Sample records for targeting c-src phosphorylation

  1. CHLAMYDIA TRACHOMATIS TARP IS PHOSPHORYLATED BY SRC FAMILY TYROSINE KINASES

    PubMed Central

    Jewett, Travis J.; Dooley, Cheryl A.; Mead, David J.; Hackstadt, Ted

    2008-01-01

    The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells. PMID:18442471

  2. Src kinase regulation by phosphorylation and dephosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roskoski, Robert

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shownmore » to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.« less

  3. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium.

    PubMed

    Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani

    2015-12-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.

  4. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium

    PubMed Central

    Palanisamy, Arun P.; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D.; Kuppuswamy, Dhandapani

    2017-01-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src’s adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24–48 h PO myocardium. Our studies indicate that c-Src’s adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. PMID:25976166

  5. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability.

    PubMed

    Huang, Yu; He, Qing

    2017-06-01

    The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tyrosine phosphorylation of P-selectin in intact platelets and in a disulphide-linked complex with immunoprecipitated pp60c-src.

    PubMed Central

    Modderman, P W; von dem Borne, A E; Sonnenberg, A

    1994-01-01

    P-selectin is a 140 kDa membrane glycoprotein found in secretory granules of platelets and endothelial cells where it is rapidly translocated to the plasma membrane upon cell activation. It then functions as a receptor for various types of leucocytes. Metabolic labelling of resting platelets with 32Pi showed that P-selectin is primarily phosphorylated on serine residues, although some tyrosine phosphorylation was observed as well. However, tyrosine phosphorylation of P-selectin was greatly stimulated by treatment with the permeating phosphatase inhibitor, pervanadate. When P-selectin immunoprecipitates were incubated with [gamma-32P]ATP (in vitro kinase assay), a fraction of P-selectin was phosphorylated on its tyrosine residues by a co-precipitated kinase. P-selectin phosphorylated in vitro co-migrated with 140 kDa surface-labelled 125I-P-selectin during SDS/PAGE under reducing conditions. Under non-reducing conditions, however, phosphorylated P-selectin was disulphide-linked to unknown protein(s) in a 205 kDa complex. In vitro kinase assays of the most abundant platelet tyrosine kinase, pp60c-src, demonstrated the presence of similar 140 and 205 kDa phosphorylated proteins in SDS/PAGE under reducing and non-reducing conditions respectively. Extraction and reprecipitation studies with proteins phosphorylated in vitro indicated that P-selectin and pp60c-src form a 205 kDa 1:1 disulphide-linked complex. In the complex, pp60c-src autophosphorylation is inhibited and P-selectin is phosphorylated on tyrosine residues. As protein disulphides in the cytoplasm of intact cells are extremely rare, our results suggest that P-selectin and pp60c-src, which co-localize in platelet dense granules, may be non-covalently associated and spontaneously form disulphide bridges during lysis. In addition, the observed tyrosine phosphorylation of P-selectin in intact platelets suggests that its function might be regulated by phosphorylation by pp60c-src. Images Figure 1 Figure 2 Figure 3

  7. Locking the Active Conformation of c-Src Kinase through the Phosphorylation of the Activation Loop

    PubMed Central

    Meng, Yilin; Roux, Benoît

    2013-01-01

    Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexiblity of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially “locks” the kinase into its catalytically competent conformation. PMID:24103328

  8. Variant estrogen receptor-c-Src molecular interdependence and c-Src structural requirements for endothelial NO synthase activation.

    PubMed

    Li, Lei; Hisamoto, Koji; Kim, Kyung Hee; Haynes, M Page; Bauer, Philip M; Sanjay, Archana; Collinge, Mark; Baron, Roland; Sessa, William C; Bender, Jeffrey R

    2007-10-16

    Little is known about the tyrosine kinase c-Src's function in the systemic circulation, in particular its role in arterial responses to hormonal stimuli. In human aortic and venous endothelial cells, c-Src is indispensable for 17beta-estradiol (E2)-stimulated phosphatidylinositol 3-kinase/Akt/endothelial NO synthase (eNOS) pathway activation, a possible mechanism in E2-mediated vascular protection. Here we show that c-Src supports basal and E2-stimulated NO production and is required for E2-induced vasorelaxation in murine aortas. Only membrane c-Src is structurally and functionally involved in E2-induced eNOS activation. Independent of c-Src kinase activity, c-Src is associated with an N-terminally truncated estrogen receptor alpha variant (ER46) and eNOS in the plasma membrane through its "open" (substrate-accessible) conformation. In the presence of E2, c-Src kinase is activated by membrane ER46 and in turn phosphorylates ER46 for subsequent ER46 and c-Src membrane recruitment, the assembly of an eNOS-centered membrane macrocomplex, and membrane-initiated eNOS activation. Overall, these results provide insights into a critical role for the tyrosine kinase c-Src in estrogen-stimulated arterial responses, and in membrane-initiated rapid signal transduction, for which obligate complex assembly and localization require the c-Src substrate-accessible structure.

  9. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling

    PubMed Central

    Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary

    2014-01-01

    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905

  10. 1α,25(OH)2-Vitamin D3 Inhibits C2C12 Cell Differentiation by Activating c-Src and ERK1/2.

    PubMed

    Wang, Zhonghua; Jiang, Aijun; Mei, Jingwei; Zhang, Xinyan

    2018-05-01

    The steroid hormone 1α,25(OH)2-vitamin D3 (1,25-D3) induced some biological responses through activation of MAPK cascades in various cell types. It seems that 1,25-D3 plays different roles at different stages of proliferating, differentiating, and differentiated C2C12 cells. We wanted to detect the effect of 1,25-D3 on myogenic differentiation and the role of ERK1/2 in differentiating stage induced by 2% horse serum with 1,25-D3. In this study, cells were induced to differentiate with 2% horse serum until the 7th day (with addition of 1,25-D3 every two days). The protein level of MHC (myosin heavy chain) and phosphorylation level of Src and ERK1/2 were determined with western blot. U0126 (MEK inhibitor) and PP2 (Src specific inhibitor) were used to confirm the relationship between 1,25-D3, MHC, Src, and ERK1/2. 1,25-D3 inhibited differentiation of C2C12 cells and fusion of myotubes by phosphorylating and activating Src and ERK1/2. Phosphorylation of ERK1/2 was inhibited, not only by U0126 but also by PP2 (a Src specific inhibitor) which led to the promotion of differentiation of C2C12 cells; however, U0126 did not inhibit Src phosphorylation. These results suggested that 1,25-D3 possibly inhibited C2C12 differentiation through Src and ERK1/2, and Src played an upstream role in this signaling pathway.

  11. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    PubMed

    Schlaepfer, D D; Hunter, T

    1996-10-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.

  12. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

    PubMed

    Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A

    2005-08-05

    The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

  13. Targeting Src in Mucinous Ovarian Carcinoma

    PubMed Central

    Matsuo, Koji; Nishimura, Masato; Bottsford-Miller, Justin N.; Huang1, Jie; Komurov, Kakajan; Armaiz-Pena, Guillermo N.; Shahzad, Mian M. K.; Stone, Rebecca L.; Roh, Ju Won; Sanguino, Angela M.; Lu, Chunhua; Im, Dwight D.; Rosenshien, Neil B.; Sakakibara, Atsuko; Nagano, Tadayoshi; Yamasaki, Masato; Enomoto, Takayuki; Kimura, Tadashi; Ram, Prahlad T.; Schmeler, Kathleen M.; Gallick, Gary E.; Wong, Kwong K.; Frumovitz, Michael; Sood, Anil K.

    2014-01-01

    PURPOSE Mucinous ovarian carcinomas have a distinct clinical pattern compared to other subtypes of ovarian carcinoma. Here, we evaluated (i) stage-specific clinical significance of mucinous ovarian carcinomas in a large cohort and (ii) the functional role of src kinase in pre-clinical models of mucinous ovarian carcinoma. EXPERIMENTAL DESIGN 1302 ovarian cancer patients including 122 (9.4%) cases of mucinous carcinoma were evaluated for survival analyses. Biological effects of src kinase inhibition were tested in a novel orthotopic mucinous ovarian cancer model (RMUG-S-ip2) using dasatinib-based therapy. RESULTS Patients with advanced-stage mucinous ovarian cancer had significantly worse survival compared to those with serous histology: median overall survival, 1.67 versus 3.41 years, p=0.002; and median survival time after recurrence of 0.53 versus 1.66 years, p<0.0001. Among multiple ovarian cancer cell lines, RMUG-S-ip2 mucinous ovarian cancer cells showed the highest src kinase activity. Moreover, oxaliplatin treatment induced phosphorylation of src kinase. This induced activity by oxaliplatin therapy was inhibited by concurrent administration of dasatinib. Targeting src with dasatinib in vivo showed significant anti-tumor effects in the RMUG-S-ip2 model, but not in the serous ovarian carcinoma (SKOV3-TR) model. Combination therapy of oxaliplatin with dasatinib further demonstrated significant effects on reducing cell viability, increasing apoptosis, and in vivo anti-tumor effects in the RMUG-S-ip2 model. CONCLUSIONS Our results suggest that poor survival of women with mucinous ovarian carcinoma is associated with resistance to cytotoxic therapy. Targeting src kinase with combination of dasatinib and oxaliplatin may be an attractive approach in this disease. PMID:21737505

  14. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon

    PubMed Central

    Wang, Zhe; Yan, Wei; Sun, Huimin; Xue, Peipei; Fan, Xiaoming; Zeng, Xiaoyu; Chen, Juan; Shao, Chen; Zhu, Feng

    2016-01-01

    T-LAK cell-originated protein kinase (TOPK), a serine/threonine protein kinase, is highly expressed in a variety of tumors and associated with a poor prognosis of human malignancies. However, the activation mechanism of TOPK is still unrevealed. Herein, first we found that Src directly bound with and phosphorylated TOPK at Y74 and Y272 in vitro. Anti-phospho-TOPK at Y74 was prepared, the endogenous phosphorylation of TOPK at Y74 was detected in colon cancer cells, and the phosphorylation was inhibited in cells expressing low levels of Src. Subsequently, we stably transfected Y74 and Y272 double mutated TOPK (TOPK-FF) into JB6 or SW480 cells, and observed that both the anchorage-independent growth ability and tumorigenesis of TOPK-FF cells were suppressed compared with those of wild type TOPK (TOPK-WT) ex vivo and in vivo. The phosphorylation level of TOPK substrate, Histone H3 at Ser10 also decreased dramatically ex vivo or in vivo. Moreover, we showed that Src could inhibit the ubiquitination of TOPK. Transiently expressed TOPK-WT was more stable than TOPK-FF in pause and chase experiment. Endogenous TOPK was more stable in Src wild type (Src+/+) MEFs than in Src knockout (Src−/−). Taken together, our results indicate that Src is a novel upstream kinase of TOPK. The phosphorylation of TOPK at Y74 and Y272 by Src increases the stability and activity of TOPK, and promotes the tumorigenesis of colon cancer. It may provide opportunities for TOPK based prognosis and targeted therapy for colon cancer patients. PMID:27016416

  15. Differential effects of phosphotyrosine phosphatase expression on hormone-dependent and independent pp60c-src activity.

    PubMed

    Way, B A; Mooney, R A

    1994-10-26

    pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.

  16. The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis.

    PubMed

    Imamura, Keiko; Izumi, Yuishin; Watanabe, Akira; Tsukita, Kayoko; Woltjen, Knut; Yamamoto, Takuya; Hotta, Akitsu; Kondo, Takayuki; Kitaoka, Shiho; Ohta, Akira; Tanaka, Akito; Watanabe, Dai; Morita, Mitsuya; Takuma, Hiroshi; Tamaoka, Akira; Kunath, Tilo; Wray, Selina; Furuya, Hirokazu; Era, Takumi; Makioka, Kouki; Okamoto, Koichi; Fujisawa, Takao; Nishitoh, Hideki; Homma, Kengo; Ichijo, Hidenori; Julien, Jean-Pierre; Obata, Nanako; Hosokawa, Masato; Akiyama, Haruhiko; Kaneko, Satoshi; Ayaki, Takashi; Ito, Hidefumi; Kaji, Ryuji; Takahashi, Ryosuke; Yamanaka, Shinya; Inoue, Haruhisa

    2017-05-24

    Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 ( SOD1 ). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein ( TDP-43 ) or repeat expansions in C9orf72 Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS. Copyright © 2017, American Association for the Advancement of Science.

  17. Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo.

    PubMed

    Gomes, Evan G; Connelly, Sarah F; Summy, Justin M

    2013-07-01

    Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.

  18. EF24 Suppresses Invasion and Migration of Hepatocellular Carcinoma Cells In Vitro via Inhibiting the Phosphorylation of Src

    PubMed Central

    Tin, Lamtin; Wu, Yiqi; Jin, Yinji; Jin, Xiaoming; Zhang, Fengmin

    2016-01-01

    Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC. PMID:27999817

  19. EF24 Suppresses Invasion and Migration of Hepatocellular Carcinoma Cells In Vitro via Inhibiting the Phosphorylation of Src.

    PubMed

    Zhao, Ran; Tin, Lamtin; Zhang, Yuhua; Wu, Yiqi; Jin, Yinji; Jin, Xiaoming; Zhang, Fengmin; Li, Xiaobo

    2016-01-01

    Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC.

  20. HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with β-arrestin2.

    PubMed

    Qi, Shimei; Xin, Yinqiang; Qi, Zhilin; Xu, Yimiao; Diao, Ying; Lan, Lei; Luo, Lan; Yin, Zhimin

    2014-03-01

    Heat shock protein 27 (HSP27) regulates critical cellular functions such as development, differentiation, cell growth and apoptosis. A variety of stimuli induce the phosphorylation of HSP27, which affects its cellular functions. However, most previous studies focused on the role of HSP27 protein itself in apoptosis, the particular role of its phosphorylation state in signaling transduction remains largely unclear. In the present study, we reported that HSP27 phosphorylation modulated TRAIL-triggered pro-survival signaling transduction. In HeLa cells, suppression of HSP27 phosphorylation by specific inhibitor KRIBB3 or MAPKAPK2 (MK2) knockdown and by overexpression of non-phosphorylatable HSP27(3A) mutant demonstrated that hindered HSP27 phosphorylation enhanced the TRAIL-induced apoptosis. In addition, reduced HSP27 phosphorylation by KRIBB3 treatment or MK2 knockdown attenuated the TRAIL-induced activation of Akt and ERK survival signaling through suppressing the phosphorylation of Src. By overexpression of HSP27(15A) or HSP27(78/82A) phosphorylation mutant, we further showed that phosphorylation of HSP27 at serine 78/82 residues was essential to TRAIL-triggered Src-Akt/ERK signaling transduction. Co-immunoprecipitation and confocal microscopy showed that HSP27 interacted with Src and scaffolding protein β-arrestin2 in response of TRAIL stimulation and suppression of HSP27 phosphorylation apparently disrupted the TRAIL-induced interaction of HSP27 and Src or interaction of HSP27 and β-arrestin2. We further demonstrated that β-arrestin2 mediated HSP27 action on TRAIL-induced Src activation, which was achieved by recruiting signaling complex of HSP27/β-arrestin2/Src in response to TRAIL. Taken together, our study revealed that HSP27 phosphorylation modulates TRAIL-triggered activation of Src-Akt/ERK pro-survival signaling via interacting with β-arrestin2 in HeLa cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Src Family Kinases (SFK) Mediate Angiotensin II-Induced Myosin Light Chain Phosphorylation and Hypertension.

    PubMed

    Qin, Bo; Zhou, Junlan

    2015-01-01

    Angiotensin (Ang) II is the major bioactive peptide of the renin-angiotensin system (RAS); it contributes to the pathogenesis of hypertension by inducing vascular contraction and adverse remodeling, thus elevated peripheral resistance. Ang II also activates Src family kinases (SFK) in the vascular system, which has been implicated in cell proliferation and migration. However, the role of SFK in Ang II-induced hypertension is largely unknown. In this study, we found that administration of a SFK inhibitor SU6656 markedly lowered the level of systemic BP in Ang II-treated mice, which was associated with an attenuated phosphorylation of the smooth-muscle myosin-light-chain (MLC) in the mesenteric resistant arteries. In the cultured human coronary artery smooth muscle cells (SMCs), pretreatment with SU6656 blocked Ang II-induced MLC phosphorylation and contraction. These results for the first time demonstrate that SFK directly regulate vascular contractile machinery to influence BP. Thus our study provides an additional mechanistic link between Ang II and vasoconstriction via SFK-enhanced MLC phosphorylation in SMCs, and suggests that targeted inhibition of Src may provide a new therapeutic opportunity in the treatment of hypertension.

  2. Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein.

    PubMed

    Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O

    2016-05-01

    Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  3. Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts.

    PubMed

    Insogna, K; Tanaka, S; Neff, L; Horne, W; Levy, J; Baron, R

    1997-01-01

    We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src- osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85-90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85-90 k

  4. Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src.

    PubMed

    Willey, Christopher D; Balasubramanian, Sundaravadivel; Rodríguez Rosas, María C; Ross, Robert S; Kuppuswamy, Dhandapani

    2003-06-01

    In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.

  5. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Src binds cortactin through an SH2 domain cystine-mediated linkage.

    PubMed

    Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A

    2012-12-15

    Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.

  7. Src binds cortactin through an SH2 domain cystine-mediated linkage

    PubMed Central

    Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.

    2012-01-01

    Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045

  8. Src-dependent Tyrosine Phosphorylation of Non-muscle Myosin Heavy Chain-IIA Restricts Listeria monocytogenes Cellular Infection*

    PubMed Central

    Almeida, Maria Teresa; Mesquita, Francisco S.; Cruz, Rui; Osório, Hugo; Custódio, Rafael; Brito, Cláudia; Vingadassalom, Didier; Martins, Mariana; Leong, John M.; Holden, David W.; Cabanes, Didier; Sousa, Sandra

    2015-01-01

    Bacterial pathogens often interfere with host tyrosine phosphorylation cascades to control host responses and cause infection. Given the role of tyrosine phosphorylation events in different human infections and our previous results showing the activation of the tyrosine kinase Src upon incubation of cells with Listeria monocytogenes, we searched for novel host proteins undergoing tyrosine phosphorylation upon L. monocytogenes infection. We identify the heavy chain of the non-muscle myosin IIA (NMHC-IIA) as being phosphorylated in a specific tyrosine residue in response to L. monocytogenes infection. We characterize this novel post-translational modification event and show that, upon L. monocytogenes infection, Src phosphorylates NMHC-IIA in a previously uncharacterized tyrosine residue (Tyr-158) located in its motor domain near the ATP-binding site. In addition, we found that other intracellular and extracellular bacterial pathogens trigger NMHC-IIA tyrosine phosphorylation. We demonstrate that NMHC-IIA limits intracellular levels of L. monocytogenes, and this is dependent on the phosphorylation of Tyr-158. Our data suggest a novel mechanism of regulation of NMHC-IIA activity relying on the phosphorylation of Tyr-158 by Src. PMID:25635050

  9. Revisiting the ERK/Src cortactin switch

    PubMed Central

    Kelley, Laura C; Hayes, Karen E; Ammer, Amanda Gatesman; Martin, Karen H

    2011-01-01

    The filamentous (F)-actin regulatory protein cortactin plays an important role in tumor cell movement and invasion by promoting and stabilizing actin related protein (Arp)2/3-mediated actin networks necessary for plasma membrane protrusion. Cortactin is a substrate for ERK1/2 and Src family kinases, with previous in vitro findings demonstrating ERK1/2 phosphorylation of cortactin as a positive and Src phosphorylation as a negative regulatory event in promoting Arp2/3 activation through neuronal Wiskott Aldrich Syndrome protein (N-WASp). Evidence for this regulatory cortactin “switch” in cells has been hampered due to the lack of phosphorylation-specific antibodies that recognize ERK1/2-phosphorylated cortactin. Our findings with phosphorylation-specific antibodies against these ERK1/2 sites (pS405 and pS418) indicate that cortactin can be co-phosphorylated at 405/418 and tyrosine residues targeted by Src family tyrosine kinases. These results indicate that the ERK/Src cortactin switch is not the sole mechanism by which ERK1/2 and tyrosine phosphorylation events regulate cortactin function in cell systems. PMID:21655441

  10. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes.

    PubMed

    DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R

    2017-01-01

    It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode.

    PubMed

    Nieto, Lidia; Tharun, Inga M; Balk, Mark; Wienk, Hans; Boelens, Rolf; Ottmann, Christian; Milroy, Lech-Gustav; Brunsveld, Luc

    2015-11-20

    The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.

  12. C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src

    PubMed Central

    Samarasekera, G. D. N. Gayathri; Auld, Vanessa Jane

    2018-01-01

    Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein. PMID:29167383

  13. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes

    PubMed Central

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation. PMID:28736554

  14. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes.

    PubMed

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.

  15. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae

    PubMed Central

    Zimnicka, Adriana M.; Husain, Yawer S.; Shajahan, Ayesha N.; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T.; Klomp, Jennifer; Karginov, Andrei V.; Tiruppathi, Chinnaswamy; Malik, Asrar B.; Minshall, Richard D.

    2016-01-01

    Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or “spreading” of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175

  16. Cbl Associates with Pyk2 and Src to Regulate Src Kinase Activity, αvβ3 Integrin-Mediated Signaling, Cell Adhesion, and Osteoclast Motility

    PubMed Central

    Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland

    2001-01-01

    The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930

  17. SRC activates TAZ for intestinal tumorigenesis and regeneration.

    PubMed

    Byun, Mi Ran; Hwang, Jun-Ha; Kim, A Rum; Kim, Kyung Min; Park, Jung Il; Oh, Ho Taek; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-12-01

    Proto-oncogene tyrosine-protein kinase Src (cSRC) is involved in colorectal cancer (CRC) development and damage-induced intestinal regeneration, although the cellular mechanisms involved are poorly understood. Here, we report that transcriptional coactivator with PDZ binding domain (TAZ) is activated by cSRC, regulating CRC cell proliferation and tumor formation, where cSRC overexpression increases TAZ expression in CRC cells. In contrast, knockdown of cSRC decreases TAZ expression. Additionally, direct phosphorylation of TAZ at Tyr316 by cSRC stimulates nuclear localization and facilitates transcriptional enhancer factor TEF-3 (TEAD4)-mediated transcription. However, a TAZ phosphorylation mutant significantly decreased cell proliferation, wound healing, colony forming, and tumor formation. In a CRC mouse model, Apc Min/+ , activated SRC expression was associated with increased TAZ expression in polyps and TAZ depletion decreased polyp formation. Moreover, intestinal TAZ knockout mice had intestinal regeneration defects following γ-irradiation. Finally, significant correspondence between SRC activation and TAZ overexpression was observed in CRC patients. These results suggest that TAZ is a critical factor for SRC-mediated intestinal tumor formation and regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells.

    PubMed

    Zeng, Juan; Zhang, Heying; Tan, Yonggang; Sun, Cheng; Liang, Yusi; Yu, Jinyang; Zou, Huawei

    2018-05-30

    Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis. NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts). Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts. X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the

  19. A RNA Interference Screen Identifies the Protein Phosphatase 2A Subunit PR55γ as a Stress-Sensitive Inhibitor of c-SRC

    PubMed Central

    Eichhorn, Pieter J. A; Creyghton, Menno P; Wilhelmsen, Kevin; van Dam, Hans; Bernards, René

    2007-01-01

    Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ. PMID:18069897

  20. HER2 signaling drives DNA anabolism and proliferation through SRC-3 phosphorylation and E2F1-regulated genes

    PubMed Central

    Nikolai, Bryan C.; Lanz, Rainer B.; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J.; Tsimelzon, Anna; Hilsenbeck, Susan G.; Lonard, David M.; Smith, Carolyn L.; O’Malley, Bert W.

    2016-01-01

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2+ tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. While the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor Palbociclib, defines overlap and divergence of adjuvant pharmacological targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacological combinations in pre-clinical models of adjuvant treatment and therapeutic resistance. PMID:26833126

  1. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation*

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2014-01-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains, and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways. PMID:25077552

  2. EG-1 interacts with c-Src and activates its signaling pathway.

    PubMed

    Lu, Ming; Zhang, Liping; Sartippour, Maryam R; Norris, Andrew J; Brooks, Mai N

    2006-10-01

    EG-1 is significantly elevated in breast, colorectal, and prostate cancers. Overexpression of EG-1 stimulates cellular proliferation, and targeted inhibition blocks mouse xenograft tumor growth. To further clarify the function of EG-1, we investigated its role in c-Src activation. We observed that EG-1 overexpression results in activation of c-Src, but found no evidence that EG-1 is a direct Src substrate. EG-1 also binds to other members of the Src family. Furthermore, EG-1 shows interaction with multiple other SH3- and WW-containing molecules involved in various signaling pathways. These observations suggest that EG-1 may be involved in signaling pathways including c-Src activation.

  3. Identification of a functional interaction between Kv4.3 channels and c-Src tyrosine kinase.

    PubMed

    Gomes, Pedro; Saito, Tomoaki; Del Corsso, Cris; Alioua, Abderrahmane; Eghbali, Mansoureh; Toro, Ligia; Stefani, Enrico

    2008-10-01

    Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.

  4. Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway.

    PubMed

    Amorino, G P; Deeble, P D; Parsons, S J

    2007-02-01

    Neuroendocrine (NE)-like cells are hypothesized to contribute to the progression of prostate cancer by producing factors that enhance the growth, survival or metastatic capabilities of surrounding tumor cells. Many of the factors known to be secreted by NE-like cells, such as neurotensin (NT), parathyroid hormone-related peptide, serotonin, bombesin, etc., are agonists for G-protein-coupled receptors, but the signaling pathways activated by these agonists in prostate tumor cells are not fully defined. Identification of such pathways could provide insights into novel methods of treating late-stage disease. Using conditioned culture medium (CM) from LNCaP-derived NE-like cells (as a source of these agonists) or NT (a prototypical component of CM) to treat PC3 cells, we found that the epidermal growth factor (EGF) receptor (EGFR) was transactivated and that such activation was required for maximal PC3 cell mitogenesis, as measured by 5-bromo-2'-deoxy-uridine incorporation or cell number. NT also induced a time-dependent increase in EGFR Tyr(845) phosphorylation and phosphorylation of c-Src and signal transducer and activator of transcription 5b (Stat5b) (a downstream effector of Tyr(845)), events that were blocked by specific inhibition of c-Src (which mediates Tyr(845) phosphorylation of EGFR) or of EGFR. Introduction of mutant forms of EGFR (Tyr(845)) or Stat5b in PC3 cells, or treatment with selective, catalytic inhibitors of EGFR, c-Src and matrix metalloproteinases (MMPs) resulted in the loss of NT-induced stimulation of DNA synthesis, relative to wild-type controls. These data indicate that the mitogenic effect of NT on prostate cancer cells requires transactivation of the EGFR by MMPs and a novel downstream pathway involving c-Src, phosphorylation of EGFR Tyr(845) and activation of Stat5b.

  5. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    PubMed Central

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  6. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.

    PubMed

    Liu, Dongsheng; Cowburn, David

    2016-01-01

    The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.

  7. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma.

    PubMed

    Gu, Yan-jiao; Li, Hong-dan; Zhao, Liang; Zhao, Song; He, Wu-bin; Rui, Li; Su, Chang; Zheng, Hua-chuan; Su, Rong-jian

    2015-10-20

    5-FU is a common first-line chemotherapeutic drug for the treatment of hepatocellular carcinoma. However the development of acquired resistance to 5-FU confines its clinical usages. Although this phenomenon has been the subject of intense investigation, the exact mechanism of acquired resistance to 5-FU remains elusive. Here, we report that over-expression of GRP78 contributes to acquired resistance to 5-FU in HCC by up-regulating the c-Src/LSF/TS axis. Moreover, we found that the resistance to 5-FU conferred by GRP78 is mediated by its ATPase domain. The ATPase domain differentially increased the expression of LSF, TS and promoted the phosphorylation of ERK and Akt. We further identified that GRP78 interacts physically with c-Src through its ATPase domain and promotes the phosphorylation of c-Src, which in turn increases the expression of LSF in the nucleus. Together, GRP78 confers the resistance to 5-FU by up-regulating the c-Src/LSF/TS axis via its ATPase domain.

  8. Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism

    PubMed Central

    Pérez, Yolanda; Maffei, Mariano; Igea, Ana; Amata, Irene; Gairí, Margarida; Nebreda, Angel R.; Bernadó, Pau; Pons, Miquel

    2013-01-01

    c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation. PMID:23416516

  9. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    PubMed Central

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  10. miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation

    PubMed Central

    Eedunuri, Vijay Kumar; Rajapakshe, Kimal; Fiskus, Warren; Geng, Chuandong; Chew, Sue Anne; Foley, Christopher; Shah, Shrijal S.; Shou, John; Mohamed, Junaith S.; O'Malley, Bert W.

    2015-01-01

    The p160 family of steroid receptor coactivators (SRCs) are pleiotropic transcription factor coactivators and “master regulators” of gene expression that promote cancer cell proliferation, survival, metabolism, migration, invasion, and metastasis. Cancers with high p160 SRC expression exhibit poor clinical outcomes and resistance to therapy, highlighting the SRCs as critical oncogenic drivers and, thus, therapeutic targets. microRNAs are important epigenetic regulators of protein expression. To examine the regulation of p160 SRCs by microRNAs, we used and combined 4 prediction algorithms to identify microRNAs that could target SRC1, SRC2, and SRC3 expression. For validation of these predictions, we assessed p160 SRC protein expression and cell viability after transfection of corresponding microRNA mimetics in breast cancer, uveal melanoma, and prostate cancer (PC) cell lines. Transfection of selected microRNA mimetics into breast cancer, uveal melanoma, and PC cells depleted SRC protein expression levels and exerted potent antiproliferative activity in these cell types. In particular, microRNA-137 (miR-137) depleted expression of SRC1, SRC2, and very potently, SRC3. The latter effect can be attributed to the presence of 3 miR-137 recognition sequences within the SRC3 3′-untranslated region. Using reverse phase protein array analysis, we identified a network of proteins, in addition to SRC3, that were modulated by miR-137 in PC cells. We also found that miR-137 and its host gene are epigenetically silenced in human cancer specimens and cell lines. These results support the development and testing of microRNA-based therapies (in particular based on restoring miR-137 levels) for targeting the oncogenic family of p160 SRCs in cancer. PMID:26066330

  11. Losartan Improves Palmitate-Induced Insulin Resistance in 3T3-L1 Adipocytes Through Upregulation of Src Phosphorylation.

    PubMed

    Tian, X; Ye, M; Cao, Y; Wang, C

    2017-02-01

    Angiotensin II type 1 receptor blocker losartan has shown strongly anti-insulin resistance properties in vivo and in vitro ; however, the underlying mechanisms are poorly understood. In this study, we demonstrate that losartan administration increased phosphorylation of Akt and its downstream Akt substrate of 160 kDa (AS160), enhanced plasma membrane translocation of glucose transporter type 4 (GLUT4), and increased glucose uptake, along with increased Src phosphorylation as well as reduced expression of docking protein 1(DOK1) in palmitate-treated 3T3-L1 adipocytes. The beneficial impacts of losartan on insulin signaling were diminished in Src-deficient 3T3-L1 adipocytes. In addition, suppressed expression of DOK1 by losartan was abolished by Src knockdown. Our results suggest that anti-insulin resistance ability of losartan is mediated by Src/DOK1/Akt pathway. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery

    PubMed Central

    Knock, Greg A.; Snetkov, Vladimir A.; Shaifta, Yasin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.

    2008-01-01

    Aims We investigated the role of src-family kinases (srcFKs) in hypoxic pulmonary vasoconstriction (HPV) and how this relates to Rho-kinase-mediated Ca2+ sensitization and changes in intracellular Ca2+ concentration ([Ca2+]i). Methods and results Intra-pulmonary arteries (IPAs) were obtained from male Wistar rats. HPV was induced in myograph-mounted IPAs. Auto-phosphorylation of srcFKs and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and myosin light-chain (MLC20) in response to hypoxia were determined by western blotting. Translocation of Rho-kinase and effects of siRNA knockdown of src and fyn were examined in cultured pulmonary artery smooth muscle cells (PASMCs). [Ca2+]i was estimated in Fura-PE3-loaded IPA. HPV was inhibited by two blockers of srcFKs, SU6656 and PP2. Hypoxia enhanced phosphorylation of three srcFK proteins at Tyr-416 (60, 59, and 54 kDa, corresponding to src, fyn, and yes, respectively) and enhanced srcFK-dependent tyrosine phosphorylation of multiple target proteins. Hypoxia caused a complex, time-dependent enhancement of MYPT-1 and MLC20 phosphorylation, both in the absence and presence of pre-constriction. The sustained component of this enhancement was blocked by SU6656 and the Rho-kinase inhibitor Y27632. In PASMCs, hypoxia caused translocation of Rho-kinase from the nucleus to the cytoplasm, and this was prevented by anti-src siRNA and to a lesser extent by anti-fyn siRNA. The biphasic increases in [Ca2+]i that accompany HPV were also inhibited by PP2. Conclusion Hypoxia activates srcFKs and triggers protein tyrosine phosphorylation in IPA. Hypoxia-mediated Rho-kinase activation, Ca2+ sensitization, and [Ca2+]i responses are depressed by srcFK inhibitors and/or siRNA knockdown, suggesting a central role of srcFKs in HPV. PMID:18682436

  13. Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling.

    PubMed

    Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart

    2014-06-01

    Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation, and differentiation through binding to and stimulation of the cell surface receptor the cellular myeloproliferative leukemia virus oncogene (c-Mpl). Activating mutations in c-Mpl constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis, and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-Mpl that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study, we focused on c-Mpl tyrosine 591 (Y591). We found Y591 of wild-type c-Mpl to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using a Src homology 2/phosphotyrosine-binding (SH2/PTB) domain binding microarray, we identified novel c-Mpl binding partners for phosphorylated Y591, including Src homology region 2 domain-containing phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through small interfering RNA treatment of Ba/F3-Mpl cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by spleen tyrosine kinase. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  14. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity.

    PubMed

    Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F

    2015-03-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Cigarette Smoke Activates the Proto-Oncogene c-Src to Promote Airway Inflammation and Lung Tissue Destruction

    PubMed Central

    Geraghty, Patrick; Hardigan, Andrew

    2014-01-01

    The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke–exposed mice. Moreover, inhibiting Src deterred the cigarette smoke–mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605

  16. Dasatinib is preclinically active against Src-overexpressing human transitional cell carcinoma of the urothelium with activated Src signaling.

    PubMed

    Levitt, Jonathan M; Yamashita, Hideyuki; Jian, Weiguo; Lerner, Seth P; Sonpavde, Guru

    2010-05-01

    Dasatinib is an orally administered multitargeted kinase inhibitor that targets Src family tyrosine kinases, Abl, c-Kit, and PDGFR. A preclinical study was conducted to evaluate dasatinib alone or combined with cisplatin for human transitional cell carcinoma (TCC). Expression of Src in a human TCC tissue microarray was evaluated by immunohistochemistry. The activity of dasatinib and/or cisplatin was evaluated in six human TCC cell lines. Western blot was done to assess Src and phosphorylated-Src (p-Src) expression. The activity of dasatinib alone and in combination with cisplatin was determined in murine subcutaneous xenografts. Sixty-two percent to 75% of human TCC expressed Src. Dasatinib displayed significant antiproliferative activity at nanomolar concentrations against two human TCC cell lines (RT4 and Hu456) that exhibited high Src and p-Src expression and were cisplatin-resistant. RT4 cells were the most sensitive and displayed the highest level of Src pathway activation (p-Src/Src ratio). Dasatinib downregulated p-Src in either sensitive or resistant cells. TCC cells that were sensitive to cisplatin (5637 and TCC-SUP) were highly resistant to dasatinib and exhibited low Src expression. Dasatinib showed antitumor activity in RT4 murine xenografts, and the combination of dasatinib and cisplatin was significantly more active than placebo. Combination dasatinib plus cisplatin significantly inhibited proliferation and promoted apoptosis in vivo. In conclusion, dasatinib displayed significant preclinical antitumor activity against Src-overexpressing human TCC with active Src signaling and was highly active in combination with cisplatin in vivo. Further clinical development might be warranted in selected human subjects.

  17. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK

    PubMed Central

    HAO, ZHENFENG; QIAN, JING; YANG, JISHI

    2015-01-01

    The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031

  18. Mouse fibroblasts homozygous for c-Src oncogene disruption shows dramatic suppression of expression of the gene encoding osteopontin, and adhesive phosphoprotein implicated in bone differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chackalaparampil, I.; Mukherjee, B.B.; Peri, A.

    1994-09-01

    Osteopetrosis, affecting mice and humans alike, arises from reduced or impaired bone resorption, causing abnormally dense bone formation. Normal bone differentiation requires continuous resorption and remodeling by osteoclasts which are derived from monocyte/macrophage lineage in the bone marrow. It has been reported that targeted homozygous disruption of c-src proto-oncogene in mice results in the development of osteopetrosis due to impaired bone-resorbing function of osteoclast cells. However, the molecular mechanism(s) which leads to osteoclast dysfunction in c-src deficient (src{sup -/-}) mice remains unclear. Here, we report that in embryonic fibroblasts derived from homozygous Src{sup -/-} mice, the expression of the genemore » coding for osteopontin (OP), a phosphorylated glycoprotein involved in bone differentiation, is drastically repressed. OP gene expression is not, however, affected in the heterozygous (Src{sup +/-}) mutant cells of identical origin, or in the c-src expression and OP production. Moreover, OP expression in c-src-deficient cells could be rescued upon treatment with 12-0-tetradecanoyl phorbol-13-myristate-acetate or okadaic acid. These observations indicate that OP expression is regulated via an src-mediated protein kinase C signaling pathway. Since it is known that OP mediates osteoclast adherence to the bone matrix, a key event in bone differentiation, our data is most significant in that they strongly suggest that drastic inhibition of synthesis of OP prevents osteoclasts in Src{sup -/-} mice from anchoring to the bone matrix. Consequently, this disruption of osteoclast adherence impairs their ability to form bone-resorbing ruffled border, causing osteopetrosis.« less

  19. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.

    PubMed

    Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2015-02-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight

  20. The Transmodulation of HER2 and EGFR by Substance P in Breast Cancer Cells Requires c-Src and Metalloproteinase Activation.

    PubMed

    Garcia-Recio, Susana; Pastor-Arroyo, Eva M; Marín-Aguilera, Mercedes; Almendro, Vanessa; Gascón, Pedro

    2015-01-01

    Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer (BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2. We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modulates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-independent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/EGFR activation. Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474 and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the presence of the MMP inhibitor 1-10, phenanthroline monohydrate, and the dual inhibition of both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines. Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.

  1. Divergent modulation of Rho‐kinase and Ca2+ influx pathways by Src family kinases and focal adhesion kinase in airway smooth muscle

    PubMed Central

    Shaifta, Yasin; Irechukwu, Nneka; Prieto‐Lloret, Jesus; MacKay, Charles E; Marchon, Keisha A; Ward, Jeremy P T

    2015-01-01

    Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease. PMID:26294392

  2. The targeted delivery of the c-Src peptide complexed with schizophyllan to macrophages inhibits polymicrobial sepsis and ulcerative colitis in mice.

    PubMed

    Kim, Ye-Ram; Hwang, Jangsun; Koh, Hyun-Jung; Jang, Kiseok; Lee, Jong-Dae; Choi, Jonghoon; Yang, Chul-Su

    2016-05-01

    Hyper-inflammatory responses triggered by intracellular reactive oxygen species (ROS) can lead to a variety of diseases, including sepsis and colitis. However, the regulators of this process remain poorly defined. In this study, we demonstrate that c-Src is a negative regulator of cellular ROS generation through its binding to p47phox. This molecule also competitively inhibits the NADPH oxidase complex (NOX) assembly. Furthermore, we developed the schizophyllan (SPG)-c-Src SH3 peptide, which is a β-1,3-glucan conjugated c-Src SH3-derived peptide composed of amino acids 91-108 and 121-140 of c-Src. The SPG-SH3 peptide has a significant therapeutic effect on mouse ROS-mediated inflammatory disease models, cecal-ligation-puncture-induced sepsis, and dextran sodium sulfate-induced colitis. It does so by inhibiting the NOX subunit assembly and proinflammatory mediator production. Therefore, the SPG-SH3 peptide is a potential therapeutic agent for ROS-associated lethal inflammatory diseases. Our findings provide clues for the development of new peptide-base drugs that will target p47phox. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    PubMed

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  4. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    PubMed

    Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S

    2017-10-01

    Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  5. Lack of Csk-mediated negative regulation in a unicellular SRC kinase.

    PubMed

    Schultheiss, Kira P; Suga, Hiroshi; Ruiz-Trillo, Iñaki; Miller, W Todd

    2012-10-16

    Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.

  6. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles.

    PubMed

    Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish

    2002-08-01

    We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.

  7. Laminin-111 peptide C16 regulates invadopodia activity of malignant cells through β1 integrin, Src and ERK 1/2.

    PubMed

    Siqueira, Adriane S; Pinto, Monique P; Cruz, Mário C; Smuczek, Basilio; Cruz, Karen S P; Barbuto, José Alexandre M; Hoshino, Daisuke; Weaver, Alissa M; Freitas, Vanessa M; Jaeger, Ruy G

    2016-07-26

    Laminin peptides influence tumor behavior. In this study, we addressed whether laminin peptide C16 (KAFDITYVRLKF, γ1 chain) would increase invadopodia activity of cells from squamous cell carcinoma (CAL27) and fibrosarcoma (HT1080). We found that C16 stimulates invadopodia activity over time in both cell lines. Rhodamine-conjugated C16 decorates the edge of cells, suggesting a possible binding to membrane receptors. Flow cytometry showed that C16 increases activated β1 integrin, and β1 integrin miRNA-mediated depletion diminishes C16-induced invadopodia activity in both cell lines. C16 stimulates Src and ERK 1/2 phosphorylation, and ERK 1/2 inhibition decreases peptide-induced invadopodia activity. C16 also increases cortactin phosphorylation in both cells lines. Based on our findings, we propose that C16 regulates invadopodia activity over time of squamous carcinoma and fibrosarcoma cells, probably through β1 integrin, Src and ERK 1/2 signaling pathways.

  8. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion

    PubMed Central

    Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.

    2012-01-01

    In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454

  9. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Phosphopeptide occupancy and photoaffinity cross-linking of the v-Src SH2 domain attenuates tyrosine kinase activity.

    PubMed

    Garcia, P; Shoelson, S E; Drew, J S; Miller, W T

    1994-12-02

    Phosphorylation of c-Src at carboxyl-terminal Tyr-527 suppresses tyrosine kinase activity and transforming potential, presumably by facilitating the intramolecular interaction of the C terminus of Src with its SH2 domain. In addition, it has been shown previously that occupancy of the c-Src SH2 domain with a phosphopeptide stimulates c-Src kinase catalytic activity. We have performed analogous studies with v-Src, the transforming protein from Rous sarcoma virus, which has extensive homology with c-Src. v-Src lacks an autoregulatory phosphorylation site, and its kinase domain is constitutively active. Phosphopeptides corresponding to the sequences surrounding c-Src Tyr-527 and a Tyr-Glu-Glu-Ile motif from the hamster polyoma virus middle T antigen inhibit tyrosine kinase activity of baculovirus-expressed v-Src 2- and 4-fold, respectively. To determine the mechanism of this regulation, the Tyr-527 phosphopeptide was substituted with the photoactive amino acid p-benzoylphenylalanine at the adjacent positions (N- and C-terminal) to phosphotyrosine. These peptides photoinactivate the v-Src tyrosine kinase 5-fold in a time- and concentration-dependent manner. Furthermore, the peptides cross-link an isolated Src SH2 domain with similar rates and specificity. These data indicate that occupancy of the v-Src SH2 domain induces a conformational change that is transmitted to the kinase domain and attenuates tyrosine kinase activity.

  11. Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells.

    PubMed

    Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven

    2009-10-01

    Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.

  12. Localization of caveolin-1 and c-src in mature and differentiating photoreceptors: raft proteins co-distribute with rhodopsin during development

    PubMed Central

    Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Magyar, Attila; Szél, Ágoston; Kiss, Anna L.

    2014-01-01

    Numerous biochemical and morphological studies have provided insight into the distribution pattern of caveolin-1 and the presence of membrane rafts in the vertebrate retina. To date however, studies have not addressed the localization profile of raft specific proteins during development. Therefore the purpose of our studies was to follow the localization pattern of caveolin-1, phosphocaveolin-1 and c-src in the developing retina and compare it to that observed in adults. Specific antibodies were used to visualize the distribution of caveolin-1, c-src, a kinase phosphorylating caveolin-1, and phospho-caveolin-1. The labeling pattern of this scaffolded complex was compared to those of rhodopsin and rhodopsin kinase. Samples were analyzed at various time points during postnatal development and compared to adult retinas. The immunocytochemical studies were complemented with immunoblots and immunoprecipitation studies. In the mature retina caveolin-1 and c-src localized mainly to the cell body and IS of photoreceptors, with only very weakly labeled OS. In contrast, phospho-caveolin-1 was only detectable in the OS of photoreceptors. During development we followed the expression and distribution profile of these proteins in a temporal sequence with special attention to the period when OS formation is most robust. Double labeling immunocytochemistry and immunoprecipitation showed rhodopsin to colocalize and co-immunoprecipitate with caveolin-1 and c-src. Individual punctate structures between the outer limiting membrane and the outer plexiform layer were seen at P10 to be labeled by both rhodopsin and caveolin-1 as well as by rhodopsin and c-src, respectively. These studies suggest that membrane raft specific proteins are co-distributed during development, thereby pointing to a role for such complexes in OS formation. In addition, the presence of small punctate structures containing caveolin-1, c-src and rhodopsin raise the possibility that these proteins may transport

  13. Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation.

    PubMed

    Zhang, Qing; Thomas, Sufi M; Lui, Vivian Wai Yan; Xi, Sichuan; Siegfried, Jill M; Fan, Huizhou; Smithgall, Thomas E; Mills, Gordon B; Grandis, Jennifer Rubin

    2006-05-02

    G protein-coupled receptors induce EGF receptor (EGFR) signaling, leading to the proliferation and invasion of cancer cells. Elucidation of the mechanism of EGFR activation by G protein-coupled receptors may identify new signaling paradigms. A gastrin-releasing peptide (GRP)/GRP receptor-mediated autocrine pathway was previously described in squamous cell carcinoma of head and neck. In the present study, we demonstrate that TNF-alpha converting enzyme (TACE), a disintegrin and metalloproteinse-17, undergoes a Src-dependent phosphorylation that regulates release of the EGFR ligand amphiregulin upon GRP treatment. Further investigation reveals the phosphatidylinositol 3-kinase (PI3-K) as the intermediate of c-Src and TACE, contributing to their association and TACE phosphorylation. Phosphoinositide-dependent kinase 1 (PDK1), a downstream target of PI3-K, has been identified as the previously undescribed kinase to directly phosphorylate TACE upon GRP treatment. These findings suggest a signaling cascade of GRP-Src-PI3-K-PDK1-TACE-amphiregulin-EGFR with multiple points of interaction, translocation, and phosphorylation. Furthermore, knockdown of PDK1 augmented the antitumor effects of the EGFR inhibitor erlotinib, indicating PDK1 as a therapeutic target to improve the clinical response to EGFR inhibitors.

  14. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration

    PubMed Central

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-01-01

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405

  15. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    PubMed

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  16. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro.

    PubMed

    Chellaiah, Meenakshi A; Schaller, Michael D

    2009-08-01

    PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.

  17. Phosphorylated c-MPL tyrosine 591 regulates thrombopoietin-induced signaling

    PubMed Central

    Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart

    2018-01-01

    Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation and differentiation through binding to and stimulation of the cell surface receptor c-MPL. Activating mutations in c-MPL constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-MPL that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study we focused on c-MPL tyrosine 591 (Y591). We found Y591 of wild-type c-MPL to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using an SH2/PTB domain binding microarray, we identified novel c-MPL binding partners for phosphorylated Y591, including Src homology phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through siRNA treatment of Ba/F3-MPL cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by SYK. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. PMID:24607955

  18. PDGF-induced migration of synthetic vascular smooth muscle cells through c-Src-activated L-type Ca2+ channels with full-length CaV1.2 C-terminus.

    PubMed

    Guo, Xiaoguang; Kashihara, Toshihide; Nakada, Tsutomu; Aoyama, Toshifumi; Yamada, Mitsuhiko

    2018-06-01

    In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a Ca V 1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased Ca V 1.2 channel currents without altering Ca V 1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of Ca V 1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length Ca V 1.2 (Ca V 1.2FL) is expressed much more abundantly than truncated Ca V 1.2. In a heterologous expression system, c-Src activated Ca V 1.2 channels composed of Ca V 1.2FL but not truncated Ca V 1.2 (Ca V 1.2Δ1763) or Ca V 1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of Ca V 1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with Ca V 1.2Δ1763, c-Src could more efficiently bind to and phosphorylate Ca V 1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational Ca V 1.2 modifications.

  19. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.

    PubMed

    Zhang, Siyuan; Huang, Wen-Chien; Zhang, Lin; Zhang, Chenyu; Lowery, Frank J; Ding, Zhaoxi; Guo, Hua; Wang, Hai; Huang, Suyun; Sahin, Aysegul A; Aldape, Kenneth D; Steeg, Patricia S; Yu, Dihua

    2013-09-15

    Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model. We found that Src was hyperactivated in brain-seeking breast cancer cells derived from human cell lines or from patients' brain metastases. Mechanistically, Src activation promoted tumor cell extravasation into the brain parenchyma via permeabilization of the blood-brain barrier. When combined with the EGFR/HER2 dual-targeting drug lapatinib, an Src-targeting combinatorial regimen prevented outgrowth of disseminated breast cancer cells through the induction of cell-cycle arrest. More importantly, this combinatorial regimen inhibited the outgrowth of established experimental brain metastases, prolonging the survival of metastases-bearing mice. Our results provide a rationale for clinical evaluation of Src-targeting regimens to treat patients with breast cancer suffering from brain metastasis. ©2013 AACR.

  20. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase.

    PubMed

    Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J

    2014-05-20

    Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for

  1. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    PubMed Central

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  2. Targeting Src and tubulin in mucinous ovarian carcinoma

    PubMed Central

    Liu, Tao; Hu, Wei; Dalton, Heather J.; Choi, Hyun Jin; Huang, Jie; Kang, Yu; Pradeep, Sunila; Miyake, Takahito; Song, Jian H.; Wen, Yunfei; Lu, Chunhua; Pecot, Chad V.; Bottsford-Miller, Justin; Zand, Behrouz; Jennings, Nicholas B; Ivan, Cristina; Gallick, Gary E.; Baggerly, Keith A; Hangauer, David G.; Coleman, Robert L.; Frumovitz, Michael; Sood, Anil K.

    2013-01-01

    Purpose To investigate the antitumor effects of targeting Src and tubulin in mucinous ovarian carcinoma. Experimental design The in vitro and in vivo effects and molecular mechanisms of KX-01, which inhibits Src pathway and tubulin polymerization, were examined in mucinous ovarian cancer models. Results In vitro studies using RMUG-S and RMUG-L cell lines showed that KX-01 inhibited cell proliferation, induced apoptosis, arrested the cell cycle at the G2/M phase, and enhanced the cytotoxicity of oxaliplatin in the KX-01-sensitive cell line, RMUG-S. In vivo studies showed that KX-01 significantly decreased tumor burden in RMUG-S and RMUG-L mouse models relative to untreated controls, and the effects were greater when KX-01 was combined with oxaliplatin. KX-01 alone and in combination with oxaliplatin significantly inhibited tumor growth by reducing cell proliferation and inducing apoptosis in vivo. PTEN knock-in experiments in RMUG-L cells showed improved response to KX-01. Reverse phase protein array analysis showed that in addition to blocking downstream molecules of Src family kinases, KX-01 also activated acute stress-inducing molecules. Conclusion Our results showed that targeting both the Src pathway and tubulin with KX-01 significantly inhibited tumor growth in preclinical mucinous ovarian cancer models, suggesting that this may be a promising therapeutic approach for patients with mucinous ovarian carcinoma. PMID:24100628

  3. Inhibition of osteoclast activation by phloretin through disturbing αvβ3 integrin-c-Src pathway.

    PubMed

    Lee, Eun-Jung; Kim, Jung-Lye; Gong, Ju-Hyun; Park, Sin-Hye; Kang, Young-Hee

    2015-01-01

    This study was to explore the sequential signaling of disorganization of the actin cytoskeletal architecture by phloretin. RAW 264.7 macrophages were incubated with 1-20 μM phloretin for 5 days in the presence of RANKL. C57BL/6 mice were ovariectomized (OVX) and orally treated with 10 mg/kg phloretin once a day for 8 weeks. Phloretin allayed RANKL stimulated formation of actin podosomes with the concomitant retardation of the vinculin activation. Oral administration of phloretin suppressed the induction of femoral gelsolin and vinculin in OVX mice. The RANK-RANKL interaction resulted in the αvβ3 integrin induction, which was demoted by phloretin. The RANKL induction of actin rings and vacuolar-type H(+)-ATPase entailed Pyk2 phosphorylation and c-Src and c-Cbl induction, all of which were blunted by phloretin. Similar inhibition was also observed in phloretin-exposed OVX mouse femoral bone tissues with decreased trabecular collagen formation. Phloretin suppressed the paxillin induction in RANKL-activated osteoclasts and in OVX epiphyseal bone tissues. Also, phloretin attenuated the Syk phosphorylation and phospholipase Cγ induction by RANKL in osteoclasts. These results suggest that phloretin was an inhibitor of actin podosomes and sealing zone, disrupting αvβ3 integrin-c-Src-Pyk2/Syk signaling pathway for the regulation of actin cytoskeletal organization in osteoclasts.

  4. Inhibition of Osteoclast Activation by Phloretin through Disturbing αvβ3 Integrin-c-Src Pathway

    PubMed Central

    Lee, Eun-Jung; Kim, Jung-Lye; Gong, Ju-Hyun; Park, Sin-Hye; Kang, Young-Hee

    2015-01-01

    This study was to explore the sequential signaling of disorganization of the actin cytoskeletal architecture by phloretin. RAW 264.7 macrophages were incubated with 1–20 μM phloretin for 5 days in the presence of RANKL. C57BL/6 mice were ovariectomized (OVX) and orally treated with 10 mg/kg phloretin once a day for 8 weeks. Phloretin allayed RANKL stimulated formation of actin podosomes with the concomitant retardation of the vinculin activation. Oral administration of phloretin suppressed the induction of femoral gelsolin and vinculin in OVX mice. The RANK-RANKL interaction resulted in the αvβ3 integrin induction, which was demoted by phloretin. The RANKL induction of actin rings and vacuolar-type H+-ATPase entailed Pyk2 phosphorylation and c-Src and c-Cbl induction, all of which were blunted by phloretin. Similar inhibition was also observed in phloretin-exposed OVX mouse femoral bone tissues with decreased trabecular collagen formation. Phloretin suppressed the paxillin induction in RANKL-activated osteoclasts and in OVX epiphyseal bone tissues. Also, phloretin attenuated the Syk phosphorylation and phospholipase Cγ induction by RANKL in osteoclasts. These results suggest that phloretin was an inhibitor of actin podosomes and sealing zone, disrupting αvβ3 integrin-c-Src-Pyk2/Syk signaling pathway for the regulation of actin cytoskeletal organization in osteoclasts. PMID:25834823

  5. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein.

    PubMed

    Liu, Songling; Premont, Richard T; Rockey, Don C

    2014-06-27

    Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  7. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    PubMed

    Fusaki, N; Iwamatsu, A; Iwashima, M; Fujisawa, J i

    1997-03-07

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

  8. Coincident regulation of PKCδ in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling

    PubMed Central

    Hall, Kellie J.; Jones, Matthew L.; Poole, Alastair W.

    2007-01-01

    PKC (protein kinase C)δ plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCδ. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCδ with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCδ is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCδ. Both thrombin and PMA induce recruitment of PKCδ to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCδ, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCδ is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity. PMID:17570831

  9. Cyr61 as mediator of Src signaling in triple negative breast cancer cells

    PubMed Central

    Molinari, Agnese; Wagner, Kay-Uwe; Losada, Jesús Pérez; Ciordia, Sergio; Albar, Juan Pablo; Martín-Pérez, Jorge

    2015-01-01

    SFKs are involved in tumorigenesis and metastasis. Here we analyzed c-Src contribution to initial steps of metastasis by tetracycline-dependent expression of a specific shRNA-c-Src, which suppressed c-Src mRNA and protein levels in metastatic MDA-MB-231 cells. c-Src suppression did not alter cell proliferation or survival, but it significantly reduced anchorage-independent growth. Concomitantly with diminished tyrosine-phosphorylation/activation of Fak, caveolin-1, paxillin and p130CAS, c-Src depletion also inhibited cellular migration, invasion and transendothelial migration. Quantitative proteomic analyses of the secretome showed that Cyr61 levels, which were detected in the exosomal fraction, were diminished upon shRNA-c-Src expression. In contrast, Cyr61 expression was unaltered inside cells. Cyr61 partially colocalized with cis-Golgi gp74 marker and with exosomal marker CD63, but c-Src depletion did not alter their cellular distribution. In SUM159PT cells, transient c-Src suppression also reduced secreted exosomal Cyr61 levels. Furthermore, conditional expression of a c-Src dominant negative mutant (SrcDN, c-Src-K295M/Y527F) in MDA-MB-231 and in SUM159PT diminished secreted Cyr61 as well. Cyr61 transient suppression in MDA-MB-231 inhibited invasion and transendothelial migration. Finally, in both MDA-MB-231 and SUM159PT, a neutralizing Cyr61 antibody restrained migration. Collectively, these results suggest that c-Src regulates secreted proteins, including the exosomal Cyr61, which are involved in modulating the metastatic potential of triple negative breast cancer cells. PMID:25980494

  10. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.

    PubMed

    Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min

    2011-02-01

    Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.

  11. Tyrosine phosphorylated c-Cbl regulates platelet functional responses mediated by outside-in signaling

    PubMed Central

    Buitrago, Lorena; Langdon, Wallace Y.

    2011-01-01

    c-Cbl protein functions as an E3 ligase and scaffolding protein, where 3 residues, Y700, Y731, and Y774, upon phosphorylation, have been shown to initiate several signaling cascades. In this study, we investigated the role of these phospho-tyrosine residues in the platelet functional responses after integrin engagement. We observed that c-Cbl Y700, Y731 and Y774 undergo phosphorylation upon platelet adhesion to immobilized fibrinogen, which was inhibited in the presence of PP2, a pan-src family kinase (SFK) inhibitor, suggesting that c-Cbl is phosphorylated downstream of SFKs. However, OXSI-2, a Syk inhibitor, significantly reduced c-Cbl phosphorylation at residues Y774 and Y700, without affecting Y731 phosphorylation. Interestingly, PP2 inhibited both platelet-spreading on fibrinogen as well as clot retraction, whereas OXSI-2 blocked only platelet-spreading, suggesting a differential role of these tyrosine residues. The physiologic role of c-Cbl and Y731 was studied using platelets from c-Cbl KO and c-CblYF/YF knock-in mice. c-Cbl KO and c-CblYF/YF platelets had a significantly reduced spreading over immobilized fibrinogen. Furthermore, clot retraction with c-Cbl KO and c-CblYF/YF platelets was drastically delayed. These results indicate that c-Cbl and particularly its phosphorylated residue Y731 plays an important role in platelet outside-in signaling contributing to platelet-spreading and clot retraction. PMID:21967979

  12. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells

    PubMed Central

    Filosto, Simone; Baston, David S.; Chung, Samuel; Becker, Cathleen R.; Goldkorn, Tzipora

    2015-01-01

    The EGF Receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung cancer (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKIs) such as Erlotinib. However, despite the efficacy observed in NSCLC patients harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in NSCLC patients who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke (CS), evidenced by their auto-phosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating CS-induced resistance to TKIs in both WT EGFR and L858R MT EGFR expressing NSCLC cells. First, we show that CS exposure of A549 cells leads to time-dependent activation of Src which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we demonstrate that Src inhibition restores TKI sensitivity in CS-exposed NSCLC cells, preventing EGFR auto-phosphorylation in the presence of Erlotinib. Furthermore, we show that over-expression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to CS. Importantly, the TKI resistance that emerges even in CS-exposed L858R EGFR expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers. PMID:23686837

  13. PLC-γ directly binds activated c-Src, which is necessary for carbachol-mediated inhibition of NHE3 activity in Caco-2/BBe cells

    PubMed Central

    Lee, Luke J.; Kovbasnjuk, Olga; Li, Xuhang; Donowitz, Mark

    2013-01-01

    Elevated levels of intracellular Ca2+ ([Ca2+]i) inhibit Na+/H+ exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca2+]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca2+ signaling proteins necessary for regulation of NHE3 activity. [Ca2+]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca2+]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y416 phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca2+]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca2+]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca2+]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3. PMID:23703528

  14. PLC-γ directly binds activated c-Src, which is necessary for carbachol-mediated inhibition of NHE3 activity in Caco-2/BBe cells.

    PubMed

    Zachos, Nicholas C; Lee, Luke J; Kovbasnjuk, Olga; Li, Xuhang; Donowitz, Mark

    2013-08-01

    Elevated levels of intracellular Ca(2+) ([Ca(2+)]i) inhibit Na(+)/H(+) exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca(2+)]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca(2+) signaling proteins necessary for regulation of NHE3 activity. [Ca(2+)]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca(2+)]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y(416) phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca(2+)]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca(2+)]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca(2+)]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3.

  15. Platelet-derived growth factor-dependent association of the GTPase-activating protein of Ras and Src.

    PubMed Central

    Schlesinger, T K; Demali, K A; Johnson, G L; Kazlauskas, A

    1999-01-01

    Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR. PMID:10567236

  16. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    PubMed

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  17. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  18. Association of p60c-src with endosomal membranes in mammalian fibroblasts

    PubMed Central

    1992-01-01

    We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three- dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI- MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking. PMID:1378446

  19. Role of SRC-3delta4 in the Progression and Metastasis of Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2014-12-01

    tyrosine phosphorylation of SRC-3∆4, which was inhibited by the treatment with EGFR inhibitor AG1478. Mutation of Y1159 to phenylalanine (Y1159F...Y1159 to phenylalanine (Y1159F) greatly reduced SRC-3∆4/AR interaction that is stimulated by EGF. Figure 7 Overexpression of SRC-3∆4 promoted...adhesion turnover and matrix metalloproteinase expression. Cancer research 68, 5460-5468. 6. Chung, A.C., Zhou, S., Liao, L ., Tien, J.C., Greenberg

  20. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiu-Li; Ding, Fan; Li, Hui

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect wasmore » abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.« less

  1. Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase

    PubMed Central

    Oneyama, Chitose; Suzuki, Takashi; Okada, Masato

    2014-01-01

    The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed. PMID:24675741

  2. H-Ras Modulates N-Methyl-d-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity*

    PubMed Central

    Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit

    2005-01-01

    Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509

  3. SRC-induced disintegration of adherens junctions of madin-darby canine kidney cells is dependent on endocytosis of cadherin and antagonized by Tiam-1.

    PubMed

    Palovuori, Riitta; Sormunen, Raija; Eskelinen, Sinikka

    2003-12-01

    The effects of Src tyrosine kinase activation in subconfluent temperature sensitive (ts)-Src-transformed Madin-Darby canine kidney (MDCK) cells were analyzed by shifting them from nonpermissive (40.5 degrees C) to permissive (35 degrees C) temperature. Already, in 15 minutes, adherens junction components were released from the lateral walls and accumulated to basal surfaces. Simultaneously, membranous actin staining vanished, actin bundles appeared at the basal surface, and the cells flattened. The only component phosphorylated and translocated after the shift to 35 degrees C was p120ctn. The epithelial-mesenchymal transition could be inhibited by a specific inhibitor of Src kinase, PP2, or by inhibiting endocytosis. Therefore, Src activation was responsible for the transition, but not because of phosphorylation of adherens junction components but by way of activation of endocytic machinery and RhoGTPase. Expression of an RacGEF, Tiam-1 (T-lymphoma invasion and metastasis gene 1), prevented flattening of Src-transformed MDCK cells at 35 degrees C and resulted in accumulation of cadherin to lateral membranes. In the case where the Src-MDCK cells were cultivated at 35 degrees C and shifted for short time periods to 40.5 degrees C, cadherin rapidly returned to lateral membranes, whereas actin and p120ctn followed hours afterward. This further supports the view that cadherin internalization is the primary target of Src kinase. We also looked at the cell morphology and distribution of cadherin and Tiam-1 in cells grown in three-dimensional gels composed of collagen and laminin or in Matrigel. At nonpermissive temperature, both Src-MDCK and Tiam-1-transfected Src-MDCK cells exhibited nonpolarized morphology in collagen I, a loose cluster in the mixture of collagen I and laminin, and a differentiated cyst in Matrigel. In growth factor-depleted Matrigel, the Src-MDCK cells grew in nondifferentiated clusters, whereas Tiam-1-transfected cells went to apoptosis. The

  4. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    PubMed Central

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  5. Targeting Self-Binding Peptides as a Novel Strategy To Regulate Protein Activity and Function: A Case Study on the Proto-oncogene Tyrosine Protein Kinase c-Src.

    PubMed

    Bai, Zhengya; Hou, Shasha; Zhang, Shilei; Li, Zhongyan; Zhou, Peng

    2017-04-24

    Previously, we have reported a new biomolecular phenomenon spanning between protein folding and binding, termed as self-binding peptides (SBPs), where a short peptide segment in monomeric protein functions as a molecular switch by dynamically binding to/unbinding from its cognate domain in the monomer (Yang et al. J. Chem. Inf. 2015, 55, 329-342). Here, we attempt to raise the SBP as a new class of druggable targets to regulate the biological activity and function of proteins. A case study was performed on the proto-oncogene nonreceptor tyrosine kinase, c-Src, which contains two SBPs that bind separately to SH3 and SH2 domains of the kinase. State-of-the-art molecular dynamics (MD) simulations and post binding energetics analysis revealed that disrupting the kinase-intramolecular interactions of SH3 and SH2 domains with their cognate SBP ligands can result in totally different effects on the structural dynamics of c-Src kinase architecture; targeting the SH2 domain unlocks the autoinhibitory form of the kinase-this is very similar to the pTyr527 dephosphorylation that functionally activates the kinase, whereas targeting the SH3 domain can only release the domain from the tightly packed kinase but has a moderate effect on the kinase activity. Subsequently, based on the cognate SBP sequence we computationally designed a number of SH2-binding phosphopeptides using a motif grafting strategy. Fluorescence polarization (FP) assay observed that most of the designed phosphopeptides have higher binding affinity to SH2 domain as compared to the native SBP segment (K d = 53 nM). Kinase assay identified a typical dose-response relationship of phosphopeptides against kinase activation, substantiating that disruption of SH2-SBP interaction can mimic c-Src dephosphorylation and activate the kinase. Two rationally designed phosphopeptides, namely EPQpYEEIEN and EPQpYEELEN, were determined as strong binders of SH2 domain (K d = 8.3 and 15 nM, respectively) and potent activators of

  6. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells.

    PubMed

    Lee, Y G; Lee, W M; Kim, J Y; Lee, J Y; Lee, I-K; Yun, B-S; Rhee, M H; Cho, J Y

    2008-06-01

    Mushrooms are popular both as food and as a source of natural compounds of biopharmaceutical interest. Some mushroom-derived compounds such as beta-glucan have been shown to be immunostimulatory; this study explores the anti-inflammatory properties of hispidin analogues derived from the mushroom, Inonotus xeranticus. We sought to identify the molecular mechanism of action of these hispidin analogues by determining their effects on lipopolysaccharide (LPS)-mediated inflammatory responses in a macrophage cell line. The production of inflammatory mediators was determined by Griess assay, reverse transcription-PCR and ELISA. The inhibitory effect of davalliactone on LPS-induced activation of signalling cascades was assessed by western blotting, immunoprecipitation and direct kinase assay. In activated RAW264.7 cells, davallialactone strongly downregulated LPS-mediated inflammatory responses, including NO production, prostaglandin E2 release, expression of proinflammatory cytokine genes and cell surface expression of co-stimulatory molecules. Davallialactone treatment did not alter cell viability or morphology. Davallialactone was found to exert its anti-inflammatory effects by inhibiting a signalling cascade that activates nuclear factor kappa B via PI3K, Akt and IKK, but not mitogen-activated protein kinases. Treatment with davallialactone affected the phosphorylation of these signalling proteins, but not their level of expression. These inhibitory effects were not due to the interruption of toll-like receptor 4 binding to CD14. In particular, davallialactone strongly inhibited the LPS-induced phosphorylation and kinase activity of Src, implying that Src may be a potential pharmacological target of davallialactone. Our data suggest that davallialactone, a small molecule found in edible mushrooms, has anti-inflammatory activity. Davallialactone can be developed as a pharmaceutically valuable anti-Src kinase agent.

  7. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy.

    PubMed

    Zhou, Changqian; Ma, Kaili; Gao, Ruize; Mu, Chenglong; Chen, Linbo; Liu, Qiangqiang; Luo, Qian; Feng, Du; Zhu, Yushan; Chen, Quan

    2017-02-01

    Autophagy requires diverse membrane sources and involves membrane trafficking of mATG9, the only membrane protein in the ATG family. However, the molecular regulation of mATG9 trafficking for autophagy initiation remains unclear. Here we identified two conserved classic adaptor protein sorting signals within the cytosolic N-terminus of mATG9, which mediate trafficking of mATG9 from the plasma membrane and trans-Golgi network (TGN) via interaction with the AP1/2 complex. Src phosphorylates mATG9 at Tyr8 to maintain its endocytic and constitutive trafficking in unstressed conditions. In response to starvation, phosphorylation of mATG9 at Tyr8 by Src and at Ser14 by ULK1 functionally cooperate to promote interactions between mATG9 and the AP1/2 complex, leading to redistribution of mATG9 from the plasma membrane and juxta-nuclear region to the peripheral pool for autophagy initiation. Our findings uncover novel mechanisms of mATG9 trafficking and suggest a coordination of basal and stress-induced autophagy.

  8. An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization.

    PubMed

    Huot, Marc-Etienne; Brown, Claire M; Lamarche-Vane, Nathalie; Richard, Stéphane

    2009-04-01

    The Src-associated substrate during mitosis with a molecular mass of 68 kDa (Sam68) is predominantly nuclear and is known to associate with proteins containing the Src homology 3 (SH3) and SH2 domains. Although Sam68 is a Src substrate, little is known about the signaling pathway that link them. Src is known to be activated transiently after cell spreading, where it modulates the activity of small Rho GTPases. Herein we report that Sam68-deficient cells exhibit loss of cell polarity and cell migration. Interestingly, Sam68-deficient cells exhibited sustained Src activity after cell attachment, resulting in the constitutive tyrosine phosphorylation and activation of p190RhoGAP and its association with p120rasGAP. Consistently, we observed that Sam68-deficient cells exhibited deregulated RhoA and Rac1 activity. By using total internal reflection fluorescence microscopy, we observed Sam68 near the plasma membrane after cell attachment coinciding with phosphorylation of its C-terminal tyrosines and association with Csk. These findings show that Sam68 localizes near the plasma membrane during cell attachment and serves as an adaptor protein to modulate Src activity for proper signaling to small Rho GTPases.

  9. Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer

    DTIC Science & Technology

    2012-03-01

    patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER

  10. Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling.

    PubMed

    Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2009-06-01

    Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.

  11. Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis

    PubMed Central

    Dasgupta, Subhamoy; Putluri, Nagireddy; Long, Weiwen; Zhang, Bin; Wang, Jianghua; Kaushik, Akash K.; Arnold, James M.; Bhowmik, Salil K.; Stashi, Erin; Brennan, Christine A.; Rajapakshe, Kimal; Coarfa, Cristian; Mitsiades, Nicholas; Ittmann, Michael M.; Chinnaiyan, Arul M.; Sreekumar, Arun; O’Malley, Bert W.

    2015-01-01

    Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2–driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer. PMID:25664849

  12. Inhibition of src family kinases by a combinatorial action of 5'-AMP and small heat shock proteins, identified from the adult heart.

    PubMed

    Kasi, V S; Kuppuswamy, D

    1999-10-01

    Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.

  13. cSrc and Her2 Signaling Pathways Cooperate with Estrogen to Promote ER Phosphorylation, Ubiquitination and Proteolysis in ER Negative Breast Cancers

    DTIC Science & Technology

    2007-03-01

    68 HR positive tumors were compared with 23 ’triple receptor-negative’ tumors (negative for ER and PR by IHC and for HER2 by FISH ), Src levels were...47. Rosen,N., Bolen,J.B., Schwartz,A.M., Cohen,P., DeSeau,V., and Israel ,M.A. 1986. Analysis of pp60c-src protein kinase activity in human tumor...www.aacrjournals.org cancers has been associated with poor prognosis (41, 42). Cyclin D1 deficient mice are resistant to breast cancers induced by transgenic ErbB2/neu

  14. Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice.

    PubMed

    Toray, Hisashi; Hasegawa, Tomoka; Sakagami, Naoko; Tsuchiya, Erika; Kudo, Ai; Zhao, Shen; Moritani, Yasuhito; Abe, Miki; Yoshida, Taiji; Yamamoto, Tomomaya; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Udagawa, Nobuyuki; Luiz de Freitas, Paulo Henrique; Li, Minqi

    2017-01-01

    Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos -/- or c-src -/- mice. Osteopetrotic c-fos deficient (c-fos -/- ) mice have no osteoclasts, while c-src deficient (c-src -/- ) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos -/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src -/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src -/- bone matrix. This indicates the possibility that in c-src -/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src -/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.

  15. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    PubMed

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. c-Src activity is differentially required by cancer cell motility modes.

    PubMed

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Chadwick, Richard S

    2018-04-01

    Cancer cell migration requires that cells respond and adapt to their surroundings. In the absence of extracellular matrix cues, cancer cells will undergo a mesenchymal to ameboid transition, whereas a highly confining space will trigger a switch to "leader bleb-based" migration. To identify oncogenic signaling pathways mediating these transitions, we undertook a targeted screen using clinically useful inhibitors. Elevated Src activity was found to change actin and focal adhesion dynamics, whereas inhibiting Src triggered focal adhesion disassembly and blebbing. On non-adherent substrates and in collagen matrices, amoeboid-like, blebbing cells having high Src activity formed protrusions of the plasma membrane. To evaluate the role of Src in confined cells, we use a novel approach that places cells under a slab of polydimethylsiloxane (PDMS), which is held at a defined height. Using this method, we find that leader bleb-based migration is resistant to Src inhibition. High Src activity was found to markedly change the architecture of cortical actomyosin, reduce cell mechanical properties, and the percentage of cells that undergo leader bleb-based migration. Thus, Src is a signal transducer that can potently influence transitions between migration modes with implications for the rational development of metastasis inhibitors.

  17. Inhibition of Src Family Kinases by a Combinatorial Action of 5′-AMP and Small Heat Shock Proteins, Identified from the Adult Heart

    PubMed Central

    Kasi, Vijaykumar S.; Kuppuswamy, Dhandapani

    1999-01-01

    Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5′-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5′-AMP and to a lesser extent 5′-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including αB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5′-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5′-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5′-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state. PMID:10490624

  18. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  19. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    PubMed

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Tyrosine Kinase Inhibition in HPV-related Squamous Cell Carcinoma Reveals Beneficial Expression of cKIT and Src.

    PubMed

    Kramer, Benedikt; Kneissle, Marcel; Birk, Richard; Rotter, Nicole; Aderhold, Christoph

    2018-05-01

    Therapeutic options of locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) are limited. Src and cKIT are key protein regulators for local tumor progression. The aim of the study was to investigate the therapeutic potential of targeted therapies in human squamous cell carcinoma (HNSCC) in vitro. Therefore, the influence of the selective tyrosine kinase inhibitors niotinib, dasatinib, erlotinib, gefitinib and afatinib on Src and cKIT expression in Human papilloma virus (HPV)-positive and HPV-negative squamous cancer cells (SCC) was analyzed in vitro. ELISA was performed to evaluate the expression of Src and cKIT under the influence of nilotinib, dasatinib, erlotinib, gefitinib and afatinib (10 μmol/l) in HPV-negative and HPV-positive SCC (24-96 h of incubation). Gefitinib significantly increased cKIT expression in HPV-positive and HPV-negative cells whereas nilotinib and afatinib decreased cKIT expression in HPV-positive SCC. The influence of tyrosine kinase inhibitors in HPV-negative SCC was marginal. Surprisingly, Src expression was significantly increased by all tested tyrosine kinase inhibitors in HPV-positive SCC. The results revealed beneficial and unexpected information concerning the interaction of selective tyrosine kinase inhibitors and the tumor biology of HNSCC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl.

    PubMed

    Sanjay, Archana; Miyazaki, Tsuyoshi; Itzstein, Cecile; Purev, Enkhtsetseg; Horne, William C; Baron, Roland

    2006-12-01

    Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.

  2. Differential subcellular membrane recruitment of Src may specify its downstream signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diesbach, Philippe de; Medts, Thierry; Carpentier, Sarah

    2008-04-15

    Most Src family members are diacylated and constitutively associate with membrane 'lipid rafts' that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at 'rafts' remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to 'lipid rafts'; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 deg. C and floated into sucrose density gradients like caveolin-1 andmore » flotillin-2, i.e. 'lipid rafts'. By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ({approx} 70%) cholesterol extraction with methyl-{beta}-cyclodextrin (M{beta}CD) did not abolish 'rafts' floatation, but strongly decreased Src association with floating 'rafts' and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to M{beta}CD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at 'non-raft' domains on endosomes, then via PI3-kinase-Akt on a distinct set of 'rafts' at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.« less

  3. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype

    PubMed Central

    Gangoso, E; Thirant, C; Chneiweiss, H; Medina, J M; Tabernero, A

    2014-01-01

    Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target. PMID:24457967

  4. Significance of ERa and c-Src Interaction in the Progression of Hormone Independent Breast Cancer

    DTIC Science & Technology

    2005-12-01

    defects in estrogen signaling [1]. Because of global defects in estrogen signaling observed in these c-Src deficient mice, we have recently generated...1998). Interestingly, the region of the kinase domain of ErbB-2 that correlates with c-Src association, referred to as TK2 (Segatto et al., 1991...ductive organs that are dependent on ERa in c-Src- deficient mice. We show that the loss of the c-Src tyrosine kinase correlates with defects in ductal

  5. Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-{gamma}1.

    PubMed

    Harita, Yutaka; Kurihara, Hidetake; Kosako, Hidetaka; Tezuka, Tohru; Sekine, Takashi; Igarashi, Takashi; Ohsawa, Ikuroh; Ohta, Shigeo; Hattori, Seisuke

    2009-03-27

    A specialized intercellular junction between podocytes, known as the slit diaphragm (SD), forms the essential structural frame-work for glomerular filtration in the kidney. In addition, mounting evidence demonstrates that the SD also plays a crucial role as a signaling platform in physiological and pathological states. Nephrin, the major component of the SD, is tyrosine-phosphorylated by a Src family tyrosine kinase, Fyn, in developing or injured podocytes, recruiting Nck to Nephrin via its Src homology 2 domain to regulate dynamic actin remodeling. Dysregulated Ca(2+) homeostasis has also been implicated in podocyte damage, but the mechanism of how podocytes respond to injury is largely unknown. Here we have identified phospholipase C-gamma1 (PLC-gamma1) as a novel phospho-Nephrin-binding protein. When HEK293T cells expressing a chimeric protein consisting of CD8 and Nephrin cytoplasmic domain (CD) were treated with anti-CD8 and anti-mouse antibodies, clustering of Nephrin and phosphorylation of Nephrin-CD were induced. Upon this clustering, PLC-gamma1 was bound to phosphorylated Nephrin Tyr-1204, which induced translocation of PLC-gamma1 from cytoplasm to the CD8/Nephrin cluster on the plasma membrane. The recruitment of PLC-gamma1 to Nephrin activated PLC-gamma1, as detected by phosphorylation of PLC-gamma1 Tyr-783 and increase in inositol 1,4,5-trisphosphate level. We also found that Nephrin Tyr-1204 phosphorylation triggers the Ca(2+) response in a PLC-gamma1-dependent fashion. Furthermore, PLC-gamma1 is significantly phosphorylated in injured podocytes in vivo. Given the profound effect of PLC-gamma in diverse cellular functions, regulation of the Ca(2+) signaling by Nephrin may be important in modulating the glomerular filtration barrier function.

  6. Src/Syk-Targeted Anti-Inflammatory Actions of Triterpenoidal Saponins from Gac (Momordica cochinchinensis) Seeds.

    PubMed

    Yu, Jae Sik; Kim, Jun Ho; Lee, Seulah; Jung, Kiwon; Kim, Ki Hyun; Cho, Jae Youl

    2017-01-01

    Momordica cochinchinensis Spreng (family Cucurbitaceae), also known as gac, or red melon, is an edible Southeast Asian fruit valued for its nutritional and medicinal properties. Specifically, Momordicae Semen, the seeds of the gac fruit, is used in traditional Chinese medicine to treat boils, rheumatic pain, muscle spasm, hemorrhoids, and hemangiomas. In this study, a chemical investigation into a gac seed ethanol (EtOH) extract resulted in the identification of three triterpenoidal saponins (1-3), which were investigated for their anti-inflammatory effects. Among the saponins, momordica saponin I (compound 3) reduced the production of nitric oxide (NO) in LPS-activated RAW264.7 cells without inducing cytotoxicity. The mRNA levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by momordica saponin I. Additionally, the translocation of p65 and p50 (subunits of the transcription factor NF-[Formula: see text]B) into the nucleus was remarkably inhibited. Furthermore, the phosphorylation levels of inflammatory signaling proteins (I[Formula: see text]B[Formula: see text], Src, and Syk) known to be upstream regulatory molecules of p65 were decreased under momordica saponin I-treated conditions. The molecular targets of momordica saponin I were confirmed in overexpression experiments and through immunoblot analyses with Src and Syk. This study provides evidence that momordica saponin I could be beneficial in treating inflammatory diseases, and should be considered a bioactive immunomodulatory agent with anti-inflammatory properties.

  7. Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors trigger neuronal nitric-oxide synthase activation to promote nerve cell death in an Src kinase-dependent fashion.

    PubMed

    Socodato, Renato; Santiago, Felipe N; Portugal, Camila C; Domingues, Ana F; Santiago, Ana R; Relvas, João B; Ambrósio, António F; Paes-de-Carvalho, Roberto

    2012-11-09

    In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.

  8. Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1.

    PubMed

    Shinohara, M; Kodama, A; Matozaki, T; Fukuhara, A; Tachibana, K; Nakanishi, H; Takai, Y

    2001-06-01

    Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.

  9. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  10. Roles of ER, SRC-1, and CBP Phosphorylation in Estrogen Receptor-Regulated Gene Expression

    DTIC Science & Technology

    1999-06-01

    J. S. Sutcliff, P. Fang, R. J. Galjaard, Y. H. Jiang, C. S. localization of three repair genes: the xeroderma pigmentosum group C gene Benton, J. M...receptor-mediated scription efficiency, a central DNA-binding domain, which me- transcription; SRC-1, p300/CBP, and RAC3/ACTR/AIB1 pos - diates receptor

  11. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    NASA Astrophysics Data System (ADS)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D'Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  12. Protein Phosphorylation during Coconut Zygotic Embryo Development1

    PubMed Central

    Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545

  13. Calcium-permeable α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors Trigger Neuronal Nitric-oxide Synthase Activation to Promote Nerve Cell Death in an Src Kinase-dependent Fashion*

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domingues, Ana F.; Santiago, Ana R.; Relvas, João B.; Ambrósio, António F.; Paes-de-Carvalho, Roberto

    2012-01-01

    In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-dl-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death. PMID:22992730

  14. v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins.

    PubMed

    Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T

    2008-10-09

    Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.

  15. Regulation of Src homology 2-containing tyrosine phosphatase 1 during activation of human neutrophils. Role of protein kinase C.

    PubMed

    Brumell, J H; Chan, C K; Butler, J; Borregaard, N; Siminovitch, K A; Grinstein, S; Downey, G P

    1997-01-10

    The tyrosine phosphorylation of several proteins induced in neutrophils by soluble and particulate stimuli is thought to be crucial for initiating antimicrobial responses. Although activation of tyrosine kinases is thought to mediate this event, the role of tyrosine phosphatases in the initiation and modulation of neutrophil responses remains largely undefined. We investigated the role of Src homology 2-containing tyrosine phosphatase 1 (SHP-1; also known as protein tyrosine phosphatase 1C (PTP1C), hematopoetic cell phosphatase, PTP-N6, and SHPTP-1), a phosphatase expressed primarily in hemopoietic cells, in the activation of human neutrophils. SHP-1 mRNA and protein were detected in these cells, and the enzyme was found to be predominantly localized to the cytosol in unstimulated cells. Following stimulation with neutrophil agonists such as phorbol ester, chemotactic peptide, or opsonized zymosan, a fraction of the phosphatase redistributed to the cytoskeleton. Agonist treatment also induced significant decreases (30-60%) in SHP-1 activity, which correlated temporally with increases in the cellular phosphotyrosine content. Phosphorylation of SHP-1 on serine residues was associated with the inhibition of its enzymatic activity, suggesting a causal relationship. Accordingly, both the agonist-evoked phosphorylation of SHP-1 and the inhibition of its catalytic activity were blocked by treatment with bisindolylmaleimide I, a potent and specific inhibitor of protein kinase C (PKC) activity. Immunoprecipitated SHP-1 was found to be phosphorylated efficiently by purified PKC in vitro. Such phosphorylation also caused a decrease in the phosphatase activity of SHP-1. Together, these data suggest that inhibition of SHP-1 by PKC-mediated serine phosphorylation plays a role in facilitating the accumulation of tyrosine-phosphorylated proteins following neutrophil stimulation. These findings provide a new link between the PKC and tyrosine phosphorylation branches of the

  16. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery.

    PubMed

    Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I

    2008-02-01

    We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.

  17. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery

    PubMed Central

    Knock, Greg A.; Shaifta, Yasin; Snetkov, Vladimir A.; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P.T.; Aaronson, Philip I.

    2008-01-01

    Abstract Aims We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Methods and results Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F2α (PGF2α) in α-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF2α were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF2α enhanced phosphorylation of three srcFK proteins at tyr-416. In α-toxin-permeabilized IPAs, PGF2α enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF2α enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF2α-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF2α triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. Conclusions srcFK are activated by PGF2α in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1. PMID:18032393

  18. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis.

    PubMed

    Silva, Corinne M

    2004-10-18

    The signal transducers and activators of transcription (STATs) were originally identified in the signaling pathway activated by the nontyrosine kinase containing cytokine receptors. The role of these STATs in hematopoietic cell signaling has been well described. In the case of cytokine receptors, activation of STAT tyrosine phosphorylation occurs through ligand-induced recruitment, and activation of the intracellular JAK kinases. However, STATs can also be activated by growth factor receptors, particularly the EGFR; as well as by members of the Src Family of Kinases (SFKs), particularly c-Src. In many cases, there is a differential activation of the STATs by these tyrosine kinases as compared to activation by the cytokine receptors. This difference provides for the potential of unique actions of STATs in response to growth factor receptor and SFK activation. Since there are many cancers in which SFKs and c-Src in particular, are co-overexpressed with growth factor receptors, it is not surprising that STATs play an important role in the tumorigenesis process induced by c-Src. The activation paradigm and role of STATs in these cancers, with particular emphasis on breast cancer models, is discussed.

  19. Role for Tyrosine Phosphorylation of A-kinase Anchoring Protein 8 (AKAP8) in Its Dissociation from Chromatin and the Nuclear Matrix.

    PubMed

    Kubota, Sho; Morii, Mariko; Yuki, Ryuzaburo; Yamaguchi, Noritaka; Yamaguchi, Hiromi; Aoyama, Kazumasa; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto

    2015-04-24

    Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. c-Src activation through a TrkA and c-Src interaction is essential for cell proliferation and hematological malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min Soo; Kim, Gyoung Mi; Choi, Yun-Jeong

    2013-11-15

    Highlights: •TrkA was mainly present in other types of leukemia including AML. •TrkA enhances the survival of leukemia by activation of PI3K/Akt pathway. •TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1. •TrkA acted as a key regulator of leukemogenesis and survival through c-Src activation. -- Abstract: Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkAmore » is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.« less

  1. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    PubMed Central

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  2. Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by deregulating a c-src/FAK-associated signaling pathway.

    PubMed

    Shi, Shuang; Zhong, Dong; Xiao, Yao; Wang, Bing; Wang, Wentao; Zhang, Fu'an; Huang, Haoyang

    2017-06-20

    Recent studies have shown that increased syndecan-1 (SDC1) expression in human glioma is associated with higher tumor grades and poor prognoses, but its oncogenic functions and the underlying molecular mechanisms remain unknown. Here, we examined SDC1 expression in datasets from The Cancer Genome Atlas and the National Center for Biotechnology Information Gene Expression Omnibus. Elevated SDC1 expression in glioma was closely associated with increases in tumor progression and shorter survival. We also examined SDC1 expression and evaluated the effects of stable SDC1 knockdown in glioma cell lines. SDC1 knockdown attenuated proliferation and invasion by glioma cells and markedly decreased PCNA and MMP-9 mRNA and protein expression. In a xenograft model, SDC1 knockdown suppressed the tumorigenic effects of U87 cells in vivo. SDC1 knockdown decreased phosphorylation of the c-src/FAK complex and its downstream signaling molecules, Erk, Akt and p38 MAPK. These results suggest that SDC1 may be a novel therapeutic target in the treatment of glioma.

  3. Rhynchophylline Ameliorates Endothelial Dysfunction via Src-PI3K/Akt-eNOS Cascade in the Cultured Intrarenal Arteries of Spontaneous Hypertensive Rats

    PubMed Central

    Hao, Hui-Feng; Liu, Li-Mei; Pan, Chun-Shui; Wang, Chuan-She; Gao, Yuan-Sheng; Fan, Jing-Yu; Han, Jing-Yan

    2017-01-01

    Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway. PMID:29187825

  4. Potent and Selective Phosphopeptide Mimetic Prodrugs Targeted to the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 3

    PubMed Central

    Mandal, Pijus K.; Gao, Fengqin; Lu, Zhen; Ren, Zhiyong; Ramesh, Rajagopal; Birtwistle, J. Sanderson; Kaluarachchi, Kumaralal K.; Chen, Xiaomin; Bast, Robert C.; Liao, Warren S.; McMurray, John S.

    2011-01-01

    Signal transducer and activator of transcription 3 (Stat3), a target for anticancer drug design, is activated by recruitment to phosphotyrosine residues on growth factor and cytokine receptors via its SH2 domain. We report here structure-activity relationship studies on phosphopeptide mimics targeted to the SH2 domain of Stat3. Inclusion of a methyl group on the β-position of the pTyr mimic, 4-phosphocinfnamide, enhanced affinity 2–3 fold. Bis-pivaloyloxymethyl prodrugs containing β-methyl cinnamide, dipeptide scaffolds Haic and Nle-cis-3,4-methanoproline, and glutamine surrogates were highly potent, completely inhibiting phosphorylation of Stat3 Tyr705 at 0.5–1 µM in a variety of cancer cell lines. The inhibitors were selective for Stat3 over Stat1, Stat5, Src, and p85 of PI3K, indicating ability to discriminate individual SH2 domains in intact cells. At concentrations that completely inhibited Stat3 phosphorylation, the prodrugs were not cytotoxic to a panel of tumor cells, thereby showing clear distinction between cytotoxicity and effects downstream of activated Stat3. PMID:21486047

  5. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src

    PubMed Central

    Hari, Sanjay B.; Perera, B. Gayani K.; Ranjitkar, Pratistha; Seeliger, Markus A.; Maly, Dustin J.

    2013-01-01

    Over the last decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely-related tyrosine kinases, like Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases. PMID:24106839

  6. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease

    PubMed Central

    MacKay, Charles E; Knock, Greg A

    2015-01-01

    Abstract Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca2+ concentration, including transient receptor potential channels, voltage-gated Ca2+ channels and various types of K+ channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension. PMID:25384773

  7. Computational Study of the “DFG-Flip” Conformational Transition in c-Abl and c-Src Tyrosine Kinases

    PubMed Central

    2015-01-01

    Protein tyrosine kinases are crucial to cellular signaling pathways regulating cell growth, proliferation, metabolism, differentiation, and migration. To maintain normal regulation of cellular signal transductions, the activities of tyrosine kinases are also highly regulated. The conformation of a three-residue motif Asp-Phe-Gly (DFG) near the N-terminus of the long “activation” loop covering the catalytic site is known to have a critical impact on the activity of c-Abl and c-Src tyrosine kinases. A conformational transition of the DFG motif can switch the enzyme from an active (DFG-in) to an inactive (DFG-out) state. In the present study, the string method with swarms-of-trajectories was used to computationally determine the reaction pathway connecting the two end-states, and umbrella sampling calculations were carried out to characterize the thermodynamic factors affecting the conformations of the DFG motif in c-Abl and c-Src kinases. According to the calculated free energy landscapes, the DFG-out conformation is clearly more favorable in the case of c-Abl than that of c-Src. The calculations also show that the protonation state of the aspartate residue in the DFG motif strongly affects the in/out conformational transition in c-Abl, although it has a much smaller impact in the case of c-Src due to local structural differences. PMID:25548962

  8. Novel Autophosphorylation Sites of Src Family Kinases Regulate Kinase Activity and SH2 Domain Binding Capacity

    PubMed Central

    Weir, Marion E.; Mann, Jacqueline E.; Corwin, Thomas; Fulton, Zachary W.; Hao, Jennifer M.; Maniscalco, Jeanine F.; Kenney, Marie C.; Roque, Kristal M. Roman; Chapdelaine, Elizabeth F.; Stelzl, Ulrich; Deming, Paula B.; Ballif, Bryan A.; Hinkle, Karen L.

    2016-01-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly-regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly-phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the site C-terminal to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024

  9. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Suárez-Pozos, Edna; Melgarejo, Yaaziel; González-Mejia, Elba; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2009-09-01

    Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.

  10. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2,more » or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.« less

  11. Characterization of cortactin as an in vivo protein kinase D substrate: interdependence of sites and potentiation by Src.

    PubMed

    De Kimpe, Line; Janssens, Katrien; Derua, Rita; Armacki, Milena; Goicoechea, Silvia; Otey, Carol; Waelkens, Etienne; Vandoninck, Sandy; Vandenheede, Jackie R; Seufferlein, Thomas; Van Lint, Johan

    2009-02-01

    Protein Kinase D (PKD) has been implicated in the regulation of actin turnover at the leading edge, invasion and migration. In particular, a complex between cortactin, paxillin and PKD in the invadopodia of invasive breast cancer cells has been described earlier, but so far this complex remained ill defined. Here we have investigated the possible role of PKD as a cortactin kinase. Using a mass spectrometric approach, we found that PKD phosphorylates cortactin on Ser 298 in the 6th cortactin repeat region and on Ser 348, right before the helical-proline rich domain of cortactin. We developed phosphospecific antibodies against these phosphorylated sequences, and used them as tools to follow the in vivo phosphorylation of cortactin by PKD. Examination of cortactin phosphorylation kinetics revealed that Ser 298 serves as a priming site for subsequent phosphorylation of Ser 348. Src, a well-known cortactin kinase, strongly potentiated the in vivo PKD mediated cortactin phosphorylation. This Src effect is neither mediated by pre-phosphorylation of cortactin nor by activation of PKD by Src. Phosphorylation of cortactin by PKD does not affect its subcellular localization, nor does it affect its translocation to podosomes or membrane ruffles. Moreover, there was no effect of PKD mediated cortactin phosphorylation on EGF receptor degradation and LPA induced migration. Taken together, these data establish cortactin as a novel PKD substrate and reveal a novel connection between Src and PKD.

  12. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  13. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner.

    PubMed

    Dragone, Leonard L; Myers, Margaret D; White, Carmen; Gadwal, Shyam; Sosinowski, Tomasz; Gu, Hua; Weiss, Arthur

    2006-11-28

    Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation.

  14. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner

    PubMed Central

    Dragone, Leonard L.; Myers, Margaret D.; White, Carmen; Gadwal, Shyam; Sosinowski, Tomasz; Gu, Hua; Weiss, Arthur

    2006-01-01

    Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation. PMID:17110436

  15. Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laszlo, A.; Radke, K.; Chin, S.

    1981-10-01

    We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response tomore » TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment (Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352). Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis.« less

  16. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  17. Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion

    PubMed Central

    Zhou, Xiaoxu; Liu, Lirong; Masucci, Monica V.; Tang, Jinhua; Li, Xuezhu; Liu, Na; Bayliss, George; Zhao, Ting C.; Zhuang, Shougang

    2017-01-01

    Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI. PMID:28415724

  18. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    PubMed Central

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  19. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    PubMed

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. © 2016 Federation of European Biochemical Societies.

  20. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic {sup 32}P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate intomore » Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains.« less

  1. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    PubMed

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2017-04-20

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  2. A Ser75-to-Asp phospho-mimicking mutation in Src accelerates ageing-related loss of retinal ganglion cells in mice.

    PubMed

    Kashiwagi, Kenji; Ito, Sadahiro; Maeda, Shuichiro; Kato, Goro

    2017-12-01

    Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.

  3. The Role of C-SRC Activation in Prostate Tumor Progression

    DTIC Science & Technology

    2006-07-01

    cancer cell line PANC -1 and prostrate cancer cell line PC-3 (B2-fold increase relative to control in both cell lines), while the Src inhibitory PP2 blocks...at normoxia in PANC -1 and PC-3 cells, its levels significantly increase in response to hypoxia (B4.5–8-fold induction). Inhibition of endo- genous c...Src activation in PANC -1 and PC-3 cells by PP2 drastically reduced HIF-1a levels to below those levels observed at normoxia (Figure 1a). STAT3 has

  4. Src Drives Growth of Antiestrogen Resistant Breast Cancer Cell Lines and Is a Marker for Reduced Benefit of Tamoxifen Treatment

    PubMed Central

    Larsen, Sarah L.; Laenkholm, Anne-Vibeke; Duun-Henriksen, Anne Katrine; Bak, Martin; Lykkesfeldt, Anne E.; Kirkegaard, Tove

    2015-01-01

    The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen. PMID

  5. Phosphorylation of KRAB-associated Protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by Nuclear Tyrosine Kinases Inhibits the Association of KAP1 and Heterochromatin Protein 1α (HP1α) with Heterochromatin*

    PubMed Central

    Kubota, Sho; Fukumoto, Yasunori; Aoyama, Kazumasa; Ishibashi, Kenichi; Yuki, Ryuzaburo; Morinaga, Takao; Honda, Takuya; Yamaguchi, Noritaka; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-01-01

    Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1β/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1–3YF). In DNA damage, KAP1–3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin. PMID:23645696

  6. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    PubMed

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  7. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    PubMed

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Asymmetric arginine dimethylation of heterogeneous nuclear ribonucleoprotein K by protein-arginine methyltransferase 1 inhibits its interaction with c-Src.

    PubMed

    Ostareck-Lederer, Antje; Ostareck, Dirk H; Rucknagel, Karl P; Schierhorn, Angelika; Moritz, Bodo; Huttelmaier, Stefan; Flach, Nadine; Handoko, Lusy; Wahle, Elmar

    2006-04-21

    Arginine methylation is a post-translational modification found in many RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) from HeLa cells was shown, by mass spectrometry and Edman degradation, to contain asymmetric N(G),N(G)-dimethylarginine at five positions in its amino acid sequence (Arg256, Arg258, Arg268, Arg296, and Arg299). Whereas these five residues were quantitatively modified, Arg303 was asymmetrically dimethylated in <33% of hnRNP K and Arg287 was monomethylated in <10% of the protein. All other arginine residues were unmethylated. Protein-arginine methyltransferase 1 was identified as the only enzyme methylating hnRNP K in vitro and in vivo. An hnRNP K variant in which the five quantitatively modified arginine residues had been substituted was not methylated. Methylation of arginine residues by protein-arginine methyltransferase 1 did not influence the RNA-binding activity, the translation inhibitory function, or the cellular localization of hnRNP K but reduced the interaction of hnRNP K with the tyrosine kinase c-Src. This led to an inhibition of c-Src activation and hnRNP K phosphorylation. These findings support the role of arginine methylation in the regulation of protein-protein interactions.

  9. Activation pathway of Src kinase reveals intermediate states as novel targets for drug design

    PubMed Central

    Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.

    2014-01-01

    Unregulated activation of Src kinases leads to aberrant signaling, uncontrolled growth, and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modeled in silico via atomistic molecular dynamics simulations, although this is very challenging due to the long activation timescales. Here, we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially utilized for drug design is predicted. PMID:24584478

  10. EphA2 and Src regulate equatorial cell morphogenesis during lens development

    PubMed Central

    Cheng, Catherine; Ansari, Moham M.; Cooper, Jonathan A.; Gong, Xiaohua

    2013-01-01

    High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2-/- mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2-/- cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2-/- lenses. Src-/- equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice. PMID:24026120

  11. An epitope localized in c-Src negative regulatory domain is a potential marker in early stage of colonic neoplasms.

    PubMed

    Sakai, T; Kawakatsu, H; Fujita, M; Yano, J; Owada, M K

    1998-02-01

    In previous work, we established a new monoclonal antibody that specifically recognizes the active form of c-Src tyrosine kinase (Kawakatsu et al, 1996). To determine whether c-Src is active in colorectal tumorigenesis, we examined the expression of an active form of c-Src in human normal mucosa, hyperplastic polyps, adenomas, and adenocarcinomas. The tissue distribution of the active form of c-Src was studied by immunohistochemistry using this antibody, termed Clone 28. Among 66 cases of adenoma tested, 61 (92%) showed positive staining (adenoma with mild atypia, 3 of 3; adenoma with moderate atypia, 38 of 42; adenoma with severe atypia, 20 of 21). In contrast to the frequent and intense staining in adenomas, adenocarcinoma showed weak staining with less frequency in 4 of 16 (25%) cases. The number of specimens with positive staining in well- and moderately differentiated adenocarcinomas was limited to an early stage. The active form of c-Src mainly localized to the nuclear membrane and the perinuclear region. These results provide the first direct evidence that the activation of c-Src appears to be an early event in colonic carcinogenesis in situ. The findings of the present study thus allow us to propose a molecular mechanism involving c-Src activation in the process of malignant transformation of the human colonic neoplastic cells.

  12. Functional diversity of Csk, Chk, and Src SH2 domains due to a single residue variation.

    PubMed

    Ayrapetov, Marina K; Nam, Nguyen Hai; Ye, Guofeng; Kumar, Anil; Parang, Keykavous; Sun, Gongqin

    2005-07-08

    The C-terminal Src kinase (Csk) family of protein tyrosine kinases contains two members: Csk and Csk homologous kinase (Chk). Both phosphorylate and inactivate Src family kinases. Recent reports suggest that the Src homology (SH) 2 domains of Csk and Chk may bind to different phosphoproteins, which provides a basis for different cellular functions for Csk and Chk. To verify and characterize such a functional divergence, we compared the binding properties of the Csk, Chk, and Src SH2 domains and investigated the structural basis for the functional divergence. First, the study demonstrated striking functional differences between the Csk and Chk SH2 domains and revealed functional similarities between the Chk and Src SH2 domains. Second, structural analysis and mutagenic studies revealed that the functional differences among the three SH2 domains were largely controlled by one residue, Glu127 in Csk, Ile167 in Chk, and Lys200 in Src. Mutating these residues in the Csk or Chk SH2 domain to the Src counterpart resulted in dramatic gain of function similar to Src SH2 domain, whereas mutating Lys200 in Src SH2 domain to Glu (the Csk counterpart) resulted in loss of Src SH2 function. Third, a single point mutation of E127K rendered Csk responsive to activation by a Src SH2 domain ligand. Finally, the optimal phosphopeptide sequence for the Chk SH2 domain was determined. These results provide a compelling explanation for the functional differences between two homologous protein tyrosine kinases and reveal a new structure-function relationship for the SH2 domains.

  13. Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway.

    PubMed

    Shin, Dong Hoon; Lee, Hyo-Jong; Min, Hye-Young; Choi, Sun Phil; Lee, Mi-Sook; Lee, Jung Weon; Johnson, Faye M; Mehta, Kapil; Lippman, Scott M; Glisson, Bonnie S; Lee, Ho-Young

    2013-10-16

    Several phase II/III trials of anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non-small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line- or patient-derived xenograft tumors in athymic nude mice (n = 6-9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Integrin β3-Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7 mm(3) (95% confidence interval [CI] = 57.6 to 209.8 mm(3)) compared with those treated with cixutumumab (1472.5 mm(3); 95% CI = 1150.7 to 1794.3 mm(3); P < .001) or integrin β3 siRNA (903.2 mm(3); 95% CI = 636.1 to 1170.3 mm(3); P < .001) alone. Increased Src activation through integrin ανβ3 confers considerable resistance against anti-IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3-Src signaling module may override this resistance.

  14. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets.

    PubMed

    Moore, S F; Hunter, R W; Hers, I

    2014-05-01

    Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3

  15. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets

    PubMed Central

    Moore, S F; Hunter, R W; Hers, I

    2014-01-01

    Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner

  16. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    PubMed

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C Cdc20 ) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  17. Disruption of Src Is Associated with Phenotypes Related to Williams-Beuren Syndrome and Altered Cellular Localization of TFII-I1,2

    PubMed Central

    Ivakine, Evgueni A.; Lam, Emily; Deurloo, Marielle; Dida, Joana; Zirngibl, Ralph A.

    2015-01-01

    Abstract Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src thl/thl) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src thl/thl mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I. PMID:26464974

  18. Enhanced Prediction of Src Homology 2 (SH2) Domain Binding Potentials Using a Fluorescence Polarization-derived c-Met, c-Kit, ErbB, and Androgen Receptor Interactome*

    PubMed Central

    Leung, Kin K.; Hause, Ronald J.; Barkinge, John L.; Ciaccio, Mark F.; Chuu, Chih-Pin; Jones, Richard B.

    2014-01-01

    Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains. PMID:24728074

  19. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Selective Targeting of SH2 Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroupmore » (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.« less

  1. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRzeta for degradation.

    PubMed

    Myers, Margaret D; Dragone, Leonard L; Weiss, Arthur

    2005-07-18

    Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)-CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP-/- thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRzeta chain expression as a result of a defect in TCRzeta degradation. Failure to degrade TCRzeta leads to an increased pool of fully assembled TCR-CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRzeta chain and the Src family kinase Lck, but not ZAP-70 (zeta-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.

  2. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  3. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology.

    PubMed

    Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj

    2016-01-01

    In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a

  4. Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation.

    PubMed

    Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D

    2014-06-01

    Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial

  5. Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM)-mediated Inhibitory Signaling is Regulated by Sequential Phosphorylation Mediated by Distinct Nonreceptor Tyrosine Kinases: A Case Study Involving PECAM-1

    PubMed Central

    Tourdot, Benjamin E.; Brenner, Michelle K.; Keough, Kathleen C.; Holyst, Trudy; Newman, Peter J.; Newman, Debra K.

    2013-01-01

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing non-receptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton’s tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk, and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  6. Targeting synthetic lethality between the SRC kinase and the EPHB6 receptor may benefit cancer treatment.

    PubMed

    Paul, James M; Toosi, Behzad; Vizeacoumar, Frederick S; Bhanumathy, Kalpana Kalyanasundaram; Li, Yue; Gerger, Courtney; El Zawily, Amr; Freywald, Tanya; Anderson, Deborah H; Mousseau, Darrell; Kanthan, Rani; Zhang, Zhaolei; Vizeacoumar, Franco J; Freywald, Andrew

    2016-08-02

    Application of tumor genome sequencing has identified numerous loss-of-function alterations in cancer cells. While these alterations are difficult to target using direct interventions, they may be attacked with the help of the synthetic lethality (SL) approach. In this approach, inhibition of one gene causes lethality only when another gene is also completely or partially inactivated. The EPHB6 receptor tyrosine kinase has been shown to have anti-malignant properties and to be downregulated in multiple cancers, which makes it a very attractive target for SL applications. In our work, we used a genome-wide SL screen combined with expression and interaction network analyses, and identified the SRC kinase as a SL partner of EPHB6 in triple-negative breast cancer (TNBC) cells. Our experiments also reveal that this SL interaction can be targeted by small molecule SRC inhibitors, SU6656 and KX2-391, and can be used to improve elimination of human TNBC tumors in a xenograft model. Our observations are of potential practical importance, since TNBC is an aggressive heterogeneous malignancy with a very high rate of patient mortality due to the lack of targeted therapies, and our work indicates that FDA-approved SRC inhibitors may potentially be used in a personalized manner for treating patients with EPHB6-deficient TNBC. Our findings are also of a general interest, as EPHB6 is downregulated in multiple malignancies and our data serve as a proof of principle that EPHB6 deficiency may be targeted by small molecule inhibitors in the SL approach.

  7. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region.

    PubMed

    Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E

    2015-08-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.

  8. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    PubMed

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  9. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.

    PubMed

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-05

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Combating Resistance to Anti-IGFR Antibody by Targeting the Integrin β3-Src Pathway

    PubMed Central

    2013-01-01

    Background Several phase II/III trials of anti–insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. Methods IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non–small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line– or patient-derived xenograft tumors in athymic nude mice (n = 6–9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Results Integrin β3–Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7mm3 (95% confidence interval [CI] = 57.6 to 209.8mm3) compared with those treated with cixutumumab (1472.5mm3; 95% CI = 1150.7 to 1794.3mm3; P < .001) or integrin β3 siRNA (903.2mm3; 95% CI = 636.1 to 1170.3mm3; P < .001) alone. Conclusions Increased Src activation through integrin ανβ3 confers considerable resistance against anti–IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3–Src signaling module may override this resistance. PMID:24092920

  11. Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-β and Src in Tumor Growth12

    PubMed Central

    Dickerson, Erin B; Marley, Kevin; Edris, Wade; Tyner, Jeffrey W; Schalk, Vidya; MacDonald, Valerie; Loriaux, Marc; Druker, Brian J; Helfand, Stuart C

    2013-01-01

    Hemangiosarcoma, a natural model of human angiosarcoma, is an aggressive vascular tumor diagnosed commonly in dogs. The documented expression of several receptor tyrosine kinases (RTKs) by these tumors makes them attractive targets for therapeutic intervention using tyrosine kinase inhibitors (TKIs). However, we possess limited knowledge of the effects of TKIs on hemangiosarcoma as well as other soft tissue sarcomas. We report here on the use of the TKIs imatinib and dasatinib in canine hemangiosarcoma and their effects on platelet-derived growth factor receptor β (PDGFR-β) and Src inhibition. Both TKIs reduced cell viability, but dasatinib was markedly more potent in this regard, mediating cytotoxic effects orders of magnitude greater than imatinib. Dasatinib also inhibited the phosphorylation of the shared PDGFR-β target at a concentration approximately 1000 times less than that needed by imatinib and effectively blocked Src phosphorylation. Both inhibitors augmented the response to doxorubicin, suggesting that clinical responses likely will be improved using both drugs in combination; however, dasatinib was significantly (P < .05) more effective in this context. Despite the higher concentrations needed in cell-based assays, imatinib significantly inhibited tumor growth (P < .05) in a tumor xenograft model, highlighting that disruption of PDGFR-β/PDGF signaling may be important in targeting the angiogenic nature of these tumors. Treatment of a dog with spontaneously occurring hemangiosarcoma established that clinically achievable doses of dasatinib may be realized in dogs and provides a means to investigate the effect of TKIs on soft tissue sarcomas in a large animal model. PMID:23544168

  12. Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity

    PubMed Central

    Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi

    2000-01-01

    Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210

  13. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells.

    PubMed

    Kim, Hun Sik; Long, Eric O

    2012-07-10

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require synergistic signals from specific pairs of co-activation receptors, such as CD314 (also known as NKG2D) and CD244 (2B4), which bind to distinct ligands present on target cells. These signals are required to overcome inhibition mediated by the E3 ubiquitin ligase c-Cbl of the guanine nucleotide exchange factor Vav1, which promotes activation of NK cells. Here, we showed that the adaptor protein SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons) was required for this synergy and that distinct tyrosine residues in SLP-76 were phosphorylated by each member of a pair of synergistic receptors. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76 enabled binding of SLP-76 to Vav1. Selective phosphorylation of SLP-76 at these residues was restricted to receptors that stimulated ligand-dependent target cell killing; antibody-dependent stimulation of the Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 mutant proteins showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that combined phosphorylation of separate tyrosine residues in SLP-76 forms the basis of synergistic NK cell activation.

  14. Three-dimensional quantitative structure-activity relationship studies on c-Src inhibitors based on different docking methods.

    PubMed

    Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni

    2009-04-01

    c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.

  15. Inhibition of Gluconeogenesis in Primary Hepatocytes by Stromal Cell-derived Factor-1 (SDF-1) through a c-Src/Akt-dependent Signaling Pathway*

    PubMed Central

    Liu, Hui-Yu; Wen, Ge-Bo; Han, Jianmin; Hong, Tao; Zhuo, Degen; Liu, Zhenqi; Cao, Wenhong

    2008-01-01

    Hepatic gluconeogenesis is elevated in diabetes and a major contributor to hyperglycemia. Stromal cell-derived factor-1 (SDF-1) is a chemokine and an activator of Akt. In this study, we tested the hypothesis that SDF-1 suppresses hepatic gluconeogenesis through Akt. Our results from isolated primary hepatocytes show that SDF-1α and SDF-1β inhibited glucose production via gluconeogenesis and reduced transcript levels of key gluconeogenic genes glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Additionally, SDF-1α and SDF-1β both inhibited activation of the PEPCK promoter. In examining the mechanism by which SDF-1 inhibits gluconeogenesis, we found that SDF-1 promoted phosphorylation of Akt, FoxO1, and c-Src, but did not activate insulin receptor substrate-1-like insulin. Blockade of Akt activation by LY294002, FoxO1 translocation by constitutively nuclear FoxO1 mutant, or c-Src activation by the chemical inhibitor PP2, respectively, blunted SDF-1 suppression of gluconeogenesis. Finally, our results show that knocking down the level of SDF-1 receptor CXCR4 mRNA blocked SDF-1 suppression of gluconeogenesis. Together, our results demonstrate that SDF-1 is capable of inhibiting gluconeogenesis in primary hepatocytes through a signaling pathway distinct from the insulin signaling. PMID:18786922

  16. Transition path theory analysis of c-Src kinase activation

    PubMed Central

    Meng, Yilin; Shukla, Diwakar; Pande, Vijay S.; Roux, Benoît

    2016-01-01

    Nonreceptor tyrosine kinases of the Src family are large multidomain allosteric proteins that are crucial to cellular signaling pathways. In a previous study, we generated a Markov state model (MSM) to simulate the activation of c-Src catalytic domain, used as a prototypical tyrosine kinase. The long-time kinetics of transition predicted by the MSM was in agreement with experimental observations. In the present study, we apply the framework of transition path theory (TPT) to the previously constructed MSM to characterize the main features of the activation pathway. The analysis indicates that the activating transition, in which the activation loop first opens up followed by an inward rotation of the αC-helix, takes place via a dense set of intermediate microstates distributed within a fairly broad “transition tube” in a multidimensional conformational subspace connecting the two end-point conformations. Multiple microstates with negligible equilibrium probabilities carry a large transition flux associated with the activating transition, which explains why extensive conformational sampling is necessary to accurately determine the kinetics of activation. Our results suggest that the combination of MSM with TPT provides an effective framework to represent conformational transitions in complex biomolecular systems. PMID:27482115

  17. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    PubMed

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Horiguchi, Tomoko; Sun, Xuedong; Deng, Lin; Shoji, Ikuo; Hotta, Hak; Sada, Kiyonao

    2012-01-01

    Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  18. Identification of the SRC pyrimidine-binding protein (SPy) as hnRNP K: implications in the regulation of SRC1A transcription

    PubMed Central

    Ritchie, Shawn A.; Pasha, Mohammed K.; Batten, Danielle J. P.; Sharma, Rajendra K.; Olson, Douglas J. H.; Ross, Andrew R. S.; Bonham, Keith

    2003-01-01

    The human SRC gene encodes pp60c–src, a non-receptor tyrosine kinase involved in numerous signaling pathways. Activation or overexpression of c-Src has also been linked to a number of important human cancers. Transcription of the SRC gene is complex and regulated by two closely linked but highly dissimilar promoters, each associated with its own distinct non-coding exon. In many tissues SRC expression is regulated by the housekeeping-like SRC1A promoter. In addition to other regulatory elements, three substantial polypurine:polypyrimidine (TC) tracts within this promoter are required for full transcriptional activity. Previously, we described an unusual factor called SRC pyrimidine-binding protein (SPy) that could bind to two of these TC tracts in their double-stranded form, but was also capable of interacting with higher affinity to all three pyrimidine tracts in their single-stranded form. Mutations in the TC tracts, which abolished the ability of SPy to interact with its double-stranded DNA target, significantly reduced SRC1A promoter activity, especially in concert with mutations in critical Sp1 binding sites. Here we expand upon our characterization of this interesting factor and describe the purification of SPy from human SW620 colon cancer cells using a DNA affinity-based approach. Subsequent in-gel tryptic digestion of purified SPy followed by MALDI-TOF mass spectrometric analysis identified SPy as heterogeneous nuclear ribonucleoprotein K (hnRNP K), a known nucleic-acid binding protein implicated in various aspects of gene expression including transcription. These data provide new insights into the double- and single-stranded DNA-binding specificity, as well as functional properties of hnRNP K, and suggest that hnRNP K is a critical component of SRC1A transcriptional processes. PMID:12595559

  19. Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells.

    PubMed

    Salinas-Vera, Yarely M; Marchat, Laurence A; García-Vázquez, Raúl; González de la Rosa, Claudia Haydée; Castañeda-Saucedo, Eduardo; Tito, Napoleón Navarro; Flores, Carlos Palma; Pérez-Plasencia, Carlos; Cruz-Colin, José L; Carlos-Reyes, Ángeles; López-González, José Sullivan; Álvarez-Sánchez, María Elizbeth; López-Camarillo, César

    2018-06-06

    RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7 cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231 cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Complementary Phosphorylation Sites in the Adaptor Protein SLP-76 Promote Synergistic Activation of Natural Killer Cells

    PubMed Central

    Kim, Hun Sik; Long, Eric O.

    2013-01-01

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require the induction of synergistic signals from co-activation receptors, such as CD314 (NKG2D) and CD244 (2B4), which bind to ligands expressed on target cells. Synergy is required to overcome inhibition of the guanine nucleotide exchange factor (GEF) Vav1, a central regulator of NK cell activation, by the E3 ubiquitin ligase c-Cbl. However, the molecular basis for this synergy is unknown. Here, we showed that the adaptor protein Src homology 2 (SH2) domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) was required for this synergy, and that distinct tyrosine residues in SLP-76 were phosphorylated by each receptor of a synergistic pair. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76, each of which enables binding of SLP-76 to Vav1, was unique to receptors that stimulate ligand-dependent target cell killing, because antibody-dependent stimulation by Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that complementation of separate phospho-tyrosine targets in SLP-76 forms the basis of synergistic NK cell activation. PMID:22786724

  1. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    PubMed

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  2. Collagen Type I Selectively Activates Ectodomain Shedding of the Discoidin Domain Receptor 1: Involvement of Src Tyrosine Kinase

    PubMed Central

    Slack, Barbara E.; Siniaia, Marina S.; Blusztajn, Jan K.

    2008-01-01

    The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-α protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the γ-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices. PMID:16440311

  3. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα.

    PubMed

    Khanna, Ranvikram S; Le, Hoa T; Wang, Jing; Fung, Thomas C H; Pallen, Catherine J

    2015-04-10

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    PubMed

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Tyrosine Phosphorylation of the Human Serotonin Transporter: A Role in the Transporter Stability and Function

    PubMed Central

    Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S.; Jayanthi, Lankupalle D.

    2012-01-01

    The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant 32P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport. PMID:21992875

  6. Endothelial Barrier Protection by Local Anesthetics: Ropivacaine and Lidocaine Block Tumor Necrosis Factor-α–induced Endothelial Cell Src Activation

    PubMed Central

    Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.

    2014-01-01

    Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine

  7. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.

    PubMed

    Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun

    2015-11-01

    Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. © 2015 International Federation for Cell Biology.

  8. Herpes simplex virus requires VP11/12 to induce phosphorylation of the activation loop tyrosine (Y394) of the Src family kinase Lck in T lymphocytes.

    PubMed

    Wagner, Melany J; Smiley, James R

    2009-12-01

    Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus.

  9. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML.

    PubMed

    Liyanage, Sanduni U; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D; Bader, Gary D; Laposa, Rebecca; Schimmer, Aaron D

    2017-05-11

    Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. © 2017 by The American Society of Hematology.

  10. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML

    PubMed Central

    Liyanage, Sanduni U.; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P.; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D.; Bader, Gary D.; Laposa, Rebecca

    2017-01-01

    Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2′3′-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2′3′-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. PMID:28283480

  11. miR-137 inhibits the proliferation of human non-small cell lung cancer cells by targeting SRC3

    PubMed Central

    Chen, Ruilin; Zhang, Yongqing; Zhang, Chengcheng; Wu, Hua; Yang, Shumei

    2017-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The results of the present study demonstrate that high expression of microRNA (miR)-137 and low expression of steroid receptor coactivator-3 (SRC3) had a significant negative correlation in 40 NSCLC tissue samples. In addition, cell colony formation and proliferation was significantly reduced in miR-137-transfected A549 and NCI-H838 cells compared with scramble-transfected NSCLC cell lines. miR-137 was identified to induce G1/S cell cycle arrest and dysregulate the mRNA expression of cell cycle-associated proteins (proliferating cell nuclear antigen, cyclin E, cyclin A1, cyclin A2 and p21) in NSCLC cells. Notably, miR-137 could significantly suppress SRC3 3′ untranslated region (UTR) luciferase-reporter activity, an effect that was not detectable when the putative 3′-UTR target-site was mutated, further clarifying the molecular mechanisms underlying the role of miR-137 in NSCLC. In conclusion, the results of the present study suggest that miR-137 suppresses NSCLC cell proliferation by partially targeting SRC3. PMID:28521488

  12. Phosphatidylethanolamine-binding protein 4 is associated with breast cancer metastasis through Src-mediated Akt tyrosine phosphorylation.

    PubMed

    Li, H; Huang, F; Fan, L; Jiang, Y; Wang, X; Li, J; Wang, Q; Pan, H; Sun, J; Cao, X; Wang, X

    2014-09-11

    Metastasis is responsible for more than 90% of the mortality observed among patients with breast cancer. Human phosphatidylethanolamine-binding protein 4 (hPEBP4) is a novel member of the PEBP family and functions as an anti-apoptotic molecule. Here, we found that the metastatic MDA-MB-231 breast cancer cells expressed much higher levels of hPEBP4 than the nonmetastatic MCF-7 breast cancer cells and that the expression levels of hPEBP4 were positively correlated with the metastasis of clinical breast cancer. The hPEBP4 overexpression in the MDA-MB-231 cells significantly promoted cell invasion in vitro and increased the development of lymph node metastasis in vivo. Conversely, the silencing of hPEBP4 suppressed the cell-invasive ability both in vitro and in vivo. Further investigation showed that hPEBP4 promoted the expression or activity of the metastasis-related proteinases MMP (matrix metalloproteinase) 2, MMP9 and MMP13. This hPEBP4-potentiated cell invasion and MMP expression is due to an increase in Akt activation. Knockdown of Akt restored hPEBP4-induced breast tumor metastasis in the hPEBP4-MDA-MB-231 xenograft mouse model. Moreover, we found that hPEBP4 functioned as a scaffolding molecule and enhanced the association of Akt with Src to promote Akt tyrosine phosphorylation, a prerequisite for the full activation of Akt, in a phosphatidylethanolamine-binding domain-dependent manner. Given the present information about human breast cancer, these functional data from cell culture and animal studies suggest that, in human breast cancer hPEBP4 is a novel and clinically relevant metastasis accelerator gene and may be a new diagnostic marker and therapeutic target for breast cancer metastasis.

  13. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  14. Global Impact of Oncogenic Src on a Phosphotyrosine Proteome

    PubMed Central

    Luo, Weifeng; Slebos, Robbert J.; Hill, Salisha; Li, Ming; Brábek, Jan; Amanchy, Ramars; Chaerkady, Raghothama; Pandey, Akhilesh; Ham, Amy-Joan L.; Hanks, Steven K.

    2008-01-01

    Elevated activity of Src, the first characterized protein-tyrosine kinase, is associated with progression of many human cancers, and Src has attracted interest as a therapeutic target. Src is known to act in various receptor signaling systems to impact cell behavior, yet it remains likely that the spectrum of Src protein substrates relevant to cancer is incompletely understood. To better understand the cellular impact of deregulated Src kinase activity, we extensively applied a mass spectrometry shotgun phosphotyrosine (pTyr) proteomics strategy to obtain global pTyr profiles of Src-transformed mouse fibroblasts as well as their nontransformed counterparts. A total of 867 peptides representing 563 distinct pTyr sites on 374 different proteins were identified from the Src-transformed cells, while 514 peptides representing 275 pTyr sites on 167 proteins were identified from nontransformed cells. Distinct characteristics of the two profiles were revealed by spectral counting, indicative of pTyr site relative abundance, and by complementary quantitative analysis using stable isotope labeling with amino acids in cell culture (SILAC). While both pTyr profiles are replete with sites on signaling and adhesion/cytoskeletal regulatory proteins, the Src-transformed profile is more diverse with enrichment in sites on metabolic enzymes and RNA and protein synthesis and processing machinery. Forty-three pTyr sites (32 proteins) are predicted as major biologically relevant Src targets on the basis of frequent identification in both cell populations. This select group, of particular interest as diagnostic biomarkers, includes well-established Src sites on signaling/adhesion/cytoskeletal proteins, but also uncharacterized sites of potential relevance to the transformed cell phenotype. PMID:18563927

  15. Herpes Simplex Virus Requires VP11/12 To Induce Phosphorylation of the Activation Loop Tyrosine (Y394) of the Src Family Kinase Lck in T Lymphocytes ▿

    PubMed Central

    Wagner, Melany J.; Smiley, James R.

    2009-01-01

    Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus. PMID:19776125

  16. Differentiation-induced Colocalization of the KH-type Splicing Regulatory Protein with Polypyrimidine Tract Binding Protein and the c-src Pre-mRNA

    PubMed Central

    Hall, Megan P.; Huang, Sui; Black, Douglas L.

    2004-01-01

    We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell. PMID:14657238

  17. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo

    PubMed Central

    Solan, Joell L.; Lampe, Paul D.

    2014-01-01

    Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin. PMID:24508467

  18. SGT1 is required in PcINF1/SRC2-1 induced pepper defense response by interacting with SRC2-1

    PubMed Central

    Liu, Zhi-qin; Liu, Yan-yan; Shi, Lan-ping; Yang, Sheng; Shen, Lei; Yu, Huan-xin; Wang, Rong-zhang; Wen, Jia-yu; Tang, Qian; Hussain, Ansar; Khan, Muhammad Ifnan; Hu, Jiong; Liu, Cai-ling; Zhang, Yang-wen; Cheng, Wei; He, Shui-lin

    2016-01-01

    PcINF1 was previously found to induce pepper defense response by interacting with SRC2-1, but the underlying mechanism remains uninvestigated. Herein, we describe the involvement of SGT1 in the PcINF1/SRC2-1-induced immunity. SGT1 was observed to be up-regulated by Phytophthora capsici inoculation and synergistically transient overexpression of PcINF1/SRC2-1 in pepper plants. SGT1-silencing compromised HR cell death, blocked H2O2 accumulation, and downregulated HR-associated and hormones-dependent marker genes’ expression triggered by PcINF1/SRC2-1 co-overexpression. The interaction between SRC2-1 and SGT1 was found by the yeast two hybrid system and was further confirmed by bimolecular fluorescence complementation and co-immunoprecipitation analyses. The SGT1/SRC2-1 interaction was enhanced by transient overexpression of PcINF1 and Phytophthora capsici inoculation, and SGT1-silencing attenuated PcINF1/SRC2-1 interaction. Additionally, by modulating subcellular localizations of SRC2-1, SGT1, and the interacting complex of SGT1/SRC2-1, it was revealed that exclusive nuclear targeting of the SGT1/SRC2-1 complex blocks immunity triggered by formation of SGT1/SRC2-1, and a translocation of the SGT1/SRC2-1 complex from the plasma membrane and cytoplasm to the nuclei upon the inoculation of P. capsici. Our data demonstrate that the SGT1/SRC2-1 interaction, and its nucleocytoplasmic partitioning, is involved in pepper’s immunity against P. capsici, thus providing a molecular link between Ca2+ signaling associated SRC2-1 and SGT1-mediated defense signaling. PMID:26898479

  19. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    PubMed Central

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  20. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    PubMed

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Role of SRC-3delta4 in the Progression and Metastasis of Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Expression of SRC-3∆4, GAPDH, and AR target genes including PSA, KLK2, IGFBP5, Cyclin A2, and UBE2C was determined by RT-qPCR analysis . Data are...Expression of AR (B), GAPDH, and TMPRSS2- ERG (C) was determined by RT-qPCR analysis . Data are presented using the comparative Ct method, in which GAPDH...input. An irrelevant region (1800 bp downstream of transcription start site) was served as a negative control. (E) and (F). ChIP analysis of SRC-3∆4’s

  2. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2

    NASA Astrophysics Data System (ADS)

    Naudin, Cécile; Sirvent, Audrey; Leroy, Cédric; Larive, Romain; Simon, Valérie; Pannequin, Julie; Bourgaux, Jean-François; Pierre, Josiane; Robert, Bruno; Hollande, Frédéric; Roche, Serge

    2014-01-01

    The adaptor SLAP is a negative regulator of receptor signalling in immune cells but its role in human cancer is ill defined. Here we report that SLAP is abundantly expressed in healthy epithelial intestine but strongly downregulated in 50% of colorectal cancer. SLAP overexpression suppresses cell tumorigenicity and invasiveness while SLAP silencing enhances these transforming properties. Mechanistically, SLAP controls SRC/EPHA2/AKT signalling via destabilization of the SRC substrate and receptor tyrosine kinase EPHA2. This activity is independent from CBL but requires SLAP SH3 interaction with the ubiquitination factor UBE4A and SLAP SH2 interaction with pTyr594-EPHA2. SRC phosphorylates EPHA2 on Tyr594, thus creating a feedback loop that promotes EPHA2 destruction and thereby self-regulates its transforming potential. SLAP silencing enhances SRC oncogenicity and sensitizes colorectal tumour cells to SRC inhibitors. Collectively, these data establish a tumour-suppressive role for SLAP in colorectal cancer and a mechanism of SRC oncogenic induction through stabilization of its cognate substrates.

  3. JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.

    PubMed

    Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André

    2017-01-01

    The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism

  4. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.

    PubMed

    Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z

    2013-01-15

    Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.

  5. YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells is Regulated by LCK and Independent of LATS Activity.

    PubMed

    Sugihara, Takaaki; Werneburg, Nathan W; Hernandez, Matthew C; Yang, Lin; Kabashima, Ayano; Hirsova, Petra; Yohanathan, Lavanya; Sosa, Carlos; Truty, Mark Joseph; Vasmatzis, George; Gores, Gregory J; Smoot, Rory L

    2018-06-14

    The hippo pathway effector, Yes-associated protein (YAP) is a transcriptional co-activator implicated in cholangiocarcinoma (CCA) pathogenesis. YAP is known to be regulated by a serine/threonine kinase relay module (MST1/2 - LATS1/2) culminating in phosphorylation of YAP at Serine 127 (S127) and cytoplasmic sequestration. However, YAP also undergoes tyrosine phosphorylation, and the role of tyrosine phosphorylation in YAP regulation remains unclear. Herein, YAP regulation by tyrosine phosphorylation was examined in human and mouse CCA cells, as well as patient-derived xenograft (PDX) models. YAP was phosphorylated on tyrosine 357 (Y357) in CCA cell lines and PDX models. SRC family kinase (SFK) inhibition with dasatinib resulted in loss of YAPY357 phosphorylation, promoted its translocation from the nucleus to the cytoplasm, and reduced YAP target gene expression; including cell lines expressing a LATS1/2-resistant YAP mutant in which all serine residues were mutated to alanine. Consistent with these observations, precluding YAPY357 phosphorylation by site-directed mutagenesis (YAPY357F) excluded YAP from the nucleus. Targeted siRNA experiments identified LCK as the SFK that most potently mediated YAPY357 phosphorylation. Likewise, inducible CRISPR/Cas9-targeted LCK deletion decreased YAPY357 phosphorylation and its nuclear localization. The importance of LCK in CCA biology was demonstrated by clinical observations suggesting LCK expression levels were associated with early tumor recurrence following resection of CCA. Finally, dasatinib displayed therapeutic efficacy in PDX models. Demonstration of targetable, LCK-mediated YAP tyrosine phosphorylation in CCA regulating YAP's nuclear retention and oncogenic activity. Copyright ©2018, American Association for Cancer Research.

  6. Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents.

    PubMed

    Maruoka, Takayuki; Kitanaka, Akira; Kubota, Yoshitsugu; Yamaoka, Genji; Kameda, Tomohiro; Imataki, Osamu; Dobashi, Hiroaki; Bandoh, Shuji; Kadowaki, Norimitsu; Tanaka, Terukazu

    2018-03-13

    Small-cell lung cancer (SCLC) is intractable due to its high propensity for relapse. Novel agents are thus needed for SCLC treatment. Lemongrass essential oil (LG-EO) and its major constituent, citral, have been reported to inhibit the proliferation and survival of several types of cancer cells. However, the precise mechanisms through which LG-EO and citral exert their effects on SCLC cells have not been fully elucidated. SCLC cells express Src and have high levels of Src-tyrosine kinase (Src-TK) activity. In most SCLC cell lines, constitutive phosphorylation of Stat3(Y705), which is essential for its activation, has been detected. Src-TK can phosphorylate Stat3(Y705), and activated Stat3 promotes the expression of the anti-apoptotic factors Bcl-xL and Mcl-1. In the present study, LG-EO and citral prevented Src-TK from phosphorylating Stat3(Y705), resulting in decreased Bcl-xL and Mcl-1 expression, in turn suppressing the proliferation/survival of SCLC cells. To confirm these findings, the wild-type-src gene was transfected into the LU135 SCLC cell line (LU135‑wt-src), in which Src and activated phospho-Stat3(Y705) were overexpressed. The suppression of cell proliferation and the induction of apoptosis by treatment with LG-EO or citral were significantly attenuated in the LU135-wt-src cells compared with the control LU135-mock cells. The signal transducer and activator of transcription 3 (Stat3) signaling pathway is also associated with intrinsic drug resistance. LU135-wt-src cells were significantly resistant to conventional chemotherapeutic agents compared with LU135-mock cells. The combined effects of citral and each conventional chemotherapeutic agent on SCLC cells were also evaluated. The combination treatment exerted additive or more prominent effects on LU135-wt-src, LU165 and MN1112 cells, which are relatively chemoresistant SCLC cells. These findings suggest that either LG-EO or citral, alone or in combination with chemotherapeutic agents, may be a

  7. The Diaphanous-related Formin FHOD1 associates with ROCK1 and promotes Src-dependent plasma membrane blebbing.

    PubMed

    Hannemann, Sebastian; Madrid, Ricardo; Stastna, Jana; Kitzing, Thomas; Gasteier, Judith; Schönichen, André; Bouchet, Jerome; Jimenez, Alberto; Geyer, Matthias; Grosse, Robert; Benichou, Serge; Fackler, Oliver T

    2008-10-10

    Diaphanous-related formins (DRFs) mediate GTPase-triggered actin rearrangements to regulate central cellular processes, such as cell motility and cytokinesis. The DRF FHOD1 interacts with the Rho-GTPase Rac1 and mediates formation of actin stress fibers in its deregulated form; the physiologically relevant activities and molecular mechanisms of endogenous FHOD1, however, are still unknown. Here we report that FHOD1 physically associates via the N-terminal part of its FH2 domain with the central domain of ROCK1. Although FHOD1 does not affect the kinase activity of ROCK1, the DRF is an efficient substrate for phosphorylation by ROCK1. Co-expression of FHOD1 and ROCK1 results in the generation of nonapoptotic plasma membrane (PM) blebs, to which the DRF is efficiently recruited. Blebbing induced by FHOD1 and ROCK1 depends on F-actin integrity, the Rho-ROCK cascade, and Src activity and is reminiscent of the recently described PM blebs triggered by expression of Src homology 4 (SH4) domain PM targeting signals. Consistently, endogenous FHOD1 is required in SH4 domain expressing cells for efficient PM blebbing and rounded cell morphology in two-dimensional cultures or three-dimensional matrices, respectively. Efficient association of FHOD1 with ROCK1, as well as recruitment of the DRF to blebs, depends on Src activity, suggesting that the functional interaction between both proteins is regulated by Src. These results define a role for endogenous FHOD1 in SH4 domain-induced blebbing and suggest that its activity is regulated by ROCK1 in a Src-dependent manner.

  8. Molecular mechanism of APC/C activation by mitotic phosphorylation

    PubMed Central

    Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In eukaryotes, the anaphase-promoting complex/cyclosome (APC/C) regulates the ubiquitin-dependent proteolysis of specific cell cycle proteins to coordinate chromosome segregation in mitosis and entry into G1 (refs 1,2). The APC/C’s catalytic activity and ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits (Cdc20 and Cdh1). Coactivators recognize substrate degrons3, and enhance the APC/C’s affinity for its cognate E2 (refs 4–6). During mitosis, cyclin-dependent kinase and polo kinase control Cdc20 and Cdh1-mediated activation of the APC/C. Hyper-phosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C7–12, whereas phosphorylation of Cdh1 prevents its association with the APC/C9,13,14. Since both coactivators associate with the APC/C through their common C box15 and IR (Ile-Arg) tail motifs16,17, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy (cryo-EM) and biochemical analysis, we define the molecular basis of how APC/C phosphorylation allows for its control by Cdc20. An auto-inhibitory (AI) segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the AI segment displaces it from the C-box binding site. Efficient phosphorylation of the AI segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin-Cks to a hyper-phosphorylated loop of Apc3. We also find that the small molecule inhibitor, tosyl-L-arginine methyl ester (TAME), preferentially suppresses APC/CCdc20 rather than APC/CCdh1, and interacts with both the C-box and IR-tail binding sites. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a

  9. Dynamic activation of Src induced by low-power laser irradiation in living cells mediated by reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Zhang, Juntao; Gao, Xuejuan; Xing, Da; Liu, Lei

    2007-11-01

    Low-power laser irradiation (LPLI) leads to photochemical reaction and then activates intracellular several signaling pathway. Reactive oxygen species (ROS) are considered to be the primary messengers produced by LPLI. Here, we studied the signaling pathway mediated by ROS upon the stimulation of LPLI. Src tyrosine kinases are well-known targets of ROS and can be activated by oxidative events. Using a Src reporter based on fluorescence resonance energy transfer (FRET) technique, we visualized the dynamic Src activation in Hela cells immediately after LPLI. Moreover, Src activity was enhanced by increasing the duration of LPLI. In addition, our results suggested that ROS were key mediators of Src activation, as ROS scavenger, vitamin C decreased and exogenous H IIO II increased the activity of Src. Meanwhile, Gö6983 loading did not block the effect of LPLI. CCK-8 experiments proved that cell vitality was prominently improved by LPLI with all the doses we applied in our experiments ranging from 3 to 25J/cm2. The results indicated that LPLI/ROS/Src pathway may be involved in the LPLI biostimulation effects.

  10. Aging of SRC liquids

    NASA Astrophysics Data System (ADS)

    Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.

    1981-02-01

    The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.

  11. The Chromatin Assembly Factor Complex 1 (CAF1) and 5-Azacytidine (5-AzaC) Affect Cell Motility in Src-transformed Human Epithelial Cells.

    PubMed

    Endo, Akinori; Ly, Tony; Pippa, Raffaella; Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2017-01-06

    Tumor invasion into surrounding stromal tissue is a hallmark of high grade, metastatic cancers. Oncogenic transformation of human epithelial cells in culture can be triggered by activation of v-Src kinase, resulting in increased cell motility, invasiveness, and tumorigenicity and provides a valuable model for studying how changes in gene expression cause cancer phenotypes. Here, we show that epithelial cells transformed by activated Src show increased levels of DNA methylation and that the methylation inhibitor 5-azacytidine (5-AzaC) potently blocks the increased cell motility and invasiveness induced by Src activation. A proteomic screen for chromatin regulators acting downstream of activated Src identified the replication-dependent histone chaperone CAF1 as an important factor for Src-mediated increased cell motility and invasion. We show that Src causes a 5-AzaC-sensitive decrease in both mRNA and protein levels of the p150 (CHAF1A) and p60 (CHAF1B), subunits of CAF1. Depletion of CAF1 in untransformed epithelial cells using siRNA was sufficient to recapitulate the increased motility and invasive phenotypes characteristic of transformed cells without activation of Src. Maintaining high levels of CAF1 by exogenous expression suppressed the increased cell motility and invasiveness phenotypes when Src was activated. These data identify a critical role of CAF1 in the dysregulation of cell invasion and motility phenotypes seen in transformed cells and also highlight an important role for epigenetic remodeling through DNA methylation for Src-mediated induction of cancer phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  13. Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications.

    PubMed

    Desai, Sonal J; Ma, Ai-Hong; Tepper, Clifford G; Chen, Hong-Wu; Kung, Hsing-Jien

    2006-11-01

    The inappropriate activation of androgen receptor (AR) by nonsteroids is considered a potential mechanism in the emergence of hormone-refractory prostate tumors, but little is known about the properties of these "pseudoactivated" AR. Here, we present the first comprehensive analysis closely examining the properties of AR activated by the neuropeptide bombesin that distinguish it from androgen-activated AR. We show that bombesin-activated AR (a) is required for bombesin-induced growth of LNCaP cells, (b) has a transcriptional profile overlapping with, but not identical to, androgen-activated AR, (c) activates prostate-specific antigen by preferentially binding to its proximal promoter, and (d) assembles a distinct coactivator complex. Significantly, we found that Src kinase is critical for bombesin-induced AR-mediated activity and is required for translocation and transactivation of AR. Additionally, we identify c-Myc, a Src target gene, to be activated by bombesin and a potential coactivator of AR-mediated activity specific to bombesin-induced signaling. Because Src kinase is often activated by other nonsteroids, such as other neuropeptides, growth factors, chemokines, and cytokines, our findings have general applicability and provide rationale for investigating the efficacy of the Src kinase pathway as a target for the prevention of relapsed prostate cancers.

  14. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction.

    PubMed

    Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S

    2009-04-01

    Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.

  15. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    PubMed

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase.

    PubMed

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.

  17. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity.

    PubMed

    Daraiseh, Susan I; Kassardjian, Ari; Alexander, Karen E; Rizkallah, Raed; Hurt, Myra M

    2018-05-25

    Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways. Copyright © 2018. Published by Elsevier B.V.

  18. Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains.

    PubMed

    Ohmichi, M; Decker, S J; Saltiel, A R

    1992-10-01

    Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.

  19. The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR.

    PubMed

    Wang, Won-Jing; Kuo, Jean-Cheng; Ku, Wei; Lee, Yu-Ru; Lin, Feng-Chi; Chang, Yih-Leong; Lin, Yu-Min; Chen, Chun-Hau; Huang, Yuan-Ping; Chiang, Meng-Jung; Yeh, Sheng-Wen; Wu, Pei-Rung; Shen, Che-Hung; Wu, Chen-Tu; Chen, Ruey-Hwa

    2007-09-07

    Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and elicits tumor suppression function through inhibiting cell adhesion/migration and promoting apoptosis. Despite these biological functions, the signaling mechanisms through which DAPK is regulated remain largely elusive. Here, we show that the leukocyte common antigen-related (LAR) tyrosine phosphatase dephosphorylates DAPK at pY491/492 to stimulate the catalytic, proapoptotic, and antiadhesion/antimigration activities of DAPK. Conversely, Src phosphorylates DAPK at Y491/492, which induces DAPK intra-/intermolecular interaction and inactivation. Upon EGF stimulation, a rapid Src activation leads to subsequent LAR downregulation, and these two events act in synergism to inactivate DAPK, thereby facilitating tumor cell migration and invasion toward EGF. Finally, DAPK Y491/492 hyperphosphorylation is found in human cancers in which Src activity is aberrantly elevated. These results identify LAR and Src as a DAPK regulator through their reciprocal modification of DAPK Y491/492 residues and establish a functional link of this DAPK-regulatory circuit to tumor progression.

  20. Dynamic organization of myristoylated Src in the live cell plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less

  1. Dynamic organization of myristoylated Src in the live cell plasma membrane

    DOE PAGES

    Smith, Adam W.; Huang, Hector H.; Endres, Nicholas F.; ...

    2016-01-15

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell–cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescencemore » cross-correlation spectroscopy (PIE–FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10–80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Altogether, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane.« less

  2. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway.

    PubMed

    Yi, Lian; Shi, Tujin; Gritsenko, Marina A; X'avia Chan, Chi-Yuet; Fillmore, Thomas L; Hess, Becky M; Swensen, Adam C; Liu, Tao; Smith, Richard D; Wiley, H Steven; Qian, Wei-Jun

    2018-04-17

    Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway as our model. A total of 43 phosphopeptides from the EGFR-MAPK pathway were selected for the study. The recovery and sensitivity of two commonly used enrichment methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO 2 ), combined with selected reaction monitoring (SRM)-MS were evaluated. The recovery of phosphopeptides by IMAC and TiO 2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1 to 100 μg starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 μg peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25 μg range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 10 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.

  3. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Lian; Shi, Tujin; Gritsenko, Marina A.

    2018-03-27

    Large-scale phosphoproteomics with coverage of over 10,000 sites of phosphorylation have now been routinely achieved with advanced mass spectrometry (MS)-based workflows. However, accurate targeted MS-based quantification of phosphorylation dynamics, an important direction for gaining quantitative understanding of signaling pathways or networks, has been much less investigated. Herein, we report an assessment of the targeted workflow in the context of signal transduction pathways, using the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway as our model. 43 phosphopeptides from the EGFR–MAPK pathway were selected for the study. The recovery and sensitivity of a workflow consisted of two commonly used enrichmentmore » methods, immobilized metal affinity chromatography (IMAC) and titanium oxide (TiO2), combined with selected reaction monitoring (SRM)-MS, were evaluated. The recovery of phosphopeptides by IMAC and TiO2 enrichment was quantified to be 38 ± 5% and 58 ± 20%, respectively, based on internal standards. Moreover, both enrichment methods provided comparable sensitivity from 1-100 g starting peptides. Robust quantification was consistently achieved for most targeted phosphopeptides when starting with 25-100 g peptides. However, the numbers of quantified targets significantly dropped when peptide samples were in the 1-25g range. Finally, IMAC-SRM was applied to quantify signaling dynamics of EGFR-MAPK pathway in Hs578T cells following 3 ng/mL EGF treatment. The kinetics of phosphorylation clearly revealed early and late phases of phosphorylation, even for very low abundance proteins. These results demonstrate the feasibility of robust targeted quantification of phosphorylation dynamics for specific pathways, even starting with relatively small amounts of protein.« less

  4. The Tyrosine Kinase Activity of c-Src Regulates Actin Dynamics and Organization of Podosomes in Osteoclasts

    PubMed Central

    Destaing, Olivier; Sanjay, Archana; Itzstein, Cecile; Horne, William C.; Toomre, Derek

    2008-01-01

    Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization. PMID:17978100

  5. Phosphatidylinositol Phosphate 5-Kinase Iγi2 in Association with Src Controls Anchorage-independent Growth of Tumor Cells*

    PubMed Central

    Thapa, Narendra; Choi, Suyong; Hedman, Andrew; Tan, Xiaojun; Anderson, Richard A.

    2013-01-01

    A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling. PMID:24151076

  6. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    PubMed

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-05-12

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  7. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.

    PubMed

    Copeland, O'Neal; Sadayappan, Sakthivel; Messer, Andrew E; Steinen, Ger J M; van der Velden, Jolanda; Marston, Steven B

    2010-12-01

    A unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle. Since current methodologies are limited in specificity and are not quantitative we have investigated the use of phosphate affinity SDS-PAGE together with a total anti MyBP-C antibody and a range of phosphorylation site-specific antibodies for the main sites (Ser-273, -282 and -302). With these newly developed methods we have been able to make a detailed quantitative analysis of MyBP-C phosphorylation in heart tissue in situ. We have found that MyBP-C is highly phosphorylated in non-failing human (donor) heart or mouse heart; tris and tetra-phosphorylated species predominate and less than 10% of MyBP-C is unphosphorylated (0, 9.3 ± 1%: 1P, 13.4 ± 2.7%: 2P, 10.5 ± 3.3%: 3P, 28.7 ± 3.7%: 4P, 36.4 ± 2.7%, n=21). Total phosphorylation was 2.7 ± 0.07 mol Pi/mol MyBP-C. In contrast in failing heart and in myectomy samples from HCM patients the majority of MyBP-C was unphosphorylated. Total phosphorylation levels were 23% of normal in failing heart myofibrils (0, 60.1 ± 2.8%: 1P, 27.8 ± 2.8%: 2P, 4.8 ± 2.0%: 3P, 3.7 ± 1.2%: 4P, 2.8 ± 1.3%, n=19) and 39% of normal in myectomy samples. The site-specific antibodies showed a distinctive distribution pattern of phosphorylation sites in the multiple phosphorylation level species. We found that phosphorylated Ser-273, Ser-282 and Ser-302 were all present in the 4P band of MyBP-C but none of them were significant in the 1P band, indicating that there must be at least one other site of MyBP-C phosphorylation in human heart. The pattern of phosphorylation at the

  8. Targeting PCNA Phosphorylation in Breast Cancer

    DTIC Science & Technology

    2013-04-01

    yl)acetate hydrochloride ( 1 g, 5.81 mmol) in ACN (35 mL) was added 1 -bromo-3- chloropropane (0.69 mL, 6.97 mmol, 1.2 equiv.). And Et3N (3.26 mL, 23.2...and antibody labeling. Scheme 1 shows the improved synthesis of d0 and d4-R6G for antibody labeling. The labeling efficiencies of each of these dyes...AD_________________ Award Number: W81XWH-10- 1 -0105 TITLE: Targeting PCNA Phosphorylation in Breast

  9. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase

    PubMed Central

    Martin, Carolina; Leyton, Luis; Hott, Melissa; Arancibia, Yennyfer; Spichiger, Carlos; McNiven, Mark A.; Court, Felipe A.; Concha, Margarita I.; Burgos, Patricia V.; Otth, Carola

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system. PMID:28879169

  10. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase.

    PubMed

    Martin, Carolina; Leyton, Luis; Hott, Melissa; Arancibia, Yennyfer; Spichiger, Carlos; McNiven, Mark A; Court, Felipe A; Concha, Margarita I; Burgos, Patricia V; Otth, Carola

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu; Department of Medicine, Case Western Reserve University; Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposedmore » to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.« less

  12. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS.

    PubMed

    Anselm, Eric; Chataigneau, Marta; Ndiaye, Mamadou; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2007-01-15

    An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.

  13. Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase

    PubMed Central

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U.; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro. PMID:22022425

  14. Amplification and oscillations in the FAK/Src kinase system during integrin signaling.

    PubMed

    Caron-Lormier, G; Berry, H

    2005-01-21

    Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics.

  15. S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer.

    PubMed

    Switzer, Christopher H; Glynn, Sharon A; Cheng, Robert Y-S; Ridnour, Lisa A; Green, Jeffrey E; Ambs, Stefan; Wink, David A

    2012-09-01

    Increased inducible nitric oxide synthase (NOS2) expression in breast tumors is associated with decreased survival of estrogen receptor negative (ER-) breast cancer patients. We recently communicated the preliminary observation that nitric oxide (NO) signaling results in epidermal growth factor receptor (EGFR) tyrosine phosphorylation. To further define the role of NO in the pathogenesis of ER- breast cancer, we examined the mechanism of NO-induced EGFR activation in human ER- breast cancer. NO was found to activate EGFR and Src by a mechanism that includes S-nitrosylation. NO, at physiologically relevant concentrations, induced an EGFR/Src-mediated activation of oncogenic signal transduction pathways (including c-Myc, Akt, and β-catenin) and the loss of PP2A tumor suppressor activity. In addition, NO signaling increased cellular EMT, expression and activity of COX-2, and chemoresistance to adriamycin and paclitaxel. When connected into a network, these concerted events link NO to the development of a stem cell-like phenotype, resulting in the upregulation of CD44 and STAT3 phosphorylation. Our observations are also consistent with the finding that NOS2 is associated with a basal-like transcription pattern in human breast tumors. These results indicate that the inhibition of NOS2 activity or NO signaling networks may have beneficial effects in treating basal-like breast cancer patients.

  16. Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway.

    PubMed

    Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L

    2017-02-01

    Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  18. Increased SHP-1 Protein Expression by High Glucose Levels Reduces Nephrin Phosphorylation in Podocytes*

    PubMed Central

    Denhez, Benoit; Lizotte, Farah; Guimond, Marie-Odile; Jones, Nina; Takano, Tomoko; Geraldes, Pedro

    2015-01-01

    Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr1127 and Tyr1152 are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2+/C96Y) compared with control littermate mice (Ins2+/+), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy. PMID:25404734

  19. Thrombin increases hyposmotic taurine efflux and accelerates ICI-swell and RVD in 3T3 fibroblasts by a src-dependent EGFR transactivation.

    PubMed

    Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H

    2008-02-01

    The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.

  20. Mycobacterium tuberculosis Maltosyltransferase GlgE, a Genetically Validated Antituberculosis Target, Is Negatively Regulated by Ser/Thr Phosphorylation*

    PubMed Central

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-01-01

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette–Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically. PMID:23609448

  1. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation.

    PubMed

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-06-07

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.

  2. Src is a major signaling component for CTGF induction by TGF-β1 in osteoblasts

    PubMed Central

    X, Zhang; JA, Arnott; S, Rehman; WG, DeLong; A, Sanjay; FF, Safadi; SN, Popoff

    2010-01-01

    Connective tissue growth factor (CTGF/CCN2) is induced by transforming growth factor beta 1(TGF-β1) where it acts as a downstream mediator of TGF-β1 induced matrix production in osteoblasts. We have shown the requirement of Src, Erk and Smad signaling for CTGF induction by TGF-β1 in osteoblasts, however the potential interaction among these signaling pathways remains undetermined. In this study we demonstrate that TGF-β1 activates Src kinase in ROS17/2.8 cells and that treatment with the Src family kinase inhibitor PP2 prevents Src activation and CTGF induction by TGF-β1. Additionally, inhibiting Src activation prevented Erk activation, Smad 2 & 3 activation and nuclear translocation by TGF-β1, demonstrating that Src is an essential upstream signaling partner of both Erk and Smads in osteoblasts. MAPKs such as Erk can modulate the Smad pathway through directly mediating the phosphorylation of Smads or indirectly through activation/inactivation of required nuclear co-activators that mediate Smad DNA binding. When we treated cells with the Erk inhibitor, PD98059 it inhibited TGF-β1-induced CTGF protein expression but had no effect on Src activation, Smad activation or Smad nuclear translocation. However PD98059 impaired transcriptional complex formation on the Smad binding element (SBE) on the CTGF promoter, demonstrating that Erk activation was required for SBE transactivation. This data demonstrates that Src is an essential upstream signaling transducer of Erk and Smad signaling with respect to TGF-β1 in osteoblasts and that Smads and Erk function independently but are both essential for forming a transcriptionally active complex on the CTGF promoter in osteoblasts. PMID:20432467

  3. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets

    PubMed Central

    Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.

    2015-01-01

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3′-end processing. PMID:26138484

  4. The role of steroid receptor coactivator-3 (SRC-3) in human malignant disease.

    PubMed

    Gojis, O; Rudraraju, B; Alifrangis, C; Krell, J; Libalova, P; Palmieri, C

    2010-03-01

    The p160 steroid receptor coactivator (SRC) family is critical to the transcriptional activation function of nuclear hormone receptors. A key member of this family is SRC-3, initially found to be amplified and expressed in breast cancer it has subsequent been shown to be expressed in malignant disease arising from a wide range of other organs. An understanding of the potential role of SRC-3 in the pathogenesis and its possible prognostic role in a broad range of tumours will improve our general understanding of carcinogenesis as well as potentially leading to a new prognostic marker as well as new therapeutic targets. Relevant papers were identified by searching the PubMed and MEDLINE databases for article published until 28th February 2009. Only articles published in English were considered. The search terms included "SRC-3", "AIB1" in association with the following terms: "human", "cancer" and "malignant disease". The search focused on malignant disease arising outside of the mammary gland. Full articles were obtained and references were checked for additional material when appropriate. SRC-3 is amplified and expressed in a wide spectrum of human malignant diseases and appears to be a potential prognostic marker in a number of different tumours. SRC-3 appears to be implicated in the possible risk of developing prostate and ovarian cancer. Its presence appears to be a marker of aggressive disease. Further research is required to determine its predictive and prognostic utility given the relative paucity of studies for each specific malignant disease. Copyright (c) 2009. Published by Elsevier Ltd.

  5. Investigating Steroid Receptor Coactivator 3 (SRC3) as a Potential Therapeutic Target for Treating Advanced Prostate Cancer

    DTIC Science & Technology

    2013-04-01

    to be a target of CHIP and knockdown of SRC-3 reduces Smad and Twist expression [81]. In human hepatocellular carcinoma , Hepatitis B virus X protein...stabilizes AIB1 protein and cooperates with it to promote human hepatocellular carcinoma cell invasiveness. Hepatology 2012. [Epub ahead of print] 83...amplification in hepatocellular carcinoma . A broad survey using high-throughput tissue microarray. Cancer 2002;95(11):2346-52 104. Xu Y, Chen Q, Li W, et al

  6. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb.

    PubMed

    Kitagawa, K; Hiramatsu, Y; Uchida, C; Isobe, T; Hattori, T; Oda, T; Shibata, K; Nakamura, S; Kikuchi, A; Kitagawa, M

    2009-06-25

    Expression of oncoprotein c-Myb oscillates during hematopoiesis and hematological malignancies. Its quantity is not only regulated through transcriptional control but also through the ubiquitin-proteasome pathway, accompanied by phosphorylation, although the mechanisms are poorly understood. In this report, we tried to identify an E3 ubiquitin ligase, which targets c-Myb for ubiquitin-dependent degradation. We found that an F-box protein, Fbw7, interacted with c-Myb, which is mutated in numerous cancers. Fbw7 facilitated ubiquitylation and degradation of c-Myb in intact cells. Moreover, depletion of Fbw7 by RNA interference delayed turnover and increased the abundance of c-Myb in myeloid leukemia cells concomitantly, and suppressed the transcriptional level of gamma-globin, which receives transcriptional repression from c-Myb. In addition, we analysed sites required for both ubiquitylation and degradation of c-Myb. We found that Thr-572 is critical for Fbw7-mediated ubiquitylation in mouse c-Myb using site-directed mutagenesis. Fbw7 recognized the phosphorylation of Thr-572, which was mediated by glycogen synthase kinase 3 (GSK3). In consequence, the c-Myb protein was markedly stabilized by the substitution of Thr-572 to Ala. These observations suggest that SCF(Fbw7) ubiquitin ligase regulates phosphorylation-dependent degradation of c-Myb protein.

  7. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    PubMed

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  8. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  9. 76 FR 3653 - Alaska Region's Subsistence Resource Commission (SRC) Program; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska...: 1. Call to order. 2. SRC Roll Call and Confirmation of Quorum. 3. Welcome and Introductions. 4.... c. Resource Management Program Update. 14. Public and other Agency Comments. 15. SRC Work Session...

  10. Cytokinesis Failure Leading to Chromosome Instability in v-Src-Induced Oncogenesis.

    PubMed

    Nakayama, Yuji; Soeda, Shuhei; Ikeuchi, Masayoshi; Kakae, Keiko; Yamaguchi, Naoto

    2017-04-12

    v-Src, an oncogene found in Rous sarcoma virus, is a constitutively active variant of c-Src. Activation of Src is observed frequently in colorectal and breast cancers, and is critical in tumor progression through multiple processes. However, in some experimental conditions, v-Src causes growth suppression and apoptosis. In this review, we highlight recent progress in our understanding of cytokinesis failure and the attenuation of the tetraploidy checkpoint in v-Src-expressing cells. v-Src induces cell cycle changes-such as the accumulation of the 4N cell population-and increases the number of binucleated cells, which is accompanied by an excess number of centrosomes. Time-lapse analysis of v-Src-expressing cells showed that cytokinesis failure is caused by cleavage furrow regression. Microscopic analysis revealed that v-Src induces delocalization of cytokinesis regulators including Aurora B and Mklp1. Tetraploid cell formation is one of the causes of chromosome instability; however, tetraploid cells can be eliminated at the tetraploidy checkpoint. Interestingly, v-Src weakens the tetraploidy checkpoint by inhibiting the nuclear exclusion of the transcription coactivator YAP, which is downstream of the Hippo pathway and its nuclear exclusion is critical in the tetraploidy checkpoint. We also discuss the relationship between v-Src-induced chromosome instability and growth suppression in v-Src-induced oncogenesis.

  11. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets.

    PubMed

    Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S

    2015-08-18

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    PubMed

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Identification of a New Interaction Mode between the Src Homology 2 Domain of C-terminal Src Kinase (Csk) and Csk-binding Protein/Phosphoprotein Associated with Glycosphingolipid Microdomains♦

    PubMed Central

    Tanaka, Hiroaki; Akagi, Ken-ichi; Oneyama, Chitose; Tanaka, Masakazu; Sasaki, Yuichi; Kanou, Takashi; Lee, Young-Ho; Yokogawa, Daisuke; Dobenecker, Marc-Werner; Nakagawa, Atsushi; Okada, Masato; Ikegami, Takahisa

    2013-01-01

    Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain. PMID:23548896

  14. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development

    PubMed Central

    Stith, Bradley J.

    2015-01-01

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  15. Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis.

    PubMed

    Kim, Dae Joong; Norden, Pieter R; Salvador, Jocelynda; Barry, David M; Bowers, Stephanie L K; Cleaver, Ondine; Davis, George E

    2017-01-01

    Here we examine the question of how endothelial cells (ECs) develop their apical membrane surface domain during lumen and tube formation. We demonstrate marked apical membrane targeting of activated Src kinases to this apical domain during early and late stages of this process. Immunostaining for phosphotyrosine or phospho-Src reveals apical membrane staining in intracellular vacuoles initially. This is then followed by vacuole to vacuole fusion events to generate an apical luminal membrane, which is similarly decorated with activated phospho-Src kinases. Functional blockade of Src kinases completely blocks EC lumen and tube formation, whether this occurs during vasculogenic tube assembly or angiogenic sprouting events. Multiple Src kinases participate in this apical membrane formation process and siRNA suppression of Src, Fyn and Yes, but not Lyn, blocks EC lumen formation. We also demonstrate strong apical targeting of Src-GFP and Fyn-GFP fusion proteins and increasing their expression enhances lumen formation. Finally, we show that Src- and Fyn-associated vacuoles track and fuse along a subapically polarized microtubule cytoskeleton, which is highly acetylated. These vacuoles generate the apical luminal membrane in a stereotypically polarized, perinuclear position. Overall, our study identifies a critical role for Src kinases in creating and decorating the EC apical membrane surface during early and late stages of lumen and tube formation, a central event in the molecular control of vascular morphogenesis.

  16. Tropomyosin Tm5NM1 Spatially Restricts Src Kinase Activity through Perturbation of Rab11 Vesicle Trafficking

    PubMed Central

    Bach, Cuc T.; Murray, Rachael Z.; Owen, Dylan; Gaus, Kat

    2014-01-01

    In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules. PMID:25288639

  17. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    PubMed

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  18. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer.

    PubMed

    Anbalagan, Muralidharan; Rowan, Brian G

    2015-12-15

    Estrogen receptor α (ERα) is a member of the nuclear receptor superfamily of transcription factors that regulates cell proliferation, differentiation and homeostasis in various tissues. Sustained exposure to estrogen/estradiol (E2) increases the risk of breast, endometrial and ovarian cancers. ERα function is also regulated by phosphorylation through various kinase signaling pathways that will impact various ERα functions including chromatin interaction, coregulator recruitment and gene expression, as well impact breast tumor growth/morphology and breast cancer patient response to endocrine therapy. However, many of the previously characterized ERα phosphorylation sites do not fully explain the impact of receptor phosphorylation on ERα function. This review discusses work from our laboratory toward understanding a role of ERα site-specific phosphorylation in ERα function and breast cancer. The key findings discussed in this review are: (1) the effect of site specific ERα phosphorylation on temporal recruitment of ERα and unique coactivator complexes to specific genes; (2) the impact of stable disruption of ERα S118 and S167 phosphorylation in breast cancer cells on eliciting unique gene expression profiles that culminate in significant effects on breast cancer growth/morphology/migration/invasion; (3) the Src kinase signaling pathway that impacts ERα phosphorylation to alter ERα function; and (4) circadian disruption by light exposure at night leading to elevated ERK1/2 and Src kinase and phosphorylation of ERα, concomitant with tamoxifen resistance in breast tumor models. Results from these studies demonstrate that even changes to single ERα phosphorylation sites can have a profound impact on ERα function in breast cancer. Future work will extend beyond single site phosphorylation analysis toward identification of specific patterns/profiles of ERα phosphorylation under different physiological/pharmacological conditions to understand how common

  19. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    PubMed Central

    2012-01-01

    Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research

  20. Simultaneous inhibition of aryl hydrocarbon receptor (AhR) and Src abolishes androgen receptor signaling.

    PubMed

    Ghotbaddini, Maryam; Cisse, Keyana; Carey, Alexis; Powell, Joann B

    2017-01-01

    Altered c-Src activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers including prostate cancer. Src is known to regulate several biological functions of tumor cells, including proliferation. There are several Src inhibitors under evaluation for clinical effectiveness but have shown little activity in monotherapy trials of solid tumors. Combination studies are being explored by in vitro analysis and in clinical trials. Here we investigate the effect of simultaneous inhibition of the aryl hydrocarbon receptor (AhR) and Src on androgen receptor (AR) signaling in prostate cancer cells. AhR has also been reported to interact with the Src signaling pathway during prostate development. c-Src protein kinase is associated with the AhR complex in the cytosol and upon ligand binding to AhR, c-Src is activated and released from the complex. AhR has also been shown to regulate AR signaling which remains functionally important in the development and progression of prostate cancer. We provide evidence that co-inhibition of AhR and Src abolish AR activity. Evaluation of total protein and cellular fractions revealed decreased pAR expression and AR nuclear localization. Assays utilizing an androgen responsive element (ARE) and qRT-PCR analysis of AR genes revealed decreased AR promoter activity and transcriptional activity in the presence of both AhR and Src inhibitors. Furthermore, co-inhibition of AhR and Src reduced the growth of prostate cancer cells compared to individual treatments. Several studies have revealed that AhR and Src individually inhibit cellular proliferation. However, this study is the first to suggest simultaneous inhibition of AhR and Src to inhibit AR signaling and prostate cancer cell growth.

  1. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina

    2017-01-01

    Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726

  2. Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice

    PubMed Central

    Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng

    2016-01-01

    Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850

  3. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    PubMed

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  4. Anesthetics inhibit extracellular signal-regulated Kinase1/2 phosphorylation via NMDA receptor, phospholipase C and protein kinase C in mouse hippocampal slices.

    PubMed

    Haiying, Gao; Mingjie, Han; Lingyu, Zhang; Qingxiang, Wang; Haisong, Wang; Bingxi, Zhang

    2017-02-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) has been implicated in learning and memory; however, whether intravenous anesthetics modulate ERK1/2 remains unknown. The aim of this study was to examine the effect of several intravenous anesthetics on the phosphorylation of ERK1/2 in the hippocampus of adult mice. Western blotting was used to examine cellular levels of phosphorylated and unphosphorylated ERK1/2 in mouse hippocampus slices, which were incubated with or without anesthetics including propofol, etomidate, ketamine and midazolam, a protein kinase C (PKC) activator or inhibitor, or phospholipase C (PLC) activator or inhibitor. Propofol, etomidate, ketamine and midazolam reduced phosphorylation of ERK1/2 in a time-dependent manner. Washing out propofol after 5 min increased ERK1/2 phosphorylation. The anesthetic-induced depression of ERK1/2 phosphorylation was blocked by 0.1 μM phorbol-12-myristate 13-acetate (an activator of PKC), 50 μM U73122 (an inhibitor of PLC). The anesthetic-induced depression of ERK1 phosphorylation was blocked by 1 mMN-methyl-d-aspartate (NMDA). Whereas 100 μM chelerythrine (an inhibitor of PKC) and 100 μM carbachol (an activator of PLC) and 20 μM PD-98059 (an inhibitor of MEK) had additive effects on propofol-induced inhibition of ERK1/2 phosphorylation. In contrast, 10 μM MK801 (a NMDA receptor antagonist) did not block anesthetic-induced inhibition of ERK1/2 phosphorylation. Intravenous anesthetics markedly decreased phosphorylation of ERK1/2 in mouse hippocampal slices, most likely via the NMDA receptor, and PLC- and PKC-dependent pathways. Thus, ERK1/2 represents a target for anesthetics in the brain. Copyright © 2016. Published by Elsevier Ltd.

  5. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Paeonol Suppresses Chondrosarcoma Metastasis through Up-Regulation of miR-141 by Modulating PKCδ and c-Src Signaling Pathway

    PubMed Central

    Horng, Chi-Ting; Shieh, Po-Chuen; Tan, Tzu-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)δ and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCδ and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma. PMID:24992595

  7. Identification of a Src kinase SH3 binding site in the C-terminal domain of the human ErbB2 receptor tyrosine kinase.

    PubMed

    Bornet, Olivier; Nouailler, Matthieu; Feracci, Michaël; Sebban-Kreuzer, Corinne; Byrne, Deborah; Halimi, Hubert; Morelli, Xavier; Badache, Ali; Guerlesquin, Françoise

    2014-06-05

    Overexpression of the ErbB2 receptor tyrosine kinase is associated with most aggressive tumors in breast cancer patients and is thus one of the main investigated therapeutic targets. Human ErbB2 C-terminal domain is an unstructured anchor that recruits specific adaptors for signaling cascades resulting in cell growth, differentiation and migration. Herein, we report the presence of a SH3 binding motif in the proline rich unfolded ErbB2 C-terminal region. NMR analysis of this motif supports a PPII helix conformation and the binding to Fyn-SH3 domain. The interaction of a kinase of the Src family with ErbB2 C-terminal domain could contribute to synergistic intracellular signaling and enhanced oncogenesis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    PubMed

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  9. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A

    2015-01-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. PMID:25825542

  10. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells.

    PubMed

    Filosto, Simone; Baston, David S; Chung, Samuel; Becker, Cathleen R; Goldkorn, Tzipora

    2013-08-01

    The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.

  11. An extract of Perilla stem inhibits Src homology phosphatase-1 (SHP)-1 and influences insulin signaling.

    PubMed

    Peng, Liu; Lei, Zhang; Xiao-na, Xie; Deli, Wang; Jing, Sun; Yong-sen, Wang; Zhi, Wang; Shu, Xing; Jun-feng, Ma; Wan-nan, Li; Xue-qi, Fu

    2015-03-01

    Protein tyrosine phosphatases (PTPs) are enzymes that catalyze protein tyrosine dephosphorylation of which Src homology phosphatase-1 (SHP-1) is one of the best-validated, a widely distributed intracellular tyrosine phosphatase that contains two SH2 domains. Down regulation of SHP-1 tyrosine phosphatases was significantly increased sensitivity to insulin in insulin signaling pathway. Through in vitro enzymatic reaction kinetics experiment, we found that the extract of Perilla stem was a potential inhibitor to δSHP-1, the catalytic domain of SHP-1 protein tyrosine phosphatase, and its IC(50) was 4ug/ml, and was more sensitive towards SHP-1than other PTPs, which indicated that SHP-1 might be a target of the extract of Perilla stem. It can strengthened the level of tyrosine phosphorylation of insulin receptor (IR) and extracellular signal-regulated protein kinase (ERK) in HepG2 cells, and then activated the insulin signaling pathway through inhibiting the protein phosphorylation of SHP-1. These results demonstrated that the extract of Perilla stem could play an important role for diabetes treatment through inhibiting the level of SHP-1 in insulin signaling pathway.

  12. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  13. Cell Cycle-Dependent Phosphorylation of Theileria annulata Schizont Surface Proteins

    PubMed Central

    von Schubert, Conrad; Wastling, Jonathan M.; Heussler, Volker T.; Woods, Kerry L.

    2014-01-01

    The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state. PMID:25077614

  14. Silymarin suppresses the PGE2 -induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways.

    PubMed

    Woo, Seon Min; Min, Kyoung-Jin; Chae, In Gyeong; Chun, Kyung-Soo; Kwon, Taeg Kyu

    2015-03-01

    Silymarin has been known as a chemopreventive agent, and possesses multiple anti-cancer activities including induction of apoptosis, inhibition of proliferation and growth, and blockade of migration and invasion. However, whether silymarin could inhibit prostaglandin (PG) E2 -induced renal cell carcinoma (RCC) migration and what are the underlying mechanisms are not well elucidated. Here, we found that silymarin markedly inhibited PGE2 -stimulated migration. PGE2 induced G protein-dependent CREB phosphorylation via protein kinase A (PKA) signaling, and PKA inhibitor (H89) inhibited PGE2 -mediated migration. Silymarin reduced PGE2 -induced CREB phosphorylation and CRE-promoter activity. PGE2 also activated G protien-independent signaling pathways (Src and STAT3) and silymarin reduced PGE2 -induced phosphorylation of Src and STAT3. Inhibitor of Src (Saracatinib) markedly reduced PGE2 -mediated migration. We found that EP2, a PGE2 receptor, is involved in PGE2 -mediated cell migration. Down regulation of EP2 by EP2 siRNA and EP2 antagonist (AH6809) reduced PGE2 -inudced migration. In contrast, EP2 agonist (Butaprost) increased cell migration and silymarin effectively reduced butaprost-mediated cell migration. Moreover, PGE2 increased EP2 expression through activation of positive feedback mechanism, and PGE2 -induced EP2 expression, as well as basal EP2 levels, were reduced in silymarin-treated cells. Taken together, our study demonstrates that silymarin inhibited PGE2 -induced cell migration through inhibition of EP2 signaling pathways (G protein dependent PKA-CREB and G protein-independent Src-STAT3). © 2013 Wiley Periodicals, Inc.

  15. Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J.

    2014-12-17

    Mass spectrometry-based targeted quantification is a promising technology for site-specific quantification of posttranslational modifications (PTMs). However, a major constraint of most targeted MS approaches is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents to enrich specific PTMs. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometries using a highly sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM). PRISM provides effective enrichment of target peptides within a given fraction from complex biological matrix with minimal sample losses, followed by selected reactionmore » monitoring (SRM) quantification. The PRISM-SRM approach enabled direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) from as little as 25 µg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided >10-fold improvement in signal intensities, presumably due to the better peptide recovery of PRISM for handling small size samples. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of EGF at both the peak activation (10 min) and steady state (2 h). At 10 min, the maximal ERK activation was observed with 0.3 ng/mL dose, whereas the maximal steady state level of ERK activation at 2 h was at 3 ng/ml dose, corresponding to 1200 and 9000 occupied receptors, respectively. At 10 min, the maximally activated pTpY isoform represented ~40% of total ERK, falling to less than 10% at 2 h. The time course and dose-response profiles of individual phosphorylated ERK isoforms indicated that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than

  16. A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters

    PubMed Central

    Bruck, Nathalie; Vitoux, Dominique; Ferry, Christine; Duong, Vanessa; Bauer, Annie; de Thé, Hughes; Rochette-Egly, Cécile

    2009-01-01

    The nuclear retinoic acid (RA) receptor alpha (RARα) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARα target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARα at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARα/TFIIH complexes to response elements and subsequently RARα target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling. PMID:19078967

  17. Activation of the EBV/C3d receptor (CR2, CD21) on human B lymphocyte surface triggers tyrosine phosphorylation of the 95-kDa nucleolin and its interaction with phosphatidylinositol 3 kinase.

    PubMed

    Barel, M; Le Romancer, M; Frade, R

    2001-03-01

    We previously demonstrated that CR2 activation on human B lymphocyte surface triggered tyrosine phosphorylation of a p95 component and its interaction with p85 subunit of phosphatidylinositol 3' (PI 3) kinase. Despite identical molecular mass of 95 kDa, this tyrosine phosphorylated p95 molecule was not CD19, the proto-oncogene Vav, or the adaptator Gab1. To identify this tyrosine phosphorylated p95 component, we first purified it by affinity chromatography on anti-phosphotyrosine mAb covalently linked to Sepharose 4B, followed by polyacrylamide gel electrophoresis. Then, the isolated 95-kDa tyrosine phosphorylated band was submitted to amino acid analysis by mass spectrometry; the two different isolated peptides were characterized by amino acid sequences 100% identical with two different domains of nucleolin, localized between aa 411--420 and 611--624. Anti-nucleolin mAb was used to confirm the antigenic properties of this p95 component. Functional studies demonstrated that CR2 activation induced, within a brief span of 2 min, tyrosine phosphorylation of nucleolin and its interaction with Src homology 2 domains of the p85 subunit of PI 3 kinase and of 3BP2 and Grb2, but not with Src homology 2 domains of Fyn and Gap. These properties of nucleolin were identical with those of the p95 previously described and induced by CR2 activation. Furthermore, tyrosine phosphorylation of nucleolin was also induced in normal B lymphocytes by CR2 activation but neither by CD19 nor BCR activation. These data support that tyrosine phosphorylation of nucleolin and its interaction with PI 3 kinase p85 subunit constitute one of the earlier steps in the specific intracellular signaling pathway of CR2.

  18. SLP-65 signal transduction requires Src homology 2 domain-mediated membrane anchoring and a kinase-independent adaptor function of Syk.

    PubMed

    Abudula, Abulizi; Grabbe, Annika; Brechmann, Markus; Polaschegg, Christian; Herrmann, Nadine; Goldbeck, Ingo; Dittmann, Kai; Wienands, Jürgen

    2007-09-28

    The family of SLPs (Src homology 2 domain-containing leukocyte adaptor proteins) are cytoplasmic signal effectors of lymphocyte antigen receptors. A main function of SLP is to orchestrate the assembly of Ca(2+)-mobilizing enzymes at the inner leaflet of the plasma membrane. For this purpose, SLP-76 in T cells utilizes the transmembrane adaptor LAT, but the mechanism of SLP-65 membrane anchoring in B cells remains an enigma. We now employed two genetic reconstitution systems to unravel structural requirements of SLP-65 for the initiation of Ca(2+) mobilization and subsequent activation of gene transcription. First, mutational analysis of SLP-65 in DT40 B cells revealed that its C-terminal Src homology 2 domain controls efficient tyrosine phosphorylation by the kinase Syk, plasma membrane recruitment, as well as downstream signaling to NFAT activation. Second, we dissected these processes by expressing SLP-65 in SLP-76-deficient T cells and found that a kinase-independent adaptor function of Syk is required to link phosphorylated SLP-65 to Ca(2+) mobilization. These approaches unmask a mechanistic complexity of SLP-65 activation and coupling to signaling cascades in that Syk is upstream as well as downstream of SLP-65. Moreover, membrane anchoring of the SLP-65-assembled Ca(2+) initiation complex, which appears to be fundamentally different from that of closely related SLP-76, does not necessarily involve a B cell-specific component.

  19. Antagonism of dopamine D2 receptors alters phosphorylation of Fyn in the rat medial prefrontal cortex

    PubMed Central

    Mao, Li-Min; Wang, John Q.

    2017-01-01

    Several Src family kinase (SFK) members are expressed in the mammalian brain and serve as key kinases in the regulation of a variety of cellular and synaptic events. These SFKs may be subject to the modulation by dopamine, although this topic has been investigated incompletely. In this study, we explored whether dopamine D2 receptors (D2R) regulate SFKs in adult rat brains in vivo. We investigated the role of D2Rs in two forebrain areas, the medial prefrontal cortex (mPFC) and hippocampus, since dopamine plays a pivotal role in regulating activity of mPFC and hippocampal neurons and D2Rs are expressed in these regions. We found that a systemic injection of a D2R selective antagonist eticlopride elevated phosphorylation of SFKs at a conserved autophosphorylation site, an event correlated with activation of SFKs, in the mPFC. Similarly, antagonism of D2Rs by haloperidol increased SFK phosphorylation. In contrast, eticlopride and haloperidol did not alter SFK phosphorylation in the hippocampus. The effect of eticlopride was time-dependent and relatively delayed. Among two common SFK members enriched at synaptic sites, eticlopride selectively altered phosphorylation of Fyn but not Src. Our data suggest that D2Rs exert an inhibitory effect on the activity-related phosphorylation of Fyn in the mPFC under normal conditions. PMID:28176147

  20. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs.

    PubMed

    Kim, Byung-Hak; Won, Cheolhee; Lee, Yun-Han; Choi, Jung Sook; Noh, Kum Hee; Han, Songhee; Lee, Haeri; Lee, Chang Seok; Lee, Dong-Sup; Ye, Sang-Kyu; Kim, Myoung-Hwan

    2013-10-01

    Aberrantly activated signal transducer and activator of transcription (STAT) proteins are implicated with human cancers and represent essential roles for cancer cell survival and proliferation. Therefore, the development of small-molecule inhibitors of STAT signaling bearing pharmacological activity has therapeutic potential for the treatment of human cancers. In this study, we identified sophoraflavanone G as a novel small-molecule inhibitor of STAT signaling in human cancer cells. Sophoraflavanone G inhibited tyrosine phosphorylation of STAT proteins in Hodgkin's lymphoma and tyrosine phosphorylation of STAT3 in solid cancer cells by inhibiting phosphorylation of the Janus kinase (JAK) proteins, Src family tyrosine kinases, such as Lyn and Src, Akt, and ERK1/2. In addition, sophoraflavanone G inhibited STAT5 phosphorylation in murine-bone-marrow-derived pro-B cells transfected with translocated Ets Leukemia (TEL)-JAKs and cytokine-induced rat pre-T lymphoma cells, as well as STAT5b reporter activity in TEL-JAKs and STAT5b reporter systems. Sophoraflavanone G also inhibited nuclear factor-κB (NF-κB) signaling in multiple myeloma cells. Furthermore, sophoraflavanone G inhibited cancer cell proliferation and induced apoptosis by regulating the expression of apoptotic and anti-apoptotic proteins. Our data suggest that sophoraflavanone G is a novel small-molecule inhibitor of STAT signaling by targeting upstream signals of STATs that may have therapeutic potential for cancers caused by persistently activated STAT proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A non-mitotic role for Aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src

    PubMed Central

    Mahankali, Madhu; Henkels, Karen M.; Speranza, Francis; Gomez-Cambronero, Julian

    2015-01-01

    ABSTRACT Timely activation of Aurora kinase A (AURA, also known as AURKA) is vital for centrosome formation and the progression of mitosis. Nonetheless, it is still unclear if and when other cellular functions are activated by AURA. We report here that Src phosphorylates and activates AURA at T288, and AURA also activates focal adhesion kinase (FAK, also known as PTK2), leading to initiation of cell movement. An additional and new way by which AURA is regulated, is by phospholipase D2 (PLD2), which causes AURA activation. In addition, AURA phosphorylates PLD, so both proteins engage in a positive reinforcement loop. AURA and PLD2 form a protein–protein complex and colocalize to cytoplasmic regions in cells. The reason why PLD activates AURA is because of the production of phosphatidic acid by the lipase, which binds directly to AURA, with the region E171–E211 projected to be a phosphatidic-acid-binding pocket. Furthermore, this direct interaction with phosphatidic acid enhances tubulin polymerization and cooperates synergistically with AURA, FAK and Src in yielding a fully effectual cellular migration. Thus, Src and FAK, and PLD and phosphatidic acid are new upstream regulators of AURA that mediate its role in the non-mitotic cellular function of cell migration. PMID:25501815

  2. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2015-03-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    PubMed

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation.

    PubMed

    Venugopal, Shruthi; Chen, Mo; Liao, Wupeng; Er, Shi Yin; Wong, Wai-Shiu Fred; Ge, Ruowen

    2015-07-01

    Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  5. Quantitative Phosphoproteomics Reveals SLP-76 Dependent Regulation of PAG and Src Family Kinases in T Cells

    PubMed Central

    Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J.; Salomon, Arthur R.

    2012-01-01

    The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway. PMID:23071622

  6. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells.

    PubMed

    Cao, Lulu; Ding, Yiyuan; Hung, Norris; Yu, Kebing; Ritz, Anna; Raphael, Benjamin J; Salomon, Arthur R

    2012-01-01

    The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.

  7. Mapping of p140Cap Phosphorylation Sites: The EPLYA and EGLYA Motifs Have a Key Role in Tyrosine Phosphorylation and Csk Binding, and Are Substrates of the Abl Kinase

    PubMed Central

    Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N.; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors. PMID:23383002

  8. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. © 2016 Höckner et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation.

    PubMed Central

    Cavigelli, M; Dolfi, F; Claret, F X; Karin, M

    1995-01-01

    Growth factors induce c-fos transcription by stimulating phosphorylation of transcription factor TCF/Elk-1, which binds to the serum response element (SRE). Under such conditions Elk-1 could be phosphorylated by the mitogen-activated protein kinases (MAPKs) ERK1 and ERK2. However, c-fos transcription and SRE activity are also induced by stimuli, such as UV irradiation and activation of the protein kinase MEKK1, that cause only an insignificant increase in ERK1/2 activity. However, both of these stimuli strongly activate two other MAPKs, JNK1 and JNK2, and stimulate Elk-1 transcriptional activity and phosphorylation. We find that the JNKs are the predominant Elk-1 activation domain kinases in extracts of UV-irradiated cells and that immunopurified JNK1/2 phosphorylate Elk-1 on the same major sites recognized by ERK1/2, that potentiate its transcriptional activity. Finally, we show that UV irradiation, but not serum or phorbol esters, stimulate translocation of JNK1 to the nucleus. As Elk-1 is most likely phosphorylated while bound to the c-fos promoter, these results suggest that UV irradiation and MEKK1 activation stimulate TCF/Elk-1 activity through JNK activation, while growth factors induce c-fos through ERK activation. Images PMID:8846788

  10. Serine Phosphorylation of the Insulin-like Growth Factor I (IGF-1) Receptor C-terminal Tail Restrains Kinase Activity and Cell Growth*

    PubMed Central

    Kelly, Geraldine M.; Buckley, Deirdre A.; Kiely, Patrick A.; Adams, David R.; O'Connor, Rosemary

    2012-01-01

    Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the 1248SFYYS1252 motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling. PMID:22685298

  11. Enterolactone alters FAK-Src signaling and suppresses migration and invasion of lung cancer cell lines.

    PubMed

    Chikara, Shireen; Lindsey, Kaitlin; Borowicz, Pawel; Christofidou-Solomidou, Melpo; Reindl, Katie M

    2017-01-09

    Systemic toxicity of chemotherapeutic agents and the challenges associated with targeting metastatic tumors are limiting factors for current lung cancer therapeutic approaches. To address these issues, plant-derived bioactive components have been investigated for their anti-cancer properties because many of these agents are non-toxic to healthy tissues. Enterolactone (EL) is a flaxseed-derived mammalian lignan that has demonstrated anti-migratory properties for various cancers, but EL has not been investigated in the context of lung cancer, and its anticancer mechanisms are ill-defined. We hypothesized that EL could inhibit lung cancer cell motility by affecting the FAK-Src signaling pathway. Non-toxic concentrations of EL were identified for A549 and H460 human lung cancer cells by conducting 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Dephenyltetrazolium Bromide (MTT) assays. The anti-migratory and anti-invasive potential of EL for lung cancer cell lines was determined by scratch wound healing and Matrigel® invasion assays. Changes in filamentous actin (F-actin) fiber density and length in EL-treated cells were determined using phalloidin-conjugated rhodamine dye and fluorescent microscopy. Vinculin expression in focal adhesions upon EL treatment was determined by immunocytochemistry. Gene and protein expression levels of FAK-Src signaling molecules in EL-treated lung cancer cells were determined using PCR arrays, qRT-PCR, and western blotting. Non-toxic concentrations of EL inhibited lung cancer cell migration and invasion in a concentration- and time-dependent manner. EL treatment reduced the density and number of F-actin fibers in lung cancer cell lines, and reduced the number and size of focal adhesions. EL decreased phosphorylation of FAK and its downstream targets, Src, paxillin, and decreased mRNA expression of cell motility-related genes, RhoA, Rac1, and Cdc42 in lung cancer cells. Our data suggest that EL suppresses lung cancer cell motility and invasion by

  12. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    PubMed Central

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  13. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium via the c-Src Pathway

    PubMed Central

    Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS. PMID:28804222

  14. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium via the c-Src Pathway.

    PubMed

    Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae; Park, Il-Ho

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF- β 1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF- β 1. We found that E-cadherin, vimentin, fibronectin, and α -SMA expression was increased in nasal polyps compared to inferior turbinates. TGF- β 1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α -SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF- β 1 on migration of A549 cells and suppressed TGF- β 1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF- β 1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF- β 1 in upper airway chronic inflammatory disease such as CRS.

  15. Regulation of the Src homology 2-containing inositol 5-phosphatase SHIP1 in HIP1/PDGFbeta R-transformed cells.

    PubMed

    Saint-Dic, D; Chang, S C; Taylor, G S; Provot, M M; Ross, T S

    2001-06-15

    It has been shown previously that the Huntingtin interacting protein 1 gene (HIP1) was fused to the platelet-derived growth factor beta receptor gene (PDGFbetaR) in leukemic cells of a patient with chronic myelomonocytic leukemia. This resulted in the expression of the chimeric HIP1/PDGFbetaR protein, which oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the Ba/F3 murine hematopoietic cell line to interleukin-3-independent growth. Tyrosine phosphorylation of a 130-kDa protein (p130) correlates with transformation by HIP1/PDGFbetaR and related transforming mutants. We report here that the p130 band is immunologically related to the 125-kDa isoform of the Src homology 2-containing inositol 5-phosphatase, SHIP1. We have found that SHIP1 associates and colocalizes with the HIP1/PDGFbetaR fusion protein and related transforming mutants. These mutants include a mutant that has eight Src homology 2-binding phosphotyrosines mutated to phenylalanine. In contrast, SHIP1 does not associate with H/P(KI), the kinase-dead form of HIP1/PDGFbetaR. We also report that phosphorylation of SHIP1 by HIP1/PDGFbetaR does not change its 5-phosphatase-specific activity. This suggests that phosphorylation and possible PDGFbetaR-mediated sequestration of SHIP1 from its substrates (PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4)) might alter the levels of these inositol-containing signal transduction molecules, resulting in activation of downstream effectors of cellular proliferation and/or survival.

  16. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models.

    PubMed

    Wang, Zhiyong; Shah, O Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.

  17. The Transcriptional Coactivators p/CIP and SRC-1 Control Insulin Resistance through IRS1 in Obesity Models

    PubMed Central

    Wang, Zhiyong; Shah, O. Jameel; Hunter, Tony

    2012-01-01

    Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes. PMID:22859932

  18. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.

    PubMed

    Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai

    2016-03-01

    Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.

  19. GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication.

    PubMed

    Kuster, Diederik W D; Sequeira, Vasco; Najafi, Aref; Boontje, Nicky M; Wijnker, Paul J M; Witjas-Paalberends, E Rosalie; Marston, Steven B; Dos Remedios, Cristobal G; Carrier, Lucie; Demmers, Jeroen A A; Redwood, Charles; Sadayappan, Sakthivel; van der Velden, Jolanda

    2013-02-15

    Cardiac myosin-binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. To identify and characterize additional phosphorylation sites in human cMyBP-C. Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine-rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3β (GSK3β) as the most likely kinase to phosphorylate Ser133. In vitro incubation of the C0C2 fragment of cMyBP-C with GSK3β showed phosphorylation on Ser133. In addition, GSK3β phosphorylated Ser304, although the degree of phosphorylation was less compared with protein kinase A-induced phosphorylation at Ser304. GSK3β treatment of single membrane-permeabilized human cardiomyocytes significantly enhanced the maximal rate of tension redevelopment. GSK3β phosphorylates cMyBP-C on a novel site, which is positioned in the proline-alanine-rich region and increases kinetics of force development, suggesting a noncanonical role for GSK3β at the sarcomere level. Phosphorylation of Ser133 in the linker domain of cMyBP-C may be a novel mechanism to regulate sarcomere kinetics.

  20. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    NASA Astrophysics Data System (ADS)

    Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  1. Part I---Evaluating Effects of Oligomer Formation on Cytochrome P450 2C9 Electron Transfer and Drug Metabolism, Part II---Utilizing Molecular Modeling Techniques to Study the Src-Interacting Proteins Actin Filament Associated Protein of 110 kDa (AFAP-110) and Cortactin

    NASA Astrophysics Data System (ADS)

    Jett, John Edward, Jr.

    nanopillars, the immobilization of CYP2C9 enzymes to those nanopillars, and the utilization of the array to perform conductive probe atomic force microscopy experiments examining the electron transfer process of CYP2C9 in the absence and presence of substrate molecules. Part II. The Src protein has been known to play a role in cancer cell progression for over 30 years. The function of a non-receptor tyrosine kinase such as Src is to relay extracellular signals through intracellular tyrosine phosphorylation. As a tyrosine kinase, Src and the cellular signaling pathways it is involved in play many functional roles in the cell, both in cellular proliferation and in cytoskeletal dynamics, cell adhesion, motility and invasion. Two of the many proteins comprising Src cellular signaling pathways are actin filament associated protein of 110 kDa (AFAP-110) and cortactin. AFAP-110 is a known activator of Src; one mechanism to abrogate the AFAP-110-induced activation of Src is to inhibit their colocalization within the cell. This colocalization is expected to occur when the pleckstrin homology (PH1 and PH2) domains of AFAP-110 are allowed to interact with membrane-bound phospholipids. Cortactin, on the other hand, is a cytosolic protein capable of being phosphorylated on various tyrosine residues, activating it and allowing it to interact with actin. The Src homology 2 (SH2) domain of Src has been shown to be capable of interacting with cortactin, an association which will be probed here. This section of the dissertation will discuss the use of molecular modeling techniques to develop structural models of the AFAP-110 PH1 and PH2 domains and use them to make predictions about how the protein interacts with phospholipids in the plasma membrane and how they might be stabilized to interact with other proteins. Structural models were designed using homology modeling methods, docking programs were used to predict key residues of AFAP-110 involved in binding to phospholipids and mutational

  2. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    PubMed

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  3. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  4. Vimentin is a target of PKCβ phosphorylation in MCP-1-activated primary human monocytes

    PubMed Central

    Thiagarajan, Praveena S.; Akbasli, Ayse C.; Kinter, Michael T.; Willard, Belinda; Cathcart, Martha K.

    2013-01-01

    Objective and design We designed a study to detect downstream phosphorylation targets of PKCβ in MCP-1-induced human monocytes. Methods 2-dimensional gel electrophoresis was performed for monocytes treated with MCP-1 in the presence or absence of PKCβ antisense oligodeoxyribonucleotides (AS-ODN) or a PKCβ inhibitor peptide, followed by phospho- and total protein staining. Proteins that stained less intensely with the phospho-stain, when normalized to the total protein stain, in the presence of PKCβ AS-ODN or the PKC β inhibitor peptide were sequenced. Results Of the proteins identified, vimentin was consistently identified using both experimental approaches. Upon 32P-labeling and vimentin immunoprecipitation, increased phosphorylation of vimentin was observed in MCP-1 treated monocytes as compared to the untreated monocytes. Both PKCβ AS-ODN and the PKCβ inhibitor reduced MCP-1-induced vimentin phosphorylation. IP of monocytes with anti-vimentin antibody and immunoblotting with a PKCβ antibody revealed that increased PKCβ becomes associated with vimentin upon MCP-1 activation. Upon MCP-1 treatment, monocytes were shown to secrete vimentin and secretion depended on PKCβ expression and activity. Conclusions We conclude that vimentin, a major intermediate filament protein, is a phosphorylation target of PKCβ in MCP-1-treated monocytes and that PKCβ phosphorylation is essential for vimentin secretion. Our recently published studies have implicated vimentin as a potent stimulator of the innate immune receptor Dectin-1 [1]. Taken together our findings suggest that inhibition of PKCβ regulates vimentin secretion and thereby, its interaction with Dectin-1 and downstream stimulation of superoxide anion production. Thus PKCβ phosphorylation of vimentin likely plays an important role in propagating inflammatory responses. PMID:23974215

  5. Vimentin is a target of PKCβ phosphorylation in MCP-1-activated primary human monocytes.

    PubMed

    Thiagarajan, Praveena S; Akbasli, Ayse C; Kinter, Michael T; Willard, Belinda; Cathcart, Martha K

    2013-11-01

    We designed a study to detect downstream phosphorylation targets of PKCβ in MCP-1-induced human monocytes. Two-dimensional gel electrophoresis was performed for monocytes treated with MCP-1 in the presence or absence of PKCβ antisense oligodeoxyribonucleotides (AS-ODN) or a PKCβ inhibitor peptide, followed by phospho- and total protein staining. Proteins that stained less intensely with the phospho-stain, when normalized to the total protein stain, in the presence of PKCβ AS-ODN or the PKCβ inhibitor peptide, were sequenced. Of the proteins identified, vimentin was consistently identified using both experimental approaches. Upon (32)P-labeling and vimentin immunoprecipitation, increased phosphorylation of vimentin was observed in MCP-1 treated monocytes as compared to the untreated monocytes. Both PKCβ AS-ODN and the PKCβ inhibitor reduced MCP-1-induced vimentin phosphorylation. The IP of monocytes with anti-vimentin antibody and immunoblotting with a PKCβ antibody revealed that increased PKCβ becomes associated with vimentin upon MCP-1 activation. Upon MCP-1 treatment, monocytes were shown to secrete vimentin and secretion depended on PKCβ expression and activity. We conclude that vimentin, a major intermediate filament protein, is a phosphorylation target of PKCβ in MCP-1-treated monocytes and that PKCβ phosphorylation is essential for vimentin secretion. Our recently published studies have implicated vimentin as a potent stimulator of the innate immune receptor Dectin-1 as reported by Thiagarajan et al. (Cardiovasc Res 99:494-504, 2013). Taken together our findings suggest that inhibition of PKCβ regulates vimentin secretion and, thereby, its interaction with Dectin-1 and downstream stimulation of superoxide anion production. Thus, PKCβ phosphorylation of vimentin likely plays an important role in propagating inflammatory responses.

  6. Tyrosine phosphorylation of the orphan receptor ESDN/DCBLD2 serves as a scaffold for the signaling adaptor CrkL.

    PubMed

    Aten, Tyler M; Redmond, Miranda M; Weaver, Sheila O; Love, Collin C; Joy, Ryan M; Lapp, Aliya S; Rivera, Osvaldo D; Hinkle, Karen L; Ballif, Bryan A

    2013-08-02

    A quantitative proteomics screen to identify substrates of the Src family of tyrosine kinases (SFKs) whose phosphorylation promotes CrkL-SH2 binding identified the known Crk-associated substrate (Cas) of Src as well as the orphan receptor endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN). Mutagenesis analysis of ESDN's seven intracellular tyrosines in YxxP motifs found several contribute to the binding of ESDN to the SH2 domains of both CrkCT10 regulator of kinase Crk-Like (CrkL) and a representative SFK Fyn. Quantitative mass spectrometry showed that at least three of these (Y565, Y621 and Y750), as well as non-YxxP Y715, are reversibly phosphorylated. SFK activity was shown to be sufficient, but not required for the interaction between ESDN and the CrkL-SH2 domain. Finally, antibody-mediated ESDN clustering induces ESDN tyrosine phosphorylation and CrkL-SH2 binding. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    PubMed

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  8. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase.

    PubMed

    Banerjee, Moumita; Duan, Qiming; Xie, Zijian

    2015-01-01

    Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.

  9. Agonist-dependent phosphorylation of N-formylpeptide and activation peptide from the fifth component of C (C5a) chemoattractant receptors in differentiated HL60 cells.

    PubMed

    Tardif, M; Mery, L; Brouchon, L; Boulay, F

    1993-04-15

    Attenuation of signaling is a key step in controlling the cytotoxic potential of leukocyte responses to chemotactic factors. Antipeptide antibodies, directed against the N-formyl chemotactic peptide receptor (FPR) and the activation peptide from the fifth component of C (C5a) anaphylatoxin receptor (C5aR) of human neutrophils, were used to analyze the ability of these receptors to be phosphorylated. Our data show that, in granulocyte-like differentiated HL-60 cells, both FPR and C5aR undergo an agonist dose-dependent phosphorylation that reaches completion in less than 2 to 3 min, consistent with the rate and the dose-dependent attenuation of signaling in phagocytes. Therefore, phosphorylation might be one of the possible mechanisms involved in the desensitization process of FPR and C5aR. Addition of either C5a or the protein kinase C activator (PMA) did not appear to induce the phosphorylation of FPR in the absence of FMLP or to modulate the phosphorylation of the latter at low concentrations of agonist. In contrast, although FMLP at a saturating concentration barely stimulated the phosphorylation of unoccupied C5aR, it markedly potentiated C5aR phosphorylation in cells exposed to low concentrations of C5a. Moreover, PMA was able to induce C5aR phosphorylation in the absence of agonist, indicating that protein kinase C or protein kinase C-activated kinase(s) could be involved in the phosphorylation of C5aR. Pretreatment of cells with staurosporine, a potent but nonspecific inhibitor of protein kinase C, resulted in the partial inhibition of both FPR and C5aR phosphorylation induced by saturating concentrations of agonist, suggesting that a kinase different from protein kinase C might be mainly responsible for the phosphorylation of these chemotactic receptors.

  10. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, K.; Anthony, D.T.; Rubin, L.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximalmore » response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.« less

  11. SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation.

    PubMed

    Rupar, Kaja; Moharram, Sausan A; Kazi, Julhash U; Rönnstrand, Lars

    2018-04-23

    KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.

  12. Effects of HCM cTnI Mutation R145G on Troponin Structure and Modulation by PKA Phosphorylation Elucidated by Molecular Dynamics Simulations

    PubMed Central

    Lindert, Steffen; Cheng, Yuanhua; Kekenes-Huskey, Peter; Regnier, Michael; McCammon, J. Andrew

    2015-01-01

    Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI1-39), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl137–147) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca2+ handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, cTnI-R145G/S23D/S24D Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, and cTnI-R145G/PS23/PS24 Ca2+-bound cTnC1-161-cTnI1-172-cTnT236-285, respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca2+-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca2+ coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory

  13. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations.

    PubMed

    Lindert, Steffen; Cheng, Yuanhua; Kekenes-Huskey, Peter; Regnier, Michael; McCammon, J Andrew

    2015-01-20

    Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N

  14. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  15. EETs reduces LPS-induced hyperpermeability by targeting GRP78 mediated Src activation and subsequent Rho/ROCK signaling pathway

    PubMed Central

    Dong, Ruolan; Hu, Danli; Yang, Yan; Chen, Zhihui; Fu, Menglu; Wang, Dao Wen; Xu, Xizhen; Tu, Ling

    2017-01-01

    Integrity of endothelial barrier is a determinant of the prognosis in the acute lung injury caused by sepsis. The epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, exhibit protective effects in various pathogenic states, however, whether EETs play a role in endothelial barrier enhancement and the involved mechanisms remain to be investigated. Here, we show that increased EETs level by endothelial specific cytochrome P450 epoxygenase 2J2 over-expression and soluble epoxide hydrolase (sEH) inhibitor TPPU reduced lipopolysaccharide-induced endothelial hyper-permeability in vivo, accompanied by improved survival of septic mice. In addition, sEH inhibitor AUDA and 11,12-EET also decreased endothelial hyper-permeability in the in-vitro study. Importantly, the relative mechanisms were associated with reduced GRP78-Src interaction and ROS production, and subsequently reduced RhoA/ROCK activation, and eventually decreased VE-cadherin and myosin light chain (MLC) phosphorylation. Thus CYP2J2-EETs is crucial for RhoA-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability, which may contribute to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability. PMID:28881620

  16. Hsp90 dependence of a kinase is determined by its conformational landscape

    PubMed Central

    Luo, Qi; Boczek, Edgar E.; Wang, Qi; Buchner, Johannes; Kaila, Ville R. I.

    2017-01-01

    Heat shock protein 90 (Hsp90) is an abundant molecular chaperone, involved in the folding and activation of 60% of the human kinome. The oncogenic tyrosine kinase v-Src is one of the most stringent client proteins of Hsp90, whereas its almost identical homolog c-Src is only weakly affected by the chaperone. Here, we perform atomistic molecular simulations and in vitro kinase assays to explore the mechanistic differences in the activation of v-Src and c-Src. While activation in c-Src is strictly controlled by ATP-binding and phosphorylation, we find that activating conformational transitions are spontaneously sampled in Hsp90-dependent Src mutants. Phosphorylation results in an enrichment of the active conformation and in an increased affinity for Hsp90. Thus, the conformational landscape of the mutated kinase is reshaped by a broken “control switch”, resulting in perturbations of long-range electrostatics, higher activity and increased Hsp90-dependence. PMID:28290541

  17. Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia–ischemia in mice with neuronal Fyn overexpression

    PubMed Central

    Knox, Renatta; Zhao, Chong; Miguel-Perez, Dario; Wang, Steven; Yuan, Jinwei; Ferriero, Donna; Jiang, Xiangning

    2013-01-01

    The Src family kinases (SFKs) Src and Fyn are implicated in hypoxic–ischemic (HI) injury in the developing brain. However, it is unclear how these particular SFKs contribute to brain injury. Using neuron-specific Fyn overexpressing (OE) mice, we investigated the role of neuronal Fyn in neonatal brain HI. Wild type (WT) and Fyn OE mice were subjected to HI using the Vannucci model at postnatal day 7. Brains were scored five days later for evaluation of damage using cresyl violet and iron staining. Western blotting with postsynaptic density (PSD)-associated synaptic membrane proteins and co-immunoprecipitation with cortical lysates were performed at various time points after HI to determine NMDA receptor tyrosine phosphorylation and Fyn kinase activity. Fyn OE mice had significantly higher mortality and brain injury compared to their WT littermates. Neuronal Fyn overexpression led to sustained NR2A and NR2B tyrosine phosphorylation and enhanced NR2B phosphorylation at tyrosine (Y) 1472 and Y1252 in synaptic membranes. These early changes correlated with higher calpain activity 24 h after HI in Fyn OE mice relative to WT animals. Our findings suggest a role for Fyn kinase in neuronal death after neonatal HI, possibly via up-regulation of NMDA receptor tyrosine phosphorylation. PMID:23127881

  18. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    PubMed Central

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319

  19. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors.

    PubMed

    Anselm, Eric; Socorro, Vanesca Frota Madeira; Dal-Ros, Stéphanie; Schott, Christa; Bronner, Christian; Schini-Kerth, Valérie B

    2009-03-01

    This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism. Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells. WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.

  20. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, Mamiko; Inageda, Kiyoshi; Matsuoka, Masato, E-mail: matsuoka@research.twmu.ac.jp

    2011-03-15

    We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl{sub 2}, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl{sub 2} exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translationalmore » modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl{sub 2}. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal kinase, and p38-increased after CdCl{sub 2} exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl{sub 2}.« less

  1. Extensive Crosstalk Between O-GlcNAcylation and Phosphorylation Regulates Cytokinesis

    PubMed Central

    Wang, Zihao; Udeshi, Namrata D.; Slawson, Chad; Compton, Philip D.; Sakabe, Kaoru; Cheung, Win D.; Shabanowitz, Jeffrey; Hunt, Donald F.; Hart, Gerald W.

    2010-01-01

    Like phosphorylation, the addition of O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous, reversible process that modifies serine and threonine residues on nuclear and cytoplasmic proteins. Overexpression of the enzyme that adds O-GlcNAc to target proteins, O-GlcNAc transferase (OGT), perturbs cytokinesis and promotes polyploidy, but the molecular targets of OGT that are important for its cell cycle functions are unknown. Here, we identify 141 previously unknown O-GlcNAc sites on proteins that function in spindle assembly and cytokinesis. Many of these O-GlcNAcylation sites are either identical to known phosphorylation sites or in close proximity to them. Furthermore, we found that O-GlcNAcylation altered the phosphorylation of key proteins associated with the mitotic spindle and midbody. Forced overexpression of OGT increased the inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1) and reduced the phosphorylation of CDK1 target proteins. The increased phosphorylation of CDK1 is explained by increased activation of its upstream kinase, MYT1, and by a concomitant reduction in the transcript for the CDK1 phosphatase, CDC25C. OGT overexpression also caused a reduction in both messenger RNA expression and protein abundance of Polo-like kinase 1, which is upstream of both MYT1 and CDC25C. The data not only illustrate the crosstalk between O-GlcNAcylation and phosphorylation of proteins that are regulators of crucial signaling pathways, but also uncover a mechanism for the role of O-GlcNAcylation in regulation of cell division. PMID:20068230

  2. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  3. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action

    PubMed Central

    Lee, Jeong-Oog; Kim, Mi-Yeon

    2015-01-01

    Luteolin is a flavonoid identified as a major anti-inflammatory component of Artemisia asiatica. Numerous reports have demonstrated the ability of luteolin to suppress inflammation in a variety of inflammatory conditions. However, its exact anti-inflammatory mechanism has not been fully elucidated. In the present study, the anti-inflammatory mode of action in activated macrophages of luteolin from Artemisia asiatica was examined by employing immunoblotting analysis, a luciferase reporter gene assay, enzyme assays, and an overexpression strategy. Luteolin dose-dependently inhibited the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) and diminished the levels of mRNA transcripts of inducible NO synthase (iNOS), tumor necrosis factor- (TNF-) α, and cyclooxygenase-2 (COX-2) in lipopolysaccharide- (LPS-) and pam3CSK-treated macrophage-like RAW264.7 cells without displaying cytotoxicity. Luteolin displayed potent NO-inhibitory activity and also suppressed the nuclear translocation of NF-κB (p65 and p50) via blockade of Src and Syk, but not other mitogen-activated kinases. Overexpression of wild type Src and point mutants thereof, and molecular modelling studies, suggest that the ATP-binding pocket may be the luteolin-binding site in Src. These results strongly suggest that luteolin may exert its anti-inflammatory action by suppressing the NF-κB signaling cascade via blockade of ATP binding in Src and Syk. PMID:26236111

  4. Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and α-conotoxin Vc1.1 via GABAB receptor activation

    PubMed Central

    McArthur, Jeffrey R.; Cuny, Hartmut; Clark, Richard J.; Adams, David J.

    2014-01-01

    Neuronal Cav2.1 (P/Q-type), Cav2.2 (N-type), and Cav2.3 (R-type) calcium channels contribute to synaptic transmission and are modulated through G protein–coupled receptor pathways. The analgesic α-conotoxin Vc1.1 acts through γ-aminobutyric acid type B (GABAB) receptors (GABABRs) to inhibit Cav2.2 channels. We investigated GABABR-mediated modulation by Vc1.1, a cyclized form of Vc1.1 (c-Vc1.1), and the GABABR agonist baclofen of human Cav2.1 or Cav2.3 channels heterologously expressed in human embryonic kidney cells. 50 µM baclofen inhibited Cav2.1 and Cav2.3 channel Ba2+ currents by ∼40%, whereas c-Vc1.1 did not affect Cav2.1 but potently inhibited Cav2.3, with a half-maximal inhibitory concentration of ∼300 pM. Depolarizing paired pulses revealed that ∼75% of the baclofen inhibition of Cav2.1 was voltage dependent and could be relieved by strong depolarization. In contrast, baclofen or Vc1.1 inhibition of Cav2.3 channels was solely mediated through voltage-independent pathways that could be disrupted by pertussis toxin, guanosine 5′-[β-thio]diphosphate trilithium salt, or the GABABR antagonist CGP55845. Overexpression of the kinase c-Src significantly increased inhibition of Cav2.3 by c-Vc1.1. Conversely, coexpression of a catalytically inactive double mutant form of c-Src or pretreatment with a phosphorylated pp60c-Src peptide abolished the effect of c-Vc1.1. Site-directed mutational analyses of Cav2.3 demonstrated that tyrosines 1761 and 1765 within exon 37 are critical for inhibition of Cav2.3 by c-Vc1.1 and are involved in baclofen inhibition of these channels. Remarkably, point mutations introducing specific c-Src phosphorylation sites into human Cav2.1 channels conferred c-Vc1.1 sensitivity. Our findings show that Vc1.1 inhibition of Cav2.3, which defines Cav2.3 channels as potential targets for analgesic α-conotoxins, is caused by specific c-Src phosphorylation sites in the C terminus. PMID:24688019

  5. Aladdin: Transforming science at SRC

    NASA Astrophysics Data System (ADS)

    Bisognano, J.; Bissen, M.; Green, M.; Jacobs, K.; Moore, C.; Olson, E.; Severson, M.; Wehlitz, R.

    2011-09-01

    The Synchrotron Radiation Center (SRC) is dedicated to enabling of innovative research using IR, ultraviolet, and soft X-ray synchrotron radiation. It delivers beam time with high reliability (99%) and continues to improve the Aladdin storage ring complex. A lower emittance tuning has been commissioned to support a microfocus capability. SRC successfully installed an APPLE II undulator providing elliptically polarized light with lattice compensation for flexible scanning. Installation of a new IR beamline at SRC is providing synchrotron chemical imaging with unprecedented structural and chemical information, simultaneously. In addition, SRC has established a strong education and outreach program to bring the knowledge and power of light source science to a wider national community. It is moving forward into the future by developing a new micro focus beamline producing a diffraction-limited focus of about 500 nm at 22 eV, proposing an additional diffraction-limited chemical imaging beamline, and advancing the Wisconsin Free Electron Laser (WiFEL) concept.

  6. Mimicking phosphorylation of Ser-74 on human deoxycytidine kinase selectively increases catalytic activity for dC and dC analogues.

    PubMed

    McSorley, Theresa; Ort, Stephan; Hazra, Saugata; Lavie, Arnon; Konrad, Manfred

    2008-03-05

    Intracellular phosphorylation of dCK on Ser-74 results in increased nucleoside kinase activity. We mimicked this phosphorylation by a Ser-74-Glu mutation in bacterially produced dCK and investigated kinetic parameters using various nucleoside substrates. The S74E mutation increases the k(cat) values 11-fold for dC, and 3-fold for the anti-cancer analogues dFdC and AraC. In contrast, the rate is decreased for the purine substrates. In HEK293 cells, we found that by comparing transiently transfected dCK(S74E)-GFP and wild-type dCK-GFP, mimicking the phosphorylation of Ser-74 has no effect on cellular localisation. We note that phosphorylation may represent a mechanism to enhance the catalytic activity of the relatively slow dCK enzyme.

  7. Mimicking phosphorylation of Ser-74 on human deoxycytidine kinase selectively increases catalytic activity for dC and dC analogues

    PubMed Central

    McSorley, Theresa; Ort, Stephan; Hazra, Saugata; Lavie, Arnon; Konrad, Manfred

    2009-01-01

    Intracellular phosphorylation of dCK on Ser-74 results in increased nucleoside kinase activity. We mimicked this phosphorylation by a Ser-74-Glu mutation in bacterially produced dCK and investigated kinetic parameters using various nucleoside substrates. The S74E mutation increases the kcat values 11-fold for dC, and 3-fold for the anti-cancer analogues dFdC and AraC. In contrast, the rate is decreased for the purine substrates. In HEK293 cells, we found that by comparing transiently transfected dCK(S74E)-GFP and wild-type dCK-GFP, mimicking the phosphorylation of Ser-74 has no effect on cellular localisation. We note that phosphorylation may represent a mechanism to enhance the catalytic activity of the relatively slow dCK enzyme. PMID:18258203

  8. Cytotoxic-T-lymphocyte antigen 4 receptor signaling for lymphocyte adhesion is mediated by C3G and Rap1.

    PubMed

    Kloog, Yoel; Mor, Adam

    2014-03-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders.

  9. Cytotoxic-T-Lymphocyte Antigen 4 Receptor Signaling for Lymphocyte Adhesion Is Mediated by C3G and Rap1

    PubMed Central

    Kloog, Yoel

    2014-01-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders. PMID:24396067

  10. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    PubMed Central

    Morando, Maria Agnese; Saladino, Giorgio; D’Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-01-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed. PMID:27087366

  11. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-05

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.

  12. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.

    PubMed

    Sánchez-Margalet, V; Najib, S

    1999-07-23

    The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.

  13. Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation*

    PubMed Central

    Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.

    2016-01-01

    PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612

  14. Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase C(epsilon) regulates Ras/mitogen-activated protein kinase signaling and neuronal differentiation.

    PubMed

    Lonic, Ana; Powell, Jason A; Kong, Yang; Thomas, Daniel; Holien, Jessica K; Truong, Nhan; Parker, Michael W; Guthridge, Mark A

    2013-05-24

    The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser(779) in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser(779) was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCε can phosphorylate Ser(779) in vitro, whereas overexpression of PKCε results in constitutive Ser(779) phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCε reduces both growth factor-induced Ser(779) phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser(779), can quantitatively control Ras/MAPK signaling to promote specific cellular responses.

  15. An immunohistochemical and ultrastructural study of the pericellular matrix of uneroded hypertrophic chondrocytes in the mandibular condyle of aged c-src-deficient mice.

    PubMed

    Shibata, Shunichi; Baba, Otto; Oda, Tsuyoshi; Yokohama-Tamaki, Tamaki; Qin, Chunlin; Butler, William T; Sakakura, Yasunori; Takano, Yoshiro

    2008-03-01

    Previous studies indicate that hypertrophic chondrocytes can transdifferentiate or dedifferentiate and redifferentiate into bone cells during the endochondral bone formation. Mandibular condyle in aged c-src-deficient mice has incremental line-like striations consisting of cartilaginous and non-cartilaginous layers, and the former contains intact hypertrophic chondrocytes in uneroded lacunae. The purpose of this study is to determine the phenotype changes of uneroded hypertrophic chondrocytes. Immunohistochemical and ultrastructural examinations of the pericellular matrix of hypertrophic chondrocytes in the upper, middle, and lower regions of the mandibular condyle were conducted in aged c-src-deficient mice, using several antibodies of cartilage/bone marker proteins. Co-localisation of aggrecan, type I collagen, and dentin matrix protein-1 (DMP-1) or matrix extracellular phosphoprotein (MEPE) was detected in the pericellular matrix of the middle region. Ultrastructurally, granular substances in the pericellular matrix of the middle region were the remains of upper region chondrocytes, which were mixed with thick collagen fibrils. In the lower region, the width of the pericellular matrix and the amount of collagen fibrils were increased. Versican, type I collagen, DMP-1, and MEPE were detected in the osteocyte lacunae. Additionally, DMP-1 and MEPE were detected in the pericellular matrix of uneroded hypertrophic chondrocytes located in the lower, peripheral region of the mandibular condyle in younger c-src-deficient mice, but not in the aged wild-type mice. These results indicate that long-term survived, uneroded hypertrophic chondrocytes, at least in a part, acquire osteocytic characteristics.

  16. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.

    PubMed Central

    Myers, M G; Backer, J M; Sun, X J; Shoelson, S; Hu, P; Schlessinger, J; Yoakim, M; Schaffhausen, B; White, M F

    1992-01-01

    IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains. Images PMID:1332046

  17. Molecular Insights of p47phox Phosphorylation Dynamics in the Regulation of NADPH Oxidase Activation and Superoxide Production*

    PubMed Central

    Meijles, Daniel N.; Fan, Lampson M.; Howlin, Brendan J.; Li, Jian-Mei

    2014-01-01

    Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2⨪ production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells. PMID:24970888

  18. cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase

    PubMed Central

    Rogue, Patrick J.; Humbert, Jean-Paul; Meyer, Alphonse; Freyermuth, Solange; Krady, Marie-Marthe; Malviya, Anant N.

    1998-01-01

    A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope. PMID:9689054

  19. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells

    PubMed Central

    van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G

    2013-01-01

    Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104

  20. PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia.

    PubMed

    Zhang, Meijuan; Li, Qingjie; Chen, Ling; Li, Jie; Zhang, Xin; Chen, Xiang; Zhang, Qingxiu; Shao, Yuan; Xu, Yun

    2014-08-01

    Modification of N-methyl-d-aspartate receptor (NMDAR)-mediated excitotoxicity appears to be a potential target in the treatment of ischemic stroke. Postsynaptic density protein-93 (PSD-93) specifically binds the C-terminal tails of the NMDAR, which is critical to couple NMDAR activity to specific intracellular signaling. This study is to investigate whether PSD-93 disruption displays neuroprotection in a focal ischemic stroke model of adult mice and, if it does, to explore possible mechanisms. It was found that, following middle cerebral artery occlusion (MCAO), PSD-93 knockout (KO) mice manifested significant reductions in infarcted volume, neurological deficits and number of degenerated neurons. PSD-93 deletion also reduced cultured cortical neuronal death caused by glucose and oxygen deprivation (OGD). Ischemic long term potentiation (i-LTP) could not be induced in the PSD-93 KO group and wild type (WT) groups pretreated with either AP-5 (NMDAR inhibitor) or PP2 (Src family inhibitor). PSD-93 KO decreased the phosphorylation of the NR2B at Tyr1472 and the interaction between NR2B and Fyn after MCAO. Together, our study demonstrated that PSD-93 KO confers profound neuroprotection against ischemic brain injury, which probably links to the inhibitory effect on Fyn-mediated phosphorylation of NR2B caused by PSD-93 deletion. These findings may provide a novel avenue for the treatment of ischemic stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine

    PubMed Central

    Okazaki, Taku; Maeda, Akito; Nishimura, Hiroyuki; Kurosaki, Tomohiro; Honjo, Tasuku

    2001-01-01

    PD-1 is an immunoreceptor that belongs to the immunoglobulin (Ig) superfamily and contains two tyrosine residues in the cytoplasmic region. Studies on PD-1-deficient mice have shown that PD-1 plays critical roles in establishment and/or maintenance of peripheral tolerance, but the mode of action is totally unknown. To study the molecular mechanism for negative regulation of lymphocytes through the PD-1 receptor, we generated chimeric molecules composed of the IgG Fc receptor type IIB (FcγRIIB) extracellular region and the PD-1 cytoplasmic region and expressed them in a B lymphoma cell line, IIA1.6. Coligation of the cytoplasmic region of PD-1 with the B cell receptor (BCR) in IIA1.6 transformants inhibited BCR-mediated growth retardation, Ca2+ mobilization, and tyrosine phosphorylation of effector molecules, including Igβ, Syk, phospholipase C-γ2 (PLCγ2), and ERK1/2, whereas phosphorylation of Lyn and Dok was not affected. Mutagenesis studies indicated that these inhibitory effects do not require the N-terminal tyrosine in the immunoreceptor tyrosine-based inhibitory motif-like sequence, but do require the other tyrosine residue in the C-terminal tail. This tyrosine was phosphorylated and recruited src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) on coligation of PD-1 with BCR. These results show that PD-1 can inhibit BCR signaling by recruiting SHP-2 to its phosphotyrosine and dephosphorylating key signal transducers of BCR signaling. PMID:11698646

  2. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity.

    PubMed

    Jayaraman, Dhileepkumar; Richards, Alicia L; Westphall, Michael S; Coon, Joshua J; Ané, Jean-Michel

    2017-06-01

    Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP dissociation inhibitor alpha from the GDI/CHM family of RAB GTPase effectors.

    PubMed

    Shelby, Shameka J; Feathers, Kecia L; Ganios, Anna M; Jia, Lin; Miller, Jason M; Thompson, Debra A

    2015-11-01

    Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Presence of an SH2 domain in the actin-binding protein tensin.

    PubMed

    Davis, S; Lu, M L; Lo, S H; Lin, S; Butler, J A; Druker, B J; Roberts, T M; An, Q; Chen, L B

    1991-05-03

    The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.

  5. Contribution of phospholipase C-beta3 phosphorylation to the rapid attenuation of opioid-activated phosphoinositide response.

    PubMed

    Strassheim, D; Law, P Y; Loh, H H

    1998-06-01

    Activation of the delta-opioid receptor in NG108-15 neuroblastoma X glioma hybrid cells results in a transient increase at the intracellular level of inositol-1,4,5-triphosphate [Ins(1,4,5)P3]. This time course in the transient increase in the Ins(1,4,5)P3 level is distinctly different from that observed in the homologous opioid receptor desensitization as measured by the inhibition of adenylyl cyclase activity. One probable mechanism for this rapid loss in Ins(1,4,5)P3 response is the feedback regulation of the phospholipase C activity. Regulation by protein phosphorylation was suggested by the observations that the opioid-mediated response was potentiated by calphostin C, an inhibitor of protein kinase C (PKC), and was abolished by either phorbol-12-myristate-13-acetate, a PKC activator, or calyculin A, a protein phosphatase1/2A inhibitor. The direct phosphorylation of phospholipase C was demonstrated by immunoprecipitation of PLC-beta3 from metabolically labeled NG108-15 cells challenged with the delta-selective agonist [D-Pen2, D-Pen5]enkephalin (DPDPE). A time- and DPDPE concentration-dependent and naloxone-reversible increase in the PLC-beta3 phosphorylation can be demonstrated. This PLC-beta3 phosphorylation was mainly due to PKC activation because pretreatment of NG108-15 cells with calphostin C could block the DPDPE effect. Activation of the PLC-beta3 by DPDPE was one of the prerequisites for agonist-mediated PLC-beta3 phosphorylation because the aminosteroid phospholipase C inhibitor U73122 could block the DPDPE effect. In addition to DPDPE, lysophosphatidic acid (LPA) stimulated the PLC-beta3 phosphorylation, but bradykinin did not. Furthermore, the LPA- and DPDPE-mediated PLC-beta3 phosphorylation was additive and was much less than that observed with phorbol-12-myristate-13-acetate. The effect of DPDPE was specific to PLC-beta3; the betagamma-insensitive phospholipase C-beta1 was not phosphorylated in the presence of either DPDPE or LPA. These results

  6. Src is required for migration, phagocytosis, and interferon beta production in Toll-like receptor-engaged macrophages.

    PubMed

    Maa, Ming-Chei; Leu, Tzeng-Horng

    2016-06-01

    As an evolutionarily conserved mechanism, innate immunity controls self-nonself discrimination to protect a host from invasive pathogens. Macrophages are major participants of the innate immune system. Through the activation of diverse Toll-like receptors (TLRs), macrophages are triggered to initiate a variety of functions including locomotion, phagocytosis, and secretion of cytokines that requires the participation of tyrosine kinases. Fgr, Hck, and Lyn are myeloid-specific Src family kinases. Despite their constitutively high expression in macrophages, their absence does not impair LPS responsiveness. In contrast, Src, a barely detectable tyrosine kinase in resting macrophages, becomes greatly inducible in response to TLR engagement, implicating its role in macrophage activation. Indeed, silencing Src suppresses the activated TLR-mediated migration, phagocytosis, and interferon-beta (IFN-β) secretion in macrophages. And these physiological defects can be restored by the introduction of siRNA-resistant Src. Notably, the elevated expression and activity of Src is inducible nitric oxide synthase (iNOS)-dependent. Due to (1) iNOS being a NF-κB target, which can be induced by various TLR ligands, (2) Src can mediate NF-κB activation, therefore, there ought to exist a loop of signal amplification that regulates macrophage physiology in response to the engagement of TLRs.

  7. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments

    PubMed Central

    Kensler, Robert W.; Craig, Roger; Moss, Richard L.

    2017-01-01

    Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium. PMID:28167762

  8. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments.

    PubMed

    Kensler, Robert W; Craig, Roger; Moss, Richard L

    2017-02-21

    Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β 1 -adrenergic receptors in myocardium.

  9. Effects of intravenous anesthetics on the phosphorylation of cAMP response element‑binding protein in hippocampal slices of adult mice.

    PubMed

    Gao, Haiying; Zhang, Lingyu; Chen, Zhenyi; Liu, Shuncui; Zhang, Qinghong; Zhang, Bingxi

    2018-04-27

    cAMP response‑element binding protein (CREB) functions in hippocampal synaptic plasticity and memory formation. However, it remains unknown whether intravenous anesthetics modulate CREB. The present study aimed to examine the effects of intravenous anesthetics on CREB phosphorylation in the mouse hippocampus. CREB phosphorylation was examined in hippocampal slices with and without pharmacological or intravenous anesthetics via immunoblotting. In a dose‑response experiment, the concentrations of intravenous anesthetics ranged from 10‑9 to 10‑4 mol/l for 1 h. For the time‑response experiment, these slices were incubated with 5x10‑6 mol/l of propofol for 0, 1, 2, 5, 7, 9, 12, 15, 30 and 60 min. In order to examine whether CREB phosphorylation could be recovered following washing out the propofol, the slices were incubated in plain artificial cerebrospinal fluid at different time durations following 5 min incubation with propofol. Propofol, etomidate, ketamine and midazolam inhibited CREB phosphorylation (P<0.05) in a time‑ and dose‑dependent manner. This inhibition was reversible following the removal of propofol, and was rescued by CREB phosphorylation (P<0.05). The decrease in CREB phosphorylation revealed additive effects with 100 µM of chelerythrine and 20 µM of PD‑98059, and the etomidate‑induced decrease in CREB phosphorylation was blocked by 1 mM of NMDA. However, 0.1 µM of phorbol 12‑myristate 13‑acetate, 50 µM of U 73122, 100 µM of carbachol and 10 µM of MK801 were ineffective in the anesthetic‑induced decrease in CREB phosphorylation. Intravenous anesthetics markedly decreased CREB phosphorylation in the mouse hippocampus, which was most likely via the protein kinase C and mitogen activated protein kinase pathways. This suggests that CREB represents a target for anesthetic action in the brain.

  10. Regulation of Na+-K+-2Cl− cotransport by protein phosphorylation in ferret erythrocytes

    PubMed Central

    Flatman, Peter W; Creanor, James

    1999-01-01

    Na+-K+-2Cl− cotransport in ferret erythrocytes was measured as the bumetanide-sensitive uptake of 86Rb. The resting cotransport rate was high but could be increased threefold by treating erythrocytes with calyculin A, a potent inhibitor of serine/threonine phosphatases. Twenty nanomolar was sufficient to maximally and rapidly (within 4 min) stimulate transport. The effects of several kinase inhibitors were tested. High concentrations of K-252a, K-252b, calphostin C and hypericin caused less than 20 % inhibition. Staurosporine (IC50, 0.06 μm) and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; IC50, 2.5 μm) were more potent but still only partially (40–50 %) inhibited transport, an effect mimicked by reducing ionized intracellular Mg2+ concentration to submicromolar levels. Genistein may inhibit all transport at a sufficiently high dose (IC50, 0.36 mM) perhaps by directly inhibiting the transporter. Staurosporine, PP1 and the removal of Mg2+ all prevented subsequent stimulation by calyculin A, and all inhibited calyculin-stimulated transport by 20–30 %. The effects of staurosporine, PP1 and Mg2+ removal were not additive. The phosphatase that dephosphorylates the cotransporter is probably Mg2+ (or possibly Ca2+ or Mn2+) sensitive and not the target for calyculin A. The data suggest that this phosphatase is inhibited by phosphorylation, and that it is the regulation of this process which is affected by calyculin A and the kinase inhibitors tested here. Phosphorylation of the phosphatase is probably regulated by members of the Src family of tyrosine kinases. PMID:10358111

  11. PTP1B Regulates Cortactin Tyrosine Phosphorylation by Targeting Tyr446*S⃞

    PubMed Central

    Stuible, Matthew; Dubé, Nadia; Tremblay, Michel L.

    2008-01-01

    The emergence of protein-tyrosine phosphatase 1B (PTP1B) as a potential drug target for treatment of diabetes, obesity, and cancer underlies the importance of understanding its full range of cellular functions. Here, we have identified cortactin, a central regulator of actin cytoskeletal dynamics, as a substrate of PTP1B. A trapping mutant of PTP1B binds cortactin at the phosphorylation site Tyr446, the regulation and function of which have not previously been characterized. We show that phosphorylation of cortactin Tyr446 is induced by hyperosmolarity and potentiates apoptotic signaling during prolonged hyperosmotic stress. This study advances the importance of Tyr446 in the regulation of cortactin and provides a potential mechanism to explain the effects of PTP1B on processes including cell adhesion, migration, and tumorigenesis. PMID:18387954

  12. SHP-2 inhibits tyrosine phosphorylation of Cas-L and regulates cell migration.

    PubMed

    Yo, Koji; Iwata, Satoshi; Hashizume, Yutaka; Kondo, Shunsuke; Nomura, Sayaka; Hosono, Osamu; Kawasaki, Hiroshi; Tanaka, Hirotoshi; Dang, Nam H; Morimoto, Chikao

    2009-04-24

    The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.

  13. 78 FR 51207 - Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA-KOVA-DTS-13608; PPAKAKROR4; PPMPRLE1Y.LS0000] Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC; Meetings AGENCY: National Park Service, Interior. ACTION: Meeting notice. SUMMARY: As...

  14. Protein Kinase C-dependent Phosphorylation of Transient Receptor Potential Canonical 6 (TRPC6) on Serine 448 Causes Channel Inhibition*

    PubMed Central

    Bousquet, Simon M.; Monet, Michaël; Boulay, Guylain

    2010-01-01

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca2+ entry following the stimulation of a Gq-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca2+ entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6S768A (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser448, in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba2+ and Ca2+ entry experiments revealed that GF1 did not potentiate TRPC6S448A activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6S448A. Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca2+ entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca2+ entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser448. PMID:20961851

  15. Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition.

    PubMed

    Bousquet, Simon M; Monet, Michaël; Boulay, Guylain

    2010-12-24

    TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry following the stimulation of a G(q)-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca(2+) entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6(S768A) (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser(448), in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba(2+) and Ca(2+) entry experiments revealed that GF1 did not potentiate TRPC6(S448A) activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6(S448A). Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca(2+) entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca(2+) entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser(448).

  16. Synaptic Targeting and Function of SAPAPs Mediated by Phosphorylation-Dependent Binding to PSD-95 MAGUKs.

    PubMed

    Zhu, Jinwei; Zhou, Qingqing; Shang, Yuan; Li, Hao; Peng, Mengjuan; Ke, Xiao; Weng, Zhuangfeng; Zhang, Rongguang; Huang, Xuhui; Li, Shawn S C; Feng, Guoping; Lu, Youming; Zhang, Mingjie

    2017-12-26

    The PSD-95/SAPAP/Shank complex functions as the major scaffold in orchestrating the formation and plasticity of the post-synaptic densities (PSDs). We previously demonstrated that the exquisitely specific SAPAP/Shank interaction is critical for Shank synaptic targeting and Shank-mediated synaptogenesis. Here, we show that the PSD-95/SAPAP interaction, SAPAP synaptic targeting, and SAPAP-mediated synaptogenesis require phosphorylation of the N-terminal repeat sequences of SAPAPs. The atomic structure of the PSD-95 guanylate kinase (GK) in complex with a phosphor-SAPAP repeat peptide, together with biochemical studies, reveals the molecular mechanism underlying the phosphorylation-dependent PSD-95/SAPAP interaction, and it also provides an explanation of a PSD-95 mutation found in patients with intellectual disabilities. Guided by the structural data, we developed potent non-phosphorylated GK inhibitory peptides capable of blocking the PSD-95/SAPAP interaction and interfering with PSD-95/SAPAP-mediated synaptic maturation and strength. These peptides are genetically encodable for investigating the functions of the PSD-95/SAPAP interaction in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Integrin activation and focal complex formation in cardiac hypertrophy.

    PubMed

    Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D

    2000-11-10

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  18. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  19. Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury.

    PubMed

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R; Salant, David J; Garg, Puneet

    2016-02-15

    In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury

    PubMed Central

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R.; Salant, David J.

    2015-01-01

    In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury. PMID:26644409

  1. Simultaneous Binding of Two Peptidyl Ligands by a Src Homology 2 Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Zhang, Jinjin; Yuan, Chunhua

    Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing phosphotyrosine (pY)-containing sequences of target proteins. In all of the SH2 domain-pY peptide interactions described to date, the SH2 domain binds to a single pY peptide. Here, determination of the cocrystal structure of the N-terminal SH2 domain of phosphatase SHP-2 bound to a class IV peptide (VIpYFVP) revealed a noncanonical 1:2 (protein-peptide) complex. The first peptide binds in a canonical manner with its pY side chain inserted in the usual binding pocket, while the second pairs up with the first to form two antiparallel {beta}-strands that extend the central {beta}-sheetmore » of the SH2 domain. This unprecedented binding mode was confirmed in the solution phase by NMR experiments and shown to be adopted by pY peptides derived from cellular proteins. Site-directed mutagenesis and surface plasmon resonance studies revealed that the binding of the first peptide is pY-dependent, but phosphorylation is not required for the second peptide. Our findings suggest a potential new function for the SH2 domain as a molecular clamp to promote dimerization of signaling proteins.« less

  2. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    PubMed

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover

    PubMed Central

    Swaney, Danielle L; Rodríguez-Mias, Ricard A; Villén, Judit

    2015-01-01

    Ubiquitylation is an essential post-translational modification that regulates numerous cellular processes, most notably protein degradation. Ubiquitin can itself be phosphorylated at nearly every serine, threonine, and tyrosine residue. However, the effect of this modification on ubiquitin function is largely unknown. Here, we characterized the effects of phosphorylation of yeast ubiquitin at serine 65 in vivo and in vitro. We find this post-translational modification to be regulated under oxidative stress, occurring concomitantly with the restructuring of the ubiquitin landscape into a highly polymeric state. Phosphomimetic mutation of S65 recapitulates the oxidative stress phenotype, causing a dramatic accumulation of ubiquitylated proteins and a proteome-wide reduction of protein turnover rates. Importantly, this mutation impacts ubiquitin chain disassembly, chain linkage distribution, ubiquitin interactions, and substrate targeting. These results demonstrate that phosphorylation is an additional mode of ubiquitin regulation with broad implications in cellular physiology. PMID:26142280

  4. PD Trafficking of Potato Leaf Roll Virus Movement Protein in Arabidopsis Depends on Site-specific Protein Phosphorylation

    PubMed Central

    Sonnewald, Uwe

    2011-01-01

    Many plant viruses encode for specialized movement proteins (MP) to facilitate passage of viral material to and through plasmodesmata (PD). To analyze intracellular trafficking of potato leaf roll virus (PLRV) movement protein (MP17) we performed GFP fusion experiments with distinct deletion variants of MP17. These studies revealed that the C-terminus of MP17 is essential but not sufficient for PD targeting. Interestingly, fusion of GFP to three C-terminal MP17 deletion variants resulted in the accumulation of GFP in chloroplasts. This indicates that MP17 harbors hidden plastid targeting sequences. Previous studies showed that posttranslational protein phosphorylation influences PD targeting of MP and virus spread. Analysis of MP17-derived phospho-peptides by mass spectrometry revealed four phosphorylated serine residues (S71, S79, S137, and S140). Site-directed mutagenesis of S71/S79 and S137/S140 showed that the C-terminal serine residues S137/S140 are dispensable for PD targeting. However, exchange of S71/S79 to A71/A79 abolished PD targeting of the mutated MP17 protein. To mimic phosphorylation of S71/S79 both amino acids were substituted by aspartic acid. The resulting D71/D79 variant of MP17 was efficiently targeted to PD. Further deletion analysis showed that PD targeting of MP17 is dependent on the C-terminus, phosphorylation of S71 and/or S79 and a N-terminal domain. PMID:22645527

  5. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC-dependence in intrahepatic cholangiocarcinoma

    PubMed Central

    Saha, Supriya K.; Gordan, John D.; Kleinstiver, Benjamin P.; Vu, Phuong; Najem, Mortada S.; Yeo, Jia-Chi; Shi, Lei; Kato, Yasutaka; Levin, Rebecca S.; Webber, James T.; Damon, Leah J.; Egan, Regina K.; Greninger, Patricia; McDermott, Ultan; Garnett, Mathew J.; Jenkins, Roger L.; Rieger-Christ, Kimberly M.; Sullivan, Travis B.; Hezel, Aram F.; Liss, Andrew S.; Mizukami, Yusuke; Goyal, Lipika; Ferrone, Cristina R.; Zhu, Andrew X.; Joung, J. Keith; Shokat, Kevan M.; Benes, Cyril H.; Bardeesy, Nabeel

    2017-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive liver bile duct malignancy exhibiting frequent isocitrate dehydrogenase (IDH1/IDH2) mutations. Through a high-throughput drug screen of a large panel of cancer cell lines including 17 biliary tract cancers, we found that IDH mutant (IDHm) ICC cells demonstrate a striking response to the multi-kinase inhibitor dasatinib, with the highest sensitivity among 682 solid tumor cell lines. Using unbiased proteomics to capture the activated kinome and CRISPR/Cas9-based genome editing to introduce dasatinib-resistant ‘gatekeeper’ mutant kinases, we identified SRC as a critical dasatinib target in IDHm ICC. Importantly, dasatinib-treated IDHm xenografts exhibited pronounced apoptosis and tumor regression. Our results show that IDHm ICC cells have a unique dependency on SRC and suggest that dasatinib may have therapeutic benefit against IDHm ICC. Moreover, these proteomic and genome-editing strategies provide a systematic and broadly applicable approach to define targets of kinase inhibitors underlying drug responsiveness. PMID:27231123

  6. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells.

    PubMed

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr(174), Tyr(183) and Tyr(446) in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr(183) and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr(174), Tyr(183) and Tyr(426) of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr(426) is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr(426) was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr(426) following BCR stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.

    PubMed

    Huang, Kai; Chen, Jun; Yang, Mo-Song; Tang, Yu-Jun; Pan, Feng

    2017-01-01

    Chondrosarcomas are malignant cartilage-forming tumors from low-grade to high-grade aggressive tumors characterized by metastasis. Cisplatin is an effective DNA-damaging anti-tumor agent for the treatment against a wide variety of solid tumors. However, chondrosarcomas are notorious for their resistance to conventional chemo- and radio- therapies. In this study, we report miR-23b acts as a tumor suppressor in chondrosarcoma. The expressions of miR-23b are down-regulated in chondrosarcoma patient samples and cell lines compared with adjacent normal tissues and human primary chondrocytes. In addition, overexpression of miR-23b suppresses chondrosarcoma cell proliferation. By comparison of the cisplatin resistant chondrosarcoma cells and parental cells, we observed miR-23b was significantly down regulated in cisplatin resistant cells. Moreover, we demonstrate here Src kinase is a direct target of miR-23b in chondrosarcoma cells. Overexpression of miR-23b suppresses Src-Akt pathway, leading to the sensitization of cisplatin resistant chondrosarcoma cells to cisplatin. This chemo-sensitivity effect by the miR-23b-mediated inhibition of Src-Akt pathway is verified with the restoration of Src kinase in miR-23b-overespressing chondrosarcoma cells, resulting in the acquirement of resistance to cisplatin. In summary, our study reveals a novel role of miR-23b in cisplatin resistance in chondrosarcoma and will contribute to the development of the microRNA-targeted anti-cancer therapeutics.

  8. Identification of a phorbol ester-repressible v-src-inducible gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, D.L.; Levy, D.B.; Yannoni, Y.

    1989-02-01

    Chicken embryo fibroblasts (CEF) infected with a temperature-sensitive Rous sarcoma virus (RSV) mutant, tsNY72-4, express a set of pp60{sup v-src}-induced RNAs soon after shift to the permissive temperature. By subtractive and differential screening, the authors have cloned 12 of these sequences, 2 of which were c-fos and krox-24. Serum induced all the v-src-inducible genes tested, suggesting that these genes serve roles in normal cell division and are not specific to transformation per se. Significantly, however, v-src produced prolonged, and in some cases kinetically complex, patterns of induction compared to serum. For most of the clones, phorbol 12-tetradecanoate 13-acetate (TPA) inducedmore » mRNAs with kinetics similar to that of serum. However, one clone (CEF-4) was expressed in a biphasic manner. Another (CEF-10) was repressed by TPA at 1 hr, after which this mRNA was permanently induced. The pattern of repression-induction of CEF-10 mRNA is the inverse of protein kinase C (PKC) activity in the cell, suggesting that PKC actively represses this gene. In vivo expression of CEF-10 mRNA is restricted predominantly to the lung. A full-length CEF-10 cDNA encodes a 41-kDa protein that has an amino-terminal signal peptide for secretion, contains a markedly high number of cysteine residues, and shows no sequence similarity to known proteins.« less

  9. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases.

    PubMed

    Battistone, M A; Da Ros, V G; Salicioni, A M; Navarrete, F A; Krapf, D; Visconti, P E; Cuasnicú, P S

    2013-09-01

    In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr phosphorylation. In view of these observations and with the aim of getting a better understanding of the signaling pathways involved in human sperm capacitation, in the present work we investigated the involvement of both the cAMP/PKA and SFK/phosphatase pathways in relation to the capacitation state of the cells. For this purpose, different signaling events and sperm functional parameters were analyzed as a function of capacitation time. Results revealed a very early bicarbonate-dependent activation of PKA indicated by the rapid (1 min) increase in both phospho-PKA substrates and cAMP levels (P < 0.05). However, a complete pattern of Tyr phosphorylation was detected only after 6-h incubation at which time sperm exhibited the ability to undergo the acrosome reaction (AR) and to penetrate zona-free hamster oocytes. Sperm capacitated in the presence of the SFK inhibitor SKI606 showed a decrease in both PKA substrate and Tyr phosphorylation levels, which was overcome by exposure of sperm to the Ser/Thr phosphatase inhibitor okadaic acid (OA). However, OA was unable to induce phosphorylation when sperm were incubated under PKA-inhibitory conditions (i.e. in the absence of bicarbonate or in the presence of PKA inhibitor). Moreover, the increase in PKA activity by exposure to a cAMP analog and a phosphodiesterase inhibitor did not overcome the inhibition produced by SKI606. Whereas the presence of SKI606 during capacitation produced a negative effect (P < 0.05) on sperm motility, progesterone-induced AR and fertilizing ability, none of these inhibitions were observed when sperm

  10. Brk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithelial-to-mesenchymal transition

    PubMed Central

    Ai, Midan; Liang, Ke; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2013-01-01

    Breast tumor kinase (Brk)/protein tyrosine kinase-6 (PTK-6) is a nonreceptor PTK commonly expressed at high levels in breast cancer. Brk interacts closely with members of the human epidermal growth factor receptor (HER) family in breast cancer but the functional role of this interaction remains to be determined. Here, we provide novel mechanistic insights into the role of Brk in regulating cell survival and epithelial-to-mesenchymal transition (EMT) in the context of HER2-positive breast cancer cells. Overexpression of HER2 in MCF7 breast cancer cells (MCF7HER2) led to a higher level of Brk protein and concomitantly reduced Src Y416-phosphorylation, and the cells became mesenchymal in morphology. An in vivo selection of MCF7HER2 cells in nude mice resulted in a subline, termed EMT1, that exhibited not only mesenchymal morphology but also enhanced migration potential. Compared with MCF7HER2 cells, EMT1 cells maintained a similar level of HER2 protein but had much higher level of activated HER2, and the increase in Brk protein and the decrease in Src Y416-phosphorylation were less in EMT1 cells. EMT1 cells exhibited increased sensitivity to both pharmacological inhibition of HER2 and knockdown of Brk than did MCF7HER2 cells. Knockdown of Brk induced apoptosis and partially reversed the EMT phenotype in EMT1 cells. Overexpression of a constitutively active STAT3, a known substrate of Brk, overcame Brk knockdown-induced effects in EMT1 cells. Together, our findings support a new paradigm wherein Brk plays both a complementary and a counterbalancing role in cooperating with HER2 and Src to regulate breast cancer cell survival and EMT. PMID:23291984

  11. Phosphorylation of rat liver heterogeneous nuclear ribonucleoproteins A2 and C can be modulated by calmodulin.

    PubMed Central

    Bosser, R; Faura, M; Serratosa, J; Renau-Piqueras, J; Pruschy, M; Bachs, O

    1995-01-01

    It was previously reported that the phosphorylation of three proteins of 36, 40 to 42, and 50 kDa by casein kinase 2 is inhibited by calmodulin in nuclear extracts from rat liver cells (R. Bosser, R. Aligué, D. Guerini, N. Agell, E. Carafoli, and O. Bachs, J. Biol. Chem. 268:15477-15483, 1993). By immunoblotting, peptide mapping, and endogenous phosphorylation experiments, the 36- and 40- to 42-kDa proteins have been identified as the A2 and C proteins, respectively, of the heterogeneous nuclear ribonucleoprotein particles. To better understand the mechanism by which calmodulin inhibits the phosphorylation of these proteins, they were purified by using single-stranded DNA chromatography, and the effect of calmodulin on their phosphorylation by casein kinase 2 was analyzed. Results revealed that whereas calmodulin inhibited the phosphorylation of purified A2 and C proteins in a Ca(2+)-dependent manner, it did not affect the casein kinase 2 phosphorylation of a different protein substrate, i.e., beta-casein. These results indicate that the effect of calmodulin was not on casein kinase 2 activity but on specific protein substrates. The finding that the A2 and C proteins can bind to a calmodulin-Sepharose column in a Ca(2+)-dependent manner suggests that this association could prevent the phosphorylation of the proteins by casein kinase 2. Immunoelectron microscopy studies have revealed that such interactions could also occur in vivo, since calmodulin and A2 and C proteins colocalize on the ribonucleoprotein particles in rat liver cell nuclei. PMID:7823935

  12. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  13. Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer.

    PubMed

    Bauman, Julie E; Duvvuri, Umamaheswar; Gooding, William E; Rath, Tanya J; Gross, Neil D; Song, John; Jimeno, Antonio; Yarbrough, Wendell G; Johnson, Faye M; Wang, Lin; Chiosea, Simion; Sen, Malabika; Kass, Jason; Johnson, Jonas T; Ferris, Robert L; Kim, Seungwon; Hirsch, Fred R; Ellison, Kimberly; Flaherty, John T; Mills, Gordon B; Grandis, Jennifer R

    2017-03-23

    BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II-IVa HNSCC were randomized to 7-21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms ( P = 0.0014); however, no effect was seen with dasatinib alone ( P = 0.24). High baseline pMAPK expression was associated with response to erlotinib ( P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib ( P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma.

  14. Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer

    PubMed Central

    Bauman, Julie E.; Duvvuri, Umamaheswar; Gooding, William E.; Rath, Tanya J.; Gross, Neil D.; Song, John; Jimeno, Antonio; Yarbrough, Wendell G.; Johnson, Faye M.; Wang, Lin; Chiosea, Simion; Sen, Malabika; Kass, Jason; Johnson, Jonas T.; Ferris, Robert L.; Kim, Seungwon; Hirsch, Fred R.; Ellison, Kimberly; Flaherty, John T.; Mills, Gordon B.

    2017-01-01

    BACKGROUND. EGFR and Src family kinases are upregulated in head and neck squamous cell carcinoma (HNSCC). EGFR interacts with Src to activate STAT3 signaling, and dual EGFR-Src targeting is synergistic in HNSCC preclinical models. pSrc overexpression predicted resistance to the EGFR inhibitor, erlotinib, in a prior window trial. We conducted a 4-arm window trial to identify biomarkers associated with response to EGFR and/or Src inhibition. METHODS. Patients with operable stage II–IVa HNSCC were randomized to 7–21 days of neoadjuvant erlotinib, the Src inhibitor dasatinib, the combination of both, or placebo. Paired tumor specimens were collected before and after treatment. Pharmacodynamic expression of EGFR and Src pathway components was evaluated by IHC of tissue microarrays and reverse-phase protein array of tissue lysates. Candidate biomarkers were assessed for correlation with change in tumor size. RESULTS. From April 2009 to December 2012, 58 patients were randomized and 55 were treated. There was a significant decrease in tumor size in both erlotinib arms (P = 0.0014); however, no effect was seen with dasatinib alone (P = 0.24). High baseline pMAPK expression was associated with response to erlotinib (P = 0.03). High baseline pSTAT3 was associated with resistance to dasatinib (P = 0.099). CONCLUSIONS. Brief exposure to erlotinib significantly decreased tumor size in operable HNSCC, with no additive effect from dasatinib. Baseline pMAPK expression warrants further study as a response biomarker for anti-EGFR therapy. Basal expression of pSTAT3 may be independent of Src, explain therapeutic resistance, and preclude development of dasatinib in biomarker-unselected cohorts. TRIAL REGISTRATION. NCT00779389. FUNDING. National Cancer Institute, American Cancer Society, Pennsylvania Department of Health, V Foundation for Cancer Research, Bristol-Myers Squibb, and Astellas Pharma. PMID:28352657

  15. Krüppel-like factor 17 inhibits urokinase plasminogen activator gene expression to suppress cell invasion through the Src/p38/MAPK signaling pathway in human lung adenocarcinoma

    PubMed Central

    Huang, Shuai; Li, Jiong; Liu, Xiao-Yan; Pan, Xing-Fei; Wang, Qin-Qin; Chen, Li; Lin, Ming-Juan; Huang, Zhi-Hong; Ma, Hong-Ming; Wu, Yi; Liu, Sheng-Ming; Zhou, Yan-Bin

    2017-01-01

    Krüppel-like factor 17 (KLF17) has been reported to be involved in invasion and metastasis suppression in lung cancer, but the molecular mechanisms underlying the anti-invasion and anti-metastasis roles of KLF17 in lung cancer are not fully illustrated. Here, we showed that KLF17 inhibited the invasion of A549 and H322 cells; the anti-invasion effect of KLF17 was associated with the suppression of urokinase plasminogen activator (uPA/PLAU) expression. KLF17 can bind with the promoter of uPA and inhibit its expression. Enforced expression of uPA abrogated the anti-invasion effect of KLF17 in A549 and H322 cells. In addition, immunohistochemistry staining showed that the protein expression of KLF17 was negatively correlated with that of uPA in archived samples from patients with lymph node metastasis of lung adenocarcinoma (rho = −0.62, P = 0.01). The mutually exclusive expression of KLF17 with uPA could predict lymph node metastasis for lung adenocarcinoma (AUC = 0.758, P = 0.005). Enforced expression of KLF17 inhibited the expression of phosphorylated Src and phosphorylated p38/MAPK in A549 and H322 cells. The invasiveness of the cells were suppressed by treating with sb203580 (p38/MAPK inhibitor) or HY-13805 (PP2, Src inhibitor). furthermore, p38/MAPK inhibition could block the KLF17-induced reduction of p-p38/MAPK and uPA, and Src inhibition enhanced the KLF17-induced suppression of p-Src and uPA in A549 and H322 cells. In conclusion, our study indicated that KLF17 suppressed the uPA-mediated invasion of lung adenocarcinoma. The Src and p38/MAPK signaling pathways were suggested as mediators of KLF17-induced uPA inhibition, thus providing evidence that KLF17 might be a potential anti-invasion candidate for lung adenocarcinoma. PMID:28454121

  16. 76 FR 1458 - Public Meeting for the National Park Service Alaska Region's Subsistence Resource Commission (SRC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Plan Update. c. Subsistence Uses of Horns, Antlers, Bones and Plants EA Update. 13. New Business. 14... guarantee that we will be able to do so. Wrangell-St. Elias National Park SRC Meeting Date and Location: The... if all business is completed. For Further Information on the Gates of the Arctic National Park SRC...

  17. Phosphorylation of the Activation Loop Tyrosine 823 in c-Kit Is Crucial for Cell Survival and Proliferation*

    PubMed Central

    Agarwal, Shruti; Kazi, Julhash U.; Rönnstrand, Lars

    2013-01-01

    The receptor tyrosine kinase c-Kit, also known as the stem cell factor receptor, plays a key role in several developmental processes. Activating mutations in c-Kit lead to alteration of these cellular processes and have been implicated in many human cancers such as gastrointestinal stromal tumors, acute myeloid leukemia, testicular seminomas and mastocytosis. Regulation of the catalytic activity of several kinases is known to be governed by phosphorylation of tyrosine residues in the activation loop of the kinase domain. However, in the case of c-Kit phosphorylation of Tyr-823 has been demonstrated to be a late event that is not required for kinase activation. However, because phosphorylation of Tyr-823 is a ligand-activated event, we sought to investigate the functional consequences of Tyr-823 phosphorylation. By using a tyrosine-to-phenylalanine mutant of tyrosine 823, we investigated the impact of Tyr-823 on c-Kit signaling. We demonstrate here that Tyr-823 is crucial for cell survival and proliferation and that mutation of Tyr-823 to phenylalanine leads to decreased sustained phosphorylation and ubiquitination of c-Kit as compared with the wild-type receptor. Furthermore, the mutated receptor was, upon ligand-stimulation, quickly internalized and degraded. Phosphorylation of the E3 ubiquitin ligase Cbl was transient, followed by a substantial reduction in phosphorylation of downstream signaling molecules such as Akt, Erk, p38, Shc, and Gab2. Thus, we propose that activation loop tyrosine 823 is crucial for activation of both the MAPK and PI3K pathways and that its disruption leads to a destabilization of the c-Kit receptor and decreased survival of cells. PMID:23803604

  18. Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice

    PubMed Central

    Nagata, Naoto; Matsuo, Kosuke; Bettaieb, Ahmed; Bakke, Jesse; Matsuo, Izumi; Graham, James; Xi, Yannan; Liu, Siming; Tomilov, Alexey; Tomilova, Natalia; Gray, Susan; Jung, Dae Young; Ramsey, Jon J.; Kim, Jason K.; Cortopassi, Gino; Havel, Peter J.

    2012-01-01

    The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding. PMID:22619361

  19. PKCδ activated by c-MET enhances infiltration of human glioblastoma cells through NOTCH2 signaling

    PubMed Central

    Kang, Seok-Gu; Kim, Rae-Kwon; Cui, Yan-Hong; Lee, Hae-June; Kim, Min-Jung; Lee, Jae-Seong; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae

    2016-01-01

    Poor prognosis of glioblastoma (GBM) is attributable to the propensity of tumor cells to infiltrate into the brain parenchyma. Protein kinase C (PKC) isozymes are highly expressed or aberrantly activated in GBM. However, how this signaling node translates to GBM cell invasiveness remains unknown. Here, we report that among PKC isoforms, PKCδ is strongly associated with infiltration of GBM cells. Notably, PKCδ enhanced Tyr418 phosphorylation of the non-receptor tyrosine kinase SRC, which in turn activated STAT3 and subsequent NOTCH2 signaling, ultimately leading to GBM cell invasiveness. Furthermore, we showed that PKCδ was aberrantly activated in GBM cells by c-MET, a receptor tyrosine kinase hyperactivated in GBM. In agreement, inhibition either component in the c-MET/PKCδ/SRC/STAT3 signaling axis effectively blocked the NOTCH2 signaling and invasiveness of GBM cells. Taken together, our findings shed a light on the signaling mechanisms behind the constitutive activation of PKCδ signaling in GBM. PMID:26700818

  20. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    PubMed Central

    Ear, Thornin; Tatsiy, Olga; Allard, Frédérick L.

    2017-01-01

    Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs), as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1) involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention. PMID:28512645

  1. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    PubMed

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the

  2. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma.

    PubMed

    Wang, Jingyuan; Liu, Zhentao; Wang, Ziqi; Wang, Shubin; Chen, Zuhua; Li, Zhongwu; Zhang, Mengqi; Zou, Jianling; Dong, Bin; Gao, Jing; Shen, Lin

    2018-04-10

    c-Myc amplification-induced cell cycle dysregulation is a common cause for esophageal squamous cell carcinoma (ESCC), but no approved targeted drug is available so far. The bromodomain inhibitor JQ1, which targets c-Myc, exerts anti-tumor activity in multiple cancers. However, the role of JQ1 in ESCC remains unknown. In this study, we reported that JQ1 had potent anti-proliferative effects on ESCC cells in both time- and dose-dependent manners by inducing cell cycle arrest at G1 phase, cell apoptosis, and the mesenchymal-epithelial transition. Follow-up studies revealed that both c-Myc/cyclin/Rb and PI3K/AKT signaling pathways were inactivated by JQ1, as indicated by the downregulation of c-Myc, cyclin A/E, and phosphorylated Rb, AKT and S6. Tumor suppression induced by JQ1 in c-Myc amplified or highly expressed xenografts was higher than that in xenografts with low expression, suggesting its potential role in prediction. In conclusion, targeting c-Myc by JQ1 could cause significant tumor suppression in ESCC both in vitro and in vivo. Also, c-Myc amplification or high expression might serve as a potential biomarker and provide a promising therapeutic option for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. PKCalpha regulates phosphorylation and enzymatic activity of cPLA2 in vitro and in activated human monocytes.

    PubMed

    Li, Qing; Subbulakshmi, Venkita; Oldfield, Claudine M; Aamir, Rozina; Weyman, Crystal M; Wolfman, Alan; Cathcart, Martha K

    2007-02-01

    Phospholipases A(2) (PLA(2)) are potent regulators of the inflammatory response. We have observed that Group IV cPLA(2) activity is required for the production of superoxide anion (O(2)(-)) in human monocytes [Li Q., Cathcart M.K. J. Biol. Chem. 272 (4) (1997) 2404-2411.]. We have previously identified PKCalpha as a kinase pathway required for monocyte O(2)(-) production [Li Q., Cathcart M.K. J. Biol. Chem. 269 (26) (1994) 17508-17515.]. We therefore investigated the potential interaction between PKCalpha and cPLA(2) by evaluating the requirement for specific PKC isoenzymes in the process of activating cPLA(2) enzymatic activity and protein phosphorylation upon monocyte activation. We first showed that general PKC inhibitors and antisense oligodeoxyribonucleotides (ODN) to the cPKC group of PKC enzymes inhibited cPLA(2) activity. To distinguish between PKCalpha and PKCbeta isoenzymes in regulating cPLA(2) protein phosphorylation and enzymatic activity, we employed our previously characterized PKCalpha or PKCbeta isoenzyme-specific antisense ODN [Li Q., Subbulakshmi V., Fields A.P., Murray, N.R., Cathcart M.K., J. Biol. Chem. 274 (6) (1999) 3764-3771]. Suppression of PKCalpha expression, but not PKCbeta expression, inhibited cPLA(2) protein phosphorylation and enzymatic activity. Additional studies ruled out a contribution by Erk1/2 to cPLA(2) phosphorylation and activation. We also found that cPLA(2) co-immunoprecipitated with PKCalpha and vice versa. In vitro studies demonstrated that PKCalpha could directly phosphorylate cPLA(2).and enhance enzymatic activity. Finally, we showed that addition of arachidonic acid restored the production of O(2)(-) in monocytes defective in either PKCalpha or cPLA(2) expression. Taken together, our data suggest that PKCalpha, but not PKCbeta, is the predominant cPKC isoenzyme required for cPLA(2) protein phosphorylation and maximal induction of cPLA(2) enzymatic activity upon activation of human monocytes. Our data also support the

  4. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney

    PubMed Central

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A.; Moraes, Carlos T.; Sanderson, Thomas H.; Stemmler, Timothy L.; Grossman, Lawrence I.; Kagan, Valerian E.; Brunzelle, Joseph S.; Salomon, Arthur R.; Edwards, Brian F. P.; Hüttemann, Maik

    2017-01-01

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis. PMID:27758862

  5. Prostaglandin F(2alpha) stimulates tyrosine phosphorylation of phospholipase C-gamma1.

    PubMed

    Husain, Shahid; Jafri, Farahdiba

    2002-10-11

    In this study, we investigated the ability of prostaglandin F(2alpha) (PGF(2alpha)) to induce tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) in cat iris sphincter smooth muscle (CISM) cells. PGF(2alpha)(1 microM) stimulated PLC-gamma1 tyrosine phosphorylation in a time- and dose-dependent manner with a maximum increase of 3-fold at 0.5min. The protein tyrosine kinase inhibitors, genistein, and tyrphostin A-25, blocked the stimulatory effects of PGF(2alpha), suggesting involvement of protein tyrosine kinase activity in the physiological actions of the PGF(2alpha). Furthermore, PGF(2alpha)-induced p42/p44 MAP kinase activation was also completely blocked by protein tyrosine kinase inhibitors. In summary, these findings show that PGF(2alpha) stimulates tyrosine phosphorylation of PLC-gamma1 in CISM cells and indicate that PGF(2alpha)-stimulated tyrosine phosphorylation is responsible for an early signal transduction event.

  6. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

    PubMed

    Wu, Jian; Cai, Guangqin; Tu, Jiangying; Li, Lixia; Liu, Sheng; Luo, Xinping; Zhou, Lipeng; Fan, Chuchuan; Zhou, Yongming

    2013-01-01

    Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus), is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL) for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR) at the mature plant stage and three QTLs for leaf resistance (LR) at the seedling stage in multiple environments were mapped on nine linkage groups (LGs) of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54-15.86% and 29.01%-32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790) was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.

  7. Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle

    PubMed Central

    Fernández-Mariño, Ana Isabel; Cidad, Pilar; Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Oliván-Viguera, Aida; Köhler, Ralf; López-López, José R.; Pérez-García, María Teresa; Valverde, Miguel Ángel; Guinovart, Joan J.; Fernández-Fernández, José M.

    2015-01-01

    Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle. PMID:25659150

  8. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not preventmore » Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.« less

  9. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression.

    PubMed

    Chen, Yun-Ju; Wang, Ying-Nai; Chang, Wen-Chang

    2007-09-14

    We previously reported that the epidermal growth factor (EGF) regulates the gene expression of keratin 16 by activating the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling which in turn enhances the recruitment of p300 to the keratin 16 promoter. The recruited p300 functionally cooperates with Sp1 and c-Jun to regulate the gene expression of keratin 16. This study investigated in detail the molecular events incurred upon p300 whereby EGF caused an enhanced interaction between p300 and Sp1. EGF apparently induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. The six potential ERK2 phosphorylation sites, including three threonine and three serine residues as revealed by sequential analysis, were first identified in vitro. Confirmation of these six sites in vivo indicated that these three serine residues (Ser-2279, Ser-2315, and Ser-2366) on the C terminus of p300 were the major signaling targets of EGF. Furthermore, the C-terminal serine phosphorylation of p300 stimulated its histone acetyltransferase activity and enhanced its interaction with Sp1. These serine phosphorylation sites on p300 controlled the p300 recruitment to the keratin 16 promoter. When all three serine residues on p300 were replaced by alanine, EGF could no longer induce the gene expression of keratin 16. Taken together, these results strongly suggested that the ERK2-mediated C-terminal serine phosphorylation of p300 was a key event in the regulation of EGF-induced keratin 16 expression. These results also constituted the first report identifying the unique p300 phosphorylation sites induced by ERK2 in vivo.

  10. The Fanconi Anemia C Protein Binds to and Regulates Stathmin-1 Phosphorylation

    PubMed Central

    Magron, Audrey; Elowe, Sabine; Carreau, Madeleine

    2015-01-01

    The Fanconi anemia (FA) proteins are involved in a signaling network that assures the safeguard of chromosomes. To understand the function of FA proteins in cellular division events, we investigated the interaction between Stathmin-1 (STMN1) and the FA group C (FANCC) protein. STMN1 is a ubiquitous cytosolic protein that regulates microtubule dynamics. STMN1 activities are regulated through phosphorylation-dephosphorylation mechanisms that control assembly of the mitotic spindle, and dysregulation of STMN1 phosphorylation is associated with mitotic aberrancies leading to chromosome instability and cancer progression. Using different biochemical approaches, we showed that FANCC interacts and co-localizes with STMN1 at centrosomes during mitosis. We also showed that FANCC is required for STMN1 phosphorylation, as mutations in FANCC reduced serine 16- and 38-phosphorylated forms of STMN1. Phosphorylation of STMN1 at serine 16 is likely an event dependent on a functional FA pathway, as it is reduced in FANCA- and FANCD2-mutant cells. Furthermore, FA-mutant cells exhibited mitotic spindle anomalies such as supernumerary centrosomes and shorter mitotic spindles. These results suggest that FA proteins participate in the regulation of cellular division via the microtubule-associated protein STMN1. PMID:26466335

  11. SRC: A Model of Industry-University Cooperation.

    ERIC Educational Resources Information Center

    Cavin, Ralph K., III; Phillips, D. Howard

    1988-01-01

    Describes the Semiconductor Research Corporation (SRC), a non-profit research cooperative designed to conduct research in the field of integrated circuits, principally in U.S. universities, with membership restricted to U.S.-owned companies. Analyzes SRC's impact on the U.S. educational system. (TW)

  12. Applying a Targeted Label-free Approach using LC-MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Jaitly, Navdeep; Jayachandran, Hemalatha

    2007-10-12

    To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative Phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation sitemore » and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.« less

  13. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    NASA Technical Reports Server (NTRS)

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  14. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    PubMed

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  15. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor.

    PubMed

    Hennequin, Laurent F; Allen, Jack; Breed, Jason; Curwen, Jon; Fennell, Michael; Green, Tim P; Lambert-van der Brempt, Christine; Morgentin, Rémy; Norman, Richard A; Olivier, Annie; Otterbein, Ludovic; Plé, Patrick A; Warin, Nicolas; Costello, Gerard

    2006-11-02

    Src family kinases (SFKs) are nonreceptor tyrosine kinases that are reported to be critical for cancer progression. We report here a novel subseries of C-5-substituted anilinoquinazolines that display high affinity and specificity for the tyrosine kinase domain of the c-Src and Abl enzymes. These compounds exhibit high selectivity for SFKs over a panel of recombinant protein kinases, excellent pharmacokinetics, and in vivo activity following oral dosing. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530) inhibits c-Src and Abl enzymes at low nanomolar concentrations and is highly selective over a range of kinases. AZD0530 displays excellent pharmacokinetic parameters in animal preclinically and in man (t(1/2) = 40 h). AZD0530 is a potent inhibitor of tumor growth in a c-Src-transfected 3T3-fibroblast xenograft model in vivo and led to a significant increase in survival in a highly aggressive, orthotopic model of human pancreatic cancer when dosed orally once daily. AZD0530 is currently undergoing clinical evaluation in man.

  16. Eukaryotic-like Ser/Thr Protein Kinases SpkC/F/K Are Involved in Phosphorylation of GroES in the Cyanobacterium Synechocystis

    PubMed Central

    Zorina, Anna; Stepanchenko, Natalia; Novikova, Galina V.; Sinetova, Maria; Panichkin, Vladimir B.; Moshkov, Igor E.; Zinchenko, Vladislav V.; Shestakov, Sergey V.; Suzuki, Iwane; Murata, Norio; Los, Dmitry A.

    2011-01-01

    Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES. PMID:21551175

  17. The imaging performance of the SRC on Mars Express

    USGS Publications Warehouse

    Oberst, J.; Schwarz, G.; Behnke, T.; Hoffmann, H.; Matz, K.-D.; Flohrer, J.; Hirsch, H.; Roatsch, T.; Scholten, F.; Hauber, E.; Brinkmann, B.; Jaumann, R.; Williams, D.; Kirk, R.; Duxbury, T.; Leu, C.; Neukum, G.

    2008-01-01

    The Mars Express spacecraft carries the pushbroom scanner high-resolution stereo camera (HRSC) and its added imaging subsystem super resolution channel (SRC). The SRC is equipped with its own optical system and a 1024??1024 framing sensor. SRC produces snapshots with 2.3 m ground pixel size from the nominal spacecraft pericenter height of 250 km, which are typically embedded in the central part of the large HRSC scenes. The salient features of the SRC are its light-weight optics, a reliable CCD detector, and high-speed read-out electronics. The quality and effective visibility of details in the SRC images unfortunately falls short of what has been expected. In cases where thermal balance cannot be reached, artifacts, such as blurring and "ghost features" are observed in the images. In addition, images show large numbers of blemish pixels and are plagued by electronic noise. As a consequence, we have developed various image improving algorithms, which are discussed in this paper. While results are encouraging, further studies of image restoration by dedicated processing appear worthwhile. The SRC has obtained more than 6940 images at the time of writing (1 September 2007), which often show fascinating details in surface morphology. SRC images are highly useful for a variety of applications in planetary geology, for studies of the Mars atmosphere, and for astrometric observations of the Martian satellites. This paper will give a full account of the design philosophy, technical concept, calibration, operation, integration with HRSC, and performance, as well as science accomplishments of the SRC. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface*

    PubMed Central

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-01-01

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. PMID:26912659

  19. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface.

    PubMed

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-04-15

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Ray tracing: Experience at SRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, M.

    1996-09-01

    SHADOW [B. Lai and F. Cerrina, Nucl. Instrum. Methods A {bold 246}, 337 (1986)] is the primary ray-tracing program used at SRC. Ray tracing provides a tremendous amount of information regarding beamline layout, mirror sizes, resolution, alignment tolerances, and beam size at various locations. It also provides a way to check the beamline design for errors. Two recent designs have been ray traced extensively: an undulator-based, 4-meter, normal-incidence monochromator (NIM) [R. Reininger, M.C. Severson, R.W.C. Hansen, W.R. Winter, M.A. Green, and W.S. Trzeciak, Rev. Sci. Instrum. {bold 66}, 2194 (1995)] and an undulator-based, plane-grating monochromator (PGM) [R. Reininger, S.L. Crossley,more » M.A. Lagergren, M.C. Severson, and R.W.C. Hansen, Nucl. Instrum. Methods A {bold 347}, 304 (1994)]. {copyright} {ital 1996 American Institute of Physics.}« less

  1. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: in vitro and in vivo studies

    PubMed Central

    Kuo, Chun-Ting; Chang, Chieh; Lee, Wen-Sen

    2015-01-01

    To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis. PMID:26056802

  2. The SLP-76 Src homology 2 domain is required for T cell development and activation.

    PubMed

    Burns, Jeremy C; Corbo, Evann; Degen, Janine; Gohil, Mercy; Anterasian, Christine; Schraven, Burkart; Koretzky, Gary A; Kliche, Stefanie; Jordan, Martha S

    2011-11-01

    The adapter protein Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for multiple aspects of T cell development and function. Through its protein-binding domains, SLP-76 serves as a platform for the assembly of multiple enzymes and adapter proteins that function together to activate second messengers required for TCR signal propagation. The N terminus of SLP-76, which contains three tyrosines that serve as docking sites for SH2 domain-containing proteins, and the central proline-rich region of SLP-76 have been well studied and are known to be important for both thymocyte selection and activation of peripheral T cells. Less is known about the function of the C-terminal SH2 domain of SLP-76. This region inducibly associates with ADAP and HPK1. Combining regulated deletion of endogenous SLP-76 with transgenic expression of a SLP-76 SH2 domain mutant, we demonstrate that the SLP-76 SH2 domain is required for peripheral T cell activation and positive selection of thymocytes, a function not previously attributed to this region. This domain is also important for T cell proliferation, IL-2 production, and phosphorylation of protein kinase D and IκB. ADAP-deficient T cells display similar, but in some cases less severe, defects despite phosphorylation of a negative regulatory site on SLP-76 by HPK1, a function that is lost in SLP-76 SH2 domain mutant T cells.

  3. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    PubMed

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  4. Activated d16HER2 homodimers and SRC kinase mediate optimal efficacy for trastuzumab.

    PubMed

    Castagnoli, Lorenzo; Iezzi, Manuela; Ghedini, Gaia C; Ciravolo, Valentina; Marzano, Giulia; Lamolinara, Alessia; Zappasodi, Roberta; Gasparini, Patrizia; Campiglio, Manuela; Amici, Augusto; Chiodoni, Claudia; Palladini, Arianna; Lollini, Pier Luigi; Triulzi, Tiziana; Menard, Sylvie; Nanni, Patrizia; Tagliabue, Elda; Pupa, Serenella M

    2014-11-01

    A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC). Clinically, HER2-positive breast cancers from patients who received trastuzumab exhibited a positive correlation in d16HER2 and pSRC abundance, consistent with the mouse genetic results. Moreover, patients expressing high pSRC or an activated "d16HER2 metagene" were found to derive the greatest benefit from trastuzumab treatment. Overall, our results establish the d16HER2 signaling axis as a signature for decreased risk of relapse after trastuzumab treatment. ©2014 American Association for Cancer Research.

  5. Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma

    PubMed Central

    Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.

    2011-01-01

    Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177

  6. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis.

    PubMed

    Yamagata, Hideo; Matsuzaki, Koichi; Mori, Shigeo; Yoshida, Katsunori; Tahashi, Yoshiya; Furukawa, Fukiko; Sekimoto, Go; Watanabe, Toshihiko; Uemura, Yoshiko; Sakaida, Noriko; Yoshioka, Kazuhiko; Kamiyama, Yasuo; Seki, Toshihito; Okazaki, Kazuichi

    2005-01-01

    Conversion of normal epithelial cells to tumors is associated with a shift in transforming growth factor-beta (TGF-beta) function: reduction of tumor suppressor activity and increase of oncogenic activity. However, specific mechanisms of this functional alteration during human colorectal carcinogenesis remain to be elucidated. TGF-beta signaling involves Smad2/3 phosphorylated at linker regions (pSmad2/3L) and COOH-terminal regions (pSmad2/3C). Using antibodies specific to each phosphorylation site, we herein showed that Smad2 and Smad3 were phosphorylated at COOH-terminal regions but not at linker regions in normal colorectal epithelial cells and that pSmad2/3C were located predominantly in their nuclei. However, the linker regions of Smad2 and Smad3 were phosphorylated in 31 sporadic colorectal adenocarcinomas. In particular, late-stage invasive and metastatic cancers typically showed a high degree of phosphorylation of Smad2/3L. Their extent of phosphorylation in 11 adenomas was intermediate between those in normal epithelial cells and adenocarcinomas. Whereas pSmad2L remained in the cytoplasm, pSmad3L was located exclusively in the nuclei of Ki-67-immunoreactive adenocarcinomas. In contrast, pSmad3C gradually decreased as the tumor stage progressed. Activated c-Jun NH(2)-terminal kinase in cancers could directly phosphorylate Smad2/3L. Although Mad homology 2 region sequencing in the Smad4 gene revealed a G/A substitution at codon 361 in one adenocarcinoma, the mutation did not correlate with phosphorylation. No mutations in the type II TGF-beta receptor and Smad2 genes were observed in the tumors. In conclusion, pSmad3C, which favors tumor suppressor activity of TGF-beta, was found to decrease, whereas c-Jun NH(2)-terminal kinase tended to induce the phosphorylation of Smad2/3L in human colorectal adenoma-carcinoma sequence.

  7. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  8. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    PubMed Central

    Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.

    2010-01-01

    Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434

  9. A Mass Spectrometry-Based Predictive Strategy Reveals ADAP1 is Phosphorylated at Tyrosine 364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littrell, BobbiJo R

    The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry-based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. ADAP1 was immunoprecipitated from extracts of HEK293 cells stably-transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC-MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data mining algorithm.more » Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC-MS2. Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a Tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. A novel phosphorylation site was identified at Tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that

  10. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Alamore » (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.« less

  11. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection.

    PubMed

    Lin, Chang-Chi; Chou, Chih-Ming; Hsu, Ya-Li; Lien, Jih-Ching; Wang, Yu-Ming; Chen, Shui-Tsung; Tsai, Shu-Chuan; Hsiao, Pei-Wen; Huang, Chang-Jen

    2004-01-30

    Two mosquito STATs, AaSTAT and CtSTAT, have been cloned from Aedes albopictus and Culex tritaeniorhynchus mosquitoes, respectively. These two STATs are more similar to those of Drosophila, Anopheles, and mammalian STAT5 in the DNA binding and Src homology 2 domains. The mRNA transcripts are expressed at all developmental stages, and the proteins are present predominantly at the pupal and adult stages in both mosquitoes. Stimulation with lipopolysaccharide resulted in an increase of tyrosine phosphorylation and DNA binding activity of AaSTAT and CtSTAT as well as an increase of luciferase activity of a reporter gene containing Drosophila STAT binding motif in mosquito C6/36 cells. After being infected with Japanese encephalitis virus, nuclear extracts of C6/36 cells revealed a decrease of tyrosine phosphorylation and DNA binding activity of AaSTAT which could be restored by sodium orthovanadate treatment. Taking all of the data together, this is the first report to clone and characterize two mosquito STATs with 81% identity and to demonstrate a different response of tyrosine phosphorylation and DNA binding of these two STATs by lipopolysaccharide treatment and by Japanese encephalitis virus infection.

  12. Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells

    PubMed Central

    María López-Colomé, Ana; Martínez-Lozada, Zila; Guillem, Alain M; López, Edith; Ortega, Arturo

    2012-01-01

    Glu (glutamate), the excitatory transmitter at the main signalling pathway in the retina, is critically involved in changes in the protein repertoire through the activation of signalling cascades, which regulate protein synthesis at transcriptional and translational levels. Activity-dependent differential gene expression by Glu is related to the activation of ionotropic and metabotropic Glu receptors; however, recent findings suggest the involvement of Na+-dependent Glu transporters in this process. Within the retina, Glu uptake is aimed at the replenishment of the releasable pool, and for the prevention of excitotoxicity and is carried mainly by the GLAST/EAAT-1 (Na+-dependent glutamate/aspartate transporter/excitatory amino acids transporter-1) located in Müller radial glia. Based on the previous work showing the alteration of GLAST expression induced by Glu, the present work investigates the involvement of GLAST signalling in the regulation of protein synthesis in Müller cells. To this end, we explored the effect of D-Asp (D-aspartate) on Ser-2448 mTOR (mammalian target of rapamycin) phosphorylation in primary cultures of chick Müller glia. The results showed that D-Asp transport induces the time- and dose-dependent phosphorylation of mTOR, mimicked by the transportable GLAST inhibitor THA (threo-β-hydroxyaspartate). Signalling leading to mTOR phosphorylation includes Ca2+ influx, the activation of p60src, phosphatidylinositol 3-kinase, protein kinase B, mTOR and p70S6K. Interestingly, GLAST activity promoted AP-1 (activator protein-1) binding to DNA, supporting a function for transporter signalling in retinal long-term responses. These results add a novel receptor-independent pathway for Glu signalling in Müller glia, and further strengthen the critical involvement of these cells in the regulation of glutamatergic transmission in the retina. PMID:22817638

  13. Tropomyosin-related kinase C (TrkC) enhances podocyte migration by ERK-mediated WAVE2 activation.

    PubMed

    Gromnitza, Sascha; Lepa, Carolin; Weide, Thomas; Schwab, Albrecht; Pavenstädt, Hermann; George, Britta

    2018-03-01

    Podocyte malfunction is central to glomerular diseases and is marked by defective podocyte intercellular junctions and actin cytoskeletal dynamics. Podocytes share many morphologic features with neurons, so that similar sets of proteins appear to regulate cell process formation. One such protein is the tropomyosin-related kinase C (TrkC). TrkC deficiency in mice leads to proteinuria as a surrogate of defective kidney filter function. Activation of endogenous TrkC by its ligand neurotrophin-3 resulted in increased podocyte migration-a surrogate of podocyte actin dynamics in vivo. Employing a mutagenesis approach, we found that the Src homologous and collagen-like (Shc) binding site Tyr 516 within the TrkC cytoplasmic domain was necessary for TrkC-induced migration of podocytes. TrkC activation led to a mobility shift of Wiskott-Aldrich syndrome family verprolin-homologous protein (WAVE)-2 which is known to orchestrate Arp2/3 activation and actin polymerization. Chemical inactivation of Erk or mutagenesis of 2 of 4 known Erk target sites within WAVE2, Thr 346 and Ser 351 , abolished the TrkC-induced WAVE2 mobility shift. Knockdown of WAVE2 by shRNA abolished TrkC-induced podocyte migration. In summary, TrkC signals to the podocyte actin cytoskeleton to induce migration by phosphorylating WAVE2 Erk dependently. This signaling mechanism may be important for TrkC-mediated cytoskeletal dynamics in podocyte disease.-Gromnitza, S., Lepa, C., Weide, T., Schwab, A., Pavenstädt, H., George, B. Tropomyosin-related kinase C (TrkC) enhances podocyte migration by ERK-mediated WAVE2 activation.

  14. Bad phosphorylation as a target of inhibition in oncology.

    PubMed

    Bui, Ngoc-Linh-Chi; Pandey, Vijay; Zhu, Tao; Ma, Lan; Basappa; Lobie, Peter E

    2018-02-28

    Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons.

    PubMed

    Devaux, Sara; Poulain, Fabienne E; Devignot, Véronique; Lachkar, Sylvie; Irinopoulou, Theano; Sobel, André

    2012-06-22

    During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.

  16. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Sanyue; Qu, Xiuhua; Li, Ping

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl wasmore » shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.« less

  17. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  18. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK61

    PubMed Central

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named “SlRd2”. SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N. benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation. PMID:27899535

  19. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6.

    PubMed

    Gutiérrez-Beltrán, Emilio; Personat, José María; de la Torre, Fernando; Del Pozo, Olga

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca 2+ signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H 2 O 2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  1. Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein.

    PubMed

    Wilkie-Grantham, Rachel P; Matsuzawa, Shu-Ichi; Reed, John C

    2013-05-03

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIP(L)) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIP(L) protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIP(L) important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL.

  2. Preclinical Trials for Prevention of Tumor Progression of Hepatocellular Carcinoma by LZ-8 Targeting c-Met Dependent and Independent Pathways

    PubMed Central

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Ma, Pei-Ling; Pan, Siou-Mei; Lee, Ming-Che; Wu, Wen-Sheng

    2015-01-01

    Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or

  3. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    PubMed Central

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  4. 76 FR 57763 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ...) program. SUMMARY: The Gates of the Arctic National Park SRC will meet to develop and continue work on NPS... changed based on inclement weather or exceptional circumstances. Gates of the Arctic National Park SRC Meeting Dates and Location: The Gates of the Arctic National Park SRC will meet at Sophie Station Hotel...

  5. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation.

    PubMed Central

    Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A

    1993-01-01

    SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612

  6. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer.

    PubMed

    Cardoso, Henrique J; Figueira, Marília I; Socorro, Sílvia

    2017-12-01

    The stem cell factor (SCF) is a cytokine that specifically binds the tyrosine kinase receptor c-KIT. The SCF/c-KIT interaction leads to receptor dimerization, activation of kinase activity and initiation of several signal transduction pathways that control cell proliferation, apoptosis, differentiation and migration in several tissues. The activity of SCF/c-KIT system is linked with the phosphatidylinositol 3-kinase (PI3-K), the Src, the Janus kinase/signal transducers and activators of transcription (JAK/STAT), the phospholipase-C (PLC-γ) and the mitogen-activated protein kinase (MAPK) pathways. Moreover, it has been reported that cancer cases display an overactivation of c-KIT due to the presence of gain-of-function mutations or receptor overexpression, which renders c-KIT a tempting target for cancer treatment. In the case of male cancers the most documented activated pathways are the PI3-K and Src, both enhancing abnormal cell proliferation. It is also known that the Src activity in prostate cancer cases depends on the presence of tr-KIT, the cytoplasmic truncated variant of c-KIT that is specifically expressed in tumour tissues and, thus, a very interesting target for drug development. The present review provides an overview of the signalling pathways activated by SCF/c-KIT and discusses the potential application of c-KIT inhibitors for treatment of testicular and prostatic cancers.

  7. Arsenic trioxide phosphorylates c-Fos to transactivate p21{sup WAF1/CIP1} expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zimiao; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Huang, H.-S.

    2008-12-01

    An infamous poison, arsenic also has been used as a drug for nearly 2400 years; in recently years, arsenic has been effective in the treatment of acute promyelocytic leukemia. Increasing evidence suggests that opposite effects of arsenic trioxide (ATO) on tumors depend on its concentrations. For this reason, the mechanisms of action of the drug should be elucidated, and it should be used therapeutically only with extreme caution. Previously, we demonstrated the opposing effects of ERK1/2 and JNK on p21{sup WAF1/CIP1} (p21) expression in response to ATO in A431 cells. In addition, JNK phosphorylates c-Jun (Ser{sup 63/73}) to recruit TGIF/HDAC1more » to suppress p21 gene expression. Presently, we demonstrated that a high concentration of ATO sustains ERK1/2 phosphorylation, and increases c-Fos biosynthesis and stability, which enhances p21 gene expression. Using site-directed mutagenesis, a DNA affinity precipitation assay, and functional assays, we demonstrated that phosphorylation of the C-terminus of c-Fos (Thr{sup 232}, Thr{sup 325}, Thr{sup 331}, and Ser{sup 374}) plays an important role in its binding to the p21 promoter, and in conjunction with N-terminus phosphorylation of c-Fos (Ser{sup 70}) to transactivate p21 promoter expression. In conclusion, a high concentration of ATO can sustain ERK1/2 activation to enhance c-Fos expression, then dimerize with dephosphorylated c-Jun (Ser{sup 63/73}) and recruit p300/CBP to the Sp1 sites (- 84/- 64) to activate p21 gene expression in A431 cells.« less

  8. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume.

    PubMed

    Duan, D; Cowley, S; Horowitz, B; Hume, J R

    1999-01-01

    In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.

  9. Phosphorylation of cMyBP-C Affects Contractile Mechanisms in a Site-specific Manner

    PubMed Central

    Wang, Li; Ji, Xiang; Barefield, David; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific, thick-filament regulatory protein that is differentially phosphorylated at Ser273, Ser282, and Ser302 by various kinases and modulates contraction. In this study, phosphorylation-site-specific effects of cMyBP-C on myocardial contractility and cross-bridge kinetics were studied by sinusoidal analysis in papillary and trabecular muscle fibers isolated from t/t (cMyBP-C-null) mice and in their counterparts in which cMyBP-C contains the ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), and SAS (Ser273-Ala282-Ser302) mutations; the results were compared to those from mice expressing the wild-type (WT) transgene on the t/t background. Under standard activating conditions, DAD fibers showed significant decreases in tension (∼50%), stiffness, the fast apparent rate constant 2πc, and its magnitude C, as well as its magnitude H, but an increase in the medium rate constant 2πb, with respect to WT. The t/t fibers showed a smaller drop in stiffness and a significant decrease in 2πc that can be explained by isoform shift of myosin heavy chain. In the pCa-tension study using the 8 mM phosphate (Pi) solution, there was hardly any difference in Ca2+ sensitivity (pCa50) and cooperativity (nH) between the mutant and WT samples. However, in the solutions without Pi, DAD showed increased nH and slightly decreased pCa50. We infer from these observations that the nonphosphorylatable residue 282 combined with phosphomimetic residues Asp273 and/or Asp302 (in DAD) is detrimental to cardiomyocytes by lowering isometric tension and altering cross-bridge kinetics with decreased 2πc and increased 2πb. In contrast, a single change of residue 282 to nonphosphorylatable Ala (SAS), or to phosphomimetic Asps together with the changes of residues 273 and 302 to nonphosphorylatable Ala (ADA) causes minute changes in fiber mechanics. PMID:24606935

  10. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes.

    PubMed

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir; Noritake, Hidenao; Kimura, Wataru; Wu, Yi-Xin; Kobayashi, Yoshimasa; Uezato, Tadayoshi; Miura, Naoyuki

    2012-01-06

    The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with ∼50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    PubMed

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  12. Murine Models of Breast Cancer: Assessment of the Role of c-Src in Mammary Tumorigenesis

    DTIC Science & Technology

    2004-10-01

    Immunol. Today 16:159. S. H. Cheng. 1987. Tyrosine phosphorylation regulates the biochemical and bi- 49. Schraven, B., A. Marie- Cardine , C. Hubener, E...function 38. Thien CB, Langdon WY. Cbl: many 52. Law SF, Estojak J, Wang B, Mysliwiec T, 63. Petruzzelli L, Takami M, Herrera R. Adhesion adaptations to

  13. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators

    PubMed Central

    Yan, Dalai; Cho, Ho S.; Hastings, Curtis A.; Igo, Michele M.; Lee, Seok-Yong; Pelton, Jeffrey G.; Stewart, Valley; Wemmer, David E.; Kustu, Sydney

    1999-01-01

    Two-component systems, sensor kinase-response regulator pairs, dominate bacterial signal transduction. Regulation is exerted by phosphorylation of an Asp in receiver domains of response regulators. Lability of the acyl phosphate linkage has limited structure determination for the active, phosphorylated forms of receiver domains. As assessed by both functional and structural criteria, beryllofluoride yields an excellent analogue of aspartyl phosphate in response regulator NtrC, a bacterial enhancer-binding protein. Beryllofluoride also appears to activate the chemotaxis, sporulation, osmosensing, and nitrate/nitrite response regulators CheY, Spo0F, OmpR, and NarL, respectively. NMR spectroscopic studies indicate that beryllofluoride will facilitate both biochemical and structural characterization of the active forms of receiver domains. PMID:10611291

  14. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  15. Methanol extract of Osbeckia stellata suppresses lipopolysaccharide- and HCl/ethanol-induced inflammatory responses by inhibiting Src/Syk and IRAK1.

    PubMed

    Yang, Yanyan; Hyun Moh, Sang; Yu, Tao; Gwang Park, Jae; Hyo Yoon, Deok; Woong Kim, Tae; Hwan Kim, Seong; Lee, Sukchan; Hong, Sungyoul; Youl Cho, Jae

    2012-10-11

    Osbeckia stellata Buch.-Ham. ex D.Don is traditionally prescribed to treat various inflammatory diseases. However, how this plant is able to modulate inflammatory responses is unknown. This study explored the anti-inflammatory effects of 99% methanol extracts of O. stellata (Os-ME). The anti-inflammatory effect of Os-ME was evaluated by measuring the levels of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by determining gastric inflammatory lesions in mice induced by HCl/ethanol (EtOH). The molecular mechanisms of the inhibitions were elucidated by analyzing the activation of transcription factors, upstream signaling cascade, and the kinase activities of target enzymes. Os-ME dose-dependently diminished the release of NO and PGE(2), and suppressed the expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Os-ME clearly inhibited the translocation of c-Rel, a subunit of nuclear factor κB (NF-κB), and c-Fos, a subunit of activator protein-1 (AP-1), and their regulatory upstream enzymes including Src, Syk, and IRAK1. Interestingly, orally administered Os-ME ameliorated acute inflammatory symptoms and suppressed the activation of Src, Syk, and IRAK1 induced by HCl/EtOH treatment in mouse stomach. Os-ME can be considered as an orally available anti-inflammatory herbal remedy with Src/Syk/NF-κB and IRAK1/AP-1 inhibitory properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase.

    PubMed

    Falk, Shaun P; Weisblum, Bernard

    2013-03-01

    Streptococcus pneumoniae contains a single Ser/Thr kinase-phosphatase pair known as StkP-PhpP. Here, we report the interaction of StkP-PhpP with S. pneumoniae UDP-N-acetylmuramoyl:L-alanine ligase, MurC, an enzyme that synthesizes an essential intermediate of the cell wall peptidoglycan pathway. Combinatorial phage display using StkP as target selected the peptide sequence YEVCGSDTVGC as an interacting partner and subsequently confirmed by ELISA. The phage peptide sequence YEVCGSDTVGC aligns closely with the MurC motif spanning S. pneumoniae amino acid coordinates 31-37. We show that MurC is phosphorylated by StkP and that phosphoMurC is dephosphorylated by PhpP. These data suggest a link between StkP-PhpP with the coordinated regulation of cell wall biosynthesis via MurC. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. In vivo epidermal migration requires focal adhesion targeting of ACF7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G.

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essentialmore » for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Altogether, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.« less

  18. In vivo epidermal migration requires focal adhesion targeting of ACF7

    DOE PAGES

    Yue, Jiping; Zhang, Yao; Liang, Wenguang G.; ...

    2016-05-24

    Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7's NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essentialmore » for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Altogether, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement.« less

  19. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the processmore » by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.« less

  20. Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells.

    PubMed

    Vázquez-Gómez, G; Rocha-Zavaleta, L; Rodríguez-Sosa, M; Petrosyan, P; Rubio-Lightbourn, J

    2018-06-01

    Benzo[a]pyrene (B[a]P), the most extensively studied carcinogen in cigarette smoke, has been regarded as a critical mediator of lung cancer. It is known that B[a]P-mediated Aryl hydrocarbon Receptor (AhR) activation stimulates the mitogen activated protein kinases (MAPK) signaling cascade in different cell models. MAPK pathway disturbances drive alterations in cellular processes, such as differentiation, proliferation, and apoptosis, and the disturbances may also modify the AhR pathway itself. However, MAPK involvement in B[a]P metabolic activation and toxicity in lung tissues is not well understood. Here, we used a non-transformed human bronchial epithelial lung cell line, BEAS-2B, to study the participation of ERK 1/2 kinases in the metabolic activation of B[a]P and in its related genotoxic effects. Our results indicate that B[a]P is not cytotoxic to BEAS-2B cells at relatively low concentrations, but it enhances CYP1A1 gene transcription and protein induction. Additionally, B[a]P promotes Src and ERK 1/2 phosphorylation. Accordingly, inhibition of both Src and ERK 1/2 phosphorylation decreases CYP1A1 protein induction, AhR nuclear translocation and production of B[a]P adducts. Together, these data suggest a crosstalk between AhR and the members of the MAPK pathway, ERK 1/2 mediated by Src kinase. This interaction is important for the adequate AhR pathway signaling that in turn induces transcription and protein induction of CYP1A1 and B[a]P-induced DNA damage in BEAS-2B cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells.

    PubMed

    Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    PubMed Central

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  3. SRC: marker or actor in prostate cancer aggressiveness.

    PubMed

    Vlaeminck-Guillem, Virginie; Gillet, Germain; Rimokh, Ruth

    2014-01-01

    A key question for urologic practitioners is whether an apparently organ-confined prostate cancer (PCa) is actually aggressive or not. The dilemma is to specifically identify among all prostate tumors the very aggressive high-grade cancers that will become life-threatening by developing extra-prostatic invasion and metastatic potential and the indolent cancers that will never modify a patient's life expectancy. A choice must be made between several therapeutic options to achieve the optimal personalized management of the disease that causes as little harm as possible to patients. Reliable clinical, biological, or pathological markers that would enable distinctions to be made between aggressive and indolent PCas in routine practice at the time of initial diagnosis are still lacking. The molecular mechanisms that explain why a PCa is aggressive or not are also poorly understood. Among the potential markers and/or actors in PCa aggressiveness, Src and other members of the Src kinase family, are valuable candidates. Activation of Src-dependent intracellular pathways is frequently observed in PCa. Indeed, Src is at the cross-roads of several pathways [including androgen receptor (AR), TGFbeta, Bcl-2, Akt/PTEN or MAPK, and ERK …], and is now known to influence some of the cellular and tissular events that accompany tumor progression: cell proliferation, cell motility, invasion, epithelial-to-mesenchymal transition, resistance to apoptosis, angiogenesis, neuroendocrine differentiation, and metastatic spread. Recent work even suggests that Src could also play a part in PCa initiation in coordination with the AR. The aim of this review is to gather data that explore the links between the Src kinase family and PCa progression and aggressiveness.

  4. LuciPHOr: Algorithm for Phosphorylation Site Localization with False Localization Rate Estimation Using Modified Target-Decoy Approach*

    PubMed Central

    Fermin, Damian; Walmsley, Scott J.; Gingras, Anne-Claude; Choi, Hyungwon; Nesvizhskii, Alexey I.

    2013-01-01

    The localization of phosphorylation sites in peptide sequences is a challenging problem in large-scale phosphoproteomics analysis. The intense neutral loss peaks and the coexistence of multiple serine/threonine and/or tyrosine residues are limiting factors for objectively scoring site patterns across thousands of peptides. Various computational approaches for phosphorylation site localization have been proposed, including Ascore, Mascot Delta score, and ProteinProspector, yet few address direct estimation of the false localization rate (FLR) in each experiment. Here we propose LuciPHOr, a modified target-decoy-based approach that uses mass accuracy and peak intensities for site localization scoring and FLR estimation. Accurate estimation of the FLR is a difficult task at the individual-site level because the degree of uncertainty in localization varies significantly across different peptides. LuciPHOr carries out simultaneous localization on all candidate sites in each peptide and estimates the FLR based on the target-decoy framework, where decoy phosphopeptides generated by placing artificial phosphorylation(s) on non-candidate residues compete with the non-decoy phosphopeptides. LuciPHOr also reports approximate site-level confidence scores for all candidate sites as a means to localize additional sites from multiphosphorylated peptides in which localization can be partially achieved. Unlike the existing tools, LuciPHOr is compatible with any search engine output processed through the Trans-Proteomic Pipeline. We evaluated the performance of LuciPHOr in terms of the sensitivity and accuracy of FLR estimates using two synthetic phosphopeptide libraries and a phosphoproteomic dataset generated from complex mouse brain samples. PMID:23918812

  5. Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells.

    PubMed

    Luo, X; Sando, J J

    1997-05-02

    Two tyrosine phosphoproteins in phorbol ester-sensitive EL4 (S-EL4) mouse thymoma cells have been identified as the p120 c-Cbl protooncogene product and the p85 subunit of phosphatidylinositol 3-kinase. Tyrosine phosphorylation of p120 and p85 increased rapidly after phorbol ester stimulation. Phorbol ester-resistant EL4 (R-EL4) cells expressed comparable amounts of c-Cbl and phosphatidylinositol 3-kinase protein but greatly diminished tyrosine phosphorylation. Co-immunoprecipitation experiments revealed complexes of c-Cbl with p85, and of p85 with the tyrosine kinase Lck in phorbol ester-stimulated S-EL4 but not in unstimulated S-EL4 or in R-EL4 cells. In vitro binding of c-Cbl with Lck SH2 or SH3 domains was detected in both S-EL4 and R-EL4 cells, suggesting that c-Cbl, p85, and Lck may form a ternary complex. In vitro kinase assays revealed phosphorylation of p85 by Lck only in phorbol ester-stimulated S-EL4 cells. Collectively, these results suggest that Cbl-p85 and Lck-p85 complexes may form in unstimulated S-EL4 and R-EL4 cells but were not detected due to absence of tyrosine phosphorylation of p85. Greatly decreased tyrosine phosphorylation of c-Cbl and p85 in the complexes may contribute to the failure of R-EL4 cells to respond to phorbol ester.

  6. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase

    PubMed Central

    Foda, Zachariah H.; Shan, Yibing; Kim, Eric T.; Shaw, David E.; Seeliger, Markus A.

    2015-01-01

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932

  7. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.

    PubMed

    Singh, Amit Kumar; Rastogi, Shivangi; Shukla, Harish; Asalam, Mohd; Rath, Srikanta Kumar; Akhtar, Md Sohail

    2017-03-31

    In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G 1 , S, and G 2 ), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Glycogen phosphorylation and Lafora disease.

    PubMed

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Glycogen Phosphorylation and Lafora disease

    PubMed Central

    Roach, Peter J.

    2015-01-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 - 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease PMID:26278984

  10. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart.

    PubMed

    Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R

    1997-09-19

    Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS

  11. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1): challenging target for antitubercular drug discovery.

    PubMed

    Gawad, Jineetkumar; Bonde, Chandrakant

    2018-06-23

    Tuberculosis has proved harmful to the entire history of mankind from past several decades. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1) is a recent target which was identified in 2009 but unfortunately it is neither explored nor crossed phase II. In past several decades few targets were identified for effective antitubercular drug discovery. Resistance is the major problem for effective antitubercular drug discovery. Arabinose is constituent of mycobacterium cell wall. Biosynthesis of arabinose is FAD dependant two step epimerisation reaction which is catalysed by DprE1 and DprE2 flavoprotein enzymes. The current review is mainly emphases on DprE1 as a perspective challenge for further research.

  12. Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE.

    PubMed

    Lai, Shan-Shan; Xue, Bin; Yang, Yang; Zhao, Li; Chu, Chao-Shun; Hao, Jia-Yin; Wen, Chuan-Jun

    2012-11-01

    The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE. Copyright © 2012. Published by Elsevier Inc.

  13. Downregulation of β-arrestin 1 suppresses glioblastoma cell malignant progression vis inhibition of Src signaling.

    PubMed

    Lan, Tian; Wang, Haoran; Zhang, Zhihua; Zhang, Mingshan; Qu, Yanming; Zhao, Zitong; Fan, Xinyi; Zhan, Qimin; Song, Yongmei; Yu, Chunjiang

    2017-08-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies worldwide and is typically associated with a dismal prognosis, yet the mechanisms underlying its aggressiveness remain unclear. Here, we revealed that β-arrestin 1 was overexpressed in GBM and contributed to poorer outcome. Knockdown of β-arrestin 1 suppressed the proliferation, invasiveness and glycolysis of GBM cells, and also enhanced temozolomide efficacy. Further, we discovered that knockdown of β-arrestin 1 decreased the activity of Src, and suppression of Src signaling was critically involved in β-arrestin 1 silencing-mediated suppression of GBM malignancies. Finally, we investigated the effect of β-arrestin 1 knockdown on the tumor growth and survival of xenograft models, and found that shβ-arrestin 1 apparently inhibited GBM growth in vivo and resulted in better survival of mice. Taken together, our findings suggest that knockdown of β-arrestin 1 can suppress GBM cell proliferation, invasion and glycolysis by inhibiting Src signaling. Thus, targeting β-arrestin 1 may be a potential therapeutic strategy for GBM treatment. Copyright © 2017. Published by Elsevier Inc.

  14. Innate Immune Response to Burkholderia mallei

    DTIC Science & Technology

    2017-02-16

    stimulate immune responses via TLR4 activation that may contribute to persistent infection. Summary Mortality is high due to septicemia and immune...phosphorylation of adenosine monophosphate- activated protein kinase (AMPK); regulators of NF-κB signaling pathway (e.g. IκBα, GSK3β, Src, and STAT1) and mitogen... activated protein kinases (e.g. p38, ERK1/2 and c-Myc) (13). The degrees in which target host proteins or processes are modulated correlated to the

  15. 76 FR 21404 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... Resource Commission (SRC) program. SUMMARY: The Gates of the Arctic National Park SRC will meet to develop... to do so. Gates of the Arctic National Park SRC Meeting Date and Location: The Gates of the Arctic... weather or local circumstances. For Further Information on the Gates of the Arctic National Park SRC...

  16. High-Content Screening Identifies Src Family Kinases as Potential Regulators of AR-V7 Expression and Androgen-Independent Cell Growth.

    PubMed

    Szafran, Adam T; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G; Marcelli, Marco; Mancini, Michael A

    2017-01-01

    AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also

  17. High-content screening identifies Src family kinases as potential regulators of AR-V7 expression and androgen-independent cell growth

    PubMed Central

    Szafran, Adam T.; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G.; Marcelli, Marco; Mancini, Michael A.

    2018-01-01

    Background AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. Methods We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Results Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous–AR-V7

  18. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, wemore » generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.« less

  19. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.

    PubMed

    Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong

    2012-11-23

    Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  20. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries

    PubMed Central

    2012-01-01

    Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates. PMID:23173901

  1. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains.

    PubMed

    Lind, Judith; Backert, Steffen; Hoffmann, Rebecca; Eichler, Jutta; Yamaoka, Yoshio; Perez-Perez, Guillermo I; Torres, Javier; Sticht, Heinrich; Tegtmeyer, Nicole

    2016-09-02

    Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways. Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies for each of the three sites in CagA are not forthcoming. This study was designed to systematically analyze the detection preferences of each phosphorylated East Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with high specificity. However, the sequence recognition by the different antibodies was found to bear high variability. From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well. Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that none of the

  2. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    PubMed

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  3. Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling.

    PubMed

    Archer-Lahlou, Elodie; Audet, Nicolas; Amraei, Mohammad Gholi; Huard, Karine; Paquin-Gobeil, Mélanie; Pineyro, Graciela

    2009-01-01

    Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 microM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Galphal3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors.

  4. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.

    PubMed

    Cook, Gregory M; Hards, Kiel; Dunn, Elyse; Heikal, Adam; Nakatani, Yoshio; Greening, Chris; Crick, Dean C; Fontes, Fabio L; Pethe, Kevin; Hasenoehrl, Erik; Berney, Michael

    2017-06-01

    The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The Mycobacterium tuberculosis complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. M. tuberculosis is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.

  5. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    PubMed

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  6. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    PubMed

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  7. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chihara, Kazuyasu; Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193; Kimura, Yukihiro

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutationalmore » analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.« less

  8. Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48

    PubMed Central

    Moreno-Beltrán, Blas; Guerra-Castellano, Alejandra; Del Conte, Rebecca; García-Mauriño, Sofía M.; Díaz-Moreno, Sofía; González-Arzola, Katiuska; Santos-Ocaña, Carlos; Velázquez-Campoy, Adrián; De la Rosa, Miguel A.; Turano, Paola; Díaz-Moreno, Irene

    2017-01-01

    Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects. PMID:28348229

  9. Site-specific Phosphorylation Protects Glycogen Synthase Kinase-3β from Calpain-mediated Truncation of Its N and C Termini*

    PubMed Central

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-01-01

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38–Thr-39 and Ile-384–Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39–420), ΔC-GSK-3β (amino acids 1–384), and ΔN/ΔC-GSK-3β (amino acids 39–384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity. PMID:22496446

  10. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini.

    PubMed

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-06-29

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38-Thr-39 and Ile-384-Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39-420), ΔC-GSK-3β (amino acids 1-384), and ΔN/ΔC-GSK-3β (amino acids 39-384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity.

  11. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force,more » we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.« less

  12. Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.

    PubMed

    Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian

    2018-02-01

    Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.

  13. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    PubMed

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  14. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C.

    PubMed Central

    Maizels, E T; Peters, C A; Kline, M; Cutler, R E; Shanmugam, M; Hunzicker-Dunn, M

    1998-01-01

    Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the

  15. Coilin phosphorylation mediates interaction with SMN and SmB'.

    PubMed

    Toyota, Cory G; Davis, Misty D; Cosman, Angela M; Hebert, Michael D

    2010-04-01

    Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB' binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB' than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB.

  16. Coilin phosphorylation mediates interaction with SMN and SmB′

    PubMed Central

    Toyota, Cory G.; Davis, Misty D.; Cosman, Angela M.; Hebert, Michael D.

    2010-01-01

    Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB′ binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB′ than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB. PMID:19997741

  17. Saracatinib Impairs Head and Neck Squamous Cell Carcinoma Invasion by Disrupting Invadopodia Function

    PubMed Central

    Ammer, Amanda Gatesman; Kelley, Laura C.; Hayes, Karen E.; Evans, Jason V.; Lopez-Skinner, Lesly Ann; Martin, Karen H.; Frederick, Barbara; Rothschild, Brian L.; Raben, David; Elvin, Paul; Green, Tim P.; Weed, Scott A.

    2010-01-01

    Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity. PMID:20505783

  18. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer

    PubMed Central

    2012-01-01

    Background The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes. Results A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH2 of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile. Conclusions The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety

  19. SCFβ-TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase

    PubMed Central

    Orian, Amir; Gonen, Hedva; Bercovich, Beatrice; Fajerman, Ifat; Eytan, Esther; Israël, Alain; Mercurio, Frank; Iwai, Kazuhiro; Schwartz, Alan L.; Ciechanover, Aaron

    2000-01-01

    Processing of the p105 precursor to form the active subunit p50 of the NF-κB transcription factor is a unique case in which the ubiquitin system is involved in limited processing rather than in complete destruction of the target substrate. A glycine-rich region along with a downstream acidic domain have been demonstrated to be essential for processing. Here we demonstrate that following IκB kinase (IκK)-mediated phosphorylation, the C-terminal domain of p105 (residues 918–934) serves as a recognition motif for the SCFβ-TrCP ubiquitin ligase. Expression of IκKβ dramatically increases processing of wild-type p105, but not of p105-Δ918–934. Dominant-negative β-TrCP inhibits IκK-dependent processing. Furthermore, the ligase and wild-type p105 but not p105-Δ918–934 associate physically following phosphorylation. In vitro, SCFβ-TrCP specifically conjugates and promotes processing of phosphorylated p105. Importantly, the TrCP recognition motif in p105 is different from that described for IκBs, β-catenin and human immunodeficiency virus type 1 Vpu. Since p105-Δ918–934 is also conjugated and processed, it appears that p105 can be recognized under different physiological conditions by two different ligases, targeting two distinct recognition motifs. PMID:10835356

  20. STEROID RECEPTOR COACTIVATOR 2 (SRC-2) MODULATES STEROID-DEPENDENT MALE SEXUAL BEHAVIOR AND NEUROPLASTICITY IN JAPANESE QUAIL (COTURNIX JAPONICA)

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2011-01-01

    Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. SRC-2 modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide (AS) techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with AS as compared to controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail. PMID:21854393