlled their growth during accumulation of the Jiulongshan Formation. Previous studies have suggested that the fan-delta wedge of the Xiahuayuan Formation was also syntectonic, related to movement on the Xuanhua thrust fault. Two stages of thrusting therefore exerted an influence on the formation and evolution of the Xiahuayuan basin during the early-late Jurassic.

  4. Low-thrust Isp sensitivity study

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1982-01-01

    A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.

  5. FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis.

    PubMed

    Frost, Jennifer M; Kim, M Yvonne; Park, Guen Tae; Hsieh, Ping-Hung; Nakamura, Miyuki; Lin, Samuel J H; Yoo, Hyunjin; Choi, Jaemyung; Ikeda, Yoko; Kinoshita, Tetsu; Choi, Yeonhee; Zilberman, Daniel; Fischer, Robert L

    2018-05-15

    The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin. Copyright © 2018 the Author(s). Published by PNAS.

  6. Optimal Trajectories For Orbital Transfers Using Low And Medium Thrust Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1992-01-01

    For many problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well-known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs which will require more revolutions, thus making the low thrust transfer computational intensive. Here, we consider optimal low and medium thrust orbital transfers.

  7. Experimental thrust performance of a high-area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kacynski, Kenneth J.; Smith, Tamara A.

    1987-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  8. Experimental thrust performance of a high area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.; Kacynski, K. J.; Smith, T. A.

    1986-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  9. Sub-micro-Newton resolution thrust balance.

    PubMed

    Hathaway, G

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (∼0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster.

  10. Development of a Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, Charles M.; Merkowitz, Stephen M.

    2002-01-01

    A thrust stand has been built to measure the force-noise produced by electrostatic micro-Newton (muN) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 muN with a resolution of 0.1 muN. The stationary force-noise produced by these thrusters must not exceed 0.1 muN/dHz in the measurement bandwidth 10(exp -4) to 1 Hz. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from l0( -4) to 1 Hz with 0.1 muN/dHz sensitivity, absolute thrust measurements from 1-100 muN with better than 0.1 muN resolution, and dynamic thruster response from to 10 Hz. The LTS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  11. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  12. Development of A Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, C. M.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    A thrust stand has been built and tested that is capable of measuring the force-noise produced by electrostatic micro-Newton (micro-Newton) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 micro-Newton with a resolution of 0.1 micro-Newton. The stationary force-noise produced by these thrusters must not exceed 0.1 pN/4Hz in a 10 Hz bandwidth. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from 10(exp-4) to 1 Hz with 0.1 micro-Newton resolution, absolute thrust measurements from 1-100 micro-Newton with better than 0.1 micro-Newton resolution, and dynamic thruster response from 10(exp -4) to 10 Hz. The ITS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  13. Pulsed thrust measurements using electromagnetic calibration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Haibin; Shi Chenbo; Zhang Xin'ai

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measuredmore » to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.« less

  14. Thrust stand for vertically oriented electric propulsion performance evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, Trevor; Polzin, Kurt A.

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivotsmore » with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.« less

  15. Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Haag, Thomas W.

    1999-01-01

    Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.

  16. An Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2004-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold: first, to add to the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. Second, to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and predicting what thrust augmentation values may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (having no mean component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the various measurements made. These include both thrust and Digital Particle Imaging Velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called Formation Number serves as a useful dimensionless number by which to characterize the jet and predict performance.

  17. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2015-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  18. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2016-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  19. Alongstrike geometry variations of the Carpathian thrust front east of Tarnów (SE Poland) as intersection phenomenon related to thrust-floor palaeotopography

    NASA Astrophysics Data System (ADS)

    Gluszynski, Andrzej; Aleksandrowski, Pawel

    2017-04-01

    Structural geometry of the Miocene (Badenian-Sarmatian) Carpathian orogenic front between Tarnów and Pilzno was investigated, using borehole and 2D and 3D seismic data. In line with some earlier studies by other authors, but in much more comprehensive way, our study reveals details of the alongstrike changing structural geometry of the Carpathian orogenic front and offers a model of its tectonic evolution. At places the frontal thrust of the Carpathians is blind and accompanied by well developed wedge tectonics phenomena. Elsewhere it is emergent at the surface and shows an apparently simple structure. The base of the fold-thrust zone rests on a substratum with highly variable palaeotopography, which includes a major palaeovalley incised in the Mesozoic basement to a depth exceeding 1 km. The palaeovalley floor was covered with salt-bearing evaporites at the time when the thrusting took place. The wedge tectonics phenomena include backthrusts and a prominent crocodile structure. The tectonic wedge is formed by stacked thrust-slices of the Cretaceous-to-Oligocene flysch of the Skole nappe. This wedge has forced a basal Miocene evaporitic layer (including salt) to split into two horizons (1) the lower one, which acted as a tectonic lubricant along the floor thrust of the forward-moving flysch wedge, and (2) the upper one, along which the Miocene sediments of the Carpathian foredeep were underthrusted by the flysch wedge. This resulting crocodile structure has the flysch wedge in its core, a passive roof of Miocene sediments at the top and tilted Miocene strata at its front, defining a frontal homocline. A minor triangle zone, cored with deformed evaporites, has formed due to backthrust branching at the rear of the frontal monocline. At other places, the Carpathian flysch and its basal thrust, emerge at the surface. The flysch must have once also formed a wedge there, but was mostly removed by erosion following its elevation above the present-day topographic surface

  20. Measured pressure distributions inside nonaxisymmetric nozzles with partially deployed thrust reversers

    NASA Technical Reports Server (NTRS)

    Green, Robert S.; Carson, George T., Jr.

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.

  1. Development Status of High-Thrust Density Electrostatic Engines

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.

    2017-01-01

    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.

  2. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2015-01-01

    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.

  3. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  4. Thrust reverser analysis for implementation in the Aviation Environmental Design Tool (AEDT)

    DOT National Transportation Integrated Search

    2007-06-01

    This letter report presents an updated implementation for thrust reversers in AEDT. Currently, thrust reverser is applied to all STANDARD approach profiles in the Integrated Noise Mode (lNM) as 60% of the max rated thrust for jets and 40% for props o...

  5. SEP thrust subsystem performance sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.

    1973-01-01

    This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.

  6. Structural analysis using thrust-fault hanging-wall sequence diagrams: Ogden duplex, Wasatch Range, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, T.W.

    1988-05-01

    Detailed mapping and cross-section traverses provide the control for structural analysis and geometric modeling of the Ogden duplex, a complex thrust system exposed in the Wasatch Mountains, east of Ogden, Utah. The structures consist of east-dipping folded thrust faults, basement-cored horses, lateral ramps and folds, and tear faults. The sequence of thrusting determined by means of lateral overlap of horses, thrust-splay relationships, and a top-to-bottom piggyback development is Willard thrust, Ogden thrust, Weber thrust, and Taylor thrust. Major decollement zones occur in the Cambrian shales and limestones. The Tintic Quartzite is the marker for determining gross geometries of horses. Thismore » exposed duplex serves as a good model to illustrate the method of constructing a hanging-wall sequence diagram - a series of longitudinal cross sections that move forward in time and space, and show how a thrust system formed as it moved updip over various footwall ramps. A hanging wall sequence diagram also shows the complex lateral variations in a thrust system and helps to locate lateral ramps, lateral folds, tear faults, and other features not shown on dip-oriented cross sections. 8 figures.« less

  7. Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The purpose of present study is to investigate the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0, and 10 Hz frequencies for liquid-filled level in the range between 30 to 80 percent shows that the selection of a medium frequency of 1.0 Hz impulsive thrust over the other frequency ranges of impulsive thrust is the most proper.

  8. Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Grujic, Djordje; Dunkl, István; Thiede, Rasmus; Eugster, Patricia

    2018-01-01

    The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari-Ramgarh-Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U-Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu-Larji-Rampur window, ages ranging from 2.4 ± 0.4 Ma to 5.4 ± 0.9 Ma constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U-Th)/He ages are older (7.0 ± 0.7 Ma to 42.2 ± 2.1 Ma). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2-3 mm/yr from 4-7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic 'Bajaura nappe' of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari-Ramgarh-Shumar thrust system.

  9. Associations of Varus Thrust and Alignment with Pain in Knee Osteoarthritis

    PubMed Central

    Lo, Grace H.; Harvey, William F.; McAlindon, Timothy E.

    2012-01-01

    Objective To compare associations of varus thrust and varus static alignment with pain in those with knee osteoarthritis (OA). Method This was a cross-sectional study of participants from a randomized controlled trial of vitamin D for knee OA. Participants were video recorded walking and scored for presence of varus thrust. Standard PA knee X-rays were measured for static alignment. Pain questions from the Western Ontario McMasters Osteoarthritis (WOMAC) questionnaire assessed symptoms. We calculated means for total WOMAC pain by varus thrust and varus alignment (i.e. corrected anatomic alignment < 178°). We performed ordinal logistic regressions; outcomes: individual WOMAC pain questions; predictors: varus thrust and varus alignment. Results There were 82 participants, mean age 65.1 (±8.5), mean body mass index 30.2 (±5.4), and 60% female. Total WOMAC pain was 6.3 versus 3.9, p = 0.007 in those with versus without definite varus thrust. For varus alignment, total WOMAC pain was 5.2 versus 4.2, p = 0.30. Odds ratios for pain with walking and standing were 5.5 (95%CI 2.0 – 15.1) and 6.0 (95%CI 2.2 – 16.2) in those with versus without definite varus thrust. There were no significant associations between varus alignment and individual WOMAC pain questions. Sensitivity analyses suggested a more stringent definition of varus might have been associated with walking and standing pain. Conclusion In those with knee OA, varus thrust and possibly varus static alignment, were associated with pain, specifically during weight-bearing activities. Treatment of varus thrust (e.g. via bracing or gait modification) may lead to improvement of symptoms. PMID:22307813

  10. Thrust Force Analysis of Tripod Constant Velocity Joint Using Multibody Model

    NASA Astrophysics Data System (ADS)

    Sugiura, Hideki; Matsunaga, Tsugiharu; Mizutani, Yoshiteru; Ando, Yosei; Kashiwagi, Isashi

    A tripod constant velocity joint is used in the driveshaft of front wheel drive vehicles. Thrust force generated by this joint causes lateral vibration in these vehicles. To analyze the thrust force, a detailed model is constructed based on a multibody dynamics approach. This model includes all principal parts of the joint defined as rigid bodies and all force elements of contact and friction acting among these parts. This model utilizes a new contact modeling method of needle roller bearings for more precise and faster computation. By comparing computational and experimental results, the appropriateness of this model is verified and the principal factors inducing the second and third rotating order components of the thrust force are clarified. This paper also describes the influence of skewed needle rollers on the thrust force and evaluates the contribution of friction forces at each contact region to the thrust force.

  11. Breadboard RL10-11B low thrust operating mode

    NASA Technical Reports Server (NTRS)

    Kmiec, Thomas D.; Galler, Donald E.

    1987-01-01

    Cryogenic space engines require a cooling process to condition engine hardware to operating temperature before start. This can be accomplished most efficiently by burning propellants that would otherwise be dumped overboard after cooling the engine. The resultant low thrust operating modes are called Tank Head Idle and Pumped Idle. During February 1984, Pratt & Whitney conducted a series of tests demonstrating operation of the RL10 rocket engines at low thrust levels using a previously untried hydrogen/oxygen heat exchanger. The initial testing of the RL10-11B Breadboard Low Thrust Engine is described. The testing demonstrated operation at both tank head idle and pumped idle modes.

  12. Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2003-01-01

    A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.

  13. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm andmore » a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.« less

  14. Demand thrust pumped propulsion with automatic warm gas valving

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  15. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  16. Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0 and 10 Hz frequencies for liquid filled level in the range between 30 to 80 percent, it shows that the selection of 1.0 Hz frequency impulsive thrust over the other frequency ranges of impulsive thrust is most proper based on the present study.

  17. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  18. Varus Thrust and Knee Frontal Plane Dynamic Motion in Persons with Knee Osteoarthritis

    PubMed Central

    Chang, Alison H.; Chmiel, Joan S.; Moisio, Kirsten C.; Almagor, Orit; Zhang, Yunhui; Cahue, September; Sharma, Leena

    2013-01-01

    Objective Varus thrust visualized during walking is associated with a greater medial knee and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about varus thrust presence determined by visual observation relates to quantitative gait kinematic We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Methods Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, BMI, gait speed, and knee static alignment. Results 236 persons [mean BMI: 28.5 kg/m2 (SD 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/sec, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Conclusion Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. PMID:23948980

  19. Spectroscopy-based thrust sensor for high-speed gaseous flows

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K. (Inventor)

    1993-01-01

    A system and method for non-intrusively obtaining the thrust value of combustion by-products of a jet engine is disclosed herein. The system includes laser elements for inducing absorption for use in determining the axial velocity and density of the jet flow stream and elements for calculating the thrust value therefrom.

  20. Detachments in Shale: Controlling Characteristics on Fold-Thrust Belt Style

    NASA Astrophysics Data System (ADS)

    Hansberry, Rowan; King, Ros; Collins, Alan; Morley, Chris

    2013-04-01

    Fold-thrust belts occur across multiple tectonic settings where thin-skinned deformation is accommodated by one or more detachment zones, both basal and within the fold-thrust belt. These fold-thrust belts exhibit considerable variation in structural style and vergence depending on the characteristics (e.g. strength, thickness, and lithology) and number of detachment zones. Shale as a detachment lithology is intrinsically weaker than more competent silts and sands; however, it can be further weakened by high pore pressures, reducing resistance to sliding and; high temperatures, altering the rheology of the detachment. Despite the implications for petroleum exploration and natural hazard assessment the precise nature by which detachments in shale control and are involved in deformation in fold-thrust belts is poorly understood. Present-day active basal detachment zones are usually located in inaccessible submarine regions. Therefore, this project employs field observations and sample analysis of ancient, exhumed analogues to document the nature of shale detachments (e.g. thickness, lithology, dip and dip direction, deformational temperature and thrust propagation rates) at field sites in Thailand, Norway and New Zealand. X-ray diffraction analysis of illite crystallinity and oxygen stable isotopes analysis are used as a proxy for deformational temperature whilst electron-backscatter diffraction analysis is used to constrain microstructural deformational patterns. K-Ar dating of synkinematic clay fault gouges is being applied to date the final stages of activity on individual faults with a view to constraining thrust activation sequences. It is not possible to directly measure palaeo-data for some key detachment parameters, such as pore pressure and coefficients of friction. However, the use of critical taper wedge theory has been used to successfully infer internal and basal coefficients of friction and depth-normalized pore pressure within a wedge and at its base

  1. LEO-to-GEO low thrust chemical propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1980-01-01

    One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propellants (oxygen/methane and oxygen/RF-1) are discussed. These cycles include conventional propellant turbine drives, turboalternator/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling.

  2. A study of variable thrust, variable specific impulse trajectories for solar system exploration

    NASA Astrophysics Data System (ADS)

    Sakai, Tadashi

    A study has been performed to determine the advantages and disadvantages of variable thrust and variable Isp (specific impulse) trajectories for solar system exploration. There have been several numerical research efforts for variable thrust, variable Isp, power-limited trajectory optimization problems. All of these results conclude that variable thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant thrust, constant Isp (constant specific impulse; or CSI) engines. However, most of these research efforts assume a mission from Earth to Mars, and some of them further assume that these planets are circular and coplanar. Hence they still lack the generality. This research has been conducted to answer the following questions: (1) Is a VSI engine always better than a CSI engine or a high thrust engine for any mission to any planet with any time of flight considering lower propellant mass as the sole criterion? (2) If a planetary swing-by is used for a VSI trajectory, is the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or high thrust swing-by trajectory? To support this research, an unique, new computer-based interplanetary trajectory calculation program has been created. This program utilizes a calculus of variations algorithm to perform overall optimization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel consumption for interplanetary travel. It is assumed that the propulsion system is power-limited, and thus the compromise between thrust and Isp is a variable to be optimized along the flight path. This program is capable of optimizing not only variable thrust trajectories but also constant thrust trajectories in 3-D space using a planetary ephemeris database. It is also capable of conducting planetary swing-bys. Using this program, various Earth-originating trajectories have been investigated and the optimized results have been compared to traditional CSI and high

  3. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  4. Thrust law effects on the long-period modes of aerospace craft

    NASA Technical Reports Server (NTRS)

    Markopoulos, Nikos; Mease, Kenneth D.; Vinh, Nguyen X.

    1989-01-01

    An analytical study is presented of the longitudinal long-period dynamics of an aerospace craft in a nearly circular orbit, with a thrust law depending arbitrarily on the speed and altitude. A plane of engine possibilities is first defined, with points corresponding to propulsion systems having prescribed thrust slopes with respect to speed and altitude. Approximate expressions for the characteristic roots and times are obtained by first identifying a small quantity in the coefficients of the characteristic equation, and then expanding in a perturbation series about the origin of the plane of engine possibilities, for which the solution is always known. These expressions agree very well with the exact solutions over a wide range of altitudes and thrust laws. The period of the oscillatory translational mode (phugoid) is found to be independent to first order of the thrust law, generalizing results found by previous investigators for specific thrust laws. The results apply to the speed range from hypersonic to orbital.

  5. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper—fabricated by compressing a copper wire mesh—with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250 000 rpm and axial displacements as a function of rotational speed are presented.

  6. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery.

    PubMed

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper--fabricated by compressing a copper wire mesh--with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250,000 rpm and axial displacements as a function of rotational speed are presented.

  7. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  8. Maximum sustained fin-kick thrust in underwater swimming.

    PubMed

    Yamaguchi, H; Shidara, F; Naraki, N; Mohri, M

    1995-09-01

    We examined the upper limit of a diver's fin-kick thrust force using a stationary-swimming ergometer. Heart rate, respiratory minute volume, oxygen uptake, and performance rate were measured in four male subjects who swam constantly for 8 min to maintain a horizontal position against an applied force at a depth of 0.7 m. The water temperature was controlled at 26 degrees +/- 1 degree C. The performance rate, which was the parameter of how well the subjects compensated for the applied load, showed an upper limit around 64 N of sustainable thrust force. This meant that the diver could generate the swimming thrust force within 64 N continuously for 8 min in a steady state. Heart rate, respiratory minute volume, and O2 uptake showed almost proportional increases to the applied load within 64 N and tended to plateau about 69 N.

  9. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  10. Deorbit targeting

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1973-01-01

    The navigation and control of the space shuttle during atmospheric entry are discussed. A functional flow diagram presenting the basic approach to the deorbit targeting problem is presented. The major inputs to be considered are: (1) vehicle state vector, (2) landing site location, (3) entry interface parameters, (4) earliest desired time of landing, and (5) maximum cross range. Mathematical models of the navigational procedures based on controlled thrust times are developed.

  11. MHD thrust vectoring of a rocket engine

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  12. Thrust Evaluation of an Arcjet Thruster Using Dimethyl Ether as a Propellant

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    This paper describes the performance of an arcjet thruster using dimethyl ether (DME) as a propellant. DME, an ether compound, has adequate characteristics for space propulsion systems; DME is storable in a liquid state without a high pressure or cryogenic device and requires no sophisticated temperature management. DME is gasified and liquefied simply by adjusting temperature, whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of the designed kW-class DME arcjet thruster is measured with a torsional thrust stand. Thrust measurements show that thrust is increased with propellant mass flow rate, and that thrust using DME propellant is higher than when using nitrogen. The prototype DME arcjet thruster yields a specific impulse of 330 s, a thruster efficiency of 0.14, and a thrust of 0.19 N at 60-mg/s DME mass flow rate at 25-A discharge current. The corresponding discharge power and specific power are 2.3 kW and 39 MJ/kg.

  13. A footwall system of faults associated with a foreland thrust in Montana

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.

    1993-05-01

    Some recent structural geology models of faulting have promoted the idea of a rigid footwall behaviour or response under the main thrust fault, especially for fault ramps or fault-bend folds. However, a very well-exposed thrust fault in the Montana fold and thrust belt shows an intricate but well-ordered system of subsidiary minor faults in the footwall position with respect to the main thrust fault plane. Considerable shortening has occurred off the main fault in this footwall collapse zone and the distribution and style of the minor faults accord well with published patterns of aftershock foci associated with thrust faults. In detail, there appear to be geometrically self-similar fault systems from metre length down to a few centimetres. The smallest sets show both slip and dilation. The slickensides show essentially two-dimensional displacements, and three slip systems were operative—one parallel to the bedding, and two conjugate and symmetric about the bedding (acute angle of 45-50°). A reconstruction using physical analogue models suggests one possible model for the evolution and sequencing of slip of the thrust fault system.

  14. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  15. A Method of Efficient Inclination Changes for Low-thrust Spacecraft

    NASA Technical Reports Server (NTRS)

    Falck, Robert; Gefert, Leon

    2002-01-01

    The evolution of low-thrust propulsion technologies has reached a point where such systems have become an economical option for many space missions. The development of efficient, low trip time control laws has received an increasing amount of attention in recent years, though few studies have examined the subject of inclination changing maneuvers in detail. A method for performing economical inclination changes through the use of an efficiency factor is derived front Lagrange's planetary equations. The efficiency factor can be used to regulate propellant expenditure at the expense of trip time. Such a method can be used for discontinuous-thrust transfers that offer reduced propellant masses and trip-times in comparison to continuous thrust transfers, while utilizing thrusters that operate at a lower specific impulse. Performance comparisons of transfers utilizing this approach with continuous-thrust transfers are generated through trajectory simulation and are presented in this paper.

  16. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.

    1959-01-01

    A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.

  17. Fault-related fluid flow, Beech Mountain thrust sheet, Blue Ridge Province, Tennessee-North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waggoner, W.K.; Mora, C.I.

    1992-01-01

    The latest proterozoic Beech Granite is contained within the Beech Mountain thrust sheet (BMTS), part of a middle-late Paleozoic thrust complex located between Mountain City and Grandfather Mountain windows in the western Blue Ridge of TN-NC. At the base of the BMTS, Beech Granite is juxtaposed against lower Paleozoic carbonate and elastics of the Rome Fm. along the Stone Mountain thrust on the southeaster margin of the Mountain City window. At the top of the BMTS, Beech Granite occurs adjacent to Precambrian mafic rocks of the Pumpkin Patch thrust sheet (PPTS). The Beech Granite is foliated throughout the BMTS withmore » mylonitization and localized cataclasis occurring within thrust zones along the upper and lower margins of the BMTS. Although the degree of mylonitization and cataclasis increases towards the thrusts, blocks of relatively undeformed granite also occur within these fault zones. Mylonites and thrusts are recognized as conduits for fluid movement, but the origin of the fluids and magnitude and effects of fluid migration are not well constrained. This study was undertaken to characterize fluid-rock interaction within the Beech Granite and BMTS. Extensive mobility of some elements/compounds within the thrust zones, and the isotopic and mineralogical differences between the thrust zones and interior of the BMTS indicate that fluid flow was focused within the thrust zones. The wide range of elevated temperatures (400--710 C) indicated by qz-fsp fractionations suggest isotopic disequilibrium. Using a more likely temperature range of 300--400 C for Alleghanian deformation, calculated fluid compositions indicate interactions with a mixture of meteoric-hydrothermal and metamorphic water with delta O-18 = 2.6--7.5[per thousand] for the upper thrust zone and 1.3 to 6.2[per thousand] for the lower thrust zone. These ranges are similar to isotopic data reported for other Blue Ridge thrusts and may represent later periods of meteoric water influx.« less

  18. Evaluating facts and facting evaluations: On the fact-value relationship in HTA.

    PubMed

    Hofmann, Bjørn; Bond, Ken; Sandman, Lars

    2018-04-03

    Health technology assessment (HTA) is an evaluation of health technologies in terms of facts and evidence. However, the relationship between facts and values is still not clear in HTA. This is problematic in an era of "fake facts" and "truth production." Accordingly, the objective of this study is to clarify the relationship between facts and values in HTA. We start with the perspectives of the traditional positivist account of "evaluating facts" and the social-constructivist account of "facting values." Our analysis reveals diverse relationships between facts and a spectrum of values, ranging from basic human values, to the values of health professionals, and values of and in HTA, as well as for decision making. We argue for sensitivity to the relationship between facts and values on all levels of HTA, for being open and transparent about the values guiding the production of facts, and for a primacy for the values close to the principal goals of health care, ie, relieving suffering. We maintain that philosophy (in particular ethics) may have an important role in addressing the relationship between facts and values in HTA. Philosophy may help us to avoid fallacies of inferring values from facts; to disentangle the normative assumptions in the production or presentation of facts and to tease out implicit value judgements in HTA; to analyse evaluative argumentation relating to facts about technologies; to address conceptual issues of normative importance; and to promote reflection on HTA's own value system. In this we argue for a(n Aristotelian) middle way between the traditional positivist account of "evaluating facts" and the social-constructivist account of "facting values," which we call "factuation." We conclude that HTA is unique in bringing together facts and values and that being conscious and explicit about this "factuation" is key to making HTA valuable to both individual decision makers and society as a whole. © 2018 The Authors Journal of Evaluation in

  19. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (<17˚) and a positive correlation with larger angles

  20. Evaluating bioremediation: distinguishing fact from fiction.

    PubMed

    Shannon, M J; Unterman, R

    1993-01-01

    Bioremediation options encompass diverse types of biochemical mechanisms that may lead to a target's mineralization, partial transformation, humification, or altered redox state (e.g. for metallic elements). Because these various mechanisms produce alternative fates of the targeted pollutants, it is often necessary to use diverse evaluation criteria to qualify a successful bioremediation. Too often target depletion from a treated matrix can be mistakenly ascribed to biological activity when in fact the depletion is caused by abiotic losses (e.g. volatilization, leaching, and stripping). Thus, effective, and therefore convincing, evaluation requires that experimental and engineering designs anticipate all possible routes of target depletion and that these routes be carefully monitored.

  1. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  2. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis.

    PubMed

    Chang, A H; Chmiel, J S; Moisio, K C; Almagor, O; Zhang, Y; Cahue, S; Sharma, L

    2013-11-01

    Varus thrust visualized during walking is associated with a greater medial knee load and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about how varus thrust presence determined by visual observation relates to quantitative gait kinematic data. We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation was captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, we used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, body mass index (BMI), gait speed, and knee static alignment. 236 persons [mean BMI: 28.5 kg/m(2) (standard deviation (SD) 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/s, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Complex thrusting at the toe of the Nankai accretionary prism, NanTroSEIZE Kumano transect

    NASA Astrophysics Data System (ADS)

    Moore, G. F.; Park, J.; Kodaira, S.; Kaneda, Y.

    2009-12-01

    Seismic reflection data collected over the past 10 years by the Institute for Research on Earth Evolution (IFREE) of Japan Agency for Marine Earth Science and Technology (JAMSTEC) image a zone of complex thrusting at the toe of the Nankai accretionary prism south of Kii Peninsula, Honshu, Japan. The frontal part of the Nankai prism west of Shionomisaki Canyon (SC) at ~136° E, including the Muroto and Ashizuri Transects off Shikoku, is generally formed of imbricate thrusts with spacing of ~ 1-3 km that dip ~25-35° landward and sole into a prominent décollement. Out-of-sequence thrusts (OOSTs) are usually restricted to the landward margin of this imbricate thrust zone. East of SC, in the Kumano Transect area, the imbricate thrust zone is bounded on its seaward edge by a frontal thrust block that is ~5-6 km wide and consists of several OOSTs. The frontal thrust dips ~5-10° under this ~2-4 km thick block, emplacing this thrust sheet over the trench floor. The number and character of thrusts within the frontal thrust block vary laterally along strike. The 2006 Kumano 3D seismic data set images details of one segment of this complex frontal thrust block. Out-of-sequence faulting has led to underplating of several smaller thrust slices and movement along oblique ramps has led to a complex pattern of faulting that cannot be recognized in even closely-spaced 2D seismic lines. The frontal thrust block is further modified by subduction of seamounts and ridges that have caused large slumps of material from the block.

  4. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  5. Neogene compressional deformation and possible thrust faulting in southwest Dominican Republic

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Goreau, P.; Dixon, T. H.

    1985-01-01

    Analysis of regional and high resolution remote sensing data coupled with detailed field investigations indicates Neogene compressional deformation in the southwest Dominican Republic. Airborne synthetic aperture radar data and high resolution near infrared photography show folds in Tertiary sediments and possible thrust fault scarps implying NE to SW compression in the region. Large road cuts through the scarps allow study of otherwise poorly accessible, heavily vegetated karst terrain. Deformation increases toward scrap fronts where small bedding-plane thrust faults become more numerous. Analysis of mesoscopic faults with slickensides indicates compression oriented between N to S and E to W. The lowermost scarp has highly sheared fault breccia and undeformed frontal talus breccias implying it is the basal thrust into which the higher thrust faults sole. Thus, the scarps probably formed in a regional NE to SW compressional stress regime and are the toes of thrust sheets. Previous workers have suggested that these scarps are ancient shorelines. However, the gross morphology of the scarps differs substantially from well known erosional terraces on the north coast.

  6. Spatial heterogeneity of stress and driving fluid pressure ratio inferred from mineral vein orientation along seismogenic megasplay fault (Nobeoka Thrust, Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.

    2015-12-01

    Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the

  7. Developing stochastic model of thrust and flight dynamics for small UAVs

    NASA Astrophysics Data System (ADS)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  8. Why style matters - uncertainty and structural interpretation in thrust belts.

    NASA Astrophysics Data System (ADS)

    Butler, Rob; Bond, Clare; Watkins, Hannah

    2016-04-01

    Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of

  9. Associations of varus thrust and alignment with pain in knee osteoarthritis.

    PubMed

    Lo, Grace H; Harvey, William F; McAlindon, Timothy E

    2012-07-01

    To investigate associations of varus thrust and varus static alignment with pain in patients with knee osteoarthritis (OA). This was a cross-sectional study of participants from a randomized controlled trial of vitamin D treatment for knee OA. Participants were video recorded while walking and scored for presence of varus thrust. Static alignment was measured on standard posteroanterior knee radiographs. Pain questions from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire were used to assess symptoms. We calculated means for total WOMAC pain in relation to varus thrust and static varus alignment (i.e., corrected anatomic alignment<178 degrees). Ordinal logistic regressions were performed, with responses on individual WOMAC pain questions as the outcomes and varus thrust and varus alignment as the predictors. There were 82 participants, 60% of whom were female. The mean±SD age was 65.1±8.5 years, and the mean±SD body mass index was 30.2±5.4 kg/m2. The mean total WOMAC pain score was 6.3 versus 3.9, respectively, in those with versus without definite varus thrust (P=0.007) and 5.0 versus 4.2 in those with versus without varus alignment (P=0.36). Odds ratios for pain with walking and standing were 4.7 (95% confidence interval 1.8-11.9) and 5.5 (95% confidence interval 2.2-14.2), respectively, in those with and those without definite varus thrust. There were no significant associations between varus alignment and responses to individual WOMAC pain questions. Sensitivity analyses suggested that varus classified using a more stringent definition might have been associated with pain on walking and standing. In patients with knee OA, varus thrust, and possibly varus static alignment, were associated with pain, specifically during weight-bearing activities. Treatment of varus thrust (e.g., via bracing or gait modification) may lead to improvement of symptoms. Copyright © 2012 by the American College of Rheumatology.

  10. Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Capone, Francis J.

    1993-01-01

    The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.

  11. Investigation of Thrust Augmentation and Acoustic Performance by Ejectors on PDE

    NASA Astrophysics Data System (ADS)

    Xu, Gui-yang; Weng, Chun-sheng; Li, Ning; Huang, Xiao-long

    2016-04-01

    Thrust augmentation and acoustic performance of a Pulse Detonation Engine (PDE) with ejector system is experimentally investigated. For these tests the LEjector/DEjector is varied from 1.18 to 4 and the axial placement of the ejector relative to the PDE exhaust is varied from an x/DPDE of -3 to 3. Results from the tests show that the optimum LEjector/DEjector based on thrust augmentation and Overall Sound Pressure Level (OASPL) is found to be 2.61. The divergent ejector performed the best based on thrust augmentation, while the reduction effect for OASPL and Peak Sound Pressure Level (PSPL) at 60° is most prominent for the convergent ejector. The optimum axial position based on thrust augmentation is determined to be x/DPDE = 2, while, x/DPDE = 0 based on OASPL and PSPL.

  12. Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Re, R. J.

    1982-01-01

    The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.

  13. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  14. Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)

    NASA Astrophysics Data System (ADS)

    Uroda, Joanna

    2015-04-01

    The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.

  15. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  16. Experimental results for a two-dimensional supersonic inlet used as a thrust deflecting nozzle

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Burstadt, Paul L.

    1984-01-01

    Nearly all supersonic V/STOL aircraft concepts are dependent on the thrust deflecting capability of a nozzle. In one unique concept, referred to as the reverse flow dual fan, not only is there a thrust deflecting nozzle for the fan and core engine exit flow, but because of the way the propulsion system operates during vertical takeoff and landing, the supersonic inlet is also used as a thrust deflecting nozzle. This paper presents results of an experimental study to evaluate the performance of a supersonic inlet used as a thrust deflecting nozzle for this reverse flow dual fan concept. Results are presented in terms of nozzle thrust coefficient and thrust vector angle for a number of inlet/nozzle configurations. Flow visualization and nozzle exit flow survey results are also shown.

  17. Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Finlayson, Paul A.; Rinderle, Edward A.; Vavrina, Matthew A.; Kowalkowski, Theresa D.

    2006-01-01

    A tool developed for the preliminary design of low-thrust trajectories is described. The trajectory is discretized into segments and a nonlinear programming method is used for optimization. The tool is easy to use, has robust convergence, and can handle many intermediate encounters. In addition, the tool has a wide variety of features, including several options for objective function and different low-thrust propulsion models (e.g., solar electric propulsion, nuclear electric propulsion, and solar sail). High-thrust, impulsive trajectories can also be optimized.

  18. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  19. Problems of millipound thrust measurement. The "Hansen Suspension"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carta, David G.

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  20. Midterm results of "thrust plate" prosthesis.

    PubMed

    Fink, Bernd; Wessel, Stephanie; Deuretzbacher, Georg; Protzen, Michael; Ruther, Wolfgang

    2007-08-01

    The aim of this investigation was to analyze the midterm results obtained with the metaphyseal fixation principle of the thrust plate prosthesis (TPP). Survival of 214 implants in 204 patients was analyzed. Clinical (Harris hip score) and radiologic examinations were carried out on 157 of 190 TPP with a postimplantation follow-up period of at least 5 years. Failure rate was 7.0% (9 aseptic and 6 septic loosening). Harris hip score increased from 36.9 +/- 13.5 points preoperatively to 91.2 +/- 13.1 points at follow-up. Eleven TPPs showed radiolucent lines not indicating prosthetic loosening. Thrust plate prosthesis is not an alternative to stemmed endoprostheses. It may be rarely indicated in very young patients where, because of their age, several revision operations can be expected.

  1. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  2. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  3. Simplified procedures for correlation of experimentally measured and predicted thrust chamber performance

    NASA Technical Reports Server (NTRS)

    Powell, W. B.

    1973-01-01

    Thrust chamber performance is evaluated in terms of an analytical model incorporating all the loss processes that occur in a real rocket motor. The important loss processes in the real thrust chamber were identified, and a methodology and recommended procedure for predicting real thrust chamber vacuum specific impulse were developed. Simplified equations for the calculation of vacuum specific impulse are developed to relate the delivered performance (both vacuum specific impulse and characteristic velocity) to the ideal performance as degraded by the losses corresponding to a specified list of loss processes. These simplified equations enable the various performance loss components, and the corresponding efficiencies, to be quantified separately (except that interaction effects are arbitrarily assigned in the process). The loss and efficiency expressions presented can be used to evaluate experimentally measured thrust chamber performance, to direct development effort into the areas most likely to yield improvements in performance, and as a basis to predict performance of related thrust chamber configurations.

  4. Selected Performance Measurements of the F-15 Active Axisymmetric Thrust-vectoring Nozzle

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Sims, Robert L.

    1998-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  5. Selected Performance Measurements of the F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Sims, Robert L.

    1999-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  6. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2005-01-01

    A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  7. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    NASA Astrophysics Data System (ADS)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits

  8. Assessing Coverage of Population-Based and Targeted Fortification Programs with the Use of the Fortification Assessment Coverage Toolkit (FACT): Background, Toolkit Development, and Supplement Overview.

    PubMed

    Friesen, Valerie M; Aaron, Grant J; Myatt, Mark; Neufeld, Lynnette M

    2017-05-01

    Food fortification is a widely used approach to increase micronutrient intake in the diet. High coverage is essential for achieving impact. Data on coverage is limited in many countries, and tools to assess coverage of fortification programs have not been standardized. In 2013, the Global Alliance for Improved Nutrition developed the Fortification Assessment Coverage Toolkit (FACT) to carry out coverage assessments in both population-based (i.e., staple foods and/or condiments) and targeted (e.g., infant and young child) fortification programs. The toolkit was designed to generate evidence on program coverage and the use of fortified foods to provide timely and programmatically relevant information for decision making. This supplement presents results from FACT surveys that assessed the coverage of population-based and targeted food fortification programs across 14 countries. It then discusses the policy and program implications of the findings for the potential for impact and program improvement.

  9. rf power system for thrust measurements of a helicon plasma source.

    PubMed

    Kieckhafer, Alexander W; Walker, Mitchell L R

    2010-07-01

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

  10. Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Giuliano, Victor J.

    1997-01-01

    A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.

  11. rf power system for thrust measurements of a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieckhafer, Alexander W.; Walker, Mitchell L. R.

    2010-07-15

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows goodmore » transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.« less

  12. Experimental Investigation of Turbojet Thrust Augmentation Using an Ejector

    DTIC Science & Technology

    2007-03-01

    mechanisms in which a particle can exchange energy. Thrust augmenting devices can be divided into two categories: ones that exchange net work or heat and...two categories from the energy equation discussion above. Thrust augmentation is achieved through turbulent entrainment where work and/or heat is...front sustained by compression waves from a trailing reaction zone. A deflagration wave is a subsonic flame front sustained by heat transfer

  13. Design and analysis report for the RL10-2B breadboard low thrust engine

    NASA Technical Reports Server (NTRS)

    Brown, J. R.; Foust, R. R.; Galler, D. E.; Kanic, P. G.; Kmiec, T. D.; Limerick, C. D.; Peckham, R. J.; Swartwout, T.

    1984-01-01

    The breadboard low thrust RL10-2B engine is described. A summary of the analysis and design effort to define the multimode thrust concept applicable to the requirements for the upper stage vehicles is provided. Baseline requirements were established for operation of the RL10-2B engine under the following conditions: (1) tank head idle at low propellant tank pressures without vehicle propellant conditioning or settling thrust; (2) pumped idle at a ten percent thrust level for low G deployment and/or vehicle tank pressurization; and (3) full thrust (15,000 lb.). Several variations of the engine configuration were investigated and results of the analyses are included.

  14. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  15. Some tests on small-scale rectangular throat ejector. [thrust augmentation for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Dean, W. N., Jr.; Franke, M. E.

    1979-01-01

    A small scale rectangular throat ejector with plane slot nozzles and a fixed throat area was tested to determine the effects of diffuser sidewall length, diffuser area ratio, and sidewall nozzle position on thrust and mass augmentation. The thrust augmentation ratio varied from approximately 0.9 to 1.1. Although the ejector did not have good thrust augmentation performance, the effects of the parameters studied are believed to indicate probable trends in thrust augmenting ejectors.

  16. Palinspastic reconstruction of the Alpine thrust belt at the Alpine-Carpathian transition - A geological Sudoku

    NASA Astrophysics Data System (ADS)

    Beidinger, A.; Decker, K.; Zamolyi, A.; Hölzel, M.; Hoprich, M.; Strauss, P.

    2009-04-01

    The palinspastic reconstruction of the Austroalpine thrust belt is part of the project Karpatian Tectonics, which is funded by OMV Austria. The objective is to reconstruct the evolution of the thrust belt through the Early to Middle Miocene in order to obtain information on the palaeogeographic position of the Northern Calcareous Alps (NCA) in the region of the present Vienna Basin. A particular goal of the study is to constrain the position of reservoir rocks within the Rhenodanubic Flysch units and the NCA with respect to the autochthonous Malmian source rocks overlying the European basement below the Alpine-Carpathian thrust wedge, and to constrain the burial history of these source rocks. Reconstruction uses regional 2D seismic lines crossing from the European foreland into the fold-thrust belt, 3D seismic data covering the external thrust sheets, and lithostratigraphic data from a total of 51 selected wells, which were drilled and provided by OMV Austria. The main criterion, whether a well was suitable for palinspastic reconstruction or not, was its penetration of Alpine thrust sheets down to the Autochthonous Molasse of the foreland. Additional wells, which do not penetrate the entire Alpine thrust complex but include the Allochthonous Molasse or the external Alpine-Carpathian nappes (Waschberg and Roseldorf thrust unit, Rhenodanubic Flysch nappes) in their well path, were also taken into account. The well data in particular comprise stratigraphic information on the youngest overthrust sediments of the different thrust units and the underlying Autochthonous foreland Molasse. These data allow constraining the timing of thrust events in the allochthonous thrust units and overthrusting of the Autochthonous Molasse. In the particular case of overthrust Autochthonous Molasse, additionally to the timing of overthrusting, which can be derived from the youngest overthrust sediments, the palaeogeographic position of the Alpine Carpathian thrust front could directly be

  17. Numerical modeling of fold-and-thrust belts: Applications to Kuqa foreland fold belt, China

    NASA Astrophysics Data System (ADS)

    Yin, H.; Morgan, J. K.; Zhang, J.; Wang, Z.

    2009-12-01

    We constructed discrete element models to simulate the evolution of fold-and-thrust belts. The impact of rock competence and decollement strength on the geometric pattern and deformation mechanics of fold-and-thrust belts has been investigated. The models reproduced some characteristic features of fold-and-thrust belts, such as faulted detachment folds, pop-ups, far-traveled thrust sheets, passive-roof duplexes, and back thrusts. In general, deformation propagates farther above a weak decollement than above a strong decollement. Our model results confirm that fold-and-thrust belts with strong frictional decollements develop relatively steep and narrow wedges formed by closely spaced imbricate thrust slices, whereas fold belts with weak decollements form wide low-taper wedges composed of faulted detachment folds, pop-ups, and back thrusts. Far-traveled thrust sheets and passive-roof duplexes are observed in the model with a strong lower decollement and a weak upper detachment. Model results also indicate that the thickness of the weak layer is critical. If it is thick enough, it acts as a ductile layer that is able to flow under differential stress, which helps to partition deformation above and below it. The discrete element modeling results were used to interpret the evolution of Kuqa Cenozoic fold-and-thrust belt along northern Tarim basin, China. Seismic and well data show that the widely distributed Paleogene rock salt has a significant impact on the deformation in this area. Structures beneath salt are closely spaced imbricate thrust and passive-roof duplex systems. Deformation above salt propagates much farther than below the salt. Faults above salt are relatively wide spaced. A huge controversy over the Kuqa fold-and-thrust belt is whether it is thin-skinned or thick-skinned. With the insights from DEM results, we suggest that Kuqa structures are mostly thin-skinned with Paleogene salt as decollement, except for the rear part near the backstop, where the

  18. Test Results for a Non-toxic, Dual Thrust Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Turpin, Alicia A.

    2005-01-01

    A non-toxic, dual thrust reaction control engine (RCE) was successfully tested over a broad range of operating conditions at the Aerojet Sacramento facility. The RCE utilized LOX/Ethanol propellants; and was tested in steady state and pulsing modes at 25-lbf thrust (vernier) and at 870-lbf thrust (primary). Steady state vernier tests vaned chamber pressure (Pc) from 0.78 to 5.96 psia, and mixture ratio (MR) from 0.73 to 1.82, while primary steady state tests vaned Pc from 103 to 179 psia and MR from 1.33 to 1.76. Pulsing tests explored EPW from 0.080 to 10 seconds and DC from 5 to 50 percent at both thrust levels. Vernier testing accumulated a total of 6,670 seconds of firing time, and 7,215 pulses, and primary testing accumulated a total of 2,060 seconds of firing time and 3,646 pulses.

  19. Low thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.

    1981-01-01

    Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.

  20. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.

    2012-08-01

    Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.

  1. Thrust vector control of upper stage with a gimbaled thruster during orbit transfer

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia

    2016-10-01

    In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.

  2. A Simple Model of Pulsed Ejector Thrust Augmentation

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Deloof, Richard L. (Technical Monitor)

    2003-01-01

    A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.

  3. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2006-01-01

    A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  4. High-speed engine/component performance assessment using exergy and thrust-based methods

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.

    1996-01-01

    This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.

  5. Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts

    USGS Publications Warehouse

    Sherrod, Brian; Gomberg, Joan

    2014-01-01

    Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.

  6. Thrust and power measurements of Olympic swimmers

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Wu, Vicki; Hutchison, Sean; Mark, Russell

    2012-11-01

    Elite level swimming is an extremely precise and even choreographed activity. Swimmers not only know the exact number of strokes necessary to take them across the pool, they also plan to be a precise distance from the wall at the end of their last stroke. Too far away and they lose time by drifting into the wall. Too close and their competitor may slide in before their hand comes forward to touch the wall. In this context, it is important to know, in detail, where and how a swimmer propels her/himself through the water. Over the past decade, state-of-the-art flow and thrust measurement diagnostics have been brought to competitive swimming. But the ability to correlate stroke mechanics to thrust production without somehow constraining the swimmer has here-to-fore not been possible. Using high speed video, a simple approach to mapping the swimmer's speed, thrust and net power output in a time resolved manner has been developed. This methodology has been applied to Megan Jendrick, gold medalist in the 100 individual breast stroke and 4 × 100 medley relay events in 2000 and Ariana Kukors, 2009 world champion and continuing world record holder in the 200 individual medley. Implications for training future elite swimmers will be discussed.

  7. Design of Launch Abort System Thrust Profile and Concept of Operations

    NASA Technical Reports Server (NTRS)

    Litton, Daniel; O'Keefe, Stephen A.; Winski, Richard G.; Davidson, John B.

    2008-01-01

    This paper describes how the Abort Motor thrust profile has been tailored and how optimizing the Concept of Operations on the Launch Abort System (LAS) of the Orion Crew Exploration Vehicle (CEV) aides in getting the crew safely away from a failed Crew Launch Vehicle (CLV). Unlike the passive nature of the Apollo system, the Orion Launch Abort Vehicle will be actively controlled, giving the program a more robust abort system with a higher probability of crew survival for an abort at all points throughout the CLV trajectory. By optimizing the concept of operations and thrust profile the Orion program will be able to take full advantage of the active Orion LAS. Discussion will involve an overview of the development of the abort motor thrust profile and the current abort concept of operations as well as their effects on the performance of LAS aborts. Pad Abort (for performance) and Maximum Drag (for separation from the Launch Vehicle) are the two points that dictate the required thrust and shape of the thrust profile. The results in this paper show that 95% success of all performance requirements is not currently met for Pad Abort. Future improvements to the current parachute sequence and other potential changes will mitigate the current problems, and meet abort performance requirements.

  8. Subacute effects of cervicothoracic spinal thrust/non-thrust in addition to shoulder manual therapy plus exercise intervention in individuals with subacromial impingement syndrome: a prospective, randomized controlled clinical trial pilot study.

    PubMed

    Wright, Alexis A; Donaldson, Megan; Wassinger, Craig A; Emerson-Kavchak, Alicia J

    2017-09-01

    To determine the subacute effects of cervicothoracic spinal thrust/non-thrust in addition to shoulder non-thrust plus exercise in patients with subacromial pathology. This was a randomized, single blinded controlled trial pilot study. This trial was registered at ClinicalTrials.gov (NCT01753271) and reported according to Consolidated Standards of Reporting Trials requirements. Patients were randomly assigned to either shoulder treatment plus cervicothoracic spinal thrust/non-thrust or shoulder treatment-only group. Primary outcomes were average pain intensity (Numeric Pain Rating Scale) and physical function (Shoulder Pain and Disability Index) at 2 weeks, 4 weeks, and patient discharge. 18 patients, mean age 43.1(15.8) years satisfied the eligibility criteria and were analyzed for follow-up data. Both groups showed statistically significant improvements in both pain and function at 2 weeks, 4 weeks, and discharge. The between-group differences for changes in pain or physical function were not significant at any time point. The addition of cervicothoracic spinal thrust/non-thrust to the shoulder treatment-only group did not significantly alter improvement in pain or function in patients with subacromial pathology. Both approaches appeared to provide an equally notable benefit. Both groups improved on all outcomes and met the criteria for clinical relevance for both pain and function. 2b.

  9. Advances in Thrust-Based Emergency Control of an Airplane

    NASA Technical Reports Server (NTRS)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  10. Constraints on the tectonics of the Mule Mountains Thrust System, southeast California and southwest Arizona

    NASA Astrophysics Data System (ADS)

    Tosdal, Richard M.

    1990-11-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015° to 035°) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79±2 Ma and 70±4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.

  11. Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    NASA Technical Reports Server (NTRS)

    Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.

    1991-01-01

    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.

  12. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1991-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  13. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry

  14. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated

  15. Quaternary deformation of the Mushi thrust-related fold, northeastern margin of the Pamir

    NASA Astrophysics Data System (ADS)

    Li, T.; Chen, J.; Huang, D. M.; Thompson, J.; Xiao, P. W.; Yuan, D. Z.; Burbank, D. W.

    2010-12-01

    The Pamir salient defines the northwestern end of the Himalayan-Tibetan orogen and has overthrust the Tajik-Tarim basin to the north by ~300km along a late Cenozoic, south-dipping intracontinental subduction zone (Burtman and Molnar, 1993). The Quaternary deformation of the salient are concentrated on the outer margins: the sinistral Darvaz fault on the northwestern margin, the Trans-Alai thrust on the north margin and the northeast margin. The GPS-based plate tectonic model indicates the convergence rate is of 8-12mm/a in an N-S direction, nearly 1/4 of that between the Indian plate and the Eurasian plate (DeMets et al., 1990; Reigber et al., 2001; Yang et al., 2008). Previous studies focused on the northwestern margin and the north margin revel their spatial distribution, temporal evolution and kinematic patterns (Burtman and Molnar, 1993; Strecker et al., 1995; Arrowsmith and Strecker, 1999; Coutand et al., 2002). Deformed strata and GPS data indicate Quaternary deformations on the northeastern margin are concentrated on the PFT (the Pamir Front Thrust), the foreland thrust system generated by the latest advancing migration of the Pamir salient, whose kinematic patterns are still poor understood. Integrated by the Mushi thrust and the Mushi anticline, the Mushi thrust-related fold located at eastern end of the PFT. Simple structure, well outcrops and evident deformed terraces make it an excellent place to recognize deformation characters and kinematic patterns of the PFT. The Mushi thrust is north-vergent, roughly parallel with the anticline axis, and west part forming several subparallel fault scarps on the terrace surface and east part buried under the late-Quaternary deposits. The Mushi thrust is north-plunging, with a gentle south limb and a steep north limb. Combining field mapping data and neighboring seismic reflection profiles, following the cross-section balance principle, we can confine the Mushi thrust-related fold is a fault propagation fold

  16. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  17. Synfolding magnetization in the Jurassic Preuss Sandstone, Wyoming- Idaho-Utah thrust belt

    USGS Publications Warehouse

    Hudson, M.R.; Reynolds, R.L.; Fishman, N.S.

    1989-01-01

    The Jurassic Preuss Sandstone, exposed in five thrust plates of the Wyoming-Idaho-Utah thrust belt, carried directions of remanent magnetization that group most tightly after only partial unfolding. Field, petrographic, and rock magnetic evidence indicates that the carrier of this magnetization is detrital, low-Ti titanomagnetite. The detrital titanomagnetite was remagnetized at low temperatures (75??-150??C) probably completely during folding. Anisotropy of magnetic susceptibility and petrographic observations indicate that the detrital titanomagnetite has been affected by tectonic strain. The locus of acquisition of synfolding magnetization in the Preuss migrated in conjunction with deformation in the thrust belt. A model is presented in which synfolding magnetization was acquired during cooling and folding as strata moved up thrust ramps. A lack of reverse-polarity directions remains a puzzling feature of the remanence. -from Authors

  18. Fabrication of liquid-rocket thrust chambers by electroforming

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  19. Design space pruning heuristics and global optimization method for conceptual design of low-thrust asteroid tour missions

    NASA Astrophysics Data System (ADS)

    Alemany, Kristina

    Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the

  20. Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting

    NASA Astrophysics Data System (ADS)

    Almeida, Rafael V.; Hubbard, Judith; Liberty, Lee; Foster, Anna; Sapkota, Soma Nath

    2018-07-01

    Because great earthquakes in the Himalaya have an average recurrence interval exceeding 500 yr, most of what we know about past earthquakes comes from paleoseismology and tectonic geomorphology studies of the youngest fault system there, the Main Frontal Thrust (MFT). However, these data are sparse relative to fault segmentation and length, and interpretations are often hard to validate in the absence of information about fault geometry. Here, we image the upper two km of strata in the vicinity of the fault tip of the MFT in central Nepal (around the town of Bardibas) applying a pre-stack migration approach to two new seismic reflection profiles that we interpret using quantitative fault-bend folding theory. Our results provide direct evidence that a shallow décollement produces both emergent (Patu thrust) and blind (Bardibas thrust) fault strands. We show that the décollement lies about 2 km below the land surface near the fault tip, and steps down to a regional 5 km deep décollement level to the north. This implies that there is significant variation in the depth of the décollement. We demonstrate that some active faults do not reach the surface, and therefore paleoseismic trenching alone cannot characterize the earthquake history at these locations. Although blind, these faults have associated growth strata that allow us to infer their most recent displacement history. We present the first direct evidence of fault dip on two fault strands of the MFT at depth that can allow terrace uplift measurements to be more accurately converted to fault slip. We identify a beveled erosional surface buried beneath Quaternary sediments, indicating that strath surface formation is modulated by both climate-related base level changes and tectonics. Together, these results indicate that subsurface imaging, in conjunction with traditional paleoseismological tools, can best characterize the history of fault slip in the Himalaya and other similar thrust fault systems.

  1. Lower extremity thrust and non-thrust joint mobilization for patellofemoral pain syndrome: a case report.

    PubMed

    Simpson, Brad G; Simon, Corey B

    2014-05-01

    A 40-year old female presented to physical therapy with a one-year history of insidious right anteromedial and anterolateral knee pain. Additionally, the patient had a history of multiple lateral ankle sprains bilaterally, the last sprain occurring on the right ankle 1 year prior to the onset of knee pain. The patient was evaluated and given a physical therapy diagnosis of patellofemoral pain syndrome (PFPS), with associated talocrural and tibiofemoral joint hypomobility limiting ankle dorsiflexion and knee extension, respectively. Treatment included a high-velocity low amplitude thrust manipulation to the talocrural joint, which helped restore normal ankle dorsiflexion range of motion. The patient also received tibiofemoral joint non-thrust manual therapy to regain normal knee extension mobility prior to implementing further functional progression exercises to her home program (HEP). This case report highlights the importance of a detailed evaluation of knee and ankle joint mobility in patients presenting with anterior knee pain. Further, manual physical therapy to the lower extremity was found to be successful in restoring normal movement patterns and pain-free function in a patient with chronic anterior knee pain.

  2. Fuel-optimal, low-thrust transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey R.

    Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.

  3. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime must...

  4. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime must...

  5. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime must...

  6. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime must...

  7. 14 CFR 25.1155 - Reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reverse thrust and propeller pitch settings... Powerplant Controls and Accessories § 25.1155 Reverse thrust and propeller pitch settings below the flight regime. Each control for reverse thrust and for propeller pitch settings below the flight regime must...

  8. The dual action gas thrust bearing - A new high load bearing concept

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films for improving load capacity in gas thrust bearings is discussed. A new concept of dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and improve their efficiency.

  9. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosdal, R.M.

    1990-11-10

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015{degree} to 035{degree}) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic( ) and Cretaceous sedimentary rocks across the various partsmore » of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79{plus minus}2 Ma and 70{plus minus}4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.« less

  10. Experimental study on the thrust modulation performance of powdered magnesium and CO2 bipropellant engine

    NASA Astrophysics Data System (ADS)

    Li, Chao; Hu, Chunbo; Zhu, Xiaofei; Hu, Jiaming; Li, Yue; Hu, Xu

    2018-06-01

    Powdered Mg and CO2 bipropellant engine providing a practical demonstration of in situ resource utilization (ISRU) for Mars Sample Return (MSR) mission seems to be feasible by current investigations. However, essential functions of the engine to satisfy the complicated ballistics requirements such as thrust modulation and multiple pulse have not been established yet. The aim of this experimental study is to evaluate the engine's thrust modulation feasibility and to investigate its thrust modulation characteristics. A powdered Mg and CO2 bipropellant engine construction aiming to achieve thrust modulation ability was proposed. A mass flow rate calibration experiment to evaluate the gas-solid mass flow rate regulating performance was conducted before fire tests. Fire test result shows that the engine achieved successful ignition as well as self-sustaining combustion; Thrust modulation of the engine is feasible, detail thrust estimating result of the test shows that maximum thrust is 135.91 N and the minimum is 5.65 N with a 22.11 thrust modulation ratio, moreover, the transportation period is quick and the thrust modulation ratio is adjustable. At the same time, the powder feed system reaches a two-step flow rate regulating with a modulation ratio of 4.5-5. What' more, caused by the uneven engine working conditions, there is an obvious difference in combustion efficiency value, maximum combustion efficiency of the powdered Mg and CO2 bipropellant engine is 80.20%.

  11. Structure, burial history, and petroleum potential of frontal thrust belt and adjacent foreland, southwest Montana.

    USGS Publications Warehouse

    Perry, W.J.; Wardlaw, B.R.; Bostick, N.H.; Maughan, E.K.

    1983-01-01

    The frontal thrust belt in the Lima area of SW Montana consists of blind (nonsurfacing) thrusts of the Lima thrust system beneath the Lima anticline and the Tendoy thrust sheet to the W. The Tendoy sheet involves Mississippian through Cretaceous rocks of the SW-plunging nose of the Mesozoic Blacktail-Snowcrest uplift that are thrust higher (NE) onto the uplift. The front of the Tendoy sheet W of Lima locally has been warped by later compressive deformation which also involved synorogenic conglomerates of the structurally underlying Beaverhead Formation. To the N, recent extension faulting locally has dropped the front of the Tendoy sheet beneath Quaternary gravels. Rocks of the exposed Tendoy sheet have never been deeply buried, based on vitrinite relectance of = or <0.6%, conodont CAI (color alteration index) values that are uniformly 1, and on supporting organic geochemical data from Paleozoic rocks from the Tendoy thrust sheet. Directly above and W of the Tendoy sheet lie formerly more deeply buried rocks of the Medicine Lodge thrust system. Their greater burial depth is indicated by higher conodont CAI values. W-dipping post-Paleocene extension faults truncate much of the rear part of the Tendoy sheet and also separate the Medicine Lodge sheet from thrust sheets of the Beaverhead Range still farther W. -from Authors

  12. Evaluating the dynamic response of in-flight thrust calculation techniques during throttle transients

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1994-01-01

    New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.

  13. Negative Thrust and Torque Characteristics of an Adjustable-Pitch Metal Propeller

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1934-01-01

    This report presents the results of a series of negative thrust and torque measurements made with a 4 foot diameter model of a conventional aluminum-alloy propeller. The tests were made in the 20-foot propeller-research tunnel of the National Advisory Committee for Aeronautics. The results show that the negative thrust is considerably affected by the shape and size of the body behind the propeller, that the maximum negative thrust increases with decrease in blade-angle setting, and that the drag of a locked propeller may be greatly reduced by feathering it into the wind. Several examples of possible applications of the data are given.

  14. The Lewis thrust fault and related structures in the Disturbed Belt, northwestern Montana

    USGS Publications Warehouse

    Mudge, Melville Rhodes; Earhart, Robert L.

    1980-01-01

    The classical Lewis thrust fault in Glacier National Park has now been mapped 125 km south of the park to Steamboat Mountain, where the trace dies out in folded middle Paleozoic rocks. The known length of the fault is 452 km, extending northward from Steamboat Mountain to a point 225 km into Canada, where the fault also dies out in Paleozoic rocks. At the south end, the surface expression of the Lewis thrust begins in a shear zone in folded Mississippian rocks. To the north, the thrust progressively cuts downsection into Proterozoic Y (Belt) rocks near Glacier National Park. Displacement on the Lewis plate increases northward from approximately 3 km on an easterly trending hinge line at the West Fork of the Sun River to a postulated 65 km at the southern edge of the park, where the stratigraphic throw is about 6,500 m. Present data indicate the thrust formed during very late Paleocene to very early Eocene time. The Lewis thrust and related structures, the Hoadley thrust and the Continental Divide syncline, probably formed concurrently under the same stress field. The northern limit of the trace of the Hoadley thrust is within the lower portion of the Lewis plate, about 28 km north of where the Lewis thrust develops, and the Hoadley extends for at least 125 km to the south. Displacement of the Hoadley increases southward from about 1 km at the hinge line to an inferred 70 km near its known southern extent. If our inference is correct, the Hoadley is nearly the southern mirror image of the Lewis to the north. The Continental Divide syncline, a doubly plunging, broad, northerly trending open fold that is about 120 km long, is a major fold within the Lewis plate.

  15. Comparison of a math fact rehearsal and a mnemonic strategy approach for improving math fact fluency.

    PubMed

    Nelson, Peter M; Burns, Matthew K; Kanive, Rebecca; Ysseldyke, James E

    2013-12-01

    The current study used a randomized controlled trial to compare the effects of a practice-based intervention and a mnemonic strategy intervention on the retention and application of single-digit multiplication facts with 90 third- and fourth-grade students with math difficulties. Changes in retention and application were assessed separately using one-way ANCOVAs in which students' pretest scores were included as the covariate. Students in the practice-based intervention group had higher retention scores (expressed as the total number of digits correct per minute) relative to the control group. No statistically significant between-group differences were observed for application scores. Practical and theoretical implications for interventions targeting basic multiplication facts are discussed. © 2013.

  16. Static Investigation of a Multiaxis Thrust-Vectoring Nozzle With Variable Internal Contouring Ability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Mills, Charles T. L.; Mason, Mary L.

    1997-01-01

    The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.

  17. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  18. Cenozoic structural evolution, thermal history, and erosion of the Ukrainian Carpathians fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar

    2018-01-01

    The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.

  19. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, Fanghua

    2016-01-01

    In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.

  20. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  1. Control-Volume Analysis Of Thrust-Augmenting Ejectors

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1990-01-01

    New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.

  2. Emplacement history of a thrust sheet based on analysis of pressure solution cleavage and deformed fossils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protzman, G.M.; Mitra, G.

    The emplacement history of a thrust sheet is recorded by the strain accumulated in its hanging wall and footwall. Detailed studies of second order structures and analysis of strain due to pressure solution and plastic deformation allow the authors to determine the deformation history of the Meade thrust in the Idaho - Wyoming thrust belt. Emplacement of the Meade thrust was accompanied by the formation of a series of second order in echelon folds in the footwall. Temporal relations based on detailed structural studies show that these folds, which are confined to the Jurassic Twin Creek Formation, formed progressively inmore » front of the advancing Meade thrust and were successively truncated and overridden by footwall imbricates of the Meade thrust. The Twin Creek Formation in both the hanging wall and footwall of the Meade thrust is penetratively deformed, with a well developed pressure solution cleavage. In addition, plastic strain is recorded by deformed Pentacrinus within fossil hash layers in the Twin Creek. Much of this penetrative deformation took place early in the history of the thrust sheet as layer parallel shortening, and the cleavage and deformed fossils behaved passively during subsequent folding and faulting. The later stages of deformation may be sequentially removed through balancing techniques to track successive steps in the deformation. This strain history, which is typical of an internal thrust sheet, is partly controlled by the lithologies involved, timing between successive thrusts, and the amount of interaction between major faults.« less

  3. Simplified installation of thrust bearings

    NASA Technical Reports Server (NTRS)

    Sensenbaugh, N. D.

    1980-01-01

    Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.

  4. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  5. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  6. Structural analysis of cylindrical thrust chambers, volume 1

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.

    1979-01-01

    Life predictions of regeneratively cooled rocket thrust chambers are normally derived from classical material fatigue principles. The failures observed in experimental thrust chambers do not appear to be due entirely to material fatigue. The chamber coolant walls in the failed areas exhibit progressive bulging and thinning during cyclic firings until the wall stress finally exceeds the material rupture stress and failure occurs. A preliminary analysis of an oxygen free high conductivity (OFHC) copper cylindrical thrust chamber demonstrated that the inclusion of cumulative cyclic plastic effects enables the observed coolant wall thinout to be predicted. The thinout curve constructed from the referent analysis of 10 firing cycles was extrapolated from the tenth cycle to the 200th cycle. The preliminary OFHC copper chamber 10-cycle analysis was extended so that the extrapolated thinout curve could be established by performing cyclic analysis of deformed configurations at 100 and 200 cycles. Thus the original range of extrapolation was reduced and the thinout curve was adjusted by using calculated thinout rates at 100 and 100 cycles. An analysis of the same underformed chamber model constructed of half-hard Amzirc to study the effect of material properties on the thinout curve is included.

  7. Thrust faults and related structures in the crater floor of Mount St. Helens volcano, Washington

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.

    1989-01-01

    A lava dome was built in the crater of Mount St. Helens by intermittent intrusion and extrusion of dacite lava between 1980 and 1986. Spectacular ground deformation was associated with the dome-building events and included the development of a system of radial cracks and tangential thrust faults in the surrounding crater floor. These cracks and thrusts, best developed and studied in 1981-1982, formed first and, as some evolved into strike-slip tear faults, influenced the subsequent geometry of thrusting. Once faulting began, deformation was localized near the thrust scarps and their bounding tear faults. The magnitude of displacements systematically increased before extrusions, whereas the azimuth and inclination of displacements remained relatively constant. The thrust-fault scarps were bulbous in profile, lobate in plan, and steepened during continued fault movement. The hanging walls of each thrust were increasingly disrupted as cumulative fault slip increased. -from Authors

  8. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    NASA Astrophysics Data System (ADS)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  9. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the... this subpart must be run with the reverser installed. In complying with this section, the power control... regimes of control operations are incorporated necessitating scheduling of the power-control lever motion...

  10. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the... this subpart must be run with the reverser installed. In complying with this section, the power control... regimes of control operations are incorporated necessitating scheduling of the power-control lever motion...

  11. Automatic control of a primary electric thrust subsystem

    NASA Technical Reports Server (NTRS)

    Macie, T. W.; Macmedan, M. L.

    1975-01-01

    A concept for automatic control of the thrust subsystem has been developed by JPL and participating NASA Centers. This paper reports on progress in implementing the concept at JPL. Control of the Thrust Subsystem (TSS) is performed by the spacecraft computer command subsystem, and telemetry data is extracted by the spacecraft flight data subsystem. The Data and Control Interface Unit, an element of the TSS, provides the interface with the individual elements of the TSS. The control philosophy and implementation guidelines are presented. Control requirements are listed, and the control mechanism, including the serial digital data intercommunication system, is outlined. The paper summarizes progress to Fall 1974.

  12. Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard

    2005-01-01

    Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.

  13. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  14. Monte Carlo investigation of thrust imbalance of solid rocket motor pairs

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1976-01-01

    The Monte Carlo method of statistical analysis is used to investigate the theoretical thrust imbalance of pairs of solid rocket motors (SRMs) firing in parallel. Sets of the significant variables are selected using a random sampling technique and the imbalance calculated for a large number of motor pairs using a simplified, but comprehensive, model of the internal ballistics. The treatment of burning surface geometry allows for the variations in the ovality and alignment of the motor case and mandrel as well as those arising from differences in the basic size dimensions and propellant properties. The analysis is used to predict the thrust-time characteristics of 130 randomly selected pairs of Titan IIIC SRMs. A statistical comparison of the results with test data for 20 pairs shows the theory underpredicts the standard deviation in maximum thrust imbalance by 20% with variability in burning times matched within 2%. The range in thrust imbalance of Space Shuttle type SRM pairs is also estimated using applicable tolerances and variabilities and a correction factor based on the Titan IIIC analysis.

  15. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  16. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  17. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  18. Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.

  19. Seismic constraints and coulomb stress changes of a blind thrust fault system, 2: Northridge, California

    USGS Publications Warehouse

    Stein, Ross S.; Lin, Jian

    2006-01-01

    We review seismicity, surface faulting, and Coulomb stress changes associated with the 1994 Northridge, California, earthquake. All of the observed surface faulting is shallow, extending meters to tens of meters below the surface. Relocated aftershocks reveal no seismicity shallower than 2 km depth. Although many of the aftershocks lie along the thrust fault and its up-dip extension, there are also a significant number of aftershocks in the core of the gentle anticline above the thrust, and elsewhere on the up-thrown block. These aftershocks may be associated with secondary ramp thrusts or flexural slip faults at a depth of 2-4 km. The geological structures typically associated with a blind thrust fault, such as anticlinal uplift and an associated syncline, are obscured and complicated by surface thrust faults associated with the San Fernando fault that overly the Northridge structures. Thus the relationship of the geological structure and topography to the underlying thrust fault is much more complex for Northridge than it is for the 1983 Coalinga, California, earthquake. We show from a Coulomb stress analysis that secondary surface faulting, diffuse aftershocks, and triggered sequences of moderate-sized mainshocks, are expected features of moderate-sized blind thrust earthquakes.

  20. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    NASA Astrophysics Data System (ADS)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate

  1. Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar

    2016-04-01

    The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters

  2. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active

  3. A torsion balance for impulse and thrust measurements of micro-Newton thrusters

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Xia; Tu, Liang-Cheng; Yang, Shan-Qing; Luo, Jun

    2012-01-01

    This paper reports the performance of a torsion-type thrust stand suitable for studies of micro-Newton thrusters, which is developed for ground testing the micro-Newton thruster in Chinese Test of the Equivalence Principle with Optical readout space mission. By virtue of specially suspending design and precise assembly of torsion balance configuration, the thrust stand with load capacity up to several kilograms is able to measure the impulse bit up to 1350 μNs with a resolution of 0.47 μNs, and the average thrust up to 264 μN with a resolution of 0.09 μN in both open and close loop operation. A pulsed plasma thruster, the preliminary prototype developed for Chinese TEPO space mission, is tested by the thrust stand, and the results reveal that the average impulse bit per pulse is measured to be 58.4 μNs with a repeatability of about 5%.

  4. A Simple Method to Measure Nematodes' Propulsive Thrust and the Nematode Ratchet.

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Yuan, Jinzhou; Raizen, David

    2015-11-01

    Since the propulsive thrust of micro organisms provides a more sensitive indicator of the animal's health and response to drugs than motility, a simple, high throughput, direct measurement of the thrust is desired. Taking advantage of the nematode C. elegans being heavier than water, we devised a simple method to determine the propulsive thrust of the animals by monitoring their velocity when swimming along an inclined plane. We find that the swimming velocity is a linear function of the sin of the inclination angle. This method allows us to determine, among other things, the animas' propulsive thrust as a function of genotype, drugs, and age. Furthermore, taking advantage of the animals' inability to swim over a stiff incline, we constructed a sawteeth ratchet-like track that restricts the animals to swim in a predetermined direction. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  5. Effect of Operating Frequency on PDE Driven Ejector Thrust Performance

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Landry, K.; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.

    2005-01-01

    Results of an on-going study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) designed to operate at frequencies up to 50 Hz. The PDE used in these experiments utilizes an equi-molar mixture of oxygen and nitrogen as the oxidizer, and ethylene (C2H4) as the fuel, with the propellant mixture having an equivalence ratio of one. A line of sight laser absorption technique was used to determine the time needed for proper filling of the tube. Thrust measurements were made using an integrated spring damper system coupled with a linear variable displacement transducer. The baseline thrust of the PDE was first measured at each desired frequency and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The ejectors had varying lengths, and two different inlet geometries were tested for each ejector configuration. The parameter space for the study included PDE operation frequency, ejector length, overlap distance and the radius of curvature for the ejector inlets. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz.

  6. Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Deere, K. A.

    2000-01-01

    A computational investigation of the aerodynamic effects on fluidic thrust vectoring has been conducted. Three-dimensional simulations of a two-dimensional, convergent-divergent (2DCD) nozzle with fluidic injection for pitch vector control were run with the computational fluid dynamics code PAB using turbulence closure and linear Reynolds stress modeling. Simulations were computed with static freestream conditions (M=0.05) and at Mach numbers from M=0.3 to 1.2, with scheduled nozzle pressure ratios (from 3.6 to 7.2) and secondary to primary total pressure ratios of p(sub t,s)/p(sub t,p)=0.6 and 1.0. Results indicate that the freestream flow decreases vectoring performance and thrust efficiency compared with static (wind-off) conditions. The aerodynamic penalty to thrust vector angle ranged from 1.5 degrees at a nozzle pressure ratio of 6 with M=0.9 freestream conditions to 2.9 degrees at a nozzle pressure ratio of 5.2 with M=0.7 freestream conditions, compared to the same nozzle pressure ratios with static freestream conditions. The aerodynamic penalty to thrust ratio decreased from 4 percent to 0.8 percent as nozzle pressure ratio increased from 3.6 to 7.2. As expected, the freestream flow had little influence on discharge coefficient.

  7. Separability of drag and thrust in undulatory animals and machines

    NASA Astrophysics Data System (ADS)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  8. Separability of drag and thrust in undulatory animals and machines

    PubMed Central

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; MacIver, Malcolm A.; Patankar, Neelesh A.

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle. PMID:25491270

  9. Design of an ion thruster movable grid thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

    2004-08-01

    Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

  10. Experimental evaluation of foil-supported resilient-pad gas-lubricated thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1977-01-01

    A new type of resilient-pad gas thrust bearing was tested to determine the feasibility of the design. The bearing consists of carbon graphite pads mounted asymmetrically on foil beams. Two bearing configurations were tested at thrust loads from 27 to 80 newtons at speeds to 9000 rpm. The outside diameter of the bearing was 8.9 centimeters.

  11. Seismic interpretation and thrust tectonics of the Amadeus Basin, central Australia, along the BMR regional seismic line

    NASA Astrophysics Data System (ADS)

    Shaw, Russell D.; Korsch, Russell J.; Wright, C.; Goleby, B. R.

    At the northern margin of the Amadeus Basin the monoclinal upturn (the MacDonnell Homocline) is interpreted to be the result of rotation and limited back-thrusting of the sedimentary sequence in front of a southerly-directed, imbricate basement thrust-wedge. This thrust complex is linked at depth to the crust-cutting Redbank Thrust Zone. In the northern part of the basin immediately to the south, regional seismic reflection profiling across the Missionary Plain shows a sub-horizontal, north-dipping, parautochthonous sedimentary sequence between about 8.5 km and 12.0 km thick. This sedimentary sequence shows upturning only at the northern and southern extremities, and represents an unusual, relatively undeformed region between converging thrust systems. In this intervening region, the crust appears to have been tilted downwards and northwards in response to the upthrusting to the north. Still farther to the south, the vertical uplift of the southern hanging wall of the Gardiner Thrust is about 6 km. Seismic reflection profiling in the region immediately south of the Gardiner Thrust indicates repetition of the sedimentary sequence. At the far end of the profile, in the Kernot Range, an imbricate thrust system fans ahead of a ramp-flat thrust pair. This thrust system (the Kernot Range Thrust System) occurs immediately north of an aeromagnetic domain boundary which marks the southern limit of a central ridge region characterized by thin Palaeozoic sedimentary cover and shallow depths to magnetic basement. A planar seismic event, imaged to a depth of at least 18 km, may correspond to the same boundary and is interpreted as a pre-basin Proterozoic thrust. Overall, the structure in the shallow sedimentary section in the central-southern region of the Amadeus Basin indicates that north-directed thrusting during the Dovonian-Carboniferous Alice Springs Orogeny was thin-skinned. During this orogeny an earlier thrust system, formed during the Petermann Ranges Orogeny and

  12. Optimal low-thrust trajectories for nuclear and solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Genta, G.; Maffione, P. F.

    2016-01-01

    The optimization of the trajectory and of the thrust profile of a low-thrust interplanetary transfer is usually solved under the assumption that the specific mass of the power generator is constant. While this is reasonable in the case of nuclear electric propulsion, if solar electric propulsion is used the specific mass depends on the distance of the spacecraft from the Sun. In the present paper the optimization of the trajectory of the spacecraft and of the thrust profile is solved under the latter assumption, to obtain optimized interplanetary trajectories for solar electric spacecraft, also taking into account all phases of the journey, from low orbit about the starting planet to low orbit about the destination one. General plots linking together the travel time, the specific mass of the generator and the propellant consumption are obtained.

  13. Aerospike thrust chamber program. [cumulative damage and maintenance of structural members in hydrogen oxygen engines

    NASA Technical Reports Server (NTRS)

    Campbell, J., Jr.; Cobb, S. M.

    1976-01-01

    An existing, but damaged, 25,000-pound thrust, flightweight, oxygen/hydrogen aerospike rocket thrust chamber was disassembled and partially repaired. A description is presented of the aerospike chamber configuration and of the damage it had suffered. Techniques for aerospike thrust chamber repair were developed, and are described, covering repair procedures for lightweight tubular nozzles, titanium thrust structures, and copper channel combustors. Effort was terminated prior to completion of the repairs and conduct of a planned hot fire test program when it was found that the copper alloy walls of many of the thrust chamber's 24 combustors had been degraded in strength and ductility during the initial fabrication of the thrust chamber. The degradation is discussed and traced to a reaction between oxygen and/or oxides diffused into the copper alloy during fabrication processes and the hydrogen utilized as a brazing furnace atmosphere during the initial assembly operation on many of the combustors. The effects of the H2/O2 reaction within the copper alloy are described.

  14. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    USGS Publications Warehouse

    Tosdal, R.M.

    1990-01-01

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in this Blythe-Quartzsite region. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust N-NE (015??-035??) over a lower plate metamorphic terrane. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79??2 Ma and 70??4 Ma. Results suggest that the thrust system forms the southern boundary of the narow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling. -from Author

  15. Modeling and Analysis of the Static Characteristics and Dynamic Responses of Herringbone-grooved Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    This paper describes a theoretical investigation of static and dynamic characteristics of herringbone-grooved air thrust bearings. Firstly, Finite Difference Method (FDM) and Finite Volume Method (FVM) are used in combination to solve the non-linear Reynolds equation and to find the pressure distribution of the film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, depth of the groove and rotating speed, are analyzed based on the FDM model. The simulation results show that hydrostatic thrust bearings can achieve a better load capacity with less air consumption than herringbone grooved thrust bearings at low compressibility number; herringbone grooved thrust bearings can achieve a higher load capacity but with more air consumption than hydrostatic thrust bearing at high compressibility number; herringbone grooved thrust bearings would lose stability at high rotating speeds, and the stability increases with the depth of the grooves.

  16. NASA Researcher Examines an Aircraft Model with a Four-Fan Thrust Reverser

    NASA Image and Video Library

    1972-03-21

    National Aeronautics and Space Administration (NASA) researcher John Carpenter inspects an aircraft model with a four-fan thrust reverser which would be studied in the 9- by 15-Foot Low Speed Wind Tunnel at the Lewis Research Center. Thrust reversers were introduced in the 1950s as a means for slowing high-speed jet aircraft during landing. Engineers sought to apply the technology to Vertical and Short Takeoff and Landing (VSTOL) aircraft in the 1970s. The new designs would have to take into account shorter landing areas, noise levels, and decreased thrust levels. A balance was needed between the thrust reverser’s efficiency, its noise generation, and the engine’s power setting. This model underwent a series of four tests in the 9- by 15-foot tunnel during April and May 1974. The model, with a high-wing configuration and no tail, was equipped with four thrust-reverser engines. The investigations included static internal aerodynamic tests on a single fan/reverser, wind tunnel isolated fan/reverser thrust tests, installation effects on a four-fan airplane model in a wind tunnel, and single reverser acoustic tests. The 9-by 15 was built inside the return leg of the 8- by 6-Foot Supersonic Wind Tunnel in 1968. The facility generates airspeeds from 0 to 175 miles per hour to evaluate the aerodynamic performance and acoustic characteristics of nozzles, inlets, and propellers, and investigate hot gas re-ingestion of advanced VSTOL concepts. John Carpenter was a technician in the Wind Tunnels Service Section of the Test Installations Division.

  17. Reverse Core Engine with Thrust Reverser

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M. (Inventor); Suciu, Gabriel L. (Inventor)

    2017-01-01

    An engine system has a gas generator, a bi-fi wall surrounding at least a portion of the gas generator, a casing surrounding a fan, and the casing having first and second thrust reverser doors which in a deployed position abut each other and the bi-fi wall.

  18. Deformation of Fold-and-Thrust Belts above a Viscous Detachment: New Insights from Analogue Modelling Experiments

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2015-04-01

    Theoretical and experimental studies on fold-and-thrusts belts (FTB) have shown that, under Coulomb conditions, deformation of brittle thrust wedges above a dry frictional basal contact is characterized by dominant frontward vergent thrusts (forethrusts) with thrust spacing and taper angle being directly influenced by the basal strength (increase in basal strength leading to narrower thrust spacing and higher taper angles); whereas thrust wedges deformed above a weak viscous detachment, such as salt, show a more symmetric thrust style (no prevailing vergence of thrusting) with wider thrust spacing and shallower wedges. However, different deformation patterns can be found on this last group of thrust wedges both in nature and experimentally. Therefore we focused on the strength (friction) of the wedge basal contact, the basal detachment. We used a parallelepiped box with four fixed walls and one mobile that worked as a vertical piston drove by a computer controlled stepping motor. Fine dry sand was used as the analogue of brittle rocks and silicone putty (PDMS) with Newtonian behaviour as analogue of the weak viscous detachment. To investigate the strength of basal contact on thrust wedge deformation, two configurations were used: 1) a horizontal sand pack with a dry frictional basal contact; and 2) a horizontal sand pack above a horizontal PDMS layer, acting as a basal weak viscous contact. Results of the experiments show that: the model with a dry frictional basal detachment support the predictions for the Coulomb wedges, showing a narrow wedge with dominant frontward vergence of thrusting, close spacing between FTs and high taper angle. The model with a weak viscous frictional basal detachment show that: 1) forethrusts (FT) are dominant showing clearly an imbricate asymmetric geometry, with wider spaced thrusts than the dry frictional basal model; 2) after FT initiation, the movement on the thrust can last up to 15% model shortening, leading to great amount of

  19. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  20. Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion

    NASA Technical Reports Server (NTRS)

    Richter, G. P.; Price, H. G.

    1986-01-01

    The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program with Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.

  1. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2005-01-01

    A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

  2. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  3. Microstructural variation in the transport direction of a large-scale mid-crustal thrust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil S.; Hawemann, Friedrich; Pennacchioni, Giorgio; Camacho, Alfredo

    2016-04-01

    The over ˜600 km long E-W trending mid-crustal Woodroffe Thrust is one the most prominent structures of a range of large-scale shear zones that developed in the Musgrave Ranges region in Central Australia. During the Petermann Orogeny around 550 Ma the Woodroffe Thrust placed 1.2 Ga granulites onto similarly-aged amphibolite and granulite facies gneisses along a south-dipping plane with a top-to-north shear sense. Due to late-stage open folding of the thrust plane, a nearly continuous N-S profile of 60 km length in the direction of thrusting could be studied for variation in microstructure. The regional P/T variations in the mylonitized footwall (600 to 500 °C at ~ 0.8 GPa from S to N) indicate that the original angle of dip was shallow (~ 10°) towards the south. Along the profile, evidence for fluid-present conditions are effectively absent in the more southerly areas and only present on a local scale in the north, characterizing the regional conditions to be "dry". This is indicated by: 1) only rare syntectonic quartz veins in the footwall; 2) very little sericitization of plagioclase; 3) breakdown of plagioclase to kyanite + garnet, rather than kyanite + clinozoisite; and 4) variable presence of hydrothermally introduced calcite. These changes in P/T conditions and fluid availability are associated with corresponding changes in mineral assemblage and microstructure. Mylonitized dolerites consists of a syn-kinematic assemblage (decreasing modal amounts from left to right) of Pl + Cpx + Grt + Ky + Rt + Ilm ± Opx ± Amp ± Qz in the central/southern areas and Pl + Bt + Amp + Chl + Ilm ± Kfs ± Mag ± Ap in the north. The amount of newly grown garnet decreases towards the north and garnet is generally absent in the northernmost exposures of the Woodroffe Thrust. Mylonitized felsic granulites and granitoids consist of syn-kinematic assemblages of Qz + Pl + Kfs + Grt + Cpx + Ky + Ilm + Rt ± Bt ± Amp ± Opx ± Ap in the south and Qz + Pl + Kfs + Bt + Czo + Grt

  4. Lower extremity thrust and non-thrust joint mobilization for patellofemoral pain syndrome: a case report

    PubMed Central

    Simpson, Brad G; Simon, Corey B

    2014-01-01

    A 40-year old female presented to physical therapy with a one-year history of insidious right anteromedial and anterolateral knee pain. Additionally, the patient had a history of multiple lateral ankle sprains bilaterally, the last sprain occurring on the right ankle 1 year prior to the onset of knee pain. The patient was evaluated and given a physical therapy diagnosis of patellofemoral pain syndrome (PFPS), with associated talocrural and tibiofemoral joint hypomobility limiting ankle dorsiflexion and knee extension, respectively. Treatment included a high-velocity low amplitude thrust manipulation to the talocrural joint, which helped restore normal ankle dorsiflexion range of motion. The patient also received tibiofemoral joint non-thrust manual therapy to regain normal knee extension mobility prior to implementing further functional progression exercises to her home program (HEP). This case report highlights the importance of a detailed evaluation of knee and ankle joint mobility in patients presenting with anterior knee pain. Further, manual physical therapy to the lower extremity was found to be successful in restoring normal movement patterns and pain-free function in a patient with chronic anterior knee pain. PMID:24976753

  5. Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine

    NASA Technical Reports Server (NTRS)

    Watson, T. L.

    1982-01-01

    A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.

  6. Extended performance solar electric propulsion thrust system study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined. Results are presented.

  7. The In-Space Propulsion Technology Project Low-Thrust Trajectory Tool Suite

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2008-01-01

    The ISPT project released its low-thrust trajectory tool suite in March of 2006. The LTTT suite tools range in capabilities, but represent the state-of-the art in NASA low-thrust trajectory optimization tools. The tools have all received considerable updates following the initial release, and they are available through their respective development centers or the ISPT project website.

  8. Kinematic development of the Tibetan Plateau's northern margin: A traverse across the Qilian Shan-Nan Shan thrust belt

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Levy, D. A.; Wang, Z.; Xiong, X.; Chen, X.

    2017-12-01

    The active Cenozoic Qilian Shan-Nan Shan thrust belt defines the northern margin of the Tibetan Plateau. The kinematic development of this thrust belt has implications models of plateau growth and Himalayan-Tibetan orogen strain accommodation. We present new field observations and analytical data from a traverse across the 350-km-wide doubly vergent Qilian Shan, which is bound by the south-dipping North Qilian thrust system in the north and the north-dipping range-bounding Qinghai Nanshan-Dulan Shan thrust system in the south. These faults, and several other major thrusts within the thrust-belt interior, disrupt relatively thick Oligocene-Miocene basin deposits. Of note, many of the thrust faults across the width of the Qilian Shan have Quaternary fault scarps, indicating that active deformation is distributed and not only concentrated along the northern frontal faults. By integrating our detailed structural traverse with new geophysical observations and thermochronology data across the northern plateau margin, we construct a kinematic model for the development of the Tibetan Plateau's northern margin. Deformation initiated in the Eocene-Oligocene along the north-dipping Qinghai Nanshan-Dulan Shan and south-dipping Tuolai Nan Shan thrusts, the latter of which then defined the northern boundary of the Tibetan Plateau. This early deformation was focused along preexisting early Paleozoic structures. A 200-km-wide basin formed between these ranges, and from the Miocene to present, new thrust- and strike-slip-fault-bounded ranges developed, including the north-directed North Qilian and the south-directed Tuolai Nan thrusts. Thus, our observations do not support northward propagating thrust-belt expansion. Instead, we envision that the initial thrust-belt development generated a wide Oligocene-Miocene north-plateau basin that was subsequently disintegrated by later Miocene to present thrusting and strike-slip faulting. Ultimately, the Qilian Shan-Nan Shan thrust belt

  9. Morphotectonics of the central Muertos thrust belt and Muertos Trough (northeastern Caribbean)

    USGS Publications Warehouse

    Granja, Bruna J.L.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Muñoz-Martín, A.; Gomez, Ballesteros M.

    2009-01-01

    Multibeam bathymetry data acquired during the 2005 Spanish R/V Hesp??rides cruise and reprocessed multichannel seismic profiles provide the basis for the analysis of the morphology and deformation in the central Muertos Trough and Muertos thrust belt. The Muertos Trough is an elongated basin developed where the Venezuelan Basin crust is thrusted under the Muertos fold-and-thrust belt. Structural variations along the Muertos Trough are suggested to be a consequence of the overburden of the asymmetrical thrust belt and by the variable nature of the Venezuelan Basin crust along the margin. The insular slope can be divided into three east-west trending slope provinces with high lateral variability which correspond to different accretion stages: 1) The lower slope is composed of an active sequence of imbricate thrust slices and closed fold axes, which form short and narrow accretionary ridges and elongated slope basins; 2) The middle slope shows a less active imbricate structure resulting in lower superficial deformation and bigger slope basins; 3) The upper slope comprises the talus region and extended terraces burying an island arc basement and an inactive imbricate structure. The talus region is characterized by a dense drainage network that transports turbidite flows from the islands and their surrounding carbonate platform areas to the slope basins and sometimes to the trough. In the survey area the accommodation of the ongoing east-west differential motion between the Hispaniola and the Puerto Rico-Virgin Islands blocks takes place by means of diffuse deformation. The asymmetrical development of the thrust belt is not related to the geological conditions in the foreland, but rather may be caused by variations in the geometry and movement of the backstop. The map-view curves of the thrust belt and the symmetry of the recesses suggest a main north-south convergence along the Muertos margin. The western end of the Investigator Fault Zone comprises a broad band of

  10. The cislunar low-thrust trajectories via the libration point

    NASA Astrophysics Data System (ADS)

    Qu, Qingyu; Xu, Ming; Peng, Kun

    2017-05-01

    The low-thrust propulsion will be one of the most important propulsion in the future due to its large specific impulse. Different from traditional low-thrust trajectories (LTTs) yielded by some optimization algorithms, the gradient-based design methodology is investigated for LTTs in this paper with the help of invariant manifolds of LL1 point and Halo orbit near the LL1 point. Their deformations under solar gravitational perturbation are also presented to design LTTs in the restricted four-body model. The perturbed manifolds of LL1 point and its Halo orbit serve as the free-flight phase to reduce the fuel consumptions as much as possible. An open-loop control law is proposed, which is used to guide the spacecraft escaping from Earth or captured by Moon. By using a two-dimensional search strategy, the ON/OFF time of the low-thrust engine in the Earth-escaping and Moon-captured phases can be obtained. The numerical implementations show that the LTTs achieved in this paper are consistent with the one adopted by the SMART-1 mission.

  11. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  12. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

  13. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  14. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  15. Amplitude Effects on Thrust Production for Undulatory Swimmers

    NASA Astrophysics Data System (ADS)

    Gater, Brittany; Bayandor, Javid

    2017-11-01

    Biological systems offer novel and efficient solutions to many engineering applications, including marine propulsion. It is of interest to determine how fish interact with the water around them, and how best to utilize the potential their methods offer. A stingray-like fin was chosen for analysis due to the maneuverability and versatility of stingrays. The stingray fin was modeled in 2D as a sinusoidal wave with an amplitude increasing from zero at the leading edge to a maximum at the trailing edge. Using this model, a parametric study was performed to examine the effects of the fin on surrounding water in CFD simulations. The results were analyzed both qualitatively, in terms of the pressure contours on the fin and vorticity in the trailing wake, and quantitatively, in terms of the resultant forces on the fin. The amplitude was found to have no effect on the average thrust during steady swimming, when the wave speed on the fin was approximately equal to the swimming speed. However, amplitude was shown to have a significant effect on thrust production when the fin was accelerating. This finding suggests that for undulatory swimmers, amplitude is less useful for controlling swimming speed, but can be used to great effect for augmenting thrust during acceleration.

  16. An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation

    NASA Technical Reports Server (NTRS)

    Bauman, Steve

    2005-01-01

    New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

  17. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  18. Experimental investigation of leading-edge thrust at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1983-01-01

    Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.

  19. Static internal performance evaluation of several thrust reversing concepts for 2D-CD nozzles

    NASA Technical Reports Server (NTRS)

    Rowe, R. K.; Duss, D. J.; Leavitt, L. D.

    1984-01-01

    Recent performance testing of the two-dimensional convergent-divergent (2D-CD) nozzle has established the concept as a viable alternative to the axisymmetric nozzle for advanced technology aircraft. This type of exhaust system also offers potential integration and performance advantages in the areas of thrust reversing and vectoring over axi-symmetric nozzles. These advantages include the practical integration of thrust reversers which operate not only to reduce landing roll but also operate in-flight for enhanced maneuvering and thrust spoiling. To date there is a very limited data base available from which criteria can be developed for the design and evaluation of this type of thrust reverser system. For this reason, a static scale model test was conducted in which five different thrust reverser designs were evaluated. Each of the five models had varying performance/integration requirements which dictated the five different designs. Some of the parameters investigated in this test included; variable angle external cascade vanes, fixed angle internal cascade vanes, variable position inner doors, external slider doors and internal slider valves. In addition, normal force and yawing moment generation was investigated using the thrust reverser system. Selected results from this test will be presented and discussed in this paper.

  20. Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang

    2017-08-01

    We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many

  1. Tailoff thrust and impulse imbalance between pairs of Space Shuttle solid rocket motors

    NASA Technical Reports Server (NTRS)

    Jacobs, E. P.; Yeager, J. M.

    1975-01-01

    The tailoff thrust and impulse imbalance between pairs of solid rocket motors is of particular interest for the Space Shuttle Vehicle because of the potential control problems that exist with this asymmetric configuration. Although a similar arrangement of solid rocket motors was utilized for the Titan Program, they produced less than one-half the thrust level of the Space Shuttle at web action time, and the overall vehicle was symmetric. Since the Titan Program does provide the most applicable actual test data, 23 flight pairs were analyzed to determine the actual tailoff thrust and impulse imbalance experienced. The results were scaled up using the predicted web action time thrust and tailoff time to arrive at values for the Space Shuttle. These values were then statistically treated to obtain a prediction of the maximum imbalance one could expect to experience during the Shuttle Program.

  2. Measurement of the Differential and Total Thrust and Torque of Six Full-Scale Adjustable-Pitch Propellers

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1933-01-01

    Force measurements giving total thrust and torque, and propeller slip stream surveys giving differential thrust and torque were simultaneously made on each of six full-scale propellers in the 20-foot propeller-research tunnel of the National Advisory Committee for Aeronautics. They were adjustable-pitch metal propellers 9.5 feet in diameter; three had modified Clark Y blade sections and three had modified RAF-6 blade sections. This report gives the differential thrust and torque and the variation caused by changing the propeller tip speed and the pitch setting. The total thrust and torque obtained from integration of the thrust and torque distribution curves are compared with those obtained by direct force measurements.

  3. Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Berrier, B. L.

    1982-01-01

    The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.

  4. Orbital and angular motion construction for low thrust interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  5. Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils

    DTIC Science & Technology

    1991-12-01

    12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector

  6. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  7. CASA Fact Sheet.

    ERIC Educational Resources Information Center

    National Court Appointed Special Advocate Association, Seattle WA.

    Each year nearly 400,000 children in the United States are thrust into court through no fault of their own. Often these children also become victims of the United States' overburdened child welfare system. A Court Appointed Special Advocate (CASA) volunteer is a trained citizen who is appointed by a judge to represent the best interests of a child…

  8. Technology to Market Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-02-01

    This fact sheet is an overview of the Technology to Market subprogram at the U.S. Department of Energy SunShot Initiative. The SunShot Initiative’s Technology to Market subprogram builds on SunShot’s record of moving groundbreaking and early-stage technologies and business models through developmental phases to commercialization. Technology to Market targets two known funding gaps: those that occur at the prototype commercialization stage and those at the commercial scale-up stage.

  9. Friction torque in thrust ball bearings grease lubricated

    NASA Astrophysics Data System (ADS)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  10. Thrust Vectoring Nozzle for Modern Military Aircraft

    DTIC Science & Technology

    2000-05-11

    Thrust Vectoring Nozzle for Modern Military Aircraft Daniel Ikaza Industria de Turbo Propulsores S.A. (ITP) Parque Tecnol6gico, edificio 300 48170...programme has only been possible with the contribution of partners and organizations, namely: Spanish Ministries of Industry and Defence, with

  11. Static performance and noise tests on a thrust reverser for an augmentor wing aircraft

    NASA Technical Reports Server (NTRS)

    Harkonen, D. L.; Marrs, C. C.; Okeefe, J. V.

    1974-01-01

    A 1/3 scale model static test program was conducted to measure the noise levels and reverse thrust performance characteristics of wing-mounted thrust reverser that could be used on an advanced augmentor wing airplane. The configuration tested represents only the most fundamental designs where installation and packaging restraints are not considered. The thrust reverser performance is presented in terms of horizontal, vertical, and resultant effectiveness ratios and the reverser noise is compared on the basis of peak perceived noise level (PNL) and one-third octave band data (OASPL). From an analysis of the model force and acoustic data, an assessment is made on the stopping distance versus noise for a 90,900 kg (200,000 lb) airplane using this type of thrust reverser.

  12. Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors

    NASA Astrophysics Data System (ADS)

    Chatzisavvas, Ioannis; Boyaci, Aydin; Koutsovasilis, Panagiotis; Schweizer, Bernhard

    2016-10-01

    This paper investigates the effect of hydrodynamic thrust bearings on the nonlinear vibrations and the bifurcations occurring in rotor/bearing systems. In order to examine the influence of thrust bearings, run-up simulations may be carried out. To be able to perform such run-up calculations, a computationally efficient thrust bearing model is mandatory. Direct discretization of the Reynolds equation for thrust bearings by means of a Finite Element or Finite Difference approach entails rather large simulation times, since in every time-integration step a discretized model of the Reynolds equation has to be solved simultaneously with the rotor model. Implementation of such a coupled rotor/bearing model may be accomplished by a co-simulation approach. Such an approach prevents, however, a thorough analysis of the rotor/bearing system based on extensive parameter studies. A major point of this work is the derivation of a very time-efficient but rather precise model for transient simulations of rotors with hydrodynamic thrust bearings. The presented model makes use of a global Galerkin approach, where the pressure field is approximated by global trial functions. For the considered problem, an analytical evaluation of the relevant integrals is possible. As a consequence, the system of equations of the discretized bearing model is obtained symbolically. In combination with a proper decomposition of the governing system matrix, a numerically efficient implementation can be achieved. Using run-up simulations with the proposed model, the effect of thrust bearings on the bifurcations points as well as on the amplitudes and frequencies of the subsynchronous rotor oscillations is investigated. Especially, the influence of the magnitude of the axial force, the geometry of the thrust bearing and the oil parameters is examined. It is shown that the thrust bearing exerts a large influence on the nonlinear rotor oscillations, especially to those related with the conical mode of the

  13. Low-Thrust Bipropellant Engine Technology.

    DTIC Science & Technology

    1980-08-01

    Non-Destructive Testing OD Outside Diameter xv tr. GLOSSARY (cont.J ODE One Dimensional Equilibrium ODK One Dimensional Kinetics Pc Thrust Chamber...performance (280 sec steady- state, 220 sec pulsing) have not yet been collectively achieved, but should be obtainable with further development activities...even at nozzle area ratios up to 400:1. The influence of nozzle kinetics (i.e., equilibrium versus frozen flow and ODK ) are noted to be a much more

  14. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    NASA Astrophysics Data System (ADS)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot

  15. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  16. Experimental measurement of dolphin thrust generated during a tail stand using DPIV

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Fish, Frank; Williams, Terrie; Wu, Vicki; Sherman, Erica; Misfeldt, Mitchel; Ringenberg, Hunter; Rogers, Dylan

    2016-11-01

    The thrust generated by dolphins doing tail stands was measured using DPIV. The technique entailed measuring vortex strength associated with the tail motion and correlating it to above water video sequences showing the amount of the dolphin's body that was being lifted out of the water. The underlying drivers for this research included: i) understanding the physiology, hydrodynamics and efficiency of dolphin locomotion, ii) developing non-invasive measurement techniques for studying marine swimming and iii) quantifying the actual propulsive capabilities of these animals. Two different bottlenose dolphins at the Long Marine Lab at UC-Santa Cruz were used as test subjects. Application of the Kutta-Joukowski Theorem on measured vortex circulations yielded thrust values that were well correlated with estimates of dolphin body weight being supported above water. This demonstrates that the tail motion can be interpreted as a flapping hydrofoil that can generate a sustained thrust roughly equal to the dolphin's weight. Videos of DPIV measurements overlaid with the dolphins will be presented along with thrust/weight data.

  17. Chronology of paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, S.A.; Dallmeyer, R.D.

    1997-05-01

    The Blue Ridge province in northwestern North Carolina and northeastern Tennessee records a multiphase collisional and accretionary history from the Mesoproterozoic through the Paleozoic. To constrain the tectonothermal evolution in this region, radiometric ages have been determined for 23 regionally metamorphosed amphibolites, granitic gneisses, and pelitic schists and from mylonites along shear zones that bound thrust sheets and within an internal shear zone. The garnet ages from the Pumpkin Patch a thrust sheet (458, 455, and 451 Ma) are similar to those from the structurally overlying Spruce Pine thrust sheet (460, 456, 455, and 450 Ma). Both thrust sheets exhibitmore » similar upper amphibolite-facies conditions. Because of the high closure temperature for garnet, the garnet ages are interpreted to date growth at or near the peak of Taconic metamorphism. Devonian metamorphic ages are recognized in the Spruce Pine thrust sheet, where Sm-Nd and Rb-Sr garnet ages of 386 and 393 Ma and mineral isochron ages of 397 {+-} 14 and 375 {+-} 27 Ma are preserved. Hornblendes record similar {sup 40}Ar/{sup 39}Ar, Sm-Nd, and Rb-Sr ages of 398 to 379 Ma. Devonian {sup 40}Ar/{sup 39}Ar hornblende ages are also recorded in the structurally lower Pumpkin Patch thrust sheet. The Devonian mineral ages are interpreted to date a discrete tectonothermal event, as opposed to uplift and slow cooling from an Ordovician metamorphic event. The Mississippian mylonitization is interpreted to represent thrusting and initial assembly of crystalline sheets associated with the Alleghanian orogeny. The composite thrust stack of the Blue Ridge complex was subsequently thrust northwestward along the Linville Falls fault during middle Alleghanian orogeny (about 300 Ma).« less

  18. Camera Layout Design for the Upper Stage Thrust Cone

    NASA Technical Reports Server (NTRS)

    Wooten, Tevin; Fowler, Bart

    2010-01-01

    Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.

  19. CFD evaluation of an advanced thrust vector control concept

    NASA Technical Reports Server (NTRS)

    Tiarn, Weihnurng; Cavalleri, Robert

    1990-01-01

    A potential concept that can offer an alternate method for thrust vector control of the Space Shuttle Solid Rocket Booster is the use of a cylindrical probe that is inserted (on demand) through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternate to that of a gimbaled nozzle or a Liquid Injection Thrust Vector (LITVC) system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment can be time consuming and expensive, whereas a CFD assessment can be very time- and cost-effective. Two key requirements of the proposed concept are PTVC vectoring performance and the active cooling requirements for the probe to maintain its thermal and structural integrity. An active thermal cooling method is the injection of coolant around the pheriphery of the probe. How much coolant is required and how this coolant distributes itself in the flow field is of major concern. The objective of the work reported here is the use of CFD to answer these question and in the design of test hardware to substantiate the results of the CFD predictions.

  20. Adaptive relative pose control for autonomous spacecraft rendezvous and proximity operations with thrust misalignment and model uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2017-04-01

    An adaptive relative pose control strategy is proposed for a pursue spacecraft in proximity operations on a tumbling target. Relative position vector between two spacecraft is required to direct towards the docking port of the target while the attitude of them must be synchronized. With considering the thrust misalignment of pursuer, an integrated controller for relative translational and relative rotational dynamics is developed by using norm-wise adaptive estimations. Parametric uncertainties, unknown coupled dynamics, and bounded external disturbances are compensated online by adaptive update laws. It is proved via Lyapunov stability theory that the tracking errors of relative pose converge to zero asymptotically. Numerical simulations including six degrees-of-freedom rigid body dynamics are performed to demonstrate the effectiveness of the proposed controller.

  1. Design aspects and clinical performance of the thrust plate hip prosthesis.

    PubMed

    Jacob, H A C; Bereiter, H H; Buergi, M L

    2007-01-01

    The thrust plate hip prosthesis (TPP) was conceived to maintain the physiological stress distribution in the proximal femur so as to prevent bone atrophy in this region, often encountered after implantation of conventional stem-type prostheses. A thrust plate of TiAlNb is firmly fixed to the neck of the femur by means of a forged CoCrMo bolt introduced through the lateral cortex, just below the greater trochanter, and through the metaphysis. A boss that contains the bolt head rests on the lateral cortex. A proximal extension from the thrust plate terminates in the ball head of the hip joint. Bone remodelling causes the initial prestressing of the structure (primary stability) to decline, but full integration of the thrust plate with the underlying host bone affords secondary stability. A total of 102 TPPs were implanted in the Cantonal Hospital, Chur, Switzerland, from 1992 to 1999 in 84 patients. The TPP was selected particularly for patients of the younger age group (26-76). Through its ability to load the medial cortex of the proximal femur in a physiological manner, the cortical bone in this region is preserved. The mean Harris hip score is 97 points and the survival rate 98 per cent, 144 months post-operatively.

  2. Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Gudenkauf, Jared

    2017-01-01

    The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.

  3. Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket

    NASA Astrophysics Data System (ADS)

    Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki

    2018-05-01

    A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.

  4. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  5. Some effects of thermal-cycle-induced deformation in rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Price, R. G., Jr.

    1981-01-01

    The deformation process observed in the hot gas side wall of rocket combustion chambers was investigaged for three different liner materials. Five thrust chambers were cycled to failure by using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/cu m. The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the problems of life prediction associated with the types of failures encountered in the present work. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers. From these deformation data and observation of the failure sites it is evident that modeling the failure process as classic low cycle thermal fatigue is inadequate as a life prediction method.

  6. Microstructures and strain variation: Evidence of multiple splays in the North Almora Thrust Zone, Kumaun Lesser Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav; Agarwal, Amar; Agarwal, K. K.; Srivastava, Samriddhi; Alva Valdivia, L. M.

    2017-01-01

    The North Almora Thrust zone (NATZ) marks the boundary of the Almora Crystalline Complex (ACC) against the Lesser Himalayan Sedimentary sequence (LHS) in the north. Its southern counterpart, the South Almora Thrust (SAT), is a sharply marked contact between the ACC and the LHS in the south. Published studies argue various contradictory emplacement modes of the North Almora Thrust. Recent studies have implied splays of smaller back thrusts in the NATZ. The present study investigates meso- and microstructures, and strain distribution in the NATZ and compares it with strain distribution across the SAT. In the NATZ, field evidence reveals repeated sequence of 10-500 m thick slices of proto- to ultra-mylonite, thrust over the Lesser Himalayan Rautgara quartzite. In accordance with the field evidence, the strain analysis reveals effects of splays of smaller thrust in the NATZ. The study therefore, argues that contrary to popular nomenclature the northern contact of the ACC with the LHS is not a single thrust plane, but a thrust zone marked by numerous thrust splays.

  7. A reevaluation of the age of the Vincent-Chocolate Mountains thrust system, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, C.E.; Barth, A.P.

    1993-04-01

    The Vincent-Chocolate Mountains (VCM) thrust superposes Mesozoic arc plutons and associated Precambrian country rock above subduction-related Pelona-Orocopia schist. The thrust is disrupted in many areas by postmetamorphic deformation, but appears to be intact in the San Gabriel Mountains. Two Rb-Sr mineral-isochron ages from Pelona Schist and mylonite in the San Gabriel Mountains led Ehlig (1981) to conclude that the original thrusting event occurred at c. 60 Ma. However, biotite K-Ar ages determined by Miller and Morton (1980) for upper plate in the same area caused Dillon (1986) to reach a different conclusion. The biotite ages range mainly from 74--60 Mamore » and increase structurally upward from the VCM thrust. Dillon (1986) inferred that the age gradient was due to uplift and cooling of the upper plate during underthrusting of Pelona Schist. This would indicate that the VCM thrust was at least 74 Ma in age. An alternative to the interpretation of Dillon (1986) is that the biotite age gradient largely predates the VCM thrust. Upward heat flow, leading to older ages at higher structural levels, could have resulted from either static cooling of Cretaceous plutons or uplift and erosion induced by crustal thickening during possible west-directed intra-arc thrusting at c. 88--78 Ma (May and Walker, 1989). Subsequent underthrusting of Pelona Schist would establish a cold lower boundary to the crust and cause the closure of isotopic systems in the base of the upper plate. A 60 Ma time of thrusting is also suggested by two amphibole [sup 40]Ar/[sup 39]Ar ages from the Pelona Schist of the San Gabriel Mountains. Peak metamorphic temperature in this area was below 480 C and amphibole ages should thus indicate time of crystallization rather than subsequent cooling. Four phengite [sup 40]Ar/[sup 39]Ar ages of 55--61 Ma from Pelona Schist and mylonite indicate rapid cooling from peak metamorphic temperatures, consistent with subduction refrigeration.« less

  8. Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars

    NASA Astrophysics Data System (ADS)

    Rabotin, C. B.

    Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work

  9. Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.

  10. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix I to Part 25—Installation of an Automatic Takeoff Thrust Control System (ATTCS) I25.1General. (a... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... Control System (ATTCS) I Appendix I to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...

  11. Evidence for synchronous thin-skinned and basement deformation in the Cordilleran fold-thrust belt: the Tendoy Mountains, southwestern Montana

    NASA Astrophysics Data System (ADS)

    McDowell, Robin John

    1997-01-01

    The Tendoy Mountains contain the easternmost thin-skinned thrust sheets in the Cordilleran fold-thrust belt of southwestern Montana, and are in the zone of tectonic overlap between the Rocky Mountain foreland and the Cordilleran fold-thrust belt. The three frontal thrust sheets of the Tendoy Mountains are from north to south, the Armstead, McKenzie, and Tendoy sheets. Near the southeastern terminus of the Tendoy thrust sheet is a lateral ramp in which the Tendoy thrust climbs along strike from the Upper Mississippian Lombard Limestone to lower Cretaceous rocks. This ramp coincides with the southeastern side of the Paleozoic Snowcrest trough and projection of the range-flanking basement thrust of the Blacktail-Snowcrest uplift, suggesting either basement or stratigraphic control on location of the lateral ramp. Axes of major folds on the southern part of the Tendoy thrust sheet are parallel to the direction of thrust transport and to the trend of the Snowcrest Range. They are a result of: (1) Pre-thrust folding above basement faults; (2) Passive transportation of the folds from a down-plunge position; (3) Minor reactivation of basement faults; and (4) Emplacement of blind, sub-Tendoy, thin-skinned thrust faults. The Tendoy sheet also contains a major out-of-sequence thrust fault that formed in thick Upper Mississippian shales and created large, overturned, foreland-verging folds in Upper Mississippian to Triassic rocks. The out-of-sequence fault can be identified where stratigraphic section is omitted, and by a stratigraphic separation diagram that shows it cutting down section in the direction of transport. The prominent lateral ramp at the southern terminus of the Tendoy thrust sheet is a result of fault propagation through strata folded over the edge of the Blacktail-Snowcrest uplift.

  12. Astrium Preparation of Future Cryogenic Thrust Chamber Development

    NASA Astrophysics Data System (ADS)

    Nicolay, Rolf

    2002-01-01

    The scenarios for future cryogenic propulsion in Europe are mainly governed by cost issues on the one side and performance issues on the other. Certain relationships of the different issues exist to either the application for ELVs or RLVs respectively. Taking into account the limited budgets of the Europeans Agency Market, flexible development strategies are and have to be defined to fulfill both applications requirements. Investigations aiming at identifying the optimum development strategy serving both applications have been performed. Based on the experience of the different cryogenic thrust chamber developments already performed, Astrium worked out a flexible development strategy for future cryogenic thrust chambers in order to: This paper is going to report about this development strategy and the associated derived needs for technological investigations and development work.

  13. SSME thrust chamber simulation using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.

  14. Emergency Control Aircraft System Using Thrust Modulation

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  15. Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Sagerser, D. R.; Stakolich, E. G.

    1977-01-01

    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust.

  16. Net thrust calculation sensitivity of an afterburning turbofan engine to variations in input parameters

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Ray, R. J.; Walton, J. T.

    1985-01-01

    The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.

  17. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1994-09-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through

  18. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through

  19. Tail thrust of bluefish Pomatomus saltatrix at different buoyancies, speeds, and swimming angles.

    PubMed

    Ogilvy, C S; DuBois, A B

    1982-06-01

    1. The tail thrust of bluefish Pomatomus saltatrix was measured using a body accelerometer at different water speeds, buoyancies, and angles of water flow to determine the contribution of tail thrust in overcoming parasitic drag, induced drag, and weight directed along the track. The lengths and weights of the fish averaged 0.52 m and 1.50 kg respectively. 2. The tail thrust overcoming parasitic drag in Newtons, as measured during neutral buoyancy, was: 0.51 x speed + 0.15, with a standard error of estimate of 0.09 N. 3. When buoyancy was altered by the introduction or removal of air from a balloon implanted in the swim bladder, the tail thrust was altered by an amount of the same order as the value calculated for the induced drag of the pectoral fins. 4. The component of weight directed backward along the track was the weight in water multiplied by the sine of the angle of the swimming tunnel relative to horizontal. When this force was added to the calculated induced drag and tail thrust measured at neutral buoyancy, the rearward force equal to the tail thrust, at 45 ml negative buoyancy, 0.5 m s-1, and 15 degrees head up, was 0.12 N due to weight + 0.05 N due to induced drag + 0.40 N due to parasitic drag = 0.57 N total rearward force. 5. The conditions required for gliding were not achieved in our bluefish because the drag exceeded the component of the weight in water directed forward along the track at speeds above the stalling speed of the pectoral fins.

  20. Method and apparatus for rapid thrust increases in a turbofan engine

    NASA Technical Reports Server (NTRS)

    Cornett, J. E.; Corley, R. C.; Fraley, T. O.; Saunders, A. A., Jr. (Inventor)

    1980-01-01

    Upon a landing approach, the normal compressor stator schedule of a fan speed controlled turbofan engine is temporarily varied to substantially close the stators to thereby increase the fuel flow and compressor speed in order to maintain fan speed and thrust. This running of the compressor at an off-design speed substantially reduces the time required to subsequently advance the engine speed to the takeoff thrust level by advancing the throttle and opening the compressor stators.

  1. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  2. Measurement of Pressure Fluctuations inside a Model Thrust Bearing Using PVDF Sensors

    PubMed Central

    Youssef, Andrew; Matthews, David; Guzzomi, Andrew; Pan, Jie

    2017-01-01

    Thrust bearings play a vital role in propulsion systems. They rely on a thin layer of oil being trapped between rotating surfaces to produce a low friction interface. The “quality” of this bearing affects many things from noise transmission to the ultimate catastrophic failure of the bearing itself. As a result, the direct measure of the forces and vibrations within the oil filled interface would be very desirable and would give an indication of the condition of the bearing in situ. The thickness of the oil film is, however, very small and conventional vibration sensors are too cumbersome to use in this confined space. This paper solves this problem by using a piezoelectric polymer film made from Polyvinylidine Fluoride (PVDF). These films are very thin (50 μm) and flexible and easy to install in awkward spaces such as the inside of a thrust bearing. A model thrust bearing was constructed using a 3D printer and PVDF films inserted into the base of the bearing. In doing so, it was possible to directly measure the force fluctuations due to the rotating pads and investigate various properties of the thrust bearing itself. PMID:28420152

  3. Measurement of Pressure Fluctuations inside a Model Thrust Bearing Using PVDF Sensors.

    PubMed

    Youssef, Andrew; Matthews, David; Guzzomi, Andrew; Pan, Jie

    2017-04-16

    Thrust bearings play a vital role in propulsion systems. They rely on a thin layer of oil being trapped between rotating surfaces to produce a low friction interface. The "quality" of this bearing affects many things from noise transmission to the ultimate catastrophic failure of the bearing itself. As a result, the direct measure of the forces and vibrations within the oil filled interface would be very desirable and would give an indication of the condition of the bearing in situ. The thickness of the oil film is, however, very small and conventional vibration sensors are too cumbersome to use in this confined space. This paper solves this problem by using a piezoelectric polymer film made from Polyvinylidine Fluoride (PVDF). These films are very thin (50 m) and flexible and easy to install in awkward spaces such as the inside of a thrust bearing. A model thrust bearing was constructed using a 3D printer and PVDF films inserted into the base of the bearing. In doing so, it was possible to directly measure the force fluctuations due to the rotating pads and investigate various properties of the thrust bearing itself.

  4. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  5. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2017-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to the eccentric anomaly and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are shown in excess of 1000 revolutions while subject to Earths J2 perturbation and lunar gravity.

  6. Control on frontal thrust progression by the mechanically weak Gondwana horizon in the Darjeeling-Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Das, Animesh

    2018-03-01

    This study integrates field evidence with laboratory experiments to show the mechanical effects of a lithologically contrasting stratigraphic sequence on the development of frontal thrusts: Main Boundary Thrust (MBT) and Daling Thrust (DT) in the Darjeeling-Sikkim Himalaya (DSH). We carried out field investigations mainly along two river sections in the DSH: Tista-Kalijhora and Mahanadi, covering an orogen-parallel stretch of 20 km. Our field observations suggest that the coal-shale dominated Gondwana sequence (sandwiched between the Daling Group in the north and Siwaliks in the south) has acted as a mechanically weak horizon to localize the MBT and DT. We simulated a similar mechanical setting in scaled model experiments to validate our field interpretation. In experiments, such a weak horizon at a shallow depth perturbs the sequential thrust progression, and causes a thrust to localize in the vicinity of the weak zone, splaying from the basal detachment. We correlate this weak-zone-controlled thrust with the DT, which accommodates a large shortening prior to activation of the weak zone as a new detachment with ongoing horizontal shortening. The entire shortening in the model is then transferred to this shallow detachment to produce a new sequence of thrust splays. Extrapolating this model result to the natural prototype, we show that the mechanically weak Gondwana Sequence has caused localization of the DT and MBT in the mountain front of DSH.

  7. Identification of human-generated forces on wheelchairs during total-body extensor thrusts.

    PubMed

    Hong, Seong-Wook; Patrangenaru, Vlad; Singhose, William; Sprigle, Stephen

    2006-10-01

    Involuntary extensor thrust experienced by wheelchair users with neurological disorders may cause injuries via impact with the wheelchair, lead to the occupant sliding out of the seat, and also damage the wheelchair. The concept of a dynamic seat, which allows movement of a seat with respect to the wheelchair frame, has been suggested as a potential solution to provide greater freedom and safety. Knowledge of the human-generated motion and forces during unconstrained extensor thrust events is of great importance in developing more comfortable and effective dynamic seats. The objective of this study was to develop a method to identify human-generated motions and forces during extensor thrust events. This information can be used to design the triggering system for a dynamic seat. An experimental system was developed to automatically track the motions of the wheelchair user using a video camera and also measure the forces at the footrest. An inverse dynamic approach was employed along with a three-link human body model and the experimental data to predict the human-generated forces. Two kinds of experiments were performed: the first experiment validated the proposed model and the second experiment showed the effects of the extensor thrust speed, the footrest angle, and the seatback angle. The proposed method was tested using a sensitivity analysis, from which a performance index was deduced to help indicate the robust region of the force identification. A system to determine human-generated motions and forces during unconstrained extensor thrusts was developed. Through experiments and simulations, the effectiveness and reliability of the developed system was established.

  8. Improving Mastery of Basic Mathematics Facts in Elementary School through Various Learning Strategies.

    ERIC Educational Resources Information Center

    Haught, Laurie; Kunce, Christine; Pratt, Phyllis; Werneske, Roberta; Zemel, Susan

    This report describes the intervention programs used to improve student proficiency in learning, recalling, and retaining basic mathematics facts. The targeted population consisted of first, second, third, and fifth grades in four suburban midwestern schools. The problems of recalling basic mathematics facts is documented through teacher surveys,…

  9. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  10. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.

  11. Two-Dimensional Supersonic Nozzle Thrust Vectoring Using Staggered Ramps

    NASA Astrophysics Data System (ADS)

    Montes, Carlos Fernando

    A novel mechanism for vectoring the thrust of a supersonic, air-breathing engine was analyzed numerically using ANSYS Fluent. The mechanism uses two asymmetrically staggered ramps; one placed at the throat, the other positioned at the exit lip of the nozzle. The nozzle was designed using published flow data, isentropic relationships, and piecewise quartic splines. The design was verified numerically and was in fair agreement with the analytical data. Using the steady-state pressure-based solver, along with the realizable kappa - epsilon turbulence model, a total of eighteen simulations were conducted: three ramp lengths at three angles, using two sets of inlet boundary conditions (non-afterburning and afterburning). The vectoring simulations showed that the afterburning flow yields a lower flow deflection distribution, shown by the calculated average deflection angle and area-weighted integrals of the distributions. The data implies that an aircraft can achieve an average thrust vectoring angle of approximately 30° in a given direction with the longest ramp length and largest ramp angle configuration. With increasing ramp angle, the static pressure across the nozzle inlet increased, causing concern for potential negative effects on the engine's turbine. The mechanism, for which a provisional patent application has been filed, will require further work to investigate the maximum possible thrust vectoring angle, including experiments.

  12. Thrust Belt Architecture of the Central and Southern Western Foothills of Taiwan

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Wiltschko, D.

    2006-12-01

    A structural model of the central and southern Western Foothills Fold and Thrust Belt (WFFTB) was constructed from serial balanced cross sections using available surface, drill, seismic and thermochronologic data. The WFFTB is composed of four main thrust sheets with minor splays. On the east, the Tulungwan fault, which separates the sedimentary rocks of the WFFTB from the low grade meta-sediments of the Slate Belt, evolves from a basement cored fold in the north (around 24°10' N) where the conformable contact between foothills sediments and meta-sediments from the Slate Belt on its western flank is present. At this point the tip of the fault is below the unconformity and the displacement amount is small. To the south this fault breaks the back limb of the fold and gains displacement, and continues gaining displacement to the south. The next thrust sheet to the west includes the Schuantung, Fenghuangchan, Luku, Tatou, Hopiya, and Pingchi faults. This fault system is interpreted as characterized by a long flat with small ramps along a Miocene detachment, not a series of imbricates, as it has been interpreted before. The next thrust sheet to the west is the Chulungupu-Chukou-Lunhou, this system appears to gain displacement to the south as the Schuantung fault system decreases in amount of displacement. The Chulungpu-Chukou-Lunhou fault system contains a wide monocline in the central foothills related with the Chulungpu fault and two wide synclines in the southern part, the Yuching and Tinpligling synclines. Modeling of these two last structures shows that both are uplifted with respect to the regional level above a wide and flat feature; the footwall of the Lunhou fault is a monocline. A geometric solution to lift the Lunhou system involves a major fault-bend-fold anticline with a long ramp and a detachment at ~13 km of depth. It explains, 1) the frontal monocline, which is the from limb of this fault-bend- fold, 2) the minor structures associated with minor back-thrusts

  13. Evaluation of rotating, incompressibly lubricated, pressurized thrust bearings

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1971-01-01

    Program evaluates a series hybrid, fluid film ball bearing consisting of an orifice compensated pressurized thrust bearing in conjunction with a self-acting journal bearing. Oil viscosities corresponding to experimentally measured ball bearing outer-race temperatures were used.

  14. Low-thrust solar electric propulsion navigation simulation program

    NASA Technical Reports Server (NTRS)

    Hagar, H. J.; Eller, T. J.

    1973-01-01

    An interplanetary low-thrust, solar electric propulsion mission simulation program suitable for navigation studies is presented. The mathematical models for trajectory simulation, error compensation, and tracking motion are described. The languages, input-output procedures, and subroutines are included.

  15. Analysis of the gas-lubricated flat-sector-pad thrust bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat sector-shaped pad geometry for a gas-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. It is shown that maximum load capacity is achieved when the pad is tilted so as to create uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves, and a comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  16. Inertia and Couple-Stress Effects in a Curvilinear Thrust Hydrostatic Bearing

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jurczak, P.; Falicki, J.

    2017-08-01

    The flow of a couple-stress lubricant in a clearance of a curvilinear thrust hydrostatic bearing with impermeable walls is considered. The flow in the bearing clearance is considered with inertia forces. The equations of motion are solved by an averaged inertia method. As a result, the formulae for pressure distributions without and with inertia effects were obtained. Radial thrust bearings and spherical bearings are discussed as numerical examples. It is shown that inertia effects influence the bearing performance considerably.

  17. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  18. Variable shortening on the Main Frontal Thrust in Nepal

    NASA Astrophysics Data System (ADS)

    Almeida, R. V.; Hubbard, J.; Lee, Y. S.; Liberty, L. M.; Paudel, L.; Shrestha, A.; Sapkota, S. N.; Joshi, G.

    2017-12-01

    The Main Frontal Thrust (MFT) is the youngest, most active, and southernmost thrust system in the Himalaya. It is located in the footwall of the Main Boundary thrust (MBT), deforming Miocene to Pliocene age Siwalik Group rocks. Although often considered a single, continuous fault, in reality as many as four subparallel faults, spaced 5-30 km apart, make up this fault system. Estimates of total shortening across the MFT for eastern and central Nepal vary from 15 to 40 km, based on cross-sections and surface measurements. However, when the same methods are applied, shortening does not vary significantly along strike (Hirschmiller et al., 2014), suggesting contrasting methodologies rather than a difference in interpreted along strike structural history. Based on high resolution seismic reflection imaging, we present new interpretations of total shortening recorded by the MFT system in central vs. eastern Nepal (200 km apart), together with a detailed transect of field observations in central Nepal. Our structural interpretations demonstrate that the geological shortening recorded on the MFT ranges from >20 km in central Nepal to <1 km in far eastern Nepal. Geodetic measurements show only a slight decrease in interseismic convergence from central (15±1 mm/yr) to eastern Nepal (14±1 mm/yr) and therefore cannot explain this dramatic difference (Lindsey et al., in prep). Taken at face value, these results imply that the MBT must have been much more recently active in eastern Nepal ( 70 ka) than central Nepal ( 1.4 Ma). We propose an alternative model that does not require this dramatic difference in the age of the MFT. As one end-member, it is indeed possible that the MFT may have broken forward much more recently in the east. However, it is also possible that older MFT thrust sheets have formed, and then have been consumed as the MBT passively slid south in the hanging wall of the MFT. Distinguishing between these models is important not only for understanding the

  19. An Experimental/Modeling Study of Jet Attachment during Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Strykowski, Paul J.

    1997-01-01

    Recent studies have shown the applicability of vectoring rectangular jets using asymmetrically applied counterflow in the presence of a short collar. This novel concept has applications in the aerospace industry where counterflow can be used to vector the thrust of a jet's exhaust, shortening take-off and landing distances and enhancing in-flight maneuverability of the aircraft. Counterflow thrust vectoring, 'CFTV' is desirable due to its fast time response, low thrust loss, and absence of moving parts. However, implementation of a CFTV system is only possible if bistable jet attachment can be prevented. This can be achieved by properly designing the geometry of the collar. An analytical model is developed herein to predict the conditions under which a two-dimensional jet will attach to an offset curved wall. Results from this model are then compared with experiment; for various jet exit Mach numbers, collar offset distances, and radii of curvature. Their excellent correlation permits use of the model as a tool for designing a CFTV system.

  20. Kink detachment fold in the southwest Montana fold and thrust belt

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael M.; Woodward, Nicholas B.

    1988-02-01

    The Hossfeldt anticline in the southwest Montana thrust belt is characterized by a kink geometry and probably overlies a thrust detachment at depth. The mesofabric distribution in the limbs documents that the eastern overturned limb has undergone most of the rotation and internal deformation during folding, leaving the gently dipping western limb virtually undeformed. The anticline exhibits unique mesofabrics in its hinge region that require a pinned anticlinal hinge during its evolution. The half-wavelength of the Hossfeldt anticline-Eustis syncline pair coincides with that predicted from buckling theory, if one considers the massive carbonates of the Paleozoic section as a competent beam. Although the geometry and mesofabric distribution of the Hossfeldt anticline satisfy the geometric requirements of either a fault-propagation fold or a detachment kink fold, the buckling wavelength strongly suggests that its origin was as a kink-buckle fold above a flat detachment rather than as a fault-propagation fold above a thrust ramp.

  1. Aseismic deformation of a fold-and-thrust belt imaged by SAR interferometry near Shahdad, southeast Iran

    NASA Technical Reports Server (NTRS)

    Fielding, Eric J.; Wright, Tim J.; Muller, Jordan; Parsons, Barry E.; Walker, Richard

    2004-01-01

    At depth, many fold-and-thrust belts are composed of a gently dipping, basal thrust fault and steeply dipping, shallower splay faults that terminate beneath folds at the surface. Movement on these buried faults is difficult to observe, but synthetic aperture radar (SAR) interferometry has imaged slip on at least 600 square kilometers of the Shahdad basal-thrust and splay-fault network in southeast Iran.

  2. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  3. Task 12 data dump (phase 2) OME integrated thrust chamber test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.; Pauckert, R. P.

    1974-01-01

    The characteristics and performance of the orbit maneuvering engine for the space shuttle are discussed. Emphasis is placed on the regeneratively cooled thrust chamber of the engine. Tests were conducted to determine engine operating parameters during the start, shutdown, and restart. Characteristics of the integrated thrust chamber and the performance and thermal conditions for blowdown operation without supplementary boundary layer cooling were investigated. The results of the test program are presented.

  4. Quaternary Deformation Constrained by River Terraces across the Longmen Shan Fold-and-Thrust Belt, Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Jiang, D., Sr.; Ding, R.; Li, W.; Gomez, F. G.

    2017-12-01

    The Longmen Shan is known for both the steep topography and the absence of Cenozoic foreland deposition. The 2008 Wenchuan Mw 7.9 earthquake, which ruptured the thrust faults along the range front, inspires vigorous debates about topography origin and seismic hazard. Two end-member models, crustal shortening and lower crustal flow, have been proposed. However, both of them need further verification. The Minjiang river and the Qingyijiang river run through the middle and the southern Longmen Shan respectively, which make it possible to study the strain distribution by relict river terraces. Longitudinal profiles of river terraces were restored by detailed field survey, high-precision measurement, sediment dating and chemical analyses. Deformed fluvial terraces shows that most thrust faults are active in the late Quaternary, and crust shortening dominates the fold-and-thrust belt, but the strain distributions are quite different between the south and north segments. In the north, thrust slips are mainly accommodated along the range front, the crustal shortening rate is 1.4 to 2.0 mm/yr, and only 25% of crust shortening are absorbed by the foreland. In the south, thrust slips are distributed among the thrust belt, the crustal shortening rate is 2.9 to 4.6mm/yr, and up to 83% of crustal shortening are absorbed by the foreland. Compared with other margins of the Tibetan Plateau, the Longmen Shan has much narrower thrust belt and nappe. The Himalayas, the Karakoram and the Qilian Shan thrust nappes are about 3 to 5 times wider than the Longmen Shan. However, all of these belts have comparable elevations above their foreland, respectively. Comparable altitude difference distributed across a narrow belt makes a greater topographic relief in the Longmen Shan, where narrow thrust nappe exerts less tectonic loading on the footwall which doesn't favor the formation of foreland basin. Our research results favor the model of crustal shortening, and reveal that all basement

  5. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.

    PubMed

    Nguyen, Tuan Anh; Vu Phan, Hoang; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-06-20

    This experimental study investigates the effect of three parameters: wing aspect ratio (AR), wing offset, and flapping frequency, on thrust generation and power consumption of a flapping-wing system based on a rack-pinion mechanism. The new flapping-wing system is simple but robust, and is able to create a large flapping amplitude. The thrust measured by a load cell reveals that for a given power, the flapping-wing system using a higher wing AR produces larger thrust and higher flapping frequency at the wing offset of 0.15[Formula: see text] or 0.20[Formula: see text] ([Formula: see text] is the mean chord) than other wing offsets. Of the three parameters, the flapping frequency plays a more significant role on thrust generation than either the wing AR or the wing offset. Based on the measured thrusts, an empirical equation for thrust prediction is suggested, as a function of wing area, flapping frequency, flapping angle, and wing AR. The difference between the predicted and measured thrusts was less than 7%, which proved that the empirical equation for thrust prediction is reasonable. On average, the measured power consumption to flap the wings shows that 46.5% of the input power is spent to produce aerodynamic forces, 14.0% to overcome inertia force, 9.5% to drive the rack-pinion-based flapping mechanism, and 30.0% is wasted as the power loss of the installed motor. From the power analysis, it is found that the wing with an AR of 2.25 using a wing offset of 0.20[Formula: see text] showed the optimal power loading in the flapping-wing system. In addition, the flapping frequency of 25 Hz is recommended as the optimal frequency of the current flapping-wing system for high efficiency, which was 48.3%, using a wing with an AR of 2.25 and a wing offset of 0.20[Formula: see text] in the proposed design.

  6. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  7. Study of supersonic wings employing the attainable leading-edge thrust concept

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.

    1982-01-01

    A theoretical study was made of supersonic wing geometries at Mach 1.8, using the attainable leading-edge thrust concept. The attainable thrust method offers a powerful means to improve overall aerodynamic efficiency by identifying wing leading-edge geometries that promote attached flow and by defining a local angle-of-attack range over which attached flow may be obtained. The concept applies to flat and to cambered wings, which leads to the consideration of drooped-wing leading edges for attached flow at high lift coefficients.

  8. Neotectonics and structure of the Himalayan deformation front in the Kashmir Himalaya, India: Implication in defining what controls a blind thrust front in an active fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Gavillot, Y. G.; Meigs, A.; Yule, J. D.; Rittenour, T. M.; Malik, M. O. A.

    2014-12-01

    Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and most-recently accreted foreland basin. In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline (SMA), and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the SMA hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Muree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggest that rock uplift rates across the SMA range between 2.0-1.8 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rate across the SMA ranges between 4.4-3.8 mm/yr since ~53 ka. Of that rate, ~1 mm/yr is likely absorbed by minor faulting in the near field of the fold axis. Given that Himalaya-India convergence is ~18.8-11 mm/yr, internal faults north of the deformation front, such as the Riasi thrust absorbs more of the Himalayan shortening than does the HFT in Kashmir. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir, in which the thick succession

  9. Back-thrusting in Lesser Himalaya: Evidences from magnetic fabric studies in parts of Almora crystalline zone, Kumaun Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    Agarwal, Amar; Agarwal, K. K.; Bali, R.; Prakash, Chandra; Joshi, Gaurav

    2016-06-01

    The present study aims to understand evolution of the Lesser Himalaya, which consists of (meta) sedimentary and crystalline rocks. Field studies, microscopic and rock magnetic investigations have been carried out on the rocks near the South Almora Thrust (SAT) and the North Almora Thrust (NAT), which separates the Almora Crystalline Zone (ACZ) from the Lesser Himalayan sequences (LHS). The results show that along the South Almora Thrust, the deformation is persistent; however, near the NAT deformation pattern is complex and implies overprinting of original shear sense by a younger deformational event. We attribute this overprinting to late stage back-thrusting along NAT, active after the emplacement of ACZ. During this late stage back-thrusting, rocks of the ACZ and LHS were coupled. Back-thrusts originated below the Lesser Himalayan rocks, probably from the Main Boundary Thrust, and propagated across the sedimentary and crystalline rocks. This study provides new results from multiple investigations, and enhances our understanding of the evolution of the ACZ.

  10. Optimal low thrust geocentric transfer. [mission analysis computer program

    NASA Technical Reports Server (NTRS)

    Edelbaum, T. N.; Sackett, L. L.; Malchow, H. L.

    1973-01-01

    A computer code which will rapidly calculate time-optimal low thrust transfers is being developed as a mission analysis tool. The final program will apply to NEP or SEP missions and will include a variety of environmental effects. The current program assumes constant acceleration. The oblateness effect and shadowing may be included. Detailed state and costate equations are given for the thrust effect, oblateness effect, and shadowing. A simple but adequate model yields analytical formulas for power degradation due to the Van Allen radiation belts for SEP missions. The program avoids the classical singularities by the use of equinoctial orbital elements. Kryloff-Bogoliuboff averaging is used to facilitate rapid calculation. Results for selected cases using the current program are given.

  11. Flow measurement and thrust estimation of a vibrating ionic polymer metal composite

    NASA Astrophysics Data System (ADS)

    Chae, Woojin; Cha, Youngsu; Peterson, Sean D.; Porfiri, Maurizio

    2015-09-01

    Ionic polymer metal composites (IPMCs) are an emerging class of soft active materials that are finding growing application as underwater propulsors for miniature biomimetic swimmers. Understanding the hydrodynamics generated by an IPMC vibrating under water is central to the design of such biomimetic swimmers. In this paper, we propose the use of time-resolved particle image velocimetry to detail the fluid kinematics and kinetics in the vicinity of an IPMC vibrating along its fundamental structural mode. The reconstructed pressure field is ultimately used to estimate the thrust produced by the IPMC. The vibration frequency is systematically varied to elucidate the role of the Reynolds number on the flow physics and the thrust production. Experimental results indicate the formation and shedding of vortical structures from the IPMC tip during its vibration. Vorticity shedding is sustained by the pressure gradients along each side of the IPMC, which are most severe in the vicinity of the tip. The mean thrust is found to robustly increase with the Reynolds number, closely following a power law that has been derived from direct three-dimensional numerical simulations. A reduced order distributed model is proposed to describe IPMC underwater vibration and estimate thrust production, offering insight into the physics of underwater propulsion and aiding in the design of IPMC-based propulsors.

  12. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  13. Stick-slip as a monitor of rates, states and frictional properties along thrusts in sand wedges

    NASA Astrophysics Data System (ADS)

    Rosenau, Matthias; Santimano, Tasca; Ritter, Malte; Oncken, Onno

    2014-05-01

    We developed a sandbox setup which allows monitoring the push of the moving backwall indenting a layer of sand. Depending on the ratio between indenter compliancy versus strain weakening of the granular material, wedge deformation shows unstable slip marked by force drops of various sizes and at multiple temporal scales. Basically we observe long-period slip instabilities related to strain localization during the formation of new thrusts, intermediate-period slip instabilities related to reactivation of existing thrusts and short-period slip instabilities related to the stick-slip mechanism of slip accumulation along "seismic" faults. Observed stick-slip is characterized by highly correlated size and frequency ("regular stick-slip") and is sensitive to integrated normal load, slip rate and frictional properties along the active thrust(s). By independently constraining the frictional properties using a ring-shear tester, we infer the integrated normal loads on the active faults from the stick-slip events and benchmark the results against a model calculating the normal loads from the wedge geometry. This way we are able to monitor rates, states and frictional properties along thrusts in sand wedges at unprecedented detail. As an example of application, a kinematic analysis of the stick slip events in the sandbox demonstrates how slip rates along thrusts vary systematically within accretion cycles although the kinematic boundary condition is stationary. Accordingly transient fault slip rates may accelerate up to twice the long-term convergence rate during formation of new thrusts and decelerate in the post-thrust formation stage in a non-linear way. Applied to nature this suggests that fault slip rate variations at the thousand-year time scale might be attributable to the elasticity of plates and material weakening rather than changes in plate velocities.

  14. Variable thrust/specific-impulse of multiplexed electrospray microthrusters

    NASA Astrophysics Data System (ADS)

    Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.

    We report on the development of a single-propellant ElectroSpray (ES) microthruster able to: (a) cover a wide range of specific impulse (Isp) and thrust at high propulsion efficiency, and (b) provide macroscopic thrust via micro-fabricated emitter arrays. The electrospray is a mature technology for the emission of fast nanodroplets at a propulsive efficiency larger than 50% over the full Isp range. The size of the droplets depends on the propellant flow rate and the physical properties of the electrolyte, especially the electric conductivity. To achieve a useful thrust one needs to multiplex the ES by operating many in parallel, which we achieve via silicon microfabrication of arrays of multiple and identical nozzles. The Multiplexed Electrospray (MES) micro-thruster is composed mainly of two electrodes: a nozzle-array and an extractor electrode, between which the electric field needed to form the ES is established. We tested nozzle arrays with up to 37 capillaries, that are spaced 1mm apart, with ID/OD = 10/30μ m. The capillaries are filled with 2.01μ m silicon dioxide beads to increase the hydraulic impedance and ensure uniform flow rate through the different emitters. A third electrode (accelerator) is mounted downstream the extractor to accelerate the droplets, thereby increasing the microthruster performance. The system is packaged in an alumina casing for electrical insulation and propellant feed. Tests run in a vacuum chamber at a pressure ≤ 10-5 mbar demonstrated reliable operation for several hours with a relatively high beam energy of 7.56kV. The 37-nozzle MES device was tested with the ionic liquid ethylammonium nitrate (EAN), at estimated total flow rates between 1.2 and 14 μ L/h, emitted currents between 14.2 and 23.0 μ A, specific impulse ranging between 710 and 1930s, and thrust ranging between 7.5 and 33 μ N. EAN is well suited to cover a relatively broad range of charge/mass- at an average propulsion efficiency of 66%. With further scale

  15. Tensile overpressure compartments on low-angle thrust faults

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2017-08-01

    Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of

  16. Paleomagnetic evidence for rapid vertical-axis rotations during thrusting in an active collision zone, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter D.; Coe, Robert S.

    1997-06-01

    A paleomagnetic study of three thrust sheets of the fold and thrust belt north of the Ramu-Markham Fault Zone (RMFZ) indicates very rapid vertical-axis rotations, with differential declination anomalies related to tectonic transport of thrust units. Data from this investigation indicate depositional ages straddling the Brunhes-Matuyama reversal (780 ka) for the Leron Formation in Erap Valley. Net counterclockwise, vertical-axis rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. These rotations appear to be kinematically related to shear across a tear fault within the foreland fold and thrust belt of the colliding Finisterre Arc, which in turn is aligned with and may be structurally controlled by a major fault in the lower plate. These data indicate that vertical-axis rotations occurred during thrusting; consequently, the actual rotation rate is likely several times higher than the calculated minimum rate. Such very rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility data yields foliated fabrics with subordinate, well-grouped lineations that differ markedly in azimuth in the three thrust sheets. The susceptibility lineations are rendered parallel by the same bedding-perpendicular rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. The restored lineations are perpendicular to the direction of tectonic transport, and the minimum susceptibility axes are streaked perpendicular to the lineation. We interpret these anisotropy of magnetic susceptibility data as primary sedimentary fabrics modified by weak strain accompanying foreland thrusting.

  17. Modeling and Thrust Optimization of a Bio-Inspired Pulsatile Jet Thruster

    NASA Astrophysics Data System (ADS)

    Krieg, Michael W.

    A new type of thruster technology offers promising low speed maneuvering capabilities for underwater vehicles. Similar to the natural locomotion of squid and jellyfish the thruster successively forces fluid jets in and out of a small internal cavity. We investigate several properties of squid and jellyfish locomotion to drive the thruster design including actuation of nozzle geometry and vortex ring thrust augmentation. The thrusters are compact with no extruding components to negatively impact the vehicle's drag. These devices have thrust rise-times orders of magnitude faster than those reported for typical propeller thrusters, making them an attractive option for high accuracy underwater vehicle maneuvering. The dynamics of starting jet circulation, impulse, and kinetic energy are derived in terms of kinematics at the entrance boundary of a semi-infinite domain, specifically identifying the effect of a non-parallel incoming flow. A model for pressure at the nozzle is derived without the typical reliance on a predetermined potential function, making it a powerful tool for modeling any jet flow. Jets are created from multiple nozzle configurations to validate these models, and velocity and vorticity fields are determined using DPIV techniques. A converging starting jet resulted in circulation 90--100%, impulse 70--75%, and energy 105--135% larger than a parallel starting jet with identical volume flux and piston velocity, depending on the stroke ratio. The new model is a much better predictor of the jet properties than the standard 1D slug model. A simplified thrust model, was derived to describe the high frequency thruster characteristics. This model accurately predicts the average thrust, measured directly, for stroke ratios up to a critical value where the leading vortex ring separates from the remainder of the shear flow. A new model predicting the vortex ring pinch-off process is developed based on characteristic centerline velocities. The vortex ring pinch

  18. Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Zhu, Yongsheng; Wang, Yukai

    2014-02-01

    Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.

  19. Lateral thrust of anterior cruciate ligament-insufficient knees and posterior cruciate ligament-insufficient knees.

    PubMed

    Yoshimura, Ichiro; Naito, Masatoshi; Zhang, Jingfan

    2002-01-01

    Leaving anterior cruciate ligament (ACL) insufficiency and posterior cruciate ligament (PCL) insufficiency untreated frequently leads to osteoarthritis (OA). The purpose of this study was to evaluate dynamically the lateral thrust of ACL-insufficient knees and PCL-insufficient knees, and from the findings investigate the relationship between cruciate ligament insufficiency and OA occurrence. An acceleration sensor was attached to the affected and control anterior tibial tubercles, acting in medial-lateral and perpendicular directions. The lateral thrust immediately after heel strike was measured continuously by a telemeter under stabilised walking conditions. When compared to the contralateral healthy knee, the peak value of lateral acceleration immediately after heel strike was significantly larger in the ACL-insufficient knee; and lateral thrust was increased, but not significantly, in the PCL-insufficient knee. Given that lateral thrust of the knee during walking increases due to ACL or PCL injury, it may be a principal contributor to OA progression.

  20. Synorogenic crustal fluid infiltration in the Idaho-Montana Thrust Belt

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.; Anastasio, David J.; Holl, James E.

    Mississippian carbonates in the Sevier thrust belt in Idaho-Montana show shifts in δ18OV-SMOW, from marine carbonate values to as low as +11‰, which are best explained by exchange with externally-derived, low-δ18O fluids. Late-stage, synkinematic calcite veins are depleted in 18O relative to the host-rocks and earlier-formed veins, many having δ18O of +5 to +10‰. These veins could have equilibrated with H2O with δ18O of -7.5 to +2.5‰, perhaps reflecting infiltration of the Sevier thrust wedge by nearshore meteoric waters to depths of ˜10 km. Calcite veins in the hangingwall and footwall of the Pioneer Metamorphic Core Complex, produced during later Paleogene extension, have δ18O of -8.7 to +1.4‰ consistent with equilibration with meteoric waters with δ18O as low as -14‰. Transition from a Cretaceous crustal fluid regime influenced by the nearby Western Interior Seaway to one influenced by lower-δ18O, more inland meteoric waters is consistent with seaway retreat during thrust wedge emergence and Paleogene uplift and subaerial volcanism.